efx.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include "net_driver.h"
  23. #include "gmii.h"
  24. #include "ethtool.h"
  25. #include "tx.h"
  26. #include "rx.h"
  27. #include "efx.h"
  28. #include "mdio_10g.h"
  29. #include "falcon.h"
  30. #include "mac.h"
  31. #define EFX_MAX_MTU (9 * 1024)
  32. /* RX slow fill workqueue. If memory allocation fails in the fast path,
  33. * a work item is pushed onto this work queue to retry the allocation later,
  34. * to avoid the NIC being starved of RX buffers. Since this is a per cpu
  35. * workqueue, there is nothing to be gained in making it per NIC
  36. */
  37. static struct workqueue_struct *refill_workqueue;
  38. /**************************************************************************
  39. *
  40. * Configurable values
  41. *
  42. *************************************************************************/
  43. /*
  44. * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
  45. *
  46. * This sets the default for new devices. It can be controlled later
  47. * using ethtool.
  48. */
  49. static int lro = true;
  50. module_param(lro, int, 0644);
  51. MODULE_PARM_DESC(lro, "Large receive offload acceleration");
  52. /*
  53. * Use separate channels for TX and RX events
  54. *
  55. * Set this to 1 to use separate channels for TX and RX. It allows us to
  56. * apply a higher level of interrupt moderation to TX events.
  57. *
  58. * This is forced to 0 for MSI interrupt mode as the interrupt vector
  59. * is not written
  60. */
  61. static unsigned int separate_tx_and_rx_channels = true;
  62. /* This is the weight assigned to each of the (per-channel) virtual
  63. * NAPI devices.
  64. */
  65. static int napi_weight = 64;
  66. /* This is the time (in jiffies) between invocations of the hardware
  67. * monitor, which checks for known hardware bugs and resets the
  68. * hardware and driver as necessary.
  69. */
  70. unsigned int efx_monitor_interval = 1 * HZ;
  71. /* This controls whether or not the hardware monitor will trigger a
  72. * reset when it detects an error condition.
  73. */
  74. static unsigned int monitor_reset = true;
  75. /* This controls whether or not the driver will initialise devices
  76. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  77. * such devices will be initialised with a random locally-generated
  78. * MAC address. This allows for loading the sfc_mtd driver to
  79. * reprogram the flash, even if the flash contents (including the MAC
  80. * address) have previously been erased.
  81. */
  82. static unsigned int allow_bad_hwaddr;
  83. /* Initial interrupt moderation settings. They can be modified after
  84. * module load with ethtool.
  85. *
  86. * The default for RX should strike a balance between increasing the
  87. * round-trip latency and reducing overhead.
  88. */
  89. static unsigned int rx_irq_mod_usec = 60;
  90. /* Initial interrupt moderation settings. They can be modified after
  91. * module load with ethtool.
  92. *
  93. * This default is chosen to ensure that a 10G link does not go idle
  94. * while a TX queue is stopped after it has become full. A queue is
  95. * restarted when it drops below half full. The time this takes (assuming
  96. * worst case 3 descriptors per packet and 1024 descriptors) is
  97. * 512 / 3 * 1.2 = 205 usec.
  98. */
  99. static unsigned int tx_irq_mod_usec = 150;
  100. /* This is the first interrupt mode to try out of:
  101. * 0 => MSI-X
  102. * 1 => MSI
  103. * 2 => legacy
  104. */
  105. static unsigned int interrupt_mode;
  106. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  107. * i.e. the number of CPUs among which we may distribute simultaneous
  108. * interrupt handling.
  109. *
  110. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  111. * The default (0) means to assign an interrupt to each package (level II cache)
  112. */
  113. static unsigned int rss_cpus;
  114. module_param(rss_cpus, uint, 0444);
  115. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  116. /**************************************************************************
  117. *
  118. * Utility functions and prototypes
  119. *
  120. *************************************************************************/
  121. static void efx_remove_channel(struct efx_channel *channel);
  122. static void efx_remove_port(struct efx_nic *efx);
  123. static void efx_fini_napi(struct efx_nic *efx);
  124. static void efx_fini_channels(struct efx_nic *efx);
  125. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  126. do { \
  127. if ((efx->state == STATE_RUNNING) || \
  128. (efx->state == STATE_RESETTING)) \
  129. ASSERT_RTNL(); \
  130. } while (0)
  131. /**************************************************************************
  132. *
  133. * Event queue processing
  134. *
  135. *************************************************************************/
  136. /* Process channel's event queue
  137. *
  138. * This function is responsible for processing the event queue of a
  139. * single channel. The caller must guarantee that this function will
  140. * never be concurrently called more than once on the same channel,
  141. * though different channels may be being processed concurrently.
  142. */
  143. static int efx_process_channel(struct efx_channel *channel, int rx_quota)
  144. {
  145. struct efx_nic *efx = channel->efx;
  146. int rx_packets;
  147. if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
  148. !channel->enabled))
  149. return 0;
  150. rx_packets = falcon_process_eventq(channel, rx_quota);
  151. if (rx_packets == 0)
  152. return 0;
  153. /* Deliver last RX packet. */
  154. if (channel->rx_pkt) {
  155. __efx_rx_packet(channel, channel->rx_pkt,
  156. channel->rx_pkt_csummed);
  157. channel->rx_pkt = NULL;
  158. }
  159. efx_flush_lro(channel);
  160. efx_rx_strategy(channel);
  161. efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
  162. return rx_packets;
  163. }
  164. /* Mark channel as finished processing
  165. *
  166. * Note that since we will not receive further interrupts for this
  167. * channel before we finish processing and call the eventq_read_ack()
  168. * method, there is no need to use the interrupt hold-off timers.
  169. */
  170. static inline void efx_channel_processed(struct efx_channel *channel)
  171. {
  172. /* The interrupt handler for this channel may set work_pending
  173. * as soon as we acknowledge the events we've seen. Make sure
  174. * it's cleared before then. */
  175. channel->work_pending = false;
  176. smp_wmb();
  177. falcon_eventq_read_ack(channel);
  178. }
  179. /* NAPI poll handler
  180. *
  181. * NAPI guarantees serialisation of polls of the same device, which
  182. * provides the guarantee required by efx_process_channel().
  183. */
  184. static int efx_poll(struct napi_struct *napi, int budget)
  185. {
  186. struct efx_channel *channel =
  187. container_of(napi, struct efx_channel, napi_str);
  188. struct net_device *napi_dev = channel->napi_dev;
  189. int rx_packets;
  190. EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
  191. channel->channel, raw_smp_processor_id());
  192. rx_packets = efx_process_channel(channel, budget);
  193. if (rx_packets < budget) {
  194. /* There is no race here; although napi_disable() will
  195. * only wait for netif_rx_complete(), this isn't a problem
  196. * since efx_channel_processed() will have no effect if
  197. * interrupts have already been disabled.
  198. */
  199. netif_rx_complete(napi_dev, napi);
  200. efx_channel_processed(channel);
  201. }
  202. return rx_packets;
  203. }
  204. /* Process the eventq of the specified channel immediately on this CPU
  205. *
  206. * Disable hardware generated interrupts, wait for any existing
  207. * processing to finish, then directly poll (and ack ) the eventq.
  208. * Finally reenable NAPI and interrupts.
  209. *
  210. * Since we are touching interrupts the caller should hold the suspend lock
  211. */
  212. void efx_process_channel_now(struct efx_channel *channel)
  213. {
  214. struct efx_nic *efx = channel->efx;
  215. BUG_ON(!channel->used_flags);
  216. BUG_ON(!channel->enabled);
  217. /* Disable interrupts and wait for ISRs to complete */
  218. falcon_disable_interrupts(efx);
  219. if (efx->legacy_irq)
  220. synchronize_irq(efx->legacy_irq);
  221. if (channel->irq)
  222. synchronize_irq(channel->irq);
  223. /* Wait for any NAPI processing to complete */
  224. napi_disable(&channel->napi_str);
  225. /* Poll the channel */
  226. efx_process_channel(channel, efx->type->evq_size);
  227. /* Ack the eventq. This may cause an interrupt to be generated
  228. * when they are reenabled */
  229. efx_channel_processed(channel);
  230. napi_enable(&channel->napi_str);
  231. falcon_enable_interrupts(efx);
  232. }
  233. /* Create event queue
  234. * Event queue memory allocations are done only once. If the channel
  235. * is reset, the memory buffer will be reused; this guards against
  236. * errors during channel reset and also simplifies interrupt handling.
