sched.c 228 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. unsigned int nr_spread_over;
  273. #ifdef CONFIG_FAIR_GROUP_SCHED
  274. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  275. /*
  276. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  277. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  278. * (like users, containers etc.)
  279. *
  280. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  281. * list is used during load balance.
  282. */
  283. int on_list;
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * Maintaining per-cpu shares distribution for group scheduling
  300. *
  301. * load_stamp is the last time we updated the load average
  302. * load_last is the last time we updated the load average and saw load
  303. * load_unacc_exec_time is currently unaccounted execution time
  304. */
  305. u64 load_avg;
  306. u64 load_period;
  307. u64 load_stamp, load_last, load_unacc_exec_time;
  308. unsigned long load_contribution;
  309. #endif
  310. #endif
  311. };
  312. /* Real-Time classes' related field in a runqueue: */
  313. struct rt_rq {
  314. struct rt_prio_array active;
  315. unsigned long rt_nr_running;
  316. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  317. struct {
  318. int curr; /* highest queued rt task prio */
  319. #ifdef CONFIG_SMP
  320. int next; /* next highest */
  321. #endif
  322. } highest_prio;
  323. #endif
  324. #ifdef CONFIG_SMP
  325. unsigned long rt_nr_migratory;
  326. unsigned long rt_nr_total;
  327. int overloaded;
  328. struct plist_head pushable_tasks;
  329. #endif
  330. int rt_throttled;
  331. u64 rt_time;
  332. u64 rt_runtime;
  333. /* Nests inside the rq lock: */
  334. raw_spinlock_t rt_runtime_lock;
  335. #ifdef CONFIG_RT_GROUP_SCHED
  336. unsigned long rt_nr_boosted;
  337. struct rq *rq;
  338. struct list_head leaf_rt_rq_list;
  339. struct task_group *tg;
  340. #endif
  341. };
  342. #ifdef CONFIG_SMP
  343. /*
  344. * We add the notion of a root-domain which will be used to define per-domain
  345. * variables. Each exclusive cpuset essentially defines an island domain by
  346. * fully partitioning the member cpus from any other cpuset. Whenever a new
  347. * exclusive cpuset is created, we also create and attach a new root-domain
  348. * object.
  349. *
  350. */
  351. struct root_domain {
  352. atomic_t refcount;
  353. cpumask_var_t span;
  354. cpumask_var_t online;
  355. /*
  356. * The "RT overload" flag: it gets set if a CPU has more than
  357. * one runnable RT task.
  358. */
  359. cpumask_var_t rto_mask;
  360. atomic_t rto_count;
  361. struct cpupri cpupri;
  362. };
  363. /*
  364. * By default the system creates a single root-domain with all cpus as
  365. * members (mimicking the global state we have today).
  366. */
  367. static struct root_domain def_root_domain;
  368. #endif /* CONFIG_SMP */
  369. /*
  370. * This is the main, per-CPU runqueue data structure.
  371. *
  372. * Locking rule: those places that want to lock multiple runqueues
  373. * (such as the load balancing or the thread migration code), lock
  374. * acquire operations must be ordered by ascending &runqueue.
  375. */
  376. struct rq {
  377. /* runqueue lock: */
  378. raw_spinlock_t lock;
  379. /*
  380. * nr_running and cpu_load should be in the same cacheline because
  381. * remote CPUs use both these fields when doing load calculation.
