Kconfig 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960
  1. #
  2. # Generic algorithms support
  3. #
  4. config XOR_BLOCKS
  5. tristate
  6. #
  7. # async_tx api: hardware offloaded memory transfer/transform support
  8. #
  9. source "crypto/async_tx/Kconfig"
  10. #
  11. # Cryptographic API Configuration
  12. #
  13. menuconfig CRYPTO
  14. tristate "Cryptographic API"
  15. help
  16. This option provides the core Cryptographic API.
  17. if CRYPTO
  18. comment "Crypto core or helper"
  19. config CRYPTO_FIPS
  20. bool "FIPS 200 compliance"
  21. depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
  22. help
  23. This options enables the fips boot option which is
  24. required if you want to system to operate in a FIPS 200
  25. certification. You should say no unless you know what
  26. this is.
  27. config CRYPTO_ALGAPI
  28. tristate
  29. select CRYPTO_ALGAPI2
  30. help
  31. This option provides the API for cryptographic algorithms.
  32. config CRYPTO_ALGAPI2
  33. tristate
  34. config CRYPTO_AEAD
  35. tristate
  36. select CRYPTO_AEAD2
  37. select CRYPTO_ALGAPI
  38. config CRYPTO_AEAD2
  39. tristate
  40. select CRYPTO_ALGAPI2
  41. config CRYPTO_BLKCIPHER
  42. tristate
  43. select CRYPTO_BLKCIPHER2
  44. select CRYPTO_ALGAPI
  45. config CRYPTO_BLKCIPHER2
  46. tristate
  47. select CRYPTO_ALGAPI2
  48. select CRYPTO_RNG2
  49. select CRYPTO_WORKQUEUE
  50. config CRYPTO_HASH
  51. tristate
  52. select CRYPTO_HASH2
  53. select CRYPTO_ALGAPI
  54. config CRYPTO_HASH2
  55. tristate
  56. select CRYPTO_ALGAPI2
  57. config CRYPTO_RNG
  58. tristate
  59. select CRYPTO_RNG2
  60. select CRYPTO_ALGAPI
  61. config CRYPTO_RNG2
  62. tristate
  63. select CRYPTO_ALGAPI2
  64. config CRYPTO_PCOMP
  65. tristate
  66. select CRYPTO_PCOMP2
  67. select CRYPTO_ALGAPI
  68. config CRYPTO_PCOMP2
  69. tristate
  70. select CRYPTO_ALGAPI2
  71. config CRYPTO_MANAGER
  72. tristate "Cryptographic algorithm manager"
  73. select CRYPTO_MANAGER2
  74. help
  75. Create default cryptographic template instantiations such as
  76. cbc(aes).
  77. config CRYPTO_MANAGER2
  78. def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
  79. select CRYPTO_AEAD2
  80. select CRYPTO_HASH2
  81. select CRYPTO_BLKCIPHER2
  82. select CRYPTO_PCOMP2
  83. config CRYPTO_USER
  84. tristate "Userspace cryptographic algorithm configuration"
  85. depends on NET
  86. select CRYPTO_MANAGER
  87. help
  88. Userspace configuration for cryptographic instantiations such as
  89. cbc(aes).
  90. config CRYPTO_MANAGER_DISABLE_TESTS
  91. bool "Disable run-time self tests"
  92. default y
  93. depends on CRYPTO_MANAGER2
  94. help
  95. Disable run-time self tests that normally take place at
  96. algorithm registration.
  97. config CRYPTO_GF128MUL
  98. tristate "GF(2^128) multiplication functions (EXPERIMENTAL)"
  99. help
  100. Efficient table driven implementation of multiplications in the
  101. field GF(2^128). This is needed by some cypher modes. This
  102. option will be selected automatically if you select such a
  103. cipher mode. Only select this option by hand if you expect to load
  104. an external module that requires these functions.