  237. */
  238. static int efx_probe_eventq(struct efx_channel *channel)
  239. {
  240. EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
  241. return falcon_probe_eventq(channel);
  242. }
  243. /* Prepare channel's event queue */
  244. static void efx_init_eventq(struct efx_channel *channel)
  245. {
  246. EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
  247. channel->eventq_read_ptr = 0;
  248. falcon_init_eventq(channel);
  249. }
  250. static void efx_fini_eventq(struct efx_channel *channel)
  251. {
  252. EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
  253. falcon_fini_eventq(channel);
  254. }
  255. static void efx_remove_eventq(struct efx_channel *channel)
  256. {
  257. EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
  258. falcon_remove_eventq(channel);
  259. }
  260. /**************************************************************************
  261. *
  262. * Channel handling
  263. *
  264. *************************************************************************/
  265. static int efx_probe_channel(struct efx_channel *channel)
  266. {
  267. struct efx_tx_queue *tx_queue;
  268. struct efx_rx_queue *rx_queue;
  269. int rc;
  270. EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
  271. rc = efx_probe_eventq(channel);
  272. if (rc)
  273. goto fail1;
  274. efx_for_each_channel_tx_queue(tx_queue, channel) {
  275. rc = efx_probe_tx_queue(tx_queue);
  276. if (rc)
  277. goto fail2;
  278. }
  279. efx_for_each_channel_rx_queue(rx_queue, channel) {
  280. rc = efx_probe_rx_queue(rx_queue);
  281. if (rc)
  282. goto fail3;
  283. }
  284. channel->n_rx_frm_trunc = 0;
  285. return 0;
  286. fail3:
  287. efx_for_each_channel_rx_queue(rx_queue, channel)
  288. efx_remove_rx_queue(rx_queue);
  289. fail2:
  290. efx_for_each_channel_tx_queue(tx_queue, channel)
  291. efx_remove_tx_queue(tx_queue);
  292. fail1:
  293. return rc;
  294. }
  295. /* Channels are shutdown and reinitialised whilst the NIC is running
  296. * to propagate configuration changes (mtu, checksum offload), or
  297. * to clear hardware error conditions
  298. */
  299. static void efx_init_channels(struct efx_nic *efx)
  300. {
  301. struct efx_tx_queue *tx_queue;
  302. struct efx_rx_queue *rx_queue;
  303. struct efx_channel *channel;
  304. /* Calculate the rx buffer allocation parameters required to
  305. * support the current MTU, including padding for header
  306. * alignment and overruns.
  307. */
  308. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  309. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  310. efx->type->rx_buffer_padding);
  311. efx->rx_buffer_order = get_order(efx->rx_buffer_len);
  312. /* Initialise the channels */
  313. efx_for_each_channel(channel, efx) {
  314. EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
  315. efx_init_eventq(channel);
  316. efx_for_each_channel_tx_queue(tx_queue, channel)
  317. efx_init_tx_queue(tx_queue);
  318. /* The rx buffer allocation strategy is MTU dependent */
  319. efx_rx_strategy(channel);
  320. efx_for_each_channel_rx_queue(rx_queue, channel)
  321. efx_init_rx_queue(rx_queue);
  322. WARN_ON(channel->rx_pkt != NULL);
  323. efx_rx_strategy(channel);
  324. }
  325. }
  326. /* This enables event queue processing and packet transmission.
  327. *
  328. * Note that this function is not allowed to fail, since that would
  329. * introduce too much complexity into the suspend/resume path.
  330. */
  331. static void efx_start_channel(struct efx_channel *channel)
  332. {
  333. struct efx_rx_queue *rx_queue;
  334. EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
  335. if (!(channel->efx->net_dev->flags & IFF_UP))
  336. netif_napi_add(channel->napi_dev, &channel->napi_str,
  337. efx_poll, napi_weight);
  338. /* The interrupt handler for this channel may set work_pending
  339. * as soon as we enable it. Make sure it's cleared before
  340. * then. Similarly, make sure it sees the enabled flag set. */
  341. channel->work_pending = false;
  342. channel->enabled = true;
  343. smp_wmb();
  344. napi_enable(&channel->napi_str);
  345. /* Load up RX descriptors */
  346. efx_for_each_channel_rx_queue(rx_queue, channel)
  347. efx_fast_push_rx_descriptors(rx_queue);
  348. }
  349. /* This disables event queue processing and packet transmission.
  350. * This function does not guarantee that all queue processing
  351. * (e.g. RX refill) is complete.
  352. */
  353. static void efx_stop_channel(struct efx_channel *channel)
  354. {
  355. struct efx_rx_queue *rx_queue;
  356. if (!channel->enabled)
  357. return;
  358. EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
  359. channel->enabled = false;
  360. napi_disable(&channel->napi_str);
  361. /* Ensure that any worker threads have exited or will be no-ops */
  362. efx_for_each_channel_rx_queue(rx_queue, channel) {
  363. spin_lock_bh(&rx_queue->add_lock);
  364. spin_unlock_bh(&rx_queue->add_lock);
  365. }
  366. }
  367. static void efx_fini_channels(struct efx_nic *efx)
  368. {
  369. struct efx_channel *channel;
  370. struct efx_tx_queue *tx_queue;
  371. struct efx_rx_queue *rx_queue;
  372. EFX_ASSERT_RESET_SERIALISED(efx);
  373. BUG_ON(efx->port_enabled);
  374. efx_for_each_channel(channel, efx) {
  375. EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
  376. efx_for_each_channel_rx_queue(rx_queue, channel)
  377. efx_fini_rx_queue(rx_queue);
  378. efx_for_each_channel_tx_queue(tx_queue, channel)
  379. efx_fini_tx_queue(tx_queue);
  380. }
  381. /* Do the event queues last so that we can handle flush events
  382. * for all DMA queues. */
  383. efx_for_each_channel(channel, efx) {
  384. EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
  385. efx_fini_eventq(channel);
  386. }
  387. }
  388. static void efx_remove_channel(struct efx_channel *channel)
  389. {
  390. struct efx_tx_queue *tx_queue;
  391. struct efx_rx_queue *rx_queue;
  392. EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
  393. efx_for_each_channel_rx_queue(rx_queue, channel)
  394. efx_remove_rx_queue(rx_queue);
  395. efx_for_each_channel_tx_queue(tx_queue, channel)
  396. efx_remove_tx_queue(tx_queue);
  397. efx_remove_eventq(channel);
  398. channel->used_flags = 0;
  399. }
  400. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
  401. {
  402. queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
  403. }
  404. /**************************************************************************
  405. *
  406. * Port handling
  407. *
  408. **************************************************************************/
  409. /* This ensures that the kernel is kept informed (via
  410. * netif_carrier_on/off) of the link status, and also maintains the
  411. * link status's stop on the port's TX queue.
  412. */
  413. static void efx_link_status_changed(struct efx_nic *efx)
  414. {
  415. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  416. * that no events are triggered between unregister_netdev() and the
  417. * driver unloading. A more general condition is that NETDEV_CHANGE
  418. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  419. if (!netif_running(efx->net_dev))
  420. return;
  421. if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
  422. efx->n_link_state_changes++;
  423. if (efx->link_up)
  424. netif_carrier_on(efx->net_dev);
  425. else
  426. netif_carrier_off(efx->net_dev);
  427. }
  428. /* Status message for kernel log */
  429. if (efx->link_up) {
  430. struct mii_if_info *gmii = &efx->mii;
  431. unsigned adv, lpa;
  432. /* NONE here means direct XAUI from the controller, with no
  433. * MDIO-attached device we can query. */
  434. if (efx->phy_type != PHY_TYPE_NONE) {
  435. adv = gmii_advertised(gmii);
  436. lpa = gmii_lpa(gmii);
  437. } else {
  438. lpa = GM_LPA_10000 | LPA_DUPLEX;
  439. adv = lpa;
  440. }
  441. EFX_INFO(efx, "link up at %dMbps %s-duplex "
  442. "(adv %04x lpa %04x) (MTU %d)%s\n",
  443. (efx->link_options & GM_LPA_10000 ? 10000 :
  444. (efx->link_options & GM_LPA_1000 ? 1000 :
  445. (efx->link_options & GM_LPA_100 ? 100 :
  446. 10))),
  447. (efx->link_options & GM_LPA_DUPLEX ?
