xmit.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  109. {
  110. struct ath_txq *txq = tid->ac->txq;
  111. WARN_ON(!tid->paused);
  112. ath_txq_lock(sc, txq);
  113. tid->paused = false;
  114. if (skb_queue_empty(&tid->buf_q))
  115. goto unlock;
  116. ath_tx_queue_tid(txq, tid);
  117. ath_txq_schedule(sc, txq);
  118. unlock:
  119. ath_txq_unlock_complete(sc, txq);
  120. }
  121. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  122. {
  123. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  124. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  125. sizeof(tx_info->rate_driver_data));
  126. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  127. }
  128. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  129. {
  130. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  131. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  132. }
  133. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  134. {
  135. struct ath_txq *txq = tid->ac->txq;
  136. struct sk_buff *skb;
  137. struct ath_buf *bf;
  138. struct list_head bf_head;
  139. struct ath_tx_status ts;
  140. struct ath_frame_info *fi;
  141. bool sendbar = false;
  142. INIT_LIST_HEAD(&bf_head);
  143. memset(&ts, 0, sizeof(ts));
  144. while ((skb = __skb_dequeue(&tid->buf_q))) {
  145. fi = get_frame_info(skb);
  146. bf = fi->bf;
  147. if (!bf) {
  148. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  149. if (!bf) {
  150. ieee80211_free_txskb(sc->hw, skb);
  151. continue;
  152. }
  153. }
  154. if (fi->retries) {
  155. list_add_tail(&bf->list, &bf_head);
  156. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  157. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  158. sendbar = true;
  159. } else {
  160. ath_tx_send_normal(sc, txq, NULL, skb);
  161. }
  162. }
  163. if (tid->baw_head == tid->baw_tail) {
  164. tid->state &= ~AGGR_ADDBA_COMPLETE;
  165. tid->state &= ~AGGR_CLEANUP;
  166. }
  167. if (sendbar) {
  168. ath_txq_unlock(sc, txq);
  169. ath_send_bar(tid, tid->seq_start);
  170. ath_txq_lock(sc, txq);
  171. }
  172. }
  173. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  174. int seqno)
  175. {
  176. int index, cindex;
  177. index = ATH_BA_INDEX(tid->seq_start, seqno);
  178. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  179. __clear_bit(cindex, tid->tx_buf);
  180. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  181. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  182. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  183. if (tid->bar_index >= 0)
  184. tid->bar_index--;
  185. }
  186. }
  187. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  188. u16 seqno)
  189. {
  190. int index, cindex;
  191. index = ATH_BA_INDEX(tid->seq_start, seqno);
  192. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  193. __set_bit(cindex, tid->tx_buf);
  194. if (index >= ((tid->baw_tail - tid->baw_head) &
  195. (ATH_TID_MAX_BUFS - 1))) {
  196. tid->baw_tail = cindex;
  197. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  198. }
  199. }
  200. /*
  201. * TODO: For frame(s) that are in the retry state, we will reuse the
  202. * sequence number(s) without setting the retry bit. The
  203. * alternative is to give up on these and BAR the receiver's window
  204. * forward.
  205. */
  206. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  207. struct ath_atx_tid *tid)
  208. {
  209. struct sk_buff *skb;
  210. struct ath_buf *bf;
  211. struct list_head bf_head;
  212. struct ath_tx_status ts;
  213. struct ath_frame_info *fi;
  214. memset(&ts, 0, sizeof(ts));
  215. INIT_LIST_HEAD(&bf_head);
  216. while ((skb = __skb_dequeue(&tid->buf_q))) {
  217. fi = get_frame_info(skb);
  218. bf = fi->bf;
  219. if (!bf) {
  220. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  221. continue;
  222. }
  223. list_add_tail(&bf->list, &bf_head);
  224. if (fi->retries)
  225. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  226. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  227. }
  228. tid->seq_next = tid->seq_start;
  229. tid->baw_tail = tid->baw_head;
  230. tid->bar_index = -1;
  231. }
  232. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  233. struct sk_buff *skb, int count)
  234. {
  235. struct ath_frame_info *fi = get_frame_info(skb);
  236. struct ath_buf *bf = fi->bf;
  237. struct ieee80211_hdr *hdr;
  238. int prev = fi->retries;
  239. TX_STAT_INC(txq->axq_qnum, a_retries);
  240. fi->retries += count;
  241. if (prev > 0)
  242. return;
  243. hdr = (struct ieee80211_hdr *)skb->data;
  244. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  245. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  246. sizeof(*hdr), DMA_TO_DEVICE);
  247. }
  248. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  249. {
  250. struct ath_buf *bf = NULL;
  251. spin_lock_bh(&sc->tx.txbuflock);
  252. if (unlikely(list_empty(&sc->tx.txbuf))) {
  253. spin_unlock_bh(&sc->tx.txbuflock);
  254. return NULL;
  255. }
  256. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  257. list_del(&bf->list);
  258. spin_unlock_bh(&sc->tx.txbuflock);
  259. return bf;
  260. }
  261. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  262. {
  263. spin_lock_bh(&sc->tx.txbuflock);
  264. list_add_tail(&bf->list, &sc->tx.txbuf);
  265. spin_unlock_bh(&sc->tx.txbuflock);
  266. }
  267. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  268. {
  269. struct ath_buf *tbf;
  270. tbf = ath_tx_get_buffer(sc);
  271. if (WARN_ON(!tbf))
  272. return NULL;
  273. ATH_TXBUF_RESET(tbf);
  274. tbf->bf_mpdu = bf->bf_mpdu;
  275. tbf->bf_buf_addr = bf->bf_buf_addr;
  276. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  277. tbf->bf_state = bf->bf_state;
  278. return tbf;
  279. }
  280. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  281. struct ath_tx_status *ts, int txok,
  282. int *nframes, int *nbad)
  283. {
  284. struct ath_frame_info *fi;
  285. u16 seq_st = 0;
  286. u32 ba[WME_BA_BMP_SIZE >> 5];
  287. int ba_index;
  288. int isaggr = 0;
  289. *nbad = 0;
  290. *nframes = 0;
  291. isaggr = bf_isaggr(bf);
  292. if (isaggr) {
  293. seq_st = ts->ts_seqnum;
  294. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  295. }
  296. while (bf) {
  297. fi = get_frame_info(bf->bf_mpdu);
  298. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  299. (*nframes)++;
  300. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  301. (*nbad)++;
  302. bf = bf->bf_next;
  303. }
  304. }
  305. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  306. struct ath_buf *bf, struct list_head *bf_q,
  307. struct ath_tx_status *ts, int txok, bool retry)
  308. {
  309. struct ath_node *an = NULL;
  310. struct sk_buff *skb;
  311. struct ieee80211_sta *sta;
  312. struct ieee80211_hw *hw = sc->hw;
  313. struct ieee80211_hdr *hdr;
  314. struct ieee80211_tx_info *tx_info;
  315. struct ath_atx_tid *tid = NULL;
  316. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  317. struct list_head bf_head;
  318. struct sk_buff_head bf_pending;
  319. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  320. u32 ba[WME_BA_BMP_SIZE >> 5];
  321. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  322. bool rc_update = true;
  323. struct ieee80211_tx_rate rates[4];
  324. struct ath_frame_info *fi;
  325. int nframes;
  326. u8 tidno;
  327. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  328. int i, retries;
  329. int bar_index = -1;
  330. skb = bf->bf_mpdu;
  331. hdr = (struct ieee80211_hdr *)skb->data;
  332. tx_info = IEEE80211_SKB_CB(skb);
  333. memcpy(rates, tx_info->control.rates, sizeof(rates));
  334. retries = ts->ts_longretry + 1;
  335. for (i = 0; i < ts->ts_rateindex; i++)
  336. retries += rates[i].count;
  337. rcu_read_lock();
  338. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  339. if (!sta) {
  340. rcu_read_unlock();
  341. INIT_LIST_HEAD(&bf_head);
  342. while (bf) {
  343. bf_next = bf->bf_next;
  344. if (!bf->bf_stale || bf_next != NULL)
  345. list_move_tail(&bf->list, &bf_head);
  346. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  347. bf = bf_next;
  348. }
  349. return;
  350. }
  351. an = (struct ath_node *)sta->drv_priv;
  352. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  353. tid = ATH_AN_2_TID(an, tidno);
  354. seq_first = tid->seq_start;
  355. /*
  356. * The hardware occasionally sends a tx status for the wrong TID.