  105. config CRYPTO_NULL
  106. tristate "Null algorithms"
  107. select CRYPTO_ALGAPI
  108. select CRYPTO_BLKCIPHER
  109. select CRYPTO_HASH
  110. help
  111. These are 'Null' algorithms, used by IPsec, which do nothing.
  112. config CRYPTO_PCRYPT
  113. tristate "Parallel crypto engine (EXPERIMENTAL)"
  114. depends on SMP && EXPERIMENTAL
  115. select PADATA
  116. select CRYPTO_MANAGER
  117. select CRYPTO_AEAD
  118. help
  119. This converts an arbitrary crypto algorithm into a parallel
  120. algorithm that executes in kernel threads.
  121. config CRYPTO_WORKQUEUE
  122. tristate
  123. config CRYPTO_CRYPTD
  124. tristate "Software async crypto daemon"
  125. select CRYPTO_BLKCIPHER
  126. select CRYPTO_HASH
  127. select CRYPTO_MANAGER
  128. select CRYPTO_WORKQUEUE
  129. help
  130. This is a generic software asynchronous crypto daemon that
  131. converts an arbitrary synchronous software crypto algorithm
  132. into an asynchronous algorithm that executes in a kernel thread.
  133. config CRYPTO_AUTHENC
  134. tristate "Authenc support"
  135. select CRYPTO_AEAD
  136. select CRYPTO_BLKCIPHER
  137. select CRYPTO_MANAGER
  138. select CRYPTO_HASH
  139. help
  140. Authenc: Combined mode wrapper for IPsec.
  141. This is required for IPSec.
  142. config CRYPTO_TEST
  143. tristate "Testing module"
  144. depends on m
  145. select CRYPTO_MANAGER
  146. help
  147. Quick & dirty crypto test module.
  148. comment "Authenticated Encryption with Associated Data"
  149. config CRYPTO_CCM
  150. tristate "CCM support"
  151. select CRYPTO_CTR
  152. select CRYPTO_AEAD
  153. help
  154. Support for Counter with CBC MAC. Required for IPsec.
  155. config CRYPTO_GCM
  156. tristate "GCM/GMAC support"
  157. select CRYPTO_CTR
  158. select CRYPTO_AEAD
  159. select CRYPTO_GHASH
  160. help
  161. Support for Galois/Counter Mode (GCM) and Galois Message
  162. Authentication Code (GMAC). Required for IPSec.
  163. config CRYPTO_SEQIV
  164. tristate "Sequence Number IV Generator"
  165. select CRYPTO_AEAD
  166. select CRYPTO_BLKCIPHER
  167. select CRYPTO_RNG
  168. help
  169. This IV generator generates an IV based on a sequence number by
  170. xoring it with a salt. This algorithm is mainly useful for CTR
  171. comment "Block modes"
  172. config CRYPTO_CBC
  173. tristate "CBC support"
  174. select CRYPTO_BLKCIPHER
  175. select CRYPTO_MANAGER
  176. help
  177. CBC: Cipher Block Chaining mode
  178. This block cipher algorithm is required for IPSec.
  179. config CRYPTO_CTR
  180. tristate "CTR support"
  181. select CRYPTO_BLKCIPHER
  182. select CRYPTO_SEQIV
  183. select CRYPTO_MANAGER
  184. help
  185. CTR: Counter mode
  186. This block cipher algorithm is required for IPSec.
  187. config CRYPTO_CTS
  188. tristate "CTS support"
  189. select CRYPTO_BLKCIPHER
  190. help
  191. CTS: Cipher Text Stealing
  192. This is the Cipher Text Stealing mode as described by
  193. Section 8 of rfc2040 and referenced by rfc3962.
  194. (rfc3962 includes errata information in its Appendix A)
  195. This mode is required for Kerberos gss mechanism support
  196. for AES encryption.
  197. config CRYPTO_ECB
  198. tristate "ECB support"
  199. select CRYPTO_BLKCIPHER
  200. select CRYPTO_MANAGER
  201. help
  202. ECB: Electronic CodeBook mode
  203. This is the simplest block cipher algorithm. It simply encrypts
  204. the input block by block.
  205. config CRYPTO_LRW
  206. tristate "LRW support"
  207. select CRYPTO_BLKCIPHER
  208. select CRYPTO_MANAGER
  209. select CRYPTO_GF128MUL
  210. help
  211. LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
  212. narrow block cipher mode for dm-crypt. Use it with cipher
  213. specification string aes-lrw-benbi, the key must be 256, 320 or 384.