  448. "full" : "half"),
  449. adv, lpa,
  450. efx->net_dev->mtu,
  451. (efx->promiscuous ? " [PROMISC]" : ""));
  452. } else {
  453. EFX_INFO(efx, "link down\n");
  454. }
  455. }
  456. /* This call reinitialises the MAC to pick up new PHY settings. The
  457. * caller must hold the mac_lock */
  458. static void __efx_reconfigure_port(struct efx_nic *efx)
  459. {
  460. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  461. EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
  462. raw_smp_processor_id());
  463. falcon_reconfigure_xmac(efx);
  464. /* Inform kernel of loss/gain of carrier */
  465. efx_link_status_changed(efx);
  466. }
  467. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  468. * disabled. */
  469. void efx_reconfigure_port(struct efx_nic *efx)
  470. {
  471. EFX_ASSERT_RESET_SERIALISED(efx);
  472. mutex_lock(&efx->mac_lock);
  473. __efx_reconfigure_port(efx);
  474. mutex_unlock(&efx->mac_lock);
  475. }
  476. /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
  477. * we don't efx_reconfigure_port() if the port is disabled. Care is taken
  478. * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
  479. static void efx_reconfigure_work(struct work_struct *data)
  480. {
  481. struct efx_nic *efx = container_of(data, struct efx_nic,
  482. reconfigure_work);
  483. mutex_lock(&efx->mac_lock);
  484. if (efx->port_enabled)
  485. __efx_reconfigure_port(efx);
  486. mutex_unlock(&efx->mac_lock);
  487. }
  488. static int efx_probe_port(struct efx_nic *efx)
  489. {
  490. int rc;
  491. EFX_LOG(efx, "create port\n");
  492. /* Connect up MAC/PHY operations table and read MAC address */
  493. rc = falcon_probe_port(efx);
  494. if (rc)
  495. goto err;
  496. /* Sanity check MAC address */
  497. if (is_valid_ether_addr(efx->mac_address)) {
  498. memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
  499. } else {
  500. DECLARE_MAC_BUF(mac);
  501. EFX_ERR(efx, "invalid MAC address %s\n",
  502. print_mac(mac, efx->mac_address));
  503. if (!allow_bad_hwaddr) {
  504. rc = -EINVAL;
  505. goto err;
  506. }
  507. random_ether_addr(efx->net_dev->dev_addr);
  508. EFX_INFO(efx, "using locally-generated MAC %s\n",
  509. print_mac(mac, efx->net_dev->dev_addr));
  510. }
  511. return 0;
  512. err:
  513. efx_remove_port(efx);
  514. return rc;
  515. }
  516. static int efx_init_port(struct efx_nic *efx)
  517. {
  518. int rc;
  519. EFX_LOG(efx, "init port\n");
  520. /* Initialise the MAC and PHY */
  521. rc = falcon_init_xmac(efx);
  522. if (rc)
  523. return rc;
  524. efx->port_initialized = true;
  525. /* Reconfigure port to program MAC registers */
  526. falcon_reconfigure_xmac(efx);
  527. return 0;
  528. }
  529. /* Allow efx_reconfigure_port() to be scheduled, and close the window
  530. * between efx_stop_port and efx_flush_all whereby a previously scheduled
  531. * efx_reconfigure_port() may have been cancelled */
  532. static void efx_start_port(struct efx_nic *efx)
  533. {
  534. EFX_LOG(efx, "start port\n");
  535. BUG_ON(efx->port_enabled);
  536. mutex_lock(&efx->mac_lock);
  537. efx->port_enabled = true;
  538. __efx_reconfigure_port(efx);
  539. mutex_unlock(&efx->mac_lock);
  540. }
  541. /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
  542. * efx_set_multicast_list() from scheduling efx_reconfigure_work.
  543. * efx_reconfigure_work can still be scheduled via NAPI processing
  544. * until efx_flush_all() is called */
  545. static void efx_stop_port(struct efx_nic *efx)
  546. {
  547. EFX_LOG(efx, "stop port\n");
  548. mutex_lock(&efx->mac_lock);
  549. efx->port_enabled = false;
  550. mutex_unlock(&efx->mac_lock);
  551. /* Serialise against efx_set_multicast_list() */
  552. if (efx_dev_registered(efx)) {
  553. netif_addr_lock_bh(efx->net_dev);
  554. netif_addr_unlock_bh(efx->net_dev);
  555. }
  556. }
  557. static void efx_fini_port(struct efx_nic *efx)
  558. {
  559. EFX_LOG(efx, "shut down port\n");
  560. if (!efx->port_initialized)
  561. return;
  562. falcon_fini_xmac(efx);
  563. efx->port_initialized = false;
  564. efx->link_up = false;
  565. efx_link_status_changed(efx);
  566. }
  567. static void efx_remove_port(struct efx_nic *efx)
  568. {
  569. EFX_LOG(efx, "destroying port\n");
  570. falcon_remove_port(efx);
  571. }
  572. /**************************************************************************
  573. *
  574. * NIC handling
  575. *
  576. **************************************************************************/
  577. /* This configures the PCI device to enable I/O and DMA. */
  578. static int efx_init_io(struct efx_nic *efx)
  579. {
  580. struct pci_dev *pci_dev = efx->pci_dev;
  581. dma_addr_t dma_mask = efx->type->max_dma_mask;
  582. int rc;
  583. EFX_LOG(efx, "initialising I/O\n");
  584. rc = pci_enable_device(pci_dev);
  585. if (rc) {
  586. EFX_ERR(efx, "failed to enable PCI device\n");
  587. goto fail1;
  588. }
  589. pci_set_master(pci_dev);
  590. /* Set the PCI DMA mask. Try all possibilities from our
  591. * genuine mask down to 32 bits, because some architectures
  592. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  593. * masks event though they reject 46 bit masks.
  594. */
  595. while (dma_mask > 0x7fffffffUL) {
  596. if (pci_dma_supported(pci_dev, dma_mask) &&
  597. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  598. break;
  599. dma_mask >>= 1;
  600. }
  601. if (rc) {
  602. EFX_ERR(efx, "could not find a suitable DMA mask\n");
  603. goto fail2;
  604. }
  605. EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
  606. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  607. if (rc) {
  608. /* pci_set_consistent_dma_mask() is not *allowed* to
  609. * fail with a mask that pci_set_dma_mask() accepted,
  610. * but just in case...
  611. */
  612. EFX_ERR(efx, "failed to set consistent DMA mask\n");
  613. goto fail2;
  614. }
  615. efx->membase_phys = pci_resource_start(efx->pci_dev,
  616. efx->type->mem_bar);
  617. rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
  618. if (rc) {
  619. EFX_ERR(efx, "request for memory BAR failed\n");
  620. rc = -EIO;
  621. goto fail3;
  622. }
  623. efx->membase = ioremap_nocache(efx->membase_phys,
  624. efx->type->mem_map_size);
  625. if (!efx->membase) {
  626. EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
  627. efx->type->mem_bar,
  628. (unsigned long long)efx->membase_phys,
  629. efx->type->mem_map_size);
  630. rc = -ENOMEM;
  631. goto fail4;
  632. }
  633. EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
  634. efx->type->mem_bar, (unsigned long long)efx->membase_phys,
  635. efx->type->mem_map_size, efx->membase);
  636. return 0;
  637. fail4:
  638. release_mem_region(efx->membase_phys, efx->type->mem_map_size);
  639. fail3:
  640. efx->membase_phys = 0;
  641. fail2:
  642. pci_disable_device(efx->pci_dev);
  643. fail1:
  644. return rc;
  645. }
  646. static void efx_fini_io(struct efx_nic *efx)
  647. {
  648. EFX_LOG(efx, "shutting down I/O\n");
  649. if (efx->membase) {
  650. iounmap(efx->membase);
  651. efx->membase = NULL;
  652. }
  653. if (efx->membase_phys) {
  654. pci_release_region(efx->pci_dev, efx->type->mem_bar);
  655. efx->membase_phys = 0;
  656. }
  657. pci_disable_device(efx->pci_dev);
  658. }
  659. /* Get number of RX queues wanted. Return number of online CPU
  660. * packages in the expectation that an IRQ balancer will spread
  661. * interrupts across them. */
  662. static int efx_wanted_rx_queues(void)
  663. {
  664. cpumask_t core_mask;
  665. int count;
  666. int cpu;
  667. cpus_clear(core_mask);
  668. count = 0;
  669. for_each_online_cpu(cpu) {
  670. if (!cpu_isset(cpu, core_mask)) {
  671. ++count;
  672. cpus_or(core_mask, core_mask,
  673. topology_core_siblings(cpu));
  674. }
  675. }
  676. return count;
  677. }
  678. /* Probe the number and type of interrupts we are able to obtain, and
  679. * the resulting numbers of channels and RX queues.
