disk-io.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #ifdef CONFIG_X86
  50. #include <asm/cpufeature.h>
  51. #endif
  52. static struct extent_io_ops btree_extent_io_ops;
  53. static void end_workqueue_fn(struct btrfs_work *work);
  54. static void free_fs_root(struct btrfs_root *root);
  55. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  56. int read_only);
  57. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  58. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  59. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. /*
  69. * end_io_wq structs are used to do processing in task context when an IO is
  70. * complete. This is used during reads to verify checksums, and it is used
  71. * by writes to insert metadata for new file extents after IO is complete.
  72. */
  73. struct end_io_wq {
  74. struct bio *bio;
  75. bio_end_io_t *end_io;
  76. void *private;
  77. struct btrfs_fs_info *info;
  78. int error;
  79. int metadata;
  80. struct list_head list;
  81. struct btrfs_work work;
  82. };
  83. /*
  84. * async submit bios are used to offload expensive checksumming
  85. * onto the worker threads. They checksum file and metadata bios
  86. * just before they are sent down the IO stack.
  87. */
  88. struct async_submit_bio {
  89. struct inode *inode;
  90. struct bio *bio;
  91. struct list_head list;
  92. extent_submit_bio_hook_t *submit_bio_start;
  93. extent_submit_bio_hook_t *submit_bio_done;
  94. int rw;
  95. int mirror_num;
  96. unsigned long bio_flags;
  97. /*
  98. * bio_offset is optional, can be used if the pages in the bio
  99. * can't tell us where in the file the bio should go
  100. */
  101. u64 bio_offset;
  102. struct btrfs_work work;
  103. int error;
  104. };
  105. /*
  106. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  107. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  108. * the level the eb occupies in the tree.
  109. *
  110. * Different roots are used for different purposes and may nest inside each
  111. * other and they require separate keysets. As lockdep keys should be
  112. * static, assign keysets according to the purpose of the root as indicated
  113. * by btrfs_root->objectid. This ensures that all special purpose roots
  114. * have separate keysets.
  115. *
  116. * Lock-nesting across peer nodes is always done with the immediate parent
  117. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  118. * subclass to avoid triggering lockdep warning in such cases.
  119. *
  120. * The key is set by the readpage_end_io_hook after the buffer has passed
  121. * csum validation but before the pages are unlocked. It is also set by
  122. * btrfs_init_new_buffer on freshly allocated blocks.
  123. *
  124. * We also add a check to make sure the highest level of the tree is the
  125. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  126. * needs update as well.
  127. */
  128. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  129. # if BTRFS_MAX_LEVEL != 8
  130. # error
  131. # endif
  132. static struct btrfs_lockdep_keyset {
  133. u64 id; /* root objectid */
  134. const char *name_stem; /* lock name stem */
  135. char names[BTRFS_MAX_LEVEL + 1][20];
  136. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  137. } btrfs_lockdep_keysets[] = {
  138. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  139. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  140. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  141. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  142. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  143. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  144. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  145. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  146. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  147. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  148. { .id = 0, .name_stem = "tree" },
  149. };
  150. void __init btrfs_init_lockdep(void)
  151. {
  152. int i, j;
  153. /* initialize lockdep class names */
  154. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  155. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  156. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  157. snprintf(ks->names[j], sizeof(ks->names[j]),
  158. "btrfs-%s-%02d", ks->name_stem, j);
  159. }
  160. }
  161. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  162. int level)
  163. {
  164. struct btrfs_lockdep_keyset *ks;
  165. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  166. /* find the matching keyset, id 0 is the default entry */
  167. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  168. if (ks->id == objectid)
  169. break;
  170. lockdep_set_class_and_name(&eb->lock,
  171. &ks->keys[level], ks->names[level]);
  172. }
  173. #endif
  174. /*
  175. * extents on the btree inode are pretty simple, there's one extent
  176. * that covers the entire device
  177. */
  178. static struct extent_map *btree_get_extent(struct inode *inode,
  179. struct page *page, size_t pg_offset, u64 start, u64 len,
  180. int create)
  181. {
  182. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  183. struct extent_map *em;
  184. int ret;
  185. read_lock(&em_tree->lock);
  186. em = lookup_extent_mapping(em_tree, start, len);
  187. if (em) {
  188. em->bdev =
  189. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  190. read_unlock(&em_tree->lock);
  191. goto out;
  192. }
  193. read_unlock(&em_tree->lock);
  194. em = alloc_extent_map();
  195. if (!em) {
  196. em = ERR_PTR(-ENOMEM);
  197. goto out;
  198. }
  199. em->start = 0;
  200. em->len = (u64)-1;
  201. em->block_len = (u64)-1;
  202. em->block_start = 0;
  203. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  204. write_lock(&em_tree->lock);
  205. ret = add_extent_mapping(em_tree, em);
  206. if (ret == -EEXIST) {
  207. free_extent_map(em);
  208. em = lookup_extent_mapping(em_tree, start, len);
  209. if (!em)
  210. em = ERR_PTR(-EIO);
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = ERR_PTR(ret);
  214. }
  215. write_unlock(&em_tree->lock);
  216. out:
  217. return em;
  218. }
  219. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  220. {
  221. return crc32c(seed, data, len);
  222. }
  223. void btrfs_csum_final(u32 crc, char *result)
  224. {
  225. put_unaligned_le32(~crc, result);
  226. }
  227. /*
  228. * compute the csum for a btree block, and either verify it or write it
  229. * into the csum field of the block.
  230. */
  231. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  232. int verify)
  233. {
  234. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  235. char *result = NULL;
  236. unsigned long len;
  237. unsigned long cur_len;
  238. unsigned long offset = BTRFS_CSUM_SIZE;
  239. char *kaddr;
  240. unsigned long map_start;
  241. unsigned long map_len;
  242. int err;
  243. u32 crc = ~(u32)0;
  244. unsigned long inline_result;
  245. len = buf->len - offset;
  246. while (len > 0) {
  247. err = map_private_extent_buffer(buf, offset, 32,
  248. &kaddr, &map_start, &map_len);
  249. if (err)
  250. return 1;
  251. cur_len = min(len, map_len - (offset - map_start));
  252. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  253. crc, cur_len);
  254. len -= cur_len;
  255. offset += cur_len;
  256. }
  257. if (csum_size > sizeof(inline_result)) {
  258. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  259. if (!result)
  260. return 1;
  261. } else {
  262. result = (char *)&inline_result;
  263. }
  264. btrfs_csum_final(crc, result);
  265. if (verify) {
  266. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  267. u32 val;
  268. u32 found = 0;
  269. memcpy(&found, result, csum_size);
  270. read_extent_buffer(buf, &val, 0, csum_size);
  271. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  272. "failed on %llu wanted %X found %X "
  273. "level %d\n",
  274. root->fs_info->sb->s_id,
  275. (unsigned long long)buf->start, val, found,
  276. btrfs_header_level(buf));
  277. if (result != (char *)&inline_result)
  278. kfree(result);
  279. return 1;
  280. }
  281. } else {
  282. write_extent_buffer(buf, result, 0, csum_size);
  283. }
  284. if (result != (char *)&inline_result)
  285. kfree(result);
  286. return 0;
  287. }
  288. /*
  289. * we can't consider a given block up to date unless the transid of the
  290. * block matches the transid in the parent node's pointer. This is how we
  291. * detect blocks that either didn't get written at all or got written
  292. * in the wrong place.
  293. */
  294. static int verify_parent_transid(struct extent_io_tree *io_tree,
  295. struct extent_buffer *eb, u64 parent_transid,
  296. int atomic)
  297. {
  298. struct extent_state *cached_state = NULL;
  299. int ret;
  300. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  301. return 0;
  302. if (atomic)
  303. return -EAGAIN;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state);
  306. if (extent_buffer_uptodate(eb) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(eb);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int failed = 0;
  333. int ret;
  334. int num_copies = 0;
  335. int mirror_num = 0;
  336. int failed_mirror = 0;
  337. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  338. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  339. while (1) {
  340. ret = read_extent_buffer_pages(io_tree, eb, start,
  341. WAIT_COMPLETE,
  342. btree_get_extent, mirror_num);
  343. if (!ret) {
  344. if (!verify_parent_transid(io_tree, eb,
  345. parent_transid, 0))
  346. break;
  347. else
  348. ret = -EIO;
  349. }
  350. /*
  351. * This buffer's crc is fine, but its contents are corrupted, so
  352. * there is no reason to read the other copies, they won't be
  353. * any less wrong.
  354. */
  355. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  356. break;
  357. num_copies = btrfs_num_copies(root->fs_info,
  358. eb->start, eb->len);
  359. if (num_copies == 1)
  360. break;
  361. if (!failed_mirror) {
  362. failed = 1;
  363. failed_mirror = eb->read_mirror;
  364. }
  365. mirror_num++;
  366. if (mirror_num == failed_mirror)
  367. mirror_num++;
  368. if (mirror_num > num_copies)
  369. break;
  370. }
  371. if (failed && !ret && failed_mirror)
  372. repair_eb_io_failure(root, eb, failed_mirror);
  373. return ret;
  374. }
  375. /*
  376. * checksum a dirty tree block before IO. This has extra checks to make sure
  377. * we only fill in the checksum field in the first page of a multi-page block
  378. */
  379. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  380. {
  381. struct extent_io_tree *tree;
  382. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  383. u64 found_start;
  384. struct extent_buffer *eb;
  385. tree = &BTRFS_I(page->mapping->host)->io_tree;
  386. eb = (struct extent_buffer *)page->private;
  387. if (page != eb->pages[0])
  388. return 0;
  389. found_start = btrfs_header_bytenr(eb);
  390. if (found_start != start) {
  391. WARN_ON(1);
  392. return 0;
  393. }
  394. if (!PageUptodate(page)) {
  395. WARN_ON(1);
  396. return 0;
  397. }
  398. csum_tree_block(root, eb, 0);
  399. return 0;
  400. }
  401. static int check_tree_block_fsid(struct btrfs_root *root,
  402. struct extent_buffer *eb)
  403. {
  404. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  405. u8 fsid[BTRFS_UUID_SIZE];
  406. int ret = 1;
  407. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  408. BTRFS_FSID_SIZE);
  409. while (fs_devices) {
  410. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  411. ret = 0;
  412. break;
  413. }
  414. fs_devices = fs_devices->seed;
  415. }
  416. return ret;
  417. }
  418. #define CORRUPT(reason, eb, root, slot) \
  419. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  420. "root=%llu, slot=%d\n", reason, \
  421. (unsigned long long)btrfs_header_bytenr(eb), \
  422. (unsigned long long)root->objectid, slot)
  423. static noinline int check_leaf(struct btrfs_root *root,
  424. struct extent_buffer *leaf)
  425. {
  426. struct btrfs_key key;
  427. struct btrfs_key leaf_key;
  428. u32 nritems = btrfs_header_nritems(leaf);
  429. int slot;
  430. if (nritems == 0)
  431. return 0;
  432. /* Check the 0 item */
  433. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  434. BTRFS_LEAF_DATA_SIZE(root)) {
  435. CORRUPT("invalid item offset size pair", leaf, root, 0);
  436. return -EIO;
  437. }
  438. /*
  439. * Check to make sure each items keys are in the correct order and their
  440. * offsets make sense. We only have to loop through nritems-1 because
  441. * we check the current slot against the next slot, which verifies the
  442. * next slot's offset+size makes sense and that the current's slot
  443. * offset is correct.
  444. */
  445. for (slot = 0; slot < nritems - 1; slot++) {
  446. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  447. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  448. /* Make sure the keys are in the right order */
  449. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  450. CORRUPT("bad key order", leaf, root, slot);
  451. return -EIO;
  452. }
  453. /*
  454. * Make sure the offset and ends are right, remember that the
  455. * item data starts at the end of the leaf and grows towards the
  456. * front.
  457. */
  458. if (btrfs_item_offset_nr(leaf, slot) !=
  459. btrfs_item_end_nr(leaf, slot + 1)) {
  460. CORRUPT("slot offset bad", leaf, root, slot);
  461. return -EIO;
  462. }
  463. /*
  464. * Check to make sure that we don't point outside of the leaf,
  465. * just incase all the items are consistent to eachother, but
  466. * all point outside of the leaf.
  467. */
  468. if (btrfs_item_end_nr(leaf, slot) >
  469. BTRFS_LEAF_DATA_SIZE(root)) {
  470. CORRUPT("slot end outside of leaf", leaf, root, slot);
  471. return -EIO;
  472. }
  473. }
  474. return 0;
  475. }
  476. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  477. struct page *page, int max_walk)
  478. {
  479. struct extent_buffer *eb;
  480. u64 start = page_offset(page);
  481. u64 target = start;
  482. u64 min_start;
  483. if (start < max_walk)
  484. min_start = 0;
  485. else
  486. min_start = start - max_walk;
  487. while (start >= min_start) {
  488. eb = find_extent_buffer(tree, start, 0);
  489. if (eb) {
  490. /*
  491. * we found an extent buffer and it contains our page
  492. * horray!
  493. */
  494. if (eb->start <= target &&
  495. eb->start + eb->len > target)
  496. return eb;
  497. /* we found an extent buffer that wasn't for us */
  498. free_extent_buffer(eb);
  499. return NULL;
  500. }
  501. if (start == 0)
  502. break;
  503. start -= PAGE_CACHE_SIZE;
  504. }
  505. return NULL;
  506. }
  507. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  508. struct extent_state *state, int mirror)
  509. {
  510. struct extent_io_tree *tree;
  511. u64 found_start;
  512. int found_level;
  513. struct extent_buffer *eb;
  514. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  515. int ret = 0;
  516. int reads_done;
  517. if (!page->private)
  518. goto out;
  519. tree = &BTRFS_I(page->mapping->host)->io_tree;
  520. eb = (struct extent_buffer *)page->private;
  521. /* the pending IO might have been the only thing that kept this buffer
  522. * in memory. Make sure we have a ref for all this other checks
  523. */
  524. extent_buffer_get(eb);
  525. reads_done = atomic_dec_and_test(&eb->io_pages);
  526. if (!reads_done)
  527. goto err;
  528. eb->read_mirror = mirror;
  529. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  530. ret = -EIO;
  531. goto err;
  532. }
  533. found_start = btrfs_header_bytenr(eb);
  534. if (found_start != eb->start) {
  535. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  536. "%llu %llu\n",
  537. (unsigned long long)found_start,
  538. (unsigned long long)eb->start);
  539. ret = -EIO;
  540. goto err;
  541. }
  542. if (check_tree_block_fsid(root, eb)) {
  543. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  544. (unsigned long long)eb->start);
  545. ret = -EIO;
  546. goto err;
  547. }
  548. found_level = btrfs_header_level(eb);
  549. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  550. eb, found_level);
  551. ret = csum_tree_block(root, eb, 1);
  552. if (ret) {
  553. ret = -EIO;
  554. goto err;
  555. }
  556. /*
  557. * If this is a leaf block and it is corrupt, set the corrupt bit so
  558. * that we don't try and read the other copies of this block, just
  559. * return -EIO.