  357. * In this case, the BA status cannot be considered valid and all
  358. * subframes need to be retransmitted
  359. */
  360. if (tidno != ts->tid)
  361. txok = false;
  362. isaggr = bf_isaggr(bf);
  363. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  364. if (isaggr && txok) {
  365. if (ts->ts_flags & ATH9K_TX_BA) {
  366. seq_st = ts->ts_seqnum;
  367. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  368. } else {
  369. /*
  370. * AR5416 can become deaf/mute when BA
  371. * issue happens. Chip needs to be reset.
  372. * But AP code may have sychronization issues
  373. * when perform internal reset in this routine.
  374. * Only enable reset in STA mode for now.
  375. */
  376. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  377. needreset = 1;
  378. }
  379. }
  380. __skb_queue_head_init(&bf_pending);
  381. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  382. while (bf) {
  383. u16 seqno = bf->bf_state.seqno;
  384. txfail = txpending = sendbar = 0;
  385. bf_next = bf->bf_next;
  386. skb = bf->bf_mpdu;
  387. tx_info = IEEE80211_SKB_CB(skb);
  388. fi = get_frame_info(skb);
  389. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  390. /* transmit completion, subframe is
  391. * acked by block ack */
  392. acked_cnt++;
  393. } else if (!isaggr && txok) {
  394. /* transmit completion */
  395. acked_cnt++;
  396. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  397. /*
  398. * cleanup in progress, just fail
  399. * the un-acked sub-frames
  400. */
  401. txfail = 1;
  402. } else if (flush) {
  403. txpending = 1;
  404. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  405. if (txok || !an->sleeping)
  406. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  407. retries);
  408. txpending = 1;
  409. } else {
  410. txfail = 1;
  411. txfail_cnt++;
  412. bar_index = max_t(int, bar_index,
  413. ATH_BA_INDEX(seq_first, seqno));
  414. }
  415. /*
  416. * Make sure the last desc is reclaimed if it
  417. * not a holding desc.
  418. */
  419. INIT_LIST_HEAD(&bf_head);
  420. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  421. bf_next != NULL || !bf_last->bf_stale)
  422. list_move_tail(&bf->list, &bf_head);
  423. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  424. /*
  425. * complete the acked-ones/xretried ones; update
  426. * block-ack window
  427. */
  428. ath_tx_update_baw(sc, tid, seqno);
  429. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  430. memcpy(tx_info->control.rates, rates, sizeof(rates));
  431. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  432. rc_update = false;
  433. }
  434. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  435. !txfail);
  436. } else {
  437. /* retry the un-acked ones */
  438. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  439. bf->bf_next == NULL && bf_last->bf_stale) {
  440. struct ath_buf *tbf;
  441. tbf = ath_clone_txbuf(sc, bf_last);
  442. /*
  443. * Update tx baw and complete the
  444. * frame with failed status if we
  445. * run out of tx buf.
  446. */
  447. if (!tbf) {
  448. ath_tx_update_baw(sc, tid, seqno);
  449. ath_tx_complete_buf(sc, bf, txq,
  450. &bf_head, ts, 0);
  451. bar_index = max_t(int, bar_index,
  452. ATH_BA_INDEX(seq_first, seqno));
  453. break;
  454. }
  455. fi->bf = tbf;
  456. }
  457. /*
  458. * Put this buffer to the temporary pending
  459. * queue to retain ordering
  460. */
  461. __skb_queue_tail(&bf_pending, skb);
  462. }
  463. bf = bf_next;
  464. }
  465. /* prepend un-acked frames to the beginning of the pending frame queue */
  466. if (!skb_queue_empty(&bf_pending)) {
  467. if (an->sleeping)
  468. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  469. skb_queue_splice(&bf_pending, &tid->buf_q);
  470. if (!an->sleeping) {
  471. ath_tx_queue_tid(txq, tid);
  472. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  473. tid->ac->clear_ps_filter = true;
  474. }
  475. }
  476. if (bar_index >= 0) {
  477. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  478. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  479. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  480. ath_txq_unlock(sc, txq);
  481. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  482. ath_txq_lock(sc, txq);
  483. }
  484. if (tid->state & AGGR_CLEANUP)
  485. ath_tx_flush_tid(sc, tid);
  486. rcu_read_unlock();
  487. if (needreset)
  488. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  489. }
  490. static bool ath_lookup_legacy(struct ath_buf *bf)
  491. {
  492. struct sk_buff *skb;
  493. struct ieee80211_tx_info *tx_info;
  494. struct ieee80211_tx_rate *rates;
  495. int i;
  496. skb = bf->bf_mpdu;
  497. tx_info = IEEE80211_SKB_CB(skb);
  498. rates = tx_info->control.rates;
  499. for (i = 0; i < 4; i++) {
  500. if (!rates[i].count || rates[i].idx < 0)
  501. break;
  502. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  503. return true;
  504. }
  505. return false;
  506. }
  507. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  508. struct ath_atx_tid *tid)
  509. {
  510. struct sk_buff *skb;
  511. struct ieee80211_tx_info *tx_info;
  512. struct ieee80211_tx_rate *rates;
  513. u32 max_4ms_framelen, frmlen;
  514. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  515. int q = tid->ac->txq->mac80211_qnum;
  516. int i;
  517. skb = bf->bf_mpdu;
  518. tx_info = IEEE80211_SKB_CB(skb);
  519. rates = tx_info->control.rates;
  520. /*
  521. * Find the lowest frame length among the rate series that will have a
  522. * 4ms (or TXOP limited) transmit duration.
  523. */
  524. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  525. for (i = 0; i < 4; i++) {
  526. int modeidx;
  527. if (!rates[i].count)
  528. continue;
  529. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  530. legacy = 1;
  531. break;
  532. }
  533. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  534. modeidx = MCS_HT40;
  535. else
  536. modeidx = MCS_HT20;
  537. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  538. modeidx++;
  539. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  540. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  541. }
  542. /*
  543. * limit aggregate size by the minimum rate if rate selected is
  544. * not a probe rate, if rate selected is a probe rate then
  545. * avoid aggregation of this packet.
  546. */
  547. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  548. return 0;
  549. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  550. /*
  551. * Override the default aggregation limit for BTCOEX.
  552. */
  553. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  554. if (bt_aggr_limit)
  555. aggr_limit = bt_aggr_limit;
  556. /*
  557. * h/w can accept aggregates up to 16 bit lengths (65535).
  558. * The IE, however can hold up to 65536, which shows up here
  559. * as zero. Ignore 65536 since we are constrained by hw.
  560. */
  561. if (tid->an->maxampdu)
  562. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  563. return aggr_limit;
  564. }
  565. /*
  566. * Returns the number of delimiters to be added to
  567. * meet the minimum required mpdudensity.
  568. */
  569. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  570. struct ath_buf *bf, u16 frmlen,
  571. bool first_subfrm)
  572. {
  573. #define FIRST_DESC_NDELIMS 60
  574. struct sk_buff *skb = bf->bf_mpdu;
  575. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  576. u32 nsymbits, nsymbols;
  577. u16 minlen;
  578. u8 flags, rix;
  579. int width, streams, half_gi, ndelim, mindelim;
  580. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  581. /* Select standard number of delimiters based on frame length alone */
  582. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  583. /*
  584. * If encryption enabled, hardware requires some more padding between
  585. * subframes.
  586. * TODO - this could be improved to be dependent on the rate.
  587. * The hardware can keep up at lower rates, but not higher rates
  588. */
  589. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  590. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  591. ndelim += ATH_AGGR_ENCRYPTDELIM;
  592. /*
  593. * Add delimiter when using RTS/CTS with aggregation
  594. * and non enterprise AR9003 card
  595. */
  596. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  597. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  598. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  599. /*
  600. * Convert desired mpdu density from microeconds to bytes based
  601. * on highest rate in rate series (i.e. first rate) to determine
  602. * required minimum length for subframe. Take into account
  603. * whether high rate is 20 or 40Mhz and half or full GI.