  680. */
  681. static void efx_probe_interrupts(struct efx_nic *efx)
  682. {
  683. int max_channels =
  684. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  685. int rc, i;
  686. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  687. struct msix_entry xentries[EFX_MAX_CHANNELS];
  688. int wanted_ints;
  689. /* We want one RX queue and interrupt per CPU package
  690. * (or as specified by the rss_cpus module parameter).
  691. * We will need one channel per interrupt.
  692. */
  693. wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
  694. efx->n_rx_queues = min(wanted_ints, max_channels);
  695. for (i = 0; i < efx->n_rx_queues; i++)
  696. xentries[i].entry = i;
  697. rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
  698. if (rc > 0) {
  699. EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
  700. efx->n_rx_queues = rc;
  701. rc = pci_enable_msix(efx->pci_dev, xentries,
  702. efx->n_rx_queues);
  703. }
  704. if (rc == 0) {
  705. for (i = 0; i < efx->n_rx_queues; i++)
  706. efx->channel[i].irq = xentries[i].vector;
  707. } else {
  708. /* Fall back to single channel MSI */
  709. efx->interrupt_mode = EFX_INT_MODE_MSI;
  710. EFX_ERR(efx, "could not enable MSI-X\n");
  711. }
  712. }
  713. /* Try single interrupt MSI */
  714. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  715. efx->n_rx_queues = 1;
  716. rc = pci_enable_msi(efx->pci_dev);
  717. if (rc == 0) {
  718. efx->channel[0].irq = efx->pci_dev->irq;
  719. } else {
  720. EFX_ERR(efx, "could not enable MSI\n");
  721. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  722. }
  723. }
  724. /* Assume legacy interrupts */
  725. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  726. efx->n_rx_queues = 1;
  727. efx->legacy_irq = efx->pci_dev->irq;
  728. }
  729. }
  730. static void efx_remove_interrupts(struct efx_nic *efx)
  731. {
  732. struct efx_channel *channel;
  733. /* Remove MSI/MSI-X interrupts */
  734. efx_for_each_channel(channel, efx)
  735. channel->irq = 0;
  736. pci_disable_msi(efx->pci_dev);
  737. pci_disable_msix(efx->pci_dev);
  738. /* Remove legacy interrupt */
  739. efx->legacy_irq = 0;
  740. }
  741. static void efx_set_channels(struct efx_nic *efx)
  742. {
  743. struct efx_tx_queue *tx_queue;
  744. struct efx_rx_queue *rx_queue;
  745. efx_for_each_tx_queue(tx_queue, efx) {
  746. if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
  747. tx_queue->channel = &efx->channel[1];
  748. else
  749. tx_queue->channel = &efx->channel[0];
  750. tx_queue->channel->used_flags |= EFX_USED_BY_TX;
  751. }
  752. efx_for_each_rx_queue(rx_queue, efx) {
  753. rx_queue->channel = &efx->channel[rx_queue->queue];
  754. rx_queue->channel->used_flags |= EFX_USED_BY_RX;
  755. }
  756. }
  757. static int efx_probe_nic(struct efx_nic *efx)
  758. {
  759. int rc;
  760. EFX_LOG(efx, "creating NIC\n");
  761. /* Carry out hardware-type specific initialisation */
  762. rc = falcon_probe_nic(efx);
  763. if (rc)
  764. return rc;
  765. /* Determine the number of channels and RX queues by trying to hook
  766. * in MSI-X interrupts. */
  767. efx_probe_interrupts(efx);
  768. efx_set_channels(efx);
  769. /* Initialise the interrupt moderation settings */
  770. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
  771. return 0;
  772. }
  773. static void efx_remove_nic(struct efx_nic *efx)
  774. {
  775. EFX_LOG(efx, "destroying NIC\n");
  776. efx_remove_interrupts(efx);
  777. falcon_remove_nic(efx);
  778. }
  779. /**************************************************************************
  780. *
  781. * NIC startup/shutdown
  782. *
  783. *************************************************************************/
  784. static int efx_probe_all(struct efx_nic *efx)
  785. {
  786. struct efx_channel *channel;
  787. int rc;
  788. /* Create NIC */
  789. rc = efx_probe_nic(efx);
  790. if (rc) {
  791. EFX_ERR(efx, "failed to create NIC\n");
  792. goto fail1;
  793. }
  794. /* Create port */
  795. rc = efx_probe_port(efx);
  796. if (rc) {
  797. EFX_ERR(efx, "failed to create port\n");
  798. goto fail2;
  799. }
  800. /* Create channels */
  801. efx_for_each_channel(channel, efx) {
  802. rc = efx_probe_channel(channel);
  803. if (rc) {
  804. EFX_ERR(efx, "failed to create channel %d\n",
  805. channel->channel);
  806. goto fail3;
  807. }
  808. }
  809. return 0;
  810. fail3:
  811. efx_for_each_channel(channel, efx)
  812. efx_remove_channel(channel);
  813. efx_remove_port(efx);
  814. fail2:
  815. efx_remove_nic(efx);
  816. fail1:
  817. return rc;
  818. }
  819. /* Called after previous invocation(s) of efx_stop_all, restarts the
  820. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  821. * and ensures that the port is scheduled to be reconfigured.
  822. * This function is safe to call multiple times when the NIC is in any
  823. * state. */
  824. static void efx_start_all(struct efx_nic *efx)
  825. {
  826. struct efx_channel *channel;
  827. EFX_ASSERT_RESET_SERIALISED(efx);
  828. /* Check that it is appropriate to restart the interface. All
  829. * of these flags are safe to read under just the rtnl lock */
  830. if (efx->port_enabled)
  831. return;
  832. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  833. return;
  834. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  835. return;
  836. /* Mark the port as enabled so port reconfigurations can start, then
  837. * restart the transmit interface early so the watchdog timer stops */
  838. efx_start_port(efx);
  839. if (efx_dev_registered(efx))
  840. efx_wake_queue(efx);
  841. efx_for_each_channel(channel, efx)
  842. efx_start_channel(channel);
  843. falcon_enable_interrupts(efx);
  844. /* Start hardware monitor if we're in RUNNING */
  845. if (efx->state == STATE_RUNNING)
  846. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  847. efx_monitor_interval);
  848. }
  849. /* Flush all delayed work. Should only be called when no more delayed work
  850. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  851. * since we're holding the rtnl_lock at this point. */
  852. static void efx_flush_all(struct efx_nic *efx)
  853. {
  854. struct efx_rx_queue *rx_queue;
  855. /* Make sure the hardware monitor is stopped */
  856. cancel_delayed_work_sync(&efx->monitor_work);
  857. /* Ensure that all RX slow refills are complete. */
  858. efx_for_each_rx_queue(rx_queue, efx)
  859. cancel_delayed_work_sync(&rx_queue->work);
  860. /* Stop scheduled port reconfigurations */
  861. cancel_work_sync(&efx->reconfigure_work);
  862. }
  863. /* Quiesce hardware and software without bringing the link down.
