s2io.c 237 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.17"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  120. {
  121. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  122. }
  123. /* Ethtool related variables and Macros. */
  124. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  125. "Register test\t(offline)",
  126. "Eeprom test\t(offline)",
  127. "Link test\t(online)",
  128. "RLDRAM test\t(offline)",
  129. "BIST Test\t(offline)"
  130. };
  131. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  132. {"tmac_frms"},
  133. {"tmac_data_octets"},
  134. {"tmac_drop_frms"},
  135. {"tmac_mcst_frms"},
  136. {"tmac_bcst_frms"},
  137. {"tmac_pause_ctrl_frms"},
  138. {"tmac_ttl_octets"},
  139. {"tmac_ucst_frms"},
  140. {"tmac_nucst_frms"},
  141. {"tmac_any_err_frms"},
  142. {"tmac_ttl_less_fb_octets"},
  143. {"tmac_vld_ip_octets"},
  144. {"tmac_vld_ip"},
  145. {"tmac_drop_ip"},
  146. {"tmac_icmp"},
  147. {"tmac_rst_tcp"},
  148. {"tmac_tcp"},
  149. {"tmac_udp"},
  150. {"rmac_vld_frms"},
  151. {"rmac_data_octets"},
  152. {"rmac_fcs_err_frms"},
  153. {"rmac_drop_frms"},
  154. {"rmac_vld_mcst_frms"},
  155. {"rmac_vld_bcst_frms"},
  156. {"rmac_in_rng_len_err_frms"},
  157. {"rmac_out_rng_len_err_frms"},
  158. {"rmac_long_frms"},
  159. {"rmac_pause_ctrl_frms"},
  160. {"rmac_unsup_ctrl_frms"},
  161. {"rmac_ttl_octets"},
  162. {"rmac_accepted_ucst_frms"},
  163. {"rmac_accepted_nucst_frms"},
  164. {"rmac_discarded_frms"},
  165. {"rmac_drop_events"},
  166. {"rmac_ttl_less_fb_octets"},
  167. {"rmac_ttl_frms"},
  168. {"rmac_usized_frms"},
  169. {"rmac_osized_frms"},
  170. {"rmac_frag_frms"},
  171. {"rmac_jabber_frms"},
  172. {"rmac_ttl_64_frms"},
  173. {"rmac_ttl_65_127_frms"},
  174. {"rmac_ttl_128_255_frms"},
  175. {"rmac_ttl_256_511_frms"},
  176. {"rmac_ttl_512_1023_frms"},
  177. {"rmac_ttl_1024_1518_frms"},
  178. {"rmac_ip"},
  179. {"rmac_ip_octets"},
  180. {"rmac_hdr_err_ip"},
  181. {"rmac_drop_ip"},
  182. {"rmac_icmp"},
  183. {"rmac_tcp"},
  184. {"rmac_udp"},
  185. {"rmac_err_drp_udp"},
  186. {"rmac_xgmii_err_sym"},
  187. {"rmac_frms_q0"},
  188. {"rmac_frms_q1"},
  189. {"rmac_frms_q2"},
  190. {"rmac_frms_q3"},
  191. {"rmac_frms_q4"},
  192. {"rmac_frms_q5"},
  193. {"rmac_frms_q6"},
  194. {"rmac_frms_q7"},
  195. {"rmac_full_q0"},
  196. {"rmac_full_q1"},
  197. {"rmac_full_q2"},
  198. {"rmac_full_q3"},
  199. {"rmac_full_q4"},
  200. {"rmac_full_q5"},
  201. {"rmac_full_q6"},
  202. {"rmac_full_q7"},
  203. {"rmac_pause_cnt"},
  204. {"rmac_xgmii_data_err_cnt"},
  205. {"rmac_xgmii_ctrl_err_cnt"},
  206. {"rmac_accepted_ip"},
  207. {"rmac_err_tcp"},
  208. {"rd_req_cnt"},
  209. {"new_rd_req_cnt"},
  210. {"new_rd_req_rtry_cnt"},
  211. {"rd_rtry_cnt"},
  212. {"wr_rtry_rd_ack_cnt"},
  213. {"wr_req_cnt"},
  214. {"new_wr_req_cnt"},
  215. {"new_wr_req_rtry_cnt"},
  216. {"wr_rtry_cnt"},
  217. {"wr_disc_cnt"},
  218. {"rd_rtry_wr_ack_cnt"},
  219. {"txp_wr_cnt"},
  220. {"txd_rd_cnt"},
  221. {"txd_wr_cnt"},
  222. {"rxd_rd_cnt"},
  223. {"rxd_wr_cnt"},
  224. {"txf_rd_cnt"},
  225. {"rxf_wr_cnt"}
  226. };
  227. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  228. {"rmac_ttl_1519_4095_frms"},
  229. {"rmac_ttl_4096_8191_frms"},
  230. {"rmac_ttl_8192_max_frms"},
  231. {"rmac_ttl_gt_max_frms"},
  232. {"rmac_osized_alt_frms"},
  233. {"rmac_jabber_alt_frms"},
  234. {"rmac_gt_max_alt_frms"},
  235. {"rmac_vlan_frms"},
  236. {"rmac_len_discard"},
  237. {"rmac_fcs_discard"},
  238. {"rmac_pf_discard"},
  239. {"rmac_da_discard"},
  240. {"rmac_red_discard"},
  241. {"rmac_rts_discard"},
  242. {"rmac_ingm_full_discard"},
  243. {"link_fault_cnt"}
  244. };
  245. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  246. {"\n DRIVER STATISTICS"},
  247. {"single_bit_ecc_errs"},
  248. {"double_bit_ecc_errs"},
  249. {"parity_err_cnt"},
  250. {"serious_err_cnt"},
  251. {"soft_reset_cnt"},
  252. {"fifo_full_cnt"},
  253. {"ring_0_full_cnt"},
  254. {"ring_1_full_cnt"},
  255. {"ring_2_full_cnt"},
  256. {"ring_3_full_cnt"},
  257. {"ring_4_full_cnt"},
  258. {"ring_5_full_cnt"},
  259. {"ring_6_full_cnt"},
  260. {"ring_7_full_cnt"},
  261. {"alarm_transceiver_temp_high"},
  262. {"alarm_transceiver_temp_low"},
  263. {"alarm_laser_bias_current_high"},
  264. {"alarm_laser_bias_current_low"},
  265. {"alarm_laser_output_power_high"},
  266. {"alarm_laser_output_power_low"},
  267. {"warn_transceiver_temp_high"},
  268. {"warn_transceiver_temp_low"},
  269. {"warn_laser_bias_current_high"},
  270. {"warn_laser_bias_current_low"},
  271. {"warn_laser_output_power_high"},
  272. {"warn_laser_output_power_low"},
  273. {"lro_aggregated_pkts"},
  274. {"lro_flush_both_count"},
  275. {"lro_out_of_sequence_pkts"},
  276. {"lro_flush_due_to_max_pkts"},
  277. {"lro_avg_aggr_pkts"},
  278. {"mem_alloc_fail_cnt"},
  279. {"pci_map_fail_cnt"},
  280. {"watchdog_timer_cnt"},
  281. {"mem_allocated"},
  282. {"mem_freed"},
  283. {"link_up_cnt"},
  284. {"link_down_cnt"},
  285. {"link_up_time"},
  286. {"link_down_time"},
  287. {"tx_tcode_buf_abort_cnt"},
  288. {"tx_tcode_desc_abort_cnt"},
  289. {"tx_tcode_parity_err_cnt"},
  290. {"tx_tcode_link_loss_cnt"},
  291. {"tx_tcode_list_proc_err_cnt"},
  292. {"rx_tcode_parity_err_cnt"},
  293. {"rx_tcode_abort_cnt"},
  294. {"rx_tcode_parity_abort_cnt"},
  295. {"rx_tcode_rda_fail_cnt"},
  296. {"rx_tcode_unkn_prot_cnt"},
  297. {"rx_tcode_fcs_err_cnt"},
  298. {"rx_tcode_buf_size_err_cnt"},
  299. {"rx_tcode_rxd_corrupt_cnt"},
  300. {"rx_tcode_unkn_err_cnt"},
  301. {"tda_err_cnt"},
  302. {"pfc_err_cnt"},
  303. {"pcc_err_cnt"},
  304. {"tti_err_cnt"},
  305. {"tpa_err_cnt"},
  306. {"sm_err_cnt"},
  307. {"lso_err_cnt"},
  308. {"mac_tmac_err_cnt"},
  309. {"mac_rmac_err_cnt"},
  310. {"xgxs_txgxs_err_cnt"},
  311. {"xgxs_rxgxs_err_cnt"},
  312. {"rc_err_cnt"},
  313. {"prc_pcix_err_cnt"},
  314. {"rpa_err_cnt"},
  315. {"rda_err_cnt"},
  316. {"rti_err_cnt"},
  317. {"mc_err_cnt"}
  318. };
  319. #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
  320. #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
  321. #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
  322. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  323. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  324. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  325. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  326. #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
  327. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  328. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  329. init_timer(&timer); \
  330. timer.function = handle; \
  331. timer.data = (unsigned long) arg; \
  332. mod_timer(&timer, (jiffies + exp)) \
  333. /* copy mac addr to def_mac_addr array */
  334. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  335. {
  336. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  337. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  338. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  339. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  340. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  341. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  342. }
  343. /* Add the vlan */
  344. static void s2io_vlan_rx_register(struct net_device *dev,
  345. struct vlan_group *grp)
  346. {
  347. struct s2io_nic *nic = dev->priv;
  348. unsigned long flags;
  349. spin_lock_irqsave(&nic->tx_lock, flags);
  350. nic->vlgrp = grp;
  351. spin_unlock_irqrestore(&nic->tx_lock, flags);
  352. }
  353. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  354. static int vlan_strip_flag;
  355. /*
  356. * Constants to be programmed into the Xena's registers, to configure
  357. * the XAUI.
  358. */
  359. #define END_SIGN 0x0
  360. static const u64 herc_act_dtx_cfg[] = {
  361. /* Set address */
  362. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  363. /* Write data */
  364. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  365. /* Set address */
  366. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  367. /* Write data */
  368. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  369. /* Set address */
  370. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  371. /* Write data */
  372. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  373. /* Set address */
  374. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  375. /* Write data */
  376. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  377. /* Done */
  378. END_SIGN
  379. };
  380. static const u64 xena_dtx_cfg[] = {
  381. /* Set address */
  382. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  383. /* Write data */
  384. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  385. /* Set address */
  386. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  387. /* Write data */
  388. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  389. /* Set address */
  390. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  391. /* Write data */
  392. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  393. END_SIGN
  394. };
  395. /*
  396. * Constants for Fixing the MacAddress problem seen mostly on
  397. * Alpha machines.
  398. */
  399. static const u64 fix_mac[] = {
  400. 0x0060000000000000ULL, 0x0060600000000000ULL,
  401. 0x0040600000000000ULL, 0x0000600000000000ULL,
  402. 0x0020600000000000ULL, 0x0060600000000000ULL,
  403. 0x0020600000000000ULL, 0x0060600000000000ULL,
  404. 0x0020600000000000ULL, 0x0060600000000000ULL,
  405. 0x0020600000000000ULL, 0x0060600000000000ULL,
  406. 0x0020600000000000ULL, 0x0060600000000000ULL,
  407. 0x0020600000000000ULL, 0x0060600000000000ULL,
  408. 0x0020600000000000ULL, 0x0060600000000000ULL,
  409. 0x0020600000000000ULL, 0x0060600000000000ULL,
  410. 0x0020600000000000ULL, 0x0060600000000000ULL,
  411. 0x0020600000000000ULL, 0x0060600000000000ULL,
  412. 0x0020600000000000ULL, 0x0000600000000000ULL,
  413. 0x0040600000000000ULL, 0x0060600000000000ULL,
  414. END_SIGN
  415. };
  416. MODULE_LICENSE("GPL");
  417. MODULE_VERSION(DRV_VERSION);
  418. /* Module Loadable parameters. */
  419. S2IO_PARM_INT(tx_fifo_num, 1);
  420. S2IO_PARM_INT(rx_ring_num, 1);
  421. S2IO_PARM_INT(rx_ring_mode, 1);
  422. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  423. S2IO_PARM_INT(rmac_pause_time, 0x100);
  424. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  425. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  426. S2IO_PARM_INT(shared_splits, 0);
  427. S2IO_PARM_INT(tmac_util_period, 5);
  428. S2IO_PARM_INT(rmac_util_period, 5);
  429. S2IO_PARM_INT(l3l4hdr_size, 128);
  430. /* Frequency of Rx desc syncs expressed as power of 2 */
  431. S2IO_PARM_INT(rxsync_frequency, 3);
  432. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  433. S2IO_PARM_INT(intr_type, 2);
  434. /* Large receive offload feature */
  435. static unsigned int lro_enable;
  436. module_param_named(lro, lro_enable, uint, 0);
  437. /* Max pkts to be aggregated by LRO at one time. If not specified,
  438. * aggregation happens until we hit max IP pkt size(64K)
  439. */
  440. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  441. S2IO_PARM_INT(indicate_max_pkts, 0);
  442. S2IO_PARM_INT(napi, 1);
  443. S2IO_PARM_INT(ufo, 0);
  444. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  445. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  446. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  447. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  448. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  449. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  450. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  451. module_param_array(tx_fifo_len, uint, NULL, 0);
  452. module_param_array(rx_ring_sz, uint, NULL, 0);
  453. module_param_array(rts_frm_len, uint, NULL, 0);
  454. /*
  455. * S2IO device table.
  456. * This table lists all the devices that this driver supports.
  457. */
  458. static struct pci_device_id s2io_tbl[] __devinitdata = {
  459. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  460. PCI_ANY_ID, PCI_ANY_ID},
  461. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  462. PCI_ANY_ID, PCI_ANY_ID},
  463. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  464. PCI_ANY_ID, PCI_ANY_ID},
  465. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  466. PCI_ANY_ID, PCI_ANY_ID},
  467. {0,}
  468. };
  469. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  470. static struct pci_error_handlers s2io_err_handler = {
  471. .error_detected = s2io_io_error_detected,
  472. .slot_reset = s2io_io_slot_reset,
  473. .resume = s2io_io_resume,
  474. };
  475. static struct pci_driver s2io_driver = {
  476. .name = "S2IO",
  477. .id_table = s2io_tbl,
  478. .probe = s2io_init_nic,
  479. .remove = __devexit_p(s2io_rem_nic),
  480. .err_handler = &s2io_err_handler,
  481. };
  482. /* A simplifier macro used both by init and free shared_mem Fns(). */
  483. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  484. /**
  485. * init_shared_mem - Allocation and Initialization of Memory
  486. * @nic: Device private variable.
  487. * Description: The function allocates all the memory areas shared
  488. * between the NIC and the driver. This includes Tx descriptors,
  489. * Rx descriptors and the statistics block.
  490. */
  491. static int init_shared_mem(struct s2io_nic *nic)
  492. {
  493. u32 size;
  494. void *tmp_v_addr, *tmp_v_addr_next;
  495. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  496. struct RxD_block *pre_rxd_blk = NULL;
  497. int i, j, blk_cnt;
  498. int lst_size, lst_per_page;
  499. struct net_device *dev = nic->dev;
  500. unsigned long tmp;
  501. struct buffAdd *ba;
  502. struct mac_info *mac_control;
  503. struct config_param *config;
  504. unsigned long long mem_allocated = 0;
  505. mac_control = &nic->mac_control;
  506. config = &nic->config;
  507. /* Allocation and initialization of TXDLs in FIOFs */
  508. size = 0;
  509. for (i = 0; i < config->tx_fifo_num; i++) {
  510. size += config->tx_cfg[i].fifo_len;
  511. }
  512. if (size > MAX_AVAILABLE_TXDS) {
  513. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  514. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  515. return -EINVAL;
  516. }
  517. lst_size = (sizeof(struct TxD) * config->max_txds);
  518. lst_per_page = PAGE_SIZE / lst_size;
  519. for (i = 0; i < config->tx_fifo_num; i++) {
  520. int fifo_len = config->tx_cfg[i].fifo_len;
  521. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  522. mac_control->fifos[i].list_info = kzalloc(list_holder_size,
  523. GFP_KERNEL);
  524. if (!mac_control->fifos[i].list_info) {
  525. DBG_PRINT(INFO_DBG,
  526. "Malloc failed for list_info\n");
  527. return -ENOMEM;
  528. }
  529. mem_allocated += list_holder_size;
  530. }
  531. for (i = 0; i < config->tx_fifo_num; i++) {
  532. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  533. lst_per_page);
  534. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  535. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  536. config->tx_cfg[i].fifo_len - 1;
  537. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  538. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  539. config->tx_cfg[i].fifo_len - 1;
  540. mac_control->fifos[i].fifo_no = i;
  541. mac_control->fifos[i].nic = nic;
  542. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  543. for (j = 0; j < page_num; j++) {
  544. int k = 0;
  545. dma_addr_t tmp_p;
  546. void *tmp_v;
  547. tmp_v = pci_alloc_consistent(nic->pdev,
  548. PAGE_SIZE, &tmp_p);
  549. if (!tmp_v) {
  550. DBG_PRINT(INFO_DBG,
  551. "pci_alloc_consistent ");
  552. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  553. return -ENOMEM;
  554. }
  555. /* If we got a zero DMA address(can happen on
  556. * certain platforms like PPC), reallocate.
  557. * Store virtual address of page we don't want,
  558. * to be freed later.
  559. */
  560. if (!tmp_p) {
  561. mac_control->zerodma_virt_addr = tmp_v;
  562. DBG_PRINT(INIT_DBG,
  563. "%s: Zero DMA address for TxDL. ", dev->name);
  564. DBG_PRINT(INIT_DBG,
  565. "Virtual address %p\n", tmp_v);
  566. tmp_v = pci_alloc_consistent(nic->pdev,
  567. PAGE_SIZE, &tmp_p);
  568. if (!tmp_v) {
  569. DBG_PRINT(INFO_DBG,
  570. "pci_alloc_consistent ");
  571. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  572. return -ENOMEM;
  573. }
  574. mem_allocated += PAGE_SIZE;
  575. }
  576. while (k < lst_per_page) {
  577. int l = (j * lst_per_page) + k;
  578. if (l == config->tx_cfg[i].fifo_len)
  579. break;
  580. mac_control->fifos[i].list_info[l].list_virt_addr =
  581. tmp_v + (k * lst_size);
  582. mac_control->fifos[i].list_info[l].list_phy_addr =
  583. tmp_p + (k * lst_size);
  584. k++;
  585. }
  586. }
  587. }
  588. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  589. if (!nic->ufo_in_band_v)
  590. return -ENOMEM;
  591. mem_allocated += (size * sizeof(u64));
  592. /* Allocation and initialization of RXDs in Rings */
  593. size = 0;
  594. for (i = 0; i < config->rx_ring_num; i++) {
  595. if (config->rx_cfg[i].num_rxd %
  596. (rxd_count[nic->rxd_mode] + 1)) {
  597. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  598. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  599. i);
  600. DBG_PRINT(ERR_DBG, "RxDs per Block");
  601. return FAILURE;
  602. }
  603. size += config->rx_cfg[i].num_rxd;
  604. mac_control->rings[i].block_count =
  605. config->rx_cfg[i].num_rxd /
  606. (rxd_count[nic->rxd_mode] + 1 );
  607. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  608. mac_control->rings[i].block_count;
  609. }
  610. if (nic->rxd_mode == RXD_MODE_1)
  611. size = (size * (sizeof(struct RxD1)));
  612. else
  613. size = (size * (sizeof(struct RxD3)));
  614. for (i = 0; i < config->rx_ring_num; i++) {
  615. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  616. mac_control->rings[i].rx_curr_get_info.offset = 0;
  617. mac_control->rings[i].rx_curr_get_info.ring_len =
  618. config->rx_cfg[i].num_rxd - 1;
  619. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  620. mac_control->rings[i].rx_curr_put_info.offset = 0;
  621. mac_control->rings[i].rx_curr_put_info.ring_len =
  622. config->rx_cfg[i].num_rxd - 1;
  623. mac_control->rings[i].nic = nic;
  624. mac_control->rings[i].ring_no = i;
  625. blk_cnt = config->rx_cfg[i].num_rxd /
  626. (rxd_count[nic->rxd_mode] + 1);
  627. /* Allocating all the Rx blocks */
  628. for (j = 0; j < blk_cnt; j++) {
  629. struct rx_block_info *rx_blocks;
  630. int l;
  631. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  632. size = SIZE_OF_BLOCK; //size is always page size
  633. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  634. &tmp_p_addr);
  635. if (tmp_v_addr == NULL) {
  636. /*
  637. * In case of failure, free_shared_mem()
  638. * is called, which should free any
  639. * memory that was alloced till the
  640. * failure happened.
  641. */
  642. rx_blocks->block_virt_addr = tmp_v_addr;
  643. return -ENOMEM;
  644. }
  645. mem_allocated += size;
  646. memset(tmp_v_addr, 0, size);
  647. rx_blocks->block_virt_addr = tmp_v_addr;
  648. rx_blocks->block_dma_addr = tmp_p_addr;
  649. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  650. rxd_count[nic->rxd_mode],
  651. GFP_KERNEL);
  652. if (!rx_blocks->rxds)
  653. return -ENOMEM;
  654. mem_allocated +=
  655. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  656. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  657. rx_blocks->rxds[l].virt_addr =
  658. rx_blocks->block_virt_addr +
  659. (rxd_size[nic->rxd_mode] * l);
  660. rx_blocks->rxds[l].dma_addr =
  661. rx_blocks->block_dma_addr +
  662. (rxd_size[nic->rxd_mode] * l);
  663. }
  664. }
  665. /* Interlinking all Rx Blocks */
  666. for (j = 0; j < blk_cnt; j++) {
  667. tmp_v_addr =
  668. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  669. tmp_v_addr_next =
  670. mac_control->rings[i].rx_blocks[(j + 1) %
  671. blk_cnt].block_virt_addr;
  672. tmp_p_addr =
  673. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  674. tmp_p_addr_next =
  675. mac_control->rings[i].rx_blocks[(j + 1) %
  676. blk_cnt].block_dma_addr;
  677. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  678. pre_rxd_blk->reserved_2_pNext_RxD_block =
  679. (unsigned long) tmp_v_addr_next;
  680. pre_rxd_blk->pNext_RxD_Blk_physical =
  681. (u64) tmp_p_addr_next;
  682. }
  683. }
  684. if (nic->rxd_mode == RXD_MODE_3B) {
  685. /*
  686. * Allocation of Storages for buffer addresses in 2BUFF mode
  687. * and the buffers as well.
  688. */
  689. for (i = 0; i < config->rx_ring_num; i++) {
  690. blk_cnt = config->rx_cfg[i].num_rxd /
  691. (rxd_count[nic->rxd_mode]+ 1);
  692. mac_control->rings[i].ba =
  693. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  694. GFP_KERNEL);
  695. if (!mac_control->rings[i].ba)
  696. return -ENOMEM;
  697. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  698. for (j = 0; j < blk_cnt; j++) {
  699. int k = 0;
  700. mac_control->rings[i].ba[j] =
  701. kmalloc((sizeof(struct buffAdd) *
  702. (rxd_count[nic->rxd_mode] + 1)),
  703. GFP_KERNEL);
  704. if (!mac_control->rings[i].ba[j])
  705. return -ENOMEM;
  706. mem_allocated += (sizeof(struct buffAdd) * \
  707. (rxd_count[nic->rxd_mode] + 1));
  708. while (k != rxd_count[nic->rxd_mode]) {
  709. ba = &mac_control->rings[i].ba[j][k];
  710. ba->ba_0_org = (void *) kmalloc
  711. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  712. if (!ba->ba_0_org)
  713. return -ENOMEM;
  714. mem_allocated +=
  715. (BUF0_LEN + ALIGN_SIZE);
  716. tmp = (unsigned long)ba->ba_0_org;
  717. tmp += ALIGN_SIZE;
  718. tmp &= ~((unsigned long) ALIGN_SIZE);
  719. ba->ba_0 = (void *) tmp;
  720. ba->ba_1_org = (void *) kmalloc
  721. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  722. if (!ba->ba_1_org)
  723. return -ENOMEM;
  724. mem_allocated
  725. += (BUF1_LEN + ALIGN_SIZE);
  726. tmp = (unsigned long) ba->ba_1_org;
  727. tmp += ALIGN_SIZE;
  728. tmp &= ~((unsigned long) ALIGN_SIZE);
  729. ba->ba_1 = (void *) tmp;
  730. k++;
  731. }
  732. }
  733. }
  734. }
  735. /* Allocation and initialization of Statistics block */
  736. size = sizeof(struct stat_block);
  737. mac_control->stats_mem = pci_alloc_consistent
  738. (nic->pdev, size, &mac_control->stats_mem_phy);
  739. if (!mac_control->stats_mem) {
  740. /*
  741. * In case of failure, free_shared_mem() is called, which
  742. * should free any memory that was alloced till the
  743. * failure happened.
  744. */
  745. return -ENOMEM;
  746. }
  747. mem_allocated += size;
  748. mac_control->stats_mem_sz = size;
  749. tmp_v_addr = mac_control->stats_mem;
  750. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  751. memset(tmp_v_addr, 0, size);
  752. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  753. (unsigned long long) tmp_p_addr);
  754. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  755. return SUCCESS;
  756. }
  757. /**
  758. * free_shared_mem - Free the allocated Memory
  759. * @nic: Device private variable.
  760. * Description: This function is to free all memory locations allocated by
  761. * the init_shared_mem() function and return it to the kernel.
  762. */
  763. static void free_shared_mem(struct s2io_nic *nic)
  764. {
  765. int i, j, blk_cnt, size;
  766. u32 ufo_size = 0;
  767. void *tmp_v_addr;
  768. dma_addr_t tmp_p_addr;
  769. struct mac_info *mac_control;
  770. struct config_param *config;
  771. int lst_size, lst_per_page;
  772. struct net_device *dev;
  773. int page_num = 0;
  774. if (!nic)
  775. return;
  776. dev = nic->dev;
  777. mac_control = &nic->mac_control;
  778. config = &nic->config;
  779. lst_size = (sizeof(struct TxD) * config->max_txds);
  780. lst_per_page = PAGE_SIZE / lst_size;
  781. for (i = 0; i < config->tx_fifo_num; i++) {
  782. ufo_size += config->tx_cfg[i].fifo_len;
  783. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  784. lst_per_page);
  785. for (j = 0; j < page_num; j++) {
  786. int mem_blks = (j * lst_per_page);
  787. if (!mac_control->fifos[i].list_info)
  788. return;
  789. if (!mac_control->fifos[i].list_info[mem_blks].
  790. list_virt_addr)
  791. break;
  792. pci_free_consistent(nic->pdev, PAGE_SIZE,
  793. mac_control->fifos[i].
  794. list_info[mem_blks].
  795. list_virt_addr,
  796. mac_control->fifos[i].
  797. list_info[mem_blks].
  798. list_phy_addr);
  799. nic->mac_control.stats_info->sw_stat.mem_freed
  800. += PAGE_SIZE;
  801. }
  802. /* If we got a zero DMA address during allocation,
  803. * free the page now
  804. */
  805. if (mac_control->zerodma_virt_addr) {
  806. pci_free_consistent(nic->pdev, PAGE_SIZE,
  807. mac_control->zerodma_virt_addr,
  808. (dma_addr_t)0);
  809. DBG_PRINT(INIT_DBG,
  810. "%s: Freeing TxDL with zero DMA addr. ",
  811. dev->name);
  812. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  813. mac_control->zerodma_virt_addr);
  814. nic->mac_control.stats_info->sw_stat.mem_freed
  815. += PAGE_SIZE;
  816. }
  817. kfree(mac_control->fifos[i].list_info);
  818. nic->mac_control.stats_info->sw_stat.mem_freed +=
  819. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  820. }
  821. size = SIZE_OF_BLOCK;
  822. for (i = 0; i < config->rx_ring_num; i++) {
  823. blk_cnt = mac_control->rings[i].block_count;
  824. for (j = 0; j < blk_cnt; j++) {
  825. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  826. block_virt_addr;
  827. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  828. block_dma_addr;
  829. if (tmp_v_addr == NULL)
  830. break;
  831. pci_free_consistent(nic->pdev, size,
  832. tmp_v_addr, tmp_p_addr);
  833. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  834. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  835. nic->mac_control.stats_info->sw_stat.mem_freed +=
  836. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  837. }
  838. }
  839. if (nic->rxd_mode == RXD_MODE_3B) {
  840. /* Freeing buffer storage addresses in 2BUFF mode. */
  841. for (i = 0; i < config->rx_ring_num; i++) {
  842. blk_cnt = config->rx_cfg[i].num_rxd /
  843. (rxd_count[nic->rxd_mode] + 1);
  844. for (j = 0; j < blk_cnt; j++) {
  845. int k = 0;
  846. if (!mac_control->rings[i].ba[j])
  847. continue;
  848. while (k != rxd_count[nic->rxd_mode]) {
  849. struct buffAdd *ba =
  850. &mac_control->rings[i].ba[j][k];
  851. kfree(ba->ba_0_org);
  852. nic->mac_control.stats_info->sw_stat.\
  853. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  854. kfree(ba->ba_1_org);
  855. nic->mac_control.stats_info->sw_stat.\
  856. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  857. k++;
  858. }
  859. kfree(mac_control->rings[i].ba[j]);
  860. nic->mac_control.stats_info->sw_stat.mem_freed +=
  861. (sizeof(struct buffAdd) *
  862. (rxd_count[nic->rxd_mode] + 1));
  863. }
  864. kfree(mac_control->rings[i].ba);
  865. nic->mac_control.stats_info->sw_stat.mem_freed +=
  866. (sizeof(struct buffAdd *) * blk_cnt);
  867. }
  868. }
  869. if (mac_control->stats_mem) {
  870. pci_free_consistent(nic->pdev,
  871. mac_control->stats_mem_sz,
  872. mac_control->stats_mem,
  873. mac_control->stats_mem_phy);
  874. nic->mac_control.stats_info->sw_stat.mem_freed +=
  875. mac_control->stats_mem_sz;
  876. }
  877. if (nic->ufo_in_band_v) {
  878. kfree(nic->ufo_in_band_v);
  879. nic->mac_control.stats_info->sw_stat.mem_freed
  880. += (ufo_size * sizeof(u64));
  881. }
  882. }
  883. /**
  884. * s2io_verify_pci_mode -
  885. */
  886. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  887. {
  888. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  889. register u64 val64 = 0;
  890. int mode;
  891. val64 = readq(&bar0->pci_mode);
  892. mode = (u8)GET_PCI_MODE(val64);
  893. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  894. return -1; /* Unknown PCI mode */
  895. return mode;
  896. }
  897. #define NEC_VENID 0x1033
  898. #define NEC_DEVID 0x0125
  899. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  900. {
  901. struct pci_dev *tdev = NULL;
  902. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  903. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  904. if (tdev->bus == s2io_pdev->bus->parent)
  905. pci_dev_put(tdev);
  906. return 1;
  907. }
  908. }
  909. return 0;
  910. }
  911. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  912. /**
  913. * s2io_print_pci_mode -
  914. */
  915. static int s2io_print_pci_mode(struct s2io_nic *nic)
  916. {
  917. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  918. register u64 val64 = 0;
  919. int mode;
  920. struct config_param *config = &nic->config;
  921. val64 = readq(&bar0->pci_mode);
  922. mode = (u8)GET_PCI_MODE(val64);
  923. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  924. return -1; /* Unknown PCI mode */
  925. config->bus_speed = bus_speed[mode];
  926. if (s2io_on_nec_bridge(nic->pdev)) {
  927. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  928. nic->dev->name);
  929. return mode;
  930. }
  931. if (val64 & PCI_MODE_32_BITS) {
  932. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  933. } else {
  934. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  935. }
  936. switch(mode) {
  937. case PCI_MODE_PCI_33:
  938. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  939. break;
  940. case PCI_MODE_PCI_66:
  941. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  942. break;
  943. case PCI_MODE_PCIX_M1_66:
  944. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  945. break;
  946. case PCI_MODE_PCIX_M1_100:
  947. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  948. break;
  949. case PCI_MODE_PCIX_M1_133:
  950. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  951. break;
  952. case PCI_MODE_PCIX_M2_66:
  953. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  954. break;
  955. case PCI_MODE_PCIX_M2_100:
  956. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  957. break;
  958. case PCI_MODE_PCIX_M2_133:
  959. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  960. break;
  961. default:
  962. return -1; /* Unsupported bus speed */
  963. }
  964. return mode;
  965. }
  966. /**
  967. * init_nic - Initialization of hardware
  968. * @nic: device peivate variable
  969. * Description: The function sequentially configures every block
  970. * of the H/W from their reset values.