  382. */
  383. unsigned long nr_running;
  384. #define CPU_LOAD_IDX_MAX 5
  385. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  386. unsigned long last_load_update_tick;
  387. #ifdef CONFIG_NO_HZ
  388. u64 nohz_stamp;
  389. unsigned char nohz_balance_kick;
  390. #endif
  391. unsigned int skip_clock_update;
  392. /* capture load from *all* tasks on this cpu: */
  393. struct load_weight load;
  394. unsigned long nr_load_updates;
  395. u64 nr_switches;
  396. struct cfs_rq cfs;
  397. struct rt_rq rt;
  398. #ifdef CONFIG_FAIR_GROUP_SCHED
  399. /* list of leaf cfs_rq on this cpu: */
  400. struct list_head leaf_cfs_rq_list;
  401. #endif
  402. #ifdef CONFIG_RT_GROUP_SCHED
  403. struct list_head leaf_rt_rq_list;
  404. #endif
  405. /*
  406. * This is part of a global counter where only the total sum
  407. * over all CPUs matters. A task can increase this counter on
  408. * one CPU and if it got migrated afterwards it may decrease
  409. * it on another CPU. Always updated under the runqueue lock:
  410. */
  411. unsigned long nr_uninterruptible;
  412. struct task_struct *curr, *idle, *stop;
  413. unsigned long next_balance;
  414. struct mm_struct *prev_mm;
  415. u64 clock;
  416. u64 clock_task;
  417. atomic_t nr_iowait;
  418. #ifdef CONFIG_SMP
  419. struct root_domain *rd;
  420. struct sched_domain *sd;
  421. unsigned long cpu_power;
  422. unsigned char idle_at_tick;
  423. /* For active balancing */
  424. int post_schedule;
  425. int active_balance;
  426. int push_cpu;
  427. struct cpu_stop_work active_balance_work;
  428. /* cpu of this runqueue: */
  429. int cpu;
  430. int online;
  431. unsigned long avg_load_per_task;
  432. u64 rt_avg;
  433. u64 age_stamp;
  434. u64 idle_stamp;
  435. u64 avg_idle;
  436. #endif
  437. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  438. u64 prev_irq_time;
  439. #endif
  440. /* calc_load related fields */
  441. unsigned long calc_load_update;
  442. long calc_load_active;
  443. #ifdef CONFIG_SCHED_HRTICK
  444. #ifdef CONFIG_SMP
  445. int hrtick_csd_pending;
  446. struct call_single_data hrtick_csd;
  447. #endif
  448. struct hrtimer hrtick_timer;
  449. #endif
  450. #ifdef CONFIG_SCHEDSTATS
  451. /* latency stats */
  452. struct sched_info rq_sched_info;
  453. unsigned long long rq_cpu_time;
  454. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  455. /* sys_sched_yield() stats */
  456. unsigned int yld_count;
  457. /* schedule() stats */
  458. unsigned int sched_switch;
  459. unsigned int sched_count;
  460. unsigned int sched_goidle;
  461. /* try_to_wake_up() stats */
  462. unsigned int ttwu_count;
  463. unsigned int ttwu_local;
  464. #endif
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  468. static inline int cpu_of(struct rq *rq)
  469. {
  470. #ifdef CONFIG_SMP
  471. return rq->cpu;
  472. #else
  473. return 0;
  474. #endif
  475. }
  476. #define rcu_dereference_check_sched_domain(p) \
  477. rcu_dereference_check((p), \
  478. rcu_read_lock_sched_held() || \
  479. lockdep_is_held(&sched_domains_mutex))
  480. /*
  481. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  482. * See detach_destroy_domains: synchronize_sched for details.
  483. *
  484. * The domain tree of any CPU may only be accessed from within
  485. * preempt-disabled sections.
  486. */
  487. #define for_each_domain(cpu, __sd) \
  488. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  489. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  490. #define this_rq() (&__get_cpu_var(runqueues))
  491. #define task_rq(p) cpu_rq(task_cpu(p))
  492. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  493. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  494. #ifdef CONFIG_CGROUP_SCHED
  495. /*
  496. * Return the group to which this tasks belongs.
  497. *
  498. * We use task_subsys_state_check() and extend the RCU verification
  499. * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
  500. * holds that lock for each task it moves into the cgroup. Therefore
  501. * by holding that lock, we pin the task to the current cgroup.
  502. */
  503. static inline struct task_group *task_group(struct task_struct *p)
  504. {
  505. struct task_group *tg;
  506. struct cgroup_subsys_state *css;
  507. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  508. lockdep_is_held(&p->pi_lock));
  509. tg = container_of(css, struct task_group, css);
  510. return autogroup_task_group(p, tg);
  511. }
  512. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  513. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  514. {
  515. #ifdef CONFIG_FAIR_GROUP_SCHED
  516. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  517. p->se.parent = task_group(p)->se[cpu];
  518. #endif
  519. #ifdef CONFIG_RT_GROUP_SCHED
  520. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  521. p->rt.parent = task_group(p)->rt_se[cpu];
  522. #endif
  523. }
  524. #else /* CONFIG_CGROUP_SCHED */
  525. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  526. static inline struct task_group *task_group(struct task_struct *p)
  527. {
  528. return NULL;
  529. }
  530. #endif /* CONFIG_CGROUP_SCHED */
  531. static void update_rq_clock_task(struct rq *rq, s64 delta);
  532. static void update_rq_clock(struct rq *rq)
  533. {
  534. s64 delta;
  535. if (rq->skip_clock_update)
  536. return;
  537. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  538. rq->clock += delta;
  539. update_rq_clock_task(rq, delta);
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  551. * @cpu: the processor in question.