  864. * Safe to call multiple times, when the nic and interface is in any
  865. * state. The caller is guaranteed to subsequently be in a position
  866. * to modify any hardware and software state they see fit without
  867. * taking locks. */
  868. static void efx_stop_all(struct efx_nic *efx)
  869. {
  870. struct efx_channel *channel;
  871. EFX_ASSERT_RESET_SERIALISED(efx);
  872. /* port_enabled can be read safely under the rtnl lock */
  873. if (!efx->port_enabled)
  874. return;
  875. /* Disable interrupts and wait for ISR to complete */
  876. falcon_disable_interrupts(efx);
  877. if (efx->legacy_irq)
  878. synchronize_irq(efx->legacy_irq);
  879. efx_for_each_channel(channel, efx) {
  880. if (channel->irq)
  881. synchronize_irq(channel->irq);
  882. }
  883. /* Stop all NAPI processing and synchronous rx refills */
  884. efx_for_each_channel(channel, efx)
  885. efx_stop_channel(channel);
  886. /* Stop all asynchronous port reconfigurations. Since all
  887. * event processing has already been stopped, there is no
  888. * window to loose phy events */
  889. efx_stop_port(efx);
  890. /* Flush reconfigure_work, refill_workqueue, monitor_work */
  891. efx_flush_all(efx);
  892. /* Isolate the MAC from the TX and RX engines, so that queue
  893. * flushes will complete in a timely fashion. */
  894. falcon_deconfigure_mac_wrapper(efx);
  895. falcon_drain_tx_fifo(efx);
  896. /* Stop the kernel transmit interface late, so the watchdog
  897. * timer isn't ticking over the flush */
  898. if (efx_dev_registered(efx)) {
  899. efx_stop_queue(efx);
  900. netif_tx_lock_bh(efx->net_dev);
  901. netif_tx_unlock_bh(efx->net_dev);
  902. }
  903. }
  904. static void efx_remove_all(struct efx_nic *efx)
  905. {
  906. struct efx_channel *channel;
  907. efx_for_each_channel(channel, efx)
  908. efx_remove_channel(channel);
  909. efx_remove_port(efx);
  910. efx_remove_nic(efx);
  911. }
  912. /* A convinience function to safely flush all the queues */
  913. void efx_flush_queues(struct efx_nic *efx)
  914. {
  915. EFX_ASSERT_RESET_SERIALISED(efx);
  916. efx_stop_all(efx);
  917. efx_fini_channels(efx);
  918. efx_init_channels(efx);
  919. efx_start_all(efx);
  920. }
  921. /**************************************************************************
  922. *
  923. * Interrupt moderation
  924. *
  925. **************************************************************************/
  926. /* Set interrupt moderation parameters */
  927. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
  928. {
  929. struct efx_tx_queue *tx_queue;
  930. struct efx_rx_queue *rx_queue;
  931. EFX_ASSERT_RESET_SERIALISED(efx);
  932. efx_for_each_tx_queue(tx_queue, efx)
  933. tx_queue->channel->irq_moderation = tx_usecs;
  934. efx_for_each_rx_queue(rx_queue, efx)
  935. rx_queue->channel->irq_moderation = rx_usecs;
  936. }
  937. /**************************************************************************
  938. *
  939. * Hardware monitor
  940. *
  941. **************************************************************************/
  942. /* Run periodically off the general workqueue. Serialised against
  943. * efx_reconfigure_port via the mac_lock */
  944. static void efx_monitor(struct work_struct *data)
  945. {
  946. struct efx_nic *efx = container_of(data, struct efx_nic,
  947. monitor_work.work);
  948. int rc = 0;
  949. EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
  950. raw_smp_processor_id());
  951. /* If the mac_lock is already held then it is likely a port
  952. * reconfiguration is already in place, which will likely do
  953. * most of the work of check_hw() anyway. */
  954. if (!mutex_trylock(&efx->mac_lock)) {
  955. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  956. efx_monitor_interval);
  957. return;
  958. }
  959. if (efx->port_enabled)
  960. rc = falcon_check_xmac(efx);
  961. mutex_unlock(&efx->mac_lock);
  962. if (rc) {
  963. if (monitor_reset) {
  964. EFX_ERR(efx, "hardware monitor detected a fault: "
  965. "triggering reset\n");
  966. efx_schedule_reset(efx, RESET_TYPE_MONITOR);
  967. } else {
  968. EFX_ERR(efx, "hardware monitor detected a fault, "
  969. "skipping reset\n");
  970. }
  971. }
  972. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  973. efx_monitor_interval);
  974. }
  975. /**************************************************************************
  976. *
  977. * ioctls
  978. *
  979. *************************************************************************/
  980. /* Net device ioctl
  981. * Context: process, rtnl_lock() held.
  982. */
  983. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  984. {
  985. struct efx_nic *efx = netdev_priv(net_dev);
  986. EFX_ASSERT_RESET_SERIALISED(efx);
  987. return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
  988. }
  989. /**************************************************************************
  990. *
  991. * NAPI interface
  992. *
  993. **************************************************************************/
  994. static int efx_init_napi(struct efx_nic *efx)
  995. {
  996. struct efx_channel *channel;
  997. int rc;
  998. efx_for_each_channel(channel, efx) {
  999. channel->napi_dev = efx->net_dev;
  1000. rc = efx_lro_init(&channel->lro_mgr, efx);
  1001. if (rc)
  1002. goto err;
  1003. }
  1004. return 0;
  1005. err:
  1006. efx_fini_napi(efx);
  1007. return rc;
  1008. }
  1009. static void efx_fini_napi(struct efx_nic *efx)
  1010. {
  1011. struct efx_channel *channel;
  1012. efx_for_each_channel(channel, efx) {
  1013. efx_lro_fini(&channel->lro_mgr);
  1014. channel->napi_dev = NULL;
  1015. }
  1016. }
  1017. /**************************************************************************
  1018. *
  1019. * Kernel netpoll interface
  1020. *
  1021. *************************************************************************/
  1022. #ifdef CONFIG_NET_POLL_CONTROLLER
  1023. /* Although in the common case interrupts will be disabled, this is not
  1024. * guaranteed. However, all our work happens inside the NAPI callback,
  1025. * so no locking is required.
  1026. */
  1027. static void efx_netpoll(struct net_device *net_dev)
  1028. {
  1029. struct efx_nic *efx = netdev_priv(net_dev);
  1030. struct efx_channel *channel;
  1031. efx_for_each_channel(channel, efx)
  1032. efx_schedule_channel(channel);
  1033. }
  1034. #endif
  1035. /**************************************************************************
  1036. *
  1037. * Kernel net device interface
  1038. *
  1039. *************************************************************************/
  1040. /* Context: process, rtnl_lock() held. */
  1041. static int efx_net_open(struct net_device *net_dev)
  1042. {
  1043. struct efx_nic *efx = netdev_priv(net_dev);
  1044. EFX_ASSERT_RESET_SERIALISED(efx);
  1045. EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
  1046. raw_smp_processor_id());
  1047. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1048. return -EBUSY;
  1049. efx_start_all(efx);
  1050. return 0;
  1051. }
  1052. /* Context: process, rtnl_lock() held.
  1053. * Note that the kernel will ignore our return code; this method
  1054. * should really be a void.
  1055. */
  1056. static int efx_net_stop(struct net_device *net_dev)
  1057. {
  1058. struct efx_nic *efx = netdev_priv(net_dev);
  1059. EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
  1060. raw_smp_processor_id());
  1061. /* Stop the device and flush all the channels */
  1062. efx_stop_all(efx);
  1063. efx_fini_channels(efx);
  1064. efx_init_channels(efx);
  1065. return 0;
  1066. }
  1067. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1068. static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
  1069. {
  1070. struct efx_nic *efx = netdev_priv(net_dev);
  1071. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1072. struct net_device_stats *stats = &net_dev->stats;
  1073. /* Update stats if possible, but do not wait if another thread
  1074. * is updating them (or resetting the NIC); slightly stale
  1075. * stats are acceptable.
