mmu.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <linux/slab.h>
  33. #include <linux/uaccess.h>
  34. #include <asm/page.h>
  35. #include <asm/cmpxchg.h>
  36. #include <asm/io.h>
  37. #include <asm/vmx.h>
  38. /*
  39. * When setting this variable to true it enables Two-Dimensional-Paging
  40. * where the hardware walks 2 page tables:
  41. * 1. the guest-virtual to guest-physical
  42. * 2. while doing 1. it walks guest-physical to host-physical
  43. * If the hardware supports that we don't need to do shadow paging.
  44. */
  45. bool tdp_enabled = false;
  46. #undef MMU_DEBUG
  47. #undef AUDIT
  48. #ifdef AUDIT
  49. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  50. #else
  51. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  52. #endif
  53. #ifdef MMU_DEBUG
  54. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  55. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  56. #else
  57. #define pgprintk(x...) do { } while (0)
  58. #define rmap_printk(x...) do { } while (0)
  59. #endif
  60. #if defined(MMU_DEBUG) || defined(AUDIT)
  61. static int dbg = 0;
  62. module_param(dbg, bool, 0644);
  63. #endif
  64. static int oos_shadow = 1;
  65. module_param(oos_shadow, bool, 0644);
  66. #ifndef MMU_DEBUG
  67. #define ASSERT(x) do { } while (0)
  68. #else
  69. #define ASSERT(x) \
  70. if (!(x)) { \
  71. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  72. __FILE__, __LINE__, #x); \
  73. }
  74. #endif
  75. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  76. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  77. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef int (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  233. struct kmem_cache *base_cache, int min)
  234. {
  235. void *obj;
  236. if (cache->nobjs >= min)
  237. return 0;
  238. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  239. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  240. if (!obj)
  241. return -ENOMEM;
  242. cache->objects[cache->nobjs++] = obj;
  243. }
  244. return 0;
  245. }
  246. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  247. {
  248. while (mc->nobjs)
  249. kfree(mc->objects[--mc->nobjs]);
  250. }
  251. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  252. int min)
  253. {
  254. struct page *page;
  255. if (cache->nobjs >= min)
  256. return 0;
  257. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  258. page = alloc_page(GFP_KERNEL);
  259. if (!page)
  260. return -ENOMEM;
  261. cache->objects[cache->nobjs++] = page_address(page);
  262. }
  263. return 0;
  264. }
  265. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  266. {
  267. while (mc->nobjs)
  268. free_page((unsigned long)mc->objects[--mc->nobjs]);
  269. }
  270. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  271. {
  272. int r;
  273. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  274. pte_chain_cache, 4);
  275. if (r)
  276. goto out;
  277. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  278. rmap_desc_cache, 4);
  279. if (r)
  280. goto out;
  281. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  282. if (r)
  283. goto out;
  284. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  285. mmu_page_header_cache, 4);
  286. out:
  287. return r;
  288. }
  289. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  290. {
  291. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  292. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  293. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  294. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  295. }
  296. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  297. size_t size)
  298. {
  299. void *p;
  300. BUG_ON(!mc->nobjs);
  301. p = mc->objects[--mc->nobjs];
  302. return p;
  303. }
  304. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  305. {
  306. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  307. sizeof(struct kvm_pte_chain));
  308. }
  309. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  310. {
  311. kfree(pc);
  312. }
  313. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  314. {
  315. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  316. sizeof(struct kvm_rmap_desc));
  317. }
  318. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  319. {
  320. kfree(rd);
  321. }
  322. /*
  323. * Return the pointer to the largepage write count for a given
  324. * gfn, handling slots that are not large page aligned.
  325. */
  326. static int *slot_largepage_idx(gfn_t gfn,
  327. struct kvm_memory_slot *slot,
  328. int level)
  329. {
  330. unsigned long idx;
  331. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  332. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  333. return &slot->lpage_info[level - 2][idx].write_count;
  334. }
  335. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  336. {
  337. struct kvm_memory_slot *slot;
  338. int *write_count;
  339. int i;
  340. gfn = unalias_gfn(kvm, gfn);
  341. slot = gfn_to_memslot_unaliased(kvm, gfn);
  342. for (i = PT_DIRECTORY_LEVEL;
  343. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  344. write_count = slot_largepage_idx(gfn, slot, i);
  345. *write_count += 1;
  346. }
  347. }
  348. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  349. {
  350. struct kvm_memory_slot *slot;
  351. int *write_count;
  352. int i;
  353. gfn = unalias_gfn(kvm, gfn);
  354. slot = gfn_to_memslot_unaliased(kvm, gfn);
  355. for (i = PT_DIRECTORY_LEVEL;
  356. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  357. write_count = slot_largepage_idx(gfn, slot, i);
  358. *write_count -= 1;
  359. WARN_ON(*write_count < 0);
  360. }
  361. }
  362. static int has_wrprotected_page(struct kvm *kvm,
  363. gfn_t gfn,
  364. int level)
  365. {
  366. struct kvm_memory_slot *slot;
  367. int *largepage_idx;
  368. gfn = unalias_gfn(kvm, gfn);
  369. slot = gfn_to_memslot_unaliased(kvm, gfn);
  370. if (slot) {
  371. largepage_idx = slot_largepage_idx(gfn, slot, level);
  372. return *largepage_idx;
  373. }
  374. return 1;
  375. }
  376. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  377. {
  378. unsigned long page_size;
  379. int i, ret = 0;
  380. page_size = kvm_host_page_size(kvm, gfn);
  381. for (i = PT_PAGE_TABLE_LEVEL;
  382. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  383. if (page_size >= KVM_HPAGE_SIZE(i))
  384. ret = i;
  385. else
  386. break;
  387. }
  388. return ret;
  389. }
  390. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  391. {
  392. struct kvm_memory_slot *slot;
  393. int host_level, level, max_level;
  394. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  395. if (slot && slot->dirty_bitmap)
  396. return PT_PAGE_TABLE_LEVEL;
  397. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  398. if (host_level == PT_PAGE_TABLE_LEVEL)
  399. return host_level;
  400. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  401. kvm_x86_ops->get_lpage_level() : host_level;
  402. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  403. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  404. break;
  405. return level - 1;
  406. }
  407. /*
  408. * Take gfn and return the reverse mapping to it.
  409. * Note: gfn must be unaliased before this function get called
  410. */
  411. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  412. {
  413. struct kvm_memory_slot *slot;
  414. unsigned long idx;
  415. slot = gfn_to_memslot(kvm, gfn);
  416. if (likely(level == PT_PAGE_TABLE_LEVEL))
  417. return &slot->rmap[gfn - slot->base_gfn];
  418. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  419. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  420. return &slot->lpage_info[level - 2][idx].rmap_pde;
  421. }
  422. /*
  423. * Reverse mapping data structures:
  424. *
  425. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  426. * that points to page_address(page).
  427. *
  428. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  429. * containing more mappings.
  430. *
  431. * Returns the number of rmap entries before the spte was added or zero if
  432. * the spte was not added.
  433. *
  434. */
  435. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  436. {
  437. struct kvm_mmu_page *sp;
  438. struct kvm_rmap_desc *desc;
  439. unsigned long *rmapp;
  440. int i, count = 0;
  441. if (!is_rmap_spte(*spte))
  442. return count;
  443. gfn = unalias_gfn(vcpu->kvm, gfn);
  444. sp = page_header(__pa(spte));
  445. sp->gfns[spte - sp->spt] = gfn;
  446. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  447. if (!*rmapp) {
  448. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  449. *rmapp = (unsigned long)spte;
  450. } else if (!(*rmapp & 1)) {
  451. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  452. desc = mmu_alloc_rmap_desc(vcpu);
  453. desc->sptes[0] = (u64 *)*rmapp;
  454. desc->sptes[1] = spte;
  455. *rmapp = (unsigned long)desc | 1;
  456. } else {
  457. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  458. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  459. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  460. desc = desc->more;
  461. count += RMAP_EXT;
  462. }
  463. if (desc->sptes[RMAP_EXT-1]) {
  464. desc->more = mmu_alloc_rmap_desc(vcpu);
  465. desc = desc->more;
  466. }
  467. for (i = 0; desc->sptes[i]; ++i)
  468. ;
  469. desc->sptes[i] = spte;
  470. }
  471. return count;
  472. }
  473. static void rmap_desc_remove_entry(unsigned long *rmapp,
  474. struct kvm_rmap_desc *desc,
  475. int i,
  476. struct kvm_rmap_desc *prev_desc)
  477. {
  478. int j;
  479. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  480. ;
  481. desc->sptes[i] = desc->sptes[j];
  482. desc->sptes[j] = NULL;
  483. if (j != 0)
  484. return;
  485. if (!prev_desc && !desc->more)
  486. *rmapp = (unsigned long)desc->sptes[0];
  487. else
  488. if (prev_desc)
  489. prev_desc->more = desc->more;
  490. else
  491. *rmapp = (unsigned long)desc->more | 1;
  492. mmu_free_rmap_desc(desc);
  493. }
  494. static void rmap_remove(struct kvm *kvm, u64 *spte)
  495. {
  496. struct kvm_rmap_desc *desc;
  497. struct kvm_rmap_desc *prev_desc;
  498. struct kvm_mmu_page *sp;
  499. pfn_t pfn;
  500. unsigned long *rmapp;
  501. int i;
  502. if (!is_rmap_spte(*spte))
  503. return;
  504. sp = page_header(__pa(spte));
  505. pfn = spte_to_pfn(*spte);
  506. if (*spte & shadow_accessed_mask)
  507. kvm_set_pfn_accessed(pfn);
  508. if (is_writable_pte(*spte))
  509. kvm_set_pfn_dirty(pfn);
  510. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  511. if (!*rmapp) {
  512. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  513. BUG();
  514. } else if (!(*rmapp & 1)) {
  515. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  516. if ((u64 *)*rmapp != spte) {
  517. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  518. spte, *spte);
  519. BUG();
  520. }
  521. *rmapp = 0;
  522. } else {
  523. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  524. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  525. prev_desc = NULL;
  526. while (desc) {
  527. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  528. if (desc->sptes[i] == spte) {
  529. rmap_desc_remove_entry(rmapp,
  530. desc, i,
  531. prev_desc);
  532. return;
  533. }
  534. prev_desc = desc;
  535. desc = desc->more;
  536. }
  537. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  538. BUG();
  539. }
  540. }
  541. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  542. {
  543. struct kvm_rmap_desc *desc;