  560. */
  561. if (found_level == 0 && check_leaf(root, eb)) {
  562. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  563. ret = -EIO;
  564. }
  565. if (!ret)
  566. set_extent_buffer_uptodate(eb);
  567. err:
  568. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  569. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  570. btree_readahead_hook(root, eb, eb->start, ret);
  571. }
  572. if (ret) {
  573. /*
  574. * our io error hook is going to dec the io pages
  575. * again, we have to make sure it has something
  576. * to decrement
  577. */
  578. atomic_inc(&eb->io_pages);
  579. clear_extent_buffer_uptodate(eb);
  580. }
  581. free_extent_buffer(eb);
  582. out:
  583. return ret;
  584. }
  585. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  586. {
  587. struct extent_buffer *eb;
  588. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  589. eb = (struct extent_buffer *)page->private;
  590. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  591. eb->read_mirror = failed_mirror;
  592. atomic_dec(&eb->io_pages);
  593. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  594. btree_readahead_hook(root, eb, eb->start, -EIO);
  595. return -EIO; /* we fixed nothing */
  596. }
  597. static void end_workqueue_bio(struct bio *bio, int err)
  598. {
  599. struct end_io_wq *end_io_wq = bio->bi_private;
  600. struct btrfs_fs_info *fs_info;
  601. fs_info = end_io_wq->info;
  602. end_io_wq->error = err;
  603. end_io_wq->work.func = end_workqueue_fn;
  604. end_io_wq->work.flags = 0;
  605. if (bio->bi_rw & REQ_WRITE) {
  606. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  607. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  608. &end_io_wq->work);
  609. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  610. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  611. &end_io_wq->work);
  612. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  613. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  614. &end_io_wq->work);
  615. else
  616. btrfs_queue_worker(&fs_info->endio_write_workers,
  617. &end_io_wq->work);
  618. } else {
  619. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  620. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  621. &end_io_wq->work);
  622. else if (end_io_wq->metadata)
  623. btrfs_queue_worker(&fs_info->endio_meta_workers,
  624. &end_io_wq->work);
  625. else
  626. btrfs_queue_worker(&fs_info->endio_workers,
  627. &end_io_wq->work);
  628. }
  629. }
  630. /*
  631. * For the metadata arg you want
  632. *
  633. * 0 - if data
  634. * 1 - if normal metadta
  635. * 2 - if writing to the free space cache area
  636. * 3 - raid parity work
  637. */
  638. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  639. int metadata)
  640. {
  641. struct end_io_wq *end_io_wq;
  642. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  643. if (!end_io_wq)
  644. return -ENOMEM;
  645. end_io_wq->private = bio->bi_private;
  646. end_io_wq->end_io = bio->bi_end_io;
  647. end_io_wq->info = info;
  648. end_io_wq->error = 0;
  649. end_io_wq->bio = bio;
  650. end_io_wq->metadata = metadata;
  651. bio->bi_private = end_io_wq;
  652. bio->bi_end_io = end_workqueue_bio;
  653. return 0;
  654. }
  655. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  656. {
  657. unsigned long limit = min_t(unsigned long,
  658. info->workers.max_workers,
  659. info->fs_devices->open_devices);
  660. return 256 * limit;
  661. }
  662. static void run_one_async_start(struct btrfs_work *work)
  663. {
  664. struct async_submit_bio *async;
  665. int ret;
  666. async = container_of(work, struct async_submit_bio, work);
  667. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  668. async->mirror_num, async->bio_flags,
  669. async->bio_offset);
  670. if (ret)
  671. async->error = ret;
  672. }
  673. static void run_one_async_done(struct btrfs_work *work)
  674. {
  675. struct btrfs_fs_info *fs_info;
  676. struct async_submit_bio *async;
  677. int limit;
  678. async = container_of(work, struct async_submit_bio, work);
  679. fs_info = BTRFS_I(async->inode)->root->fs_info;
  680. limit = btrfs_async_submit_limit(fs_info);
  681. limit = limit * 2 / 3;
  682. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  683. waitqueue_active(&fs_info->async_submit_wait))
  684. wake_up(&fs_info->async_submit_wait);
  685. /* If an error occured we just want to clean up the bio and move on */
  686. if (async->error) {
  687. bio_endio(async->bio, async->error);
  688. return;
  689. }
  690. async->submit_bio_done(async->inode, async->rw, async->bio,
  691. async->mirror_num, async->bio_flags,
  692. async->bio_offset);
  693. }
  694. static void run_one_async_free(struct btrfs_work *work)
  695. {
  696. struct async_submit_bio *async;
  697. async = container_of(work, struct async_submit_bio, work);
  698. kfree(async);
  699. }
  700. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  701. int rw, struct bio *bio, int mirror_num,
  702. unsigned long bio_flags,
  703. u64 bio_offset,
  704. extent_submit_bio_hook_t *submit_bio_start,
  705. extent_submit_bio_hook_t *submit_bio_done)
  706. {
  707. struct async_submit_bio *async;
  708. async = kmalloc(sizeof(*async), GFP_NOFS);
  709. if (!async)
  710. return -ENOMEM;
  711. async->inode = inode;
  712. async->rw = rw;
  713. async->bio = bio;
  714. async->mirror_num = mirror_num;
  715. async->submit_bio_start = submit_bio_start;
  716. async->submit_bio_done = submit_bio_done;
  717. async->work.func = run_one_async_start;
  718. async->work.ordered_func = run_one_async_done;
  719. async->work.ordered_free = run_one_async_free;
  720. async->work.flags = 0;
  721. async->bio_flags = bio_flags;
  722. async->bio_offset = bio_offset;
  723. async->error = 0;
  724. atomic_inc(&fs_info->nr_async_submits);
  725. if (rw & REQ_SYNC)
  726. btrfs_set_work_high_prio(&async->work);
  727. btrfs_queue_worker(&fs_info->workers, &async->work);
  728. while (atomic_read(&fs_info->async_submit_draining) &&
  729. atomic_read(&fs_info->nr_async_submits)) {
  730. wait_event(fs_info->async_submit_wait,
  731. (atomic_read(&fs_info->nr_async_submits) == 0));
  732. }
  733. return 0;
  734. }
  735. static int btree_csum_one_bio(struct bio *bio)
  736. {
  737. struct bio_vec *bvec = bio->bi_io_vec;
  738. int bio_index = 0;
  739. struct btrfs_root *root;
  740. int ret = 0;
  741. WARN_ON(bio->bi_vcnt <= 0);
  742. while (bio_index < bio->bi_vcnt) {
  743. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  744. ret = csum_dirty_buffer(root, bvec->bv_page);
  745. if (ret)
  746. break;
  747. bio_index++;
  748. bvec++;
  749. }
  750. return ret;
  751. }
  752. static int __btree_submit_bio_start(struct inode *inode, int rw,
  753. struct bio *bio, int mirror_num,
  754. unsigned long bio_flags,
  755. u64 bio_offset)
  756. {
  757. /*
  758. * when we're called for a write, we're already in the async
  759. * submission context. Just jump into btrfs_map_bio
  760. */
  761. return btree_csum_one_bio(bio);
  762. }
  763. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  764. int mirror_num, unsigned long bio_flags,
  765. u64 bio_offset)
  766. {
  767. int ret;
  768. /*
  769. * when we're called for a write, we're already in the async
  770. * submission context. Just jump into btrfs_map_bio
  771. */
  772. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  773. if (ret)
  774. bio_endio(bio, ret);
  775. return ret;
  776. }
  777. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  778. {
  779. if (bio_flags & EXTENT_BIO_TREE_LOG)
  780. return 0;
  781. #ifdef CONFIG_X86
  782. if (cpu_has_xmm4_2)
  783. return 0;
  784. #endif
  785. return 1;
  786. }
  787. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  788. int mirror_num, unsigned long bio_flags,
  789. u64 bio_offset)
  790. {
  791. int async = check_async_write(inode, bio_flags);
  792. int ret;
  793. if (!(rw & REQ_WRITE)) {
  794. /*
  795. * called for a read, do the setup so that checksum validation
  796. * can happen in the async kernel threads
  797. */
  798. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  799. bio, 1);
  800. if (ret)
  801. goto out_w_error;
  802. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  803. mirror_num, 0);
  804. } else if (!async) {
  805. ret = btree_csum_one_bio(bio);
  806. if (ret)
  807. goto out_w_error;
  808. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  809. mirror_num, 0);
  810. } else {
  811. /*
  812. * kthread helpers are used to submit writes so that
  813. * checksumming can happen in parallel across all CPUs
  814. */
  815. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  816. inode, rw, bio, mirror_num, 0,
  817. bio_offset,
  818. __btree_submit_bio_start,
  819. __btree_submit_bio_done);
  820. }
  821. if (ret) {
  822. out_w_error:
  823. bio_endio(bio, ret);
  824. }
  825. return ret;
  826. }
  827. #ifdef CONFIG_MIGRATION
  828. static int btree_migratepage(struct address_space *mapping,
  829. struct page *newpage, struct page *page,
  830. enum migrate_mode mode)
  831. {
  832. /*
  833. * we can't safely write a btree page from here,
  834. * we haven't done the locking hook
  835. */
  836. if (PageDirty(page))
  837. return -EAGAIN;
  838. /*
  839. * Buffers may be managed in a filesystem specific way.
  840. * We must have no buffers or drop them.
  841. */
  842. if (page_has_private(page) &&
  843. !try_to_release_page(page, GFP_KERNEL))
  844. return -EAGAIN;
  845. return migrate_page(mapping, newpage, page, mode);
  846. }
  847. #endif
  848. static int btree_writepages(struct address_space *mapping,
  849. struct writeback_control *wbc)
  850. {
  851. struct extent_io_tree *tree;
  852. tree = &BTRFS_I(mapping->host)->io_tree;
  853. if (wbc->sync_mode == WB_SYNC_NONE) {
  854. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  855. u64 num_dirty;
  856. unsigned long thresh = 32 * 1024 * 1024;
  857. if (wbc->for_kupdate)
  858. return 0;
  859. /* this is a bit racy, but that's ok */
  860. num_dirty = root->fs_info->dirty_metadata_bytes;
  861. if (num_dirty < thresh)
  862. return 0;
  863. }
  864. return btree_write_cache_pages(mapping, wbc);
  865. }
  866. static int btree_readpage(struct file *file, struct page *page)
  867. {
  868. struct extent_io_tree *tree;
  869. tree = &BTRFS_I(page->mapping->host)->io_tree;
  870. return extent_read_full_page(tree, page, btree_get_extent, 0);
  871. }
  872. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  873. {
  874. if (PageWriteback(page) || PageDirty(page))
  875. return 0;
  876. /*
  877. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  878. * slab allocation from alloc_extent_state down the callchain where
  879. * it'd hit a BUG_ON as those flags are not allowed.
