intel_dp.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. struct dp_link_dpll {
  39. int link_bw;
  40. struct dpll dpll;
  41. };
  42. static const struct dp_link_dpll gen4_dpll[] = {
  43. { DP_LINK_BW_1_62,
  44. { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  45. { DP_LINK_BW_2_7,
  46. { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  47. };
  48. static const struct dp_link_dpll pch_dpll[] = {
  49. { DP_LINK_BW_1_62,
  50. { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  51. { DP_LINK_BW_2_7,
  52. { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  53. };
  54. static const struct dp_link_dpll vlv_dpll[] = {
  55. { DP_LINK_BW_1_62,
  56. { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
  57. { DP_LINK_BW_2_7,
  58. { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
  59. };
  60. /**
  61. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  62. * @intel_dp: DP struct
  63. *
  64. * If a CPU or PCH DP output is attached to an eDP panel, this function
  65. * will return true, and false otherwise.
  66. */
  67. static bool is_edp(struct intel_dp *intel_dp)
  68. {
  69. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  70. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. static void intel_dp_link_down(struct intel_dp *intel_dp);
  82. static int
  83. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  84. {
  85. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  86. switch (max_link_bw) {
  87. case DP_LINK_BW_1_62:
  88. case DP_LINK_BW_2_7:
  89. break;
  90. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  91. max_link_bw = DP_LINK_BW_2_7;
  92. break;
  93. default:
  94. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  95. max_link_bw);
  96. max_link_bw = DP_LINK_BW_1_62;
  97. break;
  98. }
  99. return max_link_bw;
  100. }
  101. /*
  102. * The units on the numbers in the next two are... bizarre. Examples will
  103. * make it clearer; this one parallels an example in the eDP spec.
  104. *
  105. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  106. *
  107. * 270000 * 1 * 8 / 10 == 216000
  108. *
  109. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  110. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  111. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  112. * 119000. At 18bpp that's 2142000 kilobits per second.
  113. *
  114. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  115. * get the result in decakilobits instead of kilobits.
  116. */
  117. static int
  118. intel_dp_link_required(int pixel_clock, int bpp)
  119. {
  120. return (pixel_clock * bpp + 9) / 10;
  121. }
  122. static int
  123. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  124. {
  125. return (max_link_clock * max_lanes * 8) / 10;
  126. }
  127. static int
  128. intel_dp_mode_valid(struct drm_connector *connector,
  129. struct drm_display_mode *mode)
  130. {
  131. struct intel_dp *intel_dp = intel_attached_dp(connector);
  132. struct intel_connector *intel_connector = to_intel_connector(connector);
  133. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  134. int target_clock = mode->clock;
  135. int max_rate, mode_rate, max_lanes, max_link_clock;
  136. if (is_edp(intel_dp) && fixed_mode) {
  137. if (mode->hdisplay > fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. target_clock = fixed_mode->clock;
  142. }
  143. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  144. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  145. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  146. mode_rate = intel_dp_link_required(target_clock, 18);
  147. if (mode_rate > max_rate)
  148. return MODE_CLOCK_HIGH;
  149. if (mode->clock < 10000)
  150. return MODE_CLOCK_LOW;
  151. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  152. return MODE_H_ILLEGAL;
  153. return MODE_OK;
  154. }
  155. static uint32_t
  156. pack_aux(uint8_t *src, int src_bytes)
  157. {
  158. int i;
  159. uint32_t v = 0;
  160. if (src_bytes > 4)
  161. src_bytes = 4;
  162. for (i = 0; i < src_bytes; i++)
  163. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  164. return v;
  165. }
  166. static void
  167. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  168. {
  169. int i;
  170. if (dst_bytes > 4)
  171. dst_bytes = 4;
  172. for (i = 0; i < dst_bytes; i++)
  173. dst[i] = src >> ((3-i) * 8);
  174. }
  175. /* hrawclock is 1/4 the FSB frequency */
  176. static int
  177. intel_hrawclk(struct drm_device *dev)
  178. {
  179. struct drm_i915_private *dev_priv = dev->dev_private;
  180. uint32_t clkcfg;
  181. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  182. if (IS_VALLEYVIEW(dev))
  183. return 200;
  184. clkcfg = I915_READ(CLKCFG);
  185. switch (clkcfg & CLKCFG_FSB_MASK) {
  186. case CLKCFG_FSB_400:
  187. return 100;
  188. case CLKCFG_FSB_533:
  189. return 133;
  190. case CLKCFG_FSB_667:
  191. return 166;
  192. case CLKCFG_FSB_800:
  193. return 200;
  194. case CLKCFG_FSB_1067:
  195. return 266;
  196. case CLKCFG_FSB_1333:
  197. return 333;
  198. /* these two are just a guess; one of them might be right */
  199. case CLKCFG_FSB_1600:
  200. case CLKCFG_FSB_1600_ALT:
  201. return 400;
  202. default:
  203. return 133;
  204. }
  205. }
  206. static void
  207. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  208. struct intel_dp *intel_dp,
  209. struct edp_power_seq *out);
  210. static void
  211. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  212. struct intel_dp *intel_dp,
  213. struct edp_power_seq *out);
  214. static enum pipe
  215. vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
  216. {
  217. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  218. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  219. struct drm_device *dev = intel_dig_port->base.base.dev;
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. enum port port = intel_dig_port->port;
  222. enum pipe pipe;
  223. /* modeset should have pipe */
  224. if (crtc)
  225. return to_intel_crtc(crtc)->pipe;
  226. /* init time, try to find a pipe with this port selected */
  227. for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
  228. u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
  229. PANEL_PORT_SELECT_MASK;
  230. if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
  231. return pipe;
  232. if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
  233. return pipe;
  234. }
  235. /* shrug */
  236. return PIPE_A;
  237. }
  238. static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
  239. {
  240. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  241. if (HAS_PCH_SPLIT(dev))
  242. return PCH_PP_CONTROL;
  243. else
  244. return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
  245. }
  246. static u32 _pp_stat_reg(struct intel_dp *intel_dp)
  247. {
  248. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  249. if (HAS_PCH_SPLIT(dev))
  250. return PCH_PP_STATUS;
  251. else
  252. return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
  253. }
  254. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  255. {
  256. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  257. struct drm_i915_private *dev_priv = dev->dev_private;
  258. return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
  259. }
  260. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  261. {
  262. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  263. struct drm_i915_private *dev_priv = dev->dev_private;
  264. return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
  265. }
  266. static void
  267. intel_dp_check_edp(struct intel_dp *intel_dp)
  268. {
  269. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  270. struct drm_i915_private *dev_priv = dev->dev_private;
  271. if (!is_edp(intel_dp))
  272. return;
  273. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  274. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  275. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  276. I915_READ(_pp_stat_reg(intel_dp)),
  277. I915_READ(_pp_ctrl_reg(intel_dp)));
  278. }
  279. }
  280. static uint32_t
  281. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  282. {
  283. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  284. struct drm_device *dev = intel_dig_port->base.base.dev;
  285. struct drm_i915_private *dev_priv = dev->dev_private;
  286. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  287. uint32_t status;
  288. bool done;
  289. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  290. if (has_aux_irq)
  291. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  292. msecs_to_jiffies_timeout(10));
  293. else
  294. done = wait_for_atomic(C, 10) == 0;
  295. if (!done)
  296. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  297. has_aux_irq);
  298. #undef C
  299. return status;
  300. }
  301. static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
  302. int index)
  303. {
  304. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  305. struct drm_device *dev = intel_dig_port->base.base.dev;
  306. struct drm_i915_private *dev_priv = dev->dev_private;
  307. /* The clock divider is based off the hrawclk,
  308. * and would like to run at 2MHz. So, take the
  309. * hrawclk value and divide by 2 and use that
  310. *
  311. * Note that PCH attached eDP panels should use a 125MHz input
  312. * clock divider.
  313. */
  314. if (IS_VALLEYVIEW(dev)) {
  315. return index ? 0 : 100;
  316. } else if (intel_dig_port->port == PORT_A) {
  317. if (index)
  318. return 0;
  319. if (HAS_DDI(dev))
  320. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  321. else if (IS_GEN6(dev) || IS_GEN7(dev))
  322. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  323. else
  324. return 225; /* eDP input clock at 450Mhz */
  325. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  326. /* Workaround for non-ULT HSW */
  327. switch (index) {
  328. case 0: return 63;
  329. case 1: return 72;
  330. default: return 0;
  331. }
  332. } else if (HAS_PCH_SPLIT(dev)) {
  333. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  334. } else {
  335. return index ? 0 :intel_hrawclk(dev) / 2;
  336. }
  337. }
  338. static int
  339. intel_dp_aux_ch(struct intel_dp *intel_dp,
  340. uint8_t *send, int send_bytes,
  341. uint8_t *recv, int recv_size)
  342. {
  343. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  344. struct drm_device *dev = intel_dig_port->base.base.dev;
  345. struct drm_i915_private *dev_priv = dev->dev_private;
  346. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  347. uint32_t ch_data = ch_ctl + 4;
  348. uint32_t aux_clock_divider;
  349. int i, ret, recv_bytes;
  350. uint32_t status;
  351. int try, precharge, clock = 0;
  352. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  353. /* dp aux is extremely sensitive to irq latency, hence request the
  354. * lowest possible wakeup latency and so prevent the cpu from going into
  355. * deep sleep states.
  356. */
  357. pm_qos_update_request(&dev_priv->pm_qos, 0);
  358. intel_dp_check_edp(intel_dp);
  359. if (IS_GEN6(dev))
  360. precharge = 3;
  361. else
  362. precharge = 5;
  363. intel_aux_display_runtime_get(dev_priv);
  364. /* Try to wait for any previous AUX channel activity */
  365. for (try = 0; try < 3; try++) {
  366. status = I915_READ_NOTRACE(ch_ctl);
  367. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  368. break;
  369. msleep(1);
  370. }
  371. if (try == 3) {
  372. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  373. I915_READ(ch_ctl));
  374. ret = -EBUSY;
  375. goto out;
  376. }
  377. /* Only 5 data registers! */
  378. if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
  379. ret = -E2BIG;
  380. goto out;
  381. }
  382. while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
  383. /* Must try at least 3 times according to DP spec */
  384. for (try = 0; try < 5; try++) {
  385. /* Load the send data into the aux channel data registers */
  386. for (i = 0; i < send_bytes; i += 4)
  387. I915_WRITE(ch_data + i,
  388. pack_aux(send + i, send_bytes - i));
  389. /* Send the command and wait for it to complete */
  390. I915_WRITE(ch_ctl,
  391. DP_AUX_CH_CTL_SEND_BUSY |
  392. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  393. DP_AUX_CH_CTL_TIME_OUT_400us |
  394. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  395. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  396. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  397. DP_AUX_CH_CTL_DONE |
  398. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  399. DP_AUX_CH_CTL_RECEIVE_ERROR);
  400. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  401. /* Clear done status and any errors */
  402. I915_WRITE(ch_ctl,
  403. status |
  404. DP_AUX_CH_CTL_DONE |
  405. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  406. DP_AUX_CH_CTL_RECEIVE_ERROR);
  407. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  408. DP_AUX_CH_CTL_RECEIVE_ERROR))
  409. continue;
  410. if (status & DP_AUX_CH_CTL_DONE)
  411. break;
  412. }
  413. if (status & DP_AUX_CH_CTL_DONE)
  414. break;
  415. }
  416. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  417. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  418. ret = -EBUSY;
  419. goto out;
  420. }
  421. /* Check for timeout or receive error.
