cpufreq_ondemand.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. #include <linux/hrtimer.h>
  21. #include <linux/tick.h>
  22. #include <linux/ktime.h>
  23. #include <linux/sched.h>
  24. /*
  25. * dbs is used in this file as a shortform for demandbased switching
  26. * It helps to keep variable names smaller, simpler
  27. */
  28. #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
  31. #define MICRO_FREQUENCY_UP_THRESHOLD (95)
  32. #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
  33. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  34. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  35. /*
  36. * The polling frequency of this governor depends on the capability of
  37. * the processor. Default polling frequency is 1000 times the transition
  38. * latency of the processor. The governor will work on any processor with
  39. * transition latency <= 10mS, using appropriate sampling
  40. * rate.
  41. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  42. * this governor will not work.
  43. * All times here are in uS.
  44. */
  45. #define MIN_SAMPLING_RATE_RATIO (2)
  46. static unsigned int min_sampling_rate;
  47. #define LATENCY_MULTIPLIER (1000)
  48. #define MIN_LATENCY_MULTIPLIER (100)
  49. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  50. static void do_dbs_timer(struct work_struct *work);
  51. /* Sampling types */
  52. enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  53. struct cpu_dbs_info_s {
  54. cputime64_t prev_cpu_idle;
  55. cputime64_t prev_cpu_wall;
  56. cputime64_t prev_cpu_nice;
  57. struct cpufreq_policy *cur_policy;
  58. struct delayed_work work;
  59. struct cpufreq_frequency_table *freq_table;
  60. unsigned int freq_lo;
  61. unsigned int freq_lo_jiffies;
  62. unsigned int freq_hi_jiffies;
  63. int cpu;
  64. unsigned int enable:1,
  65. sample_type:1;
  66. };
  67. static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
  68. static unsigned int dbs_enable; /* number of CPUs using this policy */
  69. /*
  70. * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
  71. * lock and dbs_mutex. cpu_hotplug lock should always be held before
  72. * dbs_mutex. If any function that can potentially take cpu_hotplug lock
  73. * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
  74. * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
  75. * is recursive for the same process. -Venki
  76. * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
  77. * would deadlock with cancel_delayed_work_sync(), which is needed for proper
  78. * raceless workqueue teardown.
  79. */
  80. static DEFINE_MUTEX(dbs_mutex);
  81. static struct workqueue_struct *kondemand_wq;
  82. static struct dbs_tuners {
  83. unsigned int sampling_rate;
  84. unsigned int up_threshold;
  85. unsigned int down_differential;
  86. unsigned int ignore_nice;
  87. unsigned int powersave_bias;
  88. } dbs_tuners_ins = {
  89. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  90. .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
  91. .ignore_nice = 0,
  92. .powersave_bias = 0,
  93. };
  94. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  95. cputime64_t *wall)
  96. {
  97. cputime64_t idle_time;
  98. cputime64_t cur_wall_time;
  99. cputime64_t busy_time;
  100. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  101. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  102. kstat_cpu(cpu).cpustat.system);
  103. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  104. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  105. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  106. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  107. idle_time = cputime64_sub(cur_wall_time, busy_time);
  108. if (wall)
  109. *wall = cur_wall_time;
  110. return idle_time;
  111. }
  112. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  113. {
  114. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  115. if (idle_time == -1ULL)
  116. return get_cpu_idle_time_jiffy(cpu, wall);
  117. return idle_time;
  118. }
  119. /*
  120. * Find right freq to be set now with powersave_bias on.