  604. *
  605. * If there is no mpdu density restriction, no further calculation
  606. * is needed.
  607. */
  608. if (tid->an->mpdudensity == 0)
  609. return ndelim;
  610. rix = tx_info->control.rates[0].idx;
  611. flags = tx_info->control.rates[0].flags;
  612. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  613. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  614. if (half_gi)
  615. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  616. else
  617. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  618. if (nsymbols == 0)
  619. nsymbols = 1;
  620. streams = HT_RC_2_STREAMS(rix);
  621. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  622. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  623. if (frmlen < minlen) {
  624. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  625. ndelim = max(mindelim, ndelim);
  626. }
  627. return ndelim;
  628. }
  629. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  630. struct ath_txq *txq,
  631. struct ath_atx_tid *tid,
  632. struct list_head *bf_q,
  633. int *aggr_len)
  634. {
  635. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  636. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  637. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  638. u16 aggr_limit = 0, al = 0, bpad = 0,
  639. al_delta, h_baw = tid->baw_size / 2;
  640. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  641. struct ieee80211_tx_info *tx_info;
  642. struct ath_frame_info *fi;
  643. struct sk_buff *skb;
  644. u16 seqno;
  645. do {
  646. skb = skb_peek(&tid->buf_q);
  647. fi = get_frame_info(skb);
  648. bf = fi->bf;
  649. if (!fi->bf)
  650. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  651. if (!bf) {
  652. __skb_unlink(skb, &tid->buf_q);
  653. ieee80211_free_txskb(sc->hw, skb);
  654. continue;
  655. }
  656. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  657. seqno = bf->bf_state.seqno;
  658. /* do not step over block-ack window */
  659. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  660. status = ATH_AGGR_BAW_CLOSED;
  661. break;
  662. }
  663. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  664. struct ath_tx_status ts = {};
  665. struct list_head bf_head;
  666. INIT_LIST_HEAD(&bf_head);
  667. list_add(&bf->list, &bf_head);
  668. __skb_unlink(skb, &tid->buf_q);
  669. ath_tx_update_baw(sc, tid, seqno);
  670. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  671. continue;
  672. }
  673. if (!bf_first)
  674. bf_first = bf;
  675. if (!rl) {
  676. aggr_limit = ath_lookup_rate(sc, bf, tid);
  677. rl = 1;
  678. }
  679. /* do not exceed aggregation limit */
  680. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  681. if (nframes &&
  682. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  683. ath_lookup_legacy(bf))) {
  684. status = ATH_AGGR_LIMITED;
  685. break;
  686. }
  687. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  688. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  689. break;
  690. /* do not exceed subframe limit */
  691. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  692. status = ATH_AGGR_LIMITED;
  693. break;
  694. }
  695. /* add padding for previous frame to aggregation length */
  696. al += bpad + al_delta;
  697. /*
  698. * Get the delimiters needed to meet the MPDU
  699. * density for this node.
  700. */
  701. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  702. !nframes);
  703. bpad = PADBYTES(al_delta) + (ndelim << 2);
  704. nframes++;
  705. bf->bf_next = NULL;
  706. /* link buffers of this frame to the aggregate */
  707. if (!fi->retries)
  708. ath_tx_addto_baw(sc, tid, seqno);
  709. bf->bf_state.ndelim = ndelim;
  710. __skb_unlink(skb, &tid->buf_q);
  711. list_add_tail(&bf->list, bf_q);
  712. if (bf_prev)
  713. bf_prev->bf_next = bf;
  714. bf_prev = bf;
  715. } while (!skb_queue_empty(&tid->buf_q));
  716. *aggr_len = al;
  717. return status;
  718. #undef PADBYTES
  719. }
  720. /*
  721. * rix - rate index
  722. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  723. * width - 0 for 20 MHz, 1 for 40 MHz
  724. * half_gi - to use 4us v/s 3.6 us for symbol time
  725. */
  726. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  727. int width, int half_gi, bool shortPreamble)
  728. {
  729. u32 nbits, nsymbits, duration, nsymbols;
  730. int streams;
  731. /* find number of symbols: PLCP + data */
  732. streams = HT_RC_2_STREAMS(rix);
  733. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  734. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  735. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  736. if (!half_gi)
  737. duration = SYMBOL_TIME(nsymbols);
  738. else
  739. duration = SYMBOL_TIME_HALFGI(nsymbols);
  740. /* addup duration for legacy/ht training and signal fields */
  741. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  742. return duration;
  743. }
  744. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  745. {
  746. int streams = HT_RC_2_STREAMS(mcs);
  747. int symbols, bits;
  748. int bytes = 0;
  749. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  750. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  751. bits -= OFDM_PLCP_BITS;
  752. bytes = bits / 8;
  753. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  754. if (bytes > 65532)
  755. bytes = 65532;
  756. return bytes;
  757. }
  758. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  759. {
  760. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  761. int mcs;
  762. /* 4ms is the default (and maximum) duration */
  763. if (!txop || txop > 4096)
  764. txop = 4096;
  765. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  766. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  767. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  768. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  769. for (mcs = 0; mcs < 32; mcs++) {
  770. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  771. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  772. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  773. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  774. }
  775. }
  776. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  777. struct ath_tx_info *info, int len)
  778. {
  779. struct ath_hw *ah = sc->sc_ah;
  780. struct sk_buff *skb;
  781. struct ieee80211_tx_info *tx_info;
  782. struct ieee80211_tx_rate *rates;
  783. const struct ieee80211_rate *rate;
  784. struct ieee80211_hdr *hdr;
  785. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  786. int i;
  787. u8 rix = 0;
  788. skb = bf->bf_mpdu;
  789. tx_info = IEEE80211_SKB_CB(skb);
  790. rates = tx_info->control.rates;
  791. hdr = (struct ieee80211_hdr *)skb->data;
  792. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  793. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  794. info->rtscts_rate = fi->rtscts_rate;
  795. for (i = 0; i < 4; i++) {
  796. bool is_40, is_sgi, is_sp;
  797. int phy;
  798. if (!rates[i].count || (rates[i].idx < 0))
  799. continue;
  800. rix = rates[i].idx;
  801. info->rates[i].Tries = rates[i].count;
  802. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  803. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  804. info->flags |= ATH9K_TXDESC_RTSENA;
  805. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  806. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  807. info->flags |= ATH9K_TXDESC_CTSENA;
  808. }
  809. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  810. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  811. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  812. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  813. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  814. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  815. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  816. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  817. /* MCS rates */
  818. info->rates[i].Rate = rix | 0x80;
  819. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  820. ah->txchainmask, info->rates[i].Rate);
  821. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  822. is_40, is_sgi, is_sp);
  823. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  824. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  825. continue;
  826. }
  827. /* legacy rates */
  828. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  829. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  830. !(rate->flags & IEEE80211_RATE_ERP_G))
  831. phy = WLAN_RC_PHY_CCK;
  832. else
  833. phy = WLAN_RC_PHY_OFDM;
  834. info->rates[i].Rate = rate->hw_value;
  835. if (rate->hw_value_short) {
  836. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  837. info->rates[i].Rate |= rate->hw_value_short;
  838. } else {
  839. is_sp = false;
  840. }
  841. if (bf->bf_state.bfs_paprd)
  842. info->rates[i].ChSel = ah->txchainmask;
  843. else
  844. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  845. ah->txchainmask, info->rates[i].Rate);
  846. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  847. phy, rate->bitrate * 100, len, rix, is_sp);
  848. }
  849. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  850. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  851. info->flags &= ~ATH9K_TXDESC_RTSENA;