  971. * Return Value: SUCCESS on success and
  972. * '-1' on failure (endian settings incorrect).
  973. */
  974. static int init_nic(struct s2io_nic *nic)
  975. {
  976. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  977. struct net_device *dev = nic->dev;
  978. register u64 val64 = 0;
  979. void __iomem *add;
  980. u32 time;
  981. int i, j;
  982. struct mac_info *mac_control;
  983. struct config_param *config;
  984. int dtx_cnt = 0;
  985. unsigned long long mem_share;
  986. int mem_size;
  987. mac_control = &nic->mac_control;
  988. config = &nic->config;
  989. /* to set the swapper controle on the card */
  990. if(s2io_set_swapper(nic)) {
  991. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  992. return -EIO;
  993. }
  994. /*
  995. * Herc requires EOI to be removed from reset before XGXS, so..
  996. */
  997. if (nic->device_type & XFRAME_II_DEVICE) {
  998. val64 = 0xA500000000ULL;
  999. writeq(val64, &bar0->sw_reset);
  1000. msleep(500);
  1001. val64 = readq(&bar0->sw_reset);
  1002. }
  1003. /* Remove XGXS from reset state */
  1004. val64 = 0;
  1005. writeq(val64, &bar0->sw_reset);
  1006. msleep(500);
  1007. val64 = readq(&bar0->sw_reset);
  1008. /* Ensure that it's safe to access registers by checking
  1009. * RIC_RUNNING bit is reset. Check is valid only for XframeII.
  1010. */
  1011. if (nic->device_type == XFRAME_II_DEVICE) {
  1012. for (i = 0; i < 50; i++) {
  1013. val64 = readq(&bar0->adapter_status);
  1014. if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
  1015. break;
  1016. msleep(10);
  1017. }
  1018. if (i == 50)
  1019. return -ENODEV;
  1020. }
  1021. /* Enable Receiving broadcasts */
  1022. add = &bar0->mac_cfg;
  1023. val64 = readq(&bar0->mac_cfg);
  1024. val64 |= MAC_RMAC_BCAST_ENABLE;
  1025. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1026. writel((u32) val64, add);
  1027. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1028. writel((u32) (val64 >> 32), (add + 4));
  1029. /* Read registers in all blocks */
  1030. val64 = readq(&bar0->mac_int_mask);
  1031. val64 = readq(&bar0->mc_int_mask);
  1032. val64 = readq(&bar0->xgxs_int_mask);
  1033. /* Set MTU */
  1034. val64 = dev->mtu;
  1035. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1036. if (nic->device_type & XFRAME_II_DEVICE) {
  1037. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1038. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1039. &bar0->dtx_control, UF);
  1040. if (dtx_cnt & 0x1)
  1041. msleep(1); /* Necessary!! */
  1042. dtx_cnt++;
  1043. }
  1044. } else {
  1045. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1046. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1047. &bar0->dtx_control, UF);
  1048. val64 = readq(&bar0->dtx_control);
  1049. dtx_cnt++;
  1050. }
  1051. }
  1052. /* Tx DMA Initialization */
  1053. val64 = 0;
  1054. writeq(val64, &bar0->tx_fifo_partition_0);
  1055. writeq(val64, &bar0->tx_fifo_partition_1);
  1056. writeq(val64, &bar0->tx_fifo_partition_2);
  1057. writeq(val64, &bar0->tx_fifo_partition_3);
  1058. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1059. val64 |=
  1060. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1061. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1062. ((i * 32) + 5), 3);
  1063. if (i == (config->tx_fifo_num - 1)) {
  1064. if (i % 2 == 0)
  1065. i++;
  1066. }
  1067. switch (i) {
  1068. case 1:
  1069. writeq(val64, &bar0->tx_fifo_partition_0);
  1070. val64 = 0;
  1071. break;
  1072. case 3:
  1073. writeq(val64, &bar0->tx_fifo_partition_1);
  1074. val64 = 0;
  1075. break;
  1076. case 5:
  1077. writeq(val64, &bar0->tx_fifo_partition_2);
  1078. val64 = 0;
  1079. break;
  1080. case 7:
  1081. writeq(val64, &bar0->tx_fifo_partition_3);
  1082. break;
  1083. }
  1084. }
  1085. /*
  1086. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1087. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1088. */
  1089. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1090. (nic->pdev->revision < 4))
  1091. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1092. val64 = readq(&bar0->tx_fifo_partition_0);
  1093. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1094. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1095. /*
  1096. * Initialization of Tx_PA_CONFIG register to ignore packet
  1097. * integrity checking.
  1098. */
  1099. val64 = readq(&bar0->tx_pa_cfg);
  1100. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1101. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1102. writeq(val64, &bar0->tx_pa_cfg);
  1103. /* Rx DMA intialization. */
  1104. val64 = 0;
  1105. for (i = 0; i < config->rx_ring_num; i++) {
  1106. val64 |=
  1107. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1108. 3);
  1109. }
  1110. writeq(val64, &bar0->rx_queue_priority);
  1111. /*
  1112. * Allocating equal share of memory to all the
  1113. * configured Rings.
  1114. */
  1115. val64 = 0;
  1116. if (nic->device_type & XFRAME_II_DEVICE)
  1117. mem_size = 32;
  1118. else
  1119. mem_size = 64;
  1120. for (i = 0; i < config->rx_ring_num; i++) {
  1121. switch (i) {
  1122. case 0:
  1123. mem_share = (mem_size / config->rx_ring_num +
  1124. mem_size % config->rx_ring_num);
  1125. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1126. continue;
  1127. case 1:
  1128. mem_share = (mem_size / config->rx_ring_num);
  1129. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1130. continue;
  1131. case 2:
  1132. mem_share = (mem_size / config->rx_ring_num);
  1133. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1134. continue;
  1135. case 3:
  1136. mem_share = (mem_size / config->rx_ring_num);
  1137. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1138. continue;
  1139. case 4:
  1140. mem_share = (mem_size / config->rx_ring_num);
  1141. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1142. continue;
  1143. case 5:
  1144. mem_share = (mem_size / config->rx_ring_num);
  1145. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1146. continue;
  1147. case 6:
  1148. mem_share = (mem_size / config->rx_ring_num);
  1149. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1150. continue;
  1151. case 7:
  1152. mem_share = (mem_size / config->rx_ring_num);
  1153. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1154. continue;
  1155. }
  1156. }
  1157. writeq(val64, &bar0->rx_queue_cfg);
  1158. /*
  1159. * Filling Tx round robin registers
  1160. * as per the number of FIFOs
  1161. */
  1162. switch (config->tx_fifo_num) {
  1163. case 1:
  1164. val64 = 0x0000000000000000ULL;
  1165. writeq(val64, &bar0->tx_w_round_robin_0);
  1166. writeq(val64, &bar0->tx_w_round_robin_1);
  1167. writeq(val64, &bar0->tx_w_round_robin_2);
  1168. writeq(val64, &bar0->tx_w_round_robin_3);
  1169. writeq(val64, &bar0->tx_w_round_robin_4);
  1170. break;
  1171. case 2:
  1172. val64 = 0x0000010000010000ULL;
  1173. writeq(val64, &bar0->tx_w_round_robin_0);
  1174. val64 = 0x0100000100000100ULL;
  1175. writeq(val64, &bar0->tx_w_round_robin_1);
  1176. val64 = 0x0001000001000001ULL;
  1177. writeq(val64, &bar0->tx_w_round_robin_2);
  1178. val64 = 0x0000010000010000ULL;
  1179. writeq(val64, &bar0->tx_w_round_robin_3);
  1180. val64 = 0x0100000000000000ULL;
  1181. writeq(val64, &bar0->tx_w_round_robin_4);
  1182. break;
  1183. case 3:
  1184. val64 = 0x0001000102000001ULL;
  1185. writeq(val64, &bar0->tx_w_round_robin_0);
  1186. val64 = 0x0001020000010001ULL;
  1187. writeq(val64, &bar0->tx_w_round_robin_1);
  1188. val64 = 0x0200000100010200ULL;
  1189. writeq(val64, &bar0->tx_w_round_robin_2);
  1190. val64 = 0x0001000102000001ULL;
  1191. writeq(val64, &bar0->tx_w_round_robin_3);
  1192. val64 = 0x0001020000000000ULL;
  1193. writeq(val64, &bar0->tx_w_round_robin_4);
  1194. break;
  1195. case 4:
  1196. val64 = 0x0001020300010200ULL;
  1197. writeq(val64, &bar0->tx_w_round_robin_0);
  1198. val64 = 0x0100000102030001ULL;
  1199. writeq(val64, &bar0->tx_w_round_robin_1);
  1200. val64 = 0x0200010000010203ULL;
  1201. writeq(val64, &bar0->tx_w_round_robin_2);
  1202. val64 = 0x0001020001000001ULL;
  1203. writeq(val64, &bar0->tx_w_round_robin_3);
  1204. val64 = 0x0203000100000000ULL;
  1205. writeq(val64, &bar0->tx_w_round_robin_4);
  1206. break;
  1207. case 5:
  1208. val64 = 0x0001000203000102ULL;
  1209. writeq(val64, &bar0->tx_w_round_robin_0);
  1210. val64 = 0x0001020001030004ULL;
  1211. writeq(val64, &bar0->tx_w_round_robin_1);
  1212. val64 = 0x0001000203000102ULL;
  1213. writeq(val64, &bar0->tx_w_round_robin_2);
  1214. val64 = 0x0001020001030004ULL;
  1215. writeq(val64, &bar0->tx_w_round_robin_3);
  1216. val64 = 0x0001000000000000ULL;
  1217. writeq(val64, &bar0->tx_w_round_robin_4);
  1218. break;
  1219. case 6:
  1220. val64 = 0x0001020304000102ULL;
  1221. writeq(val64, &bar0->tx_w_round_robin_0);
  1222. val64 = 0x0304050001020001ULL;
  1223. writeq(val64, &bar0->tx_w_round_robin_1);
  1224. val64 = 0x0203000100000102ULL;
  1225. writeq(val64, &bar0->tx_w_round_robin_2);
  1226. val64 = 0x0304000102030405ULL;
  1227. writeq(val64, &bar0->tx_w_round_robin_3);
  1228. val64 = 0x0001000200000000ULL;
  1229. writeq(val64, &bar0->tx_w_round_robin_4);
  1230. break;
  1231. case 7:
  1232. val64 = 0x0001020001020300ULL;
  1233. writeq(val64, &bar0->tx_w_round_robin_0);
  1234. val64 = 0x0102030400010203ULL;
  1235. writeq(val64, &bar0->tx_w_round_robin_1);
  1236. val64 = 0x0405060001020001ULL;
  1237. writeq(val64, &bar0->tx_w_round_robin_2);
  1238. val64 = 0x0304050000010200ULL;
  1239. writeq(val64, &bar0->tx_w_round_robin_3);
  1240. val64 = 0x0102030000000000ULL;
  1241. writeq(val64, &bar0->tx_w_round_robin_4);
  1242. break;
  1243. case 8:
  1244. val64 = 0x0001020300040105ULL;
  1245. writeq(val64, &bar0->tx_w_round_robin_0);
  1246. val64 = 0x0200030106000204ULL;
  1247. writeq(val64, &bar0->tx_w_round_robin_1);
  1248. val64 = 0x0103000502010007ULL;
  1249. writeq(val64, &bar0->tx_w_round_robin_2);
  1250. val64 = 0x0304010002060500ULL;
  1251. writeq(val64, &bar0->tx_w_round_robin_3);
  1252. val64 = 0x0103020400000000ULL;
  1253. writeq(val64, &bar0->tx_w_round_robin_4);
  1254. break;
  1255. }
  1256. /* Enable all configured Tx FIFO partitions */
  1257. val64 = readq(&bar0->tx_fifo_partition_0);
  1258. val64 |= (TX_FIFO_PARTITION_EN);
  1259. writeq(val64, &bar0->tx_fifo_partition_0);
  1260. /* Filling the Rx round robin registers as per the
  1261. * number of Rings and steering based on QoS.
  1262. */
  1263. switch (config->rx_ring_num) {
  1264. case 1:
  1265. val64 = 0x8080808080808080ULL;
  1266. writeq(val64, &bar0->rts_qos_steering);
  1267. break;
  1268. case 2:
  1269. val64 = 0x0000010000010000ULL;
  1270. writeq(val64, &bar0->rx_w_round_robin_0);
  1271. val64 = 0x0100000100000100ULL;
  1272. writeq(val64, &bar0->rx_w_round_robin_1);
  1273. val64 = 0x0001000001000001ULL;
  1274. writeq(val64, &bar0->rx_w_round_robin_2);
  1275. val64 = 0x0000010000010000ULL;
  1276. writeq(val64, &bar0->rx_w_round_robin_3);
  1277. val64 = 0x0100000000000000ULL;
  1278. writeq(val64, &bar0->rx_w_round_robin_4);
  1279. val64 = 0x8080808040404040ULL;
  1280. writeq(val64, &bar0->rts_qos_steering);
  1281. break;
  1282. case 3:
  1283. val64 = 0x0001000102000001ULL;
  1284. writeq(val64, &bar0->rx_w_round_robin_0);
  1285. val64 = 0x0001020000010001ULL;
  1286. writeq(val64, &bar0->rx_w_round_robin_1);
  1287. val64 = 0x0200000100010200ULL;
  1288. writeq(val64, &bar0->rx_w_round_robin_2);
  1289. val64 = 0x0001000102000001ULL;
  1290. writeq(val64, &bar0->rx_w_round_robin_3);
  1291. val64 = 0x0001020000000000ULL;
  1292. writeq(val64, &bar0->rx_w_round_robin_4);
  1293. val64 = 0x8080804040402020ULL;
  1294. writeq(val64, &bar0->rts_qos_steering);
  1295. break;
  1296. case 4:
  1297. val64 = 0x0001020300010200ULL;
  1298. writeq(val64, &bar0->rx_w_round_robin_0);
  1299. val64 = 0x0100000102030001ULL;
  1300. writeq(val64, &bar0->rx_w_round_robin_1);
  1301. val64 = 0x0200010000010203ULL;
  1302. writeq(val64, &bar0->rx_w_round_robin_2);
  1303. val64 = 0x0001020001000001ULL;
  1304. writeq(val64, &bar0->rx_w_round_robin_3);
  1305. val64 = 0x0203000100000000ULL;
  1306. writeq(val64, &bar0->rx_w_round_robin_4);
  1307. val64 = 0x8080404020201010ULL;
  1308. writeq(val64, &bar0->rts_qos_steering);
  1309. break;
  1310. case 5:
  1311. val64 = 0x0001000203000102ULL;
  1312. writeq(val64, &bar0->rx_w_round_robin_0);
  1313. val64 = 0x0001020001030004ULL;
  1314. writeq(val64, &bar0->rx_w_round_robin_1);
  1315. val64 = 0x0001000203000102ULL;
  1316. writeq(val64, &bar0->rx_w_round_robin_2);
  1317. val64 = 0x0001020001030004ULL;
  1318. writeq(val64, &bar0->rx_w_round_robin_3);
  1319. val64 = 0x0001000000000000ULL;
  1320. writeq(val64, &bar0->rx_w_round_robin_4);
  1321. val64 = 0x8080404020201008ULL;
  1322. writeq(val64, &bar0->rts_qos_steering);
  1323. break;
  1324. case 6:
  1325. val64 = 0x0001020304000102ULL;
  1326. writeq(val64, &bar0->rx_w_round_robin_0);
  1327. val64 = 0x0304050001020001ULL;
  1328. writeq(val64, &bar0->rx_w_round_robin_1);
  1329. val64 = 0x0203000100000102ULL;
  1330. writeq(val64, &bar0->rx_w_round_robin_2);
  1331. val64 = 0x0304000102030405ULL;
  1332. writeq(val64, &bar0->rx_w_round_robin_3);
  1333. val64 = 0x0001000200000000ULL;
  1334. writeq(val64, &bar0->rx_w_round_robin_4);
  1335. val64 = 0x8080404020100804ULL;
  1336. writeq(val64, &bar0->rts_qos_steering);
  1337. break;
  1338. case 7:
  1339. val64 = 0x0001020001020300ULL;
  1340. writeq(val64, &bar0->rx_w_round_robin_0);
  1341. val64 = 0x0102030400010203ULL;
  1342. writeq(val64, &bar0->rx_w_round_robin_1);
  1343. val64 = 0x0405060001020001ULL;
  1344. writeq(val64, &bar0->rx_w_round_robin_2);
  1345. val64 = 0x0304050000010200ULL;
  1346. writeq(val64, &bar0->rx_w_round_robin_3);
  1347. val64 = 0x0102030000000000ULL;
  1348. writeq(val64, &bar0->rx_w_round_robin_4);
  1349. val64 = 0x8080402010080402ULL;
  1350. writeq(val64, &bar0->rts_qos_steering);
  1351. break;
  1352. case 8:
  1353. val64 = 0x0001020300040105ULL;
  1354. writeq(val64, &bar0->rx_w_round_robin_0);
  1355. val64 = 0x0200030106000204ULL;
  1356. writeq(val64, &bar0->rx_w_round_robin_1);
  1357. val64 = 0x0103000502010007ULL;
  1358. writeq(val64, &bar0->rx_w_round_robin_2);
  1359. val64 = 0x0304010002060500ULL;
  1360. writeq(val64, &bar0->rx_w_round_robin_3);
  1361. val64 = 0x0103020400000000ULL;
  1362. writeq(val64, &bar0->rx_w_round_robin_4);
  1363. val64 = 0x8040201008040201ULL;
  1364. writeq(val64, &bar0->rts_qos_steering);
  1365. break;
  1366. }
  1367. /* UDP Fix */
  1368. val64 = 0;
  1369. for (i = 0; i < 8; i++)
  1370. writeq(val64, &bar0->rts_frm_len_n[i]);
  1371. /* Set the default rts frame length for the rings configured */
  1372. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1373. for (i = 0 ; i < config->rx_ring_num ; i++)
  1374. writeq(val64, &bar0->rts_frm_len_n[i]);
  1375. /* Set the frame length for the configured rings
  1376. * desired by the user
  1377. */
  1378. for (i = 0; i < config->rx_ring_num; i++) {
  1379. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1380. * specified frame length steering.
  1381. * If the user provides the frame length then program
  1382. * the rts_frm_len register for those values or else
  1383. * leave it as it is.
  1384. */
  1385. if (rts_frm_len[i] != 0) {
  1386. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1387. &bar0->rts_frm_len_n[i]);
  1388. }
  1389. }
  1390. /* Disable differentiated services steering logic */
  1391. for (i = 0; i < 64; i++) {
  1392. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1393. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1394. dev->name);
  1395. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1396. return -ENODEV;
  1397. }
  1398. }
  1399. /* Program statistics memory */
  1400. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1401. if (nic->device_type == XFRAME_II_DEVICE) {
  1402. val64 = STAT_BC(0x320);
  1403. writeq(val64, &bar0->stat_byte_cnt);
  1404. }
  1405. /*
  1406. * Initializing the sampling rate for the device to calculate the
  1407. * bandwidth utilization.
  1408. */
  1409. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1410. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1411. writeq(val64, &bar0->mac_link_util);
  1412. /*
  1413. * Initializing the Transmit and Receive Traffic Interrupt
  1414. * Scheme.
  1415. */
  1416. /*
  1417. * TTI Initialization. Default Tx timer gets us about
  1418. * 250 interrupts per sec. Continuous interrupts are enabled
  1419. * by default.
  1420. */
  1421. if (nic->device_type == XFRAME_II_DEVICE) {
  1422. int count = (nic->config.bus_speed * 125)/2;
  1423. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1424. } else {
  1425. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1426. }
  1427. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1428. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1429. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1430. if (use_continuous_tx_intrs)
  1431. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1432. writeq(val64, &bar0->tti_data1_mem);
  1433. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1434. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1435. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1436. writeq(val64, &bar0->tti_data2_mem);
  1437. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1438. writeq(val64, &bar0->tti_command_mem);
  1439. /*
  1440. * Once the operation completes, the Strobe bit of the command
  1441. * register will be reset. We poll for this particular condition
  1442. * We wait for a maximum of 500ms for the operation to complete,
  1443. * if it's not complete by then we return error.
  1444. */
  1445. time = 0;
  1446. while (TRUE) {
  1447. val64 = readq(&bar0->tti_command_mem);
  1448. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1449. break;
  1450. }
  1451. if (time > 10) {
  1452. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1453. dev->name);
  1454. return -ENODEV;
  1455. }
  1456. msleep(50);
  1457. time++;
  1458. }
  1459. /* RTI Initialization */
  1460. if (nic->device_type == XFRAME_II_DEVICE) {
  1461. /*
  1462. * Programmed to generate Apprx 500 Intrs per
  1463. * second
  1464. */
  1465. int count = (nic->config.bus_speed * 125)/4;
  1466. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1467. } else
  1468. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1469. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1470. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1471. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1472. writeq(val64, &bar0->rti_data1_mem);
  1473. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1474. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1475. if (nic->config.intr_type == MSI_X)
  1476. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1477. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1478. else
  1479. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1480. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1481. writeq(val64, &bar0->rti_data2_mem);
  1482. for (i = 0; i < config->rx_ring_num; i++) {
  1483. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1484. | RTI_CMD_MEM_OFFSET(i);
  1485. writeq(val64, &bar0->rti_command_mem);
  1486. /*
  1487. * Once the operation completes, the Strobe bit of the
  1488. * command register will be reset. We poll for this
  1489. * particular condition. We wait for a maximum of 500ms
  1490. * for the operation to complete, if it's not complete
  1491. * by then we return error.
  1492. */
  1493. time = 0;
  1494. while (TRUE) {
  1495. val64 = readq(&bar0->rti_command_mem);
  1496. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1497. break;
  1498. if (time > 10) {
  1499. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1500. dev->name);
  1501. return -ENODEV;
  1502. }
  1503. time++;
  1504. msleep(50);
  1505. }
  1506. }
  1507. /*
  1508. * Initializing proper values as Pause threshold into all
  1509. * the 8 Queues on Rx side.
  1510. */
  1511. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1512. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1513. /* Disable RMAC PAD STRIPPING */
  1514. add = &bar0->mac_cfg;
  1515. val64 = readq(&bar0->mac_cfg);
  1516. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1517. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1518. writel((u32) (val64), add);
  1519. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1520. writel((u32) (val64 >> 32), (add + 4));
  1521. val64 = readq(&bar0->mac_cfg);
  1522. /* Enable FCS stripping by adapter */
  1523. add = &bar0->mac_cfg;
  1524. val64 = readq(&bar0->mac_cfg);
  1525. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1526. if (nic->device_type == XFRAME_II_DEVICE)
  1527. writeq(val64, &bar0->mac_cfg);
  1528. else {
  1529. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1530. writel((u32) (val64), add);
  1531. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1532. writel((u32) (val64 >> 32), (add + 4));
  1533. }
  1534. /*
  1535. * Set the time value to be inserted in the pause frame
  1536. * generated by xena.
  1537. */
  1538. val64 = readq(&bar0->rmac_pause_cfg);
  1539. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1540. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1541. writeq(val64, &bar0->rmac_pause_cfg);
  1542. /*
  1543. * Set the Threshold Limit for Generating the pause frame
  1544. * If the amount of data in any Queue exceeds ratio of
  1545. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1546. * pause frame is generated
  1547. */
  1548. val64 = 0;
  1549. for (i = 0; i < 4; i++) {
  1550. val64 |=
  1551. (((u64) 0xFF00 | nic->mac_control.
  1552. mc_pause_threshold_q0q3)
  1553. << (i * 2 * 8));
  1554. }
  1555. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1556. val64 = 0;
  1557. for (i = 0; i < 4; i++) {
  1558. val64 |=
  1559. (((u64) 0xFF00 | nic->mac_control.
  1560. mc_pause_threshold_q4q7)
  1561. << (i * 2 * 8));
  1562. }
  1563. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1564. /*
  1565. * TxDMA will stop Read request if the number of read split has
  1566. * exceeded the limit pointed by shared_splits
  1567. */
  1568. val64 = readq(&bar0->pic_control);
  1569. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1570. writeq(val64, &bar0->pic_control);
  1571. if (nic->config.bus_speed == 266) {
  1572. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1573. writeq(0x0, &bar0->read_retry_delay);
  1574. writeq(0x0, &bar0->write_retry_delay);
  1575. }
  1576. /*
  1577. * Programming the Herc to split every write transaction
  1578. * that does not start on an ADB to reduce disconnects.
  1579. */
  1580. if (nic->device_type == XFRAME_II_DEVICE) {
  1581. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1582. MISC_LINK_STABILITY_PRD(3);
  1583. writeq(val64, &bar0->misc_control);
  1584. val64 = readq(&bar0->pic_control2);
  1585. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1586. writeq(val64, &bar0->pic_control2);
  1587. }
  1588. if (strstr(nic->product_name, "CX4")) {
  1589. val64 = TMAC_AVG_IPG(0x17);
  1590. writeq(val64, &bar0->tmac_avg_ipg);
  1591. }
  1592. return SUCCESS;
  1593. }
  1594. #define LINK_UP_DOWN_INTERRUPT 1
  1595. #define MAC_RMAC_ERR_TIMER 2
  1596. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1597. {
  1598. if (nic->config.intr_type != INTA)
  1599. return MAC_RMAC_ERR_TIMER;
  1600. if (nic->device_type == XFRAME_II_DEVICE)
  1601. return LINK_UP_DOWN_INTERRUPT;
  1602. else
  1603. return MAC_RMAC_ERR_TIMER;
  1604. }
  1605. /**
  1606. * do_s2io_write_bits - update alarm bits in alarm register
  1607. * @value: alarm bits
  1608. * @flag: interrupt status
  1609. * @addr: address value
  1610. * Description: update alarm bits in alarm register
  1611. * Return Value:
  1612. * NONE.
  1613. */
  1614. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1615. {
  1616. u64 temp64;
  1617. temp64 = readq(addr);
  1618. if(flag == ENABLE_INTRS)
  1619. temp64 &= ~((u64) value);
  1620. else
  1621. temp64 |= ((u64) value);
  1622. writeq(temp64, addr);
  1623. }
  1624. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1625. {
  1626. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1627. register u64 gen_int_mask = 0;
  1628. if (mask & TX_DMA_INTR) {
  1629. gen_int_mask |= TXDMA_INT_M;
  1630. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1631. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1632. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1633. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1634. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1635. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1636. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1637. &bar0->pfc_err_mask);
  1638. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1639. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1640. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1641. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1642. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1643. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1644. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1645. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1646. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1647. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1648. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1649. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1650. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1651. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1652. flag, &bar0->lso_err_mask);
  1653. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1654. flag, &bar0->tpa_err_mask);
  1655. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1656. }
  1657. if (mask & TX_MAC_INTR) {
  1658. gen_int_mask |= TXMAC_INT_M;
  1659. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1660. &bar0->mac_int_mask);
  1661. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1662. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1663. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1664. flag, &bar0->mac_tmac_err_mask);
  1665. }
  1666. if (mask & TX_XGXS_INTR) {
  1667. gen_int_mask |= TXXGXS_INT_M;
  1668. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1669. &bar0->xgxs_int_mask);
  1670. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1671. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1672. flag, &bar0->xgxs_txgxs_err_mask);
  1673. }
  1674. if (mask & RX_DMA_INTR) {
  1675. gen_int_mask |= RXDMA_INT_M;
  1676. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1677. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1678. flag, &bar0->rxdma_int_mask);
  1679. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1680. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1681. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1682. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1683. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1684. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1685. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1686. &bar0->prc_pcix_err_mask);
  1687. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1688. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1689. &bar0->rpa_err_mask);
  1690. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1691. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1692. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1693. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1694. flag, &bar0->rda_err_mask);
  1695. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1696. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1697. flag, &bar0->rti_err_mask);
  1698. }
  1699. if (mask & RX_MAC_INTR) {
  1700. gen_int_mask |= RXMAC_INT_M;
  1701. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1702. &bar0->mac_int_mask);
  1703. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1704. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1705. RMAC_DOUBLE_ECC_ERR |
  1706. RMAC_LINK_STATE_CHANGE_INT,
  1707. flag, &bar0->mac_rmac_err_mask);
  1708. }
  1709. if (mask & RX_XGXS_INTR)
  1710. {
  1711. gen_int_mask |= RXXGXS_INT_M;
  1712. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1713. &bar0->xgxs_int_mask);
  1714. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1715. &bar0->xgxs_rxgxs_err_mask);
  1716. }
  1717. if (mask & MC_INTR) {
  1718. gen_int_mask |= MC_INT_M;
  1719. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1720. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1721. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1722. &bar0->mc_err_mask);
  1723. }
  1724. nic->general_int_mask = gen_int_mask;
  1725. /* Remove this line when alarm interrupts are enabled */
  1726. nic->general_int_mask = 0;
  1727. }
  1728. /**
  1729. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1730. * @nic: device private variable,
  1731. * @mask: A mask indicating which Intr block must be modified and,
  1732. * @flag: A flag indicating whether to enable or disable the Intrs.
  1733. * Description: This function will either disable or enable the interrupts
  1734. * depending on the flag argument. The mask argument can be used to
  1735. * enable/disable any Intr block.
  1736. * Return Value: NONE.
  1737. */
  1738. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1739. {
  1740. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1741. register u64 temp64 = 0, intr_mask = 0;
  1742. intr_mask = nic->general_int_mask;
  1743. /* Top level interrupt classification */
  1744. /* PIC Interrupts */
  1745. if (mask & TX_PIC_INTR) {
  1746. /* Enable PIC Intrs in the general intr mask register */
  1747. intr_mask |= TXPIC_INT_M;
  1748. if (flag == ENABLE_INTRS) {
  1749. /*
  1750. * If Hercules adapter enable GPIO otherwise
  1751. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1752. * interrupts for now.
  1753. * TODO
  1754. */
  1755. if (s2io_link_fault_indication(nic) ==
  1756. LINK_UP_DOWN_INTERRUPT ) {
  1757. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1758. &bar0->pic_int_mask);
  1759. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1760. &bar0->gpio_int_mask);
  1761. } else
  1762. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1763. } else if (flag == DISABLE_INTRS) {
  1764. /*
  1765. * Disable PIC Intrs in the general
  1766. * intr mask register
  1767. */
  1768. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1769. }
  1770. }
  1771. /* Tx traffic interrupts */
  1772. if (mask & TX_TRAFFIC_INTR) {
  1773. intr_mask |= TXTRAFFIC_INT_M;
  1774. if (flag == ENABLE_INTRS) {
  1775. /*
  1776. * Enable all the Tx side interrupts
  1777. * writing 0 Enables all 64 TX interrupt levels
  1778. */
  1779. writeq(0x0, &bar0->tx_traffic_mask);
  1780. } else if (flag == DISABLE_INTRS) {
  1781. /*
  1782. * Disable Tx Traffic Intrs in the general intr mask
  1783. * register.
  1784. */
  1785. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1786. }
  1787. }
  1788. /* Rx traffic interrupts */
  1789. if (mask & RX_TRAFFIC_INTR) {
  1790. intr_mask |= RXTRAFFIC_INT_M;
  1791. if (flag == ENABLE_INTRS) {
  1792. /* writing 0 Enables all 8 RX interrupt levels */
  1793. writeq(0x0, &bar0->rx_traffic_mask);
  1794. } else if (flag == DISABLE_INTRS) {
  1795. /*
  1796. * Disable Rx Traffic Intrs in the general intr mask
  1797. * register.