  422. * Timeouts occur when the sink is not connected
  423. */
  424. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  425. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  426. ret = -EIO;
  427. goto out;
  428. }
  429. /* Timeouts occur when the device isn't connected, so they're
  430. * "normal" -- don't fill the kernel log with these */
  431. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  432. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  433. ret = -ETIMEDOUT;
  434. goto out;
  435. }
  436. /* Unload any bytes sent back from the other side */
  437. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  438. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  439. if (recv_bytes > recv_size)
  440. recv_bytes = recv_size;
  441. for (i = 0; i < recv_bytes; i += 4)
  442. unpack_aux(I915_READ(ch_data + i),
  443. recv + i, recv_bytes - i);
  444. ret = recv_bytes;
  445. out:
  446. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  447. intel_aux_display_runtime_put(dev_priv);
  448. return ret;
  449. }
  450. /* Write data to the aux channel in native mode */
  451. static int
  452. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  453. uint16_t address, uint8_t *send, int send_bytes)
  454. {
  455. int ret;
  456. uint8_t msg[20];
  457. int msg_bytes;
  458. uint8_t ack;
  459. if (WARN_ON(send_bytes > 16))
  460. return -E2BIG;
  461. intel_dp_check_edp(intel_dp);
  462. msg[0] = AUX_NATIVE_WRITE << 4;
  463. msg[1] = address >> 8;
  464. msg[2] = address & 0xff;
  465. msg[3] = send_bytes - 1;
  466. memcpy(&msg[4], send, send_bytes);
  467. msg_bytes = send_bytes + 4;
  468. for (;;) {
  469. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  470. if (ret < 0)
  471. return ret;
  472. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  473. break;
  474. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  475. udelay(100);
  476. else
  477. return -EIO;
  478. }
  479. return send_bytes;
  480. }
  481. /* Write a single byte to the aux channel in native mode */
  482. static int
  483. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  484. uint16_t address, uint8_t byte)
  485. {
  486. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  487. }
  488. /* read bytes from a native aux channel */
  489. static int
  490. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  491. uint16_t address, uint8_t *recv, int recv_bytes)
  492. {
  493. uint8_t msg[4];
  494. int msg_bytes;
  495. uint8_t reply[20];
  496. int reply_bytes;
  497. uint8_t ack;
  498. int ret;
  499. if (WARN_ON(recv_bytes > 19))
  500. return -E2BIG;
  501. intel_dp_check_edp(intel_dp);
  502. msg[0] = AUX_NATIVE_READ << 4;
  503. msg[1] = address >> 8;
  504. msg[2] = address & 0xff;
  505. msg[3] = recv_bytes - 1;
  506. msg_bytes = 4;
  507. reply_bytes = recv_bytes + 1;
  508. for (;;) {
  509. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  510. reply, reply_bytes);
  511. if (ret == 0)
  512. return -EPROTO;
  513. if (ret < 0)
  514. return ret;
  515. ack = reply[0];
  516. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  517. memcpy(recv, reply + 1, ret - 1);
  518. return ret - 1;
  519. }
  520. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  521. udelay(100);
  522. else
  523. return -EIO;
  524. }
  525. }
  526. static int
  527. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  528. uint8_t write_byte, uint8_t *read_byte)
  529. {
  530. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  531. struct intel_dp *intel_dp = container_of(adapter,
  532. struct intel_dp,
  533. adapter);
  534. uint16_t address = algo_data->address;
  535. uint8_t msg[5];
  536. uint8_t reply[2];
  537. unsigned retry;
  538. int msg_bytes;
  539. int reply_bytes;
  540. int ret;
  541. intel_dp_check_edp(intel_dp);
  542. /* Set up the command byte */
  543. if (mode & MODE_I2C_READ)
  544. msg[0] = AUX_I2C_READ << 4;
  545. else
  546. msg[0] = AUX_I2C_WRITE << 4;
  547. if (!(mode & MODE_I2C_STOP))
  548. msg[0] |= AUX_I2C_MOT << 4;
  549. msg[1] = address >> 8;
  550. msg[2] = address;
  551. switch (mode) {
  552. case MODE_I2C_WRITE:
  553. msg[3] = 0;
  554. msg[4] = write_byte;
  555. msg_bytes = 5;
  556. reply_bytes = 1;
  557. break;
  558. case MODE_I2C_READ:
  559. msg[3] = 0;
  560. msg_bytes = 4;
  561. reply_bytes = 2;
  562. break;
  563. default:
  564. msg_bytes = 3;
  565. reply_bytes = 1;
  566. break;
  567. }
  568. for (retry = 0; retry < 5; retry++) {
  569. ret = intel_dp_aux_ch(intel_dp,
  570. msg, msg_bytes,
  571. reply, reply_bytes);
  572. if (ret < 0) {
  573. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  574. return ret;
  575. }
  576. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  577. case AUX_NATIVE_REPLY_ACK:
  578. /* I2C-over-AUX Reply field is only valid
  579. * when paired with AUX ACK.
  580. */
  581. break;
  582. case AUX_NATIVE_REPLY_NACK:
  583. DRM_DEBUG_KMS("aux_ch native nack\n");
  584. return -EREMOTEIO;
  585. case AUX_NATIVE_REPLY_DEFER:
  586. /*
  587. * For now, just give more slack to branch devices. We
  588. * could check the DPCD for I2C bit rate capabilities,
  589. * and if available, adjust the interval. We could also
  590. * be more careful with DP-to-Legacy adapters where a
  591. * long legacy cable may force very low I2C bit rates.
  592. */
  593. if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  594. DP_DWN_STRM_PORT_PRESENT)
  595. usleep_range(500, 600);
  596. else
  597. usleep_range(300, 400);
  598. continue;
  599. default:
  600. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  601. reply[0]);
  602. return -EREMOTEIO;
  603. }
  604. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  605. case AUX_I2C_REPLY_ACK:
  606. if (mode == MODE_I2C_READ) {
  607. *read_byte = reply[1];
  608. }
  609. return reply_bytes - 1;
  610. case AUX_I2C_REPLY_NACK:
  611. DRM_DEBUG_KMS("aux_i2c nack\n");
  612. return -EREMOTEIO;
  613. case AUX_I2C_REPLY_DEFER:
  614. DRM_DEBUG_KMS("aux_i2c defer\n");
  615. udelay(100);
  616. break;
  617. default:
  618. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  619. return -EREMOTEIO;
  620. }
  621. }
  622. DRM_ERROR("too many retries, giving up\n");
  623. return -EREMOTEIO;
  624. }
  625. static int
  626. intel_dp_i2c_init(struct intel_dp *intel_dp,
  627. struct intel_connector *intel_connector, const char *name)
  628. {
  629. int ret;
  630. DRM_DEBUG_KMS("i2c_init %s\n", name);
  631. intel_dp->algo.running = false;
  632. intel_dp->algo.address = 0;
  633. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  634. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  635. intel_dp->adapter.owner = THIS_MODULE;
  636. intel_dp->adapter.class = I2C_CLASS_DDC;
  637. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  638. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  639. intel_dp->adapter.algo_data = &intel_dp->algo;
  640. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  641. ironlake_edp_panel_vdd_on(intel_dp);
  642. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  643. ironlake_edp_panel_vdd_off(intel_dp, false);
  644. return ret;
  645. }
  646. static void
  647. intel_dp_set_clock(struct intel_encoder *encoder,
  648. struct intel_crtc_config *pipe_config, int link_bw)
  649. {
  650. struct drm_device *dev = encoder->base.dev;
  651. const struct dp_link_dpll *divisor = NULL;
  652. int i, count = 0;
  653. if (IS_G4X(dev)) {
  654. divisor = gen4_dpll;
  655. count = ARRAY_SIZE(gen4_dpll);
  656. } else if (IS_HASWELL(dev)) {
  657. /* Haswell has special-purpose DP DDI clocks. */
  658. } else if (HAS_PCH_SPLIT(dev)) {
  659. divisor = pch_dpll;
  660. count = ARRAY_SIZE(pch_dpll);
  661. } else if (IS_VALLEYVIEW(dev)) {
  662. divisor = vlv_dpll;
  663. count = ARRAY_SIZE(vlv_dpll);
  664. }
  665. if (divisor && count) {
  666. for (i = 0; i < count; i++) {
  667. if (link_bw == divisor[i].link_bw) {
  668. pipe_config->dpll = divisor[i].dpll;
  669. pipe_config->clock_set = true;
  670. break;
  671. }
  672. }
  673. }
  674. }
  675. bool
  676. intel_dp_compute_config(struct intel_encoder *encoder,
  677. struct intel_crtc_config *pipe_config)
  678. {
  679. struct drm_device *dev = encoder->base.dev;
  680. struct drm_i915_private *dev_priv = dev->dev_private;
  681. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  682. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  683. enum port port = dp_to_dig_port(intel_dp)->port;
  684. struct intel_crtc *intel_crtc = encoder->new_crtc;
  685. struct intel_connector *intel_connector = intel_dp->attached_connector;
  686. int lane_count, clock;
  687. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  688. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  689. int bpp, mode_rate;
  690. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  691. int link_avail, link_clock;
  692. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  693. pipe_config->has_pch_encoder = true;
  694. pipe_config->has_dp_encoder = true;
  695. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  696. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  697. adjusted_mode);
  698. if (!HAS_PCH_SPLIT(dev))
  699. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  700. intel_connector->panel.fitting_mode);
  701. else
  702. intel_pch_panel_fitting(intel_crtc, pipe_config,
  703. intel_connector->panel.fitting_mode);
  704. }
  705. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  706. return false;
  707. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  708. "max bw %02x pixel clock %iKHz\n",
  709. max_lane_count, bws[max_clock],
  710. adjusted_mode->crtc_clock);
  711. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  712. * bpc in between. */
  713. bpp = pipe_config->pipe_bpp;
  714. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
  715. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  716. dev_priv->vbt.edp_bpp);
  717. bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
  718. }
  719. for (; bpp >= 6*3; bpp -= 2*3) {
  720. mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
  721. bpp);
  722. for (clock = 0; clock <= max_clock; clock++) {
  723. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  724. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  725. link_avail = intel_dp_max_data_rate(link_clock,
  726. lane_count);
  727. if (mode_rate <= link_avail) {
  728. goto found;
  729. }
  730. }
  731. }
  732. }
  733. return false;
  734. found:
  735. if (intel_dp->color_range_auto) {
  736. /*
  737. * See:
  738. * CEA-861-E - 5.1 Default Encoding Parameters
  739. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  740. */
  741. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  742. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  743. else
  744. intel_dp->color_range = 0;
  745. }
  746. if (intel_dp->color_range)
  747. pipe_config->limited_color_range = true;
  748. intel_dp->link_bw = bws[clock];
  749. intel_dp->lane_count = lane_count;
  750. pipe_config->pipe_bpp = bpp;
  751. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  752. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  753. intel_dp->link_bw, intel_dp->lane_count,
  754. pipe_config->port_clock, bpp);
  755. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  756. mode_rate, link_avail);
  757. intel_link_compute_m_n(bpp, lane_count,
  758. adjusted_mode->crtc_clock,
  759. pipe_config->port_clock,
  760. &pipe_config->dp_m_n);
  761. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  762. return true;
  763. }
  764. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  765. {
  766. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  767. intel_dp->link_configuration[0] = intel_dp->link_bw;
  768. intel_dp->link_configuration[1] = intel_dp->lane_count;
  769. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  770. /*
  771. * Check for DPCD version > 1.1 and enhanced framing support
  772. */
  773. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  774. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  775. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  776. }
  777. }
  778. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  779. {
  780. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  781. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  782. struct drm_device *dev = crtc->base.dev;
  783. struct drm_i915_private *dev_priv = dev->dev_private;
  784. u32 dpa_ctl;
  785. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  786. dpa_ctl = I915_READ(DP_A);
  787. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  788. if (crtc->config.port_clock == 162000) {
  789. /* For a long time we've carried around a ILK-DevA w/a for the
  790. * 160MHz clock. If we're really unlucky, it's still required.
  791. */
  792. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  793. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  794. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  795. } else {
  796. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  797. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  798. }
  799. I915_WRITE(DP_A, dpa_ctl);
  800. POSTING_READ(DP_A);
  801. udelay(500);
  802. }
  803. static void intel_dp_mode_set(struct intel_encoder *encoder)
  804. {
  805. struct drm_device *dev = encoder->base.dev;
  806. struct drm_i915_private *dev_priv = dev->dev_private;
  807. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  808. enum port port = dp_to_dig_port(intel_dp)->port;
  809. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  810. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  811. /*
  812. * There are four kinds of DP registers:
  813. *
  814. * IBX PCH
  815. * SNB CPU
  816. * IVB CPU
  817. * CPT PCH
  818. *
  819. * IBX PCH and CPU are the same for almost everything,
  820. * except that the CPU DP PLL is configured in this
  821. * register
  822. *
  823. * CPT PCH is quite different, having many bits moved
  824. * to the TRANS_DP_CTL register instead. That
  825. * configuration happens (oddly) in ironlake_pch_enable
  826. */
  827. /* Preserve the BIOS-computed detected bit. This is
  828. * supposed to be read-only.