  852. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  853. if (info->flags & ATH9K_TXDESC_RTSENA)
  854. info->flags &= ~ATH9K_TXDESC_CTSENA;
  855. }
  856. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  857. {
  858. struct ieee80211_hdr *hdr;
  859. enum ath9k_pkt_type htype;
  860. __le16 fc;
  861. hdr = (struct ieee80211_hdr *)skb->data;
  862. fc = hdr->frame_control;
  863. if (ieee80211_is_beacon(fc))
  864. htype = ATH9K_PKT_TYPE_BEACON;
  865. else if (ieee80211_is_probe_resp(fc))
  866. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  867. else if (ieee80211_is_atim(fc))
  868. htype = ATH9K_PKT_TYPE_ATIM;
  869. else if (ieee80211_is_pspoll(fc))
  870. htype = ATH9K_PKT_TYPE_PSPOLL;
  871. else
  872. htype = ATH9K_PKT_TYPE_NORMAL;
  873. return htype;
  874. }
  875. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  876. struct ath_txq *txq, int len)
  877. {
  878. struct ath_hw *ah = sc->sc_ah;
  879. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  880. struct ath_buf *bf_first = bf;
  881. struct ath_tx_info info;
  882. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  883. memset(&info, 0, sizeof(info));
  884. info.is_first = true;
  885. info.is_last = true;
  886. info.txpower = MAX_RATE_POWER;
  887. info.qcu = txq->axq_qnum;
  888. info.flags = ATH9K_TXDESC_INTREQ;
  889. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  890. info.flags |= ATH9K_TXDESC_NOACK;
  891. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  892. info.flags |= ATH9K_TXDESC_LDPC;
  893. ath_buf_set_rate(sc, bf, &info, len);
  894. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  895. info.flags |= ATH9K_TXDESC_CLRDMASK;
  896. if (bf->bf_state.bfs_paprd)
  897. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  898. while (bf) {
  899. struct sk_buff *skb = bf->bf_mpdu;
  900. struct ath_frame_info *fi = get_frame_info(skb);
  901. info.type = get_hw_packet_type(skb);
  902. if (bf->bf_next)
  903. info.link = bf->bf_next->bf_daddr;
  904. else
  905. info.link = 0;
  906. info.buf_addr[0] = bf->bf_buf_addr;
  907. info.buf_len[0] = skb->len;
  908. info.pkt_len = fi->framelen;
  909. info.keyix = fi->keyix;
  910. info.keytype = fi->keytype;
  911. if (aggr) {
  912. if (bf == bf_first)
  913. info.aggr = AGGR_BUF_FIRST;
  914. else if (!bf->bf_next)
  915. info.aggr = AGGR_BUF_LAST;
  916. else
  917. info.aggr = AGGR_BUF_MIDDLE;
  918. info.ndelim = bf->bf_state.ndelim;
  919. info.aggr_len = len;
  920. }
  921. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  922. bf = bf->bf_next;
  923. }
  924. }
  925. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  926. struct ath_atx_tid *tid)
  927. {
  928. struct ath_buf *bf;
  929. enum ATH_AGGR_STATUS status;
  930. struct ieee80211_tx_info *tx_info;
  931. struct list_head bf_q;
  932. int aggr_len;
  933. do {
  934. if (skb_queue_empty(&tid->buf_q))
  935. return;
  936. INIT_LIST_HEAD(&bf_q);
  937. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  938. /*
  939. * no frames picked up to be aggregated;
  940. * block-ack window is not open.
  941. */
  942. if (list_empty(&bf_q))
  943. break;
  944. bf = list_first_entry(&bf_q, struct ath_buf, list);
  945. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  946. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  947. if (tid->ac->clear_ps_filter) {
  948. tid->ac->clear_ps_filter = false;
  949. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  950. } else {
  951. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  952. }
  953. /* if only one frame, send as non-aggregate */
  954. if (bf == bf->bf_lastbf) {
  955. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  956. bf->bf_state.bf_type = BUF_AMPDU;
  957. } else {
  958. TX_STAT_INC(txq->axq_qnum, a_aggr);
  959. }
  960. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  961. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  962. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  963. status != ATH_AGGR_BAW_CLOSED);
  964. }
  965. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  966. u16 tid, u16 *ssn)
  967. {
  968. struct ath_atx_tid *txtid;
  969. struct ath_node *an;
  970. u8 density;
  971. an = (struct ath_node *)sta->drv_priv;
  972. txtid = ATH_AN_2_TID(an, tid);
  973. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  974. return -EAGAIN;
  975. /* update ampdu factor/density, they may have changed. This may happen
  976. * in HT IBSS when a beacon with HT-info is received after the station
  977. * has already been added.
  978. */
  979. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
  980. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  981. sta->ht_cap.ampdu_factor);
  982. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  983. an->mpdudensity = density;
  984. }
  985. txtid->state |= AGGR_ADDBA_PROGRESS;
  986. txtid->paused = true;
  987. *ssn = txtid->seq_start = txtid->seq_next;
  988. txtid->bar_index = -1;
  989. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  990. txtid->baw_head = txtid->baw_tail = 0;
  991. return 0;
  992. }
  993. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  994. {
  995. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  996. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  997. struct ath_txq *txq = txtid->ac->txq;
  998. if (txtid->state & AGGR_CLEANUP)
  999. return;
  1000. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  1001. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1002. return;
  1003. }
  1004. ath_txq_lock(sc, txq);
  1005. txtid->paused = true;
  1006. /*
  1007. * If frames are still being transmitted for this TID, they will be
  1008. * cleaned up during tx completion. To prevent race conditions, this
  1009. * TID can only be reused after all in-progress subframes have been
  1010. * completed.
  1011. */
  1012. if (txtid->baw_head != txtid->baw_tail)
  1013. txtid->state |= AGGR_CLEANUP;
  1014. else
  1015. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  1016. ath_tx_flush_tid(sc, txtid);
  1017. ath_txq_unlock_complete(sc, txq);
  1018. }
  1019. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1020. struct ath_node *an)
  1021. {
  1022. struct ath_atx_tid *tid;
  1023. struct ath_atx_ac *ac;
  1024. struct ath_txq *txq;
  1025. bool buffered;
  1026. int tidno;
  1027. for (tidno = 0, tid = &an->tid[tidno];
  1028. tidno < WME_NUM_TID; tidno++, tid++) {
  1029. if (!tid->sched)
  1030. continue;
  1031. ac = tid->ac;
  1032. txq = ac->txq;
  1033. ath_txq_lock(sc, txq);
  1034. buffered = !skb_queue_empty(&tid->buf_q);
  1035. tid->sched = false;
  1036. list_del(&tid->list);
  1037. if (ac->sched) {
  1038. ac->sched = false;
  1039. list_del(&ac->list);
  1040. }
  1041. ath_txq_unlock(sc, txq);
  1042. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1043. }
  1044. }
  1045. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1046. {
  1047. struct ath_atx_tid *tid;
  1048. struct ath_atx_ac *ac;
  1049. struct ath_txq *txq;
  1050. int tidno;
  1051. for (tidno = 0, tid = &an->tid[tidno];
  1052. tidno < WME_NUM_TID; tidno++, tid++) {
  1053. ac = tid->ac;
  1054. txq = ac->txq;
  1055. ath_txq_lock(sc, txq);
  1056. ac->clear_ps_filter = true;
  1057. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1058. ath_tx_queue_tid(txq, tid);
  1059. ath_txq_schedule(sc, txq);
  1060. }
  1061. ath_txq_unlock_complete(sc, txq);
  1062. }
  1063. }
  1064. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1065. {
  1066. struct ath_atx_tid *txtid;
  1067. struct ath_node *an;
  1068. an = (struct ath_node *)sta->drv_priv;
  1069. txtid = ATH_AN_2_TID(an, tid);
  1070. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1071. txtid->state |= AGGR_ADDBA_COMPLETE;
  1072. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1073. ath_tx_resume_tid(sc, txtid);
  1074. }
  1075. /********************/
  1076. /* Queue Management */
  1077. /********************/
  1078. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1079. struct ath_txq *txq)
  1080. {
  1081. struct ath_atx_ac *ac, *ac_tmp;
  1082. struct ath_atx_tid *tid, *tid_tmp;
  1083. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1084. list_del(&ac->list);
  1085. ac->sched = false;
  1086. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1087. list_del(&tid->list);
  1088. tid->sched = false;
  1089. ath_tid_drain(sc, txq, tid);
  1090. }
  1091. }
  1092. }
  1093. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1094. {
  1095. struct ath_hw *ah = sc->sc_ah;
  1096. struct ath9k_tx_queue_info qi;
  1097. static const int subtype_txq_to_hwq[] = {
  1098. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1099. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1100. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1101. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1102. };
  1103. int axq_qnum, i;
  1104. memset(&qi, 0, sizeof(qi));
  1105. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1106. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1107. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1108. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1109. qi.tqi_physCompBuf = 0;
  1110. /*
  1111. * Enable interrupts only for EOL and DESC conditions.