  544. u64 *prev_spte;
  545. int i;
  546. if (!*rmapp)
  547. return NULL;
  548. else if (!(*rmapp & 1)) {
  549. if (!spte)
  550. return (u64 *)*rmapp;
  551. return NULL;
  552. }
  553. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  554. prev_spte = NULL;
  555. while (desc) {
  556. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  557. if (prev_spte == spte)
  558. return desc->sptes[i];
  559. prev_spte = desc->sptes[i];
  560. }
  561. desc = desc->more;
  562. }
  563. return NULL;
  564. }
  565. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  566. {
  567. unsigned long *rmapp;
  568. u64 *spte;
  569. int i, write_protected = 0;
  570. gfn = unalias_gfn(kvm, gfn);
  571. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  572. spte = rmap_next(kvm, rmapp, NULL);
  573. while (spte) {
  574. BUG_ON(!spte);
  575. BUG_ON(!(*spte & PT_PRESENT_MASK));
  576. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  577. if (is_writable_pte(*spte)) {
  578. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  579. write_protected = 1;
  580. }
  581. spte = rmap_next(kvm, rmapp, spte);
  582. }
  583. if (write_protected) {
  584. pfn_t pfn;
  585. spte = rmap_next(kvm, rmapp, NULL);
  586. pfn = spte_to_pfn(*spte);
  587. kvm_set_pfn_dirty(pfn);
  588. }
  589. /* check for huge page mappings */
  590. for (i = PT_DIRECTORY_LEVEL;
  591. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  592. rmapp = gfn_to_rmap(kvm, gfn, i);
  593. spte = rmap_next(kvm, rmapp, NULL);
  594. while (spte) {
  595. BUG_ON(!spte);
  596. BUG_ON(!(*spte & PT_PRESENT_MASK));
  597. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  598. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  599. if (is_writable_pte(*spte)) {
  600. rmap_remove(kvm, spte);
  601. --kvm->stat.lpages;
  602. __set_spte(spte, shadow_trap_nonpresent_pte);
  603. spte = NULL;
  604. write_protected = 1;
  605. }
  606. spte = rmap_next(kvm, rmapp, spte);
  607. }
  608. }
  609. return write_protected;
  610. }
  611. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  612. unsigned long data)
  613. {
  614. u64 *spte;
  615. int need_tlb_flush = 0;
  616. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  617. BUG_ON(!(*spte & PT_PRESENT_MASK));
  618. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  619. rmap_remove(kvm, spte);
  620. __set_spte(spte, shadow_trap_nonpresent_pte);
  621. need_tlb_flush = 1;
  622. }
  623. return need_tlb_flush;
  624. }
  625. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  626. unsigned long data)
  627. {
  628. int need_flush = 0;
  629. u64 *spte, new_spte;
  630. pte_t *ptep = (pte_t *)data;
  631. pfn_t new_pfn;
  632. WARN_ON(pte_huge(*ptep));
  633. new_pfn = pte_pfn(*ptep);
  634. spte = rmap_next(kvm, rmapp, NULL);
  635. while (spte) {
  636. BUG_ON(!is_shadow_present_pte(*spte));
  637. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  638. need_flush = 1;
  639. if (pte_write(*ptep)) {
  640. rmap_remove(kvm, spte);
  641. __set_spte(spte, shadow_trap_nonpresent_pte);
  642. spte = rmap_next(kvm, rmapp, NULL);
  643. } else {
  644. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  645. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  646. new_spte &= ~PT_WRITABLE_MASK;
  647. new_spte &= ~SPTE_HOST_WRITEABLE;
  648. if (is_writable_pte(*spte))
  649. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  650. __set_spte(spte, new_spte);
  651. spte = rmap_next(kvm, rmapp, spte);
  652. }
  653. }
  654. if (need_flush)
  655. kvm_flush_remote_tlbs(kvm);
  656. return 0;
  657. }
  658. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  659. unsigned long data,
  660. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  661. unsigned long data))
  662. {
  663. int i, j;
  664. int ret;
  665. int retval = 0;
  666. struct kvm_memslots *slots;
  667. slots = kvm_memslots(kvm);
  668. for (i = 0; i < slots->nmemslots; i++) {
  669. struct kvm_memory_slot *memslot = &slots->memslots[i];
  670. unsigned long start = memslot->userspace_addr;
  671. unsigned long end;
  672. end = start + (memslot->npages << PAGE_SHIFT);
  673. if (hva >= start && hva < end) {
  674. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  675. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  676. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  677. int idx = gfn_offset;
  678. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  679. ret |= handler(kvm,
  680. &memslot->lpage_info[j][idx].rmap_pde,
  681. data);
  682. }
  683. trace_kvm_age_page(hva, memslot, ret);
  684. retval |= ret;
  685. }
  686. }
  687. return retval;
  688. }
  689. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  690. {
  691. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  692. }
  693. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  694. {
  695. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  696. }
  697. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  698. unsigned long data)
  699. {
  700. u64 *spte;
  701. int young = 0;
  702. /*
  703. * Emulate the accessed bit for EPT, by checking if this page has
  704. * an EPT mapping, and clearing it if it does. On the next access,
  705. * a new EPT mapping will be established.
  706. * This has some overhead, but not as much as the cost of swapping
  707. * out actively used pages or breaking up actively used hugepages.
  708. */
  709. if (!shadow_accessed_mask)
  710. return kvm_unmap_rmapp(kvm, rmapp, data);
  711. spte = rmap_next(kvm, rmapp, NULL);
  712. while (spte) {
  713. int _young;
  714. u64 _spte = *spte;
  715. BUG_ON(!(_spte & PT_PRESENT_MASK));
  716. _young = _spte & PT_ACCESSED_MASK;
  717. if (_young) {
  718. young = 1;
  719. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  720. }
  721. spte = rmap_next(kvm, rmapp, spte);
  722. }
  723. return young;
  724. }
  725. #define RMAP_RECYCLE_THRESHOLD 1000
  726. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  727. {
  728. unsigned long *rmapp;
  729. struct kvm_mmu_page *sp;
  730. sp = page_header(__pa(spte));
  731. gfn = unalias_gfn(vcpu->kvm, gfn);
  732. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  733. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  734. kvm_flush_remote_tlbs(vcpu->kvm);
  735. }
  736. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  737. {
  738. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  739. }
  740. #ifdef MMU_DEBUG
  741. static int is_empty_shadow_page(u64 *spt)
  742. {
  743. u64 *pos;
  744. u64 *end;
  745. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  746. if (is_shadow_present_pte(*pos)) {
  747. printk(KERN_ERR "%s: %p %llx\n", __func__,
  748. pos, *pos);
  749. return 0;
  750. }
  751. return 1;
  752. }
  753. #endif
  754. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  755. {
  756. ASSERT(is_empty_shadow_page(sp->spt));
  757. list_del(&sp->link);
  758. __free_page(virt_to_page(sp->spt));
  759. __free_page(virt_to_page(sp->gfns));
  760. kfree(sp);
  761. ++kvm->arch.n_free_mmu_pages;
  762. }
  763. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  764. {
  765. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  766. }
  767. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  768. u64 *parent_pte)
  769. {
  770. struct kvm_mmu_page *sp;
  771. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  772. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  773. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  774. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  775. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  776. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  777. sp->multimapped = 0;
  778. sp->parent_pte = parent_pte;
  779. --vcpu->kvm->arch.n_free_mmu_pages;
  780. return sp;
  781. }
  782. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  783. struct kvm_mmu_page *sp, u64 *parent_pte)
  784. {
  785. struct kvm_pte_chain *pte_chain;
  786. struct hlist_node *node;
  787. int i;
  788. if (!parent_pte)
  789. return;
  790. if (!sp->multimapped) {
  791. u64 *old = sp->parent_pte;
  792. if (!old) {
  793. sp->parent_pte = parent_pte;
  794. return;
  795. }
  796. sp->multimapped = 1;
  797. pte_chain = mmu_alloc_pte_chain(vcpu);
  798. INIT_HLIST_HEAD(&sp->parent_ptes);
  799. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  800. pte_chain->parent_ptes[0] = old;
  801. }
  802. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  803. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  804. continue;
  805. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  806. if (!pte_chain->parent_ptes[i]) {
  807. pte_chain->parent_ptes[i] = parent_pte;
  808. return;
  809. }
  810. }
  811. pte_chain = mmu_alloc_pte_chain(vcpu);
  812. BUG_ON(!pte_chain);
  813. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  814. pte_chain->parent_ptes[0] = parent_pte;
  815. }
  816. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  817. u64 *parent_pte)
  818. {
  819. struct kvm_pte_chain *pte_chain;
  820. struct hlist_node *node;
  821. int i;
  822. if (!sp->multimapped) {
  823. BUG_ON(sp->parent_pte != parent_pte);
  824. sp->parent_pte = NULL;
  825. return;
  826. }
  827. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  828. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  829. if (!pte_chain->parent_ptes[i])
  830. break;
  831. if (pte_chain->parent_ptes[i] != parent_pte)
  832. continue;
  833. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  834. && pte_chain->parent_ptes[i + 1]) {
  835. pte_chain->parent_ptes[i]
  836. = pte_chain->parent_ptes[i + 1];
  837. ++i;
  838. }
  839. pte_chain->parent_ptes[i] = NULL;
  840. if (i == 0) {
  841. hlist_del(&pte_chain->link);
  842. mmu_free_pte_chain(pte_chain);
  843. if (hlist_empty(&sp->parent_ptes)) {
  844. sp->multimapped = 0;
  845. sp->parent_pte = NULL;
  846. }
  847. }
  848. return;
  849. }
  850. BUG();
  851. }
  852. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  853. {
  854. struct kvm_pte_chain *pte_chain;
  855. struct hlist_node *node;
  856. struct kvm_mmu_page *parent_sp;
  857. int i;
  858. if (!sp->multimapped && sp->parent_pte) {
  859. parent_sp = page_header(__pa(sp->parent_pte));
  860. fn(parent_sp);
  861. mmu_parent_walk(parent_sp, fn);
  862. return;
  863. }
  864. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  865. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  866. if (!pte_chain->parent_ptes[i])
  867. break;
  868. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  869. fn(parent_sp);
  870. mmu_parent_walk(parent_sp, fn);
  871. }
  872. }
  873. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  874. {
  875. unsigned int index;
  876. struct kvm_mmu_page *sp = page_header(__pa(spte));
  877. index = spte - sp->spt;
  878. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  879. sp->unsync_children++;
  880. WARN_ON(!sp->unsync_children);
  881. }
  882. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  883. {
  884. struct kvm_pte_chain *pte_chain;
  885. struct hlist_node *node;
  886. int i;
  887. if (!sp->parent_pte)
  888. return;
  889. if (!sp->multimapped) {
  890. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  891. return;
  892. }
  893. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  894. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  895. if (!pte_chain->parent_ptes[i])
  896. break;
  897. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  898. }
  899. }
  900. static int unsync_walk_fn(struct kvm_mmu_page *sp)