  829. */
  830. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  831. /* Handle DP bits in common between all three register formats */
  832. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  833. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  834. if (intel_dp->has_audio) {
  835. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  836. pipe_name(crtc->pipe));
  837. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  838. intel_write_eld(&encoder->base, adjusted_mode);
  839. }
  840. intel_dp_init_link_config(intel_dp);
  841. /* Split out the IBX/CPU vs CPT settings */
  842. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  843. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  844. intel_dp->DP |= DP_SYNC_HS_HIGH;
  845. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  846. intel_dp->DP |= DP_SYNC_VS_HIGH;
  847. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  848. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  849. intel_dp->DP |= DP_ENHANCED_FRAMING;
  850. intel_dp->DP |= crtc->pipe << 29;
  851. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  852. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  853. intel_dp->DP |= intel_dp->color_range;
  854. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  855. intel_dp->DP |= DP_SYNC_HS_HIGH;
  856. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  857. intel_dp->DP |= DP_SYNC_VS_HIGH;
  858. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  859. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  860. intel_dp->DP |= DP_ENHANCED_FRAMING;
  861. if (crtc->pipe == 1)
  862. intel_dp->DP |= DP_PIPEB_SELECT;
  863. } else {
  864. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  865. }
  866. if (port == PORT_A && !IS_VALLEYVIEW(dev))
  867. ironlake_set_pll_cpu_edp(intel_dp);
  868. }
  869. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  870. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  871. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  872. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  873. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  874. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  875. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  876. u32 mask,
  877. u32 value)
  878. {
  879. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  880. struct drm_i915_private *dev_priv = dev->dev_private;
  881. u32 pp_stat_reg, pp_ctrl_reg;
  882. pp_stat_reg = _pp_stat_reg(intel_dp);
  883. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  884. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  885. mask, value,
  886. I915_READ(pp_stat_reg),
  887. I915_READ(pp_ctrl_reg));
  888. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  889. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  890. I915_READ(pp_stat_reg),
  891. I915_READ(pp_ctrl_reg));
  892. }
  893. }
  894. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  895. {
  896. DRM_DEBUG_KMS("Wait for panel power on\n");
  897. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  898. }
  899. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  900. {
  901. DRM_DEBUG_KMS("Wait for panel power off time\n");
  902. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  903. }
  904. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  905. {
  906. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  907. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  908. }
  909. /* Read the current pp_control value, unlocking the register if it
  910. * is locked
  911. */
  912. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  913. {
  914. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  915. struct drm_i915_private *dev_priv = dev->dev_private;
  916. u32 control;
  917. control = I915_READ(_pp_ctrl_reg(intel_dp));
  918. control &= ~PANEL_UNLOCK_MASK;
  919. control |= PANEL_UNLOCK_REGS;
  920. return control;
  921. }
  922. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  923. {
  924. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  925. struct drm_i915_private *dev_priv = dev->dev_private;
  926. u32 pp;
  927. u32 pp_stat_reg, pp_ctrl_reg;
  928. if (!is_edp(intel_dp))
  929. return;
  930. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  931. WARN(intel_dp->want_panel_vdd,
  932. "eDP VDD already requested on\n");
  933. intel_dp->want_panel_vdd = true;
  934. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  935. DRM_DEBUG_KMS("eDP VDD already on\n");
  936. return;
  937. }
  938. if (!ironlake_edp_have_panel_power(intel_dp))
  939. ironlake_wait_panel_power_cycle(intel_dp);
  940. pp = ironlake_get_pp_control(intel_dp);
  941. pp |= EDP_FORCE_VDD;
  942. pp_stat_reg = _pp_stat_reg(intel_dp);
  943. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  944. I915_WRITE(pp_ctrl_reg, pp);
  945. POSTING_READ(pp_ctrl_reg);
  946. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  947. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  948. /*
  949. * If the panel wasn't on, delay before accessing aux channel
  950. */
  951. if (!ironlake_edp_have_panel_power(intel_dp)) {
  952. DRM_DEBUG_KMS("eDP was not running\n");
  953. msleep(intel_dp->panel_power_up_delay);
  954. }
  955. }
  956. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  957. {
  958. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  959. struct drm_i915_private *dev_priv = dev->dev_private;
  960. u32 pp;
  961. u32 pp_stat_reg, pp_ctrl_reg;
  962. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  963. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  964. pp = ironlake_get_pp_control(intel_dp);
  965. pp &= ~EDP_FORCE_VDD;
  966. pp_stat_reg = _pp_ctrl_reg(intel_dp);
  967. pp_ctrl_reg = _pp_stat_reg(intel_dp);
  968. I915_WRITE(pp_ctrl_reg, pp);
  969. POSTING_READ(pp_ctrl_reg);
  970. /* Make sure sequencer is idle before allowing subsequent activity */
  971. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  972. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  973. msleep(intel_dp->panel_power_down_delay);
  974. }
  975. }
  976. static void ironlake_panel_vdd_work(struct work_struct *__work)
  977. {
  978. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  979. struct intel_dp, panel_vdd_work);
  980. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  981. mutex_lock(&dev->mode_config.mutex);
  982. ironlake_panel_vdd_off_sync(intel_dp);
  983. mutex_unlock(&dev->mode_config.mutex);
  984. }
  985. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  986. {
  987. if (!is_edp(intel_dp))
  988. return;
  989. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  990. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  991. intel_dp->want_panel_vdd = false;
  992. if (sync) {
  993. ironlake_panel_vdd_off_sync(intel_dp);
  994. } else {
  995. /*
  996. * Queue the timer to fire a long
  997. * time from now (relative to the power down delay)
  998. * to keep the panel power up across a sequence of operations
  999. */
  1000. schedule_delayed_work(&intel_dp->panel_vdd_work,
  1001. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  1002. }
  1003. }
  1004. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  1005. {
  1006. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. u32 pp;
  1009. u32 pp_ctrl_reg;
  1010. if (!is_edp(intel_dp))
  1011. return;
  1012. DRM_DEBUG_KMS("Turn eDP power on\n");
  1013. if (ironlake_edp_have_panel_power(intel_dp)) {
  1014. DRM_DEBUG_KMS("eDP power already on\n");
  1015. return;
  1016. }
  1017. ironlake_wait_panel_power_cycle(intel_dp);
  1018. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1019. pp = ironlake_get_pp_control(intel_dp);
  1020. if (IS_GEN5(dev)) {
  1021. /* ILK workaround: disable reset around power sequence */
  1022. pp &= ~PANEL_POWER_RESET;
  1023. I915_WRITE(pp_ctrl_reg, pp);
  1024. POSTING_READ(pp_ctrl_reg);
  1025. }
  1026. pp |= POWER_TARGET_ON;
  1027. if (!IS_GEN5(dev))
  1028. pp |= PANEL_POWER_RESET;
  1029. I915_WRITE(pp_ctrl_reg, pp);
  1030. POSTING_READ(pp_ctrl_reg);
  1031. ironlake_wait_panel_on(intel_dp);
  1032. if (IS_GEN5(dev)) {
  1033. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1034. I915_WRITE(pp_ctrl_reg, pp);
  1035. POSTING_READ(pp_ctrl_reg);
  1036. }
  1037. }
  1038. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  1039. {
  1040. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. u32 pp;
  1043. u32 pp_ctrl_reg;
  1044. if (!is_edp(intel_dp))
  1045. return;
  1046. DRM_DEBUG_KMS("Turn eDP power off\n");
  1047. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1048. pp = ironlake_get_pp_control(intel_dp);
  1049. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1050. * panels get very unhappy and cease to work. */
  1051. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1052. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1053. I915_WRITE(pp_ctrl_reg, pp);
  1054. POSTING_READ(pp_ctrl_reg);
  1055. intel_dp->want_panel_vdd = false;
  1056. ironlake_wait_panel_off(intel_dp);
  1057. }
  1058. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1059. {
  1060. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1061. struct drm_device *dev = intel_dig_port->base.base.dev;
  1062. struct drm_i915_private *dev_priv = dev->dev_private;
  1063. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1064. u32 pp;
  1065. u32 pp_ctrl_reg;
  1066. if (!is_edp(intel_dp))
  1067. return;
  1068. DRM_DEBUG_KMS("\n");
  1069. /*
  1070. * If we enable the backlight right away following a panel power
  1071. * on, we may see slight flicker as the panel syncs with the eDP
  1072. * link. So delay a bit to make sure the image is solid before
  1073. * allowing it to appear.
  1074. */
  1075. msleep(intel_dp->backlight_on_delay);
  1076. pp = ironlake_get_pp_control(intel_dp);
  1077. pp |= EDP_BLC_ENABLE;
  1078. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1079. I915_WRITE(pp_ctrl_reg, pp);
  1080. POSTING_READ(pp_ctrl_reg);
  1081. intel_panel_enable_backlight(dev, pipe);
  1082. }
  1083. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1084. {
  1085. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1086. struct drm_i915_private *dev_priv = dev->dev_private;
  1087. u32 pp;
  1088. u32 pp_ctrl_reg;
  1089. if (!is_edp(intel_dp))
  1090. return;
  1091. intel_panel_disable_backlight(dev);
  1092. DRM_DEBUG_KMS("\n");
  1093. pp = ironlake_get_pp_control(intel_dp);
  1094. pp &= ~EDP_BLC_ENABLE;
  1095. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1096. I915_WRITE(pp_ctrl_reg, pp);
  1097. POSTING_READ(pp_ctrl_reg);
  1098. msleep(intel_dp->backlight_off_delay);
  1099. }
  1100. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1101. {
  1102. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1103. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1104. struct drm_device *dev = crtc->dev;
  1105. struct drm_i915_private *dev_priv = dev->dev_private;
  1106. u32 dpa_ctl;
  1107. assert_pipe_disabled(dev_priv,
  1108. to_intel_crtc(crtc)->pipe);
  1109. DRM_DEBUG_KMS("\n");
  1110. dpa_ctl = I915_READ(DP_A);
  1111. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1112. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1113. /* We don't adjust intel_dp->DP while tearing down the link, to
  1114. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1115. * enable bits here to ensure that we don't enable too much. */
  1116. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1117. intel_dp->DP |= DP_PLL_ENABLE;
  1118. I915_WRITE(DP_A, intel_dp->DP);
  1119. POSTING_READ(DP_A);
  1120. udelay(200);
  1121. }
  1122. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1123. {
  1124. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1125. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1126. struct drm_device *dev = crtc->dev;
  1127. struct drm_i915_private *dev_priv = dev->dev_private;
  1128. u32 dpa_ctl;
  1129. assert_pipe_disabled(dev_priv,
  1130. to_intel_crtc(crtc)->pipe);
  1131. dpa_ctl = I915_READ(DP_A);
  1132. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1133. "dp pll off, should be on\n");
  1134. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1135. /* We can't rely on the value tracked for the DP register in
  1136. * intel_dp->DP because link_down must not change that (otherwise link
  1137. * re-training will fail. */
  1138. dpa_ctl &= ~DP_PLL_ENABLE;
  1139. I915_WRITE(DP_A, dpa_ctl);
  1140. POSTING_READ(DP_A);
  1141. udelay(200);
  1142. }
  1143. /* If the sink supports it, try to set the power state appropriately */
  1144. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1145. {
  1146. int ret, i;
  1147. /* Should have a valid DPCD by this point */
  1148. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1149. return;
  1150. if (mode != DRM_MODE_DPMS_ON) {
  1151. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1152. DP_SET_POWER_D3);
  1153. if (ret != 1)
  1154. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1155. } else {
  1156. /*
  1157. * When turning on, we need to retry for 1ms to give the sink
  1158. * time to wake up.