  1076. */
  1077. if (!spin_trylock(&efx->stats_lock))
  1078. return stats;
  1079. if (efx->state == STATE_RUNNING) {
  1080. falcon_update_stats_xmac(efx);
  1081. falcon_update_nic_stats(efx);
  1082. }
  1083. spin_unlock(&efx->stats_lock);
  1084. stats->rx_packets = mac_stats->rx_packets;
  1085. stats->tx_packets = mac_stats->tx_packets;
  1086. stats->rx_bytes = mac_stats->rx_bytes;
  1087. stats->tx_bytes = mac_stats->tx_bytes;
  1088. stats->multicast = mac_stats->rx_multicast;
  1089. stats->collisions = mac_stats->tx_collision;
  1090. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1091. mac_stats->rx_length_error);
  1092. stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
  1093. stats->rx_crc_errors = mac_stats->rx_bad;
  1094. stats->rx_frame_errors = mac_stats->rx_align_error;
  1095. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1096. stats->rx_missed_errors = mac_stats->rx_missed;
  1097. stats->tx_window_errors = mac_stats->tx_late_collision;
  1098. stats->rx_errors = (stats->rx_length_errors +
  1099. stats->rx_over_errors +
  1100. stats->rx_crc_errors +
  1101. stats->rx_frame_errors +
  1102. stats->rx_fifo_errors +
  1103. stats->rx_missed_errors +
  1104. mac_stats->rx_symbol_error);
  1105. stats->tx_errors = (stats->tx_window_errors +
  1106. mac_stats->tx_bad);
  1107. return stats;
  1108. }
  1109. /* Context: netif_tx_lock held, BHs disabled. */
  1110. static void efx_watchdog(struct net_device *net_dev)
  1111. {
  1112. struct efx_nic *efx = netdev_priv(net_dev);
  1113. EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
  1114. atomic_read(&efx->netif_stop_count), efx->port_enabled,
  1115. monitor_reset ? "resetting channels" : "skipping reset");
  1116. if (monitor_reset)
  1117. efx_schedule_reset(efx, RESET_TYPE_MONITOR);
  1118. }
  1119. /* Context: process, rtnl_lock() held. */
  1120. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1121. {
  1122. struct efx_nic *efx = netdev_priv(net_dev);
  1123. int rc = 0;
  1124. EFX_ASSERT_RESET_SERIALISED(efx);
  1125. if (new_mtu > EFX_MAX_MTU)
  1126. return -EINVAL;
  1127. efx_stop_all(efx);
  1128. EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
  1129. efx_fini_channels(efx);
  1130. net_dev->mtu = new_mtu;
  1131. efx_init_channels(efx);
  1132. efx_start_all(efx);
  1133. return rc;
  1134. }
  1135. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1136. {
  1137. struct efx_nic *efx = netdev_priv(net_dev);
  1138. struct sockaddr *addr = data;
  1139. char *new_addr = addr->sa_data;
  1140. EFX_ASSERT_RESET_SERIALISED(efx);
  1141. if (!is_valid_ether_addr(new_addr)) {
  1142. DECLARE_MAC_BUF(mac);
  1143. EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
  1144. print_mac(mac, new_addr));
  1145. return -EINVAL;
  1146. }
  1147. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1148. /* Reconfigure the MAC */
  1149. efx_reconfigure_port(efx);
  1150. return 0;
  1151. }
  1152. /* Context: netif_tx_lock held, BHs disabled. */
  1153. static void efx_set_multicast_list(struct net_device *net_dev)
  1154. {
  1155. struct efx_nic *efx = netdev_priv(net_dev);
  1156. struct dev_mc_list *mc_list = net_dev->mc_list;
  1157. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1158. bool promiscuous;
  1159. u32 crc;
  1160. int bit;
  1161. int i;
  1162. /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
  1163. promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1164. if (efx->promiscuous != promiscuous) {
  1165. efx->promiscuous = promiscuous;
  1166. /* Close the window between efx_stop_port() and efx_flush_all()
  1167. * by only queuing work when the port is enabled. */
  1168. if (efx->port_enabled)
  1169. queue_work(efx->workqueue, &efx->reconfigure_work);
  1170. }
  1171. /* Build multicast hash table */
  1172. if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1173. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1174. } else {
  1175. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1176. for (i = 0; i < net_dev->mc_count; i++) {
  1177. crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
  1178. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1179. set_bit_le(bit, mc_hash->byte);
  1180. mc_list = mc_list->next;
  1181. }
  1182. }
  1183. /* Create and activate new global multicast hash table */
  1184. falcon_set_multicast_hash(efx);
  1185. }
  1186. static int efx_netdev_event(struct notifier_block *this,
  1187. unsigned long event, void *ptr)
  1188. {
  1189. struct net_device *net_dev = ptr;
  1190. if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
  1191. struct efx_nic *efx = netdev_priv(net_dev);
  1192. strcpy(efx->name, net_dev->name);
  1193. }
  1194. return NOTIFY_DONE;
  1195. }
  1196. static struct notifier_block efx_netdev_notifier = {
  1197. .notifier_call = efx_netdev_event,
  1198. };
  1199. static int efx_register_netdev(struct efx_nic *efx)
  1200. {
  1201. struct net_device *net_dev = efx->net_dev;
  1202. int rc;
  1203. net_dev->watchdog_timeo = 5 * HZ;
  1204. net_dev->irq = efx->pci_dev->irq;
  1205. net_dev->open = efx_net_open;
  1206. net_dev->stop = efx_net_stop;
  1207. net_dev->get_stats = efx_net_stats;
  1208. net_dev->tx_timeout = &efx_watchdog;
  1209. net_dev->hard_start_xmit = efx_hard_start_xmit;
  1210. net_dev->do_ioctl = efx_ioctl;
  1211. net_dev->change_mtu = efx_change_mtu;
  1212. net_dev->set_mac_address = efx_set_mac_address;
  1213. net_dev->set_multicast_list = efx_set_multicast_list;
  1214. #ifdef CONFIG_NET_POLL_CONTROLLER
  1215. net_dev->poll_controller = efx_netpoll;
  1216. #endif
  1217. SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
  1218. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1219. /* Always start with carrier off; PHY events will detect the link */
  1220. netif_carrier_off(efx->net_dev);
  1221. /* Clear MAC statistics */
  1222. falcon_update_stats_xmac(efx);
  1223. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1224. rc = register_netdev(net_dev);
  1225. if (rc) {
  1226. EFX_ERR(efx, "could not register net dev\n");
  1227. return rc;
  1228. }
  1229. strcpy(efx->name, net_dev->name);
  1230. return 0;
  1231. }
  1232. static void efx_unregister_netdev(struct efx_nic *efx)
  1233. {
  1234. struct efx_tx_queue *tx_queue;
  1235. if (!efx->net_dev)
  1236. return;
  1237. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1238. /* Free up any skbs still remaining. This has to happen before
  1239. * we try to unregister the netdev as running their destructors
  1240. * may be needed to get the device ref. count to 0. */
  1241. efx_for_each_tx_queue(tx_queue, efx)
  1242. efx_release_tx_buffers(tx_queue);
  1243. if (efx_dev_registered(efx)) {
  1244. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1245. unregister_netdev(efx->net_dev);
  1246. }
  1247. }
  1248. /**************************************************************************
  1249. *
  1250. * Device reset and suspend
  1251. *
  1252. **************************************************************************/
  1253. /* Tears down the entire software state and most of the hardware state
  1254. * before reset. */
  1255. static void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
  1256. {
  1257. int rc;
  1258. EFX_ASSERT_RESET_SERIALISED(efx);
  1259. /* The net_dev->get_stats handler is quite slow, and will fail
  1260. * if a fetch is pending over reset. Serialise against it. */
  1261. spin_lock(&efx->stats_lock);
  1262. spin_unlock(&efx->stats_lock);
  1263. efx_stop_all(efx);
  1264. mutex_lock(&efx->mac_lock);
  1265. rc = falcon_xmac_get_settings(efx, ecmd);
  1266. if (rc)
  1267. EFX_ERR(efx, "could not back up PHY settings\n");
  1268. efx_fini_channels(efx);
  1269. }
  1270. /* This function will always ensure that the locks acquired in
  1271. * efx_reset_down() are released. A failure return code indicates
  1272. * that we were unable to reinitialise the hardware, and the
  1273. * driver should be disabled. If ok is false, then the rx and tx
  1274. * engines are not restarted, pending a RESET_DISABLE. */
  1275. static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd,
  1276. bool ok)
  1277. {
  1278. int rc;
  1279. EFX_ASSERT_RESET_SERIALISED(efx);
  1280. rc = falcon_init_nic(efx);
  1281. if (rc) {
  1282. EFX_ERR(efx, "failed to initialise NIC\n");
  1283. ok = false;
  1284. }
  1285. if (ok) {
  1286. efx_init_channels(efx);
  1287. if (falcon_xmac_set_settings(efx, ecmd))
  1288. EFX_ERR(efx, "could not restore PHY settings\n");
  1289. }
  1290. mutex_unlock(&efx->mac_lock);
  1291. if (ok)
  1292. efx_start_all(efx);
  1293. return rc;
  1294. }
  1295. /* Reset the NIC as transparently as possible. Do not reset the PHY
  1296. * Note that the reset may fail, in which case the card will be left
  1297. * in a most-probably-unusable state.
  1298. *
  1299. * This function will sleep. You cannot reset from within an atomic
  1300. * state; use efx_schedule_reset() instead.
  1301. *
  1302. * Grabs the rtnl_lock.
  1303. */
  1304. static int efx_reset(struct efx_nic *efx)
  1305. {
  1306. struct ethtool_cmd ecmd;
  1307. enum reset_type method = efx->reset_pending;
  1308. int rc;
  1309. /* Serialise with kernel interfaces */
  1310. rtnl_lock();
  1311. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1312. * flag set so that efx_pci_probe_main will be retried */
  1313. if (efx->state != STATE_RUNNING) {
  1314. EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
  1315. goto unlock_rtnl;
  1316. }
  1317. efx->state = STATE_RESETTING;
  1318. EFX_INFO(efx, "resetting (%d)\n", method);
  1319. efx_reset_down(efx, &ecmd);
  1320. rc = falcon_reset_hw(efx, method);
  1321. if (rc) {
  1322. EFX_ERR(efx, "failed to reset hardware\n");
  1323. goto fail;
  1324. }
  1325. /* Allow resets to be rescheduled. */
  1326. efx->reset_pending = RESET_TYPE_NONE;
  1327. /* Reinitialise bus-mastering, which may have been turned off before
  1328. * the reset was scheduled. This is still appropriate, even in the
  1329. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1330. * can respond to requests. */
  1331. pci_set_master(efx->pci_dev);
  1332. /* Leave device stopped if necessary */
  1333. if (method == RESET_TYPE_DISABLE) {
  1334. rc = -EIO;
  1335. goto fail;
  1336. }
  1337. rc = efx_reset_up(efx, &ecmd, true);
  1338. if (rc)
  1339. goto disable;
  1340. EFX_LOG(efx, "reset complete\n");
  1341. efx->state = STATE_RUNNING;
  1342. unlock_rtnl:
  1343. rtnl_unlock();
  1344. return 0;
  1345. fail:
  1346. efx_reset_up(efx, &ecmd, false);
  1347. disable:
  1348. EFX_ERR(efx, "has been disabled\n");
  1349. efx->state = STATE_DISABLED;
  1350. rtnl_unlock();
  1351. efx_unregister_netdev(efx);
  1352. efx_fini_port(efx);
  1353. return rc;
  1354. }
  1355. /* The worker thread exists so that code that cannot sleep can
  1356. * schedule a reset for later.