  901. {
  902. kvm_mmu_update_parents_unsync(sp);
  903. return 1;
  904. }
  905. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  906. {
  907. mmu_parent_walk(sp, unsync_walk_fn);
  908. kvm_mmu_update_parents_unsync(sp);
  909. }
  910. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  911. struct kvm_mmu_page *sp)
  912. {
  913. int i;
  914. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  915. sp->spt[i] = shadow_trap_nonpresent_pte;
  916. }
  917. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  918. struct kvm_mmu_page *sp)
  919. {
  920. return 1;
  921. }
  922. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  923. {
  924. }
  925. #define KVM_PAGE_ARRAY_NR 16
  926. struct kvm_mmu_pages {
  927. struct mmu_page_and_offset {
  928. struct kvm_mmu_page *sp;
  929. unsigned int idx;
  930. } page[KVM_PAGE_ARRAY_NR];
  931. unsigned int nr;
  932. };
  933. #define for_each_unsync_children(bitmap, idx) \
  934. for (idx = find_first_bit(bitmap, 512); \
  935. idx < 512; \
  936. idx = find_next_bit(bitmap, 512, idx+1))
  937. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  938. int idx)
  939. {
  940. int i;
  941. if (sp->unsync)
  942. for (i=0; i < pvec->nr; i++)
  943. if (pvec->page[i].sp == sp)
  944. return 0;
  945. pvec->page[pvec->nr].sp = sp;
  946. pvec->page[pvec->nr].idx = idx;
  947. pvec->nr++;
  948. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  949. }
  950. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  951. struct kvm_mmu_pages *pvec)
  952. {
  953. int i, ret, nr_unsync_leaf = 0;
  954. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  955. u64 ent = sp->spt[i];
  956. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  957. struct kvm_mmu_page *child;
  958. child = page_header(ent & PT64_BASE_ADDR_MASK);
  959. if (child->unsync_children) {
  960. if (mmu_pages_add(pvec, child, i))
  961. return -ENOSPC;
  962. ret = __mmu_unsync_walk(child, pvec);
  963. if (!ret)
  964. __clear_bit(i, sp->unsync_child_bitmap);
  965. else if (ret > 0)
  966. nr_unsync_leaf += ret;
  967. else
  968. return ret;
  969. }
  970. if (child->unsync) {
  971. nr_unsync_leaf++;
  972. if (mmu_pages_add(pvec, child, i))
  973. return -ENOSPC;
  974. }
  975. }
  976. }
  977. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  978. sp->unsync_children = 0;
  979. return nr_unsync_leaf;
  980. }
  981. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  982. struct kvm_mmu_pages *pvec)
  983. {
  984. if (!sp->unsync_children)
  985. return 0;
  986. mmu_pages_add(pvec, sp, 0);
  987. return __mmu_unsync_walk(sp, pvec);
  988. }
  989. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  990. {
  991. unsigned index;
  992. struct hlist_head *bucket;
  993. struct kvm_mmu_page *sp;
  994. struct hlist_node *node;
  995. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  996. index = kvm_page_table_hashfn(gfn);
  997. bucket = &kvm->arch.mmu_page_hash[index];
  998. hlist_for_each_entry(sp, node, bucket, hash_link)
  999. if (sp->gfn == gfn && !sp->role.direct
  1000. && !sp->role.invalid) {
  1001. pgprintk("%s: found role %x\n",
  1002. __func__, sp->role.word);
  1003. return sp;
  1004. }
  1005. return NULL;
  1006. }
  1007. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1008. {
  1009. WARN_ON(!sp->unsync);
  1010. trace_kvm_mmu_sync_page(sp);
  1011. sp->unsync = 0;
  1012. --kvm->stat.mmu_unsync;
  1013. }
  1014. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1015. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1016. {
  1017. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1018. kvm_mmu_zap_page(vcpu->kvm, sp);
  1019. return 1;
  1020. }
  1021. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1022. kvm_flush_remote_tlbs(vcpu->kvm);
  1023. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1024. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1025. kvm_mmu_zap_page(vcpu->kvm, sp);
  1026. return 1;
  1027. }
  1028. kvm_mmu_flush_tlb(vcpu);
  1029. return 0;
  1030. }
  1031. struct mmu_page_path {
  1032. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1033. unsigned int idx[PT64_ROOT_LEVEL-1];
  1034. };
  1035. #define for_each_sp(pvec, sp, parents, i) \
  1036. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1037. sp = pvec.page[i].sp; \
  1038. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1039. i = mmu_pages_next(&pvec, &parents, i))
  1040. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1041. struct mmu_page_path *parents,
  1042. int i)
  1043. {
  1044. int n;
  1045. for (n = i+1; n < pvec->nr; n++) {
  1046. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1047. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1048. parents->idx[0] = pvec->page[n].idx;
  1049. return n;
  1050. }
  1051. parents->parent[sp->role.level-2] = sp;
  1052. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1053. }
  1054. return n;
  1055. }
  1056. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1057. {
  1058. struct kvm_mmu_page *sp;
  1059. unsigned int level = 0;
  1060. do {
  1061. unsigned int idx = parents->idx[level];
  1062. sp = parents->parent[level];
  1063. if (!sp)
  1064. return;
  1065. --sp->unsync_children;
  1066. WARN_ON((int)sp->unsync_children < 0);
  1067. __clear_bit(idx, sp->unsync_child_bitmap);
  1068. level++;
  1069. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1070. }
  1071. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1072. struct mmu_page_path *parents,
  1073. struct kvm_mmu_pages *pvec)
  1074. {
  1075. parents->parent[parent->role.level-1] = NULL;
  1076. pvec->nr = 0;
  1077. }
  1078. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1079. struct kvm_mmu_page *parent)
  1080. {
  1081. int i;
  1082. struct kvm_mmu_page *sp;
  1083. struct mmu_page_path parents;
  1084. struct kvm_mmu_pages pages;
  1085. kvm_mmu_pages_init(parent, &parents, &pages);
  1086. while (mmu_unsync_walk(parent, &pages)) {
  1087. int protected = 0;
  1088. for_each_sp(pages, sp, parents, i)
  1089. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1090. if (protected)
  1091. kvm_flush_remote_tlbs(vcpu->kvm);
  1092. for_each_sp(pages, sp, parents, i) {
  1093. kvm_sync_page(vcpu, sp);
  1094. mmu_pages_clear_parents(&parents);
  1095. }
  1096. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1097. kvm_mmu_pages_init(parent, &parents, &pages);
  1098. }
  1099. }
  1100. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1101. gfn_t gfn,
  1102. gva_t gaddr,
  1103. unsigned level,
  1104. int direct,
  1105. unsigned access,
  1106. u64 *parent_pte)
  1107. {
  1108. union kvm_mmu_page_role role;
  1109. unsigned index;
  1110. unsigned quadrant;
  1111. struct hlist_head *bucket;
  1112. struct kvm_mmu_page *sp;
  1113. struct hlist_node *node, *tmp;
  1114. role = vcpu->arch.mmu.base_role;
  1115. role.level = level;
  1116. role.direct = direct;
  1117. if (role.direct)
  1118. role.cr4_pae = 0;
  1119. role.access = access;
  1120. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1121. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1122. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1123. role.quadrant = quadrant;
  1124. }
  1125. index = kvm_page_table_hashfn(gfn);
  1126. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1127. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1128. if (sp->gfn == gfn) {
  1129. if (sp->unsync)
  1130. if (kvm_sync_page(vcpu, sp))
  1131. continue;
  1132. if (sp->role.word != role.word)
  1133. continue;
  1134. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1135. if (sp->unsync_children) {
  1136. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1137. kvm_mmu_mark_parents_unsync(sp);
  1138. }
  1139. trace_kvm_mmu_get_page(sp, false);
  1140. return sp;
  1141. }
  1142. ++vcpu->kvm->stat.mmu_cache_miss;
  1143. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1144. if (!sp)
  1145. return sp;
  1146. sp->gfn = gfn;
  1147. sp->role = role;
  1148. hlist_add_head(&sp->hash_link, bucket);
  1149. if (!direct) {
  1150. if (rmap_write_protect(vcpu->kvm, gfn))
  1151. kvm_flush_remote_tlbs(vcpu->kvm);
  1152. account_shadowed(vcpu->kvm, gfn);
  1153. }
  1154. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1155. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1156. else
  1157. nonpaging_prefetch_page(vcpu, sp);
  1158. trace_kvm_mmu_get_page(sp, true);
  1159. return sp;
  1160. }
  1161. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1162. struct kvm_vcpu *vcpu, u64 addr)
  1163. {
  1164. iterator->addr = addr;
  1165. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1166. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1167. if (iterator->level == PT32E_ROOT_LEVEL) {
  1168. iterator->shadow_addr
  1169. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1170. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1171. --iterator->level;
  1172. if (!iterator->shadow_addr)
  1173. iterator->level = 0;
  1174. }
  1175. }
  1176. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1177. {
  1178. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1179. return false;
  1180. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1181. if (is_large_pte(*iterator->sptep))
  1182. return false;
  1183. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1184. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1185. return true;
  1186. }
  1187. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1188. {
  1189. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1190. --iterator->level;
  1191. }
  1192. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1193. struct kvm_mmu_page *sp)
  1194. {
  1195. unsigned i;
  1196. u64 *pt;
  1197. u64 ent;
  1198. pt = sp->spt;
  1199. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1200. ent = pt[i];
  1201. if (is_shadow_present_pte(ent)) {
  1202. if (!is_last_spte(ent, sp->role.level)) {
  1203. ent &= PT64_BASE_ADDR_MASK;
  1204. mmu_page_remove_parent_pte(page_header(ent),
  1205. &pt[i]);
  1206. } else {
  1207. if (is_large_pte(ent))
  1208. --kvm->stat.lpages;
  1209. rmap_remove(kvm, &pt[i]);
  1210. }
  1211. }
  1212. pt[i] = shadow_trap_nonpresent_pte;
  1213. }
  1214. }
  1215. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1216. {
  1217. mmu_page_remove_parent_pte(sp, parent_pte);
  1218. }
  1219. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1220. {
  1221. int i;
  1222. struct kvm_vcpu *vcpu;
  1223. kvm_for_each_vcpu(i, vcpu, kvm)
  1224. vcpu->arch.last_pte_updated = NULL;
  1225. }
  1226. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1227. {
  1228. u64 *parent_pte;
  1229. while (sp->multimapped || sp->parent_pte) {
  1230. if (!sp->multimapped)
  1231. parent_pte = sp->parent_pte;
  1232. else {
  1233. struct kvm_pte_chain *chain;
  1234. chain = container_of(sp->parent_ptes.first,
  1235. struct kvm_pte_chain, link);
  1236. parent_pte = chain->parent_ptes[0];
  1237. }
  1238. BUG_ON(!parent_pte);
  1239. kvm_mmu_put_page(sp, parent_pte);
  1240. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1241. }
  1242. }
  1243. static int mmu_zap_unsync_children(struct kvm *kvm,
  1244. struct kvm_mmu_page *parent)
  1245. {
  1246. int i, zapped = 0;
  1247. struct mmu_page_path parents;
  1248. struct kvm_mmu_pages pages;
  1249. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1250. return 0;
  1251. kvm_mmu_pages_init(parent, &parents, &pages);
  1252. while (mmu_unsync_walk(parent, &pages)) {