  1159. */
  1160. for (i = 0; i < 3; i++) {
  1161. ret = intel_dp_aux_native_write_1(intel_dp,
  1162. DP_SET_POWER,
  1163. DP_SET_POWER_D0);
  1164. if (ret == 1)
  1165. break;
  1166. msleep(1);
  1167. }
  1168. }
  1169. }
  1170. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1171. enum pipe *pipe)
  1172. {
  1173. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1174. enum port port = dp_to_dig_port(intel_dp)->port;
  1175. struct drm_device *dev = encoder->base.dev;
  1176. struct drm_i915_private *dev_priv = dev->dev_private;
  1177. u32 tmp = I915_READ(intel_dp->output_reg);
  1178. if (!(tmp & DP_PORT_EN))
  1179. return false;
  1180. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1181. *pipe = PORT_TO_PIPE_CPT(tmp);
  1182. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1183. *pipe = PORT_TO_PIPE(tmp);
  1184. } else {
  1185. u32 trans_sel;
  1186. u32 trans_dp;
  1187. int i;
  1188. switch (intel_dp->output_reg) {
  1189. case PCH_DP_B:
  1190. trans_sel = TRANS_DP_PORT_SEL_B;
  1191. break;
  1192. case PCH_DP_C:
  1193. trans_sel = TRANS_DP_PORT_SEL_C;
  1194. break;
  1195. case PCH_DP_D:
  1196. trans_sel = TRANS_DP_PORT_SEL_D;
  1197. break;
  1198. default:
  1199. return true;
  1200. }
  1201. for_each_pipe(i) {
  1202. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1203. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1204. *pipe = i;
  1205. return true;
  1206. }
  1207. }
  1208. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1209. intel_dp->output_reg);
  1210. }
  1211. return true;
  1212. }
  1213. static void intel_dp_get_config(struct intel_encoder *encoder,
  1214. struct intel_crtc_config *pipe_config)
  1215. {
  1216. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1217. u32 tmp, flags = 0;
  1218. struct drm_device *dev = encoder->base.dev;
  1219. struct drm_i915_private *dev_priv = dev->dev_private;
  1220. enum port port = dp_to_dig_port(intel_dp)->port;
  1221. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1222. int dotclock;
  1223. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1224. tmp = I915_READ(intel_dp->output_reg);
  1225. if (tmp & DP_SYNC_HS_HIGH)
  1226. flags |= DRM_MODE_FLAG_PHSYNC;
  1227. else
  1228. flags |= DRM_MODE_FLAG_NHSYNC;
  1229. if (tmp & DP_SYNC_VS_HIGH)
  1230. flags |= DRM_MODE_FLAG_PVSYNC;
  1231. else
  1232. flags |= DRM_MODE_FLAG_NVSYNC;
  1233. } else {
  1234. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1235. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1236. flags |= DRM_MODE_FLAG_PHSYNC;
  1237. else
  1238. flags |= DRM_MODE_FLAG_NHSYNC;
  1239. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1240. flags |= DRM_MODE_FLAG_PVSYNC;
  1241. else
  1242. flags |= DRM_MODE_FLAG_NVSYNC;
  1243. }
  1244. pipe_config->adjusted_mode.flags |= flags;
  1245. pipe_config->has_dp_encoder = true;
  1246. intel_dp_get_m_n(crtc, pipe_config);
  1247. if (port == PORT_A) {
  1248. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1249. pipe_config->port_clock = 162000;
  1250. else
  1251. pipe_config->port_clock = 270000;
  1252. }
  1253. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1254. &pipe_config->dp_m_n);
  1255. if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
  1256. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  1257. pipe_config->adjusted_mode.crtc_clock = dotclock;
  1258. }
  1259. static bool is_edp_psr(struct intel_dp *intel_dp)
  1260. {
  1261. return is_edp(intel_dp) &&
  1262. intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
  1263. }
  1264. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1265. {
  1266. struct drm_i915_private *dev_priv = dev->dev_private;
  1267. if (!HAS_PSR(dev))
  1268. return false;
  1269. return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1270. }
  1271. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1272. struct edp_vsc_psr *vsc_psr)
  1273. {
  1274. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1275. struct drm_device *dev = dig_port->base.base.dev;
  1276. struct drm_i915_private *dev_priv = dev->dev_private;
  1277. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1278. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1279. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1280. uint32_t *data = (uint32_t *) vsc_psr;
  1281. unsigned int i;
  1282. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1283. the video DIP being updated before program video DIP data buffer
  1284. registers for DIP being updated. */
  1285. I915_WRITE(ctl_reg, 0);
  1286. POSTING_READ(ctl_reg);
  1287. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1288. if (i < sizeof(struct edp_vsc_psr))
  1289. I915_WRITE(data_reg + i, *data++);
  1290. else
  1291. I915_WRITE(data_reg + i, 0);
  1292. }
  1293. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1294. POSTING_READ(ctl_reg);
  1295. }
  1296. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1297. {
  1298. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1299. struct drm_i915_private *dev_priv = dev->dev_private;
  1300. struct edp_vsc_psr psr_vsc;
  1301. if (intel_dp->psr_setup_done)
  1302. return;
  1303. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1304. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1305. psr_vsc.sdp_header.HB0 = 0;
  1306. psr_vsc.sdp_header.HB1 = 0x7;
  1307. psr_vsc.sdp_header.HB2 = 0x2;
  1308. psr_vsc.sdp_header.HB3 = 0x8;
  1309. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1310. /* Avoid continuous PSR exit by masking memup and hpd */
  1311. I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
  1312. EDP_PSR_DEBUG_MASK_HPD);
  1313. intel_dp->psr_setup_done = true;
  1314. }
  1315. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1316. {
  1317. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
  1320. int precharge = 0x3;
  1321. int msg_size = 5; /* Header(4) + Message(1) */
  1322. /* Enable PSR in sink */
  1323. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1324. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1325. DP_PSR_ENABLE &
  1326. ~DP_PSR_MAIN_LINK_ACTIVE);
  1327. else
  1328. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1329. DP_PSR_ENABLE |
  1330. DP_PSR_MAIN_LINK_ACTIVE);
  1331. /* Setup AUX registers */
  1332. I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
  1333. I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
  1334. I915_WRITE(EDP_PSR_AUX_CTL(dev),
  1335. DP_AUX_CH_CTL_TIME_OUT_400us |
  1336. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1337. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1338. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1339. }
  1340. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1341. {
  1342. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1343. struct drm_i915_private *dev_priv = dev->dev_private;
  1344. uint32_t max_sleep_time = 0x1f;
  1345. uint32_t idle_frames = 1;
  1346. uint32_t val = 0x0;
  1347. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1348. val |= EDP_PSR_LINK_STANDBY;
  1349. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1350. val |= EDP_PSR_TP1_TIME_0us;
  1351. val |= EDP_PSR_SKIP_AUX_EXIT;
  1352. } else
  1353. val |= EDP_PSR_LINK_DISABLE;
  1354. I915_WRITE(EDP_PSR_CTL(dev), val |
  1355. EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
  1356. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1357. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1358. EDP_PSR_ENABLE);
  1359. }
  1360. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1361. {
  1362. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1363. struct drm_device *dev = dig_port->base.base.dev;
  1364. struct drm_i915_private *dev_priv = dev->dev_private;
  1365. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1367. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
  1368. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1369. if (!HAS_PSR(dev)) {
  1370. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1371. dev_priv->no_psr_reason = PSR_NO_SOURCE;
  1372. return false;
  1373. }
  1374. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1375. (dig_port->port != PORT_A)) {
  1376. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1377. dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
  1378. return false;
  1379. }
  1380. if (!is_edp_psr(intel_dp)) {
  1381. DRM_DEBUG_KMS("PSR not supported by this panel\n");
  1382. dev_priv->no_psr_reason = PSR_NO_SINK;
  1383. return false;
  1384. }
  1385. if (!i915_enable_psr) {
  1386. DRM_DEBUG_KMS("PSR disable by flag\n");
  1387. dev_priv->no_psr_reason = PSR_MODULE_PARAM;
  1388. return false;
  1389. }
  1390. crtc = dig_port->base.base.crtc;
  1391. if (crtc == NULL) {
  1392. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1393. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1394. return false;
  1395. }
  1396. intel_crtc = to_intel_crtc(crtc);
  1397. if (!intel_crtc_active(crtc)) {
  1398. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1399. dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
  1400. return false;
  1401. }
  1402. obj = to_intel_framebuffer(crtc->fb)->obj;
  1403. if (obj->tiling_mode != I915_TILING_X ||
  1404. obj->fence_reg == I915_FENCE_REG_NONE) {
  1405. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1406. dev_priv->no_psr_reason = PSR_NOT_TILED;
  1407. return false;
  1408. }
  1409. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1410. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1411. dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
  1412. return false;
  1413. }
  1414. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1415. S3D_ENABLE) {
  1416. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1417. dev_priv->no_psr_reason = PSR_S3D_ENABLED;
  1418. return false;
  1419. }
  1420. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1421. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1422. dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
  1423. return false;
  1424. }
  1425. return true;
  1426. }
  1427. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1428. {
  1429. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1430. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1431. intel_edp_is_psr_enabled(dev))
  1432. return;
  1433. /* Setup PSR once */
  1434. intel_edp_psr_setup(intel_dp);
  1435. /* Enable PSR on the panel */
  1436. intel_edp_psr_enable_sink(intel_dp);
  1437. /* Enable PSR on the host */
  1438. intel_edp_psr_enable_source(intel_dp);
  1439. }
  1440. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1441. {
  1442. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1443. if (intel_edp_psr_match_conditions(intel_dp) &&
  1444. !intel_edp_is_psr_enabled(dev))
  1445. intel_edp_psr_do_enable(intel_dp);
  1446. }
  1447. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1448. {
  1449. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1450. struct drm_i915_private *dev_priv = dev->dev_private;
  1451. if (!intel_edp_is_psr_enabled(dev))
  1452. return;
  1453. I915_WRITE(EDP_PSR_CTL(dev),
  1454. I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
  1455. /* Wait till PSR is idle */
  1456. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
  1457. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1458. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1459. }
  1460. void intel_edp_psr_update(struct drm_device *dev)
  1461. {
  1462. struct intel_encoder *encoder;
  1463. struct intel_dp *intel_dp = NULL;
  1464. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1465. if (encoder->type == INTEL_OUTPUT_EDP) {
  1466. intel_dp = enc_to_intel_dp(&encoder->base);
  1467. if (!is_edp_psr(intel_dp))
  1468. return;
  1469. if (!intel_edp_psr_match_conditions(intel_dp))
  1470. intel_edp_psr_disable(intel_dp);
  1471. else
  1472. if (!intel_edp_is_psr_enabled(dev))
  1473. intel_edp_psr_do_enable(intel_dp);
  1474. }
  1475. }
  1476. static void intel_disable_dp(struct intel_encoder *encoder)
  1477. {
  1478. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1479. enum port port = dp_to_dig_port(intel_dp)->port;
  1480. struct drm_device *dev = encoder->base.dev;
  1481. /* Make sure the panel is off before trying to change the mode. But also
  1482. * ensure that we have vdd while we switch off the panel. */
  1483. ironlake_edp_panel_vdd_on(intel_dp);
  1484. ironlake_edp_backlight_off(intel_dp);
  1485. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1486. ironlake_edp_panel_off(intel_dp);
  1487. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1488. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1489. intel_dp_link_down(intel_dp);
  1490. }
  1491. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1492. {
  1493. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1494. enum port port = dp_to_dig_port(intel_dp)->port;
  1495. struct drm_device *dev = encoder->base.dev;
  1496. if (port == PORT_A || IS_VALLEYVIEW(dev)) {
  1497. intel_dp_link_down(intel_dp);
  1498. if (!IS_VALLEYVIEW(dev))
  1499. ironlake_edp_pll_off(intel_dp);
  1500. }
  1501. }
  1502. static void intel_enable_dp(struct intel_encoder *encoder)
  1503. {
  1504. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1505. struct drm_device *dev = encoder->base.dev;
  1506. struct drm_i915_private *dev_priv = dev->dev_private;
  1507. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1508. if (WARN_ON(dp_reg & DP_PORT_EN))
  1509. return;
  1510. ironlake_edp_panel_vdd_on(intel_dp);
  1511. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1512. intel_dp_start_link_train(intel_dp);
  1513. ironlake_edp_panel_on(intel_dp);
  1514. ironlake_edp_panel_vdd_off(intel_dp, true);
  1515. intel_dp_complete_link_train(intel_dp);
  1516. intel_dp_stop_link_train(intel_dp);
  1517. }
  1518. static void g4x_enable_dp(struct intel_encoder *encoder)
  1519. {
  1520. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1521. intel_enable_dp(encoder);
  1522. ironlake_edp_backlight_on(intel_dp);
  1523. }
  1524. static void vlv_enable_dp(struct intel_encoder *encoder)
  1525. {
  1526. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1527. ironlake_edp_backlight_on(intel_dp);
  1528. }
  1529. static void g4x_pre_enable_dp(struct intel_encoder *encoder)
  1530. {
  1531. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1532. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1533. if (dport->port == PORT_A)
  1534. ironlake_edp_pll_on(intel_dp);
  1535. }
  1536. static void vlv_pre_enable_dp(struct intel_encoder *encoder)
  1537. {
  1538. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1539. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1540. struct drm_device *dev = encoder->base.dev;
  1541. struct drm_i915_private *dev_priv = dev->dev_private;
  1542. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1543. int port = vlv_dport_to_channel(dport);
  1544. int pipe = intel_crtc->pipe;
  1545. struct edp_power_seq power_seq;
  1546. u32 val;
  1547. mutex_lock(&dev_priv->dpio_lock);
  1548. val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
  1549. val = 0;
  1550. if (pipe)
  1551. val |= (1<<21);
  1552. else
  1553. val &= ~(1<<21);
  1554. val |= 0x001000c4;
  1555. vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
  1556. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
  1557. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
  1558. mutex_unlock(&dev_priv->dpio_lock);
  1559. /* init power sequencer on this pipe and port */
  1560. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  1561. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  1562. &power_seq);
  1563. intel_enable_dp(encoder);
  1564. vlv_wait_port_ready(dev_priv, port);
  1565. }
  1566. static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
  1567. {
  1568. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1569. struct drm_device *dev = encoder->base.dev;
  1570. struct drm_i915_private *dev_priv = dev->dev_private;
  1571. struct intel_crtc *intel_crtc =
  1572. to_intel_crtc(encoder->base.crtc);
  1573. int port = vlv_dport_to_channel(dport);
  1574. int pipe = intel_crtc->pipe;
  1575. /* Program Tx lane resets to default */
  1576. mutex_lock(&dev_priv->dpio_lock);
  1577. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
  1578. DPIO_PCS_TX_LANE2_RESET |
  1579. DPIO_PCS_TX_LANE1_RESET);
  1580. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
  1581. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1582. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1583. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1584. DPIO_PCS_CLK_SOFT_RESET);
  1585. /* Fix up inter-pair skew failure */
  1586. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
  1587. vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
  1588. vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
  1589. mutex_unlock(&dev_priv->dpio_lock);
  1590. }
  1591. /*
  1592. * Native read with retry for link status and receiver capability reads for
  1593. * cases where the sink may still be asleep.
  1594. */
  1595. static bool
  1596. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1597. uint8_t *recv, int recv_bytes)
  1598. {
  1599. int ret, i;
  1600. /*
  1601. * Sinks are *supposed* to come up within 1ms from an off state,
  1602. * but we're also supposed to retry 3 times per the spec.