  121. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  122. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  123. */
  124. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  125. unsigned int freq_next,
  126. unsigned int relation)
  127. {
  128. unsigned int freq_req, freq_reduc, freq_avg;
  129. unsigned int freq_hi, freq_lo;
  130. unsigned int index = 0;
  131. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  132. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
  133. policy->cpu);
  134. if (!dbs_info->freq_table) {
  135. dbs_info->freq_lo = 0;
  136. dbs_info->freq_lo_jiffies = 0;
  137. return freq_next;
  138. }
  139. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  140. relation, &index);
  141. freq_req = dbs_info->freq_table[index].frequency;
  142. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  143. freq_avg = freq_req - freq_reduc;
  144. /* Find freq bounds for freq_avg in freq_table */
  145. index = 0;
  146. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  147. CPUFREQ_RELATION_H, &index);
  148. freq_lo = dbs_info->freq_table[index].frequency;
  149. index = 0;
  150. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  151. CPUFREQ_RELATION_L, &index);
  152. freq_hi = dbs_info->freq_table[index].frequency;
  153. /* Find out how long we have to be in hi and lo freqs */
  154. if (freq_hi == freq_lo) {
  155. dbs_info->freq_lo = 0;
  156. dbs_info->freq_lo_jiffies = 0;
  157. return freq_lo;
  158. }
  159. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  160. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  161. jiffies_hi += ((freq_hi - freq_lo) / 2);
  162. jiffies_hi /= (freq_hi - freq_lo);
  163. jiffies_lo = jiffies_total - jiffies_hi;
  164. dbs_info->freq_lo = freq_lo;
  165. dbs_info->freq_lo_jiffies = jiffies_lo;
  166. dbs_info->freq_hi_jiffies = jiffies_hi;
  167. return freq_hi;
  168. }
  169. static void ondemand_powersave_bias_init(void)
  170. {
  171. int i;
  172. for_each_online_cpu(i) {
  173. struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, i);
  174. dbs_info->freq_table = cpufreq_frequency_get_table(i);
  175. dbs_info->freq_lo = 0;
  176. }
  177. }
  178. /************************** sysfs interface ************************/
  179. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  180. {
  181. printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
  182. "sysfs file is deprecated - used by: %s\n", current->comm);
  183. return sprintf(buf, "%u\n", -1U);
  184. }
  185. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  186. {
  187. return sprintf(buf, "%u\n", min_sampling_rate);
  188. }
  189. #define define_one_ro(_name) \
  190. static struct freq_attr _name = \
  191. __ATTR(_name, 0444, show_##_name, NULL)
  192. define_one_ro(sampling_rate_max);
  193. define_one_ro(sampling_rate_min);
  194. /* cpufreq_ondemand Governor Tunables */
  195. #define show_one(file_name, object) \
  196. static ssize_t show_##file_name \
  197. (struct cpufreq_policy *unused, char *buf) \
  198. { \
  199. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  200. }
  201. show_one(sampling_rate, sampling_rate);
  202. show_one(up_threshold, up_threshold);
  203. show_one(ignore_nice_load, ignore_nice);
  204. show_one(powersave_bias, powersave_bias);
  205. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  206. const char *buf, size_t count)
  207. {
  208. unsigned int input;
  209. int ret;
  210. ret = sscanf(buf, "%u", &input);
  211. mutex_lock(&dbs_mutex);
  212. if (ret != 1) {
  213. mutex_unlock(&dbs_mutex);
  214. return -EINVAL;
  215. }
  216. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  217. mutex_unlock(&dbs_mutex);
  218. return count;
  219. }
  220. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  221. const char *buf, size_t count)
  222. {
  223. unsigned int input;
  224. int ret;
  225. ret = sscanf(buf, "%u", &input);
  226. mutex_lock(&dbs_mutex);
  227. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  228. input < MIN_FREQUENCY_UP_THRESHOLD) {
  229. mutex_unlock(&dbs_mutex);
  230. return -EINVAL;
  231. }
  232. dbs_tuners_ins.up_threshold = input;
  233. mutex_unlock(&dbs_mutex);
  234. return count;
  235. }
  236. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  237. const char *buf, size_t count)
  238. {
  239. unsigned int input;
  240. int ret;
  241. unsigned int j;
  242. ret = sscanf(buf, "%u", &input);
  243. if (ret != 1)
  244. return -EINVAL;
  245. if (input > 1)
  246. input = 1;
  247. mutex_lock(&dbs_mutex);
  248. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  249. mutex_unlock(&dbs_mutex);
  250. return count;
  251. }
  252. dbs_tuners_ins.ignore_nice = input;
  253. /* we need to re-evaluate prev_cpu_idle */
  254. for_each_online_cpu(j) {
  255. struct cpu_dbs_info_s *dbs_info;