  1253. struct kvm_mmu_page *sp;
  1254. for_each_sp(pages, sp, parents, i) {
  1255. kvm_mmu_zap_page(kvm, sp);
  1256. mmu_pages_clear_parents(&parents);
  1257. zapped++;
  1258. }
  1259. kvm_mmu_pages_init(parent, &parents, &pages);
  1260. }
  1261. return zapped;
  1262. }
  1263. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1264. {
  1265. int ret;
  1266. trace_kvm_mmu_zap_page(sp);
  1267. ++kvm->stat.mmu_shadow_zapped;
  1268. ret = mmu_zap_unsync_children(kvm, sp);
  1269. kvm_mmu_page_unlink_children(kvm, sp);
  1270. kvm_mmu_unlink_parents(kvm, sp);
  1271. kvm_flush_remote_tlbs(kvm);
  1272. if (!sp->role.invalid && !sp->role.direct)
  1273. unaccount_shadowed(kvm, sp->gfn);
  1274. if (sp->unsync)
  1275. kvm_unlink_unsync_page(kvm, sp);
  1276. if (!sp->root_count) {
  1277. /* Count self */
  1278. ret++;
  1279. hlist_del(&sp->hash_link);
  1280. kvm_mmu_free_page(kvm, sp);
  1281. } else {
  1282. sp->role.invalid = 1;
  1283. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1284. kvm_reload_remote_mmus(kvm);
  1285. }
  1286. kvm_mmu_reset_last_pte_updated(kvm);
  1287. return ret;
  1288. }
  1289. /*
  1290. * Changing the number of mmu pages allocated to the vm
  1291. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1292. */
  1293. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1294. {
  1295. int used_pages;
  1296. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1297. used_pages = max(0, used_pages);
  1298. /*
  1299. * If we set the number of mmu pages to be smaller be than the
  1300. * number of actived pages , we must to free some mmu pages before we
  1301. * change the value
  1302. */
  1303. if (used_pages > kvm_nr_mmu_pages) {
  1304. while (used_pages > kvm_nr_mmu_pages &&
  1305. !list_empty(&kvm->arch.active_mmu_pages)) {
  1306. struct kvm_mmu_page *page;
  1307. page = container_of(kvm->arch.active_mmu_pages.prev,
  1308. struct kvm_mmu_page, link);
  1309. used_pages -= kvm_mmu_zap_page(kvm, page);
  1310. }
  1311. kvm_nr_mmu_pages = used_pages;
  1312. kvm->arch.n_free_mmu_pages = 0;
  1313. }
  1314. else
  1315. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1316. - kvm->arch.n_alloc_mmu_pages;
  1317. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1318. }
  1319. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1320. {
  1321. unsigned index;
  1322. struct hlist_head *bucket;
  1323. struct kvm_mmu_page *sp;
  1324. struct hlist_node *node, *n;
  1325. int r;
  1326. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1327. r = 0;
  1328. index = kvm_page_table_hashfn(gfn);
  1329. bucket = &kvm->arch.mmu_page_hash[index];
  1330. restart:
  1331. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1332. if (sp->gfn == gfn && !sp->role.direct) {
  1333. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1334. sp->role.word);
  1335. r = 1;
  1336. if (kvm_mmu_zap_page(kvm, sp))
  1337. goto restart;
  1338. }
  1339. return r;
  1340. }
  1341. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1342. {
  1343. unsigned index;
  1344. struct hlist_head *bucket;
  1345. struct kvm_mmu_page *sp;
  1346. struct hlist_node *node, *nn;
  1347. index = kvm_page_table_hashfn(gfn);
  1348. bucket = &kvm->arch.mmu_page_hash[index];
  1349. restart:
  1350. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1351. if (sp->gfn == gfn && !sp->role.direct
  1352. && !sp->role.invalid) {
  1353. pgprintk("%s: zap %lx %x\n",
  1354. __func__, gfn, sp->role.word);
  1355. if (kvm_mmu_zap_page(kvm, sp))
  1356. goto restart;
  1357. }
  1358. }
  1359. }
  1360. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1361. {
  1362. int slot = memslot_id(kvm, gfn);
  1363. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1364. __set_bit(slot, sp->slot_bitmap);
  1365. }
  1366. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1367. {
  1368. int i;
  1369. u64 *pt = sp->spt;
  1370. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1371. return;
  1372. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1373. if (pt[i] == shadow_notrap_nonpresent_pte)
  1374. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1375. }
  1376. }
  1377. /*
  1378. * The function is based on mtrr_type_lookup() in
  1379. * arch/x86/kernel/cpu/mtrr/generic.c
  1380. */
  1381. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1382. u64 start, u64 end)
  1383. {
  1384. int i;
  1385. u64 base, mask;
  1386. u8 prev_match, curr_match;
  1387. int num_var_ranges = KVM_NR_VAR_MTRR;
  1388. if (!mtrr_state->enabled)
  1389. return 0xFF;
  1390. /* Make end inclusive end, instead of exclusive */
  1391. end--;
  1392. /* Look in fixed ranges. Just return the type as per start */
  1393. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1394. int idx;
  1395. if (start < 0x80000) {
  1396. idx = 0;
  1397. idx += (start >> 16);
  1398. return mtrr_state->fixed_ranges[idx];
  1399. } else if (start < 0xC0000) {
  1400. idx = 1 * 8;
  1401. idx += ((start - 0x80000) >> 14);
  1402. return mtrr_state->fixed_ranges[idx];
  1403. } else if (start < 0x1000000) {
  1404. idx = 3 * 8;
  1405. idx += ((start - 0xC0000) >> 12);
  1406. return mtrr_state->fixed_ranges[idx];
  1407. }
  1408. }
  1409. /*
  1410. * Look in variable ranges
  1411. * Look of multiple ranges matching this address and pick type
  1412. * as per MTRR precedence
  1413. */
  1414. if (!(mtrr_state->enabled & 2))
  1415. return mtrr_state->def_type;
  1416. prev_match = 0xFF;
  1417. for (i = 0; i < num_var_ranges; ++i) {
  1418. unsigned short start_state, end_state;
  1419. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1420. continue;
  1421. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1422. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1423. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1424. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1425. start_state = ((start & mask) == (base & mask));
  1426. end_state = ((end & mask) == (base & mask));
  1427. if (start_state != end_state)
  1428. return 0xFE;
  1429. if ((start & mask) != (base & mask))
  1430. continue;
  1431. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1432. if (prev_match == 0xFF) {
  1433. prev_match = curr_match;
  1434. continue;
  1435. }
  1436. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1437. curr_match == MTRR_TYPE_UNCACHABLE)
  1438. return MTRR_TYPE_UNCACHABLE;
  1439. if ((prev_match == MTRR_TYPE_WRBACK &&
  1440. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1441. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1442. curr_match == MTRR_TYPE_WRBACK)) {
  1443. prev_match = MTRR_TYPE_WRTHROUGH;
  1444. curr_match = MTRR_TYPE_WRTHROUGH;
  1445. }
  1446. if (prev_match != curr_match)
  1447. return MTRR_TYPE_UNCACHABLE;
  1448. }
  1449. if (prev_match != 0xFF)
  1450. return prev_match;
  1451. return mtrr_state->def_type;
  1452. }
  1453. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1454. {
  1455. u8 mtrr;
  1456. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1457. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1458. if (mtrr == 0xfe || mtrr == 0xff)
  1459. mtrr = MTRR_TYPE_WRBACK;
  1460. return mtrr;
  1461. }
  1462. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1463. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1464. {
  1465. unsigned index;
  1466. struct hlist_head *bucket;
  1467. struct kvm_mmu_page *s;
  1468. struct hlist_node *node, *n;
  1469. index = kvm_page_table_hashfn(sp->gfn);
  1470. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1471. /* don't unsync if pagetable is shadowed with multiple roles */
  1472. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1473. if (s->gfn != sp->gfn || s->role.direct)
  1474. continue;
  1475. if (s->role.word != sp->role.word)
  1476. return 1;
  1477. }
  1478. trace_kvm_mmu_unsync_page(sp);
  1479. ++vcpu->kvm->stat.mmu_unsync;
  1480. sp->unsync = 1;
  1481. kvm_mmu_mark_parents_unsync(sp);
  1482. mmu_convert_notrap(sp);
  1483. return 0;
  1484. }
  1485. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1486. bool can_unsync)
  1487. {
  1488. struct kvm_mmu_page *shadow;
  1489. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1490. if (shadow) {
  1491. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1492. return 1;
  1493. if (shadow->unsync)
  1494. return 0;
  1495. if (can_unsync && oos_shadow)
  1496. return kvm_unsync_page(vcpu, shadow);
  1497. return 1;
  1498. }
  1499. return 0;
  1500. }
  1501. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1502. unsigned pte_access, int user_fault,
  1503. int write_fault, int dirty, int level,
  1504. gfn_t gfn, pfn_t pfn, bool speculative,
  1505. bool can_unsync, bool reset_host_protection)
  1506. {
  1507. u64 spte;
  1508. int ret = 0;
  1509. /*
  1510. * We don't set the accessed bit, since we sometimes want to see
  1511. * whether the guest actually used the pte (in order to detect
  1512. * demand paging).
  1513. */
  1514. spte = shadow_base_present_pte | shadow_dirty_mask;
  1515. if (!speculative)
  1516. spte |= shadow_accessed_mask;
  1517. if (!dirty)
  1518. pte_access &= ~ACC_WRITE_MASK;
  1519. if (pte_access & ACC_EXEC_MASK)
  1520. spte |= shadow_x_mask;
  1521. else
  1522. spte |= shadow_nx_mask;
  1523. if (pte_access & ACC_USER_MASK)
  1524. spte |= shadow_user_mask;
  1525. if (level > PT_PAGE_TABLE_LEVEL)
  1526. spte |= PT_PAGE_SIZE_MASK;
  1527. if (tdp_enabled)
  1528. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1529. kvm_is_mmio_pfn(pfn));
  1530. if (reset_host_protection)
  1531. spte |= SPTE_HOST_WRITEABLE;
  1532. spte |= (u64)pfn << PAGE_SHIFT;
  1533. if ((pte_access & ACC_WRITE_MASK)
  1534. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1535. if (level > PT_PAGE_TABLE_LEVEL &&
  1536. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1537. ret = 1;
  1538. spte = shadow_trap_nonpresent_pte;
  1539. goto set_pte;
  1540. }
  1541. spte |= PT_WRITABLE_MASK;
  1542. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1543. spte &= ~PT_USER_MASK;
  1544. /*
  1545. * Optimization: for pte sync, if spte was writable the hash
  1546. * lookup is unnecessary (and expensive). Write protection
  1547. * is responsibility of mmu_get_page / kvm_sync_page.
  1548. * Same reasoning can be applied to dirty page accounting.
  1549. */
  1550. if (!can_unsync && is_writable_pte(*sptep))
  1551. goto set_pte;
  1552. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1553. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1554. __func__, gfn);
  1555. ret = 1;
  1556. pte_access &= ~ACC_WRITE_MASK;
  1557. if (is_writable_pte(spte))
  1558. spte &= ~PT_WRITABLE_MASK;
  1559. }
  1560. }
  1561. if (pte_access & ACC_WRITE_MASK)
  1562. mark_page_dirty(vcpu->kvm, gfn);
  1563. set_pte:
  1564. __set_spte(sptep, spte);
  1565. return ret;
  1566. }
  1567. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1568. unsigned pt_access, unsigned pte_access,
  1569. int user_fault, int write_fault, int dirty,
  1570. int *ptwrite, int level, gfn_t gfn,
  1571. pfn_t pfn, bool speculative,
  1572. bool reset_host_protection)
  1573. {
  1574. int was_rmapped = 0;
  1575. int was_writable = is_writable_pte(*sptep);
  1576. int rmap_count;
  1577. pgprintk("%s: spte %llx access %x write_fault %d"
  1578. " user_fault %d gfn %lx\n",
  1579. __func__, *sptep, pt_access,
  1580. write_fault, user_fault, gfn);
  1581. if (is_rmap_spte(*sptep)) {
  1582. /*
  1583. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1584. * the parent of the now unreachable PTE.
