pci-vdk.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. /* pci-vdk.c: MB93090-MB00 (VDK) PCI support
  2. *
  3. * Copyright (C) 2003, 2004 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/types.h>
  12. #include <linux/kernel.h>
  13. #include <linux/sched.h>
  14. #include <linux/pci.h>
  15. #include <linux/init.h>
  16. #include <linux/ioport.h>
  17. #include <linux/delay.h>
  18. #include <asm/segment.h>
  19. #include <asm/io.h>
  20. #include <asm/mb-regs.h>
  21. #include <asm/mb86943a.h>
  22. #include "pci-frv.h"
  23. unsigned int __nongpreldata pci_probe = 1;
  24. int __nongpreldata pcibios_last_bus = -1;
  25. struct pci_ops *__nongpreldata pci_root_ops;
  26. /*
  27. * The accessible PCI window does not cover the entire CPU address space, but
  28. * there are devices we want to access outside of that window, so we need to
  29. * insert specific PCI bus resources instead of using the platform-level bus
  30. * resources directly for the PCI root bus.
  31. *
  32. * These are configured and inserted by pcibios_init() and are attached to the
  33. * root bus by pcibios_fixup_bus().
  34. */
  35. static struct resource pci_ioport_resource = {
  36. .name = "PCI IO",
  37. .start = 0,
  38. .end = IO_SPACE_LIMIT,
  39. .flags = IORESOURCE_IO,
  40. };
  41. static struct resource pci_iomem_resource = {
  42. .name = "PCI mem",
  43. .start = 0,
  44. .end = -1,
  45. .flags = IORESOURCE_MEM,
  46. };
  47. /*
  48. * Functions for accessing PCI configuration space
  49. */
  50. #define CONFIG_CMD(bus, dev, where) \
  51. (0x80000000 | (bus->number << 16) | (devfn << 8) | (where & ~3))
  52. #define __set_PciCfgAddr(A) writel((A), (volatile void __iomem *) __region_CS1 + 0x80)
  53. #define __get_PciCfgDataB(A) readb((volatile void __iomem *) __region_CS1 + 0x88 + ((A) & 3))
  54. #define __get_PciCfgDataW(A) readw((volatile void __iomem *) __region_CS1 + 0x88 + ((A) & 2))
  55. #define __get_PciCfgDataL(A) readl((volatile void __iomem *) __region_CS1 + 0x88)
  56. #define __set_PciCfgDataB(A,V) \
  57. writeb((V), (volatile void __iomem *) __region_CS1 + 0x88 + (3 - ((A) & 3)))
  58. #define __set_PciCfgDataW(A,V) \
  59. writew((V), (volatile void __iomem *) __region_CS1 + 0x88 + (2 - ((A) & 2)))
  60. #define __set_PciCfgDataL(A,V) \
  61. writel((V), (volatile void __iomem *) __region_CS1 + 0x88)
  62. #define __get_PciBridgeDataB(A) readb((volatile void __iomem *) __region_CS1 + 0x800 + (A))
  63. #define __get_PciBridgeDataW(A) readw((volatile void __iomem *) __region_CS1 + 0x800 + (A))
  64. #define __get_PciBridgeDataL(A) readl((volatile void __iomem *) __region_CS1 + 0x800 + (A))
  65. #define __set_PciBridgeDataB(A,V) writeb((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A))
  66. #define __set_PciBridgeDataW(A,V) writew((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A))
  67. #define __set_PciBridgeDataL(A,V) writel((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A))
  68. static inline int __query(const struct pci_dev *dev)
  69. {
  70. // return dev->bus->number==0 && (dev->devfn==PCI_DEVFN(0,0));
  71. // return dev->bus->number==1;
  72. // return dev->bus->number==0 &&
  73. // (dev->devfn==PCI_DEVFN(2,0) || dev->devfn==PCI_DEVFN(3,0));
  74. return 0;
  75. }
  76. /*****************************************************************************/
  77. /*
  78. *
  79. */
  80. static int pci_frv_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
  81. u32 *val)
  82. {
  83. u32 _value;
  84. if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
  85. _value = __get_PciBridgeDataL(where & ~3);
  86. }
  87. else {
  88. __set_PciCfgAddr(CONFIG_CMD(bus, devfn, where));
  89. _value = __get_PciCfgDataL(where & ~3);
  90. }
  91. switch (size) {
  92. case 1:
  93. _value = _value >> ((where & 3) * 8);
  94. break;
  95. case 2:
  96. _value = _value >> ((where & 2) * 8);