  1112. * We mark tx descriptors to receive a DESC interrupt
  1113. * when a tx queue gets deep; otherwise waiting for the
  1114. * EOL to reap descriptors. Note that this is done to
  1115. * reduce interrupt load and this only defers reaping
  1116. * descriptors, never transmitting frames. Aside from
  1117. * reducing interrupts this also permits more concurrency.
  1118. * The only potential downside is if the tx queue backs
  1119. * up in which case the top half of the kernel may backup
  1120. * due to a lack of tx descriptors.
  1121. *
  1122. * The UAPSD queue is an exception, since we take a desc-
  1123. * based intr on the EOSP frames.
  1124. */
  1125. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1126. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1127. } else {
  1128. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1129. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1130. else
  1131. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1132. TXQ_FLAG_TXDESCINT_ENABLE;
  1133. }
  1134. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1135. if (axq_qnum == -1) {
  1136. /*
  1137. * NB: don't print a message, this happens
  1138. * normally on parts with too few tx queues
  1139. */
  1140. return NULL;
  1141. }
  1142. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1143. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1144. txq->axq_qnum = axq_qnum;
  1145. txq->mac80211_qnum = -1;
  1146. txq->axq_link = NULL;
  1147. __skb_queue_head_init(&txq->complete_q);
  1148. INIT_LIST_HEAD(&txq->axq_q);
  1149. INIT_LIST_HEAD(&txq->axq_acq);
  1150. spin_lock_init(&txq->axq_lock);
  1151. txq->axq_depth = 0;
  1152. txq->axq_ampdu_depth = 0;
  1153. txq->axq_tx_inprogress = false;
  1154. sc->tx.txqsetup |= 1<<axq_qnum;
  1155. txq->txq_headidx = txq->txq_tailidx = 0;
  1156. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1157. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1158. }
  1159. return &sc->tx.txq[axq_qnum];
  1160. }
  1161. int ath_txq_update(struct ath_softc *sc, int qnum,
  1162. struct ath9k_tx_queue_info *qinfo)
  1163. {
  1164. struct ath_hw *ah = sc->sc_ah;
  1165. int error = 0;
  1166. struct ath9k_tx_queue_info qi;
  1167. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1168. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1169. qi.tqi_aifs = qinfo->tqi_aifs;
  1170. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1171. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1172. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1173. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1174. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1175. ath_err(ath9k_hw_common(sc->sc_ah),
  1176. "Unable to update hardware queue %u!\n", qnum);
  1177. error = -EIO;
  1178. } else {
  1179. ath9k_hw_resettxqueue(ah, qnum);
  1180. }
  1181. return error;
  1182. }
  1183. int ath_cabq_update(struct ath_softc *sc)
  1184. {
  1185. struct ath9k_tx_queue_info qi;
  1186. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1187. int qnum = sc->beacon.cabq->axq_qnum;
  1188. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1189. /*
  1190. * Ensure the readytime % is within the bounds.
  1191. */
  1192. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1193. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1194. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1195. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1196. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1197. sc->config.cabqReadytime) / 100;
  1198. ath_txq_update(sc, qnum, &qi);
  1199. return 0;
  1200. }
  1201. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1202. {
  1203. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1204. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1205. }
  1206. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1207. struct list_head *list, bool retry_tx)
  1208. {
  1209. struct ath_buf *bf, *lastbf;
  1210. struct list_head bf_head;
  1211. struct ath_tx_status ts;
  1212. memset(&ts, 0, sizeof(ts));
  1213. ts.ts_status = ATH9K_TX_FLUSH;
  1214. INIT_LIST_HEAD(&bf_head);
  1215. while (!list_empty(list)) {
  1216. bf = list_first_entry(list, struct ath_buf, list);
  1217. if (bf->bf_stale) {
  1218. list_del(&bf->list);
  1219. ath_tx_return_buffer(sc, bf);
  1220. continue;
  1221. }
  1222. lastbf = bf->bf_lastbf;
  1223. list_cut_position(&bf_head, list, &lastbf->list);
  1224. txq->axq_depth--;
  1225. if (bf_is_ampdu_not_probing(bf))
  1226. txq->axq_ampdu_depth--;
  1227. if (bf_isampdu(bf))
  1228. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1229. retry_tx);
  1230. else
  1231. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1232. }
  1233. }
  1234. /*
  1235. * Drain a given TX queue (could be Beacon or Data)
  1236. *
  1237. * This assumes output has been stopped and
  1238. * we do not need to block ath_tx_tasklet.
  1239. */
  1240. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1241. {
  1242. ath_txq_lock(sc, txq);
  1243. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1244. int idx = txq->txq_tailidx;
  1245. while (!list_empty(&txq->txq_fifo[idx])) {
  1246. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1247. retry_tx);
  1248. INCR(idx, ATH_TXFIFO_DEPTH);
  1249. }
  1250. txq->txq_tailidx = idx;
  1251. }
  1252. txq->axq_link = NULL;
  1253. txq->axq_tx_inprogress = false;
  1254. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1255. /* flush any pending frames if aggregation is enabled */
  1256. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
  1257. ath_txq_drain_pending_buffers(sc, txq);
  1258. ath_txq_unlock_complete(sc, txq);
  1259. }
  1260. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1261. {
  1262. struct ath_hw *ah = sc->sc_ah;
  1263. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1264. struct ath_txq *txq;
  1265. int i;
  1266. u32 npend = 0;
  1267. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1268. return true;
  1269. ath9k_hw_abort_tx_dma(ah);
  1270. /* Check if any queue remains active */
  1271. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1272. if (!ATH_TXQ_SETUP(sc, i))
  1273. continue;
  1274. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1275. npend |= BIT(i);
  1276. }
  1277. if (npend)
  1278. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1279. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1280. if (!ATH_TXQ_SETUP(sc, i))
  1281. continue;
  1282. /*
  1283. * The caller will resume queues with ieee80211_wake_queues.
  1284. * Mark the queue as not stopped to prevent ath_tx_complete
  1285. * from waking the queue too early.
  1286. */
  1287. txq = &sc->tx.txq[i];
  1288. txq->stopped = false;
  1289. ath_draintxq(sc, txq, retry_tx);
  1290. }
  1291. return !npend;
  1292. }
  1293. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1294. {
  1295. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1296. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1297. }
  1298. /* For each axq_acq entry, for each tid, try to schedule packets
  1299. * for transmit until ampdu_depth has reached min Q depth.
  1300. */
  1301. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1302. {
  1303. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1304. struct ath_atx_tid *tid, *last_tid;
  1305. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1306. list_empty(&txq->axq_acq) ||
  1307. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1308. return;
  1309. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1310. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1311. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1312. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1313. list_del(&ac->list);
  1314. ac->sched = false;
  1315. while (!list_empty(&ac->tid_q)) {
  1316. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1317. list);
  1318. list_del(&tid->list);
  1319. tid->sched = false;
  1320. if (tid->paused)
  1321. continue;
  1322. ath_tx_sched_aggr(sc, txq, tid);
  1323. /*
  1324. * add tid to round-robin queue if more frames
  1325. * are pending for the tid
  1326. */
  1327. if (!skb_queue_empty(&tid->buf_q))
  1328. ath_tx_queue_tid(txq, tid);
  1329. if (tid == last_tid ||
  1330. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1331. break;
  1332. }
  1333. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1334. ac->sched = true;
  1335. list_add_tail(&ac->list, &txq->axq_acq);
  1336. }
  1337. if (ac == last_ac ||
  1338. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1339. return;
  1340. }
  1341. }
  1342. /***********/
  1343. /* TX, DMA */
  1344. /***********/
  1345. /*
  1346. * Insert a chain of ath_buf (descriptors) on a txq and
  1347. * assume the descriptors are already chained together by caller.