  1585. */
  1586. if (level > PT_PAGE_TABLE_LEVEL &&
  1587. !is_large_pte(*sptep)) {
  1588. struct kvm_mmu_page *child;
  1589. u64 pte = *sptep;
  1590. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1591. mmu_page_remove_parent_pte(child, sptep);
  1592. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1593. kvm_flush_remote_tlbs(vcpu->kvm);
  1594. } else if (pfn != spte_to_pfn(*sptep)) {
  1595. pgprintk("hfn old %lx new %lx\n",
  1596. spte_to_pfn(*sptep), pfn);
  1597. rmap_remove(vcpu->kvm, sptep);
  1598. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1599. kvm_flush_remote_tlbs(vcpu->kvm);
  1600. } else
  1601. was_rmapped = 1;
  1602. }
  1603. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1604. dirty, level, gfn, pfn, speculative, true,
  1605. reset_host_protection)) {
  1606. if (write_fault)
  1607. *ptwrite = 1;
  1608. kvm_x86_ops->tlb_flush(vcpu);
  1609. }
  1610. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1611. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1612. is_large_pte(*sptep)? "2MB" : "4kB",
  1613. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1614. *sptep, sptep);
  1615. if (!was_rmapped && is_large_pte(*sptep))
  1616. ++vcpu->kvm->stat.lpages;
  1617. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1618. if (!was_rmapped) {
  1619. rmap_count = rmap_add(vcpu, sptep, gfn);
  1620. kvm_release_pfn_clean(pfn);
  1621. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1622. rmap_recycle(vcpu, sptep, gfn);
  1623. } else {
  1624. if (was_writable)
  1625. kvm_release_pfn_dirty(pfn);
  1626. else
  1627. kvm_release_pfn_clean(pfn);
  1628. }
  1629. if (speculative) {
  1630. vcpu->arch.last_pte_updated = sptep;
  1631. vcpu->arch.last_pte_gfn = gfn;
  1632. }
  1633. }
  1634. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1635. {
  1636. }
  1637. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1638. int level, gfn_t gfn, pfn_t pfn)
  1639. {
  1640. struct kvm_shadow_walk_iterator iterator;
  1641. struct kvm_mmu_page *sp;
  1642. int pt_write = 0;
  1643. gfn_t pseudo_gfn;
  1644. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1645. if (iterator.level == level) {
  1646. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1647. 0, write, 1, &pt_write,
  1648. level, gfn, pfn, false, true);
  1649. ++vcpu->stat.pf_fixed;
  1650. break;
  1651. }
  1652. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1653. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1654. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1655. iterator.level - 1,
  1656. 1, ACC_ALL, iterator.sptep);
  1657. if (!sp) {
  1658. pgprintk("nonpaging_map: ENOMEM\n");
  1659. kvm_release_pfn_clean(pfn);
  1660. return -ENOMEM;
  1661. }
  1662. __set_spte(iterator.sptep,
  1663. __pa(sp->spt)
  1664. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1665. | shadow_user_mask | shadow_x_mask);
  1666. }
  1667. }
  1668. return pt_write;
  1669. }
  1670. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1671. {
  1672. char buf[1];
  1673. void __user *hva;
  1674. int r;
  1675. /* Touch the page, so send SIGBUS */
  1676. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1677. r = copy_from_user(buf, hva, 1);
  1678. }
  1679. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1680. {
  1681. kvm_release_pfn_clean(pfn);
  1682. if (is_hwpoison_pfn(pfn)) {
  1683. kvm_send_hwpoison_signal(kvm, gfn);
  1684. return 0;
  1685. }
  1686. return 1;
  1687. }
  1688. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1689. {
  1690. int r;
  1691. int level;
  1692. pfn_t pfn;
  1693. unsigned long mmu_seq;
  1694. level = mapping_level(vcpu, gfn);
  1695. /*
  1696. * This path builds a PAE pagetable - so we can map 2mb pages at
  1697. * maximum. Therefore check if the level is larger than that.
  1698. */
  1699. if (level > PT_DIRECTORY_LEVEL)
  1700. level = PT_DIRECTORY_LEVEL;
  1701. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1702. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1703. smp_rmb();
  1704. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1705. /* mmio */
  1706. if (is_error_pfn(pfn))
  1707. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1708. spin_lock(&vcpu->kvm->mmu_lock);
  1709. if (mmu_notifier_retry(vcpu, mmu_seq))
  1710. goto out_unlock;
  1711. kvm_mmu_free_some_pages(vcpu);
  1712. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1713. spin_unlock(&vcpu->kvm->mmu_lock);
  1714. return r;
  1715. out_unlock:
  1716. spin_unlock(&vcpu->kvm->mmu_lock);
  1717. kvm_release_pfn_clean(pfn);
  1718. return 0;
  1719. }
  1720. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1721. {
  1722. int i;
  1723. struct kvm_mmu_page *sp;
  1724. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1725. return;
  1726. spin_lock(&vcpu->kvm->mmu_lock);
  1727. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1728. hpa_t root = vcpu->arch.mmu.root_hpa;
  1729. sp = page_header(root);
  1730. --sp->root_count;
  1731. if (!sp->root_count && sp->role.invalid)
  1732. kvm_mmu_zap_page(vcpu->kvm, sp);
  1733. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1734. spin_unlock(&vcpu->kvm->mmu_lock);
  1735. return;
  1736. }
  1737. for (i = 0; i < 4; ++i) {
  1738. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1739. if (root) {
  1740. root &= PT64_BASE_ADDR_MASK;
  1741. sp = page_header(root);
  1742. --sp->root_count;
  1743. if (!sp->root_count && sp->role.invalid)
  1744. kvm_mmu_zap_page(vcpu->kvm, sp);
  1745. }
  1746. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1747. }
  1748. spin_unlock(&vcpu->kvm->mmu_lock);
  1749. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1750. }
  1751. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1752. {
  1753. int ret = 0;
  1754. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1755. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1756. ret = 1;
  1757. }
  1758. return ret;
  1759. }
  1760. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1761. {
  1762. int i;
  1763. gfn_t root_gfn;
  1764. struct kvm_mmu_page *sp;
  1765. int direct = 0;
  1766. u64 pdptr;
  1767. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1768. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1769. hpa_t root = vcpu->arch.mmu.root_hpa;
  1770. ASSERT(!VALID_PAGE(root));
  1771. if (mmu_check_root(vcpu, root_gfn))
  1772. return 1;
  1773. if (tdp_enabled) {
  1774. direct = 1;
  1775. root_gfn = 0;
  1776. }
  1777. spin_lock(&vcpu->kvm->mmu_lock);
  1778. kvm_mmu_free_some_pages(vcpu);
  1779. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1780. PT64_ROOT_LEVEL, direct,
  1781. ACC_ALL, NULL);
  1782. root = __pa(sp->spt);
  1783. ++sp->root_count;
  1784. spin_unlock(&vcpu->kvm->mmu_lock);
  1785. vcpu->arch.mmu.root_hpa = root;
  1786. return 0;
  1787. }
  1788. direct = !is_paging(vcpu);
  1789. for (i = 0; i < 4; ++i) {
  1790. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1791. ASSERT(!VALID_PAGE(root));
  1792. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1793. pdptr = kvm_pdptr_read(vcpu, i);
  1794. if (!is_present_gpte(pdptr)) {
  1795. vcpu->arch.mmu.pae_root[i] = 0;
  1796. continue;
  1797. }
  1798. root_gfn = pdptr >> PAGE_SHIFT;
  1799. } else if (vcpu->arch.mmu.root_level == 0)
  1800. root_gfn = 0;
  1801. if (mmu_check_root(vcpu, root_gfn))
  1802. return 1;
  1803. if (tdp_enabled) {
  1804. direct = 1;
  1805. root_gfn = i << 30;
  1806. }
  1807. spin_lock(&vcpu->kvm->mmu_lock);
  1808. kvm_mmu_free_some_pages(vcpu);
  1809. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1810. PT32_ROOT_LEVEL, direct,
  1811. ACC_ALL, NULL);
  1812. root = __pa(sp->spt);
  1813. ++sp->root_count;
  1814. spin_unlock(&vcpu->kvm->mmu_lock);
  1815. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1816. }
  1817. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1818. return 0;
  1819. }
  1820. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1821. {
  1822. int i;
  1823. struct kvm_mmu_page *sp;
  1824. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1825. return;
  1826. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1827. hpa_t root = vcpu->arch.mmu.root_hpa;
  1828. sp = page_header(root);
  1829. mmu_sync_children(vcpu, sp);
  1830. return;
  1831. }
  1832. for (i = 0; i < 4; ++i) {
  1833. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1834. if (root && VALID_PAGE(root)) {
  1835. root &= PT64_BASE_ADDR_MASK;
  1836. sp = page_header(root);
  1837. mmu_sync_children(vcpu, sp);
  1838. }
  1839. }
  1840. }
  1841. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1842. {
  1843. spin_lock(&vcpu->kvm->mmu_lock);
  1844. mmu_sync_roots(vcpu);
  1845. spin_unlock(&vcpu->kvm->mmu_lock);
  1846. }
  1847. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1848. u32 access, u32 *error)
  1849. {
  1850. if (error)
  1851. *error = 0;
  1852. return vaddr;
  1853. }
  1854. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1855. u32 error_code)
  1856. {
  1857. gfn_t gfn;
  1858. int r;
  1859. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1860. r = mmu_topup_memory_caches(vcpu);
  1861. if (r)
  1862. return r;
  1863. ASSERT(vcpu);
  1864. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1865. gfn = gva >> PAGE_SHIFT;
  1866. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1867. error_code & PFERR_WRITE_MASK, gfn);
  1868. }
  1869. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1870. u32 error_code)
  1871. {
  1872. pfn_t pfn;
  1873. int r;
  1874. int level;
  1875. gfn_t gfn = gpa >> PAGE_SHIFT;
  1876. unsigned long mmu_seq;
  1877. ASSERT(vcpu);
  1878. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1879. r = mmu_topup_memory_caches(vcpu);
  1880. if (r)
  1881. return r;
  1882. level = mapping_level(vcpu, gfn);
  1883. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1884. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1885. smp_rmb();
  1886. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1887. if (is_error_pfn(pfn))
  1888. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1889. spin_lock(&vcpu->kvm->mmu_lock);
  1890. if (mmu_notifier_retry(vcpu, mmu_seq))
  1891. goto out_unlock;
  1892. kvm_mmu_free_some_pages(vcpu);
  1893. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1894. level, gfn, pfn);
  1895. spin_unlock(&vcpu->kvm->mmu_lock);
  1896. return r;
  1897. out_unlock:
  1898. spin_unlock(&vcpu->kvm->mmu_lock);
  1899. kvm_release_pfn_clean(pfn);
  1900. return 0;
  1901. }
  1902. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1903. {
  1904. mmu_free_roots(vcpu);
  1905. }
  1906. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1907. {
  1908. struct kvm_mmu *context = &vcpu->arch.mmu;
  1909. context->new_cr3 = nonpaging_new_cr3;
  1910. context->page_fault = nonpaging_page_fault;
  1911. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1912. context->free = nonpaging_free;
  1913. context->prefetch_page = nonpaging_prefetch_page;
  1914. context->sync_page = nonpaging_sync_page;
  1915. context->invlpg = nonpaging_invlpg;
  1916. context->root_level = 0;
  1917. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1918. context->root_hpa = INVALID_PAGE;
  1919. return 0;
  1920. }
  1921. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1922. {
  1923. ++vcpu->stat.tlb_flush;
  1924. kvm_x86_ops->tlb_flush(vcpu);
  1925. }
  1926. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1927. {
  1928. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1929. mmu_free_roots(vcpu);