  214. The first 128, 192 or 256 bits in the key are used for AES and the
  215. rest is used to tie each cipher block to its logical position.
  216. config CRYPTO_PCBC
  217. tristate "PCBC support"
  218. select CRYPTO_BLKCIPHER
  219. select CRYPTO_MANAGER
  220. help
  221. PCBC: Propagating Cipher Block Chaining mode
  222. This block cipher algorithm is required for RxRPC.
  223. config CRYPTO_XTS
  224. tristate "XTS support (EXPERIMENTAL)"
  225. depends on EXPERIMENTAL
  226. select CRYPTO_BLKCIPHER
  227. select CRYPTO_MANAGER
  228. select CRYPTO_GF128MUL
  229. help
  230. XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
  231. key size 256, 384 or 512 bits. This implementation currently
  232. can't handle a sectorsize which is not a multiple of 16 bytes.
  233. comment "Hash modes"
  234. config CRYPTO_HMAC
  235. tristate "HMAC support"
  236. select CRYPTO_HASH
  237. select CRYPTO_MANAGER
  238. help
  239. HMAC: Keyed-Hashing for Message Authentication (RFC2104).
  240. This is required for IPSec.
  241. config CRYPTO_XCBC
  242. tristate "XCBC support"
  243. depends on EXPERIMENTAL
  244. select CRYPTO_HASH
  245. select CRYPTO_MANAGER
  246. help
  247. XCBC: Keyed-Hashing with encryption algorithm
  248. http://www.ietf.org/rfc/rfc3566.txt
  249. http://csrc.nist.gov/encryption/modes/proposedmodes/
  250. xcbc-mac/xcbc-mac-spec.pdf
  251. config CRYPTO_VMAC
  252. tristate "VMAC support"
  253. depends on EXPERIMENTAL
  254. select CRYPTO_HASH
  255. select CRYPTO_MANAGER
  256. help
  257. VMAC is a message authentication algorithm designed for
  258. very high speed on 64-bit architectures.
  259. See also:
  260. <http://fastcrypto.org/vmac>
  261. comment "Digest"
  262. config CRYPTO_CRC32C
  263. tristate "CRC32c CRC algorithm"
  264. select CRYPTO_HASH
  265. help
  266. Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
  267. by iSCSI for header and data digests and by others.
  268. See Castagnoli93. Module will be crc32c.
  269. config CRYPTO_CRC32C_INTEL
  270. tristate "CRC32c INTEL hardware acceleration"
  271. depends on X86
  272. select CRYPTO_HASH
  273. help
  274. In Intel processor with SSE4.2 supported, the processor will
  275. support CRC32C implementation using hardware accelerated CRC32
  276. instruction. This option will create 'crc32c-intel' module,
  277. which will enable any routine to use the CRC32 instruction to
  278. gain performance compared with software implementation.
  279. Module will be crc32c-intel.
  280. config CRYPTO_GHASH
  281. tristate "GHASH digest algorithm"
  282. select CRYPTO_SHASH
  283. select CRYPTO_GF128MUL
  284. help
  285. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  286. config CRYPTO_MD4
  287. tristate "MD4 digest algorithm"
  288. select CRYPTO_HASH
  289. help
  290. MD4 message digest algorithm (RFC1320).
  291. config CRYPTO_MD5
  292. tristate "MD5 digest algorithm"
  293. select CRYPTO_HASH
  294. help
  295. MD5 message digest algorithm (RFC1321).
  296. config CRYPTO_MICHAEL_MIC
  297. tristate "Michael MIC keyed digest algorithm"
  298. select CRYPTO_HASH
  299. help
  300. Michael MIC is used for message integrity protection in TKIP
  301. (IEEE 802.11i). This algorithm is required for TKIP, but it
  302. should not be used for other purposes because of the weakness
  303. of the algorithm.