  1357. */
  1358. static void efx_reset_work(struct work_struct *data)
  1359. {
  1360. struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
  1361. efx_reset(nic);
  1362. }
  1363. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1364. {
  1365. enum reset_type method;
  1366. if (efx->reset_pending != RESET_TYPE_NONE) {
  1367. EFX_INFO(efx, "quenching already scheduled reset\n");
  1368. return;
  1369. }
  1370. switch (type) {
  1371. case RESET_TYPE_INVISIBLE:
  1372. case RESET_TYPE_ALL:
  1373. case RESET_TYPE_WORLD:
  1374. case RESET_TYPE_DISABLE:
  1375. method = type;
  1376. break;
  1377. case RESET_TYPE_RX_RECOVERY:
  1378. case RESET_TYPE_RX_DESC_FETCH:
  1379. case RESET_TYPE_TX_DESC_FETCH:
  1380. case RESET_TYPE_TX_SKIP:
  1381. method = RESET_TYPE_INVISIBLE;
  1382. break;
  1383. default:
  1384. method = RESET_TYPE_ALL;
  1385. break;
  1386. }
  1387. if (method != type)
  1388. EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
  1389. else
  1390. EFX_LOG(efx, "scheduling reset (%d)\n", method);
  1391. efx->reset_pending = method;
  1392. queue_work(efx->reset_workqueue, &efx->reset_work);
  1393. }
  1394. /**************************************************************************
  1395. *
  1396. * List of NICs we support
  1397. *
  1398. **************************************************************************/
  1399. /* PCI device ID table */
  1400. static struct pci_device_id efx_pci_table[] __devinitdata = {
  1401. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1402. .driver_data = (unsigned long) &falcon_a_nic_type},
  1403. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1404. .driver_data = (unsigned long) &falcon_b_nic_type},
  1405. {0} /* end of list */
  1406. };
  1407. /**************************************************************************
  1408. *
  1409. * Dummy PHY/MAC/Board operations
  1410. *
  1411. * Can be used for some unimplemented operations
  1412. * Needed so all function pointers are valid and do not have to be tested
  1413. * before use
  1414. *
  1415. **************************************************************************/
  1416. int efx_port_dummy_op_int(struct efx_nic *efx)
  1417. {
  1418. return 0;
  1419. }
  1420. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1421. void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
  1422. static struct efx_phy_operations efx_dummy_phy_operations = {
  1423. .init = efx_port_dummy_op_int,
  1424. .reconfigure = efx_port_dummy_op_void,
  1425. .check_hw = efx_port_dummy_op_int,
  1426. .fini = efx_port_dummy_op_void,
  1427. .clear_interrupt = efx_port_dummy_op_void,
  1428. .reset_xaui = efx_port_dummy_op_void,
  1429. };
  1430. static struct efx_board efx_dummy_board_info = {
  1431. .init = efx_port_dummy_op_int,
  1432. .init_leds = efx_port_dummy_op_int,
  1433. .set_fault_led = efx_port_dummy_op_blink,
  1434. .blink = efx_port_dummy_op_blink,
  1435. .fini = efx_port_dummy_op_void,
  1436. };
  1437. /**************************************************************************
  1438. *
  1439. * Data housekeeping
  1440. *
  1441. **************************************************************************/
  1442. /* This zeroes out and then fills in the invariants in a struct
  1443. * efx_nic (including all sub-structures).
  1444. */
  1445. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1446. struct pci_dev *pci_dev, struct net_device *net_dev)
  1447. {
  1448. struct efx_channel *channel;
  1449. struct efx_tx_queue *tx_queue;
  1450. struct efx_rx_queue *rx_queue;
  1451. int i, rc;
  1452. /* Initialise common structures */
  1453. memset(efx, 0, sizeof(*efx));
  1454. spin_lock_init(&efx->biu_lock);
  1455. spin_lock_init(&efx->phy_lock);
  1456. INIT_WORK(&efx->reset_work, efx_reset_work);
  1457. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1458. efx->pci_dev = pci_dev;
  1459. efx->state = STATE_INIT;
  1460. efx->reset_pending = RESET_TYPE_NONE;
  1461. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1462. efx->board_info = efx_dummy_board_info;
  1463. efx->net_dev = net_dev;
  1464. efx->rx_checksum_enabled = true;
  1465. spin_lock_init(&efx->netif_stop_lock);
  1466. spin_lock_init(&efx->stats_lock);
  1467. mutex_init(&efx->mac_lock);
  1468. efx->phy_op = &efx_dummy_phy_operations;
  1469. efx->mii.dev = net_dev;
  1470. INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
  1471. atomic_set(&efx->netif_stop_count, 1);
  1472. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1473. channel = &efx->channel[i];
  1474. channel->efx = efx;
  1475. channel->channel = i;
  1476. channel->work_pending = false;
  1477. }
  1478. for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
  1479. tx_queue = &efx->tx_queue[i];
  1480. tx_queue->efx = efx;
  1481. tx_queue->queue = i;
  1482. tx_queue->buffer = NULL;
  1483. tx_queue->channel = &efx->channel[0]; /* for safety */
  1484. tx_queue->tso_headers_free = NULL;
  1485. }
  1486. for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
  1487. rx_queue = &efx->rx_queue[i];
  1488. rx_queue->efx = efx;
  1489. rx_queue->queue = i;
  1490. rx_queue->channel = &efx->channel[0]; /* for safety */
  1491. rx_queue->buffer = NULL;
  1492. spin_lock_init(&rx_queue->add_lock);
  1493. INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
  1494. }
  1495. efx->type = type;
  1496. /* Sanity-check NIC type */
  1497. EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
  1498. (efx->type->txd_ring_mask + 1));
  1499. EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
  1500. (efx->type->rxd_ring_mask + 1));
  1501. EFX_BUG_ON_PARANOID(efx->type->evq_size &
  1502. (efx->type->evq_size - 1));
  1503. /* As close as we can get to guaranteeing that we don't overflow */
  1504. EFX_BUG_ON_PARANOID(efx->type->evq_size <
  1505. (efx->type->txd_ring_mask + 1 +
  1506. efx->type->rxd_ring_mask + 1));
  1507. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1508. /* Higher numbered interrupt modes are less capable! */
  1509. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1510. interrupt_mode);
  1511. efx->workqueue = create_singlethread_workqueue("sfc_work");
  1512. if (!efx->workqueue) {
  1513. rc = -ENOMEM;
  1514. goto fail1;
  1515. }
  1516. efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
  1517. if (!efx->reset_workqueue) {
  1518. rc = -ENOMEM;
  1519. goto fail2;
  1520. }
  1521. return 0;
  1522. fail2:
  1523. destroy_workqueue(efx->workqueue);
  1524. efx->workqueue = NULL;
  1525. fail1:
  1526. return rc;
  1527. }
  1528. static void efx_fini_struct(struct efx_nic *efx)
  1529. {
  1530. if (efx->reset_workqueue) {
  1531. destroy_workqueue(efx->reset_workqueue);
  1532. efx->reset_workqueue = NULL;
  1533. }
  1534. if (efx->workqueue) {
  1535. destroy_workqueue(efx->workqueue);
  1536. efx->workqueue = NULL;
  1537. }
  1538. }
  1539. /**************************************************************************
  1540. *
  1541. * PCI interface
  1542. *
  1543. **************************************************************************/
  1544. /* Main body of final NIC shutdown code
  1545. * This is called only at module unload (or hotplug removal).