  1603. */
  1604. for (i = 0; i < 3; i++) {
  1605. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1606. recv_bytes);
  1607. if (ret == recv_bytes)
  1608. return true;
  1609. msleep(1);
  1610. }
  1611. return false;
  1612. }
  1613. /*
  1614. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1615. * link status information
  1616. */
  1617. static bool
  1618. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1619. {
  1620. return intel_dp_aux_native_read_retry(intel_dp,
  1621. DP_LANE0_1_STATUS,
  1622. link_status,
  1623. DP_LINK_STATUS_SIZE);
  1624. }
  1625. #if 0
  1626. static char *voltage_names[] = {
  1627. "0.4V", "0.6V", "0.8V", "1.2V"
  1628. };
  1629. static char *pre_emph_names[] = {
  1630. "0dB", "3.5dB", "6dB", "9.5dB"
  1631. };
  1632. static char *link_train_names[] = {
  1633. "pattern 1", "pattern 2", "idle", "off"
  1634. };
  1635. #endif
  1636. /*
  1637. * These are source-specific values; current Intel hardware supports
  1638. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1639. */
  1640. static uint8_t
  1641. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1642. {
  1643. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1644. enum port port = dp_to_dig_port(intel_dp)->port;
  1645. if (IS_VALLEYVIEW(dev))
  1646. return DP_TRAIN_VOLTAGE_SWING_1200;
  1647. else if (IS_GEN7(dev) && port == PORT_A)
  1648. return DP_TRAIN_VOLTAGE_SWING_800;
  1649. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1650. return DP_TRAIN_VOLTAGE_SWING_1200;
  1651. else
  1652. return DP_TRAIN_VOLTAGE_SWING_800;
  1653. }
  1654. static uint8_t
  1655. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1656. {
  1657. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1658. enum port port = dp_to_dig_port(intel_dp)->port;
  1659. if (HAS_DDI(dev)) {
  1660. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1661. case DP_TRAIN_VOLTAGE_SWING_400:
  1662. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1663. case DP_TRAIN_VOLTAGE_SWING_600:
  1664. return DP_TRAIN_PRE_EMPHASIS_6;
  1665. case DP_TRAIN_VOLTAGE_SWING_800:
  1666. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1667. case DP_TRAIN_VOLTAGE_SWING_1200:
  1668. default:
  1669. return DP_TRAIN_PRE_EMPHASIS_0;
  1670. }
  1671. } else if (IS_VALLEYVIEW(dev)) {
  1672. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1673. case DP_TRAIN_VOLTAGE_SWING_400:
  1674. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1675. case DP_TRAIN_VOLTAGE_SWING_600:
  1676. return DP_TRAIN_PRE_EMPHASIS_6;
  1677. case DP_TRAIN_VOLTAGE_SWING_800:
  1678. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1679. case DP_TRAIN_VOLTAGE_SWING_1200:
  1680. default:
  1681. return DP_TRAIN_PRE_EMPHASIS_0;
  1682. }
  1683. } else if (IS_GEN7(dev) && port == PORT_A) {
  1684. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1685. case DP_TRAIN_VOLTAGE_SWING_400:
  1686. return DP_TRAIN_PRE_EMPHASIS_6;
  1687. case DP_TRAIN_VOLTAGE_SWING_600:
  1688. case DP_TRAIN_VOLTAGE_SWING_800:
  1689. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1690. default:
  1691. return DP_TRAIN_PRE_EMPHASIS_0;
  1692. }
  1693. } else {
  1694. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1695. case DP_TRAIN_VOLTAGE_SWING_400:
  1696. return DP_TRAIN_PRE_EMPHASIS_6;
  1697. case DP_TRAIN_VOLTAGE_SWING_600:
  1698. return DP_TRAIN_PRE_EMPHASIS_6;
  1699. case DP_TRAIN_VOLTAGE_SWING_800:
  1700. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1701. case DP_TRAIN_VOLTAGE_SWING_1200:
  1702. default:
  1703. return DP_TRAIN_PRE_EMPHASIS_0;
  1704. }
  1705. }
  1706. }
  1707. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1708. {
  1709. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1710. struct drm_i915_private *dev_priv = dev->dev_private;
  1711. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1712. struct intel_crtc *intel_crtc =
  1713. to_intel_crtc(dport->base.base.crtc);
  1714. unsigned long demph_reg_value, preemph_reg_value,
  1715. uniqtranscale_reg_value;
  1716. uint8_t train_set = intel_dp->train_set[0];
  1717. int port = vlv_dport_to_channel(dport);
  1718. int pipe = intel_crtc->pipe;
  1719. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1720. case DP_TRAIN_PRE_EMPHASIS_0:
  1721. preemph_reg_value = 0x0004000;
  1722. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1723. case DP_TRAIN_VOLTAGE_SWING_400:
  1724. demph_reg_value = 0x2B405555;
  1725. uniqtranscale_reg_value = 0x552AB83A;
  1726. break;
  1727. case DP_TRAIN_VOLTAGE_SWING_600:
  1728. demph_reg_value = 0x2B404040;
  1729. uniqtranscale_reg_value = 0x5548B83A;
  1730. break;
  1731. case DP_TRAIN_VOLTAGE_SWING_800:
  1732. demph_reg_value = 0x2B245555;
  1733. uniqtranscale_reg_value = 0x5560B83A;
  1734. break;
  1735. case DP_TRAIN_VOLTAGE_SWING_1200:
  1736. demph_reg_value = 0x2B405555;
  1737. uniqtranscale_reg_value = 0x5598DA3A;
  1738. break;
  1739. default:
  1740. return 0;
  1741. }
  1742. break;
  1743. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1744. preemph_reg_value = 0x0002000;
  1745. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1746. case DP_TRAIN_VOLTAGE_SWING_400:
  1747. demph_reg_value = 0x2B404040;
  1748. uniqtranscale_reg_value = 0x5552B83A;
  1749. break;
  1750. case DP_TRAIN_VOLTAGE_SWING_600:
  1751. demph_reg_value = 0x2B404848;
  1752. uniqtranscale_reg_value = 0x5580B83A;
  1753. break;
  1754. case DP_TRAIN_VOLTAGE_SWING_800:
  1755. demph_reg_value = 0x2B404040;
  1756. uniqtranscale_reg_value = 0x55ADDA3A;
  1757. break;
  1758. default:
  1759. return 0;
  1760. }
  1761. break;
  1762. case DP_TRAIN_PRE_EMPHASIS_6:
  1763. preemph_reg_value = 0x0000000;
  1764. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1765. case DP_TRAIN_VOLTAGE_SWING_400:
  1766. demph_reg_value = 0x2B305555;
  1767. uniqtranscale_reg_value = 0x5570B83A;
  1768. break;
  1769. case DP_TRAIN_VOLTAGE_SWING_600:
  1770. demph_reg_value = 0x2B2B4040;
  1771. uniqtranscale_reg_value = 0x55ADDA3A;
  1772. break;
  1773. default:
  1774. return 0;
  1775. }
  1776. break;
  1777. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1778. preemph_reg_value = 0x0006000;
  1779. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1780. case DP_TRAIN_VOLTAGE_SWING_400:
  1781. demph_reg_value = 0x1B405555;
  1782. uniqtranscale_reg_value = 0x55ADDA3A;
  1783. break;
  1784. default:
  1785. return 0;
  1786. }
  1787. break;
  1788. default:
  1789. return 0;
  1790. }
  1791. mutex_lock(&dev_priv->dpio_lock);
  1792. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
  1793. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
  1794. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
  1795. uniqtranscale_reg_value);
  1796. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
  1797. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
  1798. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
  1799. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
  1800. mutex_unlock(&dev_priv->dpio_lock);
  1801. return 0;
  1802. }
  1803. static void
  1804. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1805. {
  1806. uint8_t v = 0;
  1807. uint8_t p = 0;
  1808. int lane;
  1809. uint8_t voltage_max;
  1810. uint8_t preemph_max;
  1811. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1812. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1813. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1814. if (this_v > v)
  1815. v = this_v;
  1816. if (this_p > p)
  1817. p = this_p;
  1818. }
  1819. voltage_max = intel_dp_voltage_max(intel_dp);
  1820. if (v >= voltage_max)
  1821. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1822. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1823. if (p >= preemph_max)
  1824. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1825. for (lane = 0; lane < 4; lane++)
  1826. intel_dp->train_set[lane] = v | p;
  1827. }
  1828. static uint32_t
  1829. intel_gen4_signal_levels(uint8_t train_set)
  1830. {
  1831. uint32_t signal_levels = 0;
  1832. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1833. case DP_TRAIN_VOLTAGE_SWING_400:
  1834. default:
  1835. signal_levels |= DP_VOLTAGE_0_4;
  1836. break;
  1837. case DP_TRAIN_VOLTAGE_SWING_600:
  1838. signal_levels |= DP_VOLTAGE_0_6;
  1839. break;
  1840. case DP_TRAIN_VOLTAGE_SWING_800:
  1841. signal_levels |= DP_VOLTAGE_0_8;
  1842. break;
  1843. case DP_TRAIN_VOLTAGE_SWING_1200:
  1844. signal_levels |= DP_VOLTAGE_1_2;
  1845. break;
  1846. }
  1847. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1848. case DP_TRAIN_PRE_EMPHASIS_0:
  1849. default:
  1850. signal_levels |= DP_PRE_EMPHASIS_0;
  1851. break;
  1852. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1853. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1854. break;
  1855. case DP_TRAIN_PRE_EMPHASIS_6:
  1856. signal_levels |= DP_PRE_EMPHASIS_6;
  1857. break;
  1858. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1859. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1860. break;
  1861. }
  1862. return signal_levels;
  1863. }
  1864. /* Gen6's DP voltage swing and pre-emphasis control */
  1865. static uint32_t
  1866. intel_gen6_edp_signal_levels(uint8_t train_set)
  1867. {
  1868. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1869. DP_TRAIN_PRE_EMPHASIS_MASK);
  1870. switch (signal_levels) {
  1871. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1872. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1873. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1874. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1875. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1876. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1877. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1878. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1879. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1880. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1881. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1882. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1883. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1884. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1885. default:
  1886. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1887. "0x%x\n", signal_levels);
  1888. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1889. }
  1890. }
  1891. /* Gen7's DP voltage swing and pre-emphasis control */
  1892. static uint32_t
  1893. intel_gen7_edp_signal_levels(uint8_t train_set)
  1894. {
  1895. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1896. DP_TRAIN_PRE_EMPHASIS_MASK);
  1897. switch (signal_levels) {
  1898. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1899. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1900. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1901. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1902. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1903. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1904. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1905. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1906. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1907. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1908. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1909. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1910. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1911. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1912. default:
  1913. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1914. "0x%x\n", signal_levels);
  1915. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1916. }
  1917. }
  1918. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1919. static uint32_t
  1920. intel_hsw_signal_levels(uint8_t train_set)
  1921. {
  1922. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1923. DP_TRAIN_PRE_EMPHASIS_MASK);
  1924. switch (signal_levels) {
  1925. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1926. return DDI_BUF_EMP_400MV_0DB_HSW;
  1927. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1928. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1929. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1930. return DDI_BUF_EMP_400MV_6DB_HSW;
  1931. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1932. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1933. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1934. return DDI_BUF_EMP_600MV_0DB_HSW;
  1935. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1936. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1937. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1938. return DDI_BUF_EMP_600MV_6DB_HSW;
  1939. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1940. return DDI_BUF_EMP_800MV_0DB_HSW;
  1941. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1942. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1943. default:
  1944. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1945. "0x%x\n", signal_levels);
  1946. return DDI_BUF_EMP_400MV_0DB_HSW;
  1947. }
  1948. }
  1949. /* Properly updates "DP" with the correct signal levels. */
  1950. static void
  1951. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1952. {
  1953. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1954. enum port port = intel_dig_port->port;
  1955. struct drm_device *dev = intel_dig_port->base.base.dev;
  1956. uint32_t signal_levels, mask;
  1957. uint8_t train_set = intel_dp->train_set[0];
  1958. if (HAS_DDI(dev)) {
  1959. signal_levels = intel_hsw_signal_levels(train_set);
  1960. mask = DDI_BUF_EMP_MASK;
  1961. } else if (IS_VALLEYVIEW(dev)) {
  1962. signal_levels = intel_vlv_signal_levels(intel_dp);
  1963. mask = 0;
  1964. } else if (IS_GEN7(dev) && port == PORT_A) {
  1965. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1966. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1967. } else if (IS_GEN6(dev) && port == PORT_A) {
  1968. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1969. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1970. } else {
  1971. signal_levels = intel_gen4_signal_levels(train_set);
  1972. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1973. }
  1974. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1975. *DP = (*DP & ~mask) | signal_levels;
  1976. }
  1977. static bool
  1978. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1979. uint32_t dp_reg_value,
  1980. uint8_t dp_train_pat)
  1981. {
  1982. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1983. struct drm_device *dev = intel_dig_port->base.base.dev;
  1984. struct drm_i915_private *dev_priv = dev->dev_private;
  1985. enum port port = intel_dig_port->port;
  1986. int ret;
  1987. if (HAS_DDI(dev)) {
  1988. uint32_t temp = I915_READ(DP_TP_CTL(port));
  1989. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1990. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1991. else
  1992. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1993. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1994. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1995. case DP_TRAINING_PATTERN_DISABLE:
  1996. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1997. break;
  1998. case DP_TRAINING_PATTERN_1:
  1999. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2000. break;
  2001. case DP_TRAINING_PATTERN_2:
  2002. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  2003. break;
  2004. case DP_TRAINING_PATTERN_3:
  2005. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  2006. break;
  2007. }
  2008. I915_WRITE(DP_TP_CTL(port), temp);
  2009. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2010. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  2011. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2012. case DP_TRAINING_PATTERN_DISABLE:
  2013. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  2014. break;
  2015. case DP_TRAINING_PATTERN_1:
  2016. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  2017. break;
  2018. case DP_TRAINING_PATTERN_2:
  2019. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  2020. break;
  2021. case DP_TRAINING_PATTERN_3:
  2022. DRM_ERROR("DP training pattern 3 not supported\n");
  2023. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  2024. break;
  2025. }
  2026. } else {
  2027. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  2028. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2029. case DP_TRAINING_PATTERN_DISABLE:
  2030. dp_reg_value |= DP_LINK_TRAIN_OFF;
  2031. break;
  2032. case DP_TRAINING_PATTERN_1:
  2033. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  2034. break;
  2035. case DP_TRAINING_PATTERN_2:
  2036. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  2037. break;
  2038. case DP_TRAINING_PATTERN_3:
  2039. DRM_ERROR("DP training pattern 3 not supported\n");
  2040. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  2041. break;
  2042. }
  2043. }
  2044. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  2045. POSTING_READ(intel_dp->output_reg);
  2046. intel_dp_aux_native_write_1(intel_dp,
  2047. DP_TRAINING_PATTERN_SET,
  2048. dp_train_pat);
  2049. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  2050. DP_TRAINING_PATTERN_DISABLE) {
  2051. ret = intel_dp_aux_native_write(intel_dp,
  2052. DP_TRAINING_LANE0_SET,
  2053. intel_dp->train_set,
  2054. intel_dp->lane_count);
  2055. if (ret != intel_dp->lane_count)
  2056. return false;
  2057. }
  2058. return true;
  2059. }
  2060. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  2061. {
  2062. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2063. struct drm_device *dev = intel_dig_port->base.base.dev;
  2064. struct drm_i915_private *dev_priv = dev->dev_private;
  2065. enum port port = intel_dig_port->port;
  2066. uint32_t val;
  2067. if (!HAS_DDI(dev))
  2068. return;
  2069. val = I915_READ(DP_TP_CTL(port));
  2070. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2071. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  2072. I915_WRITE(DP_TP_CTL(port), val);
  2073. /*
  2074. * On PORT_A we can have only eDP in SST mode. There the only reason
  2075. * we need to set idle transmission mode is to work around a HW issue
  2076. * where we enable the pipe while not in idle link-training mode.