  304. config CRYPTO_RMD128
  305. tristate "RIPEMD-128 digest algorithm"
  306. select CRYPTO_HASH
  307. help
  308. RIPEMD-128 (ISO/IEC 10118-3:2004).
  309. RIPEMD-128 is a 128-bit cryptographic hash function. It should only
  310. be used as a secure replacement for RIPEMD. For other use cases,
  311. RIPEMD-160 should be used.
  312. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  313. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  314. config CRYPTO_RMD160
  315. tristate "RIPEMD-160 digest algorithm"
  316. select CRYPTO_HASH
  317. help
  318. RIPEMD-160 (ISO/IEC 10118-3:2004).
  319. RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
  320. to be used as a secure replacement for the 128-bit hash functions
  321. MD4, MD5 and it's predecessor RIPEMD
  322. (not to be confused with RIPEMD-128).
  323. It's speed is comparable to SHA1 and there are no known attacks
  324. against RIPEMD-160.
  325. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  326. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  327. config CRYPTO_RMD256
  328. tristate "RIPEMD-256 digest algorithm"
  329. select CRYPTO_HASH
  330. help
  331. RIPEMD-256 is an optional extension of RIPEMD-128 with a
  332. 256 bit hash. It is intended for applications that require
  333. longer hash-results, without needing a larger security level
  334. (than RIPEMD-128).
  335. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  336. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  337. config CRYPTO_RMD320
  338. tristate "RIPEMD-320 digest algorithm"
  339. select CRYPTO_HASH
  340. help
  341. RIPEMD-320 is an optional extension of RIPEMD-160 with a
  342. 320 bit hash. It is intended for applications that require
  343. longer hash-results, without needing a larger security level
  344. (than RIPEMD-160).
  345. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  346. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  347. config CRYPTO_SHA1
  348. tristate "SHA1 digest algorithm"
  349. select CRYPTO_HASH
  350. help
  351. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  352. config CRYPTO_SHA1_SSSE3
  353. tristate "SHA1 digest algorithm (SSSE3/AVX)"
  354. depends on X86 && 64BIT
  355. select CRYPTO_SHA1
  356. select CRYPTO_HASH
  357. help
  358. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  359. using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
  360. Extensions (AVX), when available.
  361. config CRYPTO_SHA256
  362. tristate "SHA224 and SHA256 digest algorithm"
  363. select CRYPTO_HASH
  364. help
  365. SHA256 secure hash standard (DFIPS 180-2).
  366. This version of SHA implements a 256 bit hash with 128 bits of
  367. security against collision attacks.
  368. This code also includes SHA-224, a 224 bit hash with 112 bits
  369. of security against collision attacks.
  370. config CRYPTO_SHA512
  371. tristate "SHA384 and SHA512 digest algorithms"
  372. select CRYPTO_HASH
  373. help
  374. SHA512 secure hash standard (DFIPS 180-2).
  375. This version of SHA implements a 512 bit hash with 256 bits of
  376. security against collision attacks.
  377. This code also includes SHA-384, a 384 bit hash with 192 bits
  378. of security against collision attacks.
  379. config CRYPTO_TGR192
  380. tristate "Tiger digest algorithms"
  381. select CRYPTO_HASH
  382. help
  383. Tiger hash algorithm 192, 160 and 128-bit hashes
  384. Tiger is a hash function optimized for 64-bit processors while
  385. still having decent performance on 32-bit processors.
  386. Tiger was developed by Ross Anderson and Eli Biham.
  387. See also:
  388. <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
  389. config CRYPTO_WP512
  390. tristate "Whirlpool digest algorithms"
  391. select CRYPTO_HASH
  392. help
  393. Whirlpool hash algorithm 512, 384 and 256-bit hashes
  394. Whirlpool-512 is part of the NESSIE cryptographic primitives.
  395. Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
  396. See also:
  397. <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
  398. config CRYPTO_GHASH_CLMUL_NI_INTEL
  399. tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
  400. depends on X86 && 64BIT
  401. select CRYPTO_SHASH
  402. select CRYPTO_CRYPTD
  403. help
  404. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  405. The implementation is accelerated by CLMUL-NI of Intel.
  406. comment "Ciphers"
  407. config CRYPTO_AES
  408. tristate "AES cipher algorithms"
  409. select CRYPTO_ALGAPI
  410. help
  411. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  412. algorithm.
