blk-settings.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. /*
  2. * Functions related to setting various queue properties from drivers
  3. */
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/bio.h>
  8. #include <linux/blkdev.h>
  9. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  10. #include "blk.h"
  11. unsigned long blk_max_low_pfn;
  12. EXPORT_SYMBOL(blk_max_low_pfn);
  13. unsigned long blk_max_pfn;
  14. /**
  15. * blk_queue_prep_rq - set a prepare_request function for queue
  16. * @q: queue
  17. * @pfn: prepare_request function
  18. *
  19. * It's possible for a queue to register a prepare_request callback which
  20. * is invoked before the request is handed to the request_fn. The goal of
  21. * the function is to prepare a request for I/O, it can be used to build a
  22. * cdb from the request data for instance.
  23. *
  24. */
  25. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  26. {
  27. q->prep_rq_fn = pfn;
  28. }
  29. EXPORT_SYMBOL(blk_queue_prep_rq);
  30. /**
  31. * blk_queue_set_discard - set a discard_sectors function for queue
  32. * @q: queue
  33. * @dfn: prepare_discard function
  34. *
  35. * It's possible for a queue to register a discard callback which is used
  36. * to transform a discard request into the appropriate type for the
  37. * hardware. If none is registered, then discard requests are failed
  38. * with %EOPNOTSUPP.
  39. *
  40. */
  41. void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn)
  42. {
  43. q->prepare_discard_fn = dfn;
  44. }
  45. EXPORT_SYMBOL(blk_queue_set_discard);
  46. /**
  47. * blk_queue_merge_bvec - set a merge_bvec function for queue
  48. * @q: queue
  49. * @mbfn: merge_bvec_fn
  50. *
  51. * Usually queues have static limitations on the max sectors or segments that
  52. * we can put in a request. Stacking drivers may have some settings that
  53. * are dynamic, and thus we have to query the queue whether it is ok to
  54. * add a new bio_vec to a bio at a given offset or not. If the block device
  55. * has such limitations, it needs to register a merge_bvec_fn to control
  56. * the size of bio's sent to it. Note that a block device *must* allow a
  57. * single page to be added to an empty bio. The block device driver may want
  58. * to use the bio_split() function to deal with these bio's. By default
  59. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  60. * honored.
  61. */
  62. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  63. {
  64. q->merge_bvec_fn = mbfn;
  65. }
  66. EXPORT_SYMBOL(blk_queue_merge_bvec);
  67. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  68. {
  69. q->softirq_done_fn = fn;
  70. }
  71. EXPORT_SYMBOL(blk_queue_softirq_done);
  72. void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  73. {
  74. q->rq_timeout = timeout;
  75. }
  76. EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  77. void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
  78. {
  79. q->rq_timed_out_fn = fn;
  80. }
  81. EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
  82. /**
  83. * blk_queue_make_request - define an alternate make_request function for a device
  84. * @q: the request queue for the device to be affected
  85. * @mfn: the alternate make_request function
  86. *
  87. * Description:
  88. * The normal way for &struct bios to be passed to a device
  89. * driver is for them to be collected into requests on a request
  90. * queue, and then to allow the device driver to select requests
  91. * off that queue when it is ready. This works well for many block
  92. * devices. However some block devices (typically virtual devices
  93. * such as md or lvm) do not benefit from the processing on the
  94. * request queue, and are served best by having the requests passed
  95. * directly to them. This can be achieved by providing a function
  96. * to blk_queue_make_request().
  97. *
  98. * Caveat:
  99. * The driver that does this *must* be able to deal appropriately
  100. * with buffers in "highmemory". This can be accomplished by either calling
  101. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  102. * blk_queue_bounce() to create a buffer in normal memory.
  103. **/
  104. void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
  105. {
  106. /*
  107. * set defaults
  108. */
  109. q->nr_requests = BLKDEV_MAX_RQ;
  110. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  111. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  112. q->make_request_fn = mfn;
  113. q->backing_dev_info.ra_pages =
  114. (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  115. q->backing_dev_info.state = 0;
  116. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  117. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  118. blk_queue_hardsect_size(q, 512);
  119. blk_queue_dma_alignment(q, 511);
  120. blk_queue_congestion_threshold(q);
  121. q->nr_batching = BLK_BATCH_REQ;
  122. q->unplug_thresh = 4; /* hmm */
  123. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  124. if (q->unplug_delay == 0)
  125. q->unplug_delay = 1;
  126. INIT_WORK(&q->unplug_work, blk_unplug_work);
  127. q->unplug_timer.function = blk_unplug_timeout;
  128. q->unplug_timer.data = (unsigned long)q;
  129. /*
  130. * by default assume old behaviour and bounce for any highmem page
  131. */
  132. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  133. }
  134. EXPORT_SYMBOL(blk_queue_make_request);
  135. /**
  136. * blk_queue_bounce_limit - set bounce buffer limit for queue
  137. * @q: the request queue for the device
  138. * @dma_addr: bus address limit
  139. *
  140. * Description:
  141. * Different hardware can have different requirements as to what pages
  142. * it can do I/O directly to. A low level driver can call
  143. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  144. * buffers for doing I/O to pages residing above @dma_addr.