  2077. * In this case there is requirement to wait for a minimum number of
  2078. * idle patterns to be sent.
  2079. */
  2080. if (port == PORT_A)
  2081. return;
  2082. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  2083. 1))
  2084. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  2085. }
  2086. /* Enable corresponding port and start training pattern 1 */
  2087. void
  2088. intel_dp_start_link_train(struct intel_dp *intel_dp)
  2089. {
  2090. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  2091. struct drm_device *dev = encoder->dev;
  2092. int i;
  2093. uint8_t voltage;
  2094. int voltage_tries, loop_tries;
  2095. uint32_t DP = intel_dp->DP;
  2096. if (HAS_DDI(dev))
  2097. intel_ddi_prepare_link_retrain(encoder);
  2098. /* Write the link configuration data */
  2099. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  2100. intel_dp->link_configuration,
  2101. DP_LINK_CONFIGURATION_SIZE);
  2102. DP |= DP_PORT_EN;
  2103. memset(intel_dp->train_set, 0, 4);
  2104. voltage = 0xff;
  2105. voltage_tries = 0;
  2106. loop_tries = 0;
  2107. for (;;) {
  2108. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  2109. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2110. intel_dp_set_signal_levels(intel_dp, &DP);
  2111. /* Set training pattern 1 */
  2112. if (!intel_dp_set_link_train(intel_dp, DP,
  2113. DP_TRAINING_PATTERN_1 |
  2114. DP_LINK_SCRAMBLING_DISABLE))
  2115. break;
  2116. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2117. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2118. DRM_ERROR("failed to get link status\n");
  2119. break;
  2120. }
  2121. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2122. DRM_DEBUG_KMS("clock recovery OK\n");
  2123. break;
  2124. }
  2125. /* Check to see if we've tried the max voltage */
  2126. for (i = 0; i < intel_dp->lane_count; i++)
  2127. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2128. break;
  2129. if (i == intel_dp->lane_count) {
  2130. ++loop_tries;
  2131. if (loop_tries == 5) {
  2132. DRM_DEBUG_KMS("too many full retries, give up\n");
  2133. break;
  2134. }
  2135. memset(intel_dp->train_set, 0, 4);
  2136. voltage_tries = 0;
  2137. continue;
  2138. }
  2139. /* Check to see if we've tried the same voltage 5 times */
  2140. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2141. ++voltage_tries;
  2142. if (voltage_tries == 5) {
  2143. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  2144. break;
  2145. }
  2146. } else
  2147. voltage_tries = 0;
  2148. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2149. /* Compute new intel_dp->train_set as requested by target */
  2150. intel_get_adjust_train(intel_dp, link_status);
  2151. }
  2152. intel_dp->DP = DP;
  2153. }
  2154. void
  2155. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2156. {
  2157. bool channel_eq = false;
  2158. int tries, cr_tries;
  2159. uint32_t DP = intel_dp->DP;
  2160. /* channel equalization */
  2161. tries = 0;
  2162. cr_tries = 0;
  2163. channel_eq = false;
  2164. for (;;) {
  2165. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2166. if (cr_tries > 5) {
  2167. DRM_ERROR("failed to train DP, aborting\n");
  2168. intel_dp_link_down(intel_dp);
  2169. break;
  2170. }
  2171. intel_dp_set_signal_levels(intel_dp, &DP);
  2172. /* channel eq pattern */
  2173. if (!intel_dp_set_link_train(intel_dp, DP,
  2174. DP_TRAINING_PATTERN_2 |
  2175. DP_LINK_SCRAMBLING_DISABLE))
  2176. break;
  2177. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2178. if (!intel_dp_get_link_status(intel_dp, link_status))
  2179. break;
  2180. /* Make sure clock is still ok */
  2181. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2182. intel_dp_start_link_train(intel_dp);
  2183. cr_tries++;
  2184. continue;
  2185. }
  2186. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2187. channel_eq = true;
  2188. break;
  2189. }
  2190. /* Try 5 times, then try clock recovery if that fails */
  2191. if (tries > 5) {
  2192. intel_dp_link_down(intel_dp);
  2193. intel_dp_start_link_train(intel_dp);
  2194. tries = 0;
  2195. cr_tries++;
  2196. continue;
  2197. }
  2198. /* Compute new intel_dp->train_set as requested by target */
  2199. intel_get_adjust_train(intel_dp, link_status);
  2200. ++tries;
  2201. }
  2202. intel_dp_set_idle_link_train(intel_dp);
  2203. intel_dp->DP = DP;
  2204. if (channel_eq)
  2205. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2206. }
  2207. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2208. {
  2209. intel_dp_set_link_train(intel_dp, intel_dp->DP,
  2210. DP_TRAINING_PATTERN_DISABLE);
  2211. }
  2212. static void
  2213. intel_dp_link_down(struct intel_dp *intel_dp)
  2214. {
  2215. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2216. enum port port = intel_dig_port->port;
  2217. struct drm_device *dev = intel_dig_port->base.base.dev;
  2218. struct drm_i915_private *dev_priv = dev->dev_private;
  2219. struct intel_crtc *intel_crtc =
  2220. to_intel_crtc(intel_dig_port->base.base.crtc);
  2221. uint32_t DP = intel_dp->DP;
  2222. /*
  2223. * DDI code has a strict mode set sequence and we should try to respect
  2224. * it, otherwise we might hang the machine in many different ways. So we
  2225. * really should be disabling the port only on a complete crtc_disable
  2226. * sequence. This function is just called under two conditions on DDI
  2227. * code:
  2228. * - Link train failed while doing crtc_enable, and on this case we
  2229. * really should respect the mode set sequence and wait for a
  2230. * crtc_disable.
  2231. * - Someone turned the monitor off and intel_dp_check_link_status
  2232. * called us. We don't need to disable the whole port on this case, so
  2233. * when someone turns the monitor on again,
  2234. * intel_ddi_prepare_link_retrain will take care of redoing the link
  2235. * train.
  2236. */
  2237. if (HAS_DDI(dev))
  2238. return;
  2239. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2240. return;
  2241. DRM_DEBUG_KMS("\n");
  2242. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2243. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2244. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2245. } else {
  2246. DP &= ~DP_LINK_TRAIN_MASK;
  2247. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2248. }
  2249. POSTING_READ(intel_dp->output_reg);
  2250. /* We don't really know why we're doing this */
  2251. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2252. if (HAS_PCH_IBX(dev) &&
  2253. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2254. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2255. /* Hardware workaround: leaving our transcoder select
  2256. * set to transcoder B while it's off will prevent the
  2257. * corresponding HDMI output on transcoder A.
  2258. *
  2259. * Combine this with another hardware workaround:
  2260. * transcoder select bit can only be cleared while the
  2261. * port is enabled.
  2262. */
  2263. DP &= ~DP_PIPEB_SELECT;
  2264. I915_WRITE(intel_dp->output_reg, DP);
  2265. /* Changes to enable or select take place the vblank
  2266. * after being written.