  413. Rijndael appears to be consistently a very good performer in
  414. both hardware and software across a wide range of computing
  415. environments regardless of its use in feedback or non-feedback
  416. modes. Its key setup time is excellent, and its key agility is
  417. good. Rijndael's very low memory requirements make it very well
  418. suited for restricted-space environments, in which it also
  419. demonstrates excellent performance. Rijndael's operations are
  420. among the easiest to defend against power and timing attacks.
  421. The AES specifies three key sizes: 128, 192 and 256 bits
  422. See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
  423. config CRYPTO_AES_586
  424. tristate "AES cipher algorithms (i586)"
  425. depends on (X86 || UML_X86) && !64BIT
  426. select CRYPTO_ALGAPI
  427. select CRYPTO_AES
  428. help
  429. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  430. algorithm.
  431. Rijndael appears to be consistently a very good performer in
  432. both hardware and software across a wide range of computing
  433. environments regardless of its use in feedback or non-feedback
  434. modes. Its key setup time is excellent, and its key agility is
  435. good. Rijndael's very low memory requirements make it very well
  436. suited for restricted-space environments, in which it also
  437. demonstrates excellent performance. Rijndael's operations are
  438. among the easiest to defend against power and timing attacks.
  439. The AES specifies three key sizes: 128, 192 and 256 bits
  440. See <http://csrc.nist.gov/encryption/aes/> for more information.
  441. config CRYPTO_AES_X86_64
  442. tristate "AES cipher algorithms (x86_64)"
  443. depends on (X86 || UML_X86) && 64BIT
  444. select CRYPTO_ALGAPI
  445. select CRYPTO_AES
  446. help
  447. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  448. algorithm.
  449. Rijndael appears to be consistently a very good performer in
  450. both hardware and software across a wide range of computing
  451. environments regardless of its use in feedback or non-feedback
  452. modes. Its key setup time is excellent, and its key agility is
  453. good. Rijndael's very low memory requirements make it very well
  454. suited for restricted-space environments, in which it also
  455. demonstrates excellent performance. Rijndael's operations are
  456. among the easiest to defend against power and timing attacks.
  457. The AES specifies three key sizes: 128, 192 and 256 bits
  458. See <http://csrc.nist.gov/encryption/aes/> for more information.
  459. config CRYPTO_AES_NI_INTEL
  460. tristate "AES cipher algorithms (AES-NI)"
  461. depends on X86
  462. select CRYPTO_AES_X86_64 if 64BIT
  463. select CRYPTO_AES_586 if !64BIT
  464. select CRYPTO_CRYPTD
  465. select CRYPTO_ALGAPI
  466. help
  467. Use Intel AES-NI instructions for AES algorithm.
  468. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  469. algorithm.
  470. Rijndael appears to be consistently a very good performer in
  471. both hardware and software across a wide range of computing
  472. environments regardless of its use in feedback or non-feedback
  473. modes. Its key setup time is excellent, and its key agility is
  474. good. Rijndael's very low memory requirements make it very well
  475. suited for restricted-space environments, in which it also
  476. demonstrates excellent performance. Rijndael's operations are
  477. among the easiest to defend against power and timing attacks.
  478. The AES specifies three key sizes: 128, 192 and 256 bits
  479. See <http://csrc.nist.gov/encryption/aes/> for more information.
  480. In addition to AES cipher algorithm support, the acceleration
  481. for some popular block cipher mode is supported too, including
  482. ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
  483. acceleration for CTR.
  484. config CRYPTO_ANUBIS
  485. tristate "Anubis cipher algorithm"
  486. select CRYPTO_ALGAPI
  487. help
  488. Anubis cipher algorithm.
  489. Anubis is a variable key length cipher which can use keys from
  490. 128 bits to 320 bits in length. It was evaluated as a entrant
  491. in the NESSIE competition.