  1930. }
  1931. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1932. u64 addr,
  1933. u32 err_code)
  1934. {
  1935. kvm_inject_page_fault(vcpu, addr, err_code);
  1936. }
  1937. static void paging_free(struct kvm_vcpu *vcpu)
  1938. {
  1939. nonpaging_free(vcpu);
  1940. }
  1941. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1942. {
  1943. int bit7;
  1944. bit7 = (gpte >> 7) & 1;
  1945. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1946. }
  1947. #define PTTYPE 64
  1948. #include "paging_tmpl.h"
  1949. #undef PTTYPE
  1950. #define PTTYPE 32
  1951. #include "paging_tmpl.h"
  1952. #undef PTTYPE
  1953. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1954. {
  1955. struct kvm_mmu *context = &vcpu->arch.mmu;
  1956. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1957. u64 exb_bit_rsvd = 0;
  1958. if (!is_nx(vcpu))
  1959. exb_bit_rsvd = rsvd_bits(63, 63);
  1960. switch (level) {
  1961. case PT32_ROOT_LEVEL:
  1962. /* no rsvd bits for 2 level 4K page table entries */
  1963. context->rsvd_bits_mask[0][1] = 0;
  1964. context->rsvd_bits_mask[0][0] = 0;
  1965. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1966. if (!is_pse(vcpu)) {
  1967. context->rsvd_bits_mask[1][1] = 0;
  1968. break;
  1969. }
  1970. if (is_cpuid_PSE36())
  1971. /* 36bits PSE 4MB page */
  1972. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1973. else
  1974. /* 32 bits PSE 4MB page */
  1975. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1976. break;
  1977. case PT32E_ROOT_LEVEL:
  1978. context->rsvd_bits_mask[0][2] =
  1979. rsvd_bits(maxphyaddr, 63) |
  1980. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1981. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1982. rsvd_bits(maxphyaddr, 62); /* PDE */
  1983. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1984. rsvd_bits(maxphyaddr, 62); /* PTE */
  1985. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1986. rsvd_bits(maxphyaddr, 62) |
  1987. rsvd_bits(13, 20); /* large page */
  1988. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  1989. break;
  1990. case PT64_ROOT_LEVEL:
  1991. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1992. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1993. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1994. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1995. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1996. rsvd_bits(maxphyaddr, 51);
  1997. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1998. rsvd_bits(maxphyaddr, 51);
  1999. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2000. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2001. rsvd_bits(maxphyaddr, 51) |
  2002. rsvd_bits(13, 29);
  2003. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2004. rsvd_bits(maxphyaddr, 51) |
  2005. rsvd_bits(13, 20); /* large page */
  2006. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2007. break;
  2008. }
  2009. }
  2010. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2011. {
  2012. struct kvm_mmu *context = &vcpu->arch.mmu;
  2013. ASSERT(is_pae(vcpu));
  2014. context->new_cr3 = paging_new_cr3;
  2015. context->page_fault = paging64_page_fault;
  2016. context->gva_to_gpa = paging64_gva_to_gpa;
  2017. context->prefetch_page = paging64_prefetch_page;
  2018. context->sync_page = paging64_sync_page;
  2019. context->invlpg = paging64_invlpg;
  2020. context->free = paging_free;
  2021. context->root_level = level;
  2022. context->shadow_root_level = level;
  2023. context->root_hpa = INVALID_PAGE;
  2024. return 0;
  2025. }
  2026. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2027. {
  2028. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2029. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2030. }
  2031. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2032. {
  2033. struct kvm_mmu *context = &vcpu->arch.mmu;
  2034. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2035. context->new_cr3 = paging_new_cr3;
  2036. context->page_fault = paging32_page_fault;
  2037. context->gva_to_gpa = paging32_gva_to_gpa;
  2038. context->free = paging_free;
  2039. context->prefetch_page = paging32_prefetch_page;
  2040. context->sync_page = paging32_sync_page;
  2041. context->invlpg = paging32_invlpg;
  2042. context->root_level = PT32_ROOT_LEVEL;
  2043. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2044. context->root_hpa = INVALID_PAGE;
  2045. return 0;
  2046. }
  2047. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2048. {
  2049. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2050. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2051. }
  2052. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2053. {
  2054. struct kvm_mmu *context = &vcpu->arch.mmu;
  2055. context->new_cr3 = nonpaging_new_cr3;
  2056. context->page_fault = tdp_page_fault;
  2057. context->free = nonpaging_free;
  2058. context->prefetch_page = nonpaging_prefetch_page;
  2059. context->sync_page = nonpaging_sync_page;
  2060. context->invlpg = nonpaging_invlpg;
  2061. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2062. context->root_hpa = INVALID_PAGE;
  2063. if (!is_paging(vcpu)) {
  2064. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2065. context->root_level = 0;
  2066. } else if (is_long_mode(vcpu)) {
  2067. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2068. context->gva_to_gpa = paging64_gva_to_gpa;
  2069. context->root_level = PT64_ROOT_LEVEL;
  2070. } else if (is_pae(vcpu)) {
  2071. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2072. context->gva_to_gpa = paging64_gva_to_gpa;
  2073. context->root_level = PT32E_ROOT_LEVEL;
  2074. } else {
  2075. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2076. context->gva_to_gpa = paging32_gva_to_gpa;
  2077. context->root_level = PT32_ROOT_LEVEL;
  2078. }
  2079. return 0;
  2080. }
  2081. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2082. {
  2083. int r;
  2084. ASSERT(vcpu);
  2085. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2086. if (!is_paging(vcpu))
  2087. r = nonpaging_init_context(vcpu);
  2088. else if (is_long_mode(vcpu))
  2089. r = paging64_init_context(vcpu);
  2090. else if (is_pae(vcpu))
  2091. r = paging32E_init_context(vcpu);
  2092. else
  2093. r = paging32_init_context(vcpu);
  2094. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2095. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2096. return r;
  2097. }
  2098. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2099. {
  2100. vcpu->arch.update_pte.pfn = bad_pfn;
  2101. if (tdp_enabled)
  2102. return init_kvm_tdp_mmu(vcpu);
  2103. else
  2104. return init_kvm_softmmu(vcpu);
  2105. }
  2106. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2107. {
  2108. ASSERT(vcpu);
  2109. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2110. vcpu->arch.mmu.free(vcpu);
  2111. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2112. }
  2113. }
  2114. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2115. {
  2116. destroy_kvm_mmu(vcpu);
  2117. return init_kvm_mmu(vcpu);
  2118. }
  2119. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2120. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2121. {
  2122. int r;
  2123. r = mmu_topup_memory_caches(vcpu);
  2124. if (r)
  2125. goto out;
  2126. r = mmu_alloc_roots(vcpu);
  2127. spin_lock(&vcpu->kvm->mmu_lock);
  2128. mmu_sync_roots(vcpu);
  2129. spin_unlock(&vcpu->kvm->mmu_lock);
  2130. if (r)
  2131. goto out;
  2132. /* set_cr3() should ensure TLB has been flushed */
  2133. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2134. out:
  2135. return r;
  2136. }
  2137. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2138. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2139. {
  2140. mmu_free_roots(vcpu);
  2141. }
  2142. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2143. struct kvm_mmu_page *sp,
  2144. u64 *spte)
  2145. {
  2146. u64 pte;
  2147. struct kvm_mmu_page *child;
  2148. pte = *spte;
  2149. if (is_shadow_present_pte(pte)) {
  2150. if (is_last_spte(pte, sp->role.level))
  2151. rmap_remove(vcpu->kvm, spte);
  2152. else {
  2153. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2154. mmu_page_remove_parent_pte(child, spte);
  2155. }
  2156. }
  2157. __set_spte(spte, shadow_trap_nonpresent_pte);
  2158. if (is_large_pte(pte))
  2159. --vcpu->kvm->stat.lpages;
  2160. }
  2161. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2162. struct kvm_mmu_page *sp,
  2163. u64 *spte,
  2164. const void *new)
  2165. {
  2166. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2167. ++vcpu->kvm->stat.mmu_pde_zapped;
  2168. return;
  2169. }
  2170. ++vcpu->kvm->stat.mmu_pte_updated;
  2171. if (!sp->role.cr4_pae)
  2172. paging32_update_pte(vcpu, sp, spte, new);
  2173. else
  2174. paging64_update_pte(vcpu, sp, spte, new);
  2175. }
  2176. static bool need_remote_flush(u64 old, u64 new)
  2177. {
  2178. if (!is_shadow_present_pte(old))
  2179. return false;
  2180. if (!is_shadow_present_pte(new))
  2181. return true;
  2182. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2183. return true;
  2184. old ^= PT64_NX_MASK;
  2185. new ^= PT64_NX_MASK;
  2186. return (old & ~new & PT64_PERM_MASK) != 0;
  2187. }
  2188. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2189. {
  2190. if (need_remote_flush(old, new))
  2191. kvm_flush_remote_tlbs(vcpu->kvm);
  2192. else
  2193. kvm_mmu_flush_tlb(vcpu);
  2194. }
  2195. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2196. {
  2197. u64 *spte = vcpu->arch.last_pte_updated;
  2198. return !!(spte && (*spte & shadow_accessed_mask));
  2199. }
  2200. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2201. u64 gpte)
  2202. {
  2203. gfn_t gfn;
  2204. pfn_t pfn;
  2205. if (!is_present_gpte(gpte))
  2206. return;
  2207. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2208. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2209. smp_rmb();
  2210. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2211. if (is_error_pfn(pfn)) {
  2212. kvm_release_pfn_clean(pfn);
  2213. return;
  2214. }
  2215. vcpu->arch.update_pte.gfn = gfn;
  2216. vcpu->arch.update_pte.pfn = pfn;
  2217. }
  2218. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2219. {
  2220. u64 *spte = vcpu->arch.last_pte_updated;
  2221. if (spte
  2222. && vcpu->arch.last_pte_gfn == gfn
  2223. && shadow_accessed_mask
  2224. && !(*spte & shadow_accessed_mask)
  2225. && is_shadow_present_pte(*spte))
  2226. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2227. }
  2228. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2229. const u8 *new, int bytes,
  2230. bool guest_initiated)
  2231. {
  2232. gfn_t gfn = gpa >> PAGE_SHIFT;
  2233. struct kvm_mmu_page *sp;
  2234. struct hlist_node *node, *n;
  2235. struct hlist_head *bucket;
  2236. unsigned index;
  2237. u64 entry, gentry;
  2238. u64 *spte;
  2239. unsigned offset = offset_in_page(gpa);
  2240. unsigned pte_size;
  2241. unsigned page_offset;
  2242. unsigned misaligned;
  2243. unsigned quadrant;
  2244. int level;
  2245. int flooded = 0;
  2246. int npte;
  2247. int r;
  2248. int invlpg_counter;
  2249. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2250. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2251. /*
  2252. * Assume that the pte write on a page table of the same type
  2253. * as the current vcpu paging mode. This is nearly always true
  2254. * (might be false while changing modes). Note it is verified later
  2255. * by update_pte().