  1348. */
  1349. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1350. struct list_head *head, bool internal)
  1351. {
  1352. struct ath_hw *ah = sc->sc_ah;
  1353. struct ath_common *common = ath9k_hw_common(ah);
  1354. struct ath_buf *bf, *bf_last;
  1355. bool puttxbuf = false;
  1356. bool edma;
  1357. /*
  1358. * Insert the frame on the outbound list and
  1359. * pass it on to the hardware.
  1360. */
  1361. if (list_empty(head))
  1362. return;
  1363. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1364. bf = list_first_entry(head, struct ath_buf, list);
  1365. bf_last = list_entry(head->prev, struct ath_buf, list);
  1366. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1367. txq->axq_qnum, txq->axq_depth);
  1368. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1369. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1370. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1371. puttxbuf = true;
  1372. } else {
  1373. list_splice_tail_init(head, &txq->axq_q);
  1374. if (txq->axq_link) {
  1375. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1376. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1377. txq->axq_qnum, txq->axq_link,
  1378. ito64(bf->bf_daddr), bf->bf_desc);
  1379. } else if (!edma)
  1380. puttxbuf = true;
  1381. txq->axq_link = bf_last->bf_desc;
  1382. }
  1383. if (puttxbuf) {
  1384. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1385. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1386. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1387. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1388. }
  1389. if (!edma) {
  1390. TX_STAT_INC(txq->axq_qnum, txstart);
  1391. ath9k_hw_txstart(ah, txq->axq_qnum);
  1392. }
  1393. if (!internal) {
  1394. txq->axq_depth++;
  1395. if (bf_is_ampdu_not_probing(bf))
  1396. txq->axq_ampdu_depth++;
  1397. }
  1398. }
  1399. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1400. struct sk_buff *skb, struct ath_tx_control *txctl)
  1401. {
  1402. struct ath_frame_info *fi = get_frame_info(skb);
  1403. struct list_head bf_head;
  1404. struct ath_buf *bf;
  1405. /*
  1406. * Do not queue to h/w when any of the following conditions is true:
  1407. * - there are pending frames in software queue
  1408. * - the TID is currently paused for ADDBA/BAR request
  1409. * - seqno is not within block-ack window
  1410. * - h/w queue depth exceeds low water mark
  1411. */
  1412. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1413. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1414. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1415. /*
  1416. * Add this frame to software queue for scheduling later
  1417. * for aggregation.
  1418. */
  1419. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1420. __skb_queue_tail(&tid->buf_q, skb);
  1421. if (!txctl->an || !txctl->an->sleeping)
  1422. ath_tx_queue_tid(txctl->txq, tid);
  1423. return;
  1424. }
  1425. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1426. if (!bf) {
  1427. ieee80211_free_txskb(sc->hw, skb);
  1428. return;
  1429. }
  1430. bf->bf_state.bf_type = BUF_AMPDU;
  1431. INIT_LIST_HEAD(&bf_head);
  1432. list_add(&bf->list, &bf_head);
  1433. /* Add sub-frame to BAW */
  1434. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1435. /* Queue to h/w without aggregation */
  1436. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1437. bf->bf_lastbf = bf;
  1438. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1439. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1440. }
  1441. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1442. struct ath_atx_tid *tid, struct sk_buff *skb)
  1443. {
  1444. struct ath_frame_info *fi = get_frame_info(skb);
  1445. struct list_head bf_head;
  1446. struct ath_buf *bf;
  1447. bf = fi->bf;
  1448. INIT_LIST_HEAD(&bf_head);
  1449. list_add_tail(&bf->list, &bf_head);
  1450. bf->bf_state.bf_type = 0;
  1451. bf->bf_lastbf = bf;
  1452. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1453. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1454. TX_STAT_INC(txq->axq_qnum, queued);
  1455. }
  1456. static void setup_frame_info(struct ieee80211_hw *hw,
  1457. struct ieee80211_sta *sta,
  1458. struct sk_buff *skb,
  1459. int framelen)
  1460. {
  1461. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1462. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1463. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1464. const struct ieee80211_rate *rate;
  1465. struct ath_frame_info *fi = get_frame_info(skb);
  1466. struct ath_node *an = NULL;
  1467. enum ath9k_key_type keytype;
  1468. bool short_preamble = false;
  1469. /*
  1470. * We check if Short Preamble is needed for the CTS rate by
  1471. * checking the BSS's global flag.
  1472. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1473. */
  1474. if (tx_info->control.vif &&
  1475. tx_info->control.vif->bss_conf.use_short_preamble)
  1476. short_preamble = true;
  1477. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1478. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1479. if (sta)
  1480. an = (struct ath_node *) sta->drv_priv;
  1481. memset(fi, 0, sizeof(*fi));
  1482. if (hw_key)
  1483. fi->keyix = hw_key->hw_key_idx;
  1484. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1485. fi->keyix = an->ps_key;
  1486. else
  1487. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1488. fi->keytype = keytype;
  1489. fi->framelen = framelen;
  1490. fi->rtscts_rate = rate->hw_value;
  1491. if (short_preamble)
  1492. fi->rtscts_rate |= rate->hw_value_short;
  1493. }
  1494. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1495. {
  1496. struct ath_hw *ah = sc->sc_ah;
  1497. struct ath9k_channel *curchan = ah->curchan;
  1498. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1499. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1500. (chainmask == 0x7) && (rate < 0x90))
  1501. return 0x3;
  1502. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1503. IS_CCK_RATE(rate))
  1504. return 0x2;
  1505. else
  1506. return chainmask;
  1507. }
  1508. /*
  1509. * Assign a descriptor (and sequence number if necessary,
  1510. * and map buffer for DMA. Frees skb on error
  1511. */
  1512. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1513. struct ath_txq *txq,
  1514. struct ath_atx_tid *tid,
  1515. struct sk_buff *skb)
  1516. {
  1517. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1518. struct ath_frame_info *fi = get_frame_info(skb);
  1519. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1520. struct ath_buf *bf;
  1521. int fragno;
  1522. u16 seqno;
  1523. bf = ath_tx_get_buffer(sc);
  1524. if (!bf) {
  1525. ath_dbg(common, XMIT, "TX buffers are full\n");
  1526. return NULL;
  1527. }
  1528. ATH_TXBUF_RESET(bf);
  1529. if (tid) {
  1530. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1531. seqno = tid->seq_next;
  1532. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1533. if (fragno)
  1534. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1535. if (!ieee80211_has_morefrags(hdr->frame_control))
  1536. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1537. bf->bf_state.seqno = seqno;
  1538. }
  1539. bf->bf_mpdu = skb;
  1540. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1541. skb->len, DMA_TO_DEVICE);
  1542. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1543. bf->bf_mpdu = NULL;
  1544. bf->bf_buf_addr = 0;
  1545. ath_err(ath9k_hw_common(sc->sc_ah),
  1546. "dma_mapping_error() on TX\n");
  1547. ath_tx_return_buffer(sc, bf);
  1548. return NULL;
  1549. }
  1550. fi->bf = bf;
  1551. return bf;
  1552. }
  1553. /* FIXME: tx power */
  1554. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1555. struct ath_tx_control *txctl)
  1556. {
  1557. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1558. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1559. struct ath_atx_tid *tid = NULL;
  1560. struct ath_buf *bf;
  1561. u8 tidno;
  1562. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
  1563. ieee80211_is_data_qos(hdr->frame_control)) {
  1564. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1565. IEEE80211_QOS_CTL_TID_MASK;
  1566. tid = ATH_AN_2_TID(txctl->an, tidno);
  1567. WARN_ON(tid->ac->txq != txctl->txq);
  1568. }
  1569. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1570. /*
  1571. * Try aggregation if it's a unicast data frame
  1572. * and the destination is HT capable.