  880. */
  881. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  882. return try_release_extent_buffer(page, gfp_flags);
  883. }
  884. static void btree_invalidatepage(struct page *page, unsigned long offset)
  885. {
  886. struct extent_io_tree *tree;
  887. tree = &BTRFS_I(page->mapping->host)->io_tree;
  888. extent_invalidatepage(tree, page, offset);
  889. btree_releasepage(page, GFP_NOFS);
  890. if (PagePrivate(page)) {
  891. printk(KERN_WARNING "btrfs warning page private not zero "
  892. "on page %llu\n", (unsigned long long)page_offset(page));
  893. ClearPagePrivate(page);
  894. set_page_private(page, 0);
  895. page_cache_release(page);
  896. }
  897. }
  898. static int btree_set_page_dirty(struct page *page)
  899. {
  900. #ifdef DEBUG
  901. struct extent_buffer *eb;
  902. BUG_ON(!PagePrivate(page));
  903. eb = (struct extent_buffer *)page->private;
  904. BUG_ON(!eb);
  905. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  906. BUG_ON(!atomic_read(&eb->refs));
  907. btrfs_assert_tree_locked(eb);
  908. #endif
  909. return __set_page_dirty_nobuffers(page);
  910. }
  911. static const struct address_space_operations btree_aops = {
  912. .readpage = btree_readpage,
  913. .writepages = btree_writepages,
  914. .releasepage = btree_releasepage,
  915. .invalidatepage = btree_invalidatepage,
  916. #ifdef CONFIG_MIGRATION
  917. .migratepage = btree_migratepage,
  918. #endif
  919. .set_page_dirty = btree_set_page_dirty,
  920. };
  921. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  922. u64 parent_transid)
  923. {
  924. struct extent_buffer *buf = NULL;
  925. struct inode *btree_inode = root->fs_info->btree_inode;
  926. int ret = 0;
  927. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  928. if (!buf)
  929. return 0;
  930. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  931. buf, 0, WAIT_NONE, btree_get_extent, 0);
  932. free_extent_buffer(buf);
  933. return ret;
  934. }
  935. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  936. int mirror_num, struct extent_buffer **eb)
  937. {
  938. struct extent_buffer *buf = NULL;
  939. struct inode *btree_inode = root->fs_info->btree_inode;
  940. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  941. int ret;
  942. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  943. if (!buf)
  944. return 0;
  945. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  946. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  947. btree_get_extent, mirror_num);
  948. if (ret) {
  949. free_extent_buffer(buf);
  950. return ret;
  951. }
  952. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  953. free_extent_buffer(buf);
  954. return -EIO;
  955. } else if (extent_buffer_uptodate(buf)) {
  956. *eb = buf;
  957. } else {
  958. free_extent_buffer(buf);
  959. }
  960. return 0;
  961. }
  962. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  963. u64 bytenr, u32 blocksize)
  964. {
  965. struct inode *btree_inode = root->fs_info->btree_inode;
  966. struct extent_buffer *eb;
  967. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  968. bytenr, blocksize);
  969. return eb;
  970. }
  971. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  972. u64 bytenr, u32 blocksize)
  973. {
  974. struct inode *btree_inode = root->fs_info->btree_inode;
  975. struct extent_buffer *eb;
  976. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  977. bytenr, blocksize);
  978. return eb;
  979. }
  980. int btrfs_write_tree_block(struct extent_buffer *buf)
  981. {
  982. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  983. buf->start + buf->len - 1);
  984. }
  985. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  986. {
  987. return filemap_fdatawait_range(buf->pages[0]->mapping,
  988. buf->start, buf->start + buf->len - 1);
  989. }
  990. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  991. u32 blocksize, u64 parent_transid)
  992. {
  993. struct extent_buffer *buf = NULL;
  994. int ret;
  995. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  996. if (!buf)
  997. return NULL;
  998. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  999. return buf;
  1000. }
  1001. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1002. struct extent_buffer *buf)
  1003. {
  1004. if (btrfs_header_generation(buf) ==
  1005. root->fs_info->running_transaction->transid) {
  1006. btrfs_assert_tree_locked(buf);
  1007. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1008. spin_lock(&root->fs_info->delalloc_lock);
  1009. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  1010. root->fs_info->dirty_metadata_bytes -= buf->len;
  1011. else {
  1012. spin_unlock(&root->fs_info->delalloc_lock);
  1013. btrfs_panic(root->fs_info, -EOVERFLOW,
  1014. "Can't clear %lu bytes from "
  1015. " dirty_mdatadata_bytes (%llu)",
  1016. buf->len,
  1017. root->fs_info->dirty_metadata_bytes);
  1018. }
  1019. spin_unlock(&root->fs_info->delalloc_lock);
  1020. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1021. btrfs_set_lock_blocking(buf);
  1022. clear_extent_buffer_dirty(buf);
  1023. }
  1024. }
  1025. }
  1026. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1027. u32 stripesize, struct btrfs_root *root,
  1028. struct btrfs_fs_info *fs_info,
  1029. u64 objectid)
  1030. {
  1031. root->node = NULL;
  1032. root->commit_root = NULL;
  1033. root->sectorsize = sectorsize;
  1034. root->nodesize = nodesize;
  1035. root->leafsize = leafsize;
  1036. root->stripesize = stripesize;
  1037. root->ref_cows = 0;
  1038. root->track_dirty = 0;
  1039. root->in_radix = 0;
  1040. root->orphan_item_inserted = 0;
  1041. root->orphan_cleanup_state = 0;
  1042. root->objectid = objectid;
  1043. root->last_trans = 0;
  1044. root->highest_objectid = 0;
  1045. root->name = NULL;
  1046. root->inode_tree = RB_ROOT;
  1047. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1048. root->block_rsv = NULL;
  1049. root->orphan_block_rsv = NULL;
  1050. INIT_LIST_HEAD(&root->dirty_list);
  1051. INIT_LIST_HEAD(&root->root_list);
  1052. spin_lock_init(&root->orphan_lock);
  1053. spin_lock_init(&root->inode_lock);
  1054. spin_lock_init(&root->accounting_lock);
  1055. mutex_init(&root->objectid_mutex);
  1056. mutex_init(&root->log_mutex);
  1057. init_waitqueue_head(&root->log_writer_wait);
  1058. init_waitqueue_head(&root->log_commit_wait[0]);
  1059. init_waitqueue_head(&root->log_commit_wait[1]);
  1060. atomic_set(&root->log_commit[0], 0);
  1061. atomic_set(&root->log_commit[1], 0);
  1062. atomic_set(&root->log_writers, 0);
  1063. atomic_set(&root->log_batch, 0);
  1064. atomic_set(&root->orphan_inodes, 0);
  1065. root->log_transid = 0;
  1066. root->last_log_commit = 0;
  1067. extent_io_tree_init(&root->dirty_log_pages,
  1068. fs_info->btree_inode->i_mapping);
  1069. memset(&root->root_key, 0, sizeof(root->root_key));
  1070. memset(&root->root_item, 0, sizeof(root->root_item));
  1071. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1072. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1073. root->defrag_trans_start = fs_info->generation;
  1074. init_completion(&root->kobj_unregister);
  1075. root->defrag_running = 0;
  1076. root->root_key.objectid = objectid;
  1077. root->anon_dev = 0;
  1078. spin_lock_init(&root->root_item_lock);
  1079. }
  1080. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1081. struct btrfs_fs_info *fs_info,
  1082. u64 objectid,
  1083. struct btrfs_root *root)
  1084. {
  1085. int ret;
  1086. u32 blocksize;
  1087. u64 generation;
  1088. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1089. tree_root->sectorsize, tree_root->stripesize,
  1090. root, fs_info, objectid);
  1091. ret = btrfs_find_last_root(tree_root, objectid,
  1092. &root->root_item, &root->root_key);
  1093. if (ret > 0)
  1094. return -ENOENT;
  1095. else if (ret < 0)
  1096. return ret;
  1097. generation = btrfs_root_generation(&root->root_item);
  1098. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1099. root->commit_root = NULL;
  1100. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1101. blocksize, generation);
  1102. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1103. free_extent_buffer(root->node);
  1104. root->node = NULL;
  1105. return -EIO;
  1106. }
  1107. root->commit_root = btrfs_root_node(root);
  1108. return 0;
  1109. }
  1110. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1111. {
  1112. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1113. if (root)
  1114. root->fs_info = fs_info;
  1115. return root;
  1116. }
  1117. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1118. struct btrfs_fs_info *fs_info,
  1119. u64 objectid)
  1120. {
  1121. struct extent_buffer *leaf;
  1122. struct btrfs_root *tree_root = fs_info->tree_root;
  1123. struct btrfs_root *root;
  1124. struct btrfs_key key;
  1125. int ret = 0;
  1126. u64 bytenr;
  1127. root = btrfs_alloc_root(fs_info);
  1128. if (!root)
  1129. return ERR_PTR(-ENOMEM);
  1130. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1131. tree_root->sectorsize, tree_root->stripesize,
  1132. root, fs_info, objectid);
  1133. root->root_key.objectid = objectid;
  1134. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1135. root->root_key.offset = 0;
  1136. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1137. 0, objectid, NULL, 0, 0, 0);
  1138. if (IS_ERR(leaf)) {
  1139. ret = PTR_ERR(leaf);
  1140. goto fail;
  1141. }
  1142. bytenr = leaf->start;
  1143. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1144. btrfs_set_header_bytenr(leaf, leaf->start);
  1145. btrfs_set_header_generation(leaf, trans->transid);
  1146. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1147. btrfs_set_header_owner(leaf, objectid);
  1148. root->node = leaf;
  1149. write_extent_buffer(leaf, fs_info->fsid,
  1150. (unsigned long)btrfs_header_fsid(leaf),
  1151. BTRFS_FSID_SIZE);
  1152. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1153. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1154. BTRFS_UUID_SIZE);
  1155. btrfs_mark_buffer_dirty(leaf);
  1156. root->commit_root = btrfs_root_node(root);
  1157. root->track_dirty = 1;
  1158. root->root_item.flags = 0;
  1159. root->root_item.byte_limit = 0;
  1160. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1161. btrfs_set_root_generation(&root->root_item, trans->transid);
  1162. btrfs_set_root_level(&root->root_item, 0);
  1163. btrfs_set_root_refs(&root->root_item, 1);
  1164. btrfs_set_root_used(&root->root_item, leaf->len);
  1165. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1166. btrfs_set_root_dirid(&root->root_item, 0);
  1167. root->root_item.drop_level = 0;
  1168. key.objectid = objectid;
  1169. key.type = BTRFS_ROOT_ITEM_KEY;
  1170. key.offset = 0;
  1171. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1172. if (ret)
  1173. goto fail;
  1174. btrfs_tree_unlock(leaf);
  1175. fail:
  1176. if (ret)
  1177. return ERR_PTR(ret);
  1178. return root;
  1179. }
  1180. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1181. struct btrfs_fs_info *fs_info)
  1182. {
  1183. struct btrfs_root *root;
  1184. struct btrfs_root *tree_root = fs_info->tree_root;
  1185. struct extent_buffer *leaf;
  1186. root = btrfs_alloc_root(fs_info);
  1187. if (!root)
  1188. return ERR_PTR(-ENOMEM);
  1189. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1190. tree_root->sectorsize, tree_root->stripesize,
  1191. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1192. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1193. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1194. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1195. /*
  1196. * log trees do not get reference counted because they go away
  1197. * before a real commit is actually done. They do store pointers
  1198. * to file data extents, and those reference counts still get
  1199. * updated (along with back refs to the log tree).
  1200. */
  1201. root->ref_cows = 0;
  1202. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1203. BTRFS_TREE_LOG_OBJECTID, NULL,
  1204. 0, 0, 0);
  1205. if (IS_ERR(leaf)) {
  1206. kfree(root);
  1207. return ERR_CAST(leaf);
  1208. }
  1209. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1210. btrfs_set_header_bytenr(leaf, leaf->start);
  1211. btrfs_set_header_generation(leaf, trans->transid);
  1212. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1213. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1214. root->node = leaf;
  1215. write_extent_buffer(root->node, root->fs_info->fsid,
  1216. (unsigned long)btrfs_header_fsid(root->node),
  1217. BTRFS_FSID_SIZE);
  1218. btrfs_mark_buffer_dirty(root->node);
  1219. btrfs_tree_unlock(root->node);
  1220. return root;
  1221. }
  1222. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1223. struct btrfs_fs_info *fs_info)
  1224. {
  1225. struct btrfs_root *log_root;
  1226. log_root = alloc_log_tree(trans, fs_info);
  1227. if (IS_ERR(log_root))
  1228. return PTR_ERR(log_root);
  1229. WARN_ON(fs_info->log_root_tree);
  1230. fs_info->log_root_tree = log_root;
  1231. return 0;
  1232. }
  1233. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1234. struct btrfs_root *root)
  1235. {
  1236. struct btrfs_root *log_root;
  1237. struct btrfs_inode_item *inode_item;
  1238. log_root = alloc_log_tree(trans, root->fs_info);
  1239. if (IS_ERR(log_root))
  1240. return PTR_ERR(log_root);
  1241. log_root->last_trans = trans->transid;
  1242. log_root->root_key.offset = root->root_key.objectid;
  1243. inode_item = &log_root->root_item.inode;
  1244. inode_item->generation = cpu_to_le64(1);
  1245. inode_item->size = cpu_to_le64(3);
  1246. inode_item->nlink = cpu_to_le32(1);
  1247. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1248. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1249. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1250. WARN_ON(root->log_root);
  1251. root->log_root = log_root;
  1252. root->log_transid = 0;
  1253. root->last_log_commit = 0;
  1254. return 0;
  1255. }
  1256. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1257. struct btrfs_key *location)
  1258. {
  1259. struct btrfs_root *root;
  1260. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1261. struct btrfs_path *path;
  1262. struct extent_buffer *l;
  1263. u64 generation;
  1264. u32 blocksize;
  1265. int ret = 0;
  1266. int slot;
  1267. root = btrfs_alloc_root(fs_info);
  1268. if (!root)
  1269. return ERR_PTR(-ENOMEM);
  1270. if (location->offset == (u64)-1) {
  1271. ret = find_and_setup_root(tree_root, fs_info,
  1272. location->objectid, root);
  1273. if (ret) {
  1274. kfree(root);
  1275. return ERR_PTR(ret);
  1276. }
  1277. goto out;
  1278. }
  1279. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1280. tree_root->sectorsize, tree_root->stripesize,
  1281. root, fs_info, location->objectid);
  1282. path = btrfs_alloc_path();
  1283. if (!path) {
  1284. kfree(root);
  1285. return ERR_PTR(-ENOMEM);
  1286. }
  1287. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1288. if (ret == 0) {
  1289. l = path->nodes[0];
  1290. slot = path->slots[0];
  1291. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1292. memcpy(&root->root_key, location, sizeof(*location));
  1293. }
  1294. btrfs_free_path(path);
  1295. if (ret) {
  1296. kfree(root);
  1297. if (ret > 0)
  1298. ret = -ENOENT;
  1299. return ERR_PTR(ret);
  1300. }
  1301. generation = btrfs_root_generation(&root->root_item);
  1302. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1303. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1304. blocksize, generation);
  1305. root->commit_root = btrfs_root_node(root);
  1306. BUG_ON(!root->node); /* -ENOMEM */
  1307. out:
  1308. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1309. root->ref_cows = 1;
  1310. btrfs_check_and_init_root_item(&root->root_item);
  1311. }
  1312. return root;
  1313. }
  1314. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1315. struct btrfs_key *location)
  1316. {
  1317. struct btrfs_root *root;
  1318. int ret;
  1319. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1320. return fs_info->tree_root;
  1321. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1322. return fs_info->extent_root;
  1323. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1324. return fs_info->chunk_root;
  1325. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1326. return fs_info->dev_root;
  1327. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1328. return fs_info->csum_root;
  1329. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1330. return fs_info->quota_root ? fs_info->quota_root :
  1331. ERR_PTR(-ENOENT);
  1332. again:
  1333. spin_lock(&fs_info->fs_roots_radix_lock);
  1334. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1335. (unsigned long)location->objectid);
  1336. spin_unlock(&fs_info->fs_roots_radix_lock);
  1337. if (root)
  1338. return root;
  1339. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1340. if (IS_ERR(root))
  1341. return root;
  1342. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1343. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1344. GFP_NOFS);
  1345. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1346. ret = -ENOMEM;
  1347. goto fail;
  1348. }
  1349. btrfs_init_free_ino_ctl(root);
  1350. mutex_init(&root->fs_commit_mutex);
  1351. spin_lock_init(&root->cache_lock);
  1352. init_waitqueue_head(&root->cache_wait);
  1353. ret = get_anon_bdev(&root->anon_dev);
  1354. if (ret)
  1355. goto fail;
  1356. if (btrfs_root_refs(&root->root_item) == 0) {
  1357. ret = -ENOENT;
  1358. goto fail;
  1359. }
  1360. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1361. if (ret < 0)
  1362. goto fail;
  1363. if (ret == 0)
  1364. root->orphan_item_inserted = 1;
  1365. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1366. if (ret)
  1367. goto fail;
  1368. spin_lock(&fs_info->fs_roots_radix_lock);
  1369. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1370. (unsigned long)root->root_key.objectid,
  1371. root);
  1372. if (ret == 0)
  1373. root->in_radix = 1;
  1374. spin_unlock(&fs_info->fs_roots_radix_lock);
  1375. radix_tree_preload_end();
  1376. if (ret) {
  1377. if (ret == -EEXIST) {
  1378. free_fs_root(root);
  1379. goto again;
  1380. }
  1381. goto fail;
  1382. }
  1383. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1384. root->root_key.objectid);
  1385. WARN_ON(ret);
  1386. return root;
  1387. fail:
  1388. free_fs_root(root);
  1389. return ERR_PTR(ret);
  1390. }
  1391. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1392. {
  1393. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1394. int ret = 0;
  1395. struct btrfs_device *device;
  1396. struct backing_dev_info *bdi;
  1397. rcu_read_lock();
  1398. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1399. if (!device->bdev)
  1400. continue;
  1401. bdi = blk_get_backing_dev_info(device->bdev);
  1402. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1403. ret = 1;
  1404. break;
  1405. }
  1406. }
  1407. rcu_read_unlock();
  1408. return ret;
  1409. }
  1410. /*
  1411. * If this fails, caller must call bdi_destroy() to get rid of the
  1412. * bdi again.