  2256. */
  2257. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2258. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2259. if (is_pae(vcpu)) {
  2260. gpa &= ~(gpa_t)7;
  2261. bytes = 8;
  2262. }
  2263. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2264. if (r)
  2265. gentry = 0;
  2266. new = (const u8 *)&gentry;
  2267. }
  2268. switch (bytes) {
  2269. case 4:
  2270. gentry = *(const u32 *)new;
  2271. break;
  2272. case 8:
  2273. gentry = *(const u64 *)new;
  2274. break;
  2275. default:
  2276. gentry = 0;
  2277. break;
  2278. }
  2279. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2280. spin_lock(&vcpu->kvm->mmu_lock);
  2281. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2282. gentry = 0;
  2283. kvm_mmu_access_page(vcpu, gfn);
  2284. kvm_mmu_free_some_pages(vcpu);
  2285. ++vcpu->kvm->stat.mmu_pte_write;
  2286. kvm_mmu_audit(vcpu, "pre pte write");
  2287. if (guest_initiated) {
  2288. if (gfn == vcpu->arch.last_pt_write_gfn
  2289. && !last_updated_pte_accessed(vcpu)) {
  2290. ++vcpu->arch.last_pt_write_count;
  2291. if (vcpu->arch.last_pt_write_count >= 3)
  2292. flooded = 1;
  2293. } else {
  2294. vcpu->arch.last_pt_write_gfn = gfn;
  2295. vcpu->arch.last_pt_write_count = 1;
  2296. vcpu->arch.last_pte_updated = NULL;
  2297. }
  2298. }
  2299. index = kvm_page_table_hashfn(gfn);
  2300. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2301. restart:
  2302. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2303. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2304. continue;
  2305. pte_size = sp->role.cr4_pae ? 8 : 4;
  2306. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2307. misaligned |= bytes < 4;
  2308. if (misaligned || flooded) {
  2309. /*
  2310. * Misaligned accesses are too much trouble to fix
  2311. * up; also, they usually indicate a page is not used
  2312. * as a page table.
  2313. *
  2314. * If we're seeing too many writes to a page,
  2315. * it may no longer be a page table, or we may be
  2316. * forking, in which case it is better to unmap the
  2317. * page.
  2318. */
  2319. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2320. gpa, bytes, sp->role.word);
  2321. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2322. goto restart;
  2323. ++vcpu->kvm->stat.mmu_flooded;
  2324. continue;
  2325. }
  2326. page_offset = offset;
  2327. level = sp->role.level;
  2328. npte = 1;
  2329. if (!sp->role.cr4_pae) {
  2330. page_offset <<= 1; /* 32->64 */
  2331. /*
  2332. * A 32-bit pde maps 4MB while the shadow pdes map
  2333. * only 2MB. So we need to double the offset again
  2334. * and zap two pdes instead of one.
  2335. */
  2336. if (level == PT32_ROOT_LEVEL) {
  2337. page_offset &= ~7; /* kill rounding error */
  2338. page_offset <<= 1;
  2339. npte = 2;
  2340. }
  2341. quadrant = page_offset >> PAGE_SHIFT;
  2342. page_offset &= ~PAGE_MASK;
  2343. if (quadrant != sp->role.quadrant)
  2344. continue;
  2345. }
  2346. spte = &sp->spt[page_offset / sizeof(*spte)];
  2347. while (npte--) {
  2348. entry = *spte;
  2349. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2350. if (gentry)
  2351. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2352. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2353. ++spte;
  2354. }
  2355. }
  2356. kvm_mmu_audit(vcpu, "post pte write");
  2357. spin_unlock(&vcpu->kvm->mmu_lock);
  2358. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2359. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2360. vcpu->arch.update_pte.pfn = bad_pfn;
  2361. }
  2362. }
  2363. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2364. {
  2365. gpa_t gpa;
  2366. int r;
  2367. if (tdp_enabled)
  2368. return 0;
  2369. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2370. spin_lock(&vcpu->kvm->mmu_lock);
  2371. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2372. spin_unlock(&vcpu->kvm->mmu_lock);
  2373. return r;
  2374. }
  2375. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2376. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2377. {
  2378. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2379. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2380. struct kvm_mmu_page *sp;
  2381. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2382. struct kvm_mmu_page, link);
  2383. kvm_mmu_zap_page(vcpu->kvm, sp);
  2384. ++vcpu->kvm->stat.mmu_recycled;
  2385. }
  2386. }
  2387. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2388. {
  2389. int r;
  2390. enum emulation_result er;
  2391. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2392. if (r < 0)
  2393. goto out;
  2394. if (!r) {
  2395. r = 1;
  2396. goto out;
  2397. }
  2398. r = mmu_topup_memory_caches(vcpu);
  2399. if (r)
  2400. goto out;
  2401. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2402. switch (er) {
  2403. case EMULATE_DONE:
  2404. return 1;
  2405. case EMULATE_DO_MMIO:
  2406. ++vcpu->stat.mmio_exits;
  2407. /* fall through */
  2408. case EMULATE_FAIL:
  2409. return 0;
  2410. default:
  2411. BUG();
  2412. }
  2413. out:
  2414. return r;
  2415. }
  2416. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2417. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2418. {
  2419. vcpu->arch.mmu.invlpg(vcpu, gva);
  2420. kvm_mmu_flush_tlb(vcpu);
  2421. ++vcpu->stat.invlpg;
  2422. }
  2423. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2424. void kvm_enable_tdp(void)
  2425. {
  2426. tdp_enabled = true;
  2427. }
  2428. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2429. void kvm_disable_tdp(void)
  2430. {
  2431. tdp_enabled = false;
  2432. }
  2433. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2434. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2435. {
  2436. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2437. }
  2438. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2439. {
  2440. struct page *page;
  2441. int i;
  2442. ASSERT(vcpu);
  2443. /*
  2444. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2445. * Therefore we need to allocate shadow page tables in the first
  2446. * 4GB of memory, which happens to fit the DMA32 zone.
  2447. */
  2448. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2449. if (!page)
  2450. return -ENOMEM;
  2451. vcpu->arch.mmu.pae_root = page_address(page);
  2452. for (i = 0; i < 4; ++i)
  2453. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2454. return 0;
  2455. }
  2456. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2457. {
  2458. ASSERT(vcpu);
  2459. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2460. return alloc_mmu_pages(vcpu);
  2461. }
  2462. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2463. {
  2464. ASSERT(vcpu);
  2465. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2466. return init_kvm_mmu(vcpu);
  2467. }
  2468. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2469. {
  2470. ASSERT(vcpu);
  2471. destroy_kvm_mmu(vcpu);
  2472. free_mmu_pages(vcpu);
  2473. mmu_free_memory_caches(vcpu);
  2474. }
  2475. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2476. {
  2477. struct kvm_mmu_page *sp;
  2478. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2479. int i;
  2480. u64 *pt;
  2481. if (!test_bit(slot, sp->slot_bitmap))
  2482. continue;
  2483. pt = sp->spt;
  2484. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2485. /* avoid RMW */
  2486. if (pt[i] & PT_WRITABLE_MASK)
  2487. pt[i] &= ~PT_WRITABLE_MASK;
  2488. }
  2489. kvm_flush_remote_tlbs(kvm);
  2490. }
  2491. void kvm_mmu_zap_all(struct kvm *kvm)
  2492. {
  2493. struct kvm_mmu_page *sp, *node;
  2494. spin_lock(&kvm->mmu_lock);
  2495. restart:
  2496. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2497. if (kvm_mmu_zap_page(kvm, sp))
  2498. goto restart;
  2499. spin_unlock(&kvm->mmu_lock);
  2500. kvm_flush_remote_tlbs(kvm);
  2501. }
  2502. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm)
  2503. {
  2504. struct kvm_mmu_page *page;
  2505. page = container_of(kvm->arch.active_mmu_pages.prev,
  2506. struct kvm_mmu_page, link);
  2507. return kvm_mmu_zap_page(kvm, page);
  2508. }
  2509. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2510. {
  2511. struct kvm *kvm;
  2512. struct kvm *kvm_freed = NULL;
  2513. int cache_count = 0;
  2514. spin_lock(&kvm_lock);
  2515. list_for_each_entry(kvm, &vm_list, vm_list) {
  2516. int npages, idx, freed_pages;
  2517. idx = srcu_read_lock(&kvm->srcu);
  2518. spin_lock(&kvm->mmu_lock);
  2519. npages = kvm->arch.n_alloc_mmu_pages -
  2520. kvm->arch.n_free_mmu_pages;
  2521. cache_count += npages;
  2522. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2523. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm);
  2524. cache_count -= freed_pages;
  2525. kvm_freed = kvm;
  2526. }
  2527. nr_to_scan--;
  2528. spin_unlock(&kvm->mmu_lock);
  2529. srcu_read_unlock(&kvm->srcu, idx);
  2530. }
  2531. if (kvm_freed)
  2532. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2533. spin_unlock(&kvm_lock);
  2534. return cache_count;
  2535. }
  2536. static struct shrinker mmu_shrinker = {
  2537. .shrink = mmu_shrink,
  2538. .seeks = DEFAULT_SEEKS * 10,
  2539. };
  2540. static void mmu_destroy_caches(void)
  2541. {
  2542. if (pte_chain_cache)
  2543. kmem_cache_destroy(pte_chain_cache);
  2544. if (rmap_desc_cache)
  2545. kmem_cache_destroy(rmap_desc_cache);
  2546. if (mmu_page_header_cache)
  2547. kmem_cache_destroy(mmu_page_header_cache);
  2548. }
  2549. void kvm_mmu_module_exit(void)
  2550. {
  2551. mmu_destroy_caches();
  2552. unregister_shrinker(&mmu_shrinker);
  2553. }
  2554. int kvm_mmu_module_init(void)
  2555. {
  2556. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2557. sizeof(struct kvm_pte_chain),
  2558. 0, 0, NULL);
  2559. if (!pte_chain_cache)
  2560. goto nomem;
  2561. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2562. sizeof(struct kvm_rmap_desc),
  2563. 0, 0, NULL);
  2564. if (!rmap_desc_cache)
  2565. goto nomem;
  2566. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2567. sizeof(struct kvm_mmu_page),
  2568. 0, 0, NULL);
  2569. if (!mmu_page_header_cache)
  2570. goto nomem;
  2571. register_shrinker(&mmu_shrinker);
  2572. return 0;
  2573. nomem:
  2574. mmu_destroy_caches();
  2575. return -ENOMEM;
  2576. }
  2577. /*
  2578. * Caculate mmu pages needed for kvm.