  2267. */
  2268. if (WARN_ON(crtc == NULL)) {
  2269. /* We should never try to disable a port without a crtc
  2270. * attached. For paranoia keep the code around for a
  2271. * bit. */
  2272. POSTING_READ(intel_dp->output_reg);
  2273. msleep(50);
  2274. } else
  2275. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2276. }
  2277. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2278. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2279. POSTING_READ(intel_dp->output_reg);
  2280. msleep(intel_dp->panel_power_down_delay);
  2281. }
  2282. static bool
  2283. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2284. {
  2285. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2286. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  2287. sizeof(intel_dp->dpcd)) == 0)
  2288. return false; /* aux transfer failed */
  2289. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2290. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2291. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2292. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2293. return false; /* DPCD not present */
  2294. /* Check if the panel supports PSR */
  2295. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2296. if (is_edp(intel_dp)) {
  2297. intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
  2298. intel_dp->psr_dpcd,
  2299. sizeof(intel_dp->psr_dpcd));
  2300. if (is_edp_psr(intel_dp))
  2301. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2302. }
  2303. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2304. DP_DWN_STRM_PORT_PRESENT))
  2305. return true; /* native DP sink */
  2306. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2307. return true; /* no per-port downstream info */
  2308. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  2309. intel_dp->downstream_ports,
  2310. DP_MAX_DOWNSTREAM_PORTS) == 0)
  2311. return false; /* downstream port status fetch failed */
  2312. return true;
  2313. }
  2314. static void
  2315. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2316. {
  2317. u8 buf[3];
  2318. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2319. return;
  2320. ironlake_edp_panel_vdd_on(intel_dp);
  2321. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  2322. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2323. buf[0], buf[1], buf[2]);
  2324. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  2325. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2326. buf[0], buf[1], buf[2]);
  2327. ironlake_edp_panel_vdd_off(intel_dp, false);
  2328. }
  2329. static bool
  2330. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2331. {
  2332. int ret;
  2333. ret = intel_dp_aux_native_read_retry(intel_dp,
  2334. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2335. sink_irq_vector, 1);
  2336. if (!ret)
  2337. return false;
  2338. return true;
  2339. }
  2340. static void
  2341. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2342. {
  2343. /* NAK by default */
  2344. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  2345. }
  2346. /*
  2347. * According to DP spec
  2348. * 5.1.2:
  2349. * 1. Read DPCD
  2350. * 2. Configure link according to Receiver Capabilities
  2351. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2352. * 4. Check link status on receipt of hot-plug interrupt
  2353. */
  2354. void
  2355. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2356. {
  2357. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2358. u8 sink_irq_vector;
  2359. u8 link_status[DP_LINK_STATUS_SIZE];
  2360. if (!intel_encoder->connectors_active)
  2361. return;
  2362. if (WARN_ON(!intel_encoder->base.crtc))
  2363. return;
  2364. /* Try to read receiver status if the link appears to be up */
  2365. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2366. intel_dp_link_down(intel_dp);
  2367. return;
  2368. }
  2369. /* Now read the DPCD to see if it's actually running */
  2370. if (!intel_dp_get_dpcd(intel_dp)) {
  2371. intel_dp_link_down(intel_dp);
  2372. return;
  2373. }
  2374. /* Try to read the source of the interrupt */
  2375. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2376. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2377. /* Clear interrupt source */
  2378. intel_dp_aux_native_write_1(intel_dp,
  2379. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2380. sink_irq_vector);
  2381. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2382. intel_dp_handle_test_request(intel_dp);
  2383. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2384. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2385. }
  2386. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2387. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2388. drm_get_encoder_name(&intel_encoder->base));
  2389. intel_dp_start_link_train(intel_dp);
  2390. intel_dp_complete_link_train(intel_dp);
  2391. intel_dp_stop_link_train(intel_dp);
  2392. }
  2393. }
  2394. /* XXX this is probably wrong for multiple downstream ports */
  2395. static enum drm_connector_status
  2396. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2397. {
  2398. uint8_t *dpcd = intel_dp->dpcd;
  2399. bool hpd;
  2400. uint8_t type;
  2401. if (!intel_dp_get_dpcd(intel_dp))
  2402. return connector_status_disconnected;
  2403. /* if there's no downstream port, we're done */
  2404. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2405. return connector_status_connected;
  2406. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2407. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  2408. if (hpd) {
  2409. uint8_t reg;
  2410. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  2411. &reg, 1))
  2412. return connector_status_unknown;
  2413. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2414. : connector_status_disconnected;
  2415. }
  2416. /* If no HPD, poke DDC gently */
  2417. if (drm_probe_ddc(&intel_dp->adapter))
  2418. return connector_status_connected;
  2419. /* Well we tried, say unknown for unreliable port types */
  2420. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2421. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  2422. return connector_status_unknown;
  2423. /* Anything else is out of spec, warn and ignore */
  2424. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2425. return connector_status_disconnected;
  2426. }
  2427. static enum drm_connector_status
  2428. ironlake_dp_detect(struct intel_dp *intel_dp)
  2429. {
  2430. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2431. struct drm_i915_private *dev_priv = dev->dev_private;
  2432. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2433. enum drm_connector_status status;
  2434. /* Can't disconnect eDP, but you can close the lid... */
  2435. if (is_edp(intel_dp)) {
  2436. status = intel_panel_detect(dev);
  2437. if (status == connector_status_unknown)
  2438. status = connector_status_connected;
  2439. return status;
  2440. }
  2441. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2442. return connector_status_disconnected;
  2443. return intel_dp_detect_dpcd(intel_dp);
  2444. }
  2445. static enum drm_connector_status
  2446. g4x_dp_detect(struct intel_dp *intel_dp)
  2447. {
  2448. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2449. struct drm_i915_private *dev_priv = dev->dev_private;
  2450. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2451. uint32_t bit;
  2452. /* Can't disconnect eDP, but you can close the lid... */
  2453. if (is_edp(intel_dp)) {
  2454. enum drm_connector_status status;
  2455. status = intel_panel_detect(dev);
  2456. if (status == connector_status_unknown)
  2457. status = connector_status_connected;
  2458. return status;
  2459. }
  2460. switch (intel_dig_port->port) {
  2461. case PORT_B:
  2462. bit = PORTB_HOTPLUG_LIVE_STATUS;
  2463. break;
  2464. case PORT_C:
  2465. bit = PORTC_HOTPLUG_LIVE_STATUS;
  2466. break;
  2467. case PORT_D:
  2468. bit = PORTD_HOTPLUG_LIVE_STATUS;
  2469. break;
  2470. default:
  2471. return connector_status_unknown;
  2472. }
  2473. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2474. return connector_status_disconnected;
  2475. return intel_dp_detect_dpcd(intel_dp);
  2476. }
  2477. static struct edid *
  2478. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2479. {
  2480. struct intel_connector *intel_connector = to_intel_connector(connector);
  2481. /* use cached edid if we have one */
  2482. if (intel_connector->edid) {
  2483. struct edid *edid;
  2484. int size;
  2485. /* invalid edid */
  2486. if (IS_ERR(intel_connector->edid))
  2487. return NULL;
  2488. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  2489. edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
  2490. if (!edid)
  2491. return NULL;
  2492. return edid;
  2493. }
  2494. return drm_get_edid(connector, adapter);
  2495. }
  2496. static int
  2497. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2498. {
  2499. struct intel_connector *intel_connector = to_intel_connector(connector);
  2500. /* use cached edid if we have one */
  2501. if (intel_connector->edid) {
  2502. /* invalid edid */
  2503. if (IS_ERR(intel_connector->edid))
  2504. return 0;
  2505. return intel_connector_update_modes(connector,
  2506. intel_connector->edid);
  2507. }
  2508. return intel_ddc_get_modes(connector, adapter);
  2509. }
  2510. static enum drm_connector_status
  2511. intel_dp_detect(struct drm_connector *connector, bool force)
  2512. {
  2513. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2514. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2515. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2516. struct drm_device *dev = connector->dev;
  2517. enum drm_connector_status status;
  2518. struct edid *edid = NULL;
  2519. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  2520. connector->base.id, drm_get_connector_name(connector));
  2521. intel_dp->has_audio = false;
  2522. if (HAS_PCH_SPLIT(dev))
  2523. status = ironlake_dp_detect(intel_dp);
  2524. else
  2525. status = g4x_dp_detect(intel_dp);
  2526. if (status != connector_status_connected)
  2527. return status;
  2528. intel_dp_probe_oui(intel_dp);
  2529. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2530. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2531. } else {
  2532. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2533. if (edid) {
  2534. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2535. kfree(edid);
  2536. }
  2537. }
  2538. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2539. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2540. return connector_status_connected;
  2541. }
  2542. static int intel_dp_get_modes(struct drm_connector *connector)
  2543. {
  2544. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2545. struct intel_connector *intel_connector = to_intel_connector(connector);
  2546. struct drm_device *dev = connector->dev;
  2547. int ret;
  2548. /* We should parse the EDID data and find out if it has an audio sink
  2549. */
  2550. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2551. if (ret)
  2552. return ret;
  2553. /* if eDP has no EDID, fall back to fixed mode */
  2554. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2555. struct drm_display_mode *mode;
  2556. mode = drm_mode_duplicate(dev,
  2557. intel_connector->panel.fixed_mode);
  2558. if (mode) {
  2559. drm_mode_probed_add(connector, mode);
  2560. return 1;
  2561. }
  2562. }
  2563. return 0;
  2564. }
  2565. static bool
  2566. intel_dp_detect_audio(struct drm_connector *connector)
  2567. {
  2568. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2569. struct edid *edid;
  2570. bool has_audio = false;
  2571. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2572. if (edid) {
  2573. has_audio = drm_detect_monitor_audio(edid);
  2574. kfree(edid);
  2575. }
  2576. return has_audio;
  2577. }
  2578. static int
  2579. intel_dp_set_property(struct drm_connector *connector,
  2580. struct drm_property *property,
  2581. uint64_t val)
  2582. {
  2583. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2584. struct intel_connector *intel_connector = to_intel_connector(connector);
  2585. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2586. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2587. int ret;
  2588. ret = drm_object_property_set_value(&connector->base, property, val);
  2589. if (ret)
  2590. return ret;
  2591. if (property == dev_priv->force_audio_property) {
  2592. int i = val;
  2593. bool has_audio;
  2594. if (i == intel_dp->force_audio)
  2595. return 0;
  2596. intel_dp->force_audio = i;
  2597. if (i == HDMI_AUDIO_AUTO)
  2598. has_audio = intel_dp_detect_audio(connector);
  2599. else
  2600. has_audio = (i == HDMI_AUDIO_ON);
  2601. if (has_audio == intel_dp->has_audio)
  2602. return 0;
  2603. intel_dp->has_audio = has_audio;
  2604. goto done;
  2605. }
  2606. if (property == dev_priv->broadcast_rgb_property) {
  2607. bool old_auto = intel_dp->color_range_auto;
  2608. uint32_t old_range = intel_dp->color_range;
  2609. switch (val) {
  2610. case INTEL_BROADCAST_RGB_AUTO:
  2611. intel_dp->color_range_auto = true;
  2612. break;
  2613. case INTEL_BROADCAST_RGB_FULL:
  2614. intel_dp->color_range_auto = false;
  2615. intel_dp->color_range = 0;
  2616. break;
  2617. case INTEL_BROADCAST_RGB_LIMITED:
  2618. intel_dp->color_range_auto = false;
  2619. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2620. break;
  2621. default:
  2622. return -EINVAL;
  2623. }
  2624. if (old_auto == intel_dp->color_range_auto &&
  2625. old_range == intel_dp->color_range)
  2626. return 0;
  2627. goto done;
  2628. }
  2629. if (is_edp(intel_dp) &&
  2630. property == connector->dev->mode_config.scaling_mode_property) {
  2631. if (val == DRM_MODE_SCALE_NONE) {
  2632. DRM_DEBUG_KMS("no scaling not supported\n");
  2633. return -EINVAL;
  2634. }
  2635. if (intel_connector->panel.fitting_mode == val) {
  2636. /* the eDP scaling property is not changed */
  2637. return 0;
  2638. }
  2639. intel_connector->panel.fitting_mode = val;
  2640. goto done;
  2641. }
  2642. return -EINVAL;
  2643. done:
  2644. if (intel_encoder->base.crtc)
  2645. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2646. return 0;
  2647. }
  2648. static void
  2649. intel_dp_connector_destroy(struct drm_connector *connector)
  2650. {
  2651. struct intel_connector *intel_connector = to_intel_connector(connector);
  2652. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2653. kfree(intel_connector->edid);
  2654. /* Can't call is_edp() since the encoder may have been destroyed
  2655. * already. */
  2656. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  2657. intel_panel_fini(&intel_connector->panel);
  2658. drm_sysfs_connector_remove(connector);
  2659. drm_connector_cleanup(connector);
  2660. kfree(connector);
  2661. }
  2662. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2663. {
  2664. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2665. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2666. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2667. i2c_del_adapter(&intel_dp->adapter);
  2668. drm_encoder_cleanup(encoder);
  2669. if (is_edp(intel_dp)) {
  2670. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2671. mutex_lock(&dev->mode_config.mutex);
  2672. ironlake_panel_vdd_off_sync(intel_dp);
  2673. mutex_unlock(&dev->mode_config.mutex);
  2674. }
  2675. kfree(intel_dig_port);
  2676. }
  2677. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2678. .dpms = intel_connector_dpms,
  2679. .detect = intel_dp_detect,
  2680. .fill_modes = drm_helper_probe_single_connector_modes,
  2681. .set_property = intel_dp_set_property,
  2682. .destroy = intel_dp_connector_destroy,
  2683. };
  2684. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2685. .get_modes = intel_dp_get_modes,
  2686. .mode_valid = intel_dp_mode_valid,
  2687. .best_encoder = intel_best_encoder,
  2688. };
  2689. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2690. .destroy = intel_dp_encoder_destroy,
  2691. };
  2692. static void
  2693. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2694. {
  2695. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2696. intel_dp_check_link_status(intel_dp);
  2697. }
  2698. /* Return which DP Port should be selected for Transcoder DP control */
  2699. int
  2700. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2701. {
  2702. struct drm_device *dev = crtc->dev;
