bitops.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /*
  2. * PowerPC atomic bit operations.
  3. *
  4. * Merged version by David Gibson <david@gibson.dropbear.id.au>.
  5. * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
  6. * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
  7. * originally took it from the ppc32 code.
  8. *
  9. * Within a word, bits are numbered LSB first. Lot's of places make
  10. * this assumption by directly testing bits with (val & (1<<nr)).
  11. * This can cause confusion for large (> 1 word) bitmaps on a
  12. * big-endian system because, unlike little endian, the number of each
  13. * bit depends on the word size.
  14. *
  15. * The bitop functions are defined to work on unsigned longs, so for a
  16. * ppc64 system the bits end up numbered:
  17. * |63..............0|127............64|191...........128|255...........196|
  18. * and on ppc32:
  19. * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
  20. *
  21. * There are a few little-endian macros used mostly for filesystem
  22. * bitmaps, these work on similar bit arrays layouts, but
  23. * byte-oriented:
  24. * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
  25. *
  26. * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
  27. * number field needs to be reversed compared to the big-endian bit
  28. * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
  29. *
  30. * This program is free software; you can redistribute it and/or
  31. * modify it under the terms of the GNU General Public License
  32. * as published by the Free Software Foundation; either version
  33. * 2 of the License, or (at your option) any later version.
  34. */
  35. #ifndef _ASM_POWERPC_BITOPS_H
  36. #define _ASM_POWERPC_BITOPS_H
  37. #ifdef __KERNEL__
  38. #include <linux/compiler.h>
  39. #include <asm/atomic.h>
  40. #include <asm/synch.h>
  41. /*
  42. * clear_bit doesn't imply a memory barrier
  43. */
  44. #define smp_mb__before_clear_bit() smp_mb()
  45. #define smp_mb__after_clear_bit() smp_mb()
  46. #define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
  47. #define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
  48. #define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
  49. #ifdef CONFIG_PPC64
  50. #define LARXL "ldarx"
  51. #define STCXL "stdcx."
  52. #define CNTLZL "cntlzd"
  53. #else
  54. #define LARXL "lwarx"
  55. #define STCXL "stwcx."
  56. #define CNTLZL "cntlzw"
  57. #endif
  58. static __inline__ void set_bit(int nr, volatile unsigned long *addr)
  59. {
  60. unsigned long old;
  61. unsigned long mask = BITOP_MASK(nr);
  62. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  63. __asm__ __volatile__(
  64. "1:" LARXL " %0,0,%3 # set_bit\n"
  65. "or %0,%0,%2\n"
  66. PPC405_ERR77(0,%3)
  67. STCXL " %0,0,%3\n"
  68. "bne- 1b"
  69. : "=&r"(old), "=m"(*p)
  70. : "r"(mask), "r"(p), "m"(*p)
  71. : "cc" );
  72. }
  73. static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
  74. {
  75. unsigned long old;
  76. unsigned long mask = BITOP_MASK(nr);
  77. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  78. __asm__ __volatile__(
  79. "1:" LARXL " %0,0,%3 # set_bit\n"
  80. "andc %0,%0,%2\n"
  81. PPC405_ERR77(0,%3)
  82. STCXL " %0,0,%3\n"
  83. "bne- 1b"
  84. : "=&r"(old), "=m"(*p)
  85. : "r"(mask), "r"(p), "m"(*p)
  86. : "cc" );
  87. }
  88. static __inline__ void change_bit(int nr, volatile unsigned long *addr)
  89. {
  90. unsigned long old;
  91. unsigned long mask = BITOP_MASK(nr);
  92. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  93. __asm__ __volatile__(
  94. "1:" LARXL " %0,0,%3 # set_bit\n"
  95. "xor %0,%0,%2\n"
  96. PPC405_ERR77(0,%3)
  97. STCXL " %0,0,%3\n"
  98. "bne- 1b"
  99. : "=&r"(old), "=m"(*p)
  100. : "r"(mask), "r"(p), "m"(*p)
  101. : "cc" );
  102. }
  103. static __inline__ int test_and_set_bit(unsigned long nr,
  104. volatile unsigned long *addr)
  105. {
  106. unsigned long old, t;
  107. unsigned long mask = BITOP_MASK(nr);
  108. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  109. __asm__ __volatile__(
  110. EIEIO_ON_SMP
  111. "1:" LARXL " %0,0,%3 # test_and_set_bit\n"
  112. "or %1,%0,%2 \n"
  113. PPC405_ERR77(0,%3)
  114. STCXL " %1,0,%3 \n"
  115. "bne- 1b"
  116. ISYNC_ON_SMP
  117. : "=&r" (old), "=&r" (t)
  118. : "r" (mask), "r" (p)
  119. : "cc", "memory");
  120. return (old & mask) != 0;
  121. }
  122. static __inline__ int test_and_clear_bit(unsigned long nr,
  123. volatile unsigned long *addr)
  124. {
  125. unsigned long old, t;
  126. unsigned long mask = BITOP_MASK(nr);