  492. See also:
  493. <https://www.cosic.esat.kuleuven.be/nessie/reports/>
  494. <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
  495. config CRYPTO_ARC4
  496. tristate "ARC4 cipher algorithm"
  497. select CRYPTO_ALGAPI
  498. help
  499. ARC4 cipher algorithm.
  500. ARC4 is a stream cipher using keys ranging from 8 bits to 2048
  501. bits in length. This algorithm is required for driver-based
  502. WEP, but it should not be for other purposes because of the
  503. weakness of the algorithm.
  504. config CRYPTO_BLOWFISH
  505. tristate "Blowfish cipher algorithm"
  506. select CRYPTO_ALGAPI
  507. select CRYPTO_BLOWFISH_COMMON
  508. help
  509. Blowfish cipher algorithm, by Bruce Schneier.
  510. This is a variable key length cipher which can use keys from 32
  511. bits to 448 bits in length. It's fast, simple and specifically
  512. designed for use on "large microprocessors".
  513. See also:
  514. <http://www.schneier.com/blowfish.html>
  515. config CRYPTO_BLOWFISH_COMMON
  516. tristate
  517. help
  518. Common parts of the Blowfish cipher algorithm shared by the
  519. generic c and the assembler implementations.
  520. See also:
  521. <http://www.schneier.com/blowfish.html>
  522. config CRYPTO_BLOWFISH_X86_64
  523. tristate "Blowfish cipher algorithm (x86_64)"
  524. depends on (X86 || UML_X86) && 64BIT
  525. select CRYPTO_ALGAPI
  526. select CRYPTO_BLOWFISH_COMMON
  527. help
  528. Blowfish cipher algorithm (x86_64), by Bruce Schneier.
  529. This is a variable key length cipher which can use keys from 32
  530. bits to 448 bits in length. It's fast, simple and specifically
  531. designed for use on "large microprocessors".
  532. See also:
  533. <http://www.schneier.com/blowfish.html>
  534. config CRYPTO_CAMELLIA
  535. tristate "Camellia cipher algorithms"
  536. depends on CRYPTO
  537. select CRYPTO_ALGAPI
  538. help
  539. Camellia cipher algorithms module.
  540. Camellia is a symmetric key block cipher developed jointly
  541. at NTT and Mitsubishi Electric Corporation.
  542. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  543. See also:
  544. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  545. config CRYPTO_CAST5
  546. tristate "CAST5 (CAST-128) cipher algorithm"
  547. select CRYPTO_ALGAPI
  548. help
  549. The CAST5 encryption algorithm (synonymous with CAST-128) is
  550. described in RFC2144.
  551. config CRYPTO_CAST6
  552. tristate "CAST6 (CAST-256) cipher algorithm"
  553. select CRYPTO_ALGAPI
  554. help
  555. The CAST6 encryption algorithm (synonymous with CAST-256) is
  556. described in RFC2612.
  557. config CRYPTO_DES
  558. tristate "DES and Triple DES EDE cipher algorithms"
  559. select CRYPTO_ALGAPI
  560. help
  561. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
  562. config CRYPTO_FCRYPT
  563. tristate "FCrypt cipher algorithm"
  564. select CRYPTO_ALGAPI
  565. select CRYPTO_BLKCIPHER
  566. help
  567. FCrypt algorithm used by RxRPC.
  568. config CRYPTO_KHAZAD
  569. tristate "Khazad cipher algorithm"
  570. select CRYPTO_ALGAPI
  571. help
  572. Khazad cipher algorithm.
  573. Khazad was a finalist in the initial NESSIE competition. It is
  574. an algorithm optimized for 64-bit processors with good performance
  575. on 32-bit processors. Khazad uses an 128 bit key size.
  576. See also:
  577. <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
  578. config CRYPTO_SALSA20
  579. tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)"
  580. depends on EXPERIMENTAL
  581. select CRYPTO_BLKCIPHER
  582. help
  583. Salsa20 stream cipher algorithm.
  584. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  585. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  586. The Salsa20 stream cipher algorithm is designed by Daniel J.
  587. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  588. config CRYPTO_SALSA20_586
  589. tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)"
  590. depends on (X86 || UML_X86) && !64BIT
  591. depends on EXPERIMENTAL
  592. select CRYPTO_BLKCIPHER
  593. help
  594. Salsa20 stream cipher algorithm.
  595. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  596. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  597. The Salsa20 stream cipher algorithm is designed by Daniel J.