  97. break;
  98. case 4:
  99. break;
  100. default:
  101. BUG();
  102. }
  103. *val = _value;
  104. return PCIBIOS_SUCCESSFUL;
  105. }
  106. static int pci_frv_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
  107. u32 value)
  108. {
  109. switch (size) {
  110. case 1:
  111. if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
  112. __set_PciBridgeDataB(where, value);
  113. }
  114. else {
  115. __set_PciCfgAddr(CONFIG_CMD(bus, devfn, where));
  116. __set_PciCfgDataB(where, value);
  117. }
  118. break;
  119. case 2:
  120. if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
  121. __set_PciBridgeDataW(where, value);
  122. }
  123. else {
  124. __set_PciCfgAddr(CONFIG_CMD(bus, devfn, where));
  125. __set_PciCfgDataW(where, value);
  126. }
  127. break;
  128. case 4:
  129. if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
  130. __set_PciBridgeDataL(where, value);
  131. }
  132. else {
  133. __set_PciCfgAddr(CONFIG_CMD(bus, devfn, where));
  134. __set_PciCfgDataL(where, value);
  135. }
  136. break;
  137. default:
  138. BUG();
  139. }
  140. return PCIBIOS_SUCCESSFUL;
  141. }
  142. static struct pci_ops pci_direct_frv = {
  143. pci_frv_read_config,
  144. pci_frv_write_config,
  145. };
  146. /*
  147. * Before we decide to use direct hardware access mechanisms, we try to do some
  148. * trivial checks to ensure it at least _seems_ to be working -- we just test
  149. * whether bus 00 contains a host bridge (this is similar to checking
  150. * techniques used in XFree86, but ours should be more reliable since we
  151. * attempt to make use of direct access hints provided by the PCI BIOS).
  152. *
  153. * This should be close to trivial, but it isn't, because there are buggy
  154. * chipsets (yes, you guessed it, by Intel and Compaq) that have no class ID.
  155. */
  156. static int __init pci_sanity_check(struct pci_ops *o)
  157. {
  158. struct pci_bus bus; /* Fake bus and device */
  159. u32 id;
  160. bus.number = 0;
  161. if (o->read(&bus, 0, PCI_VENDOR_ID, 4, &id) == PCIBIOS_SUCCESSFUL) {
  162. printk("PCI: VDK Bridge device:vendor: %08x\n", id);
  163. if (id == 0x200e10cf)
  164. return 1;
  165. }
  166. printk("PCI: VDK Bridge: Sanity check failed\n");
  167. return 0;
  168. }
  169. static struct pci_ops * __init pci_check_direct(void)
  170. {
  171. unsigned long flags;
  172. local_irq_save(flags);
  173. /* check if access works */
  174. if (pci_sanity_check(&pci_direct_frv)) {
  175. local_irq_restore(flags);
  176. printk("PCI: Using configuration frv\n");
  177. // request_mem_region(0xBE040000, 256, "FRV bridge");
  178. // request_mem_region(0xBFFFFFF4, 12, "PCI frv");
  179. return &pci_direct_frv;
  180. }
  181. local_irq_restore(flags);
  182. return NULL;
  183. }
  184. /*
  185. * Discover remaining PCI buses in case there are peer host bridges.
  186. * We use the number of last PCI bus provided by the PCI BIOS.
  187. */
  188. static void __init pcibios_fixup_peer_bridges(void)
  189. {
  190. struct pci_bus bus;
  191. struct pci_dev dev;
  192. int n;
  193. u16 l;
  194. if (pcibios_last_bus <= 0 || pcibios_last_bus >= 0xff)
  195. return;
  196. printk("PCI: Peer bridge fixup\n");
  197. for (n=0; n <= pcibios_last_bus; n++) {
  198. if (pci_find_bus(0, n))
  199. continue;
  200. bus.number = n;
  201. bus.ops = pci_root_ops;
  202. dev.bus = &bus;
  203. for(dev.devfn=0; dev.devfn<256; dev.devfn += 8)
  204. if (!pci_read_config_word(&dev, PCI_VENDOR_ID, &l) &&
  205. l != 0x0000 && l != 0xffff) {
  206. printk("Found device at %02x:%02x [%04x]\n", n, dev.devfn, l);
  207. printk("PCI: Discovered peer bus %02x\n", n);
  208. pci_scan_bus(n, pci_root_ops, NULL);
  209. break;
  210. }
  211. }
  212. }
  213. /*
  214. * Exceptions for specific devices. Usually work-arounds for fatal design flaws.