  145. **/
  146. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  147. {
  148. unsigned long b_pfn = dma_addr >> PAGE_SHIFT;
  149. int dma = 0;
  150. q->bounce_gfp = GFP_NOIO;
  151. #if BITS_PER_LONG == 64
  152. /* Assume anything <= 4GB can be handled by IOMMU.
  153. Actually some IOMMUs can handle everything, but I don't
  154. know of a way to test this here. */
  155. if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  156. dma = 1;
  157. q->bounce_pfn = max_low_pfn;
  158. #else
  159. if (b_pfn < blk_max_low_pfn)
  160. dma = 1;
  161. q->bounce_pfn = b_pfn;
  162. #endif
  163. if (dma) {
  164. init_emergency_isa_pool();
  165. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  166. q->bounce_pfn = b_pfn;
  167. }
  168. }
  169. EXPORT_SYMBOL(blk_queue_bounce_limit);
  170. /**
  171. * blk_queue_max_sectors - set max sectors for a request for this queue
  172. * @q: the request queue for the device
  173. * @max_sectors: max sectors in the usual 512b unit
  174. *
  175. * Description:
  176. * Enables a low level driver to set an upper limit on the size of
  177. * received requests.
  178. **/
  179. void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  180. {
  181. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  182. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  183. printk(KERN_INFO "%s: set to minimum %d\n",
  184. __func__, max_sectors);
  185. }
  186. if (BLK_DEF_MAX_SECTORS > max_sectors)
  187. q->max_hw_sectors = q->max_sectors = max_sectors;
  188. else {
  189. q->max_sectors = BLK_DEF_MAX_SECTORS;
  190. q->max_hw_sectors = max_sectors;
  191. }
  192. }
  193. EXPORT_SYMBOL(blk_queue_max_sectors);
  194. /**
  195. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  196. * @q: the request queue for the device
  197. * @max_segments: max number of segments
  198. *
  199. * Description:
  200. * Enables a low level driver to set an upper limit on the number of
  201. * physical data segments in a request. This would be the largest sized
  202. * scatter list the driver could handle.
  203. **/
  204. void blk_queue_max_phys_segments(struct request_queue *q,
  205. unsigned short max_segments)
  206. {
  207. if (!max_segments) {
  208. max_segments = 1;
  209. printk(KERN_INFO "%s: set to minimum %d\n",
  210. __func__, max_segments);
  211. }
  212. q->max_phys_segments = max_segments;
  213. }
  214. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  215. /**
  216. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  217. * @q: the request queue for the device
  218. * @max_segments: max number of segments
  219. *
  220. * Description:
  221. * Enables a low level driver to set an upper limit on the number of
  222. * hw data segments in a request. This would be the largest number of
  223. * address/length pairs the host adapter can actually give at once
  224. * to the device.
  225. **/
  226. void blk_queue_max_hw_segments(struct request_queue *q,
  227. unsigned short max_segments)
  228. {
  229. if (!max_segments) {
  230. max_segments = 1;
  231. printk(KERN_INFO "%s: set to minimum %d\n",
  232. __func__, max_segments);
  233. }
  234. q->max_hw_segments = max_segments;
  235. }
  236. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  237. /**
  238. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  239. * @q: the request queue for the device
  240. * @max_size: max size of segment in bytes
  241. *
  242. * Description:
  243. * Enables a low level driver to set an upper limit on the size of a
  244. * coalesced segment
  245. **/
  246. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  247. {
  248. if (max_size < PAGE_CACHE_SIZE) {
  249. max_size = PAGE_CACHE_SIZE;
  250. printk(KERN_INFO "%s: set to minimum %d\n",
  251. __func__, max_size);
  252. }
  253. q->max_segment_size = max_size;
  254. }
  255. EXPORT_SYMBOL(blk_queue_max_segment_size);
  256. /**
  257. * blk_queue_hardsect_size - set hardware sector size for the queue
  258. * @q: the request queue for the device
  259. * @size: the hardware sector size, in bytes
  260. *
  261. * Description:
  262. * This should typically be set to the lowest possible sector size
  263. * that the hardware can operate on (possible without reverting to
  264. * even internal read-modify-write operations). Usually the default
  265. * of 512 covers most hardware.
  266. **/
  267. void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  268. {
  269. q->hardsect_size = size;
  270. }
  271. EXPORT_SYMBOL(blk_queue_hardsect_size);
  272. /*
  273. * Returns the minimum that is _not_ zero, unless both are zero.
  274. */
  275. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  276. /**
  277. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  278. * @t: the stacking driver (top)
  279. * @b: the underlying device (bottom)
  280. **/
  281. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  282. {
  283. /* zero is "infinity" */
  284. t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
  285. t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
  286. t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments);
  287. t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments);
  288. t->max_segment_size = min(t->max_segment_size, b->max_segment_size);
  289. t->hardsect_size = max(t->hardsect_size, b->hardsect_size);
  290. if (!t->queue_lock)
  291. WARN_ON_ONCE(1);
  292. else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
  293. unsigned long flags;
  294. spin_lock_irqsave(t->queue_lock, flags);
  295. queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
  296. spin_unlock_irqrestore(t->queue_lock, flags);
  297. }
  298. }
  299. EXPORT_SYMBOL(blk_queue_stack_limits);
  300. /**
  301. * blk_queue_dma_pad - set pad mask
  302. * @q: the request queue for the device
  303. * @mask: pad mask
  304. *
  305. * Set dma pad mask.