  2579. */
  2580. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2581. {
  2582. int i;
  2583. unsigned int nr_mmu_pages;
  2584. unsigned int nr_pages = 0;
  2585. struct kvm_memslots *slots;
  2586. slots = kvm_memslots(kvm);
  2587. for (i = 0; i < slots->nmemslots; i++)
  2588. nr_pages += slots->memslots[i].npages;
  2589. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2590. nr_mmu_pages = max(nr_mmu_pages,
  2591. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2592. return nr_mmu_pages;
  2593. }
  2594. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2595. unsigned len)
  2596. {
  2597. if (len > buffer->len)
  2598. return NULL;
  2599. return buffer->ptr;
  2600. }
  2601. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2602. unsigned len)
  2603. {
  2604. void *ret;
  2605. ret = pv_mmu_peek_buffer(buffer, len);
  2606. if (!ret)
  2607. return ret;
  2608. buffer->ptr += len;
  2609. buffer->len -= len;
  2610. buffer->processed += len;
  2611. return ret;
  2612. }
  2613. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2614. gpa_t addr, gpa_t value)
  2615. {
  2616. int bytes = 8;
  2617. int r;
  2618. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2619. bytes = 4;
  2620. r = mmu_topup_memory_caches(vcpu);
  2621. if (r)
  2622. return r;
  2623. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2624. return -EFAULT;
  2625. return 1;
  2626. }
  2627. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2628. {
  2629. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2630. return 1;
  2631. }
  2632. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2633. {
  2634. spin_lock(&vcpu->kvm->mmu_lock);
  2635. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2636. spin_unlock(&vcpu->kvm->mmu_lock);
  2637. return 1;
  2638. }
  2639. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2640. struct kvm_pv_mmu_op_buffer *buffer)
  2641. {
  2642. struct kvm_mmu_op_header *header;
  2643. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2644. if (!header)
  2645. return 0;
  2646. switch (header->op) {
  2647. case KVM_MMU_OP_WRITE_PTE: {
  2648. struct kvm_mmu_op_write_pte *wpte;
  2649. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2650. if (!wpte)
  2651. return 0;
  2652. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2653. wpte->pte_val);
  2654. }
  2655. case KVM_MMU_OP_FLUSH_TLB: {
  2656. struct kvm_mmu_op_flush_tlb *ftlb;
  2657. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2658. if (!ftlb)
  2659. return 0;
  2660. return kvm_pv_mmu_flush_tlb(vcpu);
  2661. }
  2662. case KVM_MMU_OP_RELEASE_PT: {
  2663. struct kvm_mmu_op_release_pt *rpt;
  2664. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2665. if (!rpt)
  2666. return 0;
  2667. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2668. }
  2669. default: return 0;
  2670. }
  2671. }
  2672. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2673. gpa_t addr, unsigned long *ret)
  2674. {
  2675. int r;
  2676. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2677. buffer->ptr = buffer->buf;
  2678. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2679. buffer->processed = 0;
  2680. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2681. if (r)
  2682. goto out;
  2683. while (buffer->len) {
  2684. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2685. if (r < 0)
  2686. goto out;
  2687. if (r == 0)
  2688. break;
  2689. }
  2690. r = 1;
  2691. out:
  2692. *ret = buffer->processed;
  2693. return r;
  2694. }
  2695. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2696. {
  2697. struct kvm_shadow_walk_iterator iterator;
  2698. int nr_sptes = 0;
  2699. spin_lock(&vcpu->kvm->mmu_lock);
  2700. for_each_shadow_entry(vcpu, addr, iterator) {
  2701. sptes[iterator.level-1] = *iterator.sptep;
  2702. nr_sptes++;
  2703. if (!is_shadow_present_pte(*iterator.sptep))
  2704. break;
  2705. }
  2706. spin_unlock(&vcpu->kvm->mmu_lock);
  2707. return nr_sptes;
  2708. }
  2709. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2710. #ifdef AUDIT
  2711. static const char *audit_msg;
  2712. static gva_t canonicalize(gva_t gva)
  2713. {
  2714. #ifdef CONFIG_X86_64
  2715. gva = (long long)(gva << 16) >> 16;
  2716. #endif
  2717. return gva;
  2718. }
  2719. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2720. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2721. inspect_spte_fn fn)
  2722. {
  2723. int i;
  2724. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2725. u64 ent = sp->spt[i];
  2726. if (is_shadow_present_pte(ent)) {
  2727. if (!is_last_spte(ent, sp->role.level)) {
  2728. struct kvm_mmu_page *child;
  2729. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2730. __mmu_spte_walk(kvm, child, fn);
  2731. } else
  2732. fn(kvm, &sp->spt[i]);
  2733. }
  2734. }
  2735. }
  2736. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2737. {
  2738. int i;
  2739. struct kvm_mmu_page *sp;
  2740. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2741. return;
  2742. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2743. hpa_t root = vcpu->arch.mmu.root_hpa;
  2744. sp = page_header(root);
  2745. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2746. return;
  2747. }
  2748. for (i = 0; i < 4; ++i) {
  2749. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2750. if (root && VALID_PAGE(root)) {
  2751. root &= PT64_BASE_ADDR_MASK;
  2752. sp = page_header(root);
  2753. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2754. }
  2755. }
  2756. return;
  2757. }
  2758. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2759. gva_t va, int level)
  2760. {
  2761. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2762. int i;
  2763. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2764. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2765. u64 ent = pt[i];
  2766. if (ent == shadow_trap_nonpresent_pte)
  2767. continue;
  2768. va = canonicalize(va);
  2769. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2770. audit_mappings_page(vcpu, ent, va, level - 1);
  2771. else {
  2772. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2773. gfn_t gfn = gpa >> PAGE_SHIFT;
  2774. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2775. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2776. if (is_error_pfn(pfn)) {
  2777. kvm_release_pfn_clean(pfn);
  2778. continue;
  2779. }
  2780. if (is_shadow_present_pte(ent)
  2781. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2782. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2783. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2784. audit_msg, vcpu->arch.mmu.root_level,
  2785. va, gpa, hpa, ent,
  2786. is_shadow_present_pte(ent));
  2787. else if (ent == shadow_notrap_nonpresent_pte
  2788. && !is_error_hpa(hpa))
  2789. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2790. " valid guest gva %lx\n", audit_msg, va);
  2791. kvm_release_pfn_clean(pfn);
  2792. }
  2793. }
  2794. }
  2795. static void audit_mappings(struct kvm_vcpu *vcpu)
  2796. {
  2797. unsigned i;
  2798. if (vcpu->arch.mmu.root_level == 4)
  2799. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2800. else
  2801. for (i = 0; i < 4; ++i)
  2802. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2803. audit_mappings_page(vcpu,
  2804. vcpu->arch.mmu.pae_root[i],
  2805. i << 30,
  2806. 2);
  2807. }
  2808. static int count_rmaps(struct kvm_vcpu *vcpu)
  2809. {
  2810. struct kvm *kvm = vcpu->kvm;
  2811. struct kvm_memslots *slots;
  2812. int nmaps = 0;
  2813. int i, j, k, idx;
  2814. idx = srcu_read_lock(&kvm->srcu);
  2815. slots = kvm_memslots(kvm);
  2816. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2817. struct kvm_memory_slot *m = &slots->memslots[i];
  2818. struct kvm_rmap_desc *d;
  2819. for (j = 0; j < m->npages; ++j) {
  2820. unsigned long *rmapp = &m->rmap[j];
  2821. if (!*rmapp)
  2822. continue;
  2823. if (!(*rmapp & 1)) {
  2824. ++nmaps;
  2825. continue;
  2826. }
  2827. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2828. while (d) {
  2829. for (k = 0; k < RMAP_EXT; ++k)
  2830. if (d->sptes[k])
  2831. ++nmaps;
  2832. else
  2833. break;
  2834. d = d->more;
  2835. }
  2836. }
  2837. }
  2838. srcu_read_unlock(&kvm->srcu, idx);
  2839. return nmaps;
  2840. }
  2841. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2842. {
  2843. unsigned long *rmapp;
  2844. struct kvm_mmu_page *rev_sp;
  2845. gfn_t gfn;
  2846. if (*sptep & PT_WRITABLE_MASK) {
  2847. rev_sp = page_header(__pa(sptep));
  2848. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2849. if (!gfn_to_memslot(kvm, gfn)) {
  2850. if (!printk_ratelimit())
  2851. return;
  2852. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2853. audit_msg, gfn);
  2854. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2855. audit_msg, (long int)(sptep - rev_sp->spt),
  2856. rev_sp->gfn);
  2857. dump_stack();
  2858. return;
  2859. }
  2860. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2861. rev_sp->role.level);
  2862. if (!*rmapp) {
  2863. if (!printk_ratelimit())
  2864. return;
  2865. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2866. audit_msg, *sptep);
  2867. dump_stack();
  2868. }
  2869. }
  2870. }
  2871. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2872. {
  2873. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2874. }
  2875. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2876. {
  2877. struct kvm_mmu_page *sp;
  2878. int i;
  2879. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2880. u64 *pt = sp->spt;
  2881. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2882. continue;
  2883. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2884. u64 ent = pt[i];
  2885. if (!(ent & PT_PRESENT_MASK))
  2886. continue;
  2887. if (!(ent & PT_WRITABLE_MASK))
  2888. continue;
  2889. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2890. }
  2891. }
  2892. return;
  2893. }
  2894. static void audit_rmap(struct kvm_vcpu *vcpu)
  2895. {
  2896. check_writable_mappings_rmap(vcpu);
  2897. count_rmaps(vcpu);
  2898. }
  2899. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2900. {
  2901. struct kvm_mmu_page *sp;
  2902. struct kvm_memory_slot *slot;
  2903. unsigned long *rmapp;
  2904. u64 *spte;
  2905. gfn_t gfn;
  2906. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2907. if (sp->role.direct)
  2908. continue;
  2909. if (sp->unsync)
  2910. continue;
  2911. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2912. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2913. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2914. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2915. while (spte) {
  2916. if (*spte & PT_WRITABLE_MASK)
  2917. printk(KERN_ERR "%s: (%s) shadow page has "
  2918. "writable mappings: gfn %lx role %x\n",
  2919. __func__, audit_msg, sp->gfn,
  2920. sp->role.word);
  2921. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2922. }
  2923. }
  2924. }
  2925. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2926. {
  2927. int olddbg = dbg;
  2928. dbg = 0;
  2929. audit_msg = msg;
  2930. audit_rmap(vcpu);
  2931. audit_write_protection(vcpu);
  2932. if (strcmp("pre pte write", audit_msg) != 0)
  2933. audit_mappings(vcpu);
  2934. audit_writable_sptes_have_rmaps(vcpu);
  2935. dbg = olddbg;
  2936. }
  2937. #endif