  127. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  128. __asm__ __volatile__(
  129. EIEIO_ON_SMP
  130. "1:" LARXL " %0,0,%3 # test_and_clear_bit\n"
  131. "andc %1,%0,%2 \n"
  132. PPC405_ERR77(0,%3)
  133. STCXL " %1,0,%3 \n"
  134. "bne- 1b"
  135. ISYNC_ON_SMP
  136. : "=&r" (old), "=&r" (t)
  137. : "r" (mask), "r" (p)
  138. : "cc", "memory");
  139. return (old & mask) != 0;
  140. }
  141. static __inline__ int test_and_change_bit(unsigned long nr,
  142. volatile unsigned long *addr)
  143. {
  144. unsigned long old, t;
  145. unsigned long mask = BITOP_MASK(nr);
  146. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  147. __asm__ __volatile__(
  148. EIEIO_ON_SMP
  149. "1:" LARXL " %0,0,%3 # test_and_change_bit\n"
  150. "xor %1,%0,%2 \n"
  151. PPC405_ERR77(0,%3)
  152. STCXL " %1,0,%3 \n"
  153. "bne- 1b"
  154. ISYNC_ON_SMP
  155. : "=&r" (old), "=&r" (t)
  156. : "r" (mask), "r" (p)
  157. : "cc", "memory");
  158. return (old & mask) != 0;
  159. }
  160. static __inline__ void set_bits(unsigned long mask, unsigned long *addr)
  161. {
  162. unsigned long old;
  163. __asm__ __volatile__(
  164. "1:" LARXL " %0,0,%3 # set_bit\n"
  165. "or %0,%0,%2\n"
  166. STCXL " %0,0,%3\n"
  167. "bne- 1b"
  168. : "=&r" (old), "=m" (*addr)
  169. : "r" (mask), "r" (addr), "m" (*addr)
  170. : "cc");
  171. }
  172. /* Non-atomic versions */
  173. static __inline__ int test_bit(unsigned long nr,
  174. __const__ volatile unsigned long *addr)
  175. {
  176. return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
  177. }
  178. static __inline__ void __set_bit(unsigned long nr,
  179. volatile unsigned long *addr)
  180. {
  181. unsigned long mask = BITOP_MASK(nr);
  182. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  183. *p |= mask;
  184. }
  185. static __inline__ void __clear_bit(unsigned long nr,
  186. volatile unsigned long *addr)
  187. {
  188. unsigned long mask = BITOP_MASK(nr);
  189. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  190. *p &= ~mask;
  191. }
  192. static __inline__ void __change_bit(unsigned long nr,
  193. volatile unsigned long *addr)
  194. {
  195. unsigned long mask = BITOP_MASK(nr);
  196. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  197. *p ^= mask;
  198. }
  199. static __inline__ int __test_and_set_bit(unsigned long nr,
  200. volatile unsigned long *addr)
  201. {
  202. unsigned long mask = BITOP_MASK(nr);
  203. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  204. unsigned long old = *p;
  205. *p = old | mask;
  206. return (old & mask) != 0;
  207. }
  208. static __inline__ int __test_and_clear_bit(unsigned long nr,
  209. volatile unsigned long *addr)
  210. {
  211. unsigned long mask = BITOP_MASK(nr);
  212. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  213. unsigned long old = *p;
  214. *p = old & ~mask;
  215. return (old & mask) != 0;
  216. }
  217. static __inline__ int __test_and_change_bit(unsigned long nr,
  218. volatile unsigned long *addr)
  219. {
  220. unsigned long mask = BITOP_MASK(nr);
  221. unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
  222. unsigned long old = *p;
  223. *p = old ^ mask;
  224. return (old & mask) != 0;
  225. }
  226. /*
  227. * Return the zero-based bit position (LE, not IBM bit numbering) of
  228. * the most significant 1-bit in a double word.
  229. */
  230. static __inline__ int __ilog2(unsigned long x)
  231. {
  232. int lz;
  233. asm (CNTLZL " %0,%1" : "=r" (lz) : "r" (x));
  234. return BITS_PER_LONG - 1 - lz;
  235. }
  236. /*
  237. * Determines the bit position of the least significant 0 bit in the
  238. * specified double word. The returned bit position will be
  239. * zero-based, starting from the right side (63/31 - 0).
  240. */
  241. static __inline__ unsigned long ffz(unsigned long x)
  242. {
  243. /* no zero exists anywhere in the 8 byte area. */
  244. if ((x = ~x) == 0)
  245. return BITS_PER_LONG;
  246. /*
  247. * Calculate the bit position of the least signficant '1' bit in x
  248. * (since x has been changed this will actually be the least signficant
  249. * '0' bit in * the original x). Note: (x & -x) gives us a mask that
  250. * is the least significant * (RIGHT-most) 1-bit of the value in x.
  251. */
  252. return __ilog2(x & -x);
  253. }
  254. static __inline__ int __ffs(unsigned long x)
  255. {
  256. return __ilog2(x & -x);
  257. }
  258. /*
  259. * ffs: find first bit set. This is defined the same way as
  260. * the libc and compiler builtin ffs routines, therefore
  261. * differs in spirit from the above ffz (man ffs).