  256. dbs_info = &per_cpu(od_cpu_dbs_info, j);
  257. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  258. &dbs_info->prev_cpu_wall);
  259. if (dbs_tuners_ins.ignore_nice)
  260. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  261. }
  262. mutex_unlock(&dbs_mutex);
  263. return count;
  264. }
  265. static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
  266. const char *buf, size_t count)
  267. {
  268. unsigned int input;
  269. int ret;
  270. ret = sscanf(buf, "%u", &input);
  271. if (ret != 1)
  272. return -EINVAL;
  273. if (input > 1000)
  274. input = 1000;
  275. mutex_lock(&dbs_mutex);
  276. dbs_tuners_ins.powersave_bias = input;
  277. ondemand_powersave_bias_init();
  278. mutex_unlock(&dbs_mutex);
  279. return count;
  280. }
  281. #define define_one_rw(_name) \
  282. static struct freq_attr _name = \
  283. __ATTR(_name, 0644, show_##_name, store_##_name)
  284. define_one_rw(sampling_rate);
  285. define_one_rw(up_threshold);
  286. define_one_rw(ignore_nice_load);
  287. define_one_rw(powersave_bias);
  288. static struct attribute *dbs_attributes[] = {
  289. &sampling_rate_max.attr,
  290. &sampling_rate_min.attr,
  291. &sampling_rate.attr,
  292. &up_threshold.attr,
  293. &ignore_nice_load.attr,
  294. &powersave_bias.attr,
  295. NULL
  296. };
  297. static struct attribute_group dbs_attr_group = {
  298. .attrs = dbs_attributes,
  299. .name = "ondemand",
  300. };
  301. /************************** sysfs end ************************/
  302. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  303. {
  304. unsigned int max_load_freq;
  305. struct cpufreq_policy *policy;
  306. unsigned int j;
  307. if (!this_dbs_info->enable)
  308. return;
  309. this_dbs_info->freq_lo = 0;
  310. policy = this_dbs_info->cur_policy;
  311. /*
  312. * Every sampling_rate, we check, if current idle time is less
  313. * than 20% (default), then we try to increase frequency
  314. * Every sampling_rate, we look for a the lowest
  315. * frequency which can sustain the load while keeping idle time over
  316. * 30%. If such a frequency exist, we try to decrease to this frequency.
  317. *
  318. * Any frequency increase takes it to the maximum frequency.
  319. * Frequency reduction happens at minimum steps of
  320. * 5% (default) of current frequency
  321. */
  322. /* Get Absolute Load - in terms of freq */
  323. max_load_freq = 0;
  324. for_each_cpu(j, policy->cpus) {
  325. struct cpu_dbs_info_s *j_dbs_info;
  326. cputime64_t cur_wall_time, cur_idle_time;
  327. unsigned int idle_time, wall_time;
  328. unsigned int load, load_freq;
  329. int freq_avg;
  330. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  331. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  332. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  333. j_dbs_info->prev_cpu_wall);
  334. j_dbs_info->prev_cpu_wall = cur_wall_time;
  335. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  336. j_dbs_info->prev_cpu_idle);
  337. j_dbs_info->prev_cpu_idle = cur_idle_time;
  338. if (dbs_tuners_ins.ignore_nice) {
  339. cputime64_t cur_nice;
  340. unsigned long cur_nice_jiffies;
  341. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  342. j_dbs_info->prev_cpu_nice);
  343. /*
  344. * Assumption: nice time between sampling periods will
  345. * be less than 2^32 jiffies for 32 bit sys
  346. */
  347. cur_nice_jiffies = (unsigned long)
  348. cputime64_to_jiffies64(cur_nice);
  349. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  350. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  351. }
  352. if (unlikely(!wall_time || wall_time < idle_time))
  353. continue;
  354. load = 100 * (wall_time - idle_time) / wall_time;
  355. freq_avg = __cpufreq_driver_getavg(policy, j);
  356. if (freq_avg <= 0)
  357. freq_avg = policy->cur;
  358. load_freq = load * freq_avg;
  359. if (load_freq > max_load_freq)
  360. max_load_freq = load_freq;
  361. }
  362. /* Check for frequency increase */
  363. if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
  364. /* if we are already at full speed then break out early */
  365. if (!dbs_tuners_ins.powersave_bias) {
  366. if (policy->cur == policy->max)
  367. return;
  368. __cpufreq_driver_target(policy, policy->max,
  369. CPUFREQ_RELATION_H);
  370. } else {
  371. int freq = powersave_bias_target(policy, policy->max,
  372. CPUFREQ_RELATION_H);
  373. __cpufreq_driver_target(policy, freq,
  374. CPUFREQ_RELATION_L);
  375. }
  376. return;
  377. }
  378. /* Check for frequency decrease */
  379. /* if we cannot reduce the frequency anymore, break out early */
  380. if (policy->cur == policy->min)
  381. return;
  382. /*
  383. * The optimal frequency is the frequency that is the lowest that
  384. * can support the current CPU usage without triggering the up
  385. * policy. To be safe, we focus 10 points under the threshold.