  552. *
  553. * This interface allows printk to be called with the runqueue lock
  554. * held and know whether or not it is OK to wake up the klogd.
  555. */
  556. int runqueue_is_locked(int cpu)
  557. {
  558. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  559. }
  560. /*
  561. * Debugging: various feature bits
  562. */
  563. #define SCHED_FEAT(name, enabled) \
  564. __SCHED_FEAT_##name ,
  565. enum {
  566. #include "sched_features.h"
  567. };
  568. #undef SCHED_FEAT
  569. #define SCHED_FEAT(name, enabled) \
  570. (1UL << __SCHED_FEAT_##name) * enabled |
  571. const_debug unsigned int sysctl_sched_features =
  572. #include "sched_features.h"
  573. 0;
  574. #undef SCHED_FEAT
  575. #ifdef CONFIG_SCHED_DEBUG
  576. #define SCHED_FEAT(name, enabled) \
  577. #name ,
  578. static __read_mostly char *sched_feat_names[] = {
  579. #include "sched_features.h"
  580. NULL
  581. };
  582. #undef SCHED_FEAT
  583. static int sched_feat_show(struct seq_file *m, void *v)
  584. {
  585. int i;
  586. for (i = 0; sched_feat_names[i]; i++) {
  587. if (!(sysctl_sched_features & (1UL << i)))
  588. seq_puts(m, "NO_");
  589. seq_printf(m, "%s ", sched_feat_names[i]);
  590. }
  591. seq_puts(m, "\n");
  592. return 0;
  593. }
  594. static ssize_t
  595. sched_feat_write(struct file *filp, const char __user *ubuf,
  596. size_t cnt, loff_t *ppos)
  597. {
  598. char buf[64];
  599. char *cmp;
  600. int neg = 0;
  601. int i;
  602. if (cnt > 63)
  603. cnt = 63;
  604. if (copy_from_user(&buf, ubuf, cnt))
  605. return -EFAULT;
  606. buf[cnt] = 0;
  607. cmp = strstrip(buf);
  608. if (strncmp(cmp, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  614. if (neg)
  615. sysctl_sched_features &= ~(1UL << i);
  616. else
  617. sysctl_sched_features |= (1UL << i);
  618. break;
  619. }
  620. }
  621. if (!sched_feat_names[i])
  622. return -EINVAL;
  623. *ppos += cnt;
  624. return cnt;
  625. }
  626. static int sched_feat_open(struct inode *inode, struct file *filp)
  627. {
  628. return single_open(filp, sched_feat_show, NULL);
  629. }
  630. static const struct file_operations sched_feat_fops = {
  631. .open = sched_feat_open,
  632. .write = sched_feat_write,
  633. .read = seq_read,
  634. .llseek = seq_lseek,
  635. .release = single_release,
  636. };
  637. static __init int sched_init_debug(void)
  638. {
  639. debugfs_create_file("sched_features", 0644, NULL, NULL,
  640. &sched_feat_fops);
  641. return 0;
  642. }
  643. late_initcall(sched_init_debug);
  644. #endif
  645. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  646. /*
  647. * Number of tasks to iterate in a single balance run.
  648. * Limited because this is done with IRQs disabled.
  649. */
  650. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  651. /*
  652. * period over which we average the RT time consumption, measured
  653. * in ms.
  654. *
  655. * default: 1s
  656. */
  657. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  658. /*
  659. * period over which we measure -rt task cpu usage in us.
  660. * default: 1s
  661. */
  662. unsigned int sysctl_sched_rt_period = 1000000;
  663. static __read_mostly int scheduler_running;
  664. /*
  665. * part of the period that we allow rt tasks to run in us.