  1798. */
  1799. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1800. }
  1801. }
  1802. temp64 = readq(&bar0->general_int_mask);
  1803. if (flag == ENABLE_INTRS)
  1804. temp64 &= ~((u64) intr_mask);
  1805. else
  1806. temp64 = DISABLE_ALL_INTRS;
  1807. writeq(temp64, &bar0->general_int_mask);
  1808. nic->general_int_mask = readq(&bar0->general_int_mask);
  1809. }
  1810. /**
  1811. * verify_pcc_quiescent- Checks for PCC quiescent state
  1812. * Return: 1 If PCC is quiescence
  1813. * 0 If PCC is not quiescence
  1814. */
  1815. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1816. {
  1817. int ret = 0, herc;
  1818. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1819. u64 val64 = readq(&bar0->adapter_status);
  1820. herc = (sp->device_type == XFRAME_II_DEVICE);
  1821. if (flag == FALSE) {
  1822. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1823. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1824. ret = 1;
  1825. } else {
  1826. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1827. ret = 1;
  1828. }
  1829. } else {
  1830. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1831. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1832. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1833. ret = 1;
  1834. } else {
  1835. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1836. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1837. ret = 1;
  1838. }
  1839. }
  1840. return ret;
  1841. }
  1842. /**
  1843. * verify_xena_quiescence - Checks whether the H/W is ready
  1844. * Description: Returns whether the H/W is ready to go or not. Depending
  1845. * on whether adapter enable bit was written or not the comparison
  1846. * differs and the calling function passes the input argument flag to
  1847. * indicate this.
  1848. * Return: 1 If xena is quiescence
  1849. * 0 If Xena is not quiescence
  1850. */
  1851. static int verify_xena_quiescence(struct s2io_nic *sp)
  1852. {
  1853. int mode;
  1854. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1855. u64 val64 = readq(&bar0->adapter_status);
  1856. mode = s2io_verify_pci_mode(sp);
  1857. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1858. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1859. return 0;
  1860. }
  1861. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1862. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1863. return 0;
  1864. }
  1865. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1866. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1867. return 0;
  1868. }
  1869. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1870. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1871. return 0;
  1872. }
  1873. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1874. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1875. return 0;
  1876. }
  1877. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1878. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1879. return 0;
  1880. }
  1881. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1882. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1883. return 0;
  1884. }
  1885. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1886. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1887. return 0;
  1888. }
  1889. /*
  1890. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1891. * the the P_PLL_LOCK bit in the adapter_status register will
  1892. * not be asserted.
  1893. */
  1894. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1895. sp->device_type == XFRAME_II_DEVICE && mode !=
  1896. PCI_MODE_PCI_33) {
  1897. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1898. return 0;
  1899. }
  1900. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1901. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1902. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1903. return 0;
  1904. }
  1905. return 1;
  1906. }
  1907. /**
  1908. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1909. * @sp: Pointer to device specifc structure
  1910. * Description :
  1911. * New procedure to clear mac address reading problems on Alpha platforms
  1912. *
  1913. */
  1914. static void fix_mac_address(struct s2io_nic * sp)
  1915. {
  1916. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1917. u64 val64;
  1918. int i = 0;
  1919. while (fix_mac[i] != END_SIGN) {
  1920. writeq(fix_mac[i++], &bar0->gpio_control);
  1921. udelay(10);
  1922. val64 = readq(&bar0->gpio_control);
  1923. }
  1924. }
  1925. /**
  1926. * start_nic - Turns the device on
  1927. * @nic : device private variable.
  1928. * Description:
  1929. * This function actually turns the device on. Before this function is
  1930. * called,all Registers are configured from their reset states
  1931. * and shared memory is allocated but the NIC is still quiescent. On
  1932. * calling this function, the device interrupts are cleared and the NIC is
  1933. * literally switched on by writing into the adapter control register.
  1934. * Return Value:
  1935. * SUCCESS on success and -1 on failure.
  1936. */
  1937. static int start_nic(struct s2io_nic *nic)
  1938. {
  1939. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1940. struct net_device *dev = nic->dev;
  1941. register u64 val64 = 0;
  1942. u16 subid, i;
  1943. struct mac_info *mac_control;
  1944. struct config_param *config;
  1945. mac_control = &nic->mac_control;
  1946. config = &nic->config;
  1947. /* PRC Initialization and configuration */
  1948. for (i = 0; i < config->rx_ring_num; i++) {
  1949. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1950. &bar0->prc_rxd0_n[i]);
  1951. val64 = readq(&bar0->prc_ctrl_n[i]);
  1952. if (nic->rxd_mode == RXD_MODE_1)
  1953. val64 |= PRC_CTRL_RC_ENABLED;
  1954. else
  1955. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1956. if (nic->device_type == XFRAME_II_DEVICE)
  1957. val64 |= PRC_CTRL_GROUP_READS;
  1958. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1959. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1960. writeq(val64, &bar0->prc_ctrl_n[i]);
  1961. }
  1962. if (nic->rxd_mode == RXD_MODE_3B) {
  1963. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1964. val64 = readq(&bar0->rx_pa_cfg);
  1965. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1966. writeq(val64, &bar0->rx_pa_cfg);
  1967. }
  1968. if (vlan_tag_strip == 0) {
  1969. val64 = readq(&bar0->rx_pa_cfg);
  1970. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1971. writeq(val64, &bar0->rx_pa_cfg);
  1972. vlan_strip_flag = 0;
  1973. }
  1974. /*
  1975. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1976. * for around 100ms, which is approximately the time required
  1977. * for the device to be ready for operation.
  1978. */
  1979. val64 = readq(&bar0->mc_rldram_mrs);
  1980. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1981. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1982. val64 = readq(&bar0->mc_rldram_mrs);
  1983. msleep(100); /* Delay by around 100 ms. */
  1984. /* Enabling ECC Protection. */
  1985. val64 = readq(&bar0->adapter_control);
  1986. val64 &= ~ADAPTER_ECC_EN;
  1987. writeq(val64, &bar0->adapter_control);
  1988. /*
  1989. * Verify if the device is ready to be enabled, if so enable
  1990. * it.
  1991. */
  1992. val64 = readq(&bar0->adapter_status);
  1993. if (!verify_xena_quiescence(nic)) {
  1994. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  1995. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  1996. (unsigned long long) val64);
  1997. return FAILURE;
  1998. }
  1999. /*
  2000. * With some switches, link might be already up at this point.
  2001. * Because of this weird behavior, when we enable laser,
  2002. * we may not get link. We need to handle this. We cannot
  2003. * figure out which switch is misbehaving. So we are forced to
  2004. * make a global change.
  2005. */
  2006. /* Enabling Laser. */
  2007. val64 = readq(&bar0->adapter_control);
  2008. val64 |= ADAPTER_EOI_TX_ON;
  2009. writeq(val64, &bar0->adapter_control);
  2010. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2011. /*
  2012. * Dont see link state interrupts initally on some switches,
  2013. * so directly scheduling the link state task here.
  2014. */
  2015. schedule_work(&nic->set_link_task);
  2016. }
  2017. /* SXE-002: Initialize link and activity LED */
  2018. subid = nic->pdev->subsystem_device;
  2019. if (((subid & 0xFF) >= 0x07) &&
  2020. (nic->device_type == XFRAME_I_DEVICE)) {
  2021. val64 = readq(&bar0->gpio_control);
  2022. val64 |= 0x0000800000000000ULL;
  2023. writeq(val64, &bar0->gpio_control);
  2024. val64 = 0x0411040400000000ULL;
  2025. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2026. }
  2027. return SUCCESS;
  2028. }
  2029. /**
  2030. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2031. */
  2032. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2033. TxD *txdlp, int get_off)
  2034. {
  2035. struct s2io_nic *nic = fifo_data->nic;
  2036. struct sk_buff *skb;
  2037. struct TxD *txds;
  2038. u16 j, frg_cnt;
  2039. txds = txdlp;
  2040. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  2041. pci_unmap_single(nic->pdev, (dma_addr_t)
  2042. txds->Buffer_Pointer, sizeof(u64),
  2043. PCI_DMA_TODEVICE);
  2044. txds++;
  2045. }
  2046. skb = (struct sk_buff *) ((unsigned long)
  2047. txds->Host_Control);
  2048. if (!skb) {
  2049. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2050. return NULL;
  2051. }
  2052. pci_unmap_single(nic->pdev, (dma_addr_t)
  2053. txds->Buffer_Pointer,
  2054. skb->len - skb->data_len,
  2055. PCI_DMA_TODEVICE);
  2056. frg_cnt = skb_shinfo(skb)->nr_frags;
  2057. if (frg_cnt) {
  2058. txds++;
  2059. for (j = 0; j < frg_cnt; j++, txds++) {
  2060. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2061. if (!txds->Buffer_Pointer)
  2062. break;
  2063. pci_unmap_page(nic->pdev, (dma_addr_t)
  2064. txds->Buffer_Pointer,
  2065. frag->size, PCI_DMA_TODEVICE);
  2066. }
  2067. }
  2068. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2069. return(skb);
  2070. }
  2071. /**
  2072. * free_tx_buffers - Free all queued Tx buffers
  2073. * @nic : device private variable.
  2074. * Description:
  2075. * Free all queued Tx buffers.
  2076. * Return Value: void
  2077. */
  2078. static void free_tx_buffers(struct s2io_nic *nic)
  2079. {
  2080. struct net_device *dev = nic->dev;
  2081. struct sk_buff *skb;
  2082. struct TxD *txdp;
  2083. int i, j;
  2084. struct mac_info *mac_control;
  2085. struct config_param *config;
  2086. int cnt = 0;
  2087. mac_control = &nic->mac_control;
  2088. config = &nic->config;
  2089. for (i = 0; i < config->tx_fifo_num; i++) {
  2090. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2091. txdp = (struct TxD *) \
  2092. mac_control->fifos[i].list_info[j].list_virt_addr;
  2093. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2094. if (skb) {
  2095. nic->mac_control.stats_info->sw_stat.mem_freed
  2096. += skb->truesize;
  2097. dev_kfree_skb(skb);
  2098. cnt++;
  2099. }
  2100. }
  2101. DBG_PRINT(INTR_DBG,
  2102. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2103. dev->name, cnt, i);
  2104. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2105. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2106. }
  2107. }
  2108. /**
  2109. * stop_nic - To stop the nic
  2110. * @nic ; device private variable.
  2111. * Description:
  2112. * This function does exactly the opposite of what the start_nic()
  2113. * function does. This function is called to stop the device.
  2114. * Return Value:
  2115. * void.
  2116. */
  2117. static void stop_nic(struct s2io_nic *nic)
  2118. {
  2119. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2120. register u64 val64 = 0;
  2121. u16 interruptible;
  2122. struct mac_info *mac_control;
  2123. struct config_param *config;
  2124. mac_control = &nic->mac_control;
  2125. config = &nic->config;
  2126. /* Disable all interrupts */
  2127. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2128. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2129. interruptible |= TX_PIC_INTR;
  2130. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2131. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2132. val64 = readq(&bar0->adapter_control);
  2133. val64 &= ~(ADAPTER_CNTL_EN);
  2134. writeq(val64, &bar0->adapter_control);
  2135. }
  2136. /**
  2137. * fill_rx_buffers - Allocates the Rx side skbs
  2138. * @nic: device private variable
  2139. * @ring_no: ring number
  2140. * Description:
  2141. * The function allocates Rx side skbs and puts the physical
  2142. * address of these buffers into the RxD buffer pointers, so that the NIC
  2143. * can DMA the received frame into these locations.
  2144. * The NIC supports 3 receive modes, viz
  2145. * 1. single buffer,
  2146. * 2. three buffer and
  2147. * 3. Five buffer modes.
  2148. * Each mode defines how many fragments the received frame will be split
  2149. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2150. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2151. * is split into 3 fragments. As of now only single buffer mode is
  2152. * supported.
  2153. * Return Value:
  2154. * SUCCESS on success or an appropriate -ve value on failure.
  2155. */
  2156. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2157. {
  2158. struct net_device *dev = nic->dev;
  2159. struct sk_buff *skb;
  2160. struct RxD_t *rxdp;
  2161. int off, off1, size, block_no, block_no1;
  2162. u32 alloc_tab = 0;
  2163. u32 alloc_cnt;
  2164. struct mac_info *mac_control;
  2165. struct config_param *config;
  2166. u64 tmp;
  2167. struct buffAdd *ba;
  2168. unsigned long flags;
  2169. struct RxD_t *first_rxdp = NULL;
  2170. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2171. struct RxD1 *rxdp1;
  2172. struct RxD3 *rxdp3;
  2173. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2174. mac_control = &nic->mac_control;
  2175. config = &nic->config;
  2176. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2177. atomic_read(&nic->rx_bufs_left[ring_no]);
  2178. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2179. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2180. while (alloc_tab < alloc_cnt) {
  2181. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2182. block_index;
  2183. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2184. rxdp = mac_control->rings[ring_no].
  2185. rx_blocks[block_no].rxds[off].virt_addr;
  2186. if ((block_no == block_no1) && (off == off1) &&
  2187. (rxdp->Host_Control)) {
  2188. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2189. dev->name);
  2190. DBG_PRINT(INTR_DBG, " info equated\n");
  2191. goto end;
  2192. }
  2193. if (off && (off == rxd_count[nic->rxd_mode])) {
  2194. mac_control->rings[ring_no].rx_curr_put_info.
  2195. block_index++;
  2196. if (mac_control->rings[ring_no].rx_curr_put_info.
  2197. block_index == mac_control->rings[ring_no].
  2198. block_count)
  2199. mac_control->rings[ring_no].rx_curr_put_info.
  2200. block_index = 0;
  2201. block_no = mac_control->rings[ring_no].
  2202. rx_curr_put_info.block_index;
  2203. if (off == rxd_count[nic->rxd_mode])
  2204. off = 0;
  2205. mac_control->rings[ring_no].rx_curr_put_info.
  2206. offset = off;
  2207. rxdp = mac_control->rings[ring_no].
  2208. rx_blocks[block_no].block_virt_addr;
  2209. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2210. dev->name, rxdp);
  2211. }
  2212. if(!napi) {
  2213. spin_lock_irqsave(&nic->put_lock, flags);
  2214. mac_control->rings[ring_no].put_pos =
  2215. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2216. spin_unlock_irqrestore(&nic->put_lock, flags);
  2217. } else {
  2218. mac_control->rings[ring_no].put_pos =
  2219. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2220. }
  2221. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2222. ((nic->rxd_mode == RXD_MODE_3B) &&
  2223. (rxdp->Control_2 & s2BIT(0)))) {
  2224. mac_control->rings[ring_no].rx_curr_put_info.
  2225. offset = off;
  2226. goto end;
  2227. }
  2228. /* calculate size of skb based on ring mode */
  2229. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2230. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2231. if (nic->rxd_mode == RXD_MODE_1)
  2232. size += NET_IP_ALIGN;
  2233. else
  2234. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2235. /* allocate skb */
  2236. skb = dev_alloc_skb(size);
  2237. if(!skb) {
  2238. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2239. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2240. if (first_rxdp) {
  2241. wmb();
  2242. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2243. }
  2244. nic->mac_control.stats_info->sw_stat. \
  2245. mem_alloc_fail_cnt++;
  2246. return -ENOMEM ;
  2247. }
  2248. nic->mac_control.stats_info->sw_stat.mem_allocated
  2249. += skb->truesize;
  2250. if (nic->rxd_mode == RXD_MODE_1) {
  2251. /* 1 buffer mode - normal operation mode */
  2252. rxdp1 = (struct RxD1*)rxdp;
  2253. memset(rxdp, 0, sizeof(struct RxD1));
  2254. skb_reserve(skb, NET_IP_ALIGN);
  2255. rxdp1->Buffer0_ptr = pci_map_single
  2256. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2257. PCI_DMA_FROMDEVICE);
  2258. if( (rxdp1->Buffer0_ptr == 0) ||
  2259. (rxdp1->Buffer0_ptr ==
  2260. DMA_ERROR_CODE))
  2261. goto pci_map_failed;
  2262. rxdp->Control_2 =
  2263. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2264. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2265. /*
  2266. * 2 buffer mode -
  2267. * 2 buffer mode provides 128
  2268. * byte aligned receive buffers.
  2269. */
  2270. rxdp3 = (struct RxD3*)rxdp;
  2271. /* save buffer pointers to avoid frequent dma mapping */
  2272. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2273. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2274. memset(rxdp, 0, sizeof(struct RxD3));
  2275. /* restore the buffer pointers for dma sync*/
  2276. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2277. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2278. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2279. skb_reserve(skb, BUF0_LEN);
  2280. tmp = (u64)(unsigned long) skb->data;
  2281. tmp += ALIGN_SIZE;
  2282. tmp &= ~ALIGN_SIZE;
  2283. skb->data = (void *) (unsigned long)tmp;
  2284. skb_reset_tail_pointer(skb);
  2285. if (!(rxdp3->Buffer0_ptr))
  2286. rxdp3->Buffer0_ptr =
  2287. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2288. PCI_DMA_FROMDEVICE);
  2289. else
  2290. pci_dma_sync_single_for_device(nic->pdev,
  2291. (dma_addr_t) rxdp3->Buffer0_ptr,
  2292. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2293. if( (rxdp3->Buffer0_ptr == 0) ||
  2294. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2295. goto pci_map_failed;
  2296. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2297. if (nic->rxd_mode == RXD_MODE_3B) {
  2298. /* Two buffer mode */
  2299. /*
  2300. * Buffer2 will have L3/L4 header plus
  2301. * L4 payload
  2302. */
  2303. rxdp3->Buffer2_ptr = pci_map_single
  2304. (nic->pdev, skb->data, dev->mtu + 4,
  2305. PCI_DMA_FROMDEVICE);
  2306. if( (rxdp3->Buffer2_ptr == 0) ||
  2307. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2308. goto pci_map_failed;
  2309. rxdp3->Buffer1_ptr =
  2310. pci_map_single(nic->pdev,
  2311. ba->ba_1, BUF1_LEN,
  2312. PCI_DMA_FROMDEVICE);
  2313. if( (rxdp3->Buffer1_ptr == 0) ||
  2314. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2315. pci_unmap_single
  2316. (nic->pdev,
  2317. (dma_addr_t)rxdp3->Buffer2_ptr,
  2318. dev->mtu + 4,
  2319. PCI_DMA_FROMDEVICE);
  2320. goto pci_map_failed;
  2321. }
  2322. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2323. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2324. (dev->mtu + 4);
  2325. }
  2326. rxdp->Control_2 |= s2BIT(0);
  2327. }
  2328. rxdp->Host_Control = (unsigned long) (skb);
  2329. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2330. rxdp->Control_1 |= RXD_OWN_XENA;
  2331. off++;
  2332. if (off == (rxd_count[nic->rxd_mode] + 1))
  2333. off = 0;
  2334. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2335. rxdp->Control_2 |= SET_RXD_MARKER;
  2336. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2337. if (first_rxdp) {
  2338. wmb();
  2339. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2340. }
  2341. first_rxdp = rxdp;
  2342. }
  2343. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2344. alloc_tab++;
  2345. }
  2346. end:
  2347. /* Transfer ownership of first descriptor to adapter just before
  2348. * exiting. Before that, use memory barrier so that ownership
  2349. * and other fields are seen by adapter correctly.
  2350. */
  2351. if (first_rxdp) {
  2352. wmb();
  2353. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2354. }
  2355. return SUCCESS;
  2356. pci_map_failed:
  2357. stats->pci_map_fail_cnt++;
  2358. stats->mem_freed += skb->truesize;
  2359. dev_kfree_skb_irq(skb);
  2360. return -ENOMEM;
  2361. }
  2362. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2363. {
  2364. struct net_device *dev = sp->dev;
  2365. int j;
  2366. struct sk_buff *skb;
  2367. struct RxD_t *rxdp;
  2368. struct mac_info *mac_control;
  2369. struct buffAdd *ba;
  2370. struct RxD1 *rxdp1;
  2371. struct RxD3 *rxdp3;
  2372. mac_control = &sp->mac_control;
  2373. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2374. rxdp = mac_control->rings[ring_no].
  2375. rx_blocks[blk].rxds[j].virt_addr;
  2376. skb = (struct sk_buff *)
  2377. ((unsigned long) rxdp->Host_Control);
  2378. if (!skb) {
  2379. continue;
  2380. }
  2381. if (sp->rxd_mode == RXD_MODE_1) {
  2382. rxdp1 = (struct RxD1*)rxdp;
  2383. pci_unmap_single(sp->pdev, (dma_addr_t)
  2384. rxdp1->Buffer0_ptr,
  2385. dev->mtu +
  2386. HEADER_ETHERNET_II_802_3_SIZE
  2387. + HEADER_802_2_SIZE +
  2388. HEADER_SNAP_SIZE,
  2389. PCI_DMA_FROMDEVICE);
  2390. memset(rxdp, 0, sizeof(struct RxD1));
  2391. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2392. rxdp3 = (struct RxD3*)rxdp;
  2393. ba = &mac_control->rings[ring_no].
  2394. ba[blk][j];
  2395. pci_unmap_single(sp->pdev, (dma_addr_t)
  2396. rxdp3->Buffer0_ptr,
  2397. BUF0_LEN,
  2398. PCI_DMA_FROMDEVICE);
  2399. pci_unmap_single(sp->pdev, (dma_addr_t)
  2400. rxdp3->Buffer1_ptr,
  2401. BUF1_LEN,
  2402. PCI_DMA_FROMDEVICE);
  2403. pci_unmap_single(sp->pdev, (dma_addr_t)
  2404. rxdp3->Buffer2_ptr,
  2405. dev->mtu + 4,
  2406. PCI_DMA_FROMDEVICE);
  2407. memset(rxdp, 0, sizeof(struct RxD3));
  2408. }
  2409. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2410. dev_kfree_skb(skb);
  2411. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2412. }
  2413. }
  2414. /**
  2415. * free_rx_buffers - Frees all Rx buffers
  2416. * @sp: device private variable.
  2417. * Description:
  2418. * This function will free all Rx buffers allocated by host.
  2419. * Return Value:
  2420. * NONE.
  2421. */
  2422. static void free_rx_buffers(struct s2io_nic *sp)
  2423. {
  2424. struct net_device *dev = sp->dev;
  2425. int i, blk = 0, buf_cnt = 0;
  2426. struct mac_info *mac_control;
  2427. struct config_param *config;
  2428. mac_control = &sp->mac_control;
  2429. config = &sp->config;
  2430. for (i = 0; i < config->rx_ring_num; i++) {
  2431. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2432. free_rxd_blk(sp,i,blk);
  2433. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2434. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2435. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2436. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2437. atomic_set(&sp->rx_bufs_left[i], 0);
  2438. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2439. dev->name, buf_cnt, i);
  2440. }
  2441. }
  2442. /**
  2443. * s2io_poll - Rx interrupt handler for NAPI support
  2444. * @napi : pointer to the napi structure.
  2445. * @budget : The number of packets that were budgeted to be processed
  2446. * during one pass through the 'Poll" function.
  2447. * Description:
  2448. * Comes into picture only if NAPI support has been incorporated. It does
  2449. * the same thing that rx_intr_handler does, but not in a interrupt context
  2450. * also It will process only a given number of packets.
  2451. * Return value:
  2452. * 0 on success and 1 if there are No Rx packets to be processed.
  2453. */
  2454. static int s2io_poll(struct napi_struct *napi, int budget)
  2455. {
  2456. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2457. struct net_device *dev = nic->dev;
  2458. int pkt_cnt = 0, org_pkts_to_process;
  2459. struct mac_info *mac_control;
  2460. struct config_param *config;
  2461. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2462. int i;
  2463. mac_control = &nic->mac_control;
  2464. config = &nic->config;
  2465. nic->pkts_to_process = budget;
  2466. org_pkts_to_process = nic->pkts_to_process;
  2467. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2468. readl(&bar0->rx_traffic_int);
  2469. for (i = 0; i < config->rx_ring_num; i++) {
  2470. rx_intr_handler(&mac_control->rings[i]);
  2471. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2472. if (!nic->pkts_to_process) {
  2473. /* Quota for the current iteration has been met */
  2474. goto no_rx;
  2475. }
  2476. }
  2477. netif_rx_complete(dev, napi);
  2478. for (i = 0; i < config->rx_ring_num; i++) {
  2479. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2480. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2481. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2482. break;
  2483. }
  2484. }
  2485. /* Re enable the Rx interrupts. */
  2486. writeq(0x0, &bar0->rx_traffic_mask);
  2487. readl(&bar0->rx_traffic_mask);
  2488. return pkt_cnt;
  2489. no_rx:
  2490. for (i = 0; i < config->rx_ring_num; i++) {
  2491. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2492. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2493. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2494. break;
  2495. }
  2496. }
  2497. return pkt_cnt;
  2498. }
  2499. #ifdef CONFIG_NET_POLL_CONTROLLER
  2500. /**
  2501. * s2io_netpoll - netpoll event handler entry point
  2502. * @dev : pointer to the device structure.
  2503. * Description:
  2504. * This function will be called by upper layer to check for events on the
  2505. * interface in situations where interrupts are disabled. It is used for
  2506. * specific in-kernel networking tasks, such as remote consoles and kernel
  2507. * debugging over the network (example netdump in RedHat).
  2508. */
  2509. static void s2io_netpoll(struct net_device *dev)
  2510. {
  2511. struct s2io_nic *nic = dev->priv;
  2512. struct mac_info *mac_control;
  2513. struct config_param *config;
  2514. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2515. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2516. int i;
  2517. if (pci_channel_offline(nic->pdev))
  2518. return;
  2519. disable_irq(dev->irq);
  2520. mac_control = &nic->mac_control;
  2521. config = &nic->config;
  2522. writeq(val64, &bar0->rx_traffic_int);
  2523. writeq(val64, &bar0->tx_traffic_int);
  2524. /* we need to free up the transmitted skbufs or else netpoll will
  2525. * run out of skbs and will fail and eventually netpoll application such
  2526. * as netdump will fail.
  2527. */
  2528. for (i = 0; i < config->tx_fifo_num; i++)
  2529. tx_intr_handler(&mac_control->fifos[i]);
  2530. /* check for received packet and indicate up to network */
  2531. for (i = 0; i < config->rx_ring_num; i++)
  2532. rx_intr_handler(&mac_control->rings[i]);
  2533. for (i = 0; i < config->rx_ring_num; i++) {
  2534. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2535. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2536. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2537. break;
  2538. }
  2539. }
  2540. enable_irq(dev->irq);
  2541. return;
  2542. }
  2543. #endif
  2544. /**
  2545. * rx_intr_handler - Rx interrupt handler
  2546. * @nic: device private variable.
  2547. * Description:
  2548. * If the interrupt is because of a received frame or if the
  2549. * receive ring contains fresh as yet un-processed frames,this function is
  2550. * called. It picks out the RxD at which place the last Rx processing had
  2551. * stopped and sends the skb to the OSM's Rx handler and then increments
  2552. * the offset.
  2553. * Return Value:
  2554. * NONE.
  2555. */
  2556. static void rx_intr_handler(struct ring_info *ring_data)
  2557. {
  2558. struct s2io_nic *nic = ring_data->nic;
  2559. struct net_device *dev = (struct net_device *) nic->dev;
  2560. int get_block, put_block, put_offset;
  2561. struct rx_curr_get_info get_info, put_info;
  2562. struct RxD_t *rxdp;
  2563. struct sk_buff *skb;
  2564. int pkt_cnt = 0;
  2565. int i;
  2566. struct RxD1* rxdp1;
  2567. struct RxD3* rxdp3;
  2568. spin_lock(&nic->rx_lock);
  2569. get_info = ring_data->rx_curr_get_info;
  2570. get_block = get_info.block_index;
  2571. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2572. put_block = put_info.block_index;
  2573. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2574. if (!napi) {
  2575. spin_lock(&nic->put_lock);
  2576. put_offset = ring_data->put_pos;
  2577. spin_unlock(&nic->put_lock);
  2578. } else
  2579. put_offset = ring_data->put_pos;
  2580. while (RXD_IS_UP2DT(rxdp)) {
  2581. /*
  2582. * If your are next to put index then it's
  2583. * FIFO full condition
  2584. */
  2585. if ((get_block == put_block) &&
  2586. (get_info.offset + 1) == put_info.offset) {
  2587. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2588. break;
  2589. }
  2590. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2591. if (skb == NULL) {
  2592. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2593. dev->name);
  2594. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2595. spin_unlock(&nic->rx_lock);
  2596. return;
  2597. }
  2598. if (nic->rxd_mode == RXD_MODE_1) {
  2599. rxdp1 = (struct RxD1*)rxdp;
  2600. pci_unmap_single(nic->pdev, (dma_addr_t)
  2601. rxdp1->Buffer0_ptr,
  2602. dev->mtu +
  2603. HEADER_ETHERNET_II_802_3_SIZE +
  2604. HEADER_802_2_SIZE +
  2605. HEADER_SNAP_SIZE,
  2606. PCI_DMA_FROMDEVICE);
  2607. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2608. rxdp3 = (struct RxD3*)rxdp;
  2609. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2610. rxdp3->Buffer0_ptr,
  2611. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2612. pci_unmap_single(nic->pdev, (dma_addr_t)
  2613. rxdp3->Buffer2_ptr,
  2614. dev->mtu + 4,
  2615. PCI_DMA_FROMDEVICE);
  2616. }
  2617. prefetch(skb->data);
  2618. rx_osm_handler(ring_data, rxdp);
  2619. get_info.offset++;
  2620. ring_data->rx_curr_get_info.offset = get_info.offset;
  2621. rxdp = ring_data->rx_blocks[get_block].
  2622. rxds[get_info.offset].virt_addr;
  2623. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2624. get_info.offset = 0;
  2625. ring_data->rx_curr_get_info.offset = get_info.offset;
  2626. get_block++;
  2627. if (get_block == ring_data->block_count)
  2628. get_block = 0;
  2629. ring_data->rx_curr_get_info.block_index = get_block;
  2630. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2631. }
  2632. nic->pkts_to_process -= 1;
  2633. if ((napi) && (!nic->pkts_to_process))
  2634. break;
  2635. pkt_cnt++;
  2636. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2637. break;
  2638. }
  2639. if (nic->lro) {
  2640. /* Clear all LRO sessions before exiting */
  2641. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2642. struct lro *lro = &nic->lro0_n[i];
  2643. if (lro->in_use) {
  2644. update_L3L4_header(nic, lro);
  2645. queue_rx_frame(lro->parent);
  2646. clear_lro_session(lro);
  2647. }
  2648. }
  2649. }
  2650. spin_unlock(&nic->rx_lock);
  2651. }
  2652. /**
  2653. * tx_intr_handler - Transmit interrupt handler
  2654. * @nic : device private variable
  2655. * Description:
  2656. * If an interrupt was raised to indicate DMA complete of the
  2657. * Tx packet, this function is called. It identifies the last TxD
  2658. * whose buffer was freed and frees all skbs whose data have already
  2659. * DMA'ed into the NICs internal memory.
  2660. * Return Value:
  2661. * NONE
  2662. */
  2663. static void tx_intr_handler(struct fifo_info *fifo_data)
  2664. {
  2665. struct s2io_nic *nic = fifo_data->nic;
  2666. struct net_device *dev = (struct net_device *) nic->dev;
  2667. struct tx_curr_get_info get_info, put_info;
  2668. struct sk_buff *skb;
  2669. struct TxD *txdlp;
  2670. u8 err_mask;
  2671. get_info = fifo_data->tx_curr_get_info;
  2672. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2673. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2674. list_virt_addr;
  2675. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2676. (get_info.offset != put_info.offset) &&
  2677. (txdlp->Host_Control)) {
  2678. /* Check for TxD errors */
  2679. if (txdlp->Control_1 & TXD_T_CODE) {
  2680. unsigned long long err;
  2681. err = txdlp->Control_1 & TXD_T_CODE;
  2682. if (err & 0x1) {
  2683. nic->mac_control.stats_info->sw_stat.
  2684. parity_err_cnt++;
  2685. }
  2686. /* update t_code statistics */
  2687. err_mask = err >> 48;
  2688. switch(err_mask) {
  2689. case 2:
  2690. nic->mac_control.stats_info->sw_stat.