  1573. */
  1574. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1575. } else {
  1576. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1577. if (!bf) {
  1578. if (txctl->paprd)
  1579. dev_kfree_skb_any(skb);
  1580. else
  1581. ieee80211_free_txskb(sc->hw, skb);
  1582. return;
  1583. }
  1584. bf->bf_state.bfs_paprd = txctl->paprd;
  1585. if (txctl->paprd)
  1586. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1587. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1588. }
  1589. }
  1590. /* Upon failure caller should free skb */
  1591. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1592. struct ath_tx_control *txctl)
  1593. {
  1594. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1595. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1596. struct ieee80211_sta *sta = txctl->sta;
  1597. struct ieee80211_vif *vif = info->control.vif;
  1598. struct ath_softc *sc = hw->priv;
  1599. struct ath_txq *txq = txctl->txq;
  1600. int padpos, padsize;
  1601. int frmlen = skb->len + FCS_LEN;
  1602. int q;
  1603. /* NOTE: sta can be NULL according to net/mac80211.h */
  1604. if (sta)
  1605. txctl->an = (struct ath_node *)sta->drv_priv;
  1606. if (info->control.hw_key)
  1607. frmlen += info->control.hw_key->icv_len;
  1608. /*
  1609. * As a temporary workaround, assign seq# here; this will likely need
  1610. * to be cleaned up to work better with Beacon transmission and virtual
  1611. * BSSes.
  1612. */
  1613. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1614. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1615. sc->tx.seq_no += 0x10;
  1616. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1617. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1618. }
  1619. /* Add the padding after the header if this is not already done */
  1620. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1621. padsize = padpos & 3;
  1622. if (padsize && skb->len > padpos) {
  1623. if (skb_headroom(skb) < padsize)
  1624. return -ENOMEM;
  1625. skb_push(skb, padsize);
  1626. memmove(skb->data, skb->data + padsize, padpos);
  1627. hdr = (struct ieee80211_hdr *) skb->data;
  1628. }
  1629. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1630. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1631. !ieee80211_is_data(hdr->frame_control))
  1632. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1633. setup_frame_info(hw, sta, skb, frmlen);
  1634. /*
  1635. * At this point, the vif, hw_key and sta pointers in the tx control
  1636. * info are no longer valid (overwritten by the ath_frame_info data.
  1637. */
  1638. q = skb_get_queue_mapping(skb);
  1639. ath_txq_lock(sc, txq);
  1640. if (txq == sc->tx.txq_map[q] &&
  1641. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1642. !txq->stopped) {
  1643. ieee80211_stop_queue(sc->hw, q);
  1644. txq->stopped = true;
  1645. }
  1646. ath_tx_start_dma(sc, skb, txctl);
  1647. ath_txq_unlock(sc, txq);
  1648. return 0;
  1649. }
  1650. /*****************/
  1651. /* TX Completion */
  1652. /*****************/
  1653. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1654. int tx_flags, struct ath_txq *txq)
  1655. {
  1656. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1657. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1658. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1659. int q, padpos, padsize;
  1660. unsigned long flags;
  1661. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1662. if (sc->sc_ah->caldata)
  1663. sc->sc_ah->caldata->paprd_packet_sent = true;
  1664. if (!(tx_flags & ATH_TX_ERROR))
  1665. /* Frame was ACKed */
  1666. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1667. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1668. padsize = padpos & 3;
  1669. if (padsize && skb->len>padpos+padsize) {
  1670. /*
  1671. * Remove MAC header padding before giving the frame back to
  1672. * mac80211.
  1673. */
  1674. memmove(skb->data + padsize, skb->data, padpos);
  1675. skb_pull(skb, padsize);
  1676. }
  1677. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1678. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1679. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1680. ath_dbg(common, PS,
  1681. "Going back to sleep after having received TX status (0x%lx)\n",
  1682. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1683. PS_WAIT_FOR_CAB |
  1684. PS_WAIT_FOR_PSPOLL_DATA |
  1685. PS_WAIT_FOR_TX_ACK));
  1686. }
  1687. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1688. q = skb_get_queue_mapping(skb);
  1689. if (txq == sc->tx.txq_map[q]) {
  1690. if (WARN_ON(--txq->pending_frames < 0))
  1691. txq->pending_frames = 0;
  1692. if (txq->stopped &&
  1693. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1694. ieee80211_wake_queue(sc->hw, q);
  1695. txq->stopped = false;
  1696. }
  1697. }
  1698. __skb_queue_tail(&txq->complete_q, skb);
  1699. }
  1700. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1701. struct ath_txq *txq, struct list_head *bf_q,
  1702. struct ath_tx_status *ts, int txok)
  1703. {
  1704. struct sk_buff *skb = bf->bf_mpdu;
  1705. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1706. unsigned long flags;
  1707. int tx_flags = 0;
  1708. if (!txok)
  1709. tx_flags |= ATH_TX_ERROR;
  1710. if (ts->ts_status & ATH9K_TXERR_FILT)
  1711. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1712. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1713. bf->bf_buf_addr = 0;
  1714. if (bf->bf_state.bfs_paprd) {
  1715. if (time_after(jiffies,
  1716. bf->bf_state.bfs_paprd_timestamp +
  1717. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1718. dev_kfree_skb_any(skb);
  1719. else
  1720. complete(&sc->paprd_complete);
  1721. } else {
  1722. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1723. ath_tx_complete(sc, skb, tx_flags, txq);
  1724. }
  1725. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1726. * accidentally reference it later.
  1727. */
  1728. bf->bf_mpdu = NULL;
  1729. /*
  1730. * Return the list of ath_buf of this mpdu to free queue
  1731. */
  1732. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1733. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1734. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1735. }
  1736. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1737. struct ath_tx_status *ts, int nframes, int nbad,
  1738. int txok)
  1739. {
  1740. struct sk_buff *skb = bf->bf_mpdu;
  1741. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1742. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1743. struct ieee80211_hw *hw = sc->hw;
  1744. struct ath_hw *ah = sc->sc_ah;
  1745. u8 i, tx_rateindex;
  1746. if (txok)
  1747. tx_info->status.ack_signal = ts->ts_rssi;
  1748. tx_rateindex = ts->ts_rateindex;
  1749. WARN_ON(tx_rateindex >= hw->max_rates);
  1750. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1751. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1752. BUG_ON(nbad > nframes);
  1753. }
  1754. tx_info->status.ampdu_len = nframes;
  1755. tx_info->status.ampdu_ack_len = nframes - nbad;
  1756. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1757. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1758. /*
  1759. * If an underrun error is seen assume it as an excessive
  1760. * retry only if max frame trigger level has been reached
  1761. * (2 KB for single stream, and 4 KB for dual stream).
  1762. * Adjust the long retry as if the frame was tried
  1763. * hw->max_rate_tries times to affect how rate control updates
  1764. * PER for the failed rate.
  1765. * In case of congestion on the bus penalizing this type of
  1766. * underruns should help hardware actually transmit new frames
  1767. * successfully by eventually preferring slower rates.
  1768. * This itself should also alleviate congestion on the bus.
  1769. */
  1770. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1771. ATH9K_TX_DELIM_UNDERRUN)) &&
  1772. ieee80211_is_data(hdr->frame_control) &&
  1773. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1774. tx_info->status.rates[tx_rateindex].count =
  1775. hw->max_rate_tries;
  1776. }
  1777. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1778. tx_info->status.rates[i].count = 0;
  1779. tx_info->status.rates[i].idx = -1;
  1780. }
  1781. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1782. }
  1783. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1784. struct ath_tx_status *ts, struct ath_buf *bf,
  1785. struct list_head *bf_head)
  1786. {
  1787. int txok;
  1788. txq->axq_depth--;
  1789. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1790. txq->axq_tx_inprogress = false;
  1791. if (bf_is_ampdu_not_probing(bf))
  1792. txq->axq_ampdu_depth--;
  1793. if (!bf_isampdu(bf)) {
  1794. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1795. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1796. } else
  1797. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1798. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1799. ath_txq_schedule(sc, txq);
  1800. }
  1801. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1802. {
  1803. struct ath_hw *ah = sc->sc_ah;
  1804. struct ath_common *common = ath9k_hw_common(ah);
  1805. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1806. struct list_head bf_head;
  1807. struct ath_desc *ds;
  1808. struct ath_tx_status ts;
  1809. int status;
  1810. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1811. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1812. txq->axq_link);
  1813. ath_txq_lock(sc, txq);
  1814. for (;;) {
  1815. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1816. break;
  1817. if (list_empty(&txq->axq_q)) {
  1818. txq->axq_link = NULL;
  1819. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1820. ath_txq_schedule(sc, txq);
  1821. break;
  1822. }
  1823. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1824. /*
  1825. * There is a race condition that a BH gets scheduled
  1826. * after sw writes TxE and before hw re-load the last
  1827. * descriptor to get the newly chained one.