  215. */
  216. static void __init pci_fixup_umc_ide(struct pci_dev *d)
  217. {
  218. /*
  219. * UM8886BF IDE controller sets region type bits incorrectly,
  220. * therefore they look like memory despite of them being I/O.
  221. */
  222. int i;
  223. printk("PCI: Fixing base address flags for device %s\n", pci_name(d));
  224. for(i=0; i<4; i++)
  225. d->resource[i].flags |= PCI_BASE_ADDRESS_SPACE_IO;
  226. }
  227. static void pci_fixup_ide_bases(struct pci_dev *d)
  228. {
  229. int i;
  230. /*
  231. * PCI IDE controllers use non-standard I/O port decoding, respect it.
  232. */
  233. if ((d->class >> 8) != PCI_CLASS_STORAGE_IDE)
  234. return;
  235. printk("PCI: IDE base address fixup for %s\n", pci_name(d));
  236. for(i=0; i<4; i++) {
  237. struct resource *r = &d->resource[i];
  238. if ((r->start & ~0x80) == 0x374) {
  239. r->start |= 2;
  240. r->end = r->start;
  241. }
  242. }
  243. }
  244. static void pci_fixup_ide_trash(struct pci_dev *d)
  245. {
  246. int i;
  247. /*
  248. * There exist PCI IDE controllers which have utter garbage
  249. * in first four base registers. Ignore that.
  250. */
  251. printk("PCI: IDE base address trash cleared for %s\n", pci_name(d));
  252. for(i=0; i<4; i++)
  253. d->resource[i].start = d->resource[i].end = d->resource[i].flags = 0;
  254. }
  255. static void pci_fixup_latency(struct pci_dev *d)
  256. {
  257. /*
  258. * SiS 5597 and 5598 chipsets require latency timer set to
  259. * at most 32 to avoid lockups.
  260. */
  261. DBG("PCI: Setting max latency to 32\n");
  262. pcibios_max_latency = 32;
  263. }
  264. DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_UMC, PCI_DEVICE_ID_UMC_UM8886BF, pci_fixup_umc_ide);
  265. DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5513, pci_fixup_ide_trash);
  266. DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5597, pci_fixup_latency);
  267. DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5598, pci_fixup_latency);
  268. DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pci_fixup_ide_bases);
  269. /*
  270. * Called after each bus is probed, but before its children
  271. * are examined.
  272. */
  273. void pcibios_fixup_bus(struct pci_bus *bus)
  274. {
  275. #if 0
  276. printk("### PCIBIOS_FIXUP_BUS(%d)\n",bus->number);
  277. #endif
  278. pci_read_bridge_bases(bus);
  279. if (bus->number == 0) {
  280. struct pci_dev *dev;
  281. list_for_each_entry(dev, &bus->devices, bus_list) {
  282. if (dev->devfn == 0) {
  283. dev->resource[0].start = 0;
  284. dev->resource[0].end = 0;
  285. }
  286. }
  287. }
  288. }
  289. /*
  290. * Initialization. Try all known PCI access methods. Note that we support
  291. * using both PCI BIOS and direct access: in such cases, we use I/O ports
  292. * to access config space, but we still keep BIOS order of cards to be
  293. * compatible with 2.0.X. This should go away some day.