  2691. tx_buf_abort_cnt++;
  2692. break;
  2693. case 3:
  2694. nic->mac_control.stats_info->sw_stat.
  2695. tx_desc_abort_cnt++;
  2696. break;
  2697. case 7:
  2698. nic->mac_control.stats_info->sw_stat.
  2699. tx_parity_err_cnt++;
  2700. break;
  2701. case 10:
  2702. nic->mac_control.stats_info->sw_stat.
  2703. tx_link_loss_cnt++;
  2704. break;
  2705. case 15:
  2706. nic->mac_control.stats_info->sw_stat.
  2707. tx_list_proc_err_cnt++;
  2708. break;
  2709. }
  2710. }
  2711. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2712. if (skb == NULL) {
  2713. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2714. __FUNCTION__);
  2715. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2716. return;
  2717. }
  2718. /* Updating the statistics block */
  2719. nic->stats.tx_bytes += skb->len;
  2720. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2721. dev_kfree_skb_irq(skb);
  2722. get_info.offset++;
  2723. if (get_info.offset == get_info.fifo_len + 1)
  2724. get_info.offset = 0;
  2725. txdlp = (struct TxD *) fifo_data->list_info
  2726. [get_info.offset].list_virt_addr;
  2727. fifo_data->tx_curr_get_info.offset =
  2728. get_info.offset;
  2729. }
  2730. spin_lock(&nic->tx_lock);
  2731. if (netif_queue_stopped(dev))
  2732. netif_wake_queue(dev);
  2733. spin_unlock(&nic->tx_lock);
  2734. }
  2735. /**
  2736. * s2io_mdio_write - Function to write in to MDIO registers
  2737. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2738. * @addr : address value
  2739. * @value : data value
  2740. * @dev : pointer to net_device structure
  2741. * Description:
  2742. * This function is used to write values to the MDIO registers
  2743. * NONE
  2744. */
  2745. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2746. {
  2747. u64 val64 = 0x0;
  2748. struct s2io_nic *sp = dev->priv;
  2749. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2750. //address transaction
  2751. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2752. | MDIO_MMD_DEV_ADDR(mmd_type)
  2753. | MDIO_MMS_PRT_ADDR(0x0);
  2754. writeq(val64, &bar0->mdio_control);
  2755. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2756. writeq(val64, &bar0->mdio_control);
  2757. udelay(100);
  2758. //Data transaction
  2759. val64 = 0x0;
  2760. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2761. | MDIO_MMD_DEV_ADDR(mmd_type)
  2762. | MDIO_MMS_PRT_ADDR(0x0)
  2763. | MDIO_MDIO_DATA(value)
  2764. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2765. writeq(val64, &bar0->mdio_control);
  2766. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2767. writeq(val64, &bar0->mdio_control);
  2768. udelay(100);
  2769. val64 = 0x0;
  2770. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2771. | MDIO_MMD_DEV_ADDR(mmd_type)
  2772. | MDIO_MMS_PRT_ADDR(0x0)
  2773. | MDIO_OP(MDIO_OP_READ_TRANS);
  2774. writeq(val64, &bar0->mdio_control);
  2775. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2776. writeq(val64, &bar0->mdio_control);
  2777. udelay(100);
  2778. }
  2779. /**
  2780. * s2io_mdio_read - Function to write in to MDIO registers
  2781. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2782. * @addr : address value
  2783. * @dev : pointer to net_device structure
  2784. * Description:
  2785. * This function is used to read values to the MDIO registers
  2786. * NONE
  2787. */
  2788. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2789. {
  2790. u64 val64 = 0x0;
  2791. u64 rval64 = 0x0;
  2792. struct s2io_nic *sp = dev->priv;
  2793. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2794. /* address transaction */
  2795. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2796. | MDIO_MMD_DEV_ADDR(mmd_type)
  2797. | MDIO_MMS_PRT_ADDR(0x0);
  2798. writeq(val64, &bar0->mdio_control);
  2799. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2800. writeq(val64, &bar0->mdio_control);
  2801. udelay(100);
  2802. /* Data transaction */
  2803. val64 = 0x0;
  2804. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2805. | MDIO_MMD_DEV_ADDR(mmd_type)
  2806. | MDIO_MMS_PRT_ADDR(0x0)
  2807. | MDIO_OP(MDIO_OP_READ_TRANS);
  2808. writeq(val64, &bar0->mdio_control);
  2809. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2810. writeq(val64, &bar0->mdio_control);
  2811. udelay(100);
  2812. /* Read the value from regs */
  2813. rval64 = readq(&bar0->mdio_control);
  2814. rval64 = rval64 & 0xFFFF0000;
  2815. rval64 = rval64 >> 16;
  2816. return rval64;
  2817. }
  2818. /**
  2819. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2820. * @counter : couter value to be updated
  2821. * @flag : flag to indicate the status
  2822. * @type : counter type
  2823. * Description:
  2824. * This function is to check the status of the xpak counters value
  2825. * NONE
  2826. */
  2827. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2828. {
  2829. u64 mask = 0x3;
  2830. u64 val64;
  2831. int i;
  2832. for(i = 0; i <index; i++)
  2833. mask = mask << 0x2;
  2834. if(flag > 0)
  2835. {
  2836. *counter = *counter + 1;
  2837. val64 = *regs_stat & mask;
  2838. val64 = val64 >> (index * 0x2);
  2839. val64 = val64 + 1;
  2840. if(val64 == 3)
  2841. {
  2842. switch(type)
  2843. {
  2844. case 1:
  2845. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2846. "service. Excessive temperatures may "
  2847. "result in premature transceiver "
  2848. "failure \n");
  2849. break;
  2850. case 2:
  2851. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2852. "service Excessive bias currents may "
  2853. "indicate imminent laser diode "
  2854. "failure \n");
  2855. break;
  2856. case 3:
  2857. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2858. "service Excessive laser output "
  2859. "power may saturate far-end "
  2860. "receiver\n");
  2861. break;
  2862. default:
  2863. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2864. "type \n");
  2865. }
  2866. val64 = 0x0;
  2867. }
  2868. val64 = val64 << (index * 0x2);
  2869. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2870. } else {
  2871. *regs_stat = *regs_stat & (~mask);
  2872. }
  2873. }
  2874. /**
  2875. * s2io_updt_xpak_counter - Function to update the xpak counters
  2876. * @dev : pointer to net_device struct
  2877. * Description:
  2878. * This function is to upate the status of the xpak counters value
  2879. * NONE
  2880. */
  2881. static void s2io_updt_xpak_counter(struct net_device *dev)
  2882. {
  2883. u16 flag = 0x0;
  2884. u16 type = 0x0;
  2885. u16 val16 = 0x0;
  2886. u64 val64 = 0x0;
  2887. u64 addr = 0x0;
  2888. struct s2io_nic *sp = dev->priv;
  2889. struct stat_block *stat_info = sp->mac_control.stats_info;
  2890. /* Check the communication with the MDIO slave */
  2891. addr = 0x0000;
  2892. val64 = 0x0;
  2893. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2894. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2895. {
  2896. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2897. "Returned %llx\n", (unsigned long long)val64);
  2898. return;
  2899. }
  2900. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2901. if(val64 != 0x2040)
  2902. {
  2903. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2904. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2905. (unsigned long long)val64);
  2906. return;
  2907. }
  2908. /* Loading the DOM register to MDIO register */
  2909. addr = 0xA100;
  2910. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2911. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2912. /* Reading the Alarm flags */
  2913. addr = 0xA070;
  2914. val64 = 0x0;
  2915. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2916. flag = CHECKBIT(val64, 0x7);
  2917. type = 1;
  2918. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2919. &stat_info->xpak_stat.xpak_regs_stat,
  2920. 0x0, flag, type);
  2921. if(CHECKBIT(val64, 0x6))
  2922. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2923. flag = CHECKBIT(val64, 0x3);
  2924. type = 2;
  2925. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2926. &stat_info->xpak_stat.xpak_regs_stat,
  2927. 0x2, flag, type);
  2928. if(CHECKBIT(val64, 0x2))
  2929. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2930. flag = CHECKBIT(val64, 0x1);
  2931. type = 3;
  2932. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2933. &stat_info->xpak_stat.xpak_regs_stat,
  2934. 0x4, flag, type);
  2935. if(CHECKBIT(val64, 0x0))
  2936. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2937. /* Reading the Warning flags */
  2938. addr = 0xA074;
  2939. val64 = 0x0;
  2940. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2941. if(CHECKBIT(val64, 0x7))
  2942. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2943. if(CHECKBIT(val64, 0x6))
  2944. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2945. if(CHECKBIT(val64, 0x3))
  2946. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2947. if(CHECKBIT(val64, 0x2))
  2948. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2949. if(CHECKBIT(val64, 0x1))
  2950. stat_info->xpak_stat.warn_laser_output_power_high++;
  2951. if(CHECKBIT(val64, 0x0))
  2952. stat_info->xpak_stat.warn_laser_output_power_low++;
  2953. }
  2954. /**
  2955. * wait_for_cmd_complete - waits for a command to complete.
  2956. * @sp : private member of the device structure, which is a pointer to the
  2957. * s2io_nic structure.
  2958. * Description: Function that waits for a command to Write into RMAC
  2959. * ADDR DATA registers to be completed and returns either success or
  2960. * error depending on whether the command was complete or not.
  2961. * Return value:
  2962. * SUCCESS on success and FAILURE on failure.
  2963. */
  2964. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  2965. int bit_state)
  2966. {
  2967. int ret = FAILURE, cnt = 0, delay = 1;
  2968. u64 val64;
  2969. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  2970. return FAILURE;
  2971. do {
  2972. val64 = readq(addr);
  2973. if (bit_state == S2IO_BIT_RESET) {
  2974. if (!(val64 & busy_bit)) {
  2975. ret = SUCCESS;
  2976. break;
  2977. }
  2978. } else {
  2979. if (!(val64 & busy_bit)) {
  2980. ret = SUCCESS;
  2981. break;
  2982. }
  2983. }
  2984. if(in_interrupt())
  2985. mdelay(delay);
  2986. else
  2987. msleep(delay);
  2988. if (++cnt >= 10)
  2989. delay = 50;
  2990. } while (cnt < 20);
  2991. return ret;
  2992. }
  2993. /*
  2994. * check_pci_device_id - Checks if the device id is supported
  2995. * @id : device id
  2996. * Description: Function to check if the pci device id is supported by driver.
  2997. * Return value: Actual device id if supported else PCI_ANY_ID
  2998. */
  2999. static u16 check_pci_device_id(u16 id)
  3000. {
  3001. switch (id) {
  3002. case PCI_DEVICE_ID_HERC_WIN:
  3003. case PCI_DEVICE_ID_HERC_UNI:
  3004. return XFRAME_II_DEVICE;
  3005. case PCI_DEVICE_ID_S2IO_UNI:
  3006. case PCI_DEVICE_ID_S2IO_WIN:
  3007. return XFRAME_I_DEVICE;
  3008. default:
  3009. return PCI_ANY_ID;
  3010. }
  3011. }
  3012. /**
  3013. * s2io_reset - Resets the card.
  3014. * @sp : private member of the device structure.
  3015. * Description: Function to Reset the card. This function then also
  3016. * restores the previously saved PCI configuration space registers as
  3017. * the card reset also resets the configuration space.
  3018. * Return value:
  3019. * void.
  3020. */
  3021. static void s2io_reset(struct s2io_nic * sp)
  3022. {
  3023. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3024. u64 val64;
  3025. u16 subid, pci_cmd;
  3026. int i;
  3027. u16 val16;
  3028. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3029. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3030. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3031. __FUNCTION__, sp->dev->name);
  3032. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3033. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3034. val64 = SW_RESET_ALL;
  3035. writeq(val64, &bar0->sw_reset);
  3036. if (strstr(sp->product_name, "CX4")) {
  3037. msleep(750);
  3038. }
  3039. msleep(250);
  3040. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3041. /* Restore the PCI state saved during initialization. */
  3042. pci_restore_state(sp->pdev);
  3043. pci_read_config_word(sp->pdev, 0x2, &val16);
  3044. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3045. break;
  3046. msleep(200);
  3047. }
  3048. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3049. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3050. }
  3051. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3052. s2io_init_pci(sp);
  3053. /* Set swapper to enable I/O register access */
  3054. s2io_set_swapper(sp);
  3055. /* restore mac_addr entries */
  3056. do_s2io_restore_unicast_mc(sp);
  3057. /* Restore the MSIX table entries from local variables */
  3058. restore_xmsi_data(sp);
  3059. /* Clear certain PCI/PCI-X fields after reset */
  3060. if (sp->device_type == XFRAME_II_DEVICE) {
  3061. /* Clear "detected parity error" bit */
  3062. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3063. /* Clearing PCIX Ecc status register */
  3064. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3065. /* Clearing PCI_STATUS error reflected here */
  3066. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3067. }
  3068. /* Reset device statistics maintained by OS */
  3069. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3070. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3071. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3072. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3073. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3074. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3075. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3076. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3077. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3078. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3079. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3080. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3081. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3082. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3083. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3084. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3085. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3086. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3087. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3088. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3089. /* SXE-002: Configure link and activity LED to turn it off */
  3090. subid = sp->pdev->subsystem_device;
  3091. if (((subid & 0xFF) >= 0x07) &&
  3092. (sp->device_type == XFRAME_I_DEVICE)) {
  3093. val64 = readq(&bar0->gpio_control);
  3094. val64 |= 0x0000800000000000ULL;
  3095. writeq(val64, &bar0->gpio_control);
  3096. val64 = 0x0411040400000000ULL;
  3097. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3098. }
  3099. /*
  3100. * Clear spurious ECC interrupts that would have occured on
  3101. * XFRAME II cards after reset.
  3102. */
  3103. if (sp->device_type == XFRAME_II_DEVICE) {
  3104. val64 = readq(&bar0->pcc_err_reg);
  3105. writeq(val64, &bar0->pcc_err_reg);
  3106. }
  3107. sp->device_enabled_once = FALSE;
  3108. }
  3109. /**
  3110. * s2io_set_swapper - to set the swapper controle on the card
  3111. * @sp : private member of the device structure,
  3112. * pointer to the s2io_nic structure.
  3113. * Description: Function to set the swapper control on the card
  3114. * correctly depending on the 'endianness' of the system.
  3115. * Return value:
  3116. * SUCCESS on success and FAILURE on failure.
  3117. */
  3118. static int s2io_set_swapper(struct s2io_nic * sp)
  3119. {
  3120. struct net_device *dev = sp->dev;
  3121. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3122. u64 val64, valt, valr;
  3123. /*
  3124. * Set proper endian settings and verify the same by reading
  3125. * the PIF Feed-back register.
  3126. */
  3127. val64 = readq(&bar0->pif_rd_swapper_fb);
  3128. if (val64 != 0x0123456789ABCDEFULL) {
  3129. int i = 0;
  3130. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3131. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3132. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3133. 0}; /* FE=0, SE=0 */
  3134. while(i<4) {
  3135. writeq(value[i], &bar0->swapper_ctrl);
  3136. val64 = readq(&bar0->pif_rd_swapper_fb);
  3137. if (val64 == 0x0123456789ABCDEFULL)
  3138. break;
  3139. i++;
  3140. }
  3141. if (i == 4) {
  3142. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3143. dev->name);
  3144. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3145. (unsigned long long) val64);
  3146. return FAILURE;
  3147. }
  3148. valr = value[i];
  3149. } else {
  3150. valr = readq(&bar0->swapper_ctrl);
  3151. }
  3152. valt = 0x0123456789ABCDEFULL;
  3153. writeq(valt, &bar0->xmsi_address);
  3154. val64 = readq(&bar0->xmsi_address);
  3155. if(val64 != valt) {
  3156. int i = 0;
  3157. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3158. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3159. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3160. 0}; /* FE=0, SE=0 */
  3161. while(i<4) {
  3162. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3163. writeq(valt, &bar0->xmsi_address);
  3164. val64 = readq(&bar0->xmsi_address);
  3165. if(val64 == valt)
  3166. break;
  3167. i++;
  3168. }
  3169. if(i == 4) {
  3170. unsigned long long x = val64;
  3171. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3172. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3173. return FAILURE;
  3174. }
  3175. }
  3176. val64 = readq(&bar0->swapper_ctrl);
  3177. val64 &= 0xFFFF000000000000ULL;
  3178. #ifdef __BIG_ENDIAN
  3179. /*
  3180. * The device by default set to a big endian format, so a
  3181. * big endian driver need not set anything.
  3182. */
  3183. val64 |= (SWAPPER_CTRL_TXP_FE |
  3184. SWAPPER_CTRL_TXP_SE |
  3185. SWAPPER_CTRL_TXD_R_FE |
  3186. SWAPPER_CTRL_TXD_W_FE |
  3187. SWAPPER_CTRL_TXF_R_FE |
  3188. SWAPPER_CTRL_RXD_R_FE |
  3189. SWAPPER_CTRL_RXD_W_FE |
  3190. SWAPPER_CTRL_RXF_W_FE |
  3191. SWAPPER_CTRL_XMSI_FE |
  3192. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3193. if (sp->config.intr_type == INTA)
  3194. val64 |= SWAPPER_CTRL_XMSI_SE;
  3195. writeq(val64, &bar0->swapper_ctrl);
  3196. #else
  3197. /*
  3198. * Initially we enable all bits to make it accessible by the
  3199. * driver, then we selectively enable only those bits that
  3200. * we want to set.
  3201. */
  3202. val64 |= (SWAPPER_CTRL_TXP_FE |
  3203. SWAPPER_CTRL_TXP_SE |
  3204. SWAPPER_CTRL_TXD_R_FE |
  3205. SWAPPER_CTRL_TXD_R_SE |
  3206. SWAPPER_CTRL_TXD_W_FE |
  3207. SWAPPER_CTRL_TXD_W_SE |
  3208. SWAPPER_CTRL_TXF_R_FE |
  3209. SWAPPER_CTRL_RXD_R_FE |
  3210. SWAPPER_CTRL_RXD_R_SE |
  3211. SWAPPER_CTRL_RXD_W_FE |
  3212. SWAPPER_CTRL_RXD_W_SE |
  3213. SWAPPER_CTRL_RXF_W_FE |
  3214. SWAPPER_CTRL_XMSI_FE |
  3215. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3216. if (sp->config.intr_type == INTA)
  3217. val64 |= SWAPPER_CTRL_XMSI_SE;
  3218. writeq(val64, &bar0->swapper_ctrl);
  3219. #endif
  3220. val64 = readq(&bar0->swapper_ctrl);
  3221. /*
  3222. * Verifying if endian settings are accurate by reading a
  3223. * feedback register.
  3224. */
  3225. val64 = readq(&bar0->pif_rd_swapper_fb);
  3226. if (val64 != 0x0123456789ABCDEFULL) {
  3227. /* Endian settings are incorrect, calls for another dekko. */
  3228. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3229. dev->name);
  3230. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3231. (unsigned long long) val64);
  3232. return FAILURE;
  3233. }
  3234. return SUCCESS;
  3235. }
  3236. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3237. {
  3238. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3239. u64 val64;
  3240. int ret = 0, cnt = 0;
  3241. do {
  3242. val64 = readq(&bar0->xmsi_access);
  3243. if (!(val64 & s2BIT(15)))
  3244. break;
  3245. mdelay(1);
  3246. cnt++;
  3247. } while(cnt < 5);
  3248. if (cnt == 5) {
  3249. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3250. ret = 1;
  3251. }
  3252. return ret;
  3253. }
  3254. static void restore_xmsi_data(struct s2io_nic *nic)
  3255. {
  3256. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3257. u64 val64;
  3258. int i;
  3259. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3260. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3261. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3262. val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
  3263. writeq(val64, &bar0->xmsi_access);
  3264. if (wait_for_msix_trans(nic, i)) {
  3265. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3266. continue;
  3267. }
  3268. }
  3269. }
  3270. static void store_xmsi_data(struct s2io_nic *nic)
  3271. {
  3272. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3273. u64 val64, addr, data;
  3274. int i;
  3275. /* Store and display */
  3276. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3277. val64 = (s2BIT(15) | vBIT(i, 26, 6));
  3278. writeq(val64, &bar0->xmsi_access);
  3279. if (wait_for_msix_trans(nic, i)) {
  3280. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3281. continue;
  3282. }
  3283. addr = readq(&bar0->xmsi_address);
  3284. data = readq(&bar0->xmsi_data);
  3285. if (addr && data) {
  3286. nic->msix_info[i].addr = addr;
  3287. nic->msix_info[i].data = data;
  3288. }
  3289. }
  3290. }
  3291. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3292. {
  3293. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3294. u64 tx_mat, rx_mat;
  3295. u16 msi_control; /* Temp variable */
  3296. int ret, i, j, msix_indx = 1;
  3297. nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
  3298. GFP_KERNEL);
  3299. if (!nic->entries) {
  3300. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3301. __FUNCTION__);
  3302. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3303. return -ENOMEM;
  3304. }
  3305. nic->mac_control.stats_info->sw_stat.mem_allocated
  3306. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3307. nic->s2io_entries =
  3308. kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
  3309. GFP_KERNEL);
  3310. if (!nic->s2io_entries) {
  3311. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3312. __FUNCTION__);
  3313. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3314. kfree(nic->entries);
  3315. nic->mac_control.stats_info->sw_stat.mem_freed
  3316. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3317. return -ENOMEM;
  3318. }
  3319. nic->mac_control.stats_info->sw_stat.mem_allocated
  3320. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3321. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3322. nic->entries[i].entry = i;
  3323. nic->s2io_entries[i].entry = i;
  3324. nic->s2io_entries[i].arg = NULL;
  3325. nic->s2io_entries[i].in_use = 0;
  3326. }
  3327. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3328. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3329. tx_mat |= TX_MAT_SET(i, msix_indx);
  3330. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3331. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3332. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3333. }
  3334. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3335. rx_mat = readq(&bar0->rx_mat);
  3336. for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
  3337. rx_mat |= RX_MAT_SET(j, msix_indx);
  3338. nic->s2io_entries[msix_indx].arg
  3339. = &nic->mac_control.rings[j];
  3340. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3341. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3342. }
  3343. writeq(rx_mat, &bar0->rx_mat);
  3344. nic->avail_msix_vectors = 0;
  3345. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3346. /* We fail init if error or we get less vectors than min required */
  3347. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3348. nic->avail_msix_vectors = ret;
  3349. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3350. }
  3351. if (ret) {
  3352. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3353. kfree(nic->entries);
  3354. nic->mac_control.stats_info->sw_stat.mem_freed
  3355. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3356. kfree(nic->s2io_entries);
  3357. nic->mac_control.stats_info->sw_stat.mem_freed
  3358. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3359. nic->entries = NULL;
  3360. nic->s2io_entries = NULL;
  3361. nic->avail_msix_vectors = 0;
  3362. return -ENOMEM;
  3363. }
  3364. if (!nic->avail_msix_vectors)
  3365. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3366. /*
  3367. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3368. * in the herc NIC. (Temp change, needs to be removed later)
  3369. */
  3370. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3371. msi_control |= 0x1; /* Enable MSI */
  3372. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3373. return 0;
  3374. }
  3375. /* Handle software interrupt used during MSI(X) test */
  3376. static irqreturn_t s2io_test_intr(int irq, void *dev_id)
  3377. {
  3378. struct s2io_nic *sp = dev_id;
  3379. sp->msi_detected = 1;
  3380. wake_up(&sp->msi_wait);
  3381. return IRQ_HANDLED;
  3382. }
  3383. /* Test interrupt path by forcing a a software IRQ */
  3384. static int s2io_test_msi(struct s2io_nic *sp)
  3385. {
  3386. struct pci_dev *pdev = sp->pdev;
  3387. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3388. int err;
  3389. u64 val64, saved64;
  3390. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3391. sp->name, sp);
  3392. if (err) {
  3393. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3394. sp->dev->name, pci_name(pdev), pdev->irq);
  3395. return err;
  3396. }
  3397. init_waitqueue_head (&sp->msi_wait);
  3398. sp->msi_detected = 0;
  3399. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3400. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3401. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3402. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3403. writeq(val64, &bar0->scheduled_int_ctrl);
  3404. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3405. if (!sp->msi_detected) {
  3406. /* MSI(X) test failed, go back to INTx mode */
  3407. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
  3408. "using MSI(X) during test\n", sp->dev->name,
  3409. pci_name(pdev));
  3410. err = -EOPNOTSUPP;
  3411. }
  3412. free_irq(sp->entries[1].vector, sp);
  3413. writeq(saved64, &bar0->scheduled_int_ctrl);
  3414. return err;
  3415. }
  3416. static void remove_msix_isr(struct s2io_nic *sp)
  3417. {
  3418. int i;
  3419. u16 msi_control;
  3420. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3421. if (sp->s2io_entries[i].in_use ==
  3422. MSIX_REGISTERED_SUCCESS) {
  3423. int vector = sp->entries[i].vector;
  3424. void *arg = sp->s2io_entries[i].arg;
  3425. free_irq(vector, arg);
  3426. }
  3427. }
  3428. kfree(sp->entries);
  3429. kfree(sp->s2io_entries);
  3430. sp->entries = NULL;
  3431. sp->s2io_entries = NULL;
  3432. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3433. msi_control &= 0xFFFE; /* Disable MSI */
  3434. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3435. pci_disable_msix(sp->pdev);
  3436. }
  3437. static void remove_inta_isr(struct s2io_nic *sp)
  3438. {
  3439. struct net_device *dev = sp->dev;
  3440. free_irq(sp->pdev->irq, dev);
  3441. }
  3442. /* ********************************************************* *
  3443. * Functions defined below concern the OS part of the driver *
  3444. * ********************************************************* */
  3445. /**
  3446. * s2io_open - open entry point of the driver
  3447. * @dev : pointer to the device structure.
  3448. * Description:
  3449. * This function is the open entry point of the driver. It mainly calls a
  3450. * function to allocate Rx buffers and inserts them into the buffer
  3451. * descriptors and then enables the Rx part of the NIC.
  3452. * Return value:
  3453. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3454. * file on failure.
  3455. */
  3456. static int s2io_open(struct net_device *dev)
  3457. {
  3458. struct s2io_nic *sp = dev->priv;
  3459. int err = 0;
  3460. /*
  3461. * Make sure you have link off by default every time
  3462. * Nic is initialized
  3463. */
  3464. netif_carrier_off(dev);
  3465. sp->last_link_state = 0;
  3466. if (sp->config.intr_type == MSI_X) {
  3467. int ret = s2io_enable_msi_x(sp);
  3468. if (!ret) {
  3469. ret = s2io_test_msi(sp);
  3470. /* rollback MSI-X, will re-enable during add_isr() */
  3471. remove_msix_isr(sp);
  3472. }
  3473. if (ret) {
  3474. DBG_PRINT(ERR_DBG,
  3475. "%s: MSI-X requested but failed to enable\n",
  3476. dev->name);
  3477. sp->config.intr_type = INTA;
  3478. }
  3479. }
  3480. /* NAPI doesn't work well with MSI(X) */
  3481. if (sp->config.intr_type != INTA) {
  3482. if(sp->config.napi)
  3483. sp->config.napi = 0;
  3484. }
  3485. /* Initialize H/W and enable interrupts */
  3486. err = s2io_card_up(sp);
  3487. if (err) {
  3488. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3489. dev->name);
  3490. goto hw_init_failed;
  3491. }
  3492. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3493. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3494. s2io_card_down(sp);
  3495. err = -ENODEV;
  3496. goto hw_init_failed;
  3497. }
  3498. netif_start_queue(dev);
  3499. return 0;
  3500. hw_init_failed:
  3501. if (sp->config.intr_type == MSI_X) {
  3502. if (sp->entries) {
  3503. kfree(sp->entries);
  3504. sp->mac_control.stats_info->sw_stat.mem_freed
  3505. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3506. }
  3507. if (sp->s2io_entries) {
  3508. kfree(sp->s2io_entries);
  3509. sp->mac_control.stats_info->sw_stat.mem_freed
  3510. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3511. }
  3512. }
  3513. return err;
  3514. }
  3515. /**
  3516. * s2io_close -close entry point of the driver
  3517. * @dev : device pointer.
  3518. * Description:
  3519. * This is the stop entry point of the driver. It needs to undo exactly
  3520. * whatever was done by the open entry point,thus it's usually referred to
  3521. * as the close function.Among other things this function mainly stops the
  3522. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3523. * Return value:
  3524. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3525. * file on failure.
  3526. */
  3527. static int s2io_close(struct net_device *dev)
  3528. {
  3529. struct s2io_nic *sp = dev->priv;
  3530. struct config_param *config = &sp->config;
  3531. u64 tmp64;
  3532. int offset;
  3533. /* Return if the device is already closed *
  3534. * Can happen when s2io_card_up failed in change_mtu *
  3535. */
  3536. if (!is_s2io_card_up(sp))
  3537. return 0;
  3538. netif_stop_queue(dev);
  3539. /* delete all populated mac entries */
  3540. for (offset = 1; offset < config->max_mc_addr; offset++) {
  3541. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  3542. if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
  3543. do_s2io_delete_unicast_mc(sp, tmp64);
  3544. }
  3545. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3546. s2io_card_down(sp);
  3547. return 0;
  3548. }
  3549. /**
  3550. * s2io_xmit - Tx entry point of te driver
  3551. * @skb : the socket buffer containing the Tx data.
  3552. * @dev : device pointer.
  3553. * Description :
  3554. * This function is the Tx entry point of the driver. S2IO NIC supports
  3555. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3556. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3557. * not be upadted.
  3558. * Return value:
  3559. * 0 on success & 1 on failure.