  1413. */
  1414. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1415. {
  1416. int err;
  1417. bdi->capabilities = BDI_CAP_MAP_COPY;
  1418. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1419. if (err)
  1420. return err;
  1421. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1422. bdi->congested_fn = btrfs_congested_fn;
  1423. bdi->congested_data = info;
  1424. return 0;
  1425. }
  1426. /*
  1427. * called by the kthread helper functions to finally call the bio end_io
  1428. * functions. This is where read checksum verification actually happens
  1429. */
  1430. static void end_workqueue_fn(struct btrfs_work *work)
  1431. {
  1432. struct bio *bio;
  1433. struct end_io_wq *end_io_wq;
  1434. struct btrfs_fs_info *fs_info;
  1435. int error;
  1436. end_io_wq = container_of(work, struct end_io_wq, work);
  1437. bio = end_io_wq->bio;
  1438. fs_info = end_io_wq->info;
  1439. error = end_io_wq->error;
  1440. bio->bi_private = end_io_wq->private;
  1441. bio->bi_end_io = end_io_wq->end_io;
  1442. kfree(end_io_wq);
  1443. bio_endio(bio, error);
  1444. }
  1445. static int cleaner_kthread(void *arg)
  1446. {
  1447. struct btrfs_root *root = arg;
  1448. do {
  1449. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1450. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1451. btrfs_run_delayed_iputs(root);
  1452. btrfs_clean_old_snapshots(root);
  1453. mutex_unlock(&root->fs_info->cleaner_mutex);
  1454. btrfs_run_defrag_inodes(root->fs_info);
  1455. }
  1456. if (!try_to_freeze()) {
  1457. set_current_state(TASK_INTERRUPTIBLE);
  1458. if (!kthread_should_stop())
  1459. schedule();
  1460. __set_current_state(TASK_RUNNING);
  1461. }
  1462. } while (!kthread_should_stop());
  1463. return 0;
  1464. }
  1465. static int transaction_kthread(void *arg)
  1466. {
  1467. struct btrfs_root *root = arg;
  1468. struct btrfs_trans_handle *trans;
  1469. struct btrfs_transaction *cur;
  1470. u64 transid;
  1471. unsigned long now;
  1472. unsigned long delay;
  1473. bool cannot_commit;
  1474. do {
  1475. cannot_commit = false;
  1476. delay = HZ * 30;
  1477. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1478. spin_lock(&root->fs_info->trans_lock);
  1479. cur = root->fs_info->running_transaction;
  1480. if (!cur) {
  1481. spin_unlock(&root->fs_info->trans_lock);
  1482. goto sleep;
  1483. }
  1484. now = get_seconds();
  1485. if (!cur->blocked &&
  1486. (now < cur->start_time || now - cur->start_time < 30)) {
  1487. spin_unlock(&root->fs_info->trans_lock);
  1488. delay = HZ * 5;
  1489. goto sleep;
  1490. }
  1491. transid = cur->transid;
  1492. spin_unlock(&root->fs_info->trans_lock);
  1493. /* If the file system is aborted, this will always fail. */
  1494. trans = btrfs_attach_transaction(root);
  1495. if (IS_ERR(trans)) {
  1496. if (PTR_ERR(trans) != -ENOENT)
  1497. cannot_commit = true;
  1498. goto sleep;
  1499. }
  1500. if (transid == trans->transid) {
  1501. btrfs_commit_transaction(trans, root);
  1502. } else {
  1503. btrfs_end_transaction(trans, root);
  1504. }
  1505. sleep:
  1506. wake_up_process(root->fs_info->cleaner_kthread);
  1507. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1508. if (!try_to_freeze()) {
  1509. set_current_state(TASK_INTERRUPTIBLE);
  1510. if (!kthread_should_stop() &&
  1511. (!btrfs_transaction_blocked(root->fs_info) ||
  1512. cannot_commit))
  1513. schedule_timeout(delay);
  1514. __set_current_state(TASK_RUNNING);
  1515. }
  1516. } while (!kthread_should_stop());
  1517. return 0;
  1518. }
  1519. /*
  1520. * this will find the highest generation in the array of
  1521. * root backups. The index of the highest array is returned,
  1522. * or -1 if we can't find anything.
  1523. *
  1524. * We check to make sure the array is valid by comparing the
  1525. * generation of the latest root in the array with the generation
  1526. * in the super block. If they don't match we pitch it.
  1527. */
  1528. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1529. {
  1530. u64 cur;
  1531. int newest_index = -1;
  1532. struct btrfs_root_backup *root_backup;
  1533. int i;
  1534. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1535. root_backup = info->super_copy->super_roots + i;
  1536. cur = btrfs_backup_tree_root_gen(root_backup);
  1537. if (cur == newest_gen)
  1538. newest_index = i;
  1539. }
  1540. /* check to see if we actually wrapped around */
  1541. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1542. root_backup = info->super_copy->super_roots;
  1543. cur = btrfs_backup_tree_root_gen(root_backup);
  1544. if (cur == newest_gen)
  1545. newest_index = 0;
  1546. }
  1547. return newest_index;
  1548. }
  1549. /*
  1550. * find the oldest backup so we know where to store new entries
  1551. * in the backup array. This will set the backup_root_index
  1552. * field in the fs_info struct
  1553. */
  1554. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1555. u64 newest_gen)
  1556. {
  1557. int newest_index = -1;
  1558. newest_index = find_newest_super_backup(info, newest_gen);
  1559. /* if there was garbage in there, just move along */
  1560. if (newest_index == -1) {
  1561. info->backup_root_index = 0;
  1562. } else {
  1563. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1564. }
  1565. }
  1566. /*
  1567. * copy all the root pointers into the super backup array.
  1568. * this will bump the backup pointer by one when it is
  1569. * done
  1570. */
  1571. static void backup_super_roots(struct btrfs_fs_info *info)
  1572. {
  1573. int next_backup;
  1574. struct btrfs_root_backup *root_backup;
  1575. int last_backup;
  1576. next_backup = info->backup_root_index;
  1577. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1578. BTRFS_NUM_BACKUP_ROOTS;
  1579. /*
  1580. * just overwrite the last backup if we're at the same generation
  1581. * this happens only at umount
  1582. */
  1583. root_backup = info->super_for_commit->super_roots + last_backup;
  1584. if (btrfs_backup_tree_root_gen(root_backup) ==
  1585. btrfs_header_generation(info->tree_root->node))
  1586. next_backup = last_backup;
  1587. root_backup = info->super_for_commit->super_roots + next_backup;
  1588. /*
  1589. * make sure all of our padding and empty slots get zero filled
  1590. * regardless of which ones we use today
  1591. */
  1592. memset(root_backup, 0, sizeof(*root_backup));
  1593. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1594. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1595. btrfs_set_backup_tree_root_gen(root_backup,
  1596. btrfs_header_generation(info->tree_root->node));
  1597. btrfs_set_backup_tree_root_level(root_backup,
  1598. btrfs_header_level(info->tree_root->node));
  1599. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1600. btrfs_set_backup_chunk_root_gen(root_backup,
  1601. btrfs_header_generation(info->chunk_root->node));
  1602. btrfs_set_backup_chunk_root_level(root_backup,
  1603. btrfs_header_level(info->chunk_root->node));
  1604. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1605. btrfs_set_backup_extent_root_gen(root_backup,
  1606. btrfs_header_generation(info->extent_root->node));
  1607. btrfs_set_backup_extent_root_level(root_backup,
  1608. btrfs_header_level(info->extent_root->node));
  1609. /*
  1610. * we might commit during log recovery, which happens before we set
  1611. * the fs_root. Make sure it is valid before we fill it in.
  1612. */
  1613. if (info->fs_root && info->fs_root->node) {
  1614. btrfs_set_backup_fs_root(root_backup,
  1615. info->fs_root->node->start);
  1616. btrfs_set_backup_fs_root_gen(root_backup,
  1617. btrfs_header_generation(info->fs_root->node));
  1618. btrfs_set_backup_fs_root_level(root_backup,
  1619. btrfs_header_level(info->fs_root->node));
  1620. }
  1621. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1622. btrfs_set_backup_dev_root_gen(root_backup,
  1623. btrfs_header_generation(info->dev_root->node));
  1624. btrfs_set_backup_dev_root_level(root_backup,
  1625. btrfs_header_level(info->dev_root->node));
  1626. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1627. btrfs_set_backup_csum_root_gen(root_backup,
  1628. btrfs_header_generation(info->csum_root->node));
  1629. btrfs_set_backup_csum_root_level(root_backup,
  1630. btrfs_header_level(info->csum_root->node));
  1631. btrfs_set_backup_total_bytes(root_backup,
  1632. btrfs_super_total_bytes(info->super_copy));
  1633. btrfs_set_backup_bytes_used(root_backup,
  1634. btrfs_super_bytes_used(info->super_copy));
  1635. btrfs_set_backup_num_devices(root_backup,
  1636. btrfs_super_num_devices(info->super_copy));
  1637. /*
  1638. * if we don't copy this out to the super_copy, it won't get remembered
  1639. * for the next commit
  1640. */
  1641. memcpy(&info->super_copy->super_roots,
  1642. &info->super_for_commit->super_roots,
  1643. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1644. }
  1645. /*
  1646. * this copies info out of the root backup array and back into
  1647. * the in-memory super block. It is meant to help iterate through
  1648. * the array, so you send it the number of backups you've already
  1649. * tried and the last backup index you used.
  1650. *
  1651. * this returns -1 when it has tried all the backups
  1652. */
  1653. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1654. struct btrfs_super_block *super,
  1655. int *num_backups_tried, int *backup_index)
  1656. {
  1657. struct btrfs_root_backup *root_backup;
  1658. int newest = *backup_index;
  1659. if (*num_backups_tried == 0) {
  1660. u64 gen = btrfs_super_generation(super);
  1661. newest = find_newest_super_backup(info, gen);
  1662. if (newest == -1)
  1663. return -1;
  1664. *backup_index = newest;
  1665. *num_backups_tried = 1;
  1666. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1667. /* we've tried all the backups, all done */
  1668. return -1;
  1669. } else {
  1670. /* jump to the next oldest backup */
  1671. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1672. BTRFS_NUM_BACKUP_ROOTS;
  1673. *backup_index = newest;
  1674. *num_backups_tried += 1;
  1675. }
  1676. root_backup = super->super_roots + newest;
  1677. btrfs_set_super_generation(super,
  1678. btrfs_backup_tree_root_gen(root_backup));
  1679. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1680. btrfs_set_super_root_level(super,
  1681. btrfs_backup_tree_root_level(root_backup));
  1682. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1683. /*
  1684. * fixme: the total bytes and num_devices need to match or we should
  1685. * need a fsck
  1686. */
  1687. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1688. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1689. return 0;
  1690. }
  1691. /* helper to cleanup tree roots */
  1692. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1693. {
  1694. free_extent_buffer(info->tree_root->node);
  1695. free_extent_buffer(info->tree_root->commit_root);
  1696. free_extent_buffer(info->dev_root->node);
  1697. free_extent_buffer(info->dev_root->commit_root);
  1698. free_extent_buffer(info->extent_root->node);
  1699. free_extent_buffer(info->extent_root->commit_root);
  1700. free_extent_buffer(info->csum_root->node);
  1701. free_extent_buffer(info->csum_root->commit_root);
  1702. if (info->quota_root) {
  1703. free_extent_buffer(info->quota_root->node);
  1704. free_extent_buffer(info->quota_root->commit_root);
  1705. }
  1706. info->tree_root->node = NULL;
  1707. info->tree_root->commit_root = NULL;
  1708. info->dev_root->node = NULL;
  1709. info->dev_root->commit_root = NULL;
  1710. info->extent_root->node = NULL;
  1711. info->extent_root->commit_root = NULL;
  1712. info->csum_root->node = NULL;
  1713. info->csum_root->commit_root = NULL;
  1714. if (info->quota_root) {
  1715. info->quota_root->node = NULL;
  1716. info->quota_root->commit_root = NULL;
  1717. }
  1718. if (chunk_root) {
  1719. free_extent_buffer(info->chunk_root->node);
  1720. free_extent_buffer(info->chunk_root->commit_root);
  1721. info->chunk_root->node = NULL;
  1722. info->chunk_root->commit_root = NULL;
  1723. }
  1724. }
  1725. int open_ctree(struct super_block *sb,
  1726. struct btrfs_fs_devices *fs_devices,
  1727. char *options)
  1728. {
  1729. u32 sectorsize;
  1730. u32 nodesize;
  1731. u32 leafsize;
  1732. u32 blocksize;
  1733. u32 stripesize;
  1734. u64 generation;
  1735. u64 features;
  1736. struct btrfs_key location;
  1737. struct buffer_head *bh;
  1738. struct btrfs_super_block *disk_super;
  1739. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1740. struct btrfs_root *tree_root;
  1741. struct btrfs_root *extent_root;
  1742. struct btrfs_root *csum_root;
  1743. struct btrfs_root *chunk_root;
  1744. struct btrfs_root *dev_root;
  1745. struct btrfs_root *quota_root;
  1746. struct btrfs_root *log_tree_root;
  1747. int ret;
  1748. int err = -EINVAL;
  1749. int num_backups_tried = 0;
  1750. int backup_index = 0;
  1751. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1752. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1753. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1754. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1755. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1756. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1757. if (!tree_root || !extent_root || !csum_root ||
  1758. !chunk_root || !dev_root || !quota_root) {
  1759. err = -ENOMEM;
  1760. goto fail;
  1761. }
  1762. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1763. if (ret) {
  1764. err = ret;
  1765. goto fail;
  1766. }
  1767. ret = setup_bdi(fs_info, &fs_info->bdi);
  1768. if (ret) {
  1769. err = ret;
  1770. goto fail_srcu;
  1771. }
  1772. fs_info->btree_inode = new_inode(sb);
  1773. if (!fs_info->btree_inode) {
  1774. err = -ENOMEM;
  1775. goto fail_bdi;
  1776. }
  1777. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1778. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1779. INIT_LIST_HEAD(&fs_info->trans_list);
  1780. INIT_LIST_HEAD(&fs_info->dead_roots);
  1781. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1782. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1783. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1784. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1785. spin_lock_init(&fs_info->delalloc_lock);
  1786. spin_lock_init(&fs_info->trans_lock);
  1787. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1788. spin_lock_init(&fs_info->delayed_iput_lock);
  1789. spin_lock_init(&fs_info->defrag_inodes_lock);
  1790. spin_lock_init(&fs_info->free_chunk_lock);
  1791. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1792. rwlock_init(&fs_info->tree_mod_log_lock);
  1793. mutex_init(&fs_info->reloc_mutex);
  1794. init_completion(&fs_info->kobj_unregister);
  1795. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1796. INIT_LIST_HEAD(&fs_info->space_info);
  1797. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1798. btrfs_mapping_init(&fs_info->mapping_tree);
  1799. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1800. BTRFS_BLOCK_RSV_GLOBAL);
  1801. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1802. BTRFS_BLOCK_RSV_DELALLOC);
  1803. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1804. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1805. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1806. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1807. BTRFS_BLOCK_RSV_DELOPS);
  1808. atomic_set(&fs_info->nr_async_submits, 0);
  1809. atomic_set(&fs_info->async_delalloc_pages, 0);
  1810. atomic_set(&fs_info->async_submit_draining, 0);
  1811. atomic_set(&fs_info->nr_async_bios, 0);
  1812. atomic_set(&fs_info->defrag_running, 0);
  1813. atomic_set(&fs_info->tree_mod_seq, 0);
  1814. fs_info->sb = sb;
  1815. fs_info->max_inline = 8192 * 1024;
  1816. fs_info->metadata_ratio = 0;
  1817. fs_info->defrag_inodes = RB_ROOT;
  1818. fs_info->trans_no_join = 0;
  1819. fs_info->free_chunk_space = 0;
  1820. fs_info->tree_mod_log = RB_ROOT;
  1821. /* readahead state */
  1822. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1823. spin_lock_init(&fs_info->reada_lock);
  1824. fs_info->thread_pool_size = min_t(unsigned long,
  1825. num_online_cpus() + 2, 8);
  1826. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1827. spin_lock_init(&fs_info->ordered_extent_lock);
  1828. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1829. GFP_NOFS);
  1830. if (!fs_info->delayed_root) {
  1831. err = -ENOMEM;
  1832. goto fail_iput;
  1833. }
  1834. btrfs_init_delayed_root(fs_info->delayed_root);
  1835. mutex_init(&fs_info->scrub_lock);
  1836. atomic_set(&fs_info->scrubs_running, 0);
  1837. atomic_set(&fs_info->scrub_pause_req, 0);
  1838. atomic_set(&fs_info->scrubs_paused, 0);
  1839. atomic_set(&fs_info->scrub_cancel_req, 0);
  1840. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1841. init_rwsem(&fs_info->scrub_super_lock);
  1842. fs_info->scrub_workers_refcnt = 0;
  1843. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1844. fs_info->check_integrity_print_mask = 0;
  1845. #endif
  1846. spin_lock_init(&fs_info->balance_lock);
  1847. mutex_init(&fs_info->balance_mutex);
  1848. atomic_set(&fs_info->balance_running, 0);
  1849. atomic_set(&fs_info->balance_pause_req, 0);
  1850. atomic_set(&fs_info->balance_cancel_req, 0);
  1851. fs_info->balance_ctl = NULL;
  1852. init_waitqueue_head(&fs_info->balance_wait_q);
  1853. sb->s_blocksize = 4096;
  1854. sb->s_blocksize_bits = blksize_bits(4096);
  1855. sb->s_bdi = &fs_info->bdi;
  1856. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1857. set_nlink(fs_info->btree_inode, 1);
  1858. /*
  1859. * we set the i_size on the btree inode to the max possible int.