  262. */
  263. static __inline__ int ffs(int x)
  264. {
  265. unsigned long i = (unsigned long)x;
  266. return __ilog2(i & -i) + 1;
  267. }
  268. /*
  269. * fls: find last (most-significant) bit set.
  270. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
  271. */
  272. static __inline__ int fls(unsigned int x)
  273. {
  274. int lz;
  275. asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
  276. return 32 - lz;
  277. }
  278. /*
  279. * hweightN: returns the hamming weight (i.e. the number
  280. * of bits set) of a N-bit word
  281. */
  282. #define hweight64(x) generic_hweight64(x)
  283. #define hweight32(x) generic_hweight32(x)
  284. #define hweight16(x) generic_hweight16(x)
  285. #define hweight8(x) generic_hweight8(x)
  286. #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
  287. unsigned long find_next_zero_bit(const unsigned long *addr,
  288. unsigned long size, unsigned long offset);
  289. /**
  290. * find_first_bit - find the first set bit in a memory region
  291. * @addr: The address to start the search at
  292. * @size: The maximum size to search
  293. *
  294. * Returns the bit-number of the first set bit, not the number of the byte
  295. * containing a bit.
  296. */
  297. #define find_first_bit(addr, size) find_next_bit((addr), (size), 0)
  298. unsigned long find_next_bit(const unsigned long *addr,
  299. unsigned long size, unsigned long offset);
  300. /* Little-endian versions */
  301. static __inline__ int test_le_bit(unsigned long nr,
  302. __const__ unsigned long *addr)
  303. {
  304. __const__ unsigned char *tmp = (__const__ unsigned char *) addr;
  305. return (tmp[nr >> 3] >> (nr & 7)) & 1;
  306. }
  307. #define __set_le_bit(nr, addr) \
  308. __set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
  309. #define __clear_le_bit(nr, addr) \
  310. __clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
  311. #define test_and_set_le_bit(nr, addr) \
  312. test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
  313. #define test_and_clear_le_bit(nr, addr) \
  314. test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
  315. #define __test_and_set_le_bit(nr, addr) \
  316. __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
  317. #define __test_and_clear_le_bit(nr, addr) \
  318. __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
  319. #define find_first_zero_le_bit(addr, size) find_next_zero_le_bit((addr), (size), 0)
  320. unsigned long find_next_zero_le_bit(const unsigned long *addr,
  321. unsigned long size, unsigned long offset);
  322. /* Bitmap functions for the ext2 filesystem */
  323. #define ext2_set_bit(nr,addr) \
  324. __test_and_set_le_bit((nr), (unsigned long*)addr)
  325. #define ext2_clear_bit(nr, addr) \
  326. __test_and_clear_le_bit((nr), (unsigned long*)addr)
  327. #define ext2_set_bit_atomic(lock, nr, addr) \
  328. test_and_set_le_bit((nr), (unsigned long*)addr)
  329. #define ext2_clear_bit_atomic(lock, nr, addr) \
  330. test_and_clear_le_bit((nr), (unsigned long*)addr)
  331. #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
  332. #define ext2_find_first_zero_bit(addr, size) \
  333. find_first_zero_le_bit((unsigned long*)addr, size)
  334. #define ext2_find_next_zero_bit(addr, size, off) \
  335. find_next_zero_le_bit((unsigned long*)addr, size, off)
  336. /* Bitmap functions for the minix filesystem. */
  337. #define minix_test_and_set_bit(nr,addr) \
  338. __test_and_set_le_bit(nr, (unsigned long *)addr)
  339. #define minix_set_bit(nr,addr) \
  340. __set_le_bit(nr, (unsigned long *)addr)
  341. #define minix_test_and_clear_bit(nr,addr) \
  342. __test_and_clear_le_bit(nr, (unsigned long *)addr)
  343. #define minix_test_bit(nr,addr) \
  344. test_le_bit(nr, (unsigned long *)addr)
  345. #define minix_find_first_zero_bit(addr,size) \
  346. find_first_zero_le_bit((unsigned long *)addr, size)
  347. /*
  348. * Every architecture must define this function. It's the fastest
  349. * way of searching a 140-bit bitmap where the first 100 bits are
  350. * unlikely to be set. It's guaranteed that at least one of the 140
  351. * bits is cleared.
  352. */
  353. static inline int sched_find_first_bit(const unsigned long *b)
  354. {
  355. #ifdef CONFIG_PPC64
  356. if (unlikely(b[0]))
  357. return __ffs(b[0]);
  358. if (unlikely(b[1]))
  359. return __ffs(b[1]) + 64;
  360. return __ffs(b[2]) + 128;
  361. #else
  362. if (unlikely(b[0]))
  363. return __ffs(b[0]);
  364. if (unlikely(b[1]))
  365. return __ffs(b[1]) + 32;
  366. if (unlikely(b[2]))
  367. return __ffs(b[2]) + 64;
  368. if (b[3])
  369. return __ffs(b[3]) + 96;
  370. return __ffs(b[4]) + 128;
  371. #endif
  372. }
  373. #endif /* __KERNEL__ */
  374. #endif /* _ASM_POWERPC_BITOPS_H */