  3560. */
  3561. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3562. {
  3563. struct s2io_nic *sp = dev->priv;
  3564. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3565. register u64 val64;
  3566. struct TxD *txdp;
  3567. struct TxFIFO_element __iomem *tx_fifo;
  3568. unsigned long flags;
  3569. u16 vlan_tag = 0;
  3570. int vlan_priority = 0;
  3571. struct mac_info *mac_control;
  3572. struct config_param *config;
  3573. int offload_type;
  3574. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3575. mac_control = &sp->mac_control;
  3576. config = &sp->config;
  3577. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3578. if (unlikely(skb->len <= 0)) {
  3579. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3580. dev_kfree_skb_any(skb);
  3581. return 0;
  3582. }
  3583. spin_lock_irqsave(&sp->tx_lock, flags);
  3584. if (!is_s2io_card_up(sp)) {
  3585. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3586. dev->name);
  3587. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3588. dev_kfree_skb(skb);
  3589. return 0;
  3590. }
  3591. queue = 0;
  3592. /* Get Fifo number to Transmit based on vlan priority */
  3593. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3594. vlan_tag = vlan_tx_tag_get(skb);
  3595. vlan_priority = vlan_tag >> 13;
  3596. queue = config->fifo_mapping[vlan_priority];
  3597. }
  3598. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3599. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3600. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3601. list_virt_addr;
  3602. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3603. /* Avoid "put" pointer going beyond "get" pointer */
  3604. if (txdp->Host_Control ||
  3605. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3606. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3607. netif_stop_queue(dev);
  3608. dev_kfree_skb(skb);
  3609. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3610. return 0;
  3611. }
  3612. offload_type = s2io_offload_type(skb);
  3613. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3614. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3615. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3616. }
  3617. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3618. txdp->Control_2 |=
  3619. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3620. TXD_TX_CKO_UDP_EN);
  3621. }
  3622. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3623. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3624. txdp->Control_2 |= config->tx_intr_type;
  3625. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3626. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3627. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3628. }
  3629. frg_len = skb->len - skb->data_len;
  3630. if (offload_type == SKB_GSO_UDP) {
  3631. int ufo_size;
  3632. ufo_size = s2io_udp_mss(skb);
  3633. ufo_size &= ~7;
  3634. txdp->Control_1 |= TXD_UFO_EN;
  3635. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3636. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3637. #ifdef __BIG_ENDIAN
  3638. sp->ufo_in_band_v[put_off] =
  3639. (u64)skb_shinfo(skb)->ip6_frag_id;
  3640. #else
  3641. sp->ufo_in_band_v[put_off] =
  3642. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3643. #endif
  3644. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3645. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3646. sp->ufo_in_band_v,
  3647. sizeof(u64), PCI_DMA_TODEVICE);
  3648. if((txdp->Buffer_Pointer == 0) ||
  3649. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3650. goto pci_map_failed;
  3651. txdp++;
  3652. }
  3653. txdp->Buffer_Pointer = pci_map_single
  3654. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3655. if((txdp->Buffer_Pointer == 0) ||
  3656. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3657. goto pci_map_failed;
  3658. txdp->Host_Control = (unsigned long) skb;
  3659. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3660. if (offload_type == SKB_GSO_UDP)
  3661. txdp->Control_1 |= TXD_UFO_EN;
  3662. frg_cnt = skb_shinfo(skb)->nr_frags;
  3663. /* For fragmented SKB. */
  3664. for (i = 0; i < frg_cnt; i++) {
  3665. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3666. /* A '0' length fragment will be ignored */
  3667. if (!frag->size)
  3668. continue;
  3669. txdp++;
  3670. txdp->Buffer_Pointer = (u64) pci_map_page
  3671. (sp->pdev, frag->page, frag->page_offset,
  3672. frag->size, PCI_DMA_TODEVICE);
  3673. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3674. if (offload_type == SKB_GSO_UDP)
  3675. txdp->Control_1 |= TXD_UFO_EN;
  3676. }
  3677. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3678. if (offload_type == SKB_GSO_UDP)
  3679. frg_cnt++; /* as Txd0 was used for inband header */
  3680. tx_fifo = mac_control->tx_FIFO_start[queue];
  3681. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3682. writeq(val64, &tx_fifo->TxDL_Pointer);
  3683. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3684. TX_FIFO_LAST_LIST);
  3685. if (offload_type)
  3686. val64 |= TX_FIFO_SPECIAL_FUNC;
  3687. writeq(val64, &tx_fifo->List_Control);
  3688. mmiowb();
  3689. put_off++;
  3690. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3691. put_off = 0;
  3692. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3693. /* Avoid "put" pointer going beyond "get" pointer */
  3694. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3695. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3696. DBG_PRINT(TX_DBG,
  3697. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3698. put_off, get_off);
  3699. netif_stop_queue(dev);
  3700. }
  3701. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3702. dev->trans_start = jiffies;
  3703. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3704. return 0;
  3705. pci_map_failed:
  3706. stats->pci_map_fail_cnt++;
  3707. netif_stop_queue(dev);
  3708. stats->mem_freed += skb->truesize;
  3709. dev_kfree_skb(skb);
  3710. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3711. return 0;
  3712. }
  3713. static void
  3714. s2io_alarm_handle(unsigned long data)
  3715. {
  3716. struct s2io_nic *sp = (struct s2io_nic *)data;
  3717. struct net_device *dev = sp->dev;
  3718. s2io_handle_errors(dev);
  3719. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3720. }
  3721. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3722. {
  3723. int rxb_size, level;
  3724. if (!sp->lro) {
  3725. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3726. level = rx_buffer_level(sp, rxb_size, rng_n);
  3727. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3728. int ret;
  3729. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3730. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3731. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3732. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3733. __FUNCTION__);
  3734. clear_bit(0, (&sp->tasklet_status));
  3735. return -1;
  3736. }
  3737. clear_bit(0, (&sp->tasklet_status));
  3738. } else if (level == LOW)
  3739. tasklet_schedule(&sp->task);
  3740. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3741. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3742. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3743. }
  3744. return 0;
  3745. }
  3746. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3747. {
  3748. struct ring_info *ring = (struct ring_info *)dev_id;
  3749. struct s2io_nic *sp = ring->nic;
  3750. if (!is_s2io_card_up(sp))
  3751. return IRQ_HANDLED;
  3752. rx_intr_handler(ring);
  3753. s2io_chk_rx_buffers(sp, ring->ring_no);
  3754. return IRQ_HANDLED;
  3755. }
  3756. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3757. {
  3758. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3759. struct s2io_nic *sp = fifo->nic;
  3760. if (!is_s2io_card_up(sp))
  3761. return IRQ_HANDLED;
  3762. tx_intr_handler(fifo);
  3763. return IRQ_HANDLED;
  3764. }
  3765. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3766. {
  3767. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3768. u64 val64;
  3769. val64 = readq(&bar0->pic_int_status);
  3770. if (val64 & PIC_INT_GPIO) {
  3771. val64 = readq(&bar0->gpio_int_reg);
  3772. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3773. (val64 & GPIO_INT_REG_LINK_UP)) {
  3774. /*
  3775. * This is unstable state so clear both up/down
  3776. * interrupt and adapter to re-evaluate the link state.
  3777. */
  3778. val64 |= GPIO_INT_REG_LINK_DOWN;
  3779. val64 |= GPIO_INT_REG_LINK_UP;
  3780. writeq(val64, &bar0->gpio_int_reg);
  3781. val64 = readq(&bar0->gpio_int_mask);
  3782. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3783. GPIO_INT_MASK_LINK_DOWN);
  3784. writeq(val64, &bar0->gpio_int_mask);
  3785. }
  3786. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3787. val64 = readq(&bar0->adapter_status);
  3788. /* Enable Adapter */
  3789. val64 = readq(&bar0->adapter_control);
  3790. val64 |= ADAPTER_CNTL_EN;
  3791. writeq(val64, &bar0->adapter_control);
  3792. val64 |= ADAPTER_LED_ON;
  3793. writeq(val64, &bar0->adapter_control);
  3794. if (!sp->device_enabled_once)
  3795. sp->device_enabled_once = 1;
  3796. s2io_link(sp, LINK_UP);
  3797. /*
  3798. * unmask link down interrupt and mask link-up
  3799. * intr
  3800. */
  3801. val64 = readq(&bar0->gpio_int_mask);
  3802. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3803. val64 |= GPIO_INT_MASK_LINK_UP;
  3804. writeq(val64, &bar0->gpio_int_mask);
  3805. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3806. val64 = readq(&bar0->adapter_status);
  3807. s2io_link(sp, LINK_DOWN);
  3808. /* Link is down so unmaks link up interrupt */
  3809. val64 = readq(&bar0->gpio_int_mask);
  3810. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3811. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3812. writeq(val64, &bar0->gpio_int_mask);
  3813. /* turn off LED */
  3814. val64 = readq(&bar0->adapter_control);
  3815. val64 = val64 &(~ADAPTER_LED_ON);
  3816. writeq(val64, &bar0->adapter_control);
  3817. }
  3818. }
  3819. val64 = readq(&bar0->gpio_int_mask);
  3820. }
  3821. /**
  3822. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3823. * @value: alarm bits
  3824. * @addr: address value
  3825. * @cnt: counter variable
  3826. * Description: Check for alarm and increment the counter
  3827. * Return Value:
  3828. * 1 - if alarm bit set
  3829. * 0 - if alarm bit is not set
  3830. */
  3831. static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3832. unsigned long long *cnt)
  3833. {
  3834. u64 val64;
  3835. val64 = readq(addr);
  3836. if ( val64 & value ) {
  3837. writeq(val64, addr);
  3838. (*cnt)++;
  3839. return 1;
  3840. }
  3841. return 0;
  3842. }
  3843. /**
  3844. * s2io_handle_errors - Xframe error indication handler
  3845. * @nic: device private variable
  3846. * Description: Handle alarms such as loss of link, single or
  3847. * double ECC errors, critical and serious errors.
  3848. * Return Value:
  3849. * NONE
  3850. */
  3851. static void s2io_handle_errors(void * dev_id)
  3852. {
  3853. struct net_device *dev = (struct net_device *) dev_id;
  3854. struct s2io_nic *sp = dev->priv;
  3855. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3856. u64 temp64 = 0,val64=0;
  3857. int i = 0;
  3858. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3859. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3860. if (!is_s2io_card_up(sp))
  3861. return;
  3862. if (pci_channel_offline(sp->pdev))
  3863. return;
  3864. memset(&sw_stat->ring_full_cnt, 0,
  3865. sizeof(sw_stat->ring_full_cnt));
  3866. /* Handling the XPAK counters update */
  3867. if(stats->xpak_timer_count < 72000) {
  3868. /* waiting for an hour */
  3869. stats->xpak_timer_count++;
  3870. } else {
  3871. s2io_updt_xpak_counter(dev);
  3872. /* reset the count to zero */
  3873. stats->xpak_timer_count = 0;
  3874. }
  3875. /* Handling link status change error Intr */
  3876. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3877. val64 = readq(&bar0->mac_rmac_err_reg);
  3878. writeq(val64, &bar0->mac_rmac_err_reg);
  3879. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3880. schedule_work(&sp->set_link_task);
  3881. }
  3882. /* In case of a serious error, the device will be Reset. */
  3883. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3884. &sw_stat->serious_err_cnt))
  3885. goto reset;
  3886. /* Check for data parity error */
  3887. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3888. &sw_stat->parity_err_cnt))
  3889. goto reset;
  3890. /* Check for ring full counter */
  3891. if (sp->device_type == XFRAME_II_DEVICE) {
  3892. val64 = readq(&bar0->ring_bump_counter1);
  3893. for (i=0; i<4; i++) {
  3894. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3895. temp64 >>= 64 - ((i+1)*16);
  3896. sw_stat->ring_full_cnt[i] += temp64;
  3897. }
  3898. val64 = readq(&bar0->ring_bump_counter2);
  3899. for (i=0; i<4; i++) {
  3900. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3901. temp64 >>= 64 - ((i+1)*16);
  3902. sw_stat->ring_full_cnt[i+4] += temp64;
  3903. }
  3904. }
  3905. val64 = readq(&bar0->txdma_int_status);
  3906. /*check for pfc_err*/
  3907. if (val64 & TXDMA_PFC_INT) {
  3908. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  3909. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  3910. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  3911. &sw_stat->pfc_err_cnt))
  3912. goto reset;
  3913. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  3914. &sw_stat->pfc_err_cnt);
  3915. }
  3916. /*check for tda_err*/
  3917. if (val64 & TXDMA_TDA_INT) {
  3918. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  3919. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  3920. &sw_stat->tda_err_cnt))
  3921. goto reset;
  3922. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3923. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  3924. }
  3925. /*check for pcc_err*/
  3926. if (val64 & TXDMA_PCC_INT) {
  3927. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  3928. | PCC_N_SERR | PCC_6_COF_OV_ERR
  3929. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  3930. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  3931. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  3932. &sw_stat->pcc_err_cnt))
  3933. goto reset;
  3934. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3935. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  3936. }
  3937. /*check for tti_err*/
  3938. if (val64 & TXDMA_TTI_INT) {
  3939. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  3940. &sw_stat->tti_err_cnt))
  3941. goto reset;
  3942. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3943. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  3944. }
  3945. /*check for lso_err*/
  3946. if (val64 & TXDMA_LSO_INT) {
  3947. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  3948. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3949. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  3950. goto reset;
  3951. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3952. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  3953. }
  3954. /*check for tpa_err*/
  3955. if (val64 & TXDMA_TPA_INT) {
  3956. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  3957. &sw_stat->tpa_err_cnt))
  3958. goto reset;
  3959. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  3960. &sw_stat->tpa_err_cnt);
  3961. }
  3962. /*check for sm_err*/
  3963. if (val64 & TXDMA_SM_INT) {
  3964. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  3965. &sw_stat->sm_err_cnt))
  3966. goto reset;
  3967. }
  3968. val64 = readq(&bar0->mac_int_status);
  3969. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  3970. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  3971. &bar0->mac_tmac_err_reg,
  3972. &sw_stat->mac_tmac_err_cnt))
  3973. goto reset;
  3974. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  3975. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  3976. &bar0->mac_tmac_err_reg,
  3977. &sw_stat->mac_tmac_err_cnt);
  3978. }
  3979. val64 = readq(&bar0->xgxs_int_status);
  3980. if (val64 & XGXS_INT_STATUS_TXGXS) {
  3981. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  3982. &bar0->xgxs_txgxs_err_reg,
  3983. &sw_stat->xgxs_txgxs_err_cnt))
  3984. goto reset;
  3985. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  3986. &bar0->xgxs_txgxs_err_reg,
  3987. &sw_stat->xgxs_txgxs_err_cnt);
  3988. }
  3989. val64 = readq(&bar0->rxdma_int_status);
  3990. if (val64 & RXDMA_INT_RC_INT_M) {
  3991. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  3992. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  3993. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  3994. goto reset;
  3995. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  3996. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  3997. &sw_stat->rc_err_cnt);
  3998. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  3999. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4000. &sw_stat->prc_pcix_err_cnt))
  4001. goto reset;
  4002. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  4003. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4004. &sw_stat->prc_pcix_err_cnt);
  4005. }
  4006. if (val64 & RXDMA_INT_RPA_INT_M) {
  4007. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4008. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  4009. goto reset;
  4010. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4011. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  4012. }
  4013. if (val64 & RXDMA_INT_RDA_INT_M) {
  4014. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  4015. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  4016. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  4017. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  4018. goto reset;
  4019. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  4020. | RDA_MISC_ERR | RDA_PCIX_ERR,
  4021. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  4022. }
  4023. if (val64 & RXDMA_INT_RTI_INT_M) {
  4024. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  4025. &sw_stat->rti_err_cnt))
  4026. goto reset;
  4027. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4028. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  4029. }
  4030. val64 = readq(&bar0->mac_int_status);
  4031. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4032. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4033. &bar0->mac_rmac_err_reg,
  4034. &sw_stat->mac_rmac_err_cnt))
  4035. goto reset;
  4036. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4037. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4038. &sw_stat->mac_rmac_err_cnt);
  4039. }
  4040. val64 = readq(&bar0->xgxs_int_status);
  4041. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4042. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4043. &bar0->xgxs_rxgxs_err_reg,
  4044. &sw_stat->xgxs_rxgxs_err_cnt))
  4045. goto reset;
  4046. }
  4047. val64 = readq(&bar0->mc_int_status);
  4048. if(val64 & MC_INT_STATUS_MC_INT) {
  4049. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4050. &sw_stat->mc_err_cnt))
  4051. goto reset;
  4052. /* Handling Ecc errors */
  4053. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4054. writeq(val64, &bar0->mc_err_reg);
  4055. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4056. sw_stat->double_ecc_errs++;
  4057. if (sp->device_type != XFRAME_II_DEVICE) {
  4058. /*
  4059. * Reset XframeI only if critical error
  4060. */
  4061. if (val64 &
  4062. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4063. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4064. goto reset;
  4065. }
  4066. } else
  4067. sw_stat->single_ecc_errs++;
  4068. }
  4069. }
  4070. return;
  4071. reset:
  4072. netif_stop_queue(dev);
  4073. schedule_work(&sp->rst_timer_task);
  4074. sw_stat->soft_reset_cnt++;
  4075. return;
  4076. }
  4077. /**
  4078. * s2io_isr - ISR handler of the device .
  4079. * @irq: the irq of the device.
  4080. * @dev_id: a void pointer to the dev structure of the NIC.
  4081. * Description: This function is the ISR handler of the device. It
  4082. * identifies the reason for the interrupt and calls the relevant
  4083. * service routines. As a contongency measure, this ISR allocates the
  4084. * recv buffers, if their numbers are below the panic value which is
  4085. * presently set to 25% of the original number of rcv buffers allocated.
  4086. * Return value:
  4087. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4088. * IRQ_NONE: will be returned if interrupt is not from our device
  4089. */
  4090. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4091. {
  4092. struct net_device *dev = (struct net_device *) dev_id;
  4093. struct s2io_nic *sp = dev->priv;
  4094. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4095. int i;
  4096. u64 reason = 0;
  4097. struct mac_info *mac_control;
  4098. struct config_param *config;
  4099. /* Pretend we handled any irq's from a disconnected card */
  4100. if (pci_channel_offline(sp->pdev))
  4101. return IRQ_NONE;
  4102. if (!is_s2io_card_up(sp))
  4103. return IRQ_NONE;
  4104. mac_control = &sp->mac_control;
  4105. config = &sp->config;
  4106. /*
  4107. * Identify the cause for interrupt and call the appropriate
  4108. * interrupt handler. Causes for the interrupt could be;
  4109. * 1. Rx of packet.
  4110. * 2. Tx complete.
  4111. * 3. Link down.
  4112. */
  4113. reason = readq(&bar0->general_int_status);
  4114. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4115. /* Nothing much can be done. Get out */
  4116. return IRQ_HANDLED;
  4117. }
  4118. if (reason & (GEN_INTR_RXTRAFFIC |
  4119. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4120. {
  4121. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4122. if (config->napi) {
  4123. if (reason & GEN_INTR_RXTRAFFIC) {
  4124. if (likely(netif_rx_schedule_prep(dev,
  4125. &sp->napi))) {
  4126. __netif_rx_schedule(dev, &sp->napi);
  4127. writeq(S2IO_MINUS_ONE,
  4128. &bar0->rx_traffic_mask);
  4129. } else
  4130. writeq(S2IO_MINUS_ONE,
  4131. &bar0->rx_traffic_int);
  4132. }
  4133. } else {
  4134. /*
  4135. * rx_traffic_int reg is an R1 register, writing all 1's
  4136. * will ensure that the actual interrupt causing bit
  4137. * get's cleared and hence a read can be avoided.
  4138. */
  4139. if (reason & GEN_INTR_RXTRAFFIC)
  4140. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4141. for (i = 0; i < config->rx_ring_num; i++)
  4142. rx_intr_handler(&mac_control->rings[i]);
  4143. }
  4144. /*
  4145. * tx_traffic_int reg is an R1 register, writing all 1's
  4146. * will ensure that the actual interrupt causing bit get's
  4147. * cleared and hence a read can be avoided.
  4148. */
  4149. if (reason & GEN_INTR_TXTRAFFIC)
  4150. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4151. for (i = 0; i < config->tx_fifo_num; i++)
  4152. tx_intr_handler(&mac_control->fifos[i]);
  4153. if (reason & GEN_INTR_TXPIC)
  4154. s2io_txpic_intr_handle(sp);
  4155. /*
  4156. * Reallocate the buffers from the interrupt handler itself.
  4157. */
  4158. if (!config->napi) {
  4159. for (i = 0; i < config->rx_ring_num; i++)
  4160. s2io_chk_rx_buffers(sp, i);
  4161. }
  4162. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4163. readl(&bar0->general_int_status);
  4164. return IRQ_HANDLED;
  4165. }
  4166. else if (!reason) {
  4167. /* The interrupt was not raised by us */
  4168. return IRQ_NONE;
  4169. }
  4170. return IRQ_HANDLED;
  4171. }
  4172. /**
  4173. * s2io_updt_stats -
  4174. */
  4175. static void s2io_updt_stats(struct s2io_nic *sp)
  4176. {
  4177. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4178. u64 val64;
  4179. int cnt = 0;
  4180. if (is_s2io_card_up(sp)) {
  4181. /* Apprx 30us on a 133 MHz bus */
  4182. val64 = SET_UPDT_CLICKS(10) |
  4183. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4184. writeq(val64, &bar0->stat_cfg);
  4185. do {
  4186. udelay(100);
  4187. val64 = readq(&bar0->stat_cfg);
  4188. if (!(val64 & s2BIT(0)))
  4189. break;
  4190. cnt++;
  4191. if (cnt == 5)
  4192. break; /* Updt failed */
  4193. } while(1);
  4194. }
  4195. }
  4196. /**
  4197. * s2io_get_stats - Updates the device statistics structure.
  4198. * @dev : pointer to the device structure.
  4199. * Description:
  4200. * This function updates the device statistics structure in the s2io_nic
  4201. * structure and returns a pointer to the same.
  4202. * Return value:
  4203. * pointer to the updated net_device_stats structure.
  4204. */
  4205. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4206. {
  4207. struct s2io_nic *sp = dev->priv;
  4208. struct mac_info *mac_control;
  4209. struct config_param *config;
  4210. mac_control = &sp->mac_control;
  4211. config = &sp->config;
  4212. /* Configure Stats for immediate updt */
  4213. s2io_updt_stats(sp);
  4214. sp->stats.tx_packets =
  4215. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4216. sp->stats.tx_errors =
  4217. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4218. sp->stats.rx_errors =
  4219. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4220. sp->stats.multicast =
  4221. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4222. sp->stats.rx_length_errors =
  4223. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4224. return (&sp->stats);
  4225. }
  4226. /**
  4227. * s2io_set_multicast - entry point for multicast address enable/disable.
  4228. * @dev : pointer to the device structure
  4229. * Description:
  4230. * This function is a driver entry point which gets called by the kernel
  4231. * whenever multicast addresses must be enabled/disabled. This also gets
  4232. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4233. * determine, if multicast address must be enabled or if promiscuous mode
  4234. * is to be disabled etc.
  4235. * Return value:
  4236. * void.
  4237. */
  4238. static void s2io_set_multicast(struct net_device *dev)
  4239. {
  4240. int i, j, prev_cnt;
  4241. struct dev_mc_list *mclist;
  4242. struct s2io_nic *sp = dev->priv;
  4243. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4244. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4245. 0xfeffffffffffULL;
  4246. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
  4247. void __iomem *add;
  4248. struct config_param *config = &sp->config;
  4249. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4250. /* Enable all Multicast addresses */
  4251. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4252. &bar0->rmac_addr_data0_mem);
  4253. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4254. &bar0->rmac_addr_data1_mem);
  4255. val64 = RMAC_ADDR_CMD_MEM_WE |
  4256. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4257. RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
  4258. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4259. /* Wait till command completes */
  4260. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4261. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4262. S2IO_BIT_RESET);
  4263. sp->m_cast_flg = 1;
  4264. sp->all_multi_pos = config->max_mc_addr - 1;
  4265. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4266. /* Disable all Multicast addresses */
  4267. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4268. &bar0->rmac_addr_data0_mem);
  4269. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4270. &bar0->rmac_addr_data1_mem);
  4271. val64 = RMAC_ADDR_CMD_MEM_WE |
  4272. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4273. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4274. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4275. /* Wait till command completes */
  4276. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4277. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4278. S2IO_BIT_RESET);
  4279. sp->m_cast_flg = 0;
  4280. sp->all_multi_pos = 0;
  4281. }
  4282. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4283. /* Put the NIC into promiscuous mode */
  4284. add = &bar0->mac_cfg;
  4285. val64 = readq(&bar0->mac_cfg);
  4286. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4287. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4288. writel((u32) val64, add);
  4289. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4290. writel((u32) (val64 >> 32), (add + 4));
  4291. if (vlan_tag_strip != 1) {
  4292. val64 = readq(&bar0->rx_pa_cfg);
  4293. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4294. writeq(val64, &bar0->rx_pa_cfg);
  4295. vlan_strip_flag = 0;
  4296. }
  4297. val64 = readq(&bar0->mac_cfg);
  4298. sp->promisc_flg = 1;
  4299. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4300. dev->name);
  4301. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4302. /* Remove the NIC from promiscuous mode */
  4303. add = &bar0->mac_cfg;
  4304. val64 = readq(&bar0->mac_cfg);
  4305. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4306. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4307. writel((u32) val64, add);
  4308. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4309. writel((u32) (val64 >> 32), (add + 4));
  4310. if (vlan_tag_strip != 0) {
  4311. val64 = readq(&bar0->rx_pa_cfg);
  4312. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4313. writeq(val64, &bar0->rx_pa_cfg);
  4314. vlan_strip_flag = 1;
  4315. }
  4316. val64 = readq(&bar0->mac_cfg);
  4317. sp->promisc_flg = 0;
  4318. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4319. dev->name);
  4320. }
  4321. /* Update individual M_CAST address list */
  4322. if ((!sp->m_cast_flg) && dev->mc_count) {
  4323. if (dev->mc_count >
  4324. (config->max_mc_addr - config->max_mac_addr)) {
  4325. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4326. dev->name);
  4327. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4328. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4329. return;
  4330. }
  4331. prev_cnt = sp->mc_addr_count;
  4332. sp->mc_addr_count = dev->mc_count;
  4333. /* Clear out the previous list of Mc in the H/W. */
  4334. for (i = 0; i < prev_cnt; i++) {
  4335. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4336. &bar0->rmac_addr_data0_mem);
  4337. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4338. &bar0->rmac_addr_data1_mem);
  4339. val64 = RMAC_ADDR_CMD_MEM_WE |
  4340. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4341. RMAC_ADDR_CMD_MEM_OFFSET
  4342. (config->mc_start_offset + i);
  4343. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4344. /* Wait for command completes */
  4345. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4346. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4347. S2IO_BIT_RESET)) {
  4348. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4349. dev->name);
  4350. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4351. return;
  4352. }
  4353. }
  4354. /* Create the new Rx filter list and update the same in H/W. */
  4355. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4356. i++, mclist = mclist->next) {
  4357. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4358. ETH_ALEN);
  4359. mac_addr = 0;
  4360. for (j = 0; j < ETH_ALEN; j++) {
  4361. mac_addr |= mclist->dmi_addr[j];
  4362. mac_addr <<= 8;
  4363. }
  4364. mac_addr >>= 8;
  4365. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4366. &bar0->rmac_addr_data0_mem);
  4367. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4368. &bar0->rmac_addr_data1_mem);
  4369. val64 = RMAC_ADDR_CMD_MEM_WE |
  4370. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4371. RMAC_ADDR_CMD_MEM_OFFSET
  4372. (i + config->mc_start_offset);
  4373. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4374. /* Wait for command completes */
  4375. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4376. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4377. S2IO_BIT_RESET)) {
  4378. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4379. dev->name);
  4380. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4381. return;
  4382. }
  4383. }
  4384. }
  4385. }
  4386. /* read from CAM unicast & multicast addresses and store it in
  4387. * def_mac_addr structure
  4388. */
  4389. void do_s2io_store_unicast_mc(struct s2io_nic *sp)
  4390. {
  4391. int offset;
  4392. u64 mac_addr = 0x0;
  4393. struct config_param *config = &sp->config;
  4394. /* store unicast & multicast mac addresses */
  4395. for (offset = 0; offset < config->max_mc_addr; offset++) {
  4396. mac_addr = do_s2io_read_unicast_mc(sp, offset);
  4397. /* if read fails disable the entry */
  4398. if (mac_addr == FAILURE)
  4399. mac_addr = S2IO_DISABLE_MAC_ENTRY;
  4400. do_s2io_copy_mac_addr(sp, offset, mac_addr);
  4401. }
  4402. }
  4403. /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
  4404. static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
  4405. {
  4406. int offset;
  4407. struct config_param *config = &sp->config;
  4408. /* restore unicast mac address */
  4409. for (offset = 0; offset < config->max_mac_addr; offset++)
  4410. do_s2io_prog_unicast(sp->dev,
  4411. sp->def_mac_addr[offset].mac_addr);
  4412. /* restore multicast mac address */
  4413. for (offset = config->mc_start_offset;
  4414. offset < config->max_mc_addr; offset++)
  4415. do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
  4416. }
  4417. /* add a multicast MAC address to CAM */
  4418. static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
  4419. {
  4420. int i;
  4421. u64 mac_addr = 0;
  4422. struct config_param *config = &sp->config;
  4423. for (i = 0; i < ETH_ALEN; i++) {
  4424. mac_addr <<= 8;
  4425. mac_addr |= addr[i];
  4426. }
  4427. if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
  4428. return SUCCESS;
  4429. /* check if the multicast mac already preset in CAM */
  4430. for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
  4431. u64 tmp64;
  4432. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4433. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4434. break;
  4435. if (tmp64 == mac_addr)
  4436. return SUCCESS;
  4437. }
  4438. if (i == config->max_mc_addr) {
  4439. DBG_PRINT(ERR_DBG,
  4440. "CAM full no space left for multicast MAC\n");
  4441. return FAILURE;
  4442. }
  4443. /* Update the internal structure with this new mac address */
  4444. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4445. return (do_s2io_add_mac(sp, mac_addr, i));
  4446. }
  4447. /* add MAC address to CAM */
  4448. static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
  4449. {
  4450. u64 val64;
  4451. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4452. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4453. &bar0->rmac_addr_data0_mem);
  4454. val64 =
  4455. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4456. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4457. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4458. /* Wait till command completes */
  4459. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4460. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4461. S2IO_BIT_RESET)) {
  4462. DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
  4463. return FAILURE;
  4464. }
  4465. return SUCCESS;
  4466. }
  4467. /* deletes a specified unicast/multicast mac entry from CAM */
  4468. static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
  4469. {
  4470. int offset;
  4471. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
  4472. struct config_param *config = &sp->config;
  4473. for (offset = 1;
  4474. offset < config->max_mc_addr; offset++) {
  4475. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  4476. if (tmp64 == addr) {
  4477. /* disable the entry by writing 0xffffffffffffULL */
  4478. if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
  4479. return FAILURE;
  4480. /* store the new mac list from CAM */
  4481. do_s2io_store_unicast_mc(sp);
  4482. return SUCCESS;
  4483. }
  4484. }
  4485. DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
  4486. (unsigned long long)addr);
  4487. return FAILURE;
  4488. }
  4489. /* read mac entries from CAM */
  4490. static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
  4491. {
  4492. u64 tmp64 = 0xffffffffffff0000ULL, val64;
  4493. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4494. /* read mac addr */
  4495. val64 =
  4496. RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4497. RMAC_ADDR_CMD_MEM_OFFSET(offset);
  4498. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4499. /* Wait till command completes */
  4500. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4501. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4502. S2IO_BIT_RESET)) {
  4503. DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
  4504. return FAILURE;
  4505. }
  4506. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  4507. return (tmp64 >> 16);
  4508. }
  4509. /**
  4510. * s2io_set_mac_addr driver entry point
  4511. */
  4512. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4513. {
  4514. struct sockaddr *addr = p;
  4515. if (!is_valid_ether_addr(addr->sa_data))
  4516. return -EINVAL;
  4517. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4518. /* store the MAC address in CAM */
  4519. return (do_s2io_prog_unicast(dev, dev->dev_addr));
  4520. }
  4521. /**
  4522. * do_s2io_prog_unicast - Programs the Xframe mac address
  4523. * @dev : pointer to the device structure.
  4524. * @addr: a uchar pointer to the new mac address which is to be set.
  4525. * Description : This procedure will program the Xframe to receive
  4526. * frames with new Mac Address
  4527. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4528. * as defined in errno.h file on failure.
  4529. */
  4530. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4531. {
  4532. struct s2io_nic *sp = dev->priv;
  4533. register u64 mac_addr = 0, perm_addr = 0;
  4534. int i;
  4535. u64 tmp64;
  4536. struct config_param *config = &sp->config;
  4537. /*
  4538. * Set the new MAC address as the new unicast filter and reflect this
  4539. * change on the device address registered with the OS. It will be
  4540. * at offset 0.
  4541. */
  4542. for (i = 0; i < ETH_ALEN; i++) {
  4543. mac_addr <<= 8;
  4544. mac_addr |= addr[i];
  4545. perm_addr <<= 8;
  4546. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4547. }
  4548. /* check if the dev_addr is different than perm_addr */
  4549. if (mac_addr == perm_addr)
  4550. return SUCCESS;
  4551. /* check if the mac already preset in CAM */
  4552. for (i = 1; i < config->max_mac_addr; i++) {
  4553. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4554. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4555. break;
  4556. if (tmp64 == mac_addr) {
  4557. DBG_PRINT(INFO_DBG,
  4558. "MAC addr:0x%llx already present in CAM\n",
  4559. (unsigned long long)mac_addr);
  4560. return SUCCESS;
  4561. }
  4562. }
  4563. if (i == config->max_mac_addr) {
  4564. DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
  4565. return FAILURE;
  4566. }
  4567. /* Update the internal structure with this new mac address */
  4568. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4569. return (do_s2io_add_mac(sp, mac_addr, i));
  4570. }
  4571. /**
  4572. * s2io_ethtool_sset - Sets different link parameters.
  4573. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4574. * @info: pointer to the structure with parameters given by ethtool to set
  4575. * link information.
  4576. * Description:
  4577. * The function sets different link parameters provided by the user onto
  4578. * the NIC.
  4579. * Return value:
  4580. * 0 on success.