  1860. * the real end of the address space is determined by all of
  1861. * the devices in the system
  1862. */
  1863. fs_info->btree_inode->i_size = OFFSET_MAX;
  1864. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1865. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1866. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1867. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1868. fs_info->btree_inode->i_mapping);
  1869. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1870. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1871. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1872. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1873. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1874. sizeof(struct btrfs_key));
  1875. set_bit(BTRFS_INODE_DUMMY,
  1876. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1877. insert_inode_hash(fs_info->btree_inode);
  1878. spin_lock_init(&fs_info->block_group_cache_lock);
  1879. fs_info->block_group_cache_tree = RB_ROOT;
  1880. extent_io_tree_init(&fs_info->freed_extents[0],
  1881. fs_info->btree_inode->i_mapping);
  1882. extent_io_tree_init(&fs_info->freed_extents[1],
  1883. fs_info->btree_inode->i_mapping);
  1884. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1885. fs_info->do_barriers = 1;
  1886. mutex_init(&fs_info->ordered_operations_mutex);
  1887. mutex_init(&fs_info->tree_log_mutex);
  1888. mutex_init(&fs_info->chunk_mutex);
  1889. mutex_init(&fs_info->transaction_kthread_mutex);
  1890. mutex_init(&fs_info->cleaner_mutex);
  1891. mutex_init(&fs_info->volume_mutex);
  1892. init_rwsem(&fs_info->extent_commit_sem);
  1893. init_rwsem(&fs_info->cleanup_work_sem);
  1894. init_rwsem(&fs_info->subvol_sem);
  1895. fs_info->dev_replace.lock_owner = 0;
  1896. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1897. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1898. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1899. mutex_init(&fs_info->dev_replace.lock);
  1900. spin_lock_init(&fs_info->qgroup_lock);
  1901. fs_info->qgroup_tree = RB_ROOT;
  1902. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1903. fs_info->qgroup_seq = 1;
  1904. fs_info->quota_enabled = 0;
  1905. fs_info->pending_quota_state = 0;
  1906. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1907. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1908. init_waitqueue_head(&fs_info->transaction_throttle);
  1909. init_waitqueue_head(&fs_info->transaction_wait);
  1910. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1911. init_waitqueue_head(&fs_info->async_submit_wait);
  1912. ret = btrfs_alloc_stripe_hash_table(fs_info);
  1913. if (ret) {
  1914. err = -ENOMEM;
  1915. goto fail_alloc;
  1916. }
  1917. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1918. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1919. invalidate_bdev(fs_devices->latest_bdev);
  1920. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1921. if (!bh) {
  1922. err = -EINVAL;
  1923. goto fail_alloc;
  1924. }
  1925. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1926. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1927. sizeof(*fs_info->super_for_commit));
  1928. brelse(bh);
  1929. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1930. disk_super = fs_info->super_copy;
  1931. if (!btrfs_super_root(disk_super))
  1932. goto fail_alloc;
  1933. /* check FS state, whether FS is broken. */
  1934. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1935. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1936. if (ret) {
  1937. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1938. err = ret;
  1939. goto fail_alloc;
  1940. }
  1941. /*
  1942. * run through our array of backup supers and setup
  1943. * our ring pointer to the oldest one
  1944. */
  1945. generation = btrfs_super_generation(disk_super);
  1946. find_oldest_super_backup(fs_info, generation);
  1947. /*
  1948. * In the long term, we'll store the compression type in the super
  1949. * block, and it'll be used for per file compression control.
  1950. */
  1951. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1952. ret = btrfs_parse_options(tree_root, options);
  1953. if (ret) {
  1954. err = ret;
  1955. goto fail_alloc;
  1956. }
  1957. features = btrfs_super_incompat_flags(disk_super) &
  1958. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1959. if (features) {
  1960. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1961. "unsupported optional features (%Lx).\n",
  1962. (unsigned long long)features);
  1963. err = -EINVAL;
  1964. goto fail_alloc;
  1965. }
  1966. if (btrfs_super_leafsize(disk_super) !=
  1967. btrfs_super_nodesize(disk_super)) {
  1968. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1969. "blocksizes don't match. node %d leaf %d\n",
  1970. btrfs_super_nodesize(disk_super),
  1971. btrfs_super_leafsize(disk_super));
  1972. err = -EINVAL;
  1973. goto fail_alloc;
  1974. }
  1975. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1976. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1977. "blocksize (%d) was too large\n",
  1978. btrfs_super_leafsize(disk_super));
  1979. err = -EINVAL;
  1980. goto fail_alloc;
  1981. }
  1982. features = btrfs_super_incompat_flags(disk_super);
  1983. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1984. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1985. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1986. /*
  1987. * flag our filesystem as having big metadata blocks if
  1988. * they are bigger than the page size
  1989. */
  1990. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1991. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1992. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1993. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1994. }
  1995. nodesize = btrfs_super_nodesize(disk_super);
  1996. leafsize = btrfs_super_leafsize(disk_super);
  1997. sectorsize = btrfs_super_sectorsize(disk_super);
  1998. stripesize = btrfs_super_stripesize(disk_super);
  1999. /*
  2000. * mixed block groups end up with duplicate but slightly offset
  2001. * extent buffers for the same range. It leads to corruptions
  2002. */
  2003. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2004. (sectorsize != leafsize)) {
  2005. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2006. "are not allowed for mixed block groups on %s\n",
  2007. sb->s_id);
  2008. goto fail_alloc;
  2009. }
  2010. btrfs_set_super_incompat_flags(disk_super, features);
  2011. features = btrfs_super_compat_ro_flags(disk_super) &
  2012. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2013. if (!(sb->s_flags & MS_RDONLY) && features) {
  2014. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2015. "unsupported option features (%Lx).\n",
  2016. (unsigned long long)features);
  2017. err = -EINVAL;
  2018. goto fail_alloc;
  2019. }
  2020. btrfs_init_workers(&fs_info->generic_worker,
  2021. "genwork", 1, NULL);
  2022. btrfs_init_workers(&fs_info->workers, "worker",
  2023. fs_info->thread_pool_size,
  2024. &fs_info->generic_worker);
  2025. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2026. fs_info->thread_pool_size,
  2027. &fs_info->generic_worker);
  2028. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2029. fs_info->thread_pool_size,
  2030. &fs_info->generic_worker);
  2031. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2032. min_t(u64, fs_devices->num_devices,
  2033. fs_info->thread_pool_size),
  2034. &fs_info->generic_worker);
  2035. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2036. 2, &fs_info->generic_worker);
  2037. /* a higher idle thresh on the submit workers makes it much more
  2038. * likely that bios will be send down in a sane order to the
  2039. * devices
  2040. */
  2041. fs_info->submit_workers.idle_thresh = 64;
  2042. fs_info->workers.idle_thresh = 16;
  2043. fs_info->workers.ordered = 1;
  2044. fs_info->delalloc_workers.idle_thresh = 2;
  2045. fs_info->delalloc_workers.ordered = 1;
  2046. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2047. &fs_info->generic_worker);
  2048. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2049. fs_info->thread_pool_size,
  2050. &fs_info->generic_worker);
  2051. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2052. fs_info->thread_pool_size,
  2053. &fs_info->generic_worker);
  2054. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2055. "endio-meta-write", fs_info->thread_pool_size,
  2056. &fs_info->generic_worker);
  2057. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2058. "endio-raid56", fs_info->thread_pool_size,
  2059. &fs_info->generic_worker);
  2060. btrfs_init_workers(&fs_info->rmw_workers,
  2061. "rmw", fs_info->thread_pool_size,
  2062. &fs_info->generic_worker);
  2063. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2064. fs_info->thread_pool_size,
  2065. &fs_info->generic_worker);
  2066. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2067. 1, &fs_info->generic_worker);
  2068. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2069. fs_info->thread_pool_size,
  2070. &fs_info->generic_worker);
  2071. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2072. fs_info->thread_pool_size,
  2073. &fs_info->generic_worker);
  2074. /*
  2075. * endios are largely parallel and should have a very
  2076. * low idle thresh
  2077. */
  2078. fs_info->endio_workers.idle_thresh = 4;
  2079. fs_info->endio_meta_workers.idle_thresh = 4;
  2080. fs_info->endio_raid56_workers.idle_thresh = 4;
  2081. fs_info->rmw_workers.idle_thresh = 2;
  2082. fs_info->endio_write_workers.idle_thresh = 2;
  2083. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2084. fs_info->readahead_workers.idle_thresh = 2;
  2085. /*
  2086. * btrfs_start_workers can really only fail because of ENOMEM so just
  2087. * return -ENOMEM if any of these fail.