  2703. struct intel_encoder *intel_encoder;
  2704. struct intel_dp *intel_dp;
  2705. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2706. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2707. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2708. intel_encoder->type == INTEL_OUTPUT_EDP)
  2709. return intel_dp->output_reg;
  2710. }
  2711. return -1;
  2712. }
  2713. /* check the VBT to see whether the eDP is on DP-D port */
  2714. bool intel_dpd_is_edp(struct drm_device *dev)
  2715. {
  2716. struct drm_i915_private *dev_priv = dev->dev_private;
  2717. union child_device_config *p_child;
  2718. int i;
  2719. if (!dev_priv->vbt.child_dev_num)
  2720. return false;
  2721. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  2722. p_child = dev_priv->vbt.child_dev + i;
  2723. if (p_child->common.dvo_port == PORT_IDPD &&
  2724. p_child->common.device_type == DEVICE_TYPE_eDP)
  2725. return true;
  2726. }
  2727. return false;
  2728. }
  2729. static void
  2730. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2731. {
  2732. struct intel_connector *intel_connector = to_intel_connector(connector);
  2733. intel_attach_force_audio_property(connector);
  2734. intel_attach_broadcast_rgb_property(connector);
  2735. intel_dp->color_range_auto = true;
  2736. if (is_edp(intel_dp)) {
  2737. drm_mode_create_scaling_mode_property(connector->dev);
  2738. drm_object_attach_property(
  2739. &connector->base,
  2740. connector->dev->mode_config.scaling_mode_property,
  2741. DRM_MODE_SCALE_ASPECT);
  2742. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2743. }
  2744. }
  2745. static void
  2746. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2747. struct intel_dp *intel_dp,
  2748. struct edp_power_seq *out)
  2749. {
  2750. struct drm_i915_private *dev_priv = dev->dev_private;
  2751. struct edp_power_seq cur, vbt, spec, final;
  2752. u32 pp_on, pp_off, pp_div, pp;
  2753. int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2754. if (HAS_PCH_SPLIT(dev)) {
  2755. pp_ctrl_reg = PCH_PP_CONTROL;
  2756. pp_on_reg = PCH_PP_ON_DELAYS;
  2757. pp_off_reg = PCH_PP_OFF_DELAYS;
  2758. pp_div_reg = PCH_PP_DIVISOR;
  2759. } else {
  2760. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  2761. pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
  2762. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  2763. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  2764. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  2765. }
  2766. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2767. * the very first thing. */
  2768. pp = ironlake_get_pp_control(intel_dp);
  2769. I915_WRITE(pp_ctrl_reg, pp);
  2770. pp_on = I915_READ(pp_on_reg);
  2771. pp_off = I915_READ(pp_off_reg);
  2772. pp_div = I915_READ(pp_div_reg);
  2773. /* Pull timing values out of registers */
  2774. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2775. PANEL_POWER_UP_DELAY_SHIFT;
  2776. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2777. PANEL_LIGHT_ON_DELAY_SHIFT;
  2778. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2779. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2780. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2781. PANEL_POWER_DOWN_DELAY_SHIFT;
  2782. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2783. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2784. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2785. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2786. vbt = dev_priv->vbt.edp_pps;
  2787. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2788. * our hw here, which are all in 100usec. */
  2789. spec.t1_t3 = 210 * 10;
  2790. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2791. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2792. spec.t10 = 500 * 10;
  2793. /* This one is special and actually in units of 100ms, but zero
  2794. * based in the hw (so we need to add 100 ms). But the sw vbt
  2795. * table multiplies it with 1000 to make it in units of 100usec,
  2796. * too. */
  2797. spec.t11_t12 = (510 + 100) * 10;
  2798. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2799. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2800. /* Use the max of the register settings and vbt. If both are
  2801. * unset, fall back to the spec limits. */
  2802. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2803. spec.field : \
  2804. max(cur.field, vbt.field))
  2805. assign_final(t1_t3);
  2806. assign_final(t8);
  2807. assign_final(t9);
  2808. assign_final(t10);
  2809. assign_final(t11_t12);
  2810. #undef assign_final
  2811. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2812. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2813. intel_dp->backlight_on_delay = get_delay(t8);
  2814. intel_dp->backlight_off_delay = get_delay(t9);
  2815. intel_dp->panel_power_down_delay = get_delay(t10);
  2816. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2817. #undef get_delay
  2818. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2819. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2820. intel_dp->panel_power_cycle_delay);
  2821. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2822. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2823. if (out)
  2824. *out = final;
  2825. }
  2826. static void
  2827. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2828. struct intel_dp *intel_dp,
  2829. struct edp_power_seq *seq)
  2830. {
  2831. struct drm_i915_private *dev_priv = dev->dev_private;
  2832. u32 pp_on, pp_off, pp_div, port_sel = 0;
  2833. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  2834. int pp_on_reg, pp_off_reg, pp_div_reg;
  2835. if (HAS_PCH_SPLIT(dev)) {
  2836. pp_on_reg = PCH_PP_ON_DELAYS;
  2837. pp_off_reg = PCH_PP_OFF_DELAYS;
  2838. pp_div_reg = PCH_PP_DIVISOR;
  2839. } else {
  2840. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  2841. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  2842. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  2843. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  2844. }
  2845. /* And finally store the new values in the power sequencer. */
  2846. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2847. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2848. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2849. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2850. /* Compute the divisor for the pp clock, simply match the Bspec
  2851. * formula. */
  2852. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  2853. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2854. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2855. /* Haswell doesn't have any port selection bits for the panel
  2856. * power sequencer any more. */
  2857. if (IS_VALLEYVIEW(dev)) {
  2858. if (dp_to_dig_port(intel_dp)->port == PORT_B)
  2859. port_sel = PANEL_PORT_SELECT_DPB_VLV;
  2860. else
  2861. port_sel = PANEL_PORT_SELECT_DPC_VLV;
  2862. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2863. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  2864. port_sel = PANEL_PORT_SELECT_DPA;
  2865. else
  2866. port_sel = PANEL_PORT_SELECT_DPD;
  2867. }
  2868. pp_on |= port_sel;
  2869. I915_WRITE(pp_on_reg, pp_on);
  2870. I915_WRITE(pp_off_reg, pp_off);
  2871. I915_WRITE(pp_div_reg, pp_div);
  2872. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2873. I915_READ(pp_on_reg),
  2874. I915_READ(pp_off_reg),
  2875. I915_READ(pp_div_reg));
  2876. }
  2877. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  2878. struct intel_connector *intel_connector)
  2879. {
  2880. struct drm_connector *connector = &intel_connector->base;
  2881. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2882. struct drm_device *dev = intel_dig_port->base.base.dev;
  2883. struct drm_i915_private *dev_priv = dev->dev_private;
  2884. struct drm_display_mode *fixed_mode = NULL;
  2885. struct edp_power_seq power_seq = { 0 };
  2886. bool has_dpcd;
  2887. struct drm_display_mode *scan;
  2888. struct edid *edid;
  2889. if (!is_edp(intel_dp))
  2890. return true;
  2891. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2892. /* Cache DPCD and EDID for edp. */
  2893. ironlake_edp_panel_vdd_on(intel_dp);
  2894. has_dpcd = intel_dp_get_dpcd(intel_dp);
  2895. ironlake_edp_panel_vdd_off(intel_dp, false);
  2896. if (has_dpcd) {
  2897. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2898. dev_priv->no_aux_handshake =
  2899. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2900. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2901. } else {
  2902. /* if this fails, presume the device is a ghost */
  2903. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2904. return false;
  2905. }
  2906. /* We now know it's not a ghost, init power sequence regs. */
  2907. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2908. &power_seq);
  2909. ironlake_edp_panel_vdd_on(intel_dp);
  2910. edid = drm_get_edid(connector, &intel_dp->adapter);
  2911. if (edid) {
  2912. if (drm_add_edid_modes(connector, edid)) {
  2913. drm_mode_connector_update_edid_property(connector,
  2914. edid);
  2915. drm_edid_to_eld(connector, edid);
  2916. } else {
  2917. kfree(edid);
  2918. edid = ERR_PTR(-EINVAL);
  2919. }
  2920. } else {
  2921. edid = ERR_PTR(-ENOENT);
  2922. }
  2923. intel_connector->edid = edid;
  2924. /* prefer fixed mode from EDID if available */
  2925. list_for_each_entry(scan, &connector->probed_modes, head) {
  2926. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2927. fixed_mode = drm_mode_duplicate(dev, scan);
  2928. break;
  2929. }
  2930. }
  2931. /* fallback to VBT if available for eDP */
  2932. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  2933. fixed_mode = drm_mode_duplicate(dev,
  2934. dev_priv->vbt.lfp_lvds_vbt_mode);
  2935. if (fixed_mode)
  2936. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2937. }
  2938. ironlake_edp_panel_vdd_off(intel_dp, false);
  2939. intel_panel_init(&intel_connector->panel, fixed_mode);
  2940. intel_panel_setup_backlight(connector);
  2941. return true;
  2942. }
  2943. bool
  2944. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2945. struct intel_connector *intel_connector)
  2946. {
  2947. struct drm_connector *connector = &intel_connector->base;
  2948. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2949. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2950. struct drm_device *dev = intel_encoder->base.dev;
  2951. struct drm_i915_private *dev_priv = dev->dev_private;
  2952. enum port port = intel_dig_port->port;
  2953. const char *name = NULL;
  2954. int type, error;
  2955. /* Preserve the current hw state. */
  2956. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2957. intel_dp->attached_connector = intel_connector;
  2958. type = DRM_MODE_CONNECTOR_DisplayPort;
  2959. /*
  2960. * FIXME : We need to initialize built-in panels before external panels.
  2961. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2962. */
  2963. switch (port) {
  2964. case PORT_A:
  2965. type = DRM_MODE_CONNECTOR_eDP;
  2966. break;
  2967. case PORT_C:
  2968. if (IS_VALLEYVIEW(dev))
  2969. type = DRM_MODE_CONNECTOR_eDP;
  2970. break;
  2971. case PORT_D:
  2972. if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
  2973. type = DRM_MODE_CONNECTOR_eDP;
  2974. break;
  2975. default: /* silence GCC warning */
  2976. break;
  2977. }
  2978. /*
  2979. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  2980. * for DP the encoder type can be set by the caller to
  2981. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  2982. */
  2983. if (type == DRM_MODE_CONNECTOR_eDP)
  2984. intel_encoder->type = INTEL_OUTPUT_EDP;
  2985. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  2986. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  2987. port_name(port));
  2988. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2989. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2990. connector->interlace_allowed = true;
  2991. connector->doublescan_allowed = 0;
  2992. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2993. ironlake_panel_vdd_work);
  2994. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2995. drm_sysfs_connector_add(connector);
  2996. if (HAS_DDI(dev))
  2997. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2998. else
  2999. intel_connector->get_hw_state = intel_connector_get_hw_state;
  3000. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  3001. if (HAS_DDI(dev)) {
  3002. switch (intel_dig_port->port) {
  3003. case PORT_A:
  3004. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  3005. break;
  3006. case PORT_B:
  3007. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  3008. break;
  3009. case PORT_C:
  3010. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  3011. break;
  3012. case PORT_D:
  3013. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  3014. break;
  3015. default:
  3016. BUG();
  3017. }
  3018. }
  3019. /* Set up the DDC bus. */
  3020. switch (port) {
  3021. case PORT_A:
  3022. intel_encoder->hpd_pin = HPD_PORT_A;
  3023. name = "DPDDC-A";
  3024. break;
  3025. case PORT_B:
  3026. intel_encoder->hpd_pin = HPD_PORT_B;
  3027. name = "DPDDC-B";
  3028. break;
  3029. case PORT_C:
  3030. intel_encoder->hpd_pin = HPD_PORT_C;
  3031. name = "DPDDC-C";
  3032. break;
  3033. case PORT_D:
  3034. intel_encoder->hpd_pin = HPD_PORT_D;
  3035. name = "DPDDC-D";
  3036. break;
  3037. default:
  3038. BUG();
  3039. }
  3040. error = intel_dp_i2c_init(intel_dp, intel_connector, name);
  3041. WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
  3042. error, port_name(port));
  3043. intel_dp->psr_setup_done = false;
  3044. if (!intel_edp_init_connector(intel_dp, intel_connector)) {
  3045. i2c_del_adapter(&intel_dp->adapter);
  3046. if (is_edp(intel_dp)) {
  3047. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  3048. mutex_lock(&dev->mode_config.mutex);
  3049. ironlake_panel_vdd_off_sync(intel_dp);
  3050. mutex_unlock(&dev->mode_config.mutex);
  3051. }
  3052. drm_sysfs_connector_remove(connector);
  3053. drm_connector_cleanup(connector);
  3054. return false;
  3055. }
  3056. intel_dp_add_properties(intel_dp, connector);
  3057. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  3058. * 0xd. Failure to do so will result in spurious interrupts being
  3059. * generated on the port when a cable is not attached.
  3060. */
  3061. if (IS_G4X(dev) && !IS_GM45(dev)) {
  3062. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  3063. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  3064. }
  3065. return true;
  3066. }
  3067. void
  3068. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  3069. {
  3070. struct intel_digital_port *intel_dig_port;
  3071. struct intel_encoder *intel_encoder;
  3072. struct drm_encoder *encoder;
  3073. struct intel_connector *intel_connector;
  3074. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  3075. if (!intel_dig_port)
  3076. return;
  3077. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  3078. if (!intel_connector) {
  3079. kfree(intel_dig_port);
  3080. return;
  3081. }
  3082. intel_encoder = &intel_dig_port->base;
  3083. encoder = &intel_encoder->base;
  3084. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  3085. DRM_MODE_ENCODER_TMDS);
  3086. intel_encoder->compute_config = intel_dp_compute_config;
  3087. intel_encoder->mode_set = intel_dp_mode_set;
  3088. intel_encoder->disable = intel_disable_dp;
  3089. intel_encoder->post_disable = intel_post_disable_dp;
  3090. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  3091. intel_encoder->get_config = intel_dp_get_config;
  3092. if (IS_VALLEYVIEW(dev)) {
  3093. intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
  3094. intel_encoder->pre_enable = vlv_pre_enable_dp;
  3095. intel_encoder->enable = vlv_enable_dp;
  3096. } else {
  3097. intel_encoder->pre_enable = g4x_pre_enable_dp;
  3098. intel_encoder->enable = g4x_enable_dp;
  3099. }
  3100. intel_dig_port->port = port;
  3101. intel_dig_port->dp.output_reg = output_reg;
  3102. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3103. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3104. intel_encoder->cloneable = false;
  3105. intel_encoder->hot_plug = intel_dp_hot_plug;
  3106. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3107. drm_encoder_cleanup(encoder);
  3108. kfree(intel_dig_port);
  3109. kfree(intel_connector);
  3110. }
  3111. }