  4581. */
  4582. static int s2io_ethtool_sset(struct net_device *dev,
  4583. struct ethtool_cmd *info)
  4584. {
  4585. struct s2io_nic *sp = dev->priv;
  4586. if ((info->autoneg == AUTONEG_ENABLE) ||
  4587. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4588. return -EINVAL;
  4589. else {
  4590. s2io_close(sp->dev);
  4591. s2io_open(sp->dev);
  4592. }
  4593. return 0;
  4594. }
  4595. /**
  4596. * s2io_ethtol_gset - Return link specific information.
  4597. * @sp : private member of the device structure, pointer to the
  4598. * s2io_nic structure.
  4599. * @info : pointer to the structure with parameters given by ethtool
  4600. * to return link information.
  4601. * Description:
  4602. * Returns link specific information like speed, duplex etc.. to ethtool.
  4603. * Return value :
  4604. * return 0 on success.
  4605. */
  4606. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4607. {
  4608. struct s2io_nic *sp = dev->priv;
  4609. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4610. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4611. info->port = PORT_FIBRE;
  4612. /* info->transceiver */
  4613. info->transceiver = XCVR_EXTERNAL;
  4614. if (netif_carrier_ok(sp->dev)) {
  4615. info->speed = 10000;
  4616. info->duplex = DUPLEX_FULL;
  4617. } else {
  4618. info->speed = -1;
  4619. info->duplex = -1;
  4620. }
  4621. info->autoneg = AUTONEG_DISABLE;
  4622. return 0;
  4623. }
  4624. /**
  4625. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4626. * @sp : private member of the device structure, which is a pointer to the
  4627. * s2io_nic structure.
  4628. * @info : pointer to the structure with parameters given by ethtool to
  4629. * return driver information.
  4630. * Description:
  4631. * Returns driver specefic information like name, version etc.. to ethtool.
  4632. * Return value:
  4633. * void
  4634. */
  4635. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4636. struct ethtool_drvinfo *info)
  4637. {
  4638. struct s2io_nic *sp = dev->priv;
  4639. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4640. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4641. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4642. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4643. info->regdump_len = XENA_REG_SPACE;
  4644. info->eedump_len = XENA_EEPROM_SPACE;
  4645. }
  4646. /**
  4647. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4648. * @sp: private member of the device structure, which is a pointer to the
  4649. * s2io_nic structure.
  4650. * @regs : pointer to the structure with parameters given by ethtool for
  4651. * dumping the registers.
  4652. * @reg_space: The input argumnet into which all the registers are dumped.
  4653. * Description:
  4654. * Dumps the entire register space of xFrame NIC into the user given
  4655. * buffer area.
  4656. * Return value :
  4657. * void .
  4658. */
  4659. static void s2io_ethtool_gregs(struct net_device *dev,
  4660. struct ethtool_regs *regs, void *space)
  4661. {
  4662. int i;
  4663. u64 reg;
  4664. u8 *reg_space = (u8 *) space;
  4665. struct s2io_nic *sp = dev->priv;
  4666. regs->len = XENA_REG_SPACE;
  4667. regs->version = sp->pdev->subsystem_device;
  4668. for (i = 0; i < regs->len; i += 8) {
  4669. reg = readq(sp->bar0 + i);
  4670. memcpy((reg_space + i), &reg, 8);
  4671. }
  4672. }
  4673. /**
  4674. * s2io_phy_id - timer function that alternates adapter LED.
  4675. * @data : address of the private member of the device structure, which
  4676. * is a pointer to the s2io_nic structure, provided as an u32.
  4677. * Description: This is actually the timer function that alternates the
  4678. * adapter LED bit of the adapter control bit to set/reset every time on
  4679. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4680. * once every second.
  4681. */
  4682. static void s2io_phy_id(unsigned long data)
  4683. {
  4684. struct s2io_nic *sp = (struct s2io_nic *) data;
  4685. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4686. u64 val64 = 0;
  4687. u16 subid;
  4688. subid = sp->pdev->subsystem_device;
  4689. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4690. ((subid & 0xFF) >= 0x07)) {
  4691. val64 = readq(&bar0->gpio_control);
  4692. val64 ^= GPIO_CTRL_GPIO_0;
  4693. writeq(val64, &bar0->gpio_control);
  4694. } else {
  4695. val64 = readq(&bar0->adapter_control);
  4696. val64 ^= ADAPTER_LED_ON;
  4697. writeq(val64, &bar0->adapter_control);
  4698. }
  4699. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4700. }
  4701. /**
  4702. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4703. * @sp : private member of the device structure, which is a pointer to the
  4704. * s2io_nic structure.
  4705. * @id : pointer to the structure with identification parameters given by
  4706. * ethtool.
  4707. * Description: Used to physically identify the NIC on the system.
  4708. * The Link LED will blink for a time specified by the user for
  4709. * identification.
  4710. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4711. * identification is possible only if it's link is up.
  4712. * Return value:
  4713. * int , returns 0 on success
  4714. */
  4715. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4716. {
  4717. u64 val64 = 0, last_gpio_ctrl_val;
  4718. struct s2io_nic *sp = dev->priv;
  4719. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4720. u16 subid;
  4721. subid = sp->pdev->subsystem_device;
  4722. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4723. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4724. ((subid & 0xFF) < 0x07)) {
  4725. val64 = readq(&bar0->adapter_control);
  4726. if (!(val64 & ADAPTER_CNTL_EN)) {
  4727. printk(KERN_ERR
  4728. "Adapter Link down, cannot blink LED\n");
  4729. return -EFAULT;
  4730. }
  4731. }
  4732. if (sp->id_timer.function == NULL) {
  4733. init_timer(&sp->id_timer);
  4734. sp->id_timer.function = s2io_phy_id;
  4735. sp->id_timer.data = (unsigned long) sp;
  4736. }
  4737. mod_timer(&sp->id_timer, jiffies);
  4738. if (data)
  4739. msleep_interruptible(data * HZ);
  4740. else
  4741. msleep_interruptible(MAX_FLICKER_TIME);
  4742. del_timer_sync(&sp->id_timer);
  4743. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4744. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4745. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4746. }
  4747. return 0;
  4748. }
  4749. static void s2io_ethtool_gringparam(struct net_device *dev,
  4750. struct ethtool_ringparam *ering)
  4751. {
  4752. struct s2io_nic *sp = dev->priv;
  4753. int i,tx_desc_count=0,rx_desc_count=0;
  4754. if (sp->rxd_mode == RXD_MODE_1)
  4755. ering->rx_max_pending = MAX_RX_DESC_1;
  4756. else if (sp->rxd_mode == RXD_MODE_3B)
  4757. ering->rx_max_pending = MAX_RX_DESC_2;
  4758. ering->tx_max_pending = MAX_TX_DESC;
  4759. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4760. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4761. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4762. ering->tx_pending = tx_desc_count;
  4763. rx_desc_count = 0;
  4764. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4765. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4766. ering->rx_pending = rx_desc_count;
  4767. ering->rx_mini_max_pending = 0;
  4768. ering->rx_mini_pending = 0;
  4769. if(sp->rxd_mode == RXD_MODE_1)
  4770. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4771. else if (sp->rxd_mode == RXD_MODE_3B)
  4772. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4773. ering->rx_jumbo_pending = rx_desc_count;
  4774. }
  4775. /**
  4776. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4777. * @sp : private member of the device structure, which is a pointer to the
  4778. * s2io_nic structure.
  4779. * @ep : pointer to the structure with pause parameters given by ethtool.
  4780. * Description:
  4781. * Returns the Pause frame generation and reception capability of the NIC.
  4782. * Return value:
  4783. * void
  4784. */
  4785. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4786. struct ethtool_pauseparam *ep)
  4787. {
  4788. u64 val64;
  4789. struct s2io_nic *sp = dev->priv;
  4790. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4791. val64 = readq(&bar0->rmac_pause_cfg);
  4792. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4793. ep->tx_pause = TRUE;
  4794. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4795. ep->rx_pause = TRUE;
  4796. ep->autoneg = FALSE;
  4797. }
  4798. /**
  4799. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4800. * @sp : private member of the device structure, which is a pointer to the
  4801. * s2io_nic structure.
  4802. * @ep : pointer to the structure with pause parameters given by ethtool.
  4803. * Description:
  4804. * It can be used to set or reset Pause frame generation or reception
  4805. * support of the NIC.
  4806. * Return value:
  4807. * int, returns 0 on Success
  4808. */
  4809. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4810. struct ethtool_pauseparam *ep)
  4811. {
  4812. u64 val64;
  4813. struct s2io_nic *sp = dev->priv;
  4814. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4815. val64 = readq(&bar0->rmac_pause_cfg);
  4816. if (ep->tx_pause)
  4817. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4818. else
  4819. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4820. if (ep->rx_pause)
  4821. val64 |= RMAC_PAUSE_RX_ENABLE;
  4822. else
  4823. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4824. writeq(val64, &bar0->rmac_pause_cfg);
  4825. return 0;
  4826. }
  4827. /**
  4828. * read_eeprom - reads 4 bytes of data from user given offset.
  4829. * @sp : private member of the device structure, which is a pointer to the
  4830. * s2io_nic structure.
  4831. * @off : offset at which the data must be written
  4832. * @data : Its an output parameter where the data read at the given
  4833. * offset is stored.
  4834. * Description:
  4835. * Will read 4 bytes of data from the user given offset and return the
  4836. * read data.
  4837. * NOTE: Will allow to read only part of the EEPROM visible through the
  4838. * I2C bus.
  4839. * Return value:
  4840. * -1 on failure and 0 on success.
  4841. */
  4842. #define S2IO_DEV_ID 5
  4843. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4844. {
  4845. int ret = -1;
  4846. u32 exit_cnt = 0;
  4847. u64 val64;
  4848. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4849. if (sp->device_type == XFRAME_I_DEVICE) {
  4850. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4851. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4852. I2C_CONTROL_CNTL_START;
  4853. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4854. while (exit_cnt < 5) {
  4855. val64 = readq(&bar0->i2c_control);
  4856. if (I2C_CONTROL_CNTL_END(val64)) {
  4857. *data = I2C_CONTROL_GET_DATA(val64);
  4858. ret = 0;
  4859. break;
  4860. }
  4861. msleep(50);
  4862. exit_cnt++;
  4863. }
  4864. }
  4865. if (sp->device_type == XFRAME_II_DEVICE) {
  4866. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4867. SPI_CONTROL_BYTECNT(0x3) |
  4868. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4869. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4870. val64 |= SPI_CONTROL_REQ;
  4871. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4872. while (exit_cnt < 5) {
  4873. val64 = readq(&bar0->spi_control);
  4874. if (val64 & SPI_CONTROL_NACK) {
  4875. ret = 1;
  4876. break;
  4877. } else if (val64 & SPI_CONTROL_DONE) {
  4878. *data = readq(&bar0->spi_data);
  4879. *data &= 0xffffff;
  4880. ret = 0;
  4881. break;
  4882. }
  4883. msleep(50);
  4884. exit_cnt++;
  4885. }
  4886. }
  4887. return ret;
  4888. }
  4889. /**
  4890. * write_eeprom - actually writes the relevant part of the data value.
  4891. * @sp : private member of the device structure, which is a pointer to the
  4892. * s2io_nic structure.
  4893. * @off : offset at which the data must be written
  4894. * @data : The data that is to be written
  4895. * @cnt : Number of bytes of the data that are actually to be written into
  4896. * the Eeprom. (max of 3)
  4897. * Description:
  4898. * Actually writes the relevant part of the data value into the Eeprom
  4899. * through the I2C bus.
  4900. * Return value:
  4901. * 0 on success, -1 on failure.
  4902. */
  4903. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4904. {
  4905. int exit_cnt = 0, ret = -1;
  4906. u64 val64;
  4907. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4908. if (sp->device_type == XFRAME_I_DEVICE) {
  4909. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4910. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4911. I2C_CONTROL_CNTL_START;
  4912. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4913. while (exit_cnt < 5) {
  4914. val64 = readq(&bar0->i2c_control);
  4915. if (I2C_CONTROL_CNTL_END(val64)) {
  4916. if (!(val64 & I2C_CONTROL_NACK))
  4917. ret = 0;
  4918. break;
  4919. }
  4920. msleep(50);
  4921. exit_cnt++;
  4922. }
  4923. }
  4924. if (sp->device_type == XFRAME_II_DEVICE) {
  4925. int write_cnt = (cnt == 8) ? 0 : cnt;
  4926. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4927. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4928. SPI_CONTROL_BYTECNT(write_cnt) |
  4929. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4930. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4931. val64 |= SPI_CONTROL_REQ;
  4932. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4933. while (exit_cnt < 5) {
  4934. val64 = readq(&bar0->spi_control);
  4935. if (val64 & SPI_CONTROL_NACK) {
  4936. ret = 1;
  4937. break;
  4938. } else if (val64 & SPI_CONTROL_DONE) {
  4939. ret = 0;
  4940. break;
  4941. }
  4942. msleep(50);
  4943. exit_cnt++;
  4944. }
  4945. }
  4946. return ret;
  4947. }
  4948. static void s2io_vpd_read(struct s2io_nic *nic)
  4949. {
  4950. u8 *vpd_data;
  4951. u8 data;
  4952. int i=0, cnt, fail = 0;
  4953. int vpd_addr = 0x80;
  4954. if (nic->device_type == XFRAME_II_DEVICE) {
  4955. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4956. vpd_addr = 0x80;
  4957. }
  4958. else {
  4959. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4960. vpd_addr = 0x50;
  4961. }
  4962. strcpy(nic->serial_num, "NOT AVAILABLE");
  4963. vpd_data = kmalloc(256, GFP_KERNEL);
  4964. if (!vpd_data) {
  4965. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4966. return;
  4967. }
  4968. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4969. for (i = 0; i < 256; i +=4 ) {
  4970. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4971. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4972. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4973. for (cnt = 0; cnt <5; cnt++) {
  4974. msleep(2);
  4975. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4976. if (data == 0x80)
  4977. break;
  4978. }
  4979. if (cnt >= 5) {
  4980. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4981. fail = 1;
  4982. break;
  4983. }
  4984. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4985. (u32 *)&vpd_data[i]);
  4986. }
  4987. if(!fail) {
  4988. /* read serial number of adapter */
  4989. for (cnt = 0; cnt < 256; cnt++) {
  4990. if ((vpd_data[cnt] == 'S') &&
  4991. (vpd_data[cnt+1] == 'N') &&
  4992. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4993. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4994. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4995. vpd_data[cnt+2]);
  4996. break;
  4997. }
  4998. }
  4999. }
  5000. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  5001. memset(nic->product_name, 0, vpd_data[1]);
  5002. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  5003. }
  5004. kfree(vpd_data);
  5005. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  5006. }
  5007. /**
  5008. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  5009. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  5010. * @eeprom : pointer to the user level structure provided by ethtool,
  5011. * containing all relevant information.
  5012. * @data_buf : user defined value to be written into Eeprom.
  5013. * Description: Reads the values stored in the Eeprom at given offset
  5014. * for a given length. Stores these values int the input argument data
  5015. * buffer 'data_buf' and returns these to the caller (ethtool.)
  5016. * Return value:
  5017. * int 0 on success
  5018. */
  5019. static int s2io_ethtool_geeprom(struct net_device *dev,
  5020. struct ethtool_eeprom *eeprom, u8 * data_buf)
  5021. {
  5022. u32 i, valid;
  5023. u64 data;
  5024. struct s2io_nic *sp = dev->priv;
  5025. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  5026. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  5027. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  5028. for (i = 0; i < eeprom->len; i += 4) {
  5029. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  5030. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  5031. return -EFAULT;
  5032. }
  5033. valid = INV(data);
  5034. memcpy((data_buf + i), &valid, 4);
  5035. }
  5036. return 0;
  5037. }
  5038. /**
  5039. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  5040. * @sp : private member of the device structure, which is a pointer to the
  5041. * s2io_nic structure.
  5042. * @eeprom : pointer to the user level structure provided by ethtool,
  5043. * containing all relevant information.
  5044. * @data_buf ; user defined value to be written into Eeprom.
  5045. * Description:
  5046. * Tries to write the user provided value in the Eeprom, at the offset
  5047. * given by the user.
  5048. * Return value:
  5049. * 0 on success, -EFAULT on failure.
  5050. */
  5051. static int s2io_ethtool_seeprom(struct net_device *dev,
  5052. struct ethtool_eeprom *eeprom,
  5053. u8 * data_buf)
  5054. {
  5055. int len = eeprom->len, cnt = 0;
  5056. u64 valid = 0, data;
  5057. struct s2io_nic *sp = dev->priv;
  5058. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  5059. DBG_PRINT(ERR_DBG,
  5060. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  5061. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  5062. eeprom->magic);
  5063. return -EFAULT;
  5064. }
  5065. while (len) {
  5066. data = (u32) data_buf[cnt] & 0x000000FF;
  5067. if (data) {
  5068. valid = (u32) (data << 24);
  5069. } else
  5070. valid = data;
  5071. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  5072. DBG_PRINT(ERR_DBG,
  5073. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  5074. DBG_PRINT(ERR_DBG,
  5075. "write into the specified offset\n");
  5076. return -EFAULT;
  5077. }
  5078. cnt++;
  5079. len--;
  5080. }
  5081. return 0;
  5082. }
  5083. /**
  5084. * s2io_register_test - reads and writes into all clock domains.
  5085. * @sp : private member of the device structure, which is a pointer to the
  5086. * s2io_nic structure.
  5087. * @data : variable that returns the result of each of the test conducted b
  5088. * by the driver.
  5089. * Description:
  5090. * Read and write into all clock domains. The NIC has 3 clock domains,
  5091. * see that registers in all the three regions are accessible.
  5092. * Return value:
  5093. * 0 on success.
  5094. */
  5095. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  5096. {
  5097. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5098. u64 val64 = 0, exp_val;
  5099. int fail = 0;
  5100. val64 = readq(&bar0->pif_rd_swapper_fb);
  5101. if (val64 != 0x123456789abcdefULL) {
  5102. fail = 1;
  5103. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  5104. }
  5105. val64 = readq(&bar0->rmac_pause_cfg);
  5106. if (val64 != 0xc000ffff00000000ULL) {
  5107. fail = 1;
  5108. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  5109. }
  5110. val64 = readq(&bar0->rx_queue_cfg);
  5111. if (sp->device_type == XFRAME_II_DEVICE)
  5112. exp_val = 0x0404040404040404ULL;
  5113. else
  5114. exp_val = 0x0808080808080808ULL;
  5115. if (val64 != exp_val) {
  5116. fail = 1;
  5117. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  5118. }
  5119. val64 = readq(&bar0->xgxs_efifo_cfg);
  5120. if (val64 != 0x000000001923141EULL) {
  5121. fail = 1;
  5122. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  5123. }
  5124. val64 = 0x5A5A5A5A5A5A5A5AULL;
  5125. writeq(val64, &bar0->xmsi_data);
  5126. val64 = readq(&bar0->xmsi_data);
  5127. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5128. fail = 1;
  5129. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  5130. }
  5131. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5132. writeq(val64, &bar0->xmsi_data);
  5133. val64 = readq(&bar0->xmsi_data);
  5134. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5135. fail = 1;
  5136. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  5137. }
  5138. *data = fail;
  5139. return fail;
  5140. }
  5141. /**
  5142. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5143. * @sp : private member of the device structure, which is a pointer to the
  5144. * s2io_nic structure.
  5145. * @data:variable that returns the result of each of the test conducted by
  5146. * the driver.
  5147. * Description:
  5148. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5149. * register.
  5150. * Return value:
  5151. * 0 on success.
  5152. */
  5153. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  5154. {
  5155. int fail = 0;
  5156. u64 ret_data, org_4F0, org_7F0;
  5157. u8 saved_4F0 = 0, saved_7F0 = 0;
  5158. struct net_device *dev = sp->dev;
  5159. /* Test Write Error at offset 0 */
  5160. /* Note that SPI interface allows write access to all areas
  5161. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5162. */
  5163. if (sp->device_type == XFRAME_I_DEVICE)
  5164. if (!write_eeprom(sp, 0, 0, 3))
  5165. fail = 1;
  5166. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5167. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5168. saved_4F0 = 1;
  5169. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5170. saved_7F0 = 1;
  5171. /* Test Write at offset 4f0 */
  5172. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5173. fail = 1;
  5174. if (read_eeprom(sp, 0x4F0, &ret_data))
  5175. fail = 1;
  5176. if (ret_data != 0x012345) {
  5177. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5178. "Data written %llx Data read %llx\n",
  5179. dev->name, (unsigned long long)0x12345,
  5180. (unsigned long long)ret_data);
  5181. fail = 1;
  5182. }
  5183. /* Reset the EEPROM data go FFFF */
  5184. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5185. /* Test Write Request Error at offset 0x7c */
  5186. if (sp->device_type == XFRAME_I_DEVICE)
  5187. if (!write_eeprom(sp, 0x07C, 0, 3))
  5188. fail = 1;
  5189. /* Test Write Request at offset 0x7f0 */
  5190. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5191. fail = 1;
  5192. if (read_eeprom(sp, 0x7F0, &ret_data))
  5193. fail = 1;
  5194. if (ret_data != 0x012345) {
  5195. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5196. "Data written %llx Data read %llx\n",
  5197. dev->name, (unsigned long long)0x12345,
  5198. (unsigned long long)ret_data);
  5199. fail = 1;
  5200. }
  5201. /* Reset the EEPROM data go FFFF */
  5202. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5203. if (sp->device_type == XFRAME_I_DEVICE) {
  5204. /* Test Write Error at offset 0x80 */
  5205. if (!write_eeprom(sp, 0x080, 0, 3))
  5206. fail = 1;
  5207. /* Test Write Error at offset 0xfc */
  5208. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5209. fail = 1;
  5210. /* Test Write Error at offset 0x100 */
  5211. if (!write_eeprom(sp, 0x100, 0, 3))
  5212. fail = 1;
  5213. /* Test Write Error at offset 4ec */
  5214. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5215. fail = 1;
  5216. }
  5217. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5218. if (saved_4F0)
  5219. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5220. if (saved_7F0)
  5221. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5222. *data = fail;
  5223. return fail;
  5224. }
  5225. /**
  5226. * s2io_bist_test - invokes the MemBist test of the card .
  5227. * @sp : private member of the device structure, which is a pointer to the
  5228. * s2io_nic structure.
  5229. * @data:variable that returns the result of each of the test conducted by
  5230. * the driver.
  5231. * Description:
  5232. * This invokes the MemBist test of the card. We give around
  5233. * 2 secs time for the Test to complete. If it's still not complete
  5234. * within this peiod, we consider that the test failed.
  5235. * Return value:
  5236. * 0 on success and -1 on failure.
  5237. */
  5238. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5239. {
  5240. u8 bist = 0;
  5241. int cnt = 0, ret = -1;
  5242. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5243. bist |= PCI_BIST_START;
  5244. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5245. while (cnt < 20) {
  5246. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5247. if (!(bist & PCI_BIST_START)) {
  5248. *data = (bist & PCI_BIST_CODE_MASK);
  5249. ret = 0;
  5250. break;
  5251. }
  5252. msleep(100);
  5253. cnt++;
  5254. }
  5255. return ret;
  5256. }
  5257. /**
  5258. * s2io-link_test - verifies the link state of the nic
  5259. * @sp ; private member of the device structure, which is a pointer to the
  5260. * s2io_nic structure.
  5261. * @data: variable that returns the result of each of the test conducted by
  5262. * the driver.
  5263. * Description:
  5264. * The function verifies the link state of the NIC and updates the input
  5265. * argument 'data' appropriately.
  5266. * Return value:
  5267. * 0 on success.
  5268. */
  5269. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5270. {
  5271. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5272. u64 val64;
  5273. val64 = readq(&bar0->adapter_status);
  5274. if(!(LINK_IS_UP(val64)))
  5275. *data = 1;
  5276. else
  5277. *data = 0;
  5278. return *data;
  5279. }
  5280. /**
  5281. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5282. * @sp - private member of the device structure, which is a pointer to the
  5283. * s2io_nic structure.
  5284. * @data - variable that returns the result of each of the test
  5285. * conducted by the driver.
  5286. * Description:
  5287. * This is one of the offline test that tests the read and write
  5288. * access to the RldRam chip on the NIC.
  5289. * Return value:
  5290. * 0 on success.
  5291. */
  5292. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5293. {
  5294. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5295. u64 val64;
  5296. int cnt, iteration = 0, test_fail = 0;
  5297. val64 = readq(&bar0->adapter_control);
  5298. val64 &= ~ADAPTER_ECC_EN;
  5299. writeq(val64, &bar0->adapter_control);
  5300. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5301. val64 |= MC_RLDRAM_TEST_MODE;
  5302. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5303. val64 = readq(&bar0->mc_rldram_mrs);
  5304. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5305. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5306. val64 |= MC_RLDRAM_MRS_ENABLE;
  5307. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5308. while (iteration < 2) {
  5309. val64 = 0x55555555aaaa0000ULL;
  5310. if (iteration == 1) {
  5311. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5312. }
  5313. writeq(val64, &bar0->mc_rldram_test_d0);
  5314. val64 = 0xaaaa5a5555550000ULL;
  5315. if (iteration == 1) {
  5316. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5317. }
  5318. writeq(val64, &bar0->mc_rldram_test_d1);
  5319. val64 = 0x55aaaaaaaa5a0000ULL;
  5320. if (iteration == 1) {
  5321. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5322. }
  5323. writeq(val64, &bar0->mc_rldram_test_d2);
  5324. val64 = (u64) (0x0000003ffffe0100ULL);
  5325. writeq(val64, &bar0->mc_rldram_test_add);
  5326. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5327. MC_RLDRAM_TEST_GO;
  5328. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5329. for (cnt = 0; cnt < 5; cnt++) {
  5330. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5331. if (val64 & MC_RLDRAM_TEST_DONE)
  5332. break;
  5333. msleep(200);
  5334. }
  5335. if (cnt == 5)
  5336. break;
  5337. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5338. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5339. for (cnt = 0; cnt < 5; cnt++) {
  5340. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5341. if (val64 & MC_RLDRAM_TEST_DONE)
  5342. break;
  5343. msleep(500);
  5344. }
  5345. if (cnt == 5)
  5346. break;
  5347. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5348. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5349. test_fail = 1;
  5350. iteration++;
  5351. }
  5352. *data = test_fail;
  5353. /* Bring the adapter out of test mode */
  5354. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5355. return test_fail;
  5356. }
  5357. /**
  5358. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5359. * @sp : private member of the device structure, which is a pointer to the
  5360. * s2io_nic structure.
  5361. * @ethtest : pointer to a ethtool command specific structure that will be
  5362. * returned to the user.
  5363. * @data : variable that returns the result of each of the test
  5364. * conducted by the driver.
  5365. * Description:
  5366. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5367. * the health of the card.
  5368. * Return value:
  5369. * void
  5370. */
  5371. static void s2io_ethtool_test(struct net_device *dev,
  5372. struct ethtool_test *ethtest,
  5373. uint64_t * data)
  5374. {
  5375. struct s2io_nic *sp = dev->priv;
  5376. int orig_state = netif_running(sp->dev);
  5377. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5378. /* Offline Tests. */
  5379. if (orig_state)
  5380. s2io_close(sp->dev);
  5381. if (s2io_register_test(sp, &data[0]))
  5382. ethtest->flags |= ETH_TEST_FL_FAILED;
  5383. s2io_reset(sp);
  5384. if (s2io_rldram_test(sp, &data[3]))
  5385. ethtest->flags |= ETH_TEST_FL_FAILED;
  5386. s2io_reset(sp);
  5387. if (s2io_eeprom_test(sp, &data[1]))
  5388. ethtest->flags |= ETH_TEST_FL_FAILED;
  5389. if (s2io_bist_test(sp, &data[4]))
  5390. ethtest->flags |= ETH_TEST_FL_FAILED;
  5391. if (orig_state)
  5392. s2io_open(sp->dev);
  5393. data[2] = 0;
  5394. } else {
  5395. /* Online Tests. */
  5396. if (!orig_state) {
  5397. DBG_PRINT(ERR_DBG,
  5398. "%s: is not up, cannot run test\n",
  5399. dev->name);
  5400. data[0] = -1;
  5401. data[1] = -1;
  5402. data[2] = -1;
  5403. data[3] = -1;
  5404. data[4] = -1;
  5405. }
  5406. if (s2io_link_test(sp, &data[2]))
  5407. ethtest->flags |= ETH_TEST_FL_FAILED;
  5408. data[0] = 0;
  5409. data[1] = 0;
  5410. data[3] = 0;
  5411. data[4] = 0;
  5412. }
  5413. }
  5414. static void s2io_get_ethtool_stats(struct net_device *dev,
  5415. struct ethtool_stats *estats,
  5416. u64 * tmp_stats)
  5417. {
  5418. int i = 0, k;
  5419. struct s2io_nic *sp = dev->priv;
  5420. struct stat_block *stat_info = sp->mac_control.stats_info;
  5421. s2io_updt_stats(sp);
  5422. tmp_stats[i++] =
  5423. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5424. le32_to_cpu(stat_info->tmac_frms);
  5425. tmp_stats[i++] =
  5426. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5427. le32_to_cpu(stat_info->tmac_data_octets);
  5428. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5429. tmp_stats[i++] =
  5430. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5431. le32_to_cpu(stat_info->tmac_mcst_frms);
  5432. tmp_stats[i++] =
  5433. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5434. le32_to_cpu(stat_info->tmac_bcst_frms);
  5435. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5436. tmp_stats[i++] =
  5437. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5438. le32_to_cpu(stat_info->tmac_ttl_octets);
  5439. tmp_stats[i++] =
  5440. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5441. le32_to_cpu(stat_info->tmac_ucst_frms);
  5442. tmp_stats[i++] =
  5443. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5444. le32_to_cpu(stat_info->tmac_nucst_frms);
  5445. tmp_stats[i++] =
  5446. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5447. le32_to_cpu(stat_info->tmac_any_err_frms);
  5448. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5449. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5450. tmp_stats[i++] =
  5451. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5452. le32_to_cpu(stat_info->tmac_vld_ip);
  5453. tmp_stats[i++] =
  5454. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5455. le32_to_cpu(stat_info->tmac_drop_ip);
  5456. tmp_stats[i++] =
  5457. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5458. le32_to_cpu(stat_info->tmac_icmp);
  5459. tmp_stats[i++] =
  5460. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5461. le32_to_cpu(stat_info->tmac_rst_tcp);
  5462. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5463. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5464. le32_to_cpu(stat_info->tmac_udp);
  5465. tmp_stats[i++] =
  5466. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5467. le32_to_cpu(stat_info->rmac_vld_frms);
  5468. tmp_stats[i++] =
  5469. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5470. le32_to_cpu(stat_info->rmac_data_octets);
  5471. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5472. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5473. tmp_stats[i++] =
  5474. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5475. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5476. tmp_stats[i++] =
  5477. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5478. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5479. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5480. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5481. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5482. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5483. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5484. tmp_stats[i++] =
  5485. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5486. le32_to_cpu(stat_info->rmac_ttl_octets);
  5487. tmp_stats[i++] =
  5488. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5489. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5490. tmp_stats[i++] =
  5491. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5492. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5493. tmp_stats[i++] =
  5494. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5495. le32_to_cpu(stat_info->rmac_discarded_frms);
  5496. tmp_stats[i++] =
  5497. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5498. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5499. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5500. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5501. tmp_stats[i++] =
  5502. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5503. le32_to_cpu(stat_info->rmac_usized_frms);
  5504. tmp_stats[i++] =
  5505. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5506. le32_to_cpu(stat_info->rmac_osized_frms);
  5507. tmp_stats[i++] =
  5508. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5509. le32_to_cpu(stat_info->rmac_frag_frms);
  5510. tmp_stats[i++] =
  5511. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5512. le32_to_cpu(stat_info->rmac_jabber_frms);
  5513. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5514. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5515. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5516. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5517. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5518. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5519. tmp_stats[i++] =
  5520. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5521. le32_to_cpu(stat_info->rmac_ip);
  5522. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5523. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5524. tmp_stats[i++] =
  5525. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5526. le32_to_cpu(stat_info->rmac_drop_ip);
  5527. tmp_stats[i++] =
  5528. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5529. le32_to_cpu(stat_info->rmac_icmp);
  5530. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5531. tmp_stats[i++] =
  5532. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5533. le32_to_cpu(stat_info->rmac_udp);
  5534. tmp_stats[i++] =
  5535. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5536. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5537. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5538. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5539. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5540. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5541. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5542. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5543. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5544. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5545. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5546. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5547. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5548. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5549. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5550. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5551. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5552. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5553. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5554. tmp_stats[i++] =
  5555. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5556. le32_to_cpu(stat_info->rmac_pause_cnt);
  5557. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5558. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5559. tmp_stats[i++] =
  5560. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5561. le32_to_cpu(stat_info->rmac_accepted_ip);
  5562. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5563. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5564. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5565. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5566. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5567. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5568. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5569. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5570. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5571. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5572. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5573. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5574. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5575. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5576. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5577. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5578. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5579. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5580. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5581. /* Enhanced statistics exist only for Hercules */
  5582. if(sp->device_type == XFRAME_II_DEVICE) {
  5583. tmp_stats[i++] =
  5584. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5585. tmp_stats[i++] =
  5586. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5587. tmp_stats[i++] =
  5588. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5589. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5590. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5591. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5592. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5593. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5594. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5595. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5596. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5597. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5598. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5599. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5600. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5601. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5602. }
  5603. tmp_stats[i++] = 0;
  5604. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5605. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5606. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5607. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5608. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5609. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5610. for (k = 0; k < MAX_RX_RINGS; k++)
  5611. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5612. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5613. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5614. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5615. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5616. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5617. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5618. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5619. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5620. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5621. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5622. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5623. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5624. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5625. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5626. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5627. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5628. if (stat_info->sw_stat.num_aggregations) {
  5629. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5630. int count = 0;
  5631. /*
  5632. * Since 64-bit divide does not work on all platforms,
  5633. * do repeated subtraction.