  2088. */
  2089. ret = btrfs_start_workers(&fs_info->workers);
  2090. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2091. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2092. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2093. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2094. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2095. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2096. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2097. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2098. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2099. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2100. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2101. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2102. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2103. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2104. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2105. if (ret) {
  2106. err = -ENOMEM;
  2107. goto fail_sb_buffer;
  2108. }
  2109. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2110. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2111. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2112. tree_root->nodesize = nodesize;
  2113. tree_root->leafsize = leafsize;
  2114. tree_root->sectorsize = sectorsize;
  2115. tree_root->stripesize = stripesize;
  2116. sb->s_blocksize = sectorsize;
  2117. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2118. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2119. sizeof(disk_super->magic))) {
  2120. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2121. goto fail_sb_buffer;
  2122. }
  2123. if (sectorsize != PAGE_SIZE) {
  2124. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2125. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2126. goto fail_sb_buffer;
  2127. }
  2128. mutex_lock(&fs_info->chunk_mutex);
  2129. ret = btrfs_read_sys_array(tree_root);
  2130. mutex_unlock(&fs_info->chunk_mutex);
  2131. if (ret) {
  2132. printk(KERN_WARNING "btrfs: failed to read the system "
  2133. "array on %s\n", sb->s_id);
  2134. goto fail_sb_buffer;
  2135. }
  2136. blocksize = btrfs_level_size(tree_root,
  2137. btrfs_super_chunk_root_level(disk_super));
  2138. generation = btrfs_super_chunk_root_generation(disk_super);
  2139. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2140. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2141. chunk_root->node = read_tree_block(chunk_root,
  2142. btrfs_super_chunk_root(disk_super),
  2143. blocksize, generation);
  2144. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2145. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2146. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2147. sb->s_id);
  2148. goto fail_tree_roots;
  2149. }
  2150. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2151. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2152. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2153. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2154. BTRFS_UUID_SIZE);
  2155. ret = btrfs_read_chunk_tree(chunk_root);
  2156. if (ret) {
  2157. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2158. sb->s_id);
  2159. goto fail_tree_roots;
  2160. }
  2161. /*
  2162. * keep the device that is marked to be the target device for the
  2163. * dev_replace procedure
  2164. */
  2165. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2166. if (!fs_devices->latest_bdev) {
  2167. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2168. sb->s_id);
  2169. goto fail_tree_roots;
  2170. }
  2171. retry_root_backup:
  2172. blocksize = btrfs_level_size(tree_root,
  2173. btrfs_super_root_level(disk_super));
  2174. generation = btrfs_super_generation(disk_super);
  2175. tree_root->node = read_tree_block(tree_root,
  2176. btrfs_super_root(disk_super),
  2177. blocksize, generation);
  2178. if (!tree_root->node ||
  2179. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2180. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2181. sb->s_id);
  2182. goto recovery_tree_root;
  2183. }
  2184. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2185. tree_root->commit_root = btrfs_root_node(tree_root);
  2186. ret = find_and_setup_root(tree_root, fs_info,
  2187. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2188. if (ret)
  2189. goto recovery_tree_root;
  2190. extent_root->track_dirty = 1;
  2191. ret = find_and_setup_root(tree_root, fs_info,
  2192. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2193. if (ret)
  2194. goto recovery_tree_root;
  2195. dev_root->track_dirty = 1;
  2196. ret = find_and_setup_root(tree_root, fs_info,
  2197. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2198. if (ret)
  2199. goto recovery_tree_root;
  2200. csum_root->track_dirty = 1;
  2201. ret = find_and_setup_root(tree_root, fs_info,
  2202. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2203. if (ret) {
  2204. kfree(quota_root);
  2205. quota_root = fs_info->quota_root = NULL;
  2206. } else {
  2207. quota_root->track_dirty = 1;
  2208. fs_info->quota_enabled = 1;
  2209. fs_info->pending_quota_state = 1;
  2210. }
  2211. fs_info->generation = generation;
  2212. fs_info->last_trans_committed = generation;
  2213. ret = btrfs_recover_balance(fs_info);
  2214. if (ret) {
  2215. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2216. goto fail_block_groups;
  2217. }
  2218. ret = btrfs_init_dev_stats(fs_info);
  2219. if (ret) {
  2220. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2221. ret);
  2222. goto fail_block_groups;
  2223. }
  2224. ret = btrfs_init_dev_replace(fs_info);
  2225. if (ret) {
  2226. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2227. goto fail_block_groups;
  2228. }
  2229. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2230. ret = btrfs_init_space_info(fs_info);
  2231. if (ret) {
  2232. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2233. goto fail_block_groups;
  2234. }
  2235. ret = btrfs_read_block_groups(extent_root);
  2236. if (ret) {
  2237. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2238. goto fail_block_groups;
  2239. }
  2240. fs_info->num_tolerated_disk_barrier_failures =
  2241. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2242. if (fs_info->fs_devices->missing_devices >
  2243. fs_info->num_tolerated_disk_barrier_failures &&
  2244. !(sb->s_flags & MS_RDONLY)) {
  2245. printk(KERN_WARNING
  2246. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2247. goto fail_block_groups;
  2248. }
  2249. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2250. "btrfs-cleaner");
  2251. if (IS_ERR(fs_info->cleaner_kthread))
  2252. goto fail_block_groups;
  2253. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2254. tree_root,
  2255. "btrfs-transaction");
  2256. if (IS_ERR(fs_info->transaction_kthread))
  2257. goto fail_cleaner;
  2258. if (!btrfs_test_opt(tree_root, SSD) &&
  2259. !btrfs_test_opt(tree_root, NOSSD) &&
  2260. !fs_info->fs_devices->rotating) {
  2261. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2262. "mode\n");
  2263. btrfs_set_opt(fs_info->mount_opt, SSD);
  2264. }
  2265. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2266. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2267. ret = btrfsic_mount(tree_root, fs_devices,
  2268. btrfs_test_opt(tree_root,
  2269. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2270. 1 : 0,
  2271. fs_info->check_integrity_print_mask);
  2272. if (ret)
  2273. printk(KERN_WARNING "btrfs: failed to initialize"
  2274. " integrity check module %s\n", sb->s_id);
  2275. }
  2276. #endif
  2277. ret = btrfs_read_qgroup_config(fs_info);
  2278. if (ret)
  2279. goto fail_trans_kthread;
  2280. /* do not make disk changes in broken FS */
  2281. if (btrfs_super_log_root(disk_super) != 0) {
  2282. u64 bytenr = btrfs_super_log_root(disk_super);
  2283. if (fs_devices->rw_devices == 0) {
  2284. printk(KERN_WARNING "Btrfs log replay required "
  2285. "on RO media\n");
  2286. err = -EIO;
  2287. goto fail_qgroup;
  2288. }
  2289. blocksize =
  2290. btrfs_level_size(tree_root,
  2291. btrfs_super_log_root_level(disk_super));
  2292. log_tree_root = btrfs_alloc_root(fs_info);
  2293. if (!log_tree_root) {
  2294. err = -ENOMEM;
  2295. goto fail_qgroup;
  2296. }
  2297. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2298. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2299. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2300. blocksize,
  2301. generation + 1);
  2302. /* returns with log_tree_root freed on success */
  2303. ret = btrfs_recover_log_trees(log_tree_root);
  2304. if (ret) {
  2305. btrfs_error(tree_root->fs_info, ret,
  2306. "Failed to recover log tree");
  2307. free_extent_buffer(log_tree_root->node);
  2308. kfree(log_tree_root);
  2309. goto fail_trans_kthread;
  2310. }
  2311. if (sb->s_flags & MS_RDONLY) {
  2312. ret = btrfs_commit_super(tree_root);
  2313. if (ret)
  2314. goto fail_trans_kthread;
  2315. }
  2316. }
  2317. ret = btrfs_find_orphan_roots(tree_root);
  2318. if (ret)
  2319. goto fail_trans_kthread;
  2320. if (!(sb->s_flags & MS_RDONLY)) {
  2321. ret = btrfs_cleanup_fs_roots(fs_info);
  2322. if (ret)
  2323. goto fail_trans_kthread;
  2324. ret = btrfs_recover_relocation(tree_root);
  2325. if (ret < 0) {
  2326. printk(KERN_WARNING
  2327. "btrfs: failed to recover relocation\n");
  2328. err = -EINVAL;
  2329. goto fail_qgroup;
  2330. }
  2331. }
  2332. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2333. location.type = BTRFS_ROOT_ITEM_KEY;
  2334. location.offset = (u64)-1;
  2335. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2336. if (!fs_info->fs_root)
  2337. goto fail_qgroup;
  2338. if (IS_ERR(fs_info->fs_root)) {
  2339. err = PTR_ERR(fs_info->fs_root);
  2340. goto fail_qgroup;
  2341. }
  2342. if (sb->s_flags & MS_RDONLY)
  2343. return 0;
  2344. down_read(&fs_info->cleanup_work_sem);
  2345. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2346. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2347. up_read(&fs_info->cleanup_work_sem);
  2348. close_ctree(tree_root);
  2349. return ret;
  2350. }
  2351. up_read(&fs_info->cleanup_work_sem);
  2352. ret = btrfs_resume_balance_async(fs_info);
  2353. if (ret) {
  2354. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2355. close_ctree(tree_root);
  2356. return ret;
  2357. }
  2358. ret = btrfs_resume_dev_replace_async(fs_info);
  2359. if (ret) {
  2360. pr_warn("btrfs: failed to resume dev_replace\n");
  2361. close_ctree(tree_root);
  2362. return ret;
  2363. }
  2364. return 0;
  2365. fail_qgroup:
  2366. btrfs_free_qgroup_config(fs_info);
  2367. fail_trans_kthread:
  2368. kthread_stop(fs_info->transaction_kthread);
  2369. fail_cleaner:
  2370. kthread_stop(fs_info->cleaner_kthread);
  2371. /*
  2372. * make sure we're done with the btree inode before we stop our
  2373. * kthreads
  2374. */
  2375. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2376. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2377. fail_block_groups:
  2378. btrfs_free_block_groups(fs_info);
  2379. fail_tree_roots:
  2380. free_root_pointers(fs_info, 1);
  2381. fail_sb_buffer:
  2382. btrfs_stop_workers(&fs_info->generic_worker);
  2383. btrfs_stop_workers(&fs_info->readahead_workers);
  2384. btrfs_stop_workers(&fs_info->fixup_workers);
  2385. btrfs_stop_workers(&fs_info->delalloc_workers);
  2386. btrfs_stop_workers(&fs_info->workers);
  2387. btrfs_stop_workers(&fs_info->endio_workers);
  2388. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2389. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  2390. btrfs_stop_workers(&fs_info->rmw_workers);
  2391. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2392. btrfs_stop_workers(&fs_info->endio_write_workers);
  2393. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2394. btrfs_stop_workers(&fs_info->submit_workers);
  2395. btrfs_stop_workers(&fs_info->delayed_workers);
  2396. btrfs_stop_workers(&fs_info->caching_workers);
  2397. btrfs_stop_workers(&fs_info->flush_workers);
  2398. fail_alloc:
  2399. fail_iput:
  2400. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2401. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2402. iput(fs_info->btree_inode);
  2403. fail_bdi:
  2404. bdi_destroy(&fs_info->bdi);
  2405. fail_srcu:
  2406. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2407. fail:
  2408. btrfs_free_stripe_hash_table(fs_info);
  2409. btrfs_close_devices(fs_info->fs_devices);
  2410. return err;
  2411. recovery_tree_root:
  2412. if (!btrfs_test_opt(tree_root, RECOVERY))
  2413. goto fail_tree_roots;
  2414. free_root_pointers(fs_info, 0);
  2415. /* don't use the log in recovery mode, it won't be valid */
  2416. btrfs_set_super_log_root(disk_super, 0);
  2417. /* we can't trust the free space cache either */
  2418. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2419. ret = next_root_backup(fs_info, fs_info->super_copy,
  2420. &num_backups_tried, &backup_index);
  2421. if (ret == -1)
  2422. goto fail_block_groups;
  2423. goto retry_root_backup;
  2424. }
  2425. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2426. {
  2427. if (uptodate) {
  2428. set_buffer_uptodate(bh);
  2429. } else {
  2430. struct btrfs_device *device = (struct btrfs_device *)
  2431. bh->b_private;
  2432. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2433. "I/O error on %s\n",
  2434. rcu_str_deref(device->name));
  2435. /* note, we dont' set_buffer_write_io_error because we have
  2436. * our own ways of dealing with the IO errors
  2437. */
  2438. clear_buffer_uptodate(bh);
  2439. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2440. }
  2441. unlock_buffer(bh);
  2442. put_bh(bh);
  2443. }
  2444. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2445. {
  2446. struct buffer_head *bh;
  2447. struct buffer_head *latest = NULL;
  2448. struct btrfs_super_block *super;
  2449. int i;
  2450. u64 transid = 0;
  2451. u64 bytenr;
  2452. /* we would like to check all the supers, but that would make
  2453. * a btrfs mount succeed after a mkfs from a different FS.
  2454. * So, we need to add a special mount option to scan for
  2455. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2456. */
  2457. for (i = 0; i < 1; i++) {
  2458. bytenr = btrfs_sb_offset(i);
  2459. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2460. break;
  2461. bh = __bread(bdev, bytenr / 4096, 4096);
  2462. if (!bh)
  2463. continue;
  2464. super = (struct btrfs_super_block *)bh->b_data;
  2465. if (btrfs_super_bytenr(super) != bytenr ||
  2466. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2467. sizeof(super->magic))) {
  2468. brelse(bh);
  2469. continue;
  2470. }
  2471. if (!latest || btrfs_super_generation(super) > transid) {
  2472. brelse(latest);
  2473. latest = bh;
  2474. transid = btrfs_super_generation(super);
  2475. } else {
  2476. brelse(bh);
  2477. }
  2478. }
  2479. return latest;
  2480. }
  2481. /*
  2482. * this should be called twice, once with wait == 0 and
  2483. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2484. * we write are pinned.
  2485. *
  2486. * They are released when wait == 1 is done.
  2487. * max_mirrors must be the same for both runs, and it indicates how
  2488. * many supers on this one device should be written.
  2489. *
  2490. * max_mirrors == 0 means to write them all.
  2491. */
  2492. static int write_dev_supers(struct btrfs_device *device,
  2493. struct btrfs_super_block *sb,
  2494. int do_barriers, int wait, int max_mirrors)
  2495. {
  2496. struct buffer_head *bh;
  2497. int i;
  2498. int ret;
  2499. int errors = 0;
  2500. u32 crc;
  2501. u64 bytenr;
  2502. if (max_mirrors == 0)
  2503. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2504. for (i = 0; i < max_mirrors; i++) {
  2505. bytenr = btrfs_sb_offset(i);
  2506. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2507. break;
  2508. if (wait) {
  2509. bh = __find_get_block(device->bdev, bytenr / 4096,
  2510. BTRFS_SUPER_INFO_SIZE);
  2511. BUG_ON(!bh);
  2512. wait_on_buffer(bh);
  2513. if (!buffer_uptodate(bh))
  2514. errors++;
  2515. /* drop our reference */
  2516. brelse(bh);
  2517. /* drop the reference from the wait == 0 run */
  2518. brelse(bh);
  2519. continue;
  2520. } else {
  2521. btrfs_set_super_bytenr(sb, bytenr);
  2522. crc = ~(u32)0;
  2523. crc = btrfs_csum_data(NULL, (char *)sb +
  2524. BTRFS_CSUM_SIZE, crc,
  2525. BTRFS_SUPER_INFO_SIZE -
  2526. BTRFS_CSUM_SIZE);
  2527. btrfs_csum_final(crc, sb->csum);
  2528. /*
  2529. * one reference for us, and we leave it for the
  2530. * caller
  2531. */
  2532. bh = __getblk(device->bdev, bytenr / 4096,
  2533. BTRFS_SUPER_INFO_SIZE);
  2534. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2535. /* one reference for submit_bh */
  2536. get_bh(bh);
  2537. set_buffer_uptodate(bh);
  2538. lock_buffer(bh);
  2539. bh->b_end_io = btrfs_end_buffer_write_sync;
  2540. bh->b_private = device;
  2541. }
  2542. /*
  2543. * we fua the first super. The others we allow
  2544. * to go down lazy.
  2545. */
  2546. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2547. if (ret)
  2548. errors++;
  2549. }
  2550. return errors < i ? 0 : -1;
  2551. }
  2552. /*
  2553. * endio for the write_dev_flush, this will wake anyone waiting
  2554. * for the barrier when it is done
  2555. */
  2556. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2557. {
  2558. if (err) {
  2559. if (err == -EOPNOTSUPP)
  2560. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2561. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2562. }
  2563. if (bio->bi_private)
  2564. complete(bio->bi_private);
  2565. bio_put(bio);
  2566. }
  2567. /*
  2568. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2569. * sent down. With wait == 1, it waits for the previous flush.