  1546. */
  1547. static void efx_pci_remove_main(struct efx_nic *efx)
  1548. {
  1549. EFX_ASSERT_RESET_SERIALISED(efx);
  1550. /* Skip everything if we never obtained a valid membase */
  1551. if (!efx->membase)
  1552. return;
  1553. efx_fini_channels(efx);
  1554. efx_fini_port(efx);
  1555. /* Shutdown the board, then the NIC and board state */
  1556. efx->board_info.fini(efx);
  1557. falcon_fini_interrupt(efx);
  1558. efx_fini_napi(efx);
  1559. efx_remove_all(efx);
  1560. }
  1561. /* Final NIC shutdown
  1562. * This is called only at module unload (or hotplug removal).
  1563. */
  1564. static void efx_pci_remove(struct pci_dev *pci_dev)
  1565. {
  1566. struct efx_nic *efx;
  1567. efx = pci_get_drvdata(pci_dev);
  1568. if (!efx)
  1569. return;
  1570. /* Mark the NIC as fini, then stop the interface */
  1571. rtnl_lock();
  1572. efx->state = STATE_FINI;
  1573. dev_close(efx->net_dev);
  1574. /* Allow any queued efx_resets() to complete */
  1575. rtnl_unlock();
  1576. if (efx->membase == NULL)
  1577. goto out;
  1578. efx_unregister_netdev(efx);
  1579. /* Wait for any scheduled resets to complete. No more will be
  1580. * scheduled from this point because efx_stop_all() has been
  1581. * called, we are no longer registered with driverlink, and
  1582. * the net_device's have been removed. */
  1583. flush_workqueue(efx->reset_workqueue);
  1584. efx_pci_remove_main(efx);
  1585. out:
  1586. efx_fini_io(efx);
  1587. EFX_LOG(efx, "shutdown successful\n");
  1588. pci_set_drvdata(pci_dev, NULL);
  1589. efx_fini_struct(efx);
  1590. free_netdev(efx->net_dev);
  1591. };
  1592. /* Main body of NIC initialisation
  1593. * This is called at module load (or hotplug insertion, theoretically).
  1594. */
  1595. static int efx_pci_probe_main(struct efx_nic *efx)
  1596. {
  1597. int rc;
  1598. /* Do start-of-day initialisation */
  1599. rc = efx_probe_all(efx);
  1600. if (rc)
  1601. goto fail1;
  1602. rc = efx_init_napi(efx);
  1603. if (rc)
  1604. goto fail2;
  1605. /* Initialise the board */
  1606. rc = efx->board_info.init(efx);
  1607. if (rc) {
  1608. EFX_ERR(efx, "failed to initialise board\n");
  1609. goto fail3;
  1610. }
  1611. rc = falcon_init_nic(efx);
  1612. if (rc) {
  1613. EFX_ERR(efx, "failed to initialise NIC\n");
  1614. goto fail4;
  1615. }
  1616. rc = efx_init_port(efx);
  1617. if (rc) {
  1618. EFX_ERR(efx, "failed to initialise port\n");
  1619. goto fail5;
  1620. }
  1621. efx_init_channels(efx);
  1622. rc = falcon_init_interrupt(efx);
  1623. if (rc)
  1624. goto fail6;
  1625. return 0;
  1626. fail6:
  1627. efx_fini_channels(efx);
  1628. efx_fini_port(efx);
  1629. fail5:
  1630. fail4:
  1631. fail3:
  1632. efx_fini_napi(efx);
  1633. fail2:
  1634. efx_remove_all(efx);
  1635. fail1:
  1636. return rc;
  1637. }
  1638. /* NIC initialisation
  1639. *
  1640. * This is called at module load (or hotplug insertion,
  1641. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  1642. * sets up and registers the network devices with the kernel and hooks
  1643. * the interrupt service routine. It does not prepare the device for
  1644. * transmission; this is left to the first time one of the network
  1645. * interfaces is brought up (i.e. efx_net_open).
  1646. */
  1647. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  1648. const struct pci_device_id *entry)
  1649. {
  1650. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  1651. struct net_device *net_dev;
  1652. struct efx_nic *efx;
  1653. int i, rc;
  1654. /* Allocate and initialise a struct net_device and struct efx_nic */
  1655. net_dev = alloc_etherdev(sizeof(*efx));
  1656. if (!net_dev)
  1657. return -ENOMEM;
  1658. net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
  1659. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1660. if (lro)
  1661. net_dev->features |= NETIF_F_LRO;
  1662. /* Mask for features that also apply to VLAN devices */
  1663. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  1664. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1665. efx = netdev_priv(net_dev);
  1666. pci_set_drvdata(pci_dev, efx);
  1667. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  1668. if (rc)
  1669. goto fail1;
  1670. EFX_INFO(efx, "Solarflare Communications NIC detected\n");
  1671. /* Set up basic I/O (BAR mappings etc) */
  1672. rc = efx_init_io(efx);
  1673. if (rc)
  1674. goto fail2;
  1675. /* No serialisation is required with the reset path because
  1676. * we're in STATE_INIT. */
  1677. for (i = 0; i < 5; i++) {
  1678. rc = efx_pci_probe_main(efx);
  1679. if (rc == 0)
  1680. break;
  1681. /* Serialise against efx_reset(). No more resets will be
  1682. * scheduled since efx_stop_all() has been called, and we
  1683. * have not and never have been registered with either
  1684. * the rtnetlink or driverlink layers. */
  1685. flush_workqueue(efx->reset_workqueue);
  1686. /* Retry if a recoverably reset event has been scheduled */
  1687. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  1688. (efx->reset_pending != RESET_TYPE_ALL))
  1689. goto fail3;
  1690. efx->reset_pending = RESET_TYPE_NONE;
  1691. }
  1692. if (rc) {
  1693. EFX_ERR(efx, "Could not reset NIC\n");
  1694. goto fail4;
  1695. }
  1696. /* Switch to the running state before we expose the device to
  1697. * the OS. This is to ensure that the initial gathering of
  1698. * MAC stats succeeds. */
  1699. rtnl_lock();
  1700. efx->state = STATE_RUNNING;
  1701. rtnl_unlock();
  1702. rc = efx_register_netdev(efx);
  1703. if (rc)
  1704. goto fail5;
  1705. EFX_LOG(efx, "initialisation successful\n");
  1706. return 0;
  1707. fail5:
  1708. efx_pci_remove_main(efx);
  1709. fail4:
  1710. fail3:
  1711. efx_fini_io(efx);
  1712. fail2:
  1713. efx_fini_struct(efx);
  1714. fail1:
  1715. EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
  1716. free_netdev(net_dev);
  1717. return rc;
  1718. }
  1719. static struct pci_driver efx_pci_driver = {
  1720. .name = EFX_DRIVER_NAME,
  1721. .id_table = efx_pci_table,
  1722. .probe = efx_pci_probe,
  1723. .remove = efx_pci_remove,
  1724. };
  1725. /**************************************************************************
  1726. *
  1727. * Kernel module interface
  1728. *
  1729. *************************************************************************/
  1730. module_param(interrupt_mode, uint, 0444);
  1731. MODULE_PARM_DESC(interrupt_mode,
  1732. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  1733. static int __init efx_init_module(void)
  1734. {
  1735. int rc;
  1736. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  1737. rc = register_netdevice_notifier(&efx_netdev_notifier);
  1738. if (rc)
  1739. goto err_notifier;
  1740. refill_workqueue = create_workqueue("sfc_refill");
  1741. if (!refill_workqueue) {
  1742. rc = -ENOMEM;
  1743. goto err_refill;
  1744. }
  1745. rc = pci_register_driver(&efx_pci_driver);
  1746. if (rc < 0)
  1747. goto err_pci;
  1748. return 0;
  1749. err_pci:
  1750. destroy_workqueue(refill_workqueue);
  1751. err_refill:
  1752. unregister_netdevice_notifier(&efx_netdev_notifier);
  1753. err_notifier:
  1754. return rc;
  1755. }
  1756. static void __exit efx_exit_module(void)
  1757. {
  1758. printk(KERN_INFO "Solarflare NET driver unloading\n");
  1759. pci_unregister_driver(&efx_pci_driver);
  1760. destroy_workqueue(refill_workqueue);
  1761. unregister_netdevice_notifier(&efx_netdev_notifier);
  1762. }
  1763. module_init(efx_init_module);
  1764. module_exit(efx_exit_module);
  1765. MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
  1766. "Solarflare Communications");
  1767. MODULE_DESCRIPTION("Solarflare Communications network driver");
  1768. MODULE_LICENSE("GPL");
  1769. MODULE_DEVICE_TABLE(pci, efx_pci_table);