  598. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  599. config CRYPTO_SALSA20_X86_64
  600. tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)"
  601. depends on (X86 || UML_X86) && 64BIT
  602. depends on EXPERIMENTAL
  603. select CRYPTO_BLKCIPHER
  604. help
  605. Salsa20 stream cipher algorithm.
  606. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  607. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  608. The Salsa20 stream cipher algorithm is designed by Daniel J.
  609. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  610. config CRYPTO_SEED
  611. tristate "SEED cipher algorithm"
  612. select CRYPTO_ALGAPI
  613. help
  614. SEED cipher algorithm (RFC4269).
  615. SEED is a 128-bit symmetric key block cipher that has been
  616. developed by KISA (Korea Information Security Agency) as a
  617. national standard encryption algorithm of the Republic of Korea.
  618. It is a 16 round block cipher with the key size of 128 bit.
  619. See also:
  620. <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
  621. config CRYPTO_SERPENT
  622. tristate "Serpent cipher algorithm"
  623. select CRYPTO_ALGAPI
  624. help
  625. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  626. Keys are allowed to be from 0 to 256 bits in length, in steps
  627. of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
  628. variant of Serpent for compatibility with old kerneli.org code.
  629. See also:
  630. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  631. config CRYPTO_SERPENT_SSE2_X86_64
  632. tristate "Serpent cipher algorithm (x86_64/SSE2)"
  633. depends on X86 && 64BIT
  634. select CRYPTO_ALGAPI
  635. select CRYPTO_CRYPTD
  636. select CRYPTO_SERPENT
  637. help
  638. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  639. Keys are allowed to be from 0 to 256 bits in length, in steps
  640. of 8 bits.
  641. This module provides Serpent cipher algorithm that processes eigth
  642. blocks parallel using SSE2 instruction set.
  643. See also:
  644. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  645. config CRYPTO_SERPENT_SSE2_586
  646. tristate "Serpent cipher algorithm (i586/SSE2)"
  647. depends on X86 && !64BIT
  648. select CRYPTO_ALGAPI
  649. select CRYPTO_CRYPTD
  650. select CRYPTO_SERPENT
  651. help
  652. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  653. Keys are allowed to be from 0 to 256 bits in length, in steps
  654. of 8 bits.
  655. This module provides Serpent cipher algorithm that processes four
  656. blocks parallel using SSE2 instruction set.
  657. See also:
  658. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  659. config CRYPTO_TEA
  660. tristate "TEA, XTEA and XETA cipher algorithms"
  661. select CRYPTO_ALGAPI
  662. help
  663. TEA cipher algorithm.
  664. Tiny Encryption Algorithm is a simple cipher that uses
  665. many rounds for security. It is very fast and uses
  666. little memory.
  667. Xtendend Tiny Encryption Algorithm is a modification to
  668. the TEA algorithm to address a potential key weakness
  669. in the TEA algorithm.
  670. Xtendend Encryption Tiny Algorithm is a mis-implementation
  671. of the XTEA algorithm for compatibility purposes.
  672. config CRYPTO_TWOFISH
  673. tristate "Twofish cipher algorithm"
  674. select CRYPTO_ALGAPI
  675. select CRYPTO_TWOFISH_COMMON
  676. help
  677. Twofish cipher algorithm.
  678. Twofish was submitted as an AES (Advanced Encryption Standard)
  679. candidate cipher by researchers at CounterPane Systems. It is a
  680. 16 round block cipher supporting key sizes of 128, 192, and 256
  681. bits.
  682. See also:
  683. <http://www.schneier.com/twofish.html>
  684. config CRYPTO_TWOFISH_COMMON
  685. tristate
  686. help
  687. Common parts of the Twofish cipher algorithm shared by the
  688. generic c and the assembler implementations.