  2570. *
  2571. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2572. * capable
  2573. */
  2574. static int write_dev_flush(struct btrfs_device *device, int wait)
  2575. {
  2576. struct bio *bio;
  2577. int ret = 0;
  2578. if (device->nobarriers)
  2579. return 0;
  2580. if (wait) {
  2581. bio = device->flush_bio;
  2582. if (!bio)
  2583. return 0;
  2584. wait_for_completion(&device->flush_wait);
  2585. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2586. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2587. rcu_str_deref(device->name));
  2588. device->nobarriers = 1;
  2589. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2590. ret = -EIO;
  2591. btrfs_dev_stat_inc_and_print(device,
  2592. BTRFS_DEV_STAT_FLUSH_ERRS);
  2593. }
  2594. /* drop the reference from the wait == 0 run */
  2595. bio_put(bio);
  2596. device->flush_bio = NULL;
  2597. return ret;
  2598. }
  2599. /*
  2600. * one reference for us, and we leave it for the
  2601. * caller
  2602. */
  2603. device->flush_bio = NULL;
  2604. bio = bio_alloc(GFP_NOFS, 0);
  2605. if (!bio)
  2606. return -ENOMEM;
  2607. bio->bi_end_io = btrfs_end_empty_barrier;
  2608. bio->bi_bdev = device->bdev;
  2609. init_completion(&device->flush_wait);
  2610. bio->bi_private = &device->flush_wait;
  2611. device->flush_bio = bio;
  2612. bio_get(bio);
  2613. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2614. return 0;
  2615. }
  2616. /*
  2617. * send an empty flush down to each device in parallel,
  2618. * then wait for them
  2619. */
  2620. static int barrier_all_devices(struct btrfs_fs_info *info)
  2621. {
  2622. struct list_head *head;
  2623. struct btrfs_device *dev;
  2624. int errors_send = 0;
  2625. int errors_wait = 0;
  2626. int ret;
  2627. /* send down all the barriers */
  2628. head = &info->fs_devices->devices;
  2629. list_for_each_entry_rcu(dev, head, dev_list) {
  2630. if (!dev->bdev) {
  2631. errors_send++;
  2632. continue;
  2633. }
  2634. if (!dev->in_fs_metadata || !dev->writeable)
  2635. continue;
  2636. ret = write_dev_flush(dev, 0);
  2637. if (ret)
  2638. errors_send++;
  2639. }
  2640. /* wait for all the barriers */
  2641. list_for_each_entry_rcu(dev, head, dev_list) {
  2642. if (!dev->bdev) {
  2643. errors_wait++;
  2644. continue;
  2645. }
  2646. if (!dev->in_fs_metadata || !dev->writeable)
  2647. continue;
  2648. ret = write_dev_flush(dev, 1);
  2649. if (ret)
  2650. errors_wait++;
  2651. }
  2652. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2653. errors_wait > info->num_tolerated_disk_barrier_failures)
  2654. return -EIO;
  2655. return 0;
  2656. }
  2657. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2658. struct btrfs_fs_info *fs_info)
  2659. {
  2660. struct btrfs_ioctl_space_info space;
  2661. struct btrfs_space_info *sinfo;
  2662. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2663. BTRFS_BLOCK_GROUP_SYSTEM,
  2664. BTRFS_BLOCK_GROUP_METADATA,
  2665. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2666. int num_types = 4;
  2667. int i;
  2668. int c;
  2669. int num_tolerated_disk_barrier_failures =
  2670. (int)fs_info->fs_devices->num_devices;
  2671. for (i = 0; i < num_types; i++) {
  2672. struct btrfs_space_info *tmp;
  2673. sinfo = NULL;
  2674. rcu_read_lock();
  2675. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2676. if (tmp->flags == types[i]) {
  2677. sinfo = tmp;
  2678. break;
  2679. }
  2680. }
  2681. rcu_read_unlock();
  2682. if (!sinfo)
  2683. continue;
  2684. down_read(&sinfo->groups_sem);
  2685. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2686. if (!list_empty(&sinfo->block_groups[c])) {
  2687. u64 flags;
  2688. btrfs_get_block_group_info(
  2689. &sinfo->block_groups[c], &space);
  2690. if (space.total_bytes == 0 ||
  2691. space.used_bytes == 0)
  2692. continue;
  2693. flags = space.flags;
  2694. /*
  2695. * return
  2696. * 0: if dup, single or RAID0 is configured for
  2697. * any of metadata, system or data, else
  2698. * 1: if RAID5 is configured, or if RAID1 or
  2699. * RAID10 is configured and only two mirrors
  2700. * are used, else
  2701. * 2: if RAID6 is configured, else
  2702. * num_mirrors - 1: if RAID1 or RAID10 is
  2703. * configured and more than
  2704. * 2 mirrors are used.
  2705. */
  2706. if (num_tolerated_disk_barrier_failures > 0 &&
  2707. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2708. BTRFS_BLOCK_GROUP_RAID0)) ||
  2709. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2710. == 0)))
  2711. num_tolerated_disk_barrier_failures = 0;
  2712. else if (num_tolerated_disk_barrier_failures > 1) {
  2713. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2714. BTRFS_BLOCK_GROUP_RAID5 |
  2715. BTRFS_BLOCK_GROUP_RAID10)) {
  2716. num_tolerated_disk_barrier_failures = 1;
  2717. } else if (flags &
  2718. BTRFS_BLOCK_GROUP_RAID5) {
  2719. num_tolerated_disk_barrier_failures = 2;
  2720. }
  2721. }
  2722. }
  2723. }
  2724. up_read(&sinfo->groups_sem);
  2725. }
  2726. return num_tolerated_disk_barrier_failures;
  2727. }
  2728. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2729. {
  2730. struct list_head *head;
  2731. struct btrfs_device *dev;
  2732. struct btrfs_super_block *sb;
  2733. struct btrfs_dev_item *dev_item;
  2734. int ret;
  2735. int do_barriers;
  2736. int max_errors;
  2737. int total_errors = 0;
  2738. u64 flags;
  2739. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2740. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2741. backup_super_roots(root->fs_info);
  2742. sb = root->fs_info->super_for_commit;
  2743. dev_item = &sb->dev_item;
  2744. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2745. head = &root->fs_info->fs_devices->devices;
  2746. if (do_barriers) {
  2747. ret = barrier_all_devices(root->fs_info);
  2748. if (ret) {
  2749. mutex_unlock(
  2750. &root->fs_info->fs_devices->device_list_mutex);
  2751. btrfs_error(root->fs_info, ret,
  2752. "errors while submitting device barriers.");
  2753. return ret;
  2754. }
  2755. }
  2756. list_for_each_entry_rcu(dev, head, dev_list) {
  2757. if (!dev->bdev) {
  2758. total_errors++;
  2759. continue;
  2760. }
  2761. if (!dev->in_fs_metadata || !dev->writeable)
  2762. continue;
  2763. btrfs_set_stack_device_generation(dev_item, 0);
  2764. btrfs_set_stack_device_type(dev_item, dev->type);
  2765. btrfs_set_stack_device_id(dev_item, dev->devid);
  2766. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2767. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2768. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2769. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2770. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2771. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2772. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2773. flags = btrfs_super_flags(sb);
  2774. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2775. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2776. if (ret)
  2777. total_errors++;
  2778. }
  2779. if (total_errors > max_errors) {
  2780. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2781. total_errors);
  2782. /* This shouldn't happen. FUA is masked off if unsupported */
  2783. BUG();
  2784. }
  2785. total_errors = 0;
  2786. list_for_each_entry_rcu(dev, head, dev_list) {
  2787. if (!dev->bdev)
  2788. continue;
  2789. if (!dev->in_fs_metadata || !dev->writeable)
  2790. continue;
  2791. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2792. if (ret)
  2793. total_errors++;
  2794. }
  2795. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2796. if (total_errors > max_errors) {
  2797. btrfs_error(root->fs_info, -EIO,
  2798. "%d errors while writing supers", total_errors);
  2799. return -EIO;
  2800. }
  2801. return 0;
  2802. }
  2803. int write_ctree_super(struct btrfs_trans_handle *trans,
  2804. struct btrfs_root *root, int max_mirrors)
  2805. {
  2806. int ret;
  2807. ret = write_all_supers(root, max_mirrors);
  2808. return ret;
  2809. }
  2810. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2811. {
  2812. spin_lock(&fs_info->fs_roots_radix_lock);
  2813. radix_tree_delete(&fs_info->fs_roots_radix,
  2814. (unsigned long)root->root_key.objectid);
  2815. spin_unlock(&fs_info->fs_roots_radix_lock);
  2816. if (btrfs_root_refs(&root->root_item) == 0)
  2817. synchronize_srcu(&fs_info->subvol_srcu);
  2818. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2819. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2820. free_fs_root(root);
  2821. }
  2822. static void free_fs_root(struct btrfs_root *root)
  2823. {
  2824. iput(root->cache_inode);
  2825. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2826. if (root->anon_dev)
  2827. free_anon_bdev(root->anon_dev);
  2828. free_extent_buffer(root->node);
  2829. free_extent_buffer(root->commit_root);
  2830. kfree(root->free_ino_ctl);
  2831. kfree(root->free_ino_pinned);
  2832. kfree(root->name);
  2833. kfree(root);
  2834. }
  2835. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2836. {
  2837. int ret;
  2838. struct btrfs_root *gang[8];
  2839. int i;
  2840. while (!list_empty(&fs_info->dead_roots)) {
  2841. gang[0] = list_entry(fs_info->dead_roots.next,
  2842. struct btrfs_root, root_list);
  2843. list_del(&gang[0]->root_list);
  2844. if (gang[0]->in_radix) {
  2845. btrfs_free_fs_root(fs_info, gang[0]);
  2846. } else {
  2847. free_extent_buffer(gang[0]->node);
  2848. free_extent_buffer(gang[0]->commit_root);
  2849. kfree(gang[0]);
  2850. }
  2851. }
  2852. while (1) {
  2853. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2854. (void **)gang, 0,
  2855. ARRAY_SIZE(gang));
  2856. if (!ret)
  2857. break;
  2858. for (i = 0; i < ret; i++)
  2859. btrfs_free_fs_root(fs_info, gang[i]);
  2860. }
  2861. }
  2862. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2863. {
  2864. u64 root_objectid = 0;
  2865. struct btrfs_root *gang[8];
  2866. int i;
  2867. int ret;
  2868. while (1) {
  2869. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2870. (void **)gang, root_objectid,
  2871. ARRAY_SIZE(gang));
  2872. if (!ret)
  2873. break;
  2874. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2875. for (i = 0; i < ret; i++) {
  2876. int err;
  2877. root_objectid = gang[i]->root_key.objectid;
  2878. err = btrfs_orphan_cleanup(gang[i]);
  2879. if (err)
  2880. return err;
  2881. }
  2882. root_objectid++;
  2883. }
  2884. return 0;
  2885. }
  2886. int btrfs_commit_super(struct btrfs_root *root)
  2887. {
  2888. struct btrfs_trans_handle *trans;
  2889. int ret;
  2890. mutex_lock(&root->fs_info->cleaner_mutex);
  2891. btrfs_run_delayed_iputs(root);
  2892. btrfs_clean_old_snapshots(root);
  2893. mutex_unlock(&root->fs_info->cleaner_mutex);
  2894. /* wait until ongoing cleanup work done */
  2895. down_write(&root->fs_info->cleanup_work_sem);
  2896. up_write(&root->fs_info->cleanup_work_sem);
  2897. trans = btrfs_join_transaction(root);
  2898. if (IS_ERR(trans))
  2899. return PTR_ERR(trans);
  2900. ret = btrfs_commit_transaction(trans, root);
  2901. if (ret)
  2902. return ret;
  2903. /* run commit again to drop the original snapshot */
  2904. trans = btrfs_join_transaction(root);
  2905. if (IS_ERR(trans))
  2906. return PTR_ERR(trans);
  2907. ret = btrfs_commit_transaction(trans, root);
  2908. if (ret)
  2909. return ret;
  2910. ret = btrfs_write_and_wait_transaction(NULL, root);
  2911. if (ret) {
  2912. btrfs_error(root->fs_info, ret,
  2913. "Failed to sync btree inode to disk.");
  2914. return ret;
  2915. }
  2916. ret = write_ctree_super(NULL, root, 0);
  2917. return ret;
  2918. }
  2919. int close_ctree(struct btrfs_root *root)
  2920. {
  2921. struct btrfs_fs_info *fs_info = root->fs_info;
  2922. int ret;
  2923. fs_info->closing = 1;
  2924. smp_mb();
  2925. /* pause restriper - we want to resume on mount */
  2926. btrfs_pause_balance(fs_info);
  2927. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2928. btrfs_scrub_cancel(fs_info);
  2929. /* wait for any defraggers to finish */
  2930. wait_event(fs_info->transaction_wait,
  2931. (atomic_read(&fs_info->defrag_running) == 0));
  2932. /* clear out the rbtree of defraggable inodes */
  2933. btrfs_cleanup_defrag_inodes(fs_info);
  2934. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2935. ret = btrfs_commit_super(root);
  2936. if (ret)
  2937. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2938. }
  2939. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2940. btrfs_error_commit_super(root);
  2941. btrfs_put_block_group_cache(fs_info);
  2942. kthread_stop(fs_info->transaction_kthread);
  2943. kthread_stop(fs_info->cleaner_kthread);
  2944. fs_info->closing = 2;
  2945. smp_mb();
  2946. btrfs_free_qgroup_config(root->fs_info);
  2947. if (fs_info->delalloc_bytes) {
  2948. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2949. (unsigned long long)fs_info->delalloc_bytes);
  2950. }
  2951. free_extent_buffer(fs_info->extent_root->node);
  2952. free_extent_buffer(fs_info->extent_root->commit_root);
  2953. free_extent_buffer(fs_info->tree_root->node);
  2954. free_extent_buffer(fs_info->tree_root->commit_root);
  2955. free_extent_buffer(fs_info->chunk_root->node);
  2956. free_extent_buffer(fs_info->chunk_root->commit_root);
  2957. free_extent_buffer(fs_info->dev_root->node);
  2958. free_extent_buffer(fs_info->dev_root->commit_root);
  2959. free_extent_buffer(fs_info->csum_root->node);
  2960. free_extent_buffer(fs_info->csum_root->commit_root);
  2961. if (fs_info->quota_root) {
  2962. free_extent_buffer(fs_info->quota_root->node);
  2963. free_extent_buffer(fs_info->quota_root->commit_root);
  2964. }
  2965. btrfs_free_block_groups(fs_info);
  2966. del_fs_roots(fs_info);
  2967. iput(fs_info->btree_inode);
  2968. btrfs_stop_workers(&fs_info->generic_worker);
  2969. btrfs_stop_workers(&fs_info->fixup_workers);
  2970. btrfs_stop_workers(&fs_info->delalloc_workers);
  2971. btrfs_stop_workers(&fs_info->workers);
  2972. btrfs_stop_workers(&fs_info->endio_workers);
  2973. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2974. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  2975. btrfs_stop_workers(&fs_info->rmw_workers);
  2976. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2977. btrfs_stop_workers(&fs_info->endio_write_workers);
  2978. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2979. btrfs_stop_workers(&fs_info->submit_workers);