  306. *
  307. * Appending pad buffer to a request modifies the last entry of a
  308. * scatter list such that it includes the pad buffer.
  309. **/
  310. void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
  311. {
  312. q->dma_pad_mask = mask;
  313. }
  314. EXPORT_SYMBOL(blk_queue_dma_pad);
  315. /**
  316. * blk_queue_update_dma_pad - update pad mask
  317. * @q: the request queue for the device
  318. * @mask: pad mask
  319. *
  320. * Update dma pad mask.
  321. *
  322. * Appending pad buffer to a request modifies the last entry of a
  323. * scatter list such that it includes the pad buffer.
  324. **/
  325. void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
  326. {
  327. if (mask > q->dma_pad_mask)
  328. q->dma_pad_mask = mask;
  329. }
  330. EXPORT_SYMBOL(blk_queue_update_dma_pad);
  331. /**
  332. * blk_queue_dma_drain - Set up a drain buffer for excess dma.
  333. * @q: the request queue for the device
  334. * @dma_drain_needed: fn which returns non-zero if drain is necessary
  335. * @buf: physically contiguous buffer
  336. * @size: size of the buffer in bytes
  337. *
  338. * Some devices have excess DMA problems and can't simply discard (or
  339. * zero fill) the unwanted piece of the transfer. They have to have a
  340. * real area of memory to transfer it into. The use case for this is
  341. * ATAPI devices in DMA mode. If the packet command causes a transfer
  342. * bigger than the transfer size some HBAs will lock up if there
  343. * aren't DMA elements to contain the excess transfer. What this API
  344. * does is adjust the queue so that the buf is always appended
  345. * silently to the scatterlist.
  346. *
  347. * Note: This routine adjusts max_hw_segments to make room for
  348. * appending the drain buffer. If you call
  349. * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
  350. * calling this routine, you must set the limit to one fewer than your
  351. * device can support otherwise there won't be room for the drain
  352. * buffer.
  353. */
  354. int blk_queue_dma_drain(struct request_queue *q,
  355. dma_drain_needed_fn *dma_drain_needed,
  356. void *buf, unsigned int size)
  357. {
  358. if (q->max_hw_segments < 2 || q->max_phys_segments < 2)
  359. return -EINVAL;
  360. /* make room for appending the drain */
  361. --q->max_hw_segments;
  362. --q->max_phys_segments;
  363. q->dma_drain_needed = dma_drain_needed;
  364. q->dma_drain_buffer = buf;
  365. q->dma_drain_size = size;
  366. return 0;
  367. }
  368. EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
  369. /**
  370. * blk_queue_segment_boundary - set boundary rules for segment merging
  371. * @q: the request queue for the device
  372. * @mask: the memory boundary mask
  373. **/
  374. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  375. {
  376. if (mask < PAGE_CACHE_SIZE - 1) {
  377. mask = PAGE_CACHE_SIZE - 1;
  378. printk(KERN_INFO "%s: set to minimum %lx\n",
  379. __func__, mask);
  380. }
  381. q->seg_boundary_mask = mask;
  382. }
  383. EXPORT_SYMBOL(blk_queue_segment_boundary);
  384. /**
  385. * blk_queue_dma_alignment - set dma length and memory alignment
  386. * @q: the request queue for the device
  387. * @mask: alignment mask
  388. *
  389. * description:
  390. * set required memory and length alignment for direct dma transactions.
  391. * this is used when buiding direct io requests for the queue.
  392. *
  393. **/
  394. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  395. {
  396. q->dma_alignment = mask;
  397. }
  398. EXPORT_SYMBOL(blk_queue_dma_alignment);
  399. /**
  400. * blk_queue_update_dma_alignment - update dma length and memory alignment
  401. * @q: the request queue for the device
  402. * @mask: alignment mask
  403. *
  404. * description:
  405. * update required memory and length alignment for direct dma transactions.
  406. * If the requested alignment is larger than the current alignment, then
  407. * the current queue alignment is updated to the new value, otherwise it
  408. * is left alone. The design of this is to allow multiple objects
  409. * (driver, device, transport etc) to set their respective
  410. * alignments without having them interfere.
  411. *
  412. **/
  413. void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
  414. {
  415. BUG_ON(mask > PAGE_SIZE);
  416. if (mask > q->dma_alignment)
  417. q->dma_alignment = mask;
  418. }
  419. EXPORT_SYMBOL(blk_queue_update_dma_alignment);
  420. static int __init blk_settings_init(void)
  421. {
  422. blk_max_low_pfn = max_low_pfn - 1;
  423. blk_max_pfn = max_pfn - 1;
  424. return 0;
  425. }
  426. subsys_initcall(blk_settings_init);