  386. */
  387. if (max_load_freq <
  388. (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
  389. policy->cur) {
  390. unsigned int freq_next;
  391. freq_next = max_load_freq /
  392. (dbs_tuners_ins.up_threshold -
  393. dbs_tuners_ins.down_differential);
  394. if (!dbs_tuners_ins.powersave_bias) {
  395. __cpufreq_driver_target(policy, freq_next,
  396. CPUFREQ_RELATION_L);
  397. } else {
  398. int freq = powersave_bias_target(policy, freq_next,
  399. CPUFREQ_RELATION_L);
  400. __cpufreq_driver_target(policy, freq,
  401. CPUFREQ_RELATION_L);
  402. }
  403. }
  404. }
  405. static void do_dbs_timer(struct work_struct *work)
  406. {
  407. struct cpu_dbs_info_s *dbs_info =
  408. container_of(work, struct cpu_dbs_info_s, work.work);
  409. unsigned int cpu = dbs_info->cpu;
  410. int sample_type = dbs_info->sample_type;
  411. /* We want all CPUs to do sampling nearly on same jiffy */
  412. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  413. delay -= jiffies % delay;
  414. if (lock_policy_rwsem_write(cpu) < 0)
  415. return;
  416. if (!dbs_info->enable) {
  417. unlock_policy_rwsem_write(cpu);
  418. return;
  419. }
  420. /* Common NORMAL_SAMPLE setup */
  421. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  422. if (!dbs_tuners_ins.powersave_bias ||
  423. sample_type == DBS_NORMAL_SAMPLE) {
  424. dbs_check_cpu(dbs_info);
  425. if (dbs_info->freq_lo) {
  426. /* Setup timer for SUB_SAMPLE */
  427. dbs_info->sample_type = DBS_SUB_SAMPLE;
  428. delay = dbs_info->freq_hi_jiffies;
  429. }
  430. } else {
  431. __cpufreq_driver_target(dbs_info->cur_policy,
  432. dbs_info->freq_lo, CPUFREQ_RELATION_H);
  433. }
  434. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  435. unlock_policy_rwsem_write(cpu);
  436. }
  437. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  438. {
  439. /* We want all CPUs to do sampling nearly on same jiffy */
  440. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  441. delay -= jiffies % delay;
  442. dbs_info->enable = 1;
  443. ondemand_powersave_bias_init();
  444. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  445. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  446. queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
  447. delay);
  448. }
  449. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  450. {
  451. dbs_info->enable = 0;
  452. cancel_delayed_work_sync(&dbs_info->work);
  453. }
  454. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  455. unsigned int event)
  456. {
  457. unsigned int cpu = policy->cpu;
  458. struct cpu_dbs_info_s *this_dbs_info;
  459. unsigned int j;
  460. int rc;
  461. this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
  462. switch (event) {
  463. case CPUFREQ_GOV_START:
  464. if ((!cpu_online(cpu)) || (!policy->cur))
  465. return -EINVAL;
  466. if (this_dbs_info->enable) /* Already enabled */
  467. break;
  468. mutex_lock(&dbs_mutex);
  469. dbs_enable++;
  470. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
  471. if (rc) {
  472. dbs_enable--;
  473. mutex_unlock(&dbs_mutex);
  474. return rc;
  475. }
  476. for_each_cpu(j, policy->cpus) {
  477. struct cpu_dbs_info_s *j_dbs_info;
  478. j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
  479. j_dbs_info->cur_policy = policy;
  480. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  481. &j_dbs_info->prev_cpu_wall);
  482. if (dbs_tuners_ins.ignore_nice) {
  483. j_dbs_info->prev_cpu_nice =
  484. kstat_cpu(j).cpustat.nice;
  485. }
  486. }
  487. this_dbs_info->cpu = cpu;
  488. /*