  2980. btrfs_stop_workers(&fs_info->delayed_workers);
  2981. btrfs_stop_workers(&fs_info->caching_workers);
  2982. btrfs_stop_workers(&fs_info->readahead_workers);
  2983. btrfs_stop_workers(&fs_info->flush_workers);
  2984. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2985. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2986. btrfsic_unmount(root, fs_info->fs_devices);
  2987. #endif
  2988. btrfs_close_devices(fs_info->fs_devices);
  2989. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2990. bdi_destroy(&fs_info->bdi);
  2991. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2992. btrfs_free_stripe_hash_table(fs_info);
  2993. return 0;
  2994. }
  2995. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2996. int atomic)
  2997. {
  2998. int ret;
  2999. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3000. ret = extent_buffer_uptodate(buf);
  3001. if (!ret)
  3002. return ret;
  3003. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3004. parent_transid, atomic);
  3005. if (ret == -EAGAIN)
  3006. return ret;
  3007. return !ret;
  3008. }
  3009. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3010. {
  3011. return set_extent_buffer_uptodate(buf);
  3012. }
  3013. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3014. {
  3015. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3016. u64 transid = btrfs_header_generation(buf);
  3017. int was_dirty;
  3018. btrfs_assert_tree_locked(buf);
  3019. if (transid != root->fs_info->generation)
  3020. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3021. "found %llu running %llu\n",
  3022. (unsigned long long)buf->start,
  3023. (unsigned long long)transid,
  3024. (unsigned long long)root->fs_info->generation);
  3025. was_dirty = set_extent_buffer_dirty(buf);
  3026. if (!was_dirty) {
  3027. spin_lock(&root->fs_info->delalloc_lock);
  3028. root->fs_info->dirty_metadata_bytes += buf->len;
  3029. spin_unlock(&root->fs_info->delalloc_lock);
  3030. }
  3031. }
  3032. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3033. int flush_delayed)
  3034. {
  3035. /*
  3036. * looks as though older kernels can get into trouble with
  3037. * this code, they end up stuck in balance_dirty_pages forever
  3038. */
  3039. u64 num_dirty;
  3040. unsigned long thresh = 32 * 1024 * 1024;
  3041. if (current->flags & PF_MEMALLOC)
  3042. return;
  3043. if (flush_delayed)
  3044. btrfs_balance_delayed_items(root);
  3045. num_dirty = root->fs_info->dirty_metadata_bytes;
  3046. if (num_dirty > thresh) {
  3047. balance_dirty_pages_ratelimited_nr(
  3048. root->fs_info->btree_inode->i_mapping, 1);
  3049. }
  3050. return;
  3051. }
  3052. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3053. {
  3054. __btrfs_btree_balance_dirty(root, 1);
  3055. }
  3056. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3057. {
  3058. __btrfs_btree_balance_dirty(root, 0);
  3059. }
  3060. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3061. {
  3062. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3063. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3064. }
  3065. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3066. int read_only)
  3067. {
  3068. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3069. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3070. return -EINVAL;
  3071. }
  3072. if (read_only)
  3073. return 0;
  3074. return 0;
  3075. }
  3076. void btrfs_error_commit_super(struct btrfs_root *root)
  3077. {
  3078. mutex_lock(&root->fs_info->cleaner_mutex);
  3079. btrfs_run_delayed_iputs(root);
  3080. mutex_unlock(&root->fs_info->cleaner_mutex);
  3081. down_write(&root->fs_info->cleanup_work_sem);
  3082. up_write(&root->fs_info->cleanup_work_sem);
  3083. /* cleanup FS via transaction */
  3084. btrfs_cleanup_transaction(root);
  3085. }
  3086. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  3087. {
  3088. struct btrfs_inode *btrfs_inode;
  3089. struct list_head splice;
  3090. INIT_LIST_HEAD(&splice);
  3091. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3092. spin_lock(&root->fs_info->ordered_extent_lock);
  3093. list_splice_init(&root->fs_info->ordered_operations, &splice);
  3094. while (!list_empty(&splice)) {
  3095. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3096. ordered_operations);
  3097. list_del_init(&btrfs_inode->ordered_operations);
  3098. btrfs_invalidate_inodes(btrfs_inode->root);
  3099. }
  3100. spin_unlock(&root->fs_info->ordered_extent_lock);
  3101. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3102. }
  3103. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3104. {
  3105. struct list_head splice;
  3106. struct btrfs_ordered_extent *ordered;
  3107. struct inode *inode;
  3108. INIT_LIST_HEAD(&splice);
  3109. spin_lock(&root->fs_info->ordered_extent_lock);
  3110. list_splice_init(&root->fs_info->ordered_extents, &splice);
  3111. while (!list_empty(&splice)) {
  3112. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  3113. root_extent_list);
  3114. list_del_init(&ordered->root_extent_list);
  3115. atomic_inc(&ordered->refs);
  3116. /* the inode may be getting freed (in sys_unlink path). */
  3117. inode = igrab(ordered->inode);
  3118. spin_unlock(&root->fs_info->ordered_extent_lock);
  3119. if (inode)
  3120. iput(inode);
  3121. atomic_set(&ordered->refs, 1);
  3122. btrfs_put_ordered_extent(ordered);
  3123. spin_lock(&root->fs_info->ordered_extent_lock);
  3124. }
  3125. spin_unlock(&root->fs_info->ordered_extent_lock);
  3126. }
  3127. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3128. struct btrfs_root *root)
  3129. {
  3130. struct rb_node *node;
  3131. struct btrfs_delayed_ref_root *delayed_refs;
  3132. struct btrfs_delayed_ref_node *ref;
  3133. int ret = 0;
  3134. delayed_refs = &trans->delayed_refs;
  3135. spin_lock(&delayed_refs->lock);
  3136. if (delayed_refs->num_entries == 0) {
  3137. spin_unlock(&delayed_refs->lock);
  3138. printk(KERN_INFO "delayed_refs has NO entry\n");
  3139. return ret;
  3140. }
  3141. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3142. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3143. atomic_set(&ref->refs, 1);
  3144. if (btrfs_delayed_ref_is_head(ref)) {
  3145. struct btrfs_delayed_ref_head *head;
  3146. head = btrfs_delayed_node_to_head(ref);
  3147. if (!mutex_trylock(&head->mutex)) {
  3148. atomic_inc(&ref->refs);
  3149. spin_unlock(&delayed_refs->lock);
  3150. /* Need to wait for the delayed ref to run */
  3151. mutex_lock(&head->mutex);
  3152. mutex_unlock(&head->mutex);
  3153. btrfs_put_delayed_ref(ref);
  3154. spin_lock(&delayed_refs->lock);
  3155. continue;
  3156. }
  3157. kfree(head->extent_op);
  3158. delayed_refs->num_heads--;
  3159. if (list_empty(&head->cluster))
  3160. delayed_refs->num_heads_ready--;
  3161. list_del_init(&head->cluster);
  3162. }
  3163. ref->in_tree = 0;
  3164. rb_erase(&ref->rb_node, &delayed_refs->root);
  3165. delayed_refs->num_entries--;
  3166. spin_unlock(&delayed_refs->lock);
  3167. btrfs_put_delayed_ref(ref);
  3168. cond_resched();
  3169. spin_lock(&delayed_refs->lock);
  3170. }
  3171. spin_unlock(&delayed_refs->lock);
  3172. return ret;
  3173. }
  3174. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3175. {
  3176. struct btrfs_pending_snapshot *snapshot;
  3177. struct list_head splice;
  3178. INIT_LIST_HEAD(&splice);
  3179. list_splice_init(&t->pending_snapshots, &splice);
  3180. while (!list_empty(&splice)) {
  3181. snapshot = list_entry(splice.next,
  3182. struct btrfs_pending_snapshot,
  3183. list);
  3184. list_del_init(&snapshot->list);
  3185. kfree(snapshot);
  3186. }
  3187. }
  3188. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3189. {
  3190. struct btrfs_inode *btrfs_inode;
  3191. struct list_head splice;
  3192. INIT_LIST_HEAD(&splice);
  3193. spin_lock(&root->fs_info->delalloc_lock);
  3194. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3195. while (!list_empty(&splice)) {
  3196. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3197. delalloc_inodes);
  3198. list_del_init(&btrfs_inode->delalloc_inodes);
  3199. btrfs_invalidate_inodes(btrfs_inode->root);
  3200. }
  3201. spin_unlock(&root->fs_info->delalloc_lock);
  3202. }
  3203. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3204. struct extent_io_tree *dirty_pages,
  3205. int mark)
  3206. {
  3207. int ret;
  3208. struct page *page;
  3209. struct inode *btree_inode = root->fs_info->btree_inode;
  3210. struct extent_buffer *eb;
  3211. u64 start = 0;
  3212. u64 end;
  3213. u64 offset;
  3214. unsigned long index;
  3215. while (1) {
  3216. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3217. mark, NULL);
  3218. if (ret)
  3219. break;
  3220. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3221. while (start <= end) {
  3222. index = start >> PAGE_CACHE_SHIFT;
  3223. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3224. page = find_get_page(btree_inode->i_mapping, index);
  3225. if (!page)
  3226. continue;
  3227. offset = page_offset(page);
  3228. spin_lock(&dirty_pages->buffer_lock);
  3229. eb = radix_tree_lookup(
  3230. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3231. offset >> PAGE_CACHE_SHIFT);
  3232. spin_unlock(&dirty_pages->buffer_lock);
  3233. if (eb)
  3234. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3235. &eb->bflags);
  3236. if (PageWriteback(page))
  3237. end_page_writeback(page);
  3238. lock_page(page);
  3239. if (PageDirty(page)) {
  3240. clear_page_dirty_for_io(page);
  3241. spin_lock_irq(&page->mapping->tree_lock);
  3242. radix_tree_tag_clear(&page->mapping->page_tree,
  3243. page_index(page),
  3244. PAGECACHE_TAG_DIRTY);
  3245. spin_unlock_irq(&page->mapping->tree_lock);
  3246. }
  3247. unlock_page(page);
  3248. page_cache_release(page);
  3249. }
  3250. }
  3251. return ret;
  3252. }
  3253. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3254. struct extent_io_tree *pinned_extents)
  3255. {
  3256. struct extent_io_tree *unpin;
  3257. u64 start;
  3258. u64 end;
  3259. int ret;
  3260. bool loop = true;
  3261. unpin = pinned_extents;
  3262. again:
  3263. while (1) {
  3264. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3265. EXTENT_DIRTY, NULL);
  3266. if (ret)
  3267. break;
  3268. /* opt_discard */
  3269. if (btrfs_test_opt(root, DISCARD))
  3270. ret = btrfs_error_discard_extent(root, start,
  3271. end + 1 - start,
  3272. NULL);
  3273. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3274. btrfs_error_unpin_extent_range(root, start, end);
  3275. cond_resched();
  3276. }
  3277. if (loop) {
  3278. if (unpin == &root->fs_info->freed_extents[0])
  3279. unpin = &root->fs_info->freed_extents[1];
  3280. else
  3281. unpin = &root->fs_info->freed_extents[0];
  3282. loop = false;
  3283. goto again;
  3284. }
  3285. return 0;
  3286. }
  3287. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3288. struct btrfs_root *root)
  3289. {
  3290. btrfs_destroy_delayed_refs(cur_trans, root);
  3291. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3292. cur_trans->dirty_pages.dirty_bytes);
  3293. /* FIXME: cleanup wait for commit */
  3294. cur_trans->in_commit = 1;
  3295. cur_trans->blocked = 1;
  3296. wake_up(&root->fs_info->transaction_blocked_wait);
  3297. cur_trans->blocked = 0;
  3298. wake_up(&root->fs_info->transaction_wait);
  3299. cur_trans->commit_done = 1;
  3300. wake_up(&cur_trans->commit_wait);
  3301. btrfs_destroy_delayed_inodes(root);
  3302. btrfs_assert_delayed_root_empty(root);
  3303. btrfs_destroy_pending_snapshots(cur_trans);
  3304. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3305. EXTENT_DIRTY);
  3306. btrfs_destroy_pinned_extent(root,
  3307. root->fs_info->pinned_extents);
  3308. /*
  3309. memset(cur_trans, 0, sizeof(*cur_trans));
  3310. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3311. */
  3312. }
  3313. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3314. {
  3315. struct btrfs_transaction *t;
  3316. LIST_HEAD(list);
  3317. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3318. spin_lock(&root->fs_info->trans_lock);
  3319. list_splice_init(&root->fs_info->trans_list, &list);
  3320. root->fs_info->trans_no_join = 1;
  3321. spin_unlock(&root->fs_info->trans_lock);
  3322. while (!list_empty(&list)) {
  3323. t = list_entry(list.next, struct btrfs_transaction, list);
  3324. if (!t)
  3325. break;
  3326. btrfs_destroy_ordered_operations(root);
  3327. btrfs_destroy_ordered_extents(root);
  3328. btrfs_destroy_delayed_refs(t, root);
  3329. btrfs_block_rsv_release(root,
  3330. &root->fs_info->trans_block_rsv,
  3331. t->dirty_pages.dirty_bytes);
  3332. /* FIXME: cleanup wait for commit */
  3333. t->in_commit = 1;
  3334. t->blocked = 1;
  3335. smp_mb();
  3336. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3337. wake_up(&root->fs_info->transaction_blocked_wait);
  3338. t->blocked = 0;
  3339. smp_mb();
  3340. if (waitqueue_active(&root->fs_info->transaction_wait))
  3341. wake_up(&root->fs_info->transaction_wait);
  3342. t->commit_done = 1;
  3343. smp_mb();
  3344. if (waitqueue_active(&t->commit_wait))
  3345. wake_up(&t->commit_wait);
  3346. btrfs_destroy_delayed_inodes(root);
  3347. btrfs_assert_delayed_root_empty(root);
  3348. btrfs_destroy_pending_snapshots(t);
  3349. btrfs_destroy_delalloc_inodes(root);
  3350. spin_lock(&root->fs_info->trans_lock);
  3351. root->fs_info->running_transaction = NULL;
  3352. spin_unlock(&root->fs_info->trans_lock);
  3353. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3354. EXTENT_DIRTY);
  3355. btrfs_destroy_pinned_extent(root,
  3356. root->fs_info->pinned_extents);
  3357. atomic_set(&t->use_count, 0);
  3358. list_del_init(&t->list);
  3359. memset(t, 0, sizeof(*t));
  3360. kmem_cache_free(btrfs_transaction_cachep, t);
  3361. }
  3362. spin_lock(&root->fs_info->trans_lock);
  3363. root->fs_info->trans_no_join = 0;
  3364. spin_unlock(&root->fs_info->trans_lock);
  3365. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3366. return 0;
  3367. }
  3368. static struct extent_io_ops btree_extent_io_ops = {
  3369. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3370. .readpage_io_failed_hook = btree_io_failed_hook,
  3371. .submit_bio_hook = btree_submit_bio_hook,
  3372. /* note we're sharing with inode.c for the merge bio hook */
  3373. .merge_bio_hook = btrfs_merge_bio_hook,
  3374. };