  5634. */
  5635. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5636. tmp -= stat_info->sw_stat.num_aggregations;
  5637. count++;
  5638. }
  5639. tmp_stats[i++] = count;
  5640. }
  5641. else
  5642. tmp_stats[i++] = 0;
  5643. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5644. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5645. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5646. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5647. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5648. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5649. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5650. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5651. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5652. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5653. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5654. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5655. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5656. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5657. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5658. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5659. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5660. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5661. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5662. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5663. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5664. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5665. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5666. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5667. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5668. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5669. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5670. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5671. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5672. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5673. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5674. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5675. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5676. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5677. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5678. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5679. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5680. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5681. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5682. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5683. }
  5684. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5685. {
  5686. return (XENA_REG_SPACE);
  5687. }
  5688. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5689. {
  5690. struct s2io_nic *sp = dev->priv;
  5691. return (sp->rx_csum);
  5692. }
  5693. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5694. {
  5695. struct s2io_nic *sp = dev->priv;
  5696. if (data)
  5697. sp->rx_csum = 1;
  5698. else
  5699. sp->rx_csum = 0;
  5700. return 0;
  5701. }
  5702. static int s2io_get_eeprom_len(struct net_device *dev)
  5703. {
  5704. return (XENA_EEPROM_SPACE);
  5705. }
  5706. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5707. {
  5708. struct s2io_nic *sp = dev->priv;
  5709. switch (sset) {
  5710. case ETH_SS_TEST:
  5711. return S2IO_TEST_LEN;
  5712. case ETH_SS_STATS:
  5713. switch(sp->device_type) {
  5714. case XFRAME_I_DEVICE:
  5715. return XFRAME_I_STAT_LEN;
  5716. case XFRAME_II_DEVICE:
  5717. return XFRAME_II_STAT_LEN;
  5718. default:
  5719. return 0;
  5720. }
  5721. default:
  5722. return -EOPNOTSUPP;
  5723. }
  5724. }
  5725. static void s2io_ethtool_get_strings(struct net_device *dev,
  5726. u32 stringset, u8 * data)
  5727. {
  5728. int stat_size = 0;
  5729. struct s2io_nic *sp = dev->priv;
  5730. switch (stringset) {
  5731. case ETH_SS_TEST:
  5732. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5733. break;
  5734. case ETH_SS_STATS:
  5735. stat_size = sizeof(ethtool_xena_stats_keys);
  5736. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5737. if(sp->device_type == XFRAME_II_DEVICE) {
  5738. memcpy(data + stat_size,
  5739. &ethtool_enhanced_stats_keys,
  5740. sizeof(ethtool_enhanced_stats_keys));
  5741. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5742. }
  5743. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5744. sizeof(ethtool_driver_stats_keys));
  5745. }
  5746. }
  5747. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5748. {
  5749. if (data)
  5750. dev->features |= NETIF_F_IP_CSUM;
  5751. else
  5752. dev->features &= ~NETIF_F_IP_CSUM;
  5753. return 0;
  5754. }
  5755. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5756. {
  5757. return (dev->features & NETIF_F_TSO) != 0;
  5758. }
  5759. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5760. {
  5761. if (data)
  5762. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5763. else
  5764. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5765. return 0;
  5766. }
  5767. static const struct ethtool_ops netdev_ethtool_ops = {
  5768. .get_settings = s2io_ethtool_gset,
  5769. .set_settings = s2io_ethtool_sset,
  5770. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5771. .get_regs_len = s2io_ethtool_get_regs_len,
  5772. .get_regs = s2io_ethtool_gregs,
  5773. .get_link = ethtool_op_get_link,
  5774. .get_eeprom_len = s2io_get_eeprom_len,
  5775. .get_eeprom = s2io_ethtool_geeprom,
  5776. .set_eeprom = s2io_ethtool_seeprom,
  5777. .get_ringparam = s2io_ethtool_gringparam,
  5778. .get_pauseparam = s2io_ethtool_getpause_data,
  5779. .set_pauseparam = s2io_ethtool_setpause_data,
  5780. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5781. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5782. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5783. .set_sg = ethtool_op_set_sg,
  5784. .get_tso = s2io_ethtool_op_get_tso,
  5785. .set_tso = s2io_ethtool_op_set_tso,
  5786. .set_ufo = ethtool_op_set_ufo,
  5787. .self_test = s2io_ethtool_test,
  5788. .get_strings = s2io_ethtool_get_strings,
  5789. .phys_id = s2io_ethtool_idnic,
  5790. .get_ethtool_stats = s2io_get_ethtool_stats,
  5791. .get_sset_count = s2io_get_sset_count,
  5792. };
  5793. /**
  5794. * s2io_ioctl - Entry point for the Ioctl
  5795. * @dev : Device pointer.
  5796. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5797. * a proprietary structure used to pass information to the driver.
  5798. * @cmd : This is used to distinguish between the different commands that
  5799. * can be passed to the IOCTL functions.
  5800. * Description:
  5801. * Currently there are no special functionality supported in IOCTL, hence
  5802. * function always return EOPNOTSUPPORTED
  5803. */
  5804. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5805. {
  5806. return -EOPNOTSUPP;
  5807. }
  5808. /**
  5809. * s2io_change_mtu - entry point to change MTU size for the device.
  5810. * @dev : device pointer.
  5811. * @new_mtu : the new MTU size for the device.
  5812. * Description: A driver entry point to change MTU size for the device.
  5813. * Before changing the MTU the device must be stopped.
  5814. * Return value:
  5815. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5816. * file on failure.
  5817. */
  5818. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5819. {
  5820. struct s2io_nic *sp = dev->priv;
  5821. int ret = 0;
  5822. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5823. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5824. dev->name);
  5825. return -EPERM;
  5826. }
  5827. dev->mtu = new_mtu;
  5828. if (netif_running(dev)) {
  5829. s2io_card_down(sp);
  5830. netif_stop_queue(dev);
  5831. ret = s2io_card_up(sp);
  5832. if (ret) {
  5833. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5834. __FUNCTION__);
  5835. return ret;
  5836. }
  5837. if (netif_queue_stopped(dev))
  5838. netif_wake_queue(dev);
  5839. } else { /* Device is down */
  5840. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5841. u64 val64 = new_mtu;
  5842. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5843. }
  5844. return ret;
  5845. }
  5846. /**
  5847. * s2io_tasklet - Bottom half of the ISR.
  5848. * @dev_adr : address of the device structure in dma_addr_t format.
  5849. * Description:
  5850. * This is the tasklet or the bottom half of the ISR. This is
  5851. * an extension of the ISR which is scheduled by the scheduler to be run
  5852. * when the load on the CPU is low. All low priority tasks of the ISR can
  5853. * be pushed into the tasklet. For now the tasklet is used only to
  5854. * replenish the Rx buffers in the Rx buffer descriptors.
  5855. * Return value:
  5856. * void.
  5857. */
  5858. static void s2io_tasklet(unsigned long dev_addr)
  5859. {
  5860. struct net_device *dev = (struct net_device *) dev_addr;
  5861. struct s2io_nic *sp = dev->priv;
  5862. int i, ret;
  5863. struct mac_info *mac_control;
  5864. struct config_param *config;
  5865. mac_control = &sp->mac_control;
  5866. config = &sp->config;
  5867. if (!TASKLET_IN_USE) {
  5868. for (i = 0; i < config->rx_ring_num; i++) {
  5869. ret = fill_rx_buffers(sp, i);
  5870. if (ret == -ENOMEM) {
  5871. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5872. dev->name);
  5873. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5874. break;
  5875. } else if (ret == -EFILL) {
  5876. DBG_PRINT(INFO_DBG,
  5877. "%s: Rx Ring %d is full\n",
  5878. dev->name, i);
  5879. break;
  5880. }
  5881. }
  5882. clear_bit(0, (&sp->tasklet_status));
  5883. }
  5884. }
  5885. /**
  5886. * s2io_set_link - Set the LInk status
  5887. * @data: long pointer to device private structue
  5888. * Description: Sets the link status for the adapter
  5889. */
  5890. static void s2io_set_link(struct work_struct *work)
  5891. {
  5892. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5893. struct net_device *dev = nic->dev;
  5894. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5895. register u64 val64;
  5896. u16 subid;
  5897. rtnl_lock();
  5898. if (!netif_running(dev))
  5899. goto out_unlock;
  5900. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5901. /* The card is being reset, no point doing anything */
  5902. goto out_unlock;
  5903. }
  5904. subid = nic->pdev->subsystem_device;
  5905. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5906. /*
  5907. * Allow a small delay for the NICs self initiated
  5908. * cleanup to complete.
  5909. */
  5910. msleep(100);
  5911. }
  5912. val64 = readq(&bar0->adapter_status);
  5913. if (LINK_IS_UP(val64)) {
  5914. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5915. if (verify_xena_quiescence(nic)) {
  5916. val64 = readq(&bar0->adapter_control);
  5917. val64 |= ADAPTER_CNTL_EN;
  5918. writeq(val64, &bar0->adapter_control);
  5919. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5920. nic->device_type, subid)) {
  5921. val64 = readq(&bar0->gpio_control);
  5922. val64 |= GPIO_CTRL_GPIO_0;
  5923. writeq(val64, &bar0->gpio_control);
  5924. val64 = readq(&bar0->gpio_control);
  5925. } else {
  5926. val64 |= ADAPTER_LED_ON;
  5927. writeq(val64, &bar0->adapter_control);
  5928. }
  5929. nic->device_enabled_once = TRUE;
  5930. } else {
  5931. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5932. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5933. netif_stop_queue(dev);
  5934. }
  5935. }
  5936. val64 = readq(&bar0->adapter_control);
  5937. val64 |= ADAPTER_LED_ON;
  5938. writeq(val64, &bar0->adapter_control);
  5939. s2io_link(nic, LINK_UP);
  5940. } else {
  5941. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5942. subid)) {
  5943. val64 = readq(&bar0->gpio_control);
  5944. val64 &= ~GPIO_CTRL_GPIO_0;
  5945. writeq(val64, &bar0->gpio_control);
  5946. val64 = readq(&bar0->gpio_control);
  5947. }
  5948. /* turn off LED */
  5949. val64 = readq(&bar0->adapter_control);
  5950. val64 = val64 &(~ADAPTER_LED_ON);
  5951. writeq(val64, &bar0->adapter_control);
  5952. s2io_link(nic, LINK_DOWN);
  5953. }
  5954. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5955. out_unlock:
  5956. rtnl_unlock();
  5957. }
  5958. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5959. struct buffAdd *ba,
  5960. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5961. u64 *temp2, int size)
  5962. {
  5963. struct net_device *dev = sp->dev;
  5964. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5965. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5966. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  5967. /* allocate skb */
  5968. if (*skb) {
  5969. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5970. /*
  5971. * As Rx frame are not going to be processed,
  5972. * using same mapped address for the Rxd
  5973. * buffer pointer
  5974. */
  5975. rxdp1->Buffer0_ptr = *temp0;
  5976. } else {
  5977. *skb = dev_alloc_skb(size);
  5978. if (!(*skb)) {
  5979. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5980. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5981. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5982. sp->mac_control.stats_info->sw_stat. \
  5983. mem_alloc_fail_cnt++;
  5984. return -ENOMEM ;
  5985. }
  5986. sp->mac_control.stats_info->sw_stat.mem_allocated
  5987. += (*skb)->truesize;
  5988. /* storing the mapped addr in a temp variable
  5989. * such it will be used for next rxd whose
  5990. * Host Control is NULL
  5991. */
  5992. rxdp1->Buffer0_ptr = *temp0 =
  5993. pci_map_single( sp->pdev, (*skb)->data,
  5994. size - NET_IP_ALIGN,
  5995. PCI_DMA_FROMDEVICE);
  5996. if( (rxdp1->Buffer0_ptr == 0) ||
  5997. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  5998. goto memalloc_failed;
  5999. }
  6000. rxdp->Host_Control = (unsigned long) (*skb);
  6001. }
  6002. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  6003. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  6004. /* Two buffer Mode */
  6005. if (*skb) {
  6006. rxdp3->Buffer2_ptr = *temp2;
  6007. rxdp3->Buffer0_ptr = *temp0;
  6008. rxdp3->Buffer1_ptr = *temp1;
  6009. } else {
  6010. *skb = dev_alloc_skb(size);
  6011. if (!(*skb)) {
  6012. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  6013. DBG_PRINT(INFO_DBG, "memory to allocate ");
  6014. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  6015. sp->mac_control.stats_info->sw_stat. \
  6016. mem_alloc_fail_cnt++;
  6017. return -ENOMEM;
  6018. }
  6019. sp->mac_control.stats_info->sw_stat.mem_allocated
  6020. += (*skb)->truesize;
  6021. rxdp3->Buffer2_ptr = *temp2 =
  6022. pci_map_single(sp->pdev, (*skb)->data,
  6023. dev->mtu + 4,
  6024. PCI_DMA_FROMDEVICE);
  6025. if( (rxdp3->Buffer2_ptr == 0) ||
  6026. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  6027. goto memalloc_failed;
  6028. }
  6029. rxdp3->Buffer0_ptr = *temp0 =
  6030. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  6031. PCI_DMA_FROMDEVICE);
  6032. if( (rxdp3->Buffer0_ptr == 0) ||
  6033. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  6034. pci_unmap_single (sp->pdev,
  6035. (dma_addr_t)rxdp3->Buffer2_ptr,
  6036. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  6037. goto memalloc_failed;
  6038. }
  6039. rxdp->Host_Control = (unsigned long) (*skb);
  6040. /* Buffer-1 will be dummy buffer not used */
  6041. rxdp3->Buffer1_ptr = *temp1 =
  6042. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  6043. PCI_DMA_FROMDEVICE);
  6044. if( (rxdp3->Buffer1_ptr == 0) ||
  6045. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  6046. pci_unmap_single (sp->pdev,
  6047. (dma_addr_t)rxdp3->Buffer0_ptr,
  6048. BUF0_LEN, PCI_DMA_FROMDEVICE);
  6049. pci_unmap_single (sp->pdev,
  6050. (dma_addr_t)rxdp3->Buffer2_ptr,
  6051. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  6052. goto memalloc_failed;
  6053. }
  6054. }
  6055. }
  6056. return 0;
  6057. memalloc_failed:
  6058. stats->pci_map_fail_cnt++;
  6059. stats->mem_freed += (*skb)->truesize;
  6060. dev_kfree_skb(*skb);
  6061. return -ENOMEM;
  6062. }
  6063. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  6064. int size)
  6065. {
  6066. struct net_device *dev = sp->dev;
  6067. if (sp->rxd_mode == RXD_MODE_1) {
  6068. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  6069. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6070. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  6071. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  6072. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  6073. }
  6074. }
  6075. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  6076. {
  6077. int i, j, k, blk_cnt = 0, size;
  6078. struct mac_info * mac_control = &sp->mac_control;
  6079. struct config_param *config = &sp->config;
  6080. struct net_device *dev = sp->dev;
  6081. struct RxD_t *rxdp = NULL;
  6082. struct sk_buff *skb = NULL;
  6083. struct buffAdd *ba = NULL;
  6084. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  6085. /* Calculate the size based on ring mode */
  6086. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  6087. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  6088. if (sp->rxd_mode == RXD_MODE_1)
  6089. size += NET_IP_ALIGN;
  6090. else if (sp->rxd_mode == RXD_MODE_3B)
  6091. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  6092. for (i = 0; i < config->rx_ring_num; i++) {
  6093. blk_cnt = config->rx_cfg[i].num_rxd /
  6094. (rxd_count[sp->rxd_mode] +1);
  6095. for (j = 0; j < blk_cnt; j++) {
  6096. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  6097. rxdp = mac_control->rings[i].
  6098. rx_blocks[j].rxds[k].virt_addr;
  6099. if(sp->rxd_mode == RXD_MODE_3B)
  6100. ba = &mac_control->rings[i].ba[j][k];
  6101. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  6102. &skb,(u64 *)&temp0_64,
  6103. (u64 *)&temp1_64,
  6104. (u64 *)&temp2_64,
  6105. size) == ENOMEM) {
  6106. return 0;
  6107. }
  6108. set_rxd_buffer_size(sp, rxdp, size);
  6109. wmb();
  6110. /* flip the Ownership bit to Hardware */
  6111. rxdp->Control_1 |= RXD_OWN_XENA;
  6112. }
  6113. }
  6114. }
  6115. return 0;
  6116. }
  6117. static int s2io_add_isr(struct s2io_nic * sp)
  6118. {
  6119. int ret = 0;
  6120. struct net_device *dev = sp->dev;
  6121. int err = 0;
  6122. if (sp->config.intr_type == MSI_X)
  6123. ret = s2io_enable_msi_x(sp);
  6124. if (ret) {
  6125. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  6126. sp->config.intr_type = INTA;
  6127. }
  6128. /* Store the values of the MSIX table in the struct s2io_nic structure */
  6129. store_xmsi_data(sp);
  6130. /* After proper initialization of H/W, register ISR */
  6131. if (sp->config.intr_type == MSI_X) {
  6132. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  6133. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  6134. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  6135. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6136. dev->name, i);
  6137. err = request_irq(sp->entries[i].vector,
  6138. s2io_msix_fifo_handle, 0, sp->desc[i],
  6139. sp->s2io_entries[i].arg);
  6140. /* If either data or addr is zero print it */
  6141. if(!(sp->msix_info[i].addr &&
  6142. sp->msix_info[i].data)) {
  6143. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
  6144. "Data:0x%lx\n",sp->desc[i],
  6145. (unsigned long long)
  6146. sp->msix_info[i].addr,
  6147. (unsigned long)
  6148. ntohl(sp->msix_info[i].data));
  6149. } else {
  6150. msix_tx_cnt++;
  6151. }
  6152. } else {
  6153. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6154. dev->name, i);
  6155. err = request_irq(sp->entries[i].vector,
  6156. s2io_msix_ring_handle, 0, sp->desc[i],
  6157. sp->s2io_entries[i].arg);
  6158. /* If either data or addr is zero print it */
  6159. if(!(sp->msix_info[i].addr &&
  6160. sp->msix_info[i].data)) {
  6161. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
  6162. "Data:0x%lx\n",sp->desc[i],
  6163. (unsigned long long)
  6164. sp->msix_info[i].addr,
  6165. (unsigned long)
  6166. ntohl(sp->msix_info[i].data));
  6167. } else {
  6168. msix_rx_cnt++;
  6169. }
  6170. }
  6171. if (err) {
  6172. remove_msix_isr(sp);
  6173. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6174. "failed\n", dev->name, i);
  6175. DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
  6176. dev->name);
  6177. sp->config.intr_type = INTA;
  6178. break;
  6179. }
  6180. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6181. }
  6182. if (!err) {
  6183. printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
  6184. msix_tx_cnt);
  6185. printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
  6186. msix_rx_cnt);
  6187. }
  6188. }
  6189. if (sp->config.intr_type == INTA) {
  6190. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6191. sp->name, dev);
  6192. if (err) {
  6193. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6194. dev->name);
  6195. return -1;
  6196. }
  6197. }
  6198. return 0;
  6199. }
  6200. static void s2io_rem_isr(struct s2io_nic * sp)
  6201. {
  6202. if (sp->config.intr_type == MSI_X)
  6203. remove_msix_isr(sp);
  6204. else
  6205. remove_inta_isr(sp);
  6206. }
  6207. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6208. {
  6209. int cnt = 0;
  6210. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6211. unsigned long flags;
  6212. register u64 val64 = 0;
  6213. struct config_param *config;
  6214. config = &sp->config;
  6215. if (!is_s2io_card_up(sp))
  6216. return;
  6217. del_timer_sync(&sp->alarm_timer);
  6218. /* If s2io_set_link task is executing, wait till it completes. */
  6219. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6220. msleep(50);
  6221. }
  6222. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6223. /* Disable napi */
  6224. if (config->napi)
  6225. napi_disable(&sp->napi);
  6226. /* disable Tx and Rx traffic on the NIC */
  6227. if (do_io)
  6228. stop_nic(sp);
  6229. s2io_rem_isr(sp);
  6230. /* Kill tasklet. */
  6231. tasklet_kill(&sp->task);
  6232. /* Check if the device is Quiescent and then Reset the NIC */
  6233. while(do_io) {
  6234. /* As per the HW requirement we need to replenish the
  6235. * receive buffer to avoid the ring bump. Since there is
  6236. * no intention of processing the Rx frame at this pointwe are
  6237. * just settting the ownership bit of rxd in Each Rx
  6238. * ring to HW and set the appropriate buffer size
  6239. * based on the ring mode
  6240. */
  6241. rxd_owner_bit_reset(sp);
  6242. val64 = readq(&bar0->adapter_status);
  6243. if (verify_xena_quiescence(sp)) {
  6244. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6245. break;
  6246. }
  6247. msleep(50);
  6248. cnt++;
  6249. if (cnt == 10) {
  6250. DBG_PRINT(ERR_DBG,
  6251. "s2io_close:Device not Quiescent ");
  6252. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6253. (unsigned long long) val64);
  6254. break;
  6255. }
  6256. }
  6257. if (do_io)
  6258. s2io_reset(sp);
  6259. spin_lock_irqsave(&sp->tx_lock, flags);
  6260. /* Free all Tx buffers */
  6261. free_tx_buffers(sp);
  6262. spin_unlock_irqrestore(&sp->tx_lock, flags);
  6263. /* Free all Rx buffers */
  6264. spin_lock_irqsave(&sp->rx_lock, flags);
  6265. free_rx_buffers(sp);
  6266. spin_unlock_irqrestore(&sp->rx_lock, flags);
  6267. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6268. }
  6269. static void s2io_card_down(struct s2io_nic * sp)
  6270. {
  6271. do_s2io_card_down(sp, 1);
  6272. }
  6273. static int s2io_card_up(struct s2io_nic * sp)
  6274. {
  6275. int i, ret = 0;
  6276. struct mac_info *mac_control;
  6277. struct config_param *config;
  6278. struct net_device *dev = (struct net_device *) sp->dev;
  6279. u16 interruptible;
  6280. /* Initialize the H/W I/O registers */
  6281. ret = init_nic(sp);
  6282. if (ret != 0) {
  6283. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6284. dev->name);
  6285. if (ret != -EIO)
  6286. s2io_reset(sp);
  6287. return ret;
  6288. }
  6289. /*
  6290. * Initializing the Rx buffers. For now we are considering only 1
  6291. * Rx ring and initializing buffers into 30 Rx blocks
  6292. */
  6293. mac_control = &sp->mac_control;
  6294. config = &sp->config;
  6295. for (i = 0; i < config->rx_ring_num; i++) {
  6296. if ((ret = fill_rx_buffers(sp, i))) {
  6297. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6298. dev->name);
  6299. s2io_reset(sp);
  6300. free_rx_buffers(sp);
  6301. return -ENOMEM;
  6302. }
  6303. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6304. atomic_read(&sp->rx_bufs_left[i]));
  6305. }
  6306. /* Initialise napi */
  6307. if (config->napi)
  6308. napi_enable(&sp->napi);
  6309. /* Maintain the state prior to the open */
  6310. if (sp->promisc_flg)
  6311. sp->promisc_flg = 0;
  6312. if (sp->m_cast_flg) {
  6313. sp->m_cast_flg = 0;
  6314. sp->all_multi_pos= 0;
  6315. }
  6316. /* Setting its receive mode */
  6317. s2io_set_multicast(dev);
  6318. if (sp->lro) {
  6319. /* Initialize max aggregatable pkts per session based on MTU */
  6320. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6321. /* Check if we can use(if specified) user provided value */
  6322. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6323. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6324. }
  6325. /* Enable Rx Traffic and interrupts on the NIC */
  6326. if (start_nic(sp)) {
  6327. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6328. s2io_reset(sp);
  6329. free_rx_buffers(sp);
  6330. return -ENODEV;
  6331. }
  6332. /* Add interrupt service routine */
  6333. if (s2io_add_isr(sp) != 0) {
  6334. if (sp->config.intr_type == MSI_X)
  6335. s2io_rem_isr(sp);
  6336. s2io_reset(sp);
  6337. free_rx_buffers(sp);
  6338. return -ENODEV;
  6339. }
  6340. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6341. /* Enable tasklet for the device */
  6342. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6343. /* Enable select interrupts */
  6344. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6345. if (sp->config.intr_type != INTA)
  6346. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6347. else {
  6348. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6349. interruptible |= TX_PIC_INTR;
  6350. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6351. }
  6352. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6353. return 0;
  6354. }
  6355. /**
  6356. * s2io_restart_nic - Resets the NIC.
  6357. * @data : long pointer to the device private structure
  6358. * Description:
  6359. * This function is scheduled to be run by the s2io_tx_watchdog
  6360. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6361. * the run time of the watch dog routine which is run holding a
  6362. * spin lock.
  6363. */
  6364. static void s2io_restart_nic(struct work_struct *work)
  6365. {
  6366. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6367. struct net_device *dev = sp->dev;
  6368. rtnl_lock();
  6369. if (!netif_running(dev))
  6370. goto out_unlock;
  6371. s2io_card_down(sp);
  6372. if (s2io_card_up(sp)) {
  6373. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6374. dev->name);
  6375. }
  6376. netif_wake_queue(dev);
  6377. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6378. dev->name);
  6379. out_unlock:
  6380. rtnl_unlock();
  6381. }
  6382. /**
  6383. * s2io_tx_watchdog - Watchdog for transmit side.
  6384. * @dev : Pointer to net device structure
  6385. * Description:
  6386. * This function is triggered if the Tx Queue is stopped
  6387. * for a pre-defined amount of time when the Interface is still up.
  6388. * If the Interface is jammed in such a situation, the hardware is
  6389. * reset (by s2io_close) and restarted again (by s2io_open) to
  6390. * overcome any problem that might have been caused in the hardware.
  6391. * Return value:
  6392. * void
  6393. */
  6394. static void s2io_tx_watchdog(struct net_device *dev)
  6395. {
  6396. struct s2io_nic *sp = dev->priv;
  6397. if (netif_carrier_ok(dev)) {
  6398. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6399. schedule_work(&sp->rst_timer_task);
  6400. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6401. }
  6402. }
  6403. /**
  6404. * rx_osm_handler - To perform some OS related operations on SKB.
  6405. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6406. * @skb : the socket buffer pointer.
  6407. * @len : length of the packet
  6408. * @cksum : FCS checksum of the frame.
  6409. * @ring_no : the ring from which this RxD was extracted.
  6410. * Description:
  6411. * This function is called by the Rx interrupt serivce routine to perform
  6412. * some OS related operations on the SKB before passing it to the upper
  6413. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6414. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6415. * to the upper layer. If the checksum is wrong, it increments the Rx
  6416. * packet error count, frees the SKB and returns error.
  6417. * Return value:
  6418. * SUCCESS on success and -1 on failure.
  6419. */
  6420. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6421. {
  6422. struct s2io_nic *sp = ring_data->nic;
  6423. struct net_device *dev = (struct net_device *) sp->dev;
  6424. struct sk_buff *skb = (struct sk_buff *)
  6425. ((unsigned long) rxdp->Host_Control);
  6426. int ring_no = ring_data->ring_no;
  6427. u16 l3_csum, l4_csum;
  6428. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6429. struct lro *lro;
  6430. u8 err_mask;
  6431. skb->dev = dev;
  6432. if (err) {
  6433. /* Check for parity error */
  6434. if (err & 0x1) {
  6435. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6436. }
  6437. err_mask = err >> 48;
  6438. switch(err_mask) {
  6439. case 1:
  6440. sp->mac_control.stats_info->sw_stat.
  6441. rx_parity_err_cnt++;
  6442. break;
  6443. case 2:
  6444. sp->mac_control.stats_info->sw_stat.
  6445. rx_abort_cnt++;
  6446. break;
  6447. case 3:
  6448. sp->mac_control.stats_info->sw_stat.
  6449. rx_parity_abort_cnt++;
  6450. break;
  6451. case 4:
  6452. sp->mac_control.stats_info->sw_stat.
  6453. rx_rda_fail_cnt++;
  6454. break;
  6455. case 5:
  6456. sp->mac_control.stats_info->sw_stat.
  6457. rx_unkn_prot_cnt++;
  6458. break;
  6459. case 6:
  6460. sp->mac_control.stats_info->sw_stat.
  6461. rx_fcs_err_cnt++;
  6462. break;
  6463. case 7:
  6464. sp->mac_control.stats_info->sw_stat.
  6465. rx_buf_size_err_cnt++;
  6466. break;
  6467. case 8:
  6468. sp->mac_control.stats_info->sw_stat.
  6469. rx_rxd_corrupt_cnt++;
  6470. break;
  6471. case 15:
  6472. sp->mac_control.stats_info->sw_stat.
  6473. rx_unkn_err_cnt++;
  6474. break;
  6475. }
  6476. /*
  6477. * Drop the packet if bad transfer code. Exception being
  6478. * 0x5, which could be due to unsupported IPv6 extension header.
  6479. * In this case, we let stack handle the packet.
  6480. * Note that in this case, since checksum will be incorrect,
  6481. * stack will validate the same.
  6482. */
  6483. if (err_mask != 0x5) {
  6484. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6485. dev->name, err_mask);
  6486. sp->stats.rx_crc_errors++;
  6487. sp->mac_control.stats_info->sw_stat.mem_freed
  6488. += skb->truesize;
  6489. dev_kfree_skb(skb);
  6490. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6491. rxdp->Host_Control = 0;
  6492. return 0;
  6493. }
  6494. }
  6495. /* Updating statistics */
  6496. sp->stats.rx_packets++;
  6497. rxdp->Host_Control = 0;
  6498. if (sp->rxd_mode == RXD_MODE_1) {
  6499. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6500. sp->stats.rx_bytes += len;
  6501. skb_put(skb, len);
  6502. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6503. int get_block = ring_data->rx_curr_get_info.block_index;
  6504. int get_off = ring_data->rx_curr_get_info.offset;
  6505. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6506. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6507. unsigned char *buff = skb_push(skb, buf0_len);
  6508. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6509. sp->stats.rx_bytes += buf0_len + buf2_len;
  6510. memcpy(buff, ba->ba_0, buf0_len);
  6511. skb_put(skb, buf2_len);
  6512. }
  6513. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6514. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6515. (sp->rx_csum)) {
  6516. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6517. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6518. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6519. /*
  6520. * NIC verifies if the Checksum of the received
  6521. * frame is Ok or not and accordingly returns
  6522. * a flag in the RxD.