  294. */
  295. int __init pcibios_init(void)
  296. {
  297. struct pci_ops *dir = NULL;
  298. LIST_HEAD(resources);
  299. if (!mb93090_mb00_detected)
  300. return -ENXIO;
  301. __reg_MB86943_sl_ctl |= MB86943_SL_CTL_DRCT_MASTER_SWAP | MB86943_SL_CTL_DRCT_SLAVE_SWAP;
  302. __reg_MB86943_ecs_base(1) = ((__region_CS2 + 0x01000000) >> 9) | 0x08000000;
  303. __reg_MB86943_ecs_base(2) = ((__region_CS2 + 0x00000000) >> 9) | 0x08000000;
  304. *(volatile uint32_t *) (__region_CS1 + 0x848) = 0xe0000000;
  305. *(volatile uint32_t *) (__region_CS1 + 0x8b8) = 0x00000000;
  306. __reg_MB86943_sl_pci_io_base = (__region_CS2 + 0x04000000) >> 9;
  307. __reg_MB86943_sl_pci_mem_base = (__region_CS2 + 0x08000000) >> 9;
  308. __reg_MB86943_pci_sl_io_base = __region_CS2 + 0x04000000;
  309. __reg_MB86943_pci_sl_mem_base = __region_CS2 + 0x08000000;
  310. mb();
  311. /* enable PCI arbitration */
  312. __reg_MB86943_pci_arbiter = MB86943_PCIARB_EN;
  313. pci_ioport_resource.start = (__reg_MB86943_sl_pci_io_base << 9) & 0xfffffc00;
  314. pci_ioport_resource.end = (__reg_MB86943_sl_pci_io_range << 9) | 0x3ff;
  315. pci_ioport_resource.end += pci_ioport_resource.start;
  316. printk("PCI IO window: %08llx-%08llx\n",
  317. (unsigned long long) pci_ioport_resource.start,
  318. (unsigned long long) pci_ioport_resource.end);
  319. pci_iomem_resource.start = (__reg_MB86943_sl_pci_mem_base << 9) & 0xfffffc00;
  320. pci_iomem_resource.end = (__reg_MB86943_sl_pci_mem_range << 9) | 0x3ff;
  321. pci_iomem_resource.end += pci_iomem_resource.start;
  322. /* Reserve somewhere to write to flush posted writes. This is used by
  323. * __flush_PCI_writes() from asm/io.h to force the write FIFO in the
  324. * CPU-PCI bridge to flush as this doesn't happen automatically when a
  325. * read is performed on the MB93090 development kit motherboard.
  326. */
  327. pci_iomem_resource.start += 0x400;
  328. printk("PCI MEM window: %08llx-%08llx\n",
  329. (unsigned long long) pci_iomem_resource.start,
  330. (unsigned long long) pci_iomem_resource.end);
  331. printk("PCI DMA memory: %08lx-%08lx\n",
  332. dma_coherent_mem_start, dma_coherent_mem_end);
  333. if (insert_resource(&iomem_resource, &pci_iomem_resource) < 0)
  334. panic("Unable to insert PCI IOMEM resource\n");
  335. if (insert_resource(&ioport_resource, &pci_ioport_resource) < 0)
  336. panic("Unable to insert PCI IOPORT resource\n");
  337. if (!pci_probe)
  338. return -ENXIO;
  339. dir = pci_check_direct();
  340. if (dir)
  341. pci_root_ops = dir;
  342. else {
  343. printk("PCI: No PCI bus detected\n");
  344. return -ENXIO;
  345. }
  346. printk("PCI: Probing PCI hardware\n");
  347. pci_add_resource(&resources, &pci_ioport_resource);
  348. pci_add_resource(&resources, &pci_iomem_resource);
  349. pci_scan_root_bus(NULL, 0, pci_root_ops, NULL, &resources);
  350. pcibios_irq_init();
  351. pcibios_fixup_peer_bridges();
  352. pcibios_fixup_irqs();
  353. pcibios_resource_survey();
  354. return 0;
  355. }
  356. arch_initcall(pcibios_init);
  357. char * __init pcibios_setup(char *str)
  358. {
  359. if (!strcmp(str, "off")) {
  360. pci_probe = 0;
  361. return NULL;
  362. } else if (!strncmp(str, "lastbus=", 8)) {
  363. pcibios_last_bus = simple_strtol(str+8, NULL, 0);
  364. return NULL;
  365. }
  366. return str;
  367. }
  368. int pcibios_enable_device(struct pci_dev *dev, int mask)
  369. {
  370. int err;
  371. if ((err = pci_enable_resources(dev, mask)) < 0)
  372. return err;
  373. if (!dev->msi_enabled)
  374. pcibios_enable_irq(dev);
  375. return 0;
  376. }