  489. * Start the timerschedule work, when this governor
  490. * is used for first time
  491. */
  492. if (dbs_enable == 1) {
  493. unsigned int latency;
  494. /* policy latency is in nS. Convert it to uS first */
  495. latency = policy->cpuinfo.transition_latency / 1000;
  496. if (latency == 0)
  497. latency = 1;
  498. /* Bring kernel and HW constraints together */
  499. min_sampling_rate = max(min_sampling_rate,
  500. MIN_LATENCY_MULTIPLIER * latency);
  501. dbs_tuners_ins.sampling_rate =
  502. max(min_sampling_rate,
  503. latency * LATENCY_MULTIPLIER);
  504. }
  505. dbs_timer_init(this_dbs_info);
  506. mutex_unlock(&dbs_mutex);
  507. break;
  508. case CPUFREQ_GOV_STOP:
  509. mutex_lock(&dbs_mutex);
  510. dbs_timer_exit(this_dbs_info);
  511. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  512. dbs_enable--;
  513. mutex_unlock(&dbs_mutex);
  514. break;
  515. case CPUFREQ_GOV_LIMITS:
  516. mutex_lock(&dbs_mutex);
  517. if (policy->max < this_dbs_info->cur_policy->cur)
  518. __cpufreq_driver_target(this_dbs_info->cur_policy,
  519. policy->max, CPUFREQ_RELATION_H);
  520. else if (policy->min > this_dbs_info->cur_policy->cur)
  521. __cpufreq_driver_target(this_dbs_info->cur_policy,
  522. policy->min, CPUFREQ_RELATION_L);
  523. mutex_unlock(&dbs_mutex);
  524. break;
  525. }
  526. return 0;
  527. }
  528. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  529. static
  530. #endif
  531. struct cpufreq_governor cpufreq_gov_ondemand = {
  532. .name = "ondemand",
  533. .governor = cpufreq_governor_dbs,
  534. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  535. .owner = THIS_MODULE,
  536. };
  537. static int __init cpufreq_gov_dbs_init(void)
  538. {
  539. int err;
  540. cputime64_t wall;
  541. u64 idle_time;
  542. int cpu = get_cpu();
  543. idle_time = get_cpu_idle_time_us(cpu, &wall);
  544. put_cpu();
  545. if (idle_time != -1ULL) {
  546. /* Idle micro accounting is supported. Use finer thresholds */
  547. dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
  548. dbs_tuners_ins.down_differential =
  549. MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
  550. /*
  551. * In no_hz/micro accounting case we set the minimum frequency
  552. * not depending on HZ, but fixed (very low). The deferred
  553. * timer might skip some samples if idle/sleeping as needed.
  554. */
  555. min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
  556. } else {
  557. /* For correct statistics, we need 10 ticks for each measure */
  558. min_sampling_rate =
  559. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  560. }
  561. kondemand_wq = create_workqueue("kondemand");
  562. if (!kondemand_wq) {
  563. printk(KERN_ERR "Creation of kondemand failed\n");
  564. return -EFAULT;
  565. }
  566. err = cpufreq_register_governor(&cpufreq_gov_ondemand);
  567. if (err)
  568. destroy_workqueue(kondemand_wq);
  569. return err;
  570. }
  571. static void __exit cpufreq_gov_dbs_exit(void)
  572. {
  573. cpufreq_unregister_governor(&cpufreq_gov_ondemand);
  574. destroy_workqueue(kondemand_wq);
  575. }
  576. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  577. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  578. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  579. "Low Latency Frequency Transition capable processors");
  580. MODULE_LICENSE("GPL");
  581. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  582. fs_initcall(cpufreq_gov_dbs_init);
  583. #else
  584. module_init(cpufreq_gov_dbs_init);
  585. #endif
  586. module_exit(cpufreq_gov_dbs_exit);