  6523. */
  6524. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6525. if (sp->lro) {
  6526. u32 tcp_len;
  6527. u8 *tcp;
  6528. int ret = 0;
  6529. ret = s2io_club_tcp_session(skb->data, &tcp,
  6530. &tcp_len, &lro,
  6531. rxdp, sp);
  6532. switch (ret) {
  6533. case 3: /* Begin anew */
  6534. lro->parent = skb;
  6535. goto aggregate;
  6536. case 1: /* Aggregate */
  6537. {
  6538. lro_append_pkt(sp, lro,
  6539. skb, tcp_len);
  6540. goto aggregate;
  6541. }
  6542. case 4: /* Flush session */
  6543. {
  6544. lro_append_pkt(sp, lro,
  6545. skb, tcp_len);
  6546. queue_rx_frame(lro->parent);
  6547. clear_lro_session(lro);
  6548. sp->mac_control.stats_info->
  6549. sw_stat.flush_max_pkts++;
  6550. goto aggregate;
  6551. }
  6552. case 2: /* Flush both */
  6553. lro->parent->data_len =
  6554. lro->frags_len;
  6555. sp->mac_control.stats_info->
  6556. sw_stat.sending_both++;
  6557. queue_rx_frame(lro->parent);
  6558. clear_lro_session(lro);
  6559. goto send_up;
  6560. case 0: /* sessions exceeded */
  6561. case -1: /* non-TCP or not
  6562. * L2 aggregatable
  6563. */
  6564. case 5: /*
  6565. * First pkt in session not
  6566. * L3/L4 aggregatable
  6567. */
  6568. break;
  6569. default:
  6570. DBG_PRINT(ERR_DBG,
  6571. "%s: Samadhana!!\n",
  6572. __FUNCTION__);
  6573. BUG();
  6574. }
  6575. }
  6576. } else {
  6577. /*
  6578. * Packet with erroneous checksum, let the
  6579. * upper layers deal with it.
  6580. */
  6581. skb->ip_summed = CHECKSUM_NONE;
  6582. }
  6583. } else {
  6584. skb->ip_summed = CHECKSUM_NONE;
  6585. }
  6586. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6587. if (!sp->lro) {
  6588. skb->protocol = eth_type_trans(skb, dev);
  6589. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6590. vlan_strip_flag)) {
  6591. /* Queueing the vlan frame to the upper layer */
  6592. if (napi)
  6593. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6594. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6595. else
  6596. vlan_hwaccel_rx(skb, sp->vlgrp,
  6597. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6598. } else {
  6599. if (napi)
  6600. netif_receive_skb(skb);
  6601. else
  6602. netif_rx(skb);
  6603. }
  6604. } else {
  6605. send_up:
  6606. queue_rx_frame(skb);
  6607. }
  6608. dev->last_rx = jiffies;
  6609. aggregate:
  6610. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6611. return SUCCESS;
  6612. }
  6613. /**
  6614. * s2io_link - stops/starts the Tx queue.
  6615. * @sp : private member of the device structure, which is a pointer to the
  6616. * s2io_nic structure.
  6617. * @link : inidicates whether link is UP/DOWN.
  6618. * Description:
  6619. * This function stops/starts the Tx queue depending on whether the link
  6620. * status of the NIC is is down or up. This is called by the Alarm
  6621. * interrupt handler whenever a link change interrupt comes up.
  6622. * Return value:
  6623. * void.
  6624. */
  6625. static void s2io_link(struct s2io_nic * sp, int link)
  6626. {
  6627. struct net_device *dev = (struct net_device *) sp->dev;
  6628. if (link != sp->last_link_state) {
  6629. if (link == LINK_DOWN) {
  6630. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6631. netif_carrier_off(dev);
  6632. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6633. sp->mac_control.stats_info->sw_stat.link_up_time =
  6634. jiffies - sp->start_time;
  6635. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6636. } else {
  6637. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6638. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6639. sp->mac_control.stats_info->sw_stat.link_down_time =
  6640. jiffies - sp->start_time;
  6641. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6642. netif_carrier_on(dev);
  6643. }
  6644. }
  6645. sp->last_link_state = link;
  6646. sp->start_time = jiffies;
  6647. }
  6648. /**
  6649. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6650. * @sp : private member of the device structure, which is a pointer to the
  6651. * s2io_nic structure.
  6652. * Description:
  6653. * This function initializes a few of the PCI and PCI-X configuration registers
  6654. * with recommended values.
  6655. * Return value:
  6656. * void
  6657. */
  6658. static void s2io_init_pci(struct s2io_nic * sp)
  6659. {
  6660. u16 pci_cmd = 0, pcix_cmd = 0;
  6661. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6662. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6663. &(pcix_cmd));
  6664. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6665. (pcix_cmd | 1));
  6666. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6667. &(pcix_cmd));
  6668. /* Set the PErr Response bit in PCI command register. */
  6669. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6670. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6671. (pci_cmd | PCI_COMMAND_PARITY));
  6672. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6673. }
  6674. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6675. {
  6676. if ( tx_fifo_num > 8) {
  6677. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6678. "supported\n");
  6679. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6680. tx_fifo_num = 8;
  6681. }
  6682. if ( rx_ring_num > 8) {
  6683. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6684. "supported\n");
  6685. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6686. rx_ring_num = 8;
  6687. }
  6688. if (*dev_intr_type != INTA)
  6689. napi = 0;
  6690. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6691. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6692. "Defaulting to INTA\n");
  6693. *dev_intr_type = INTA;
  6694. }
  6695. if ((*dev_intr_type == MSI_X) &&
  6696. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6697. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6698. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6699. "Defaulting to INTA\n");
  6700. *dev_intr_type = INTA;
  6701. }
  6702. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6703. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6704. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6705. rx_ring_mode = 1;
  6706. }
  6707. return SUCCESS;
  6708. }
  6709. /**
  6710. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6711. * or Traffic class respectively.
  6712. * @nic: device peivate variable
  6713. * Description: The function configures the receive steering to
  6714. * desired receive ring.
  6715. * Return Value: SUCCESS on success and
  6716. * '-1' on failure (endian settings incorrect).
  6717. */
  6718. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6719. {
  6720. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6721. register u64 val64 = 0;
  6722. if (ds_codepoint > 63)
  6723. return FAILURE;
  6724. val64 = RTS_DS_MEM_DATA(ring);
  6725. writeq(val64, &bar0->rts_ds_mem_data);
  6726. val64 = RTS_DS_MEM_CTRL_WE |
  6727. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6728. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6729. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6730. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6731. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6732. S2IO_BIT_RESET);
  6733. }
  6734. /**
  6735. * s2io_init_nic - Initialization of the adapter .
  6736. * @pdev : structure containing the PCI related information of the device.
  6737. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6738. * Description:
  6739. * The function initializes an adapter identified by the pci_dec structure.
  6740. * All OS related initialization including memory and device structure and
  6741. * initlaization of the device private variable is done. Also the swapper
  6742. * control register is initialized to enable read and write into the I/O
  6743. * registers of the device.
  6744. * Return value:
  6745. * returns 0 on success and negative on failure.
  6746. */
  6747. static int __devinit
  6748. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6749. {
  6750. struct s2io_nic *sp;
  6751. struct net_device *dev;
  6752. int i, j, ret;
  6753. int dma_flag = FALSE;
  6754. u32 mac_up, mac_down;
  6755. u64 val64 = 0, tmp64 = 0;
  6756. struct XENA_dev_config __iomem *bar0 = NULL;
  6757. u16 subid;
  6758. struct mac_info *mac_control;
  6759. struct config_param *config;
  6760. int mode;
  6761. u8 dev_intr_type = intr_type;
  6762. DECLARE_MAC_BUF(mac);
  6763. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6764. return ret;
  6765. if ((ret = pci_enable_device(pdev))) {
  6766. DBG_PRINT(ERR_DBG,
  6767. "s2io_init_nic: pci_enable_device failed\n");
  6768. return ret;
  6769. }
  6770. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6771. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6772. dma_flag = TRUE;
  6773. if (pci_set_consistent_dma_mask
  6774. (pdev, DMA_64BIT_MASK)) {
  6775. DBG_PRINT(ERR_DBG,
  6776. "Unable to obtain 64bit DMA for \
  6777. consistent allocations\n");
  6778. pci_disable_device(pdev);
  6779. return -ENOMEM;
  6780. }
  6781. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6782. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6783. } else {
  6784. pci_disable_device(pdev);
  6785. return -ENOMEM;
  6786. }
  6787. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6788. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6789. pci_disable_device(pdev);
  6790. return -ENODEV;
  6791. }
  6792. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6793. if (dev == NULL) {
  6794. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6795. pci_disable_device(pdev);
  6796. pci_release_regions(pdev);
  6797. return -ENODEV;
  6798. }
  6799. pci_set_master(pdev);
  6800. pci_set_drvdata(pdev, dev);
  6801. SET_NETDEV_DEV(dev, &pdev->dev);
  6802. /* Private member variable initialized to s2io NIC structure */
  6803. sp = dev->priv;
  6804. memset(sp, 0, sizeof(struct s2io_nic));
  6805. sp->dev = dev;
  6806. sp->pdev = pdev;
  6807. sp->high_dma_flag = dma_flag;
  6808. sp->device_enabled_once = FALSE;
  6809. if (rx_ring_mode == 1)
  6810. sp->rxd_mode = RXD_MODE_1;
  6811. if (rx_ring_mode == 2)
  6812. sp->rxd_mode = RXD_MODE_3B;
  6813. sp->config.intr_type = dev_intr_type;
  6814. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6815. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6816. sp->device_type = XFRAME_II_DEVICE;
  6817. else
  6818. sp->device_type = XFRAME_I_DEVICE;
  6819. sp->lro = lro_enable;
  6820. /* Initialize some PCI/PCI-X fields of the NIC. */
  6821. s2io_init_pci(sp);
  6822. /*
  6823. * Setting the device configuration parameters.
  6824. * Most of these parameters can be specified by the user during
  6825. * module insertion as they are module loadable parameters. If
  6826. * these parameters are not not specified during load time, they
  6827. * are initialized with default values.
  6828. */
  6829. mac_control = &sp->mac_control;
  6830. config = &sp->config;
  6831. config->napi = napi;
  6832. /* Tx side parameters. */
  6833. config->tx_fifo_num = tx_fifo_num;
  6834. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6835. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6836. config->tx_cfg[i].fifo_priority = i;
  6837. }
  6838. /* mapping the QoS priority to the configured fifos */
  6839. for (i = 0; i < MAX_TX_FIFOS; i++)
  6840. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6841. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6842. for (i = 0; i < config->tx_fifo_num; i++) {
  6843. config->tx_cfg[i].f_no_snoop =
  6844. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6845. if (config->tx_cfg[i].fifo_len < 65) {
  6846. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6847. break;
  6848. }
  6849. }
  6850. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6851. config->max_txds = MAX_SKB_FRAGS + 2;
  6852. /* Rx side parameters. */
  6853. config->rx_ring_num = rx_ring_num;
  6854. for (i = 0; i < MAX_RX_RINGS; i++) {
  6855. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6856. (rxd_count[sp->rxd_mode] + 1);
  6857. config->rx_cfg[i].ring_priority = i;
  6858. }
  6859. for (i = 0; i < rx_ring_num; i++) {
  6860. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6861. config->rx_cfg[i].f_no_snoop =
  6862. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6863. }
  6864. /* Setting Mac Control parameters */
  6865. mac_control->rmac_pause_time = rmac_pause_time;
  6866. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6867. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6868. /* Initialize Ring buffer parameters. */
  6869. for (i = 0; i < config->rx_ring_num; i++)
  6870. atomic_set(&sp->rx_bufs_left[i], 0);
  6871. /* initialize the shared memory used by the NIC and the host */
  6872. if (init_shared_mem(sp)) {
  6873. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6874. dev->name);
  6875. ret = -ENOMEM;
  6876. goto mem_alloc_failed;
  6877. }
  6878. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6879. pci_resource_len(pdev, 0));
  6880. if (!sp->bar0) {
  6881. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6882. dev->name);
  6883. ret = -ENOMEM;
  6884. goto bar0_remap_failed;
  6885. }
  6886. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6887. pci_resource_len(pdev, 2));
  6888. if (!sp->bar1) {
  6889. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6890. dev->name);
  6891. ret = -ENOMEM;
  6892. goto bar1_remap_failed;
  6893. }
  6894. dev->irq = pdev->irq;
  6895. dev->base_addr = (unsigned long) sp->bar0;
  6896. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6897. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6898. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6899. (sp->bar1 + (j * 0x00020000));
  6900. }
  6901. /* Driver entry points */
  6902. dev->open = &s2io_open;
  6903. dev->stop = &s2io_close;
  6904. dev->hard_start_xmit = &s2io_xmit;
  6905. dev->get_stats = &s2io_get_stats;
  6906. dev->set_multicast_list = &s2io_set_multicast;
  6907. dev->do_ioctl = &s2io_ioctl;
  6908. dev->set_mac_address = &s2io_set_mac_addr;
  6909. dev->change_mtu = &s2io_change_mtu;
  6910. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6911. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6912. dev->vlan_rx_register = s2io_vlan_rx_register;
  6913. /*
  6914. * will use eth_mac_addr() for dev->set_mac_address
  6915. * mac address will be set every time dev->open() is called
  6916. */
  6917. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6918. #ifdef CONFIG_NET_POLL_CONTROLLER
  6919. dev->poll_controller = s2io_netpoll;
  6920. #endif
  6921. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6922. if (sp->high_dma_flag == TRUE)
  6923. dev->features |= NETIF_F_HIGHDMA;
  6924. dev->features |= NETIF_F_TSO;
  6925. dev->features |= NETIF_F_TSO6;
  6926. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6927. dev->features |= NETIF_F_UFO;
  6928. dev->features |= NETIF_F_HW_CSUM;
  6929. }
  6930. dev->tx_timeout = &s2io_tx_watchdog;
  6931. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6932. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6933. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6934. pci_save_state(sp->pdev);
  6935. /* Setting swapper control on the NIC, for proper reset operation */
  6936. if (s2io_set_swapper(sp)) {
  6937. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6938. dev->name);
  6939. ret = -EAGAIN;
  6940. goto set_swap_failed;
  6941. }
  6942. /* Verify if the Herc works on the slot its placed into */
  6943. if (sp->device_type & XFRAME_II_DEVICE) {
  6944. mode = s2io_verify_pci_mode(sp);
  6945. if (mode < 0) {
  6946. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6947. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6948. ret = -EBADSLT;
  6949. goto set_swap_failed;
  6950. }
  6951. }
  6952. /* Not needed for Herc */
  6953. if (sp->device_type & XFRAME_I_DEVICE) {
  6954. /*
  6955. * Fix for all "FFs" MAC address problems observed on
  6956. * Alpha platforms
  6957. */
  6958. fix_mac_address(sp);
  6959. s2io_reset(sp);
  6960. }
  6961. /*
  6962. * MAC address initialization.
  6963. * For now only one mac address will be read and used.
  6964. */
  6965. bar0 = sp->bar0;
  6966. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6967. RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
  6968. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6969. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6970. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6971. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6972. mac_down = (u32) tmp64;
  6973. mac_up = (u32) (tmp64 >> 32);
  6974. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6975. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6976. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6977. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6978. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6979. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6980. /* Set the factory defined MAC address initially */
  6981. dev->addr_len = ETH_ALEN;
  6982. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6983. memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
  6984. /* initialize number of multicast & unicast MAC entries variables */
  6985. if (sp->device_type == XFRAME_I_DEVICE) {
  6986. config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
  6987. config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
  6988. config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
  6989. } else if (sp->device_type == XFRAME_II_DEVICE) {
  6990. config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
  6991. config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
  6992. config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
  6993. }
  6994. /* store mac addresses from CAM to s2io_nic structure */
  6995. do_s2io_store_unicast_mc(sp);
  6996. /* Store the values of the MSIX table in the s2io_nic structure */
  6997. store_xmsi_data(sp);
  6998. /* reset Nic and bring it to known state */
  6999. s2io_reset(sp);
  7000. /*
  7001. * Initialize the tasklet status and link state flags
  7002. * and the card state parameter
  7003. */
  7004. sp->tasklet_status = 0;
  7005. sp->state = 0;
  7006. /* Initialize spinlocks */
  7007. spin_lock_init(&sp->tx_lock);
  7008. if (!napi)
  7009. spin_lock_init(&sp->put_lock);
  7010. spin_lock_init(&sp->rx_lock);
  7011. /*
  7012. * SXE-002: Configure link and activity LED to init state
  7013. * on driver load.
  7014. */
  7015. subid = sp->pdev->subsystem_device;
  7016. if ((subid & 0xFF) >= 0x07) {
  7017. val64 = readq(&bar0->gpio_control);
  7018. val64 |= 0x0000800000000000ULL;
  7019. writeq(val64, &bar0->gpio_control);
  7020. val64 = 0x0411040400000000ULL;
  7021. writeq(val64, (void __iomem *) bar0 + 0x2700);
  7022. val64 = readq(&bar0->gpio_control);
  7023. }
  7024. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  7025. if (register_netdev(dev)) {
  7026. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  7027. ret = -ENODEV;
  7028. goto register_failed;
  7029. }
  7030. s2io_vpd_read(sp);
  7031. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  7032. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  7033. sp->product_name, pdev->revision);
  7034. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  7035. s2io_driver_version);
  7036. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
  7037. dev->name, print_mac(mac, dev->dev_addr));
  7038. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  7039. if (sp->device_type & XFRAME_II_DEVICE) {
  7040. mode = s2io_print_pci_mode(sp);
  7041. if (mode < 0) {
  7042. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  7043. ret = -EBADSLT;
  7044. unregister_netdev(dev);
  7045. goto set_swap_failed;
  7046. }
  7047. }
  7048. switch(sp->rxd_mode) {
  7049. case RXD_MODE_1:
  7050. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  7051. dev->name);
  7052. break;
  7053. case RXD_MODE_3B:
  7054. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  7055. dev->name);
  7056. break;
  7057. }
  7058. if (napi)
  7059. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  7060. switch(sp->config.intr_type) {
  7061. case INTA:
  7062. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  7063. break;
  7064. case MSI_X:
  7065. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  7066. break;
  7067. }
  7068. if (sp->lro)
  7069. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  7070. dev->name);
  7071. if (ufo)
  7072. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  7073. " enabled\n", dev->name);
  7074. /* Initialize device name */
  7075. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  7076. /*
  7077. * Make Link state as off at this point, when the Link change
  7078. * interrupt comes the state will be automatically changed to
  7079. * the right state.
  7080. */
  7081. netif_carrier_off(dev);
  7082. return 0;
  7083. register_failed:
  7084. set_swap_failed:
  7085. iounmap(sp->bar1);
  7086. bar1_remap_failed:
  7087. iounmap(sp->bar0);
  7088. bar0_remap_failed:
  7089. mem_alloc_failed:
  7090. free_shared_mem(sp);
  7091. pci_disable_device(pdev);
  7092. pci_release_regions(pdev);
  7093. pci_set_drvdata(pdev, NULL);
  7094. free_netdev(dev);
  7095. return ret;
  7096. }
  7097. /**
  7098. * s2io_rem_nic - Free the PCI device
  7099. * @pdev: structure containing the PCI related information of the device.
  7100. * Description: This function is called by the Pci subsystem to release a
  7101. * PCI device and free up all resource held up by the device. This could
  7102. * be in response to a Hot plug event or when the driver is to be removed
  7103. * from memory.
  7104. */
  7105. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  7106. {
  7107. struct net_device *dev =
  7108. (struct net_device *) pci_get_drvdata(pdev);
  7109. struct s2io_nic *sp;
  7110. if (dev == NULL) {
  7111. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  7112. return;
  7113. }
  7114. flush_scheduled_work();
  7115. sp = dev->priv;
  7116. unregister_netdev(dev);
  7117. free_shared_mem(sp);
  7118. iounmap(sp->bar0);
  7119. iounmap(sp->bar1);
  7120. pci_release_regions(pdev);
  7121. pci_set_drvdata(pdev, NULL);
  7122. free_netdev(dev);
  7123. pci_disable_device(pdev);
  7124. }
  7125. /**
  7126. * s2io_starter - Entry point for the driver
  7127. * Description: This function is the entry point for the driver. It verifies
  7128. * the module loadable parameters and initializes PCI configuration space.
  7129. */
  7130. static int __init s2io_starter(void)
  7131. {
  7132. return pci_register_driver(&s2io_driver);
  7133. }
  7134. /**
  7135. * s2io_closer - Cleanup routine for the driver
  7136. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  7137. */
  7138. static __exit void s2io_closer(void)
  7139. {
  7140. pci_unregister_driver(&s2io_driver);
  7141. DBG_PRINT(INIT_DBG, "cleanup done\n");
  7142. }
  7143. module_init(s2io_starter);
  7144. module_exit(s2io_closer);
  7145. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7146. struct tcphdr **tcp, struct RxD_t *rxdp)
  7147. {
  7148. int ip_off;
  7149. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7150. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7151. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  7152. __FUNCTION__);
  7153. return -1;
  7154. }
  7155. /* TODO:
  7156. * By default the VLAN field in the MAC is stripped by the card, if this
  7157. * feature is turned off in rx_pa_cfg register, then the ip_off field
  7158. * has to be shifted by a further 2 bytes
  7159. */
  7160. switch (l2_type) {
  7161. case 0: /* DIX type */
  7162. case 4: /* DIX type with VLAN */
  7163. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7164. break;
  7165. /* LLC, SNAP etc are considered non-mergeable */
  7166. default:
  7167. return -1;
  7168. }
  7169. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7170. ip_len = (u8)((*ip)->ihl);
  7171. ip_len <<= 2;
  7172. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7173. return 0;
  7174. }
  7175. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7176. struct tcphdr *tcp)
  7177. {
  7178. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7179. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7180. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7181. return -1;
  7182. return 0;
  7183. }
  7184. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7185. {
  7186. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7187. }
  7188. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7189. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  7190. {
  7191. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7192. lro->l2h = l2h;
  7193. lro->iph = ip;
  7194. lro->tcph = tcp;
  7195. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7196. lro->tcp_ack = ntohl(tcp->ack_seq);
  7197. lro->sg_num = 1;
  7198. lro->total_len = ntohs(ip->tot_len);
  7199. lro->frags_len = 0;
  7200. /*
  7201. * check if we saw TCP timestamp. Other consistency checks have
  7202. * already been done.
  7203. */
  7204. if (tcp->doff == 8) {
  7205. u32 *ptr;
  7206. ptr = (u32 *)(tcp+1);
  7207. lro->saw_ts = 1;
  7208. lro->cur_tsval = *(ptr+1);
  7209. lro->cur_tsecr = *(ptr+2);
  7210. }
  7211. lro->in_use = 1;
  7212. }
  7213. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7214. {
  7215. struct iphdr *ip = lro->iph;
  7216. struct tcphdr *tcp = lro->tcph;
  7217. __sum16 nchk;
  7218. struct stat_block *statinfo = sp->mac_control.stats_info;
  7219. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7220. /* Update L3 header */
  7221. ip->tot_len = htons(lro->total_len);
  7222. ip->check = 0;
  7223. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7224. ip->check = nchk;
  7225. /* Update L4 header */
  7226. tcp->ack_seq = lro->tcp_ack;
  7227. tcp->window = lro->window;
  7228. /* Update tsecr field if this session has timestamps enabled */
  7229. if (lro->saw_ts) {
  7230. u32 *ptr = (u32 *)(tcp + 1);
  7231. *(ptr+2) = lro->cur_tsecr;
  7232. }
  7233. /* Update counters required for calculation of
  7234. * average no. of packets aggregated.
  7235. */
  7236. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7237. statinfo->sw_stat.num_aggregations++;
  7238. }
  7239. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7240. struct tcphdr *tcp, u32 l4_pyld)
  7241. {
  7242. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7243. lro->total_len += l4_pyld;
  7244. lro->frags_len += l4_pyld;
  7245. lro->tcp_next_seq += l4_pyld;
  7246. lro->sg_num++;
  7247. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7248. lro->tcp_ack = tcp->ack_seq;
  7249. lro->window = tcp->window;
  7250. if (lro->saw_ts) {
  7251. u32 *ptr;
  7252. /* Update tsecr and tsval from this packet */
  7253. ptr = (u32 *) (tcp + 1);
  7254. lro->cur_tsval = *(ptr + 1);
  7255. lro->cur_tsecr = *(ptr + 2);
  7256. }
  7257. }
  7258. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7259. struct tcphdr *tcp, u32 tcp_pyld_len)
  7260. {
  7261. u8 *ptr;
  7262. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7263. if (!tcp_pyld_len) {
  7264. /* Runt frame or a pure ack */
  7265. return -1;
  7266. }
  7267. if (ip->ihl != 5) /* IP has options */
  7268. return -1;
  7269. /* If we see CE codepoint in IP header, packet is not mergeable */
  7270. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7271. return -1;
  7272. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7273. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7274. tcp->ece || tcp->cwr || !tcp->ack) {
  7275. /*
  7276. * Currently recognize only the ack control word and
  7277. * any other control field being set would result in
  7278. * flushing the LRO session
  7279. */
  7280. return -1;
  7281. }
  7282. /*
  7283. * Allow only one TCP timestamp option. Don't aggregate if
  7284. * any other options are detected.
  7285. */
  7286. if (tcp->doff != 5 && tcp->doff != 8)
  7287. return -1;
  7288. if (tcp->doff == 8) {
  7289. ptr = (u8 *)(tcp + 1);
  7290. while (*ptr == TCPOPT_NOP)
  7291. ptr++;
  7292. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7293. return -1;
  7294. /* Ensure timestamp value increases monotonically */
  7295. if (l_lro)
  7296. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  7297. return -1;
  7298. /* timestamp echo reply should be non-zero */
  7299. if (*((u32 *)(ptr+6)) == 0)
  7300. return -1;
  7301. }
  7302. return 0;
  7303. }
  7304. static int
  7305. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7306. struct RxD_t *rxdp, struct s2io_nic *sp)
  7307. {
  7308. struct iphdr *ip;
  7309. struct tcphdr *tcph;
  7310. int ret = 0, i;
  7311. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7312. rxdp))) {
  7313. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7314. ip->saddr, ip->daddr);
  7315. } else {
  7316. return ret;
  7317. }
  7318. tcph = (struct tcphdr *)*tcp;
  7319. *tcp_len = get_l4_pyld_length(ip, tcph);
  7320. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7321. struct lro *l_lro = &sp->lro0_n[i];
  7322. if (l_lro->in_use) {
  7323. if (check_for_socket_match(l_lro, ip, tcph))
  7324. continue;
  7325. /* Sock pair matched */
  7326. *lro = l_lro;
  7327. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7328. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7329. "0x%x, actual 0x%x\n", __FUNCTION__,
  7330. (*lro)->tcp_next_seq,
  7331. ntohl(tcph->seq));
  7332. sp->mac_control.stats_info->
  7333. sw_stat.outof_sequence_pkts++;
  7334. ret = 2;
  7335. break;
  7336. }
  7337. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7338. ret = 1; /* Aggregate */
  7339. else
  7340. ret = 2; /* Flush both */
  7341. break;
  7342. }
  7343. }
  7344. if (ret == 0) {
  7345. /* Before searching for available LRO objects,
  7346. * check if the pkt is L3/L4 aggregatable. If not
  7347. * don't create new LRO session. Just send this
  7348. * packet up.
  7349. */
  7350. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7351. return 5;
  7352. }
  7353. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7354. struct lro *l_lro = &sp->lro0_n[i];
  7355. if (!(l_lro->in_use)) {
  7356. *lro = l_lro;
  7357. ret = 3; /* Begin anew */
  7358. break;
  7359. }
  7360. }
  7361. }
  7362. if (ret == 0) { /* sessions exceeded */
  7363. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7364. __FUNCTION__);
  7365. *lro = NULL;
  7366. return ret;
  7367. }
  7368. switch (ret) {
  7369. case 3:
  7370. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7371. break;
  7372. case 2:
  7373. update_L3L4_header(sp, *lro);
  7374. break;
  7375. case 1:
  7376. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7377. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7378. update_L3L4_header(sp, *lro);
  7379. ret = 4; /* Flush the LRO */
  7380. }
  7381. break;
  7382. default:
  7383. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7384. __FUNCTION__);
  7385. break;
  7386. }
  7387. return ret;
  7388. }
  7389. static void clear_lro_session(struct lro *lro)
  7390. {
  7391. static u16 lro_struct_size = sizeof(struct lro);
  7392. memset(lro, 0, lro_struct_size);
  7393. }
  7394. static void queue_rx_frame(struct sk_buff *skb)
  7395. {
  7396. struct net_device *dev = skb->dev;
  7397. skb->protocol = eth_type_trans(skb, dev);
  7398. if (napi)
  7399. netif_receive_skb(skb);
  7400. else
  7401. netif_rx(skb);
  7402. }
  7403. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7404. struct sk_buff *skb,
  7405. u32 tcp_len)
  7406. {
  7407. struct sk_buff *first = lro->parent;
  7408. first->len += tcp_len;
  7409. first->data_len = lro->frags_len;
  7410. skb_pull(skb, (skb->len - tcp_len));
  7411. if (skb_shinfo(first)->frag_list)
  7412. lro->last_frag->next = skb;
  7413. else
  7414. skb_shinfo(first)->frag_list = skb;
  7415. first->truesize += skb->truesize;
  7416. lro->last_frag = skb;
  7417. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7418. return;
  7419. }
  7420. /**
  7421. * s2io_io_error_detected - called when PCI error is detected
  7422. * @pdev: Pointer to PCI device
  7423. * @state: The current pci connection state
  7424. *
  7425. * This function is called after a PCI bus error affecting
  7426. * this device has been detected.
  7427. */
  7428. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7429. pci_channel_state_t state)
  7430. {
  7431. struct net_device *netdev = pci_get_drvdata(pdev);
  7432. struct s2io_nic *sp = netdev->priv;
  7433. netif_device_detach(netdev);
  7434. if (netif_running(netdev)) {
  7435. /* Bring down the card, while avoiding PCI I/O */
  7436. do_s2io_card_down(sp, 0);
  7437. }
  7438. pci_disable_device(pdev);
  7439. return PCI_ERS_RESULT_NEED_RESET;
  7440. }
  7441. /**
  7442. * s2io_io_slot_reset - called after the pci bus has been reset.
  7443. * @pdev: Pointer to PCI device
  7444. *
  7445. * Restart the card from scratch, as if from a cold-boot.
  7446. * At this point, the card has exprienced a hard reset,
  7447. * followed by fixups by BIOS, and has its config space
  7448. * set up identically to what it was at cold boot.
  7449. */
  7450. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7451. {
  7452. struct net_device *netdev = pci_get_drvdata(pdev);
  7453. struct s2io_nic *sp = netdev->priv;
  7454. if (pci_enable_device(pdev)) {
  7455. printk(KERN_ERR "s2io: "
  7456. "Cannot re-enable PCI device after reset.\n");
  7457. return PCI_ERS_RESULT_DISCONNECT;
  7458. }
  7459. pci_set_master(pdev);
  7460. s2io_reset(sp);
  7461. return PCI_ERS_RESULT_RECOVERED;
  7462. }
  7463. /**
  7464. * s2io_io_resume - called when traffic can start flowing again.
  7465. * @pdev: Pointer to PCI device
  7466. *
  7467. * This callback is called when the error recovery driver tells
  7468. * us that its OK to resume normal operation.
  7469. */
  7470. static void s2io_io_resume(struct pci_dev *pdev)
  7471. {
  7472. struct net_device *netdev = pci_get_drvdata(pdev);
  7473. struct s2io_nic *sp = netdev->priv;
  7474. if (netif_running(netdev)) {
  7475. if (s2io_card_up(sp)) {
  7476. printk(KERN_ERR "s2io: "
  7477. "Can't bring device back up after reset.\n");
  7478. return;
  7479. }
  7480. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7481. s2io_card_down(sp);
  7482. printk(KERN_ERR "s2io: "
  7483. "Can't resetore mac addr after reset.\n");
  7484. return;
  7485. }
  7486. }
  7487. netif_device_attach(netdev);
  7488. netif_wake_queue(netdev);
  7489. }