  1828. * Software must keep the last DONE descriptor as a
  1829. * holding descriptor - software does so by marking
  1830. * it with the STALE flag.
  1831. */
  1832. bf_held = NULL;
  1833. if (bf->bf_stale) {
  1834. bf_held = bf;
  1835. if (list_is_last(&bf_held->list, &txq->axq_q))
  1836. break;
  1837. bf = list_entry(bf_held->list.next, struct ath_buf,
  1838. list);
  1839. }
  1840. lastbf = bf->bf_lastbf;
  1841. ds = lastbf->bf_desc;
  1842. memset(&ts, 0, sizeof(ts));
  1843. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1844. if (status == -EINPROGRESS)
  1845. break;
  1846. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1847. /*
  1848. * Remove ath_buf's of the same transmit unit from txq,
  1849. * however leave the last descriptor back as the holding
  1850. * descriptor for hw.
  1851. */
  1852. lastbf->bf_stale = true;
  1853. INIT_LIST_HEAD(&bf_head);
  1854. if (!list_is_singular(&lastbf->list))
  1855. list_cut_position(&bf_head,
  1856. &txq->axq_q, lastbf->list.prev);
  1857. if (bf_held) {
  1858. list_del(&bf_held->list);
  1859. ath_tx_return_buffer(sc, bf_held);
  1860. }
  1861. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1862. }
  1863. ath_txq_unlock_complete(sc, txq);
  1864. }
  1865. void ath_tx_tasklet(struct ath_softc *sc)
  1866. {
  1867. struct ath_hw *ah = sc->sc_ah;
  1868. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1869. int i;
  1870. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1871. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1872. ath_tx_processq(sc, &sc->tx.txq[i]);
  1873. }
  1874. }
  1875. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1876. {
  1877. struct ath_tx_status ts;
  1878. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1879. struct ath_hw *ah = sc->sc_ah;
  1880. struct ath_txq *txq;
  1881. struct ath_buf *bf, *lastbf;
  1882. struct list_head bf_head;
  1883. int status;
  1884. for (;;) {
  1885. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1886. break;
  1887. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1888. if (status == -EINPROGRESS)
  1889. break;
  1890. if (status == -EIO) {
  1891. ath_dbg(common, XMIT, "Error processing tx status\n");
  1892. break;
  1893. }
  1894. /* Process beacon completions separately */
  1895. if (ts.qid == sc->beacon.beaconq) {
  1896. sc->beacon.tx_processed = true;
  1897. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1898. continue;
  1899. }
  1900. txq = &sc->tx.txq[ts.qid];
  1901. ath_txq_lock(sc, txq);
  1902. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1903. ath_txq_unlock(sc, txq);
  1904. return;
  1905. }
  1906. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1907. struct ath_buf, list);
  1908. lastbf = bf->bf_lastbf;
  1909. INIT_LIST_HEAD(&bf_head);
  1910. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1911. &lastbf->list);
  1912. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1913. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1914. if (!list_empty(&txq->axq_q)) {
  1915. struct list_head bf_q;
  1916. INIT_LIST_HEAD(&bf_q);
  1917. txq->axq_link = NULL;
  1918. list_splice_tail_init(&txq->axq_q, &bf_q);
  1919. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1920. }
  1921. }
  1922. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1923. ath_txq_unlock_complete(sc, txq);
  1924. }
  1925. }
  1926. /*****************/
  1927. /* Init, Cleanup */
  1928. /*****************/
  1929. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1930. {
  1931. struct ath_descdma *dd = &sc->txsdma;
  1932. u8 txs_len = sc->sc_ah->caps.txs_len;
  1933. dd->dd_desc_len = size * txs_len;
  1934. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1935. &dd->dd_desc_paddr, GFP_KERNEL);
  1936. if (!dd->dd_desc)
  1937. return -ENOMEM;
  1938. return 0;
  1939. }
  1940. static int ath_tx_edma_init(struct ath_softc *sc)
  1941. {
  1942. int err;
  1943. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1944. if (!err)
  1945. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1946. sc->txsdma.dd_desc_paddr,
  1947. ATH_TXSTATUS_RING_SIZE);
  1948. return err;
  1949. }
  1950. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1951. {
  1952. struct ath_descdma *dd = &sc->txsdma;
  1953. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1954. dd->dd_desc_paddr);
  1955. }
  1956. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1957. {
  1958. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1959. int error = 0;
  1960. spin_lock_init(&sc->tx.txbuflock);
  1961. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1962. "tx", nbufs, 1, 1);
  1963. if (error != 0) {
  1964. ath_err(common,
  1965. "Failed to allocate tx descriptors: %d\n", error);
  1966. goto err;
  1967. }
  1968. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1969. "beacon", ATH_BCBUF, 1, 1);
  1970. if (error != 0) {
  1971. ath_err(common,
  1972. "Failed to allocate beacon descriptors: %d\n", error);
  1973. goto err;
  1974. }
  1975. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1976. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1977. error = ath_tx_edma_init(sc);
  1978. if (error)
  1979. goto err;
  1980. }
  1981. err:
  1982. if (error != 0)
  1983. ath_tx_cleanup(sc);
  1984. return error;
  1985. }
  1986. void ath_tx_cleanup(struct ath_softc *sc)
  1987. {
  1988. if (sc->beacon.bdma.dd_desc_len != 0)
  1989. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1990. if (sc->tx.txdma.dd_desc_len != 0)
  1991. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1992. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1993. ath_tx_edma_cleanup(sc);
  1994. }
  1995. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1996. {
  1997. struct ath_atx_tid *tid;
  1998. struct ath_atx_ac *ac;
  1999. int tidno, acno;
  2000. for (tidno = 0, tid = &an->tid[tidno];
  2001. tidno < WME_NUM_TID;
  2002. tidno++, tid++) {
  2003. tid->an = an;
  2004. tid->tidno = tidno;
  2005. tid->seq_start = tid->seq_next = 0;
  2006. tid->baw_size = WME_MAX_BA;
  2007. tid->baw_head = tid->baw_tail = 0;
  2008. tid->sched = false;
  2009. tid->paused = false;
  2010. tid->state &= ~AGGR_CLEANUP;
  2011. __skb_queue_head_init(&tid->buf_q);
  2012. acno = TID_TO_WME_AC(tidno);
  2013. tid->ac = &an->ac[acno];
  2014. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2015. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2016. }
  2017. for (acno = 0, ac = &an->ac[acno];
  2018. acno < WME_NUM_AC; acno++, ac++) {
  2019. ac->sched = false;
  2020. ac->txq = sc->tx.txq_map[acno];
  2021. INIT_LIST_HEAD(&ac->tid_q);
  2022. }
  2023. }
  2024. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2025. {
  2026. struct ath_atx_ac *ac;
  2027. struct ath_atx_tid *tid;
  2028. struct ath_txq *txq;
  2029. int tidno;
  2030. for (tidno = 0, tid = &an->tid[tidno];
  2031. tidno < WME_NUM_TID; tidno++, tid++) {
  2032. ac = tid->ac;
  2033. txq = ac->txq;
  2034. ath_txq_lock(sc, txq);
  2035. if (tid->sched) {
  2036. list_del(&tid->list);
  2037. tid->sched = false;
  2038. }
  2039. if (ac->sched) {
  2040. list_del(&ac->list);
  2041. tid->ac->sched = false;
  2042. }
  2043. ath_tid_drain(sc, txq, tid);
  2044. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2045. tid->state &= ~AGGR_CLEANUP;
  2046. ath_txq_unlock(sc, txq);
  2047. }
  2048. }