  689. config CRYPTO_TWOFISH_586
  690. tristate "Twofish cipher algorithms (i586)"
  691. depends on (X86 || UML_X86) && !64BIT
  692. select CRYPTO_ALGAPI
  693. select CRYPTO_TWOFISH_COMMON
  694. help
  695. Twofish cipher algorithm.
  696. Twofish was submitted as an AES (Advanced Encryption Standard)
  697. candidate cipher by researchers at CounterPane Systems. It is a
  698. 16 round block cipher supporting key sizes of 128, 192, and 256
  699. bits.
  700. See also:
  701. <http://www.schneier.com/twofish.html>
  702. config CRYPTO_TWOFISH_X86_64
  703. tristate "Twofish cipher algorithm (x86_64)"
  704. depends on (X86 || UML_X86) && 64BIT
  705. select CRYPTO_ALGAPI
  706. select CRYPTO_TWOFISH_COMMON
  707. help
  708. Twofish cipher algorithm (x86_64).
  709. Twofish was submitted as an AES (Advanced Encryption Standard)
  710. candidate cipher by researchers at CounterPane Systems. It is a
  711. 16 round block cipher supporting key sizes of 128, 192, and 256
  712. bits.
  713. See also:
  714. <http://www.schneier.com/twofish.html>
  715. config CRYPTO_TWOFISH_X86_64_3WAY
  716. tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
  717. depends on (X86 || UML_X86) && 64BIT
  718. select CRYPTO_ALGAPI
  719. select CRYPTO_TWOFISH_COMMON
  720. select CRYPTO_TWOFISH_X86_64
  721. help
  722. Twofish cipher algorithm (x86_64, 3-way parallel).
  723. Twofish was submitted as an AES (Advanced Encryption Standard)
  724. candidate cipher by researchers at CounterPane Systems. It is a
  725. 16 round block cipher supporting key sizes of 128, 192, and 256
  726. bits.
  727. This module provides Twofish cipher algorithm that processes three
  728. blocks parallel, utilizing resources of out-of-order CPUs better.
  729. See also:
  730. <http://www.schneier.com/twofish.html>
  731. comment "Compression"
  732. config CRYPTO_DEFLATE
  733. tristate "Deflate compression algorithm"
  734. select CRYPTO_ALGAPI
  735. select ZLIB_INFLATE
  736. select ZLIB_DEFLATE
  737. help
  738. This is the Deflate algorithm (RFC1951), specified for use in
  739. IPSec with the IPCOMP protocol (RFC3173, RFC2394).
  740. You will most probably want this if using IPSec.
  741. config CRYPTO_ZLIB
  742. tristate "Zlib compression algorithm"
  743. select CRYPTO_PCOMP
  744. select ZLIB_INFLATE
  745. select ZLIB_DEFLATE
  746. select NLATTR
  747. help
  748. This is the zlib algorithm.
  749. config CRYPTO_LZO
  750. tristate "LZO compression algorithm"
  751. select CRYPTO_ALGAPI
  752. select LZO_COMPRESS
  753. select LZO_DECOMPRESS
  754. help
  755. This is the LZO algorithm.
  756. comment "Random Number Generation"
  757. config CRYPTO_ANSI_CPRNG
  758. tristate "Pseudo Random Number Generation for Cryptographic modules"
  759. default m
  760. select CRYPTO_AES
  761. select CRYPTO_RNG
  762. help
  763. This option enables the generic pseudo random number generator
  764. for cryptographic modules. Uses the Algorithm specified in
  765. ANSI X9.31 A.2.4. Note that this option must be enabled if
  766. CRYPTO_FIPS is selected
  767. config CRYPTO_USER_API
  768. tristate
  769. config CRYPTO_USER_API_HASH
  770. tristate "User-space interface for hash algorithms"
  771. depends on NET
  772. select CRYPTO_HASH
  773. select CRYPTO_USER_API
  774. help
  775. This option enables the user-spaces interface for hash
  776. algorithms.
  777. config CRYPTO_USER_API_SKCIPHER
  778. tristate "User-space interface for symmetric key cipher algorithms"
  779. depends on NET
  780. select CRYPTO_BLKCIPHER
  781. select CRYPTO_USER_API
  782. help
  783. This option enables the user-spaces interface for symmetric
  784. key cipher algorithms.
  785. source "drivers/crypto/Kconfig"
  786. endif # if CRYPTO