  666. * default: 0.95s
  667. */
  668. int sysctl_sched_rt_runtime = 950000;
  669. static inline u64 global_rt_period(void)
  670. {
  671. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  672. }
  673. static inline u64 global_rt_runtime(void)
  674. {
  675. if (sysctl_sched_rt_runtime < 0)
  676. return RUNTIME_INF;
  677. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  678. }
  679. #ifndef prepare_arch_switch
  680. # define prepare_arch_switch(next) do { } while (0)
  681. #endif
  682. #ifndef finish_arch_switch
  683. # define finish_arch_switch(prev) do { } while (0)
  684. #endif
  685. static inline int task_current(struct rq *rq, struct task_struct *p)
  686. {
  687. return rq->curr == p;
  688. }
  689. static inline int task_running(struct rq *rq, struct task_struct *p)
  690. {
  691. #ifdef CONFIG_SMP
  692. return p->on_cpu;
  693. #else
  694. return task_current(rq, p);
  695. #endif
  696. }
  697. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  698. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  699. {
  700. #ifdef CONFIG_SMP
  701. /*
  702. * We can optimise this out completely for !SMP, because the
  703. * SMP rebalancing from interrupt is the only thing that cares
  704. * here.
  705. */
  706. next->on_cpu = 1;
  707. #endif
  708. }
  709. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  710. {
  711. #ifdef CONFIG_SMP
  712. /*
  713. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  714. * We must ensure this doesn't happen until the switch is completely
  715. * finished.
  716. */
  717. smp_wmb();
  718. prev->on_cpu = 0;
  719. #endif
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. raw_spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->on_cpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->on_cpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * __task_rq_lock - lock the rq @p resides on.
  767. */
  768. static inline struct rq *__task_rq_lock(struct task_struct *p)
  769. __acquires(rq->lock)
  770. {
  771. struct rq *rq;
  772. lockdep_assert_held(&p->pi_lock);
  773. for (;;) {
  774. rq = task_rq(p);
  775. raw_spin_lock(&rq->lock);
  776. if (likely(rq == task_rq(p)))
  777. return rq;
  778. raw_spin_unlock(&rq->lock);
  779. }
  780. }
  781. /*
  782. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  783. */
  784. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  785. __acquires(p->pi_lock)
  786. __acquires(rq->lock)
  787. {
  788. struct rq *rq;
  789. for (;;) {
  790. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  791. rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  797. }
  798. }
  799. static void __task_rq_unlock(struct rq *rq)
  800. __releases(rq->lock)
  801. {
  802. raw_spin_unlock(&rq->lock);
  803. }
  804. static inline void
  805. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  806. __releases(rq->lock)
  807. __releases(p->pi_lock)
  808. {
  809. raw_spin_unlock(&rq->lock);
  810. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  811. }
  812. /*
  813. * this_rq_lock - lock this runqueue and disable interrupts.
  814. */
  815. static struct rq *this_rq_lock(void)
  816. __acquires(rq->lock)
  817. {
  818. struct rq *rq;
  819. local_irq_disable();
  820. rq = this_rq();
  821. raw_spin_lock(&rq->lock);
  822. return rq;
  823. }
  824. #ifdef CONFIG_SCHED_HRTICK
  825. /*
  826. * Use HR-timers to deliver accurate preemption points.
  827. *
  828. * Its all a bit involved since we cannot program an hrt while holding the
  829. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  830. * reschedule event.
  831. *
  832. * When we get rescheduled we reprogram the hrtick_timer outside of the
  833. * rq->lock.
  834. */
  835. /*
  836. * Use hrtick when:
  837. * - enabled by features
  838. * - hrtimer is actually high res
  839. */
  840. static inline int hrtick_enabled(struct rq *rq)
  841. {
  842. if (!sched_feat(HRTICK))
  843. return 0;
  844. if (!cpu_active(cpu_of(rq)))
  845. return 0;
  846. return hrtimer_is_hres_active(&rq->hrtick_timer);
  847. }
  848. static void hrtick_clear(struct rq *rq)
  849. {
  850. if (hrtimer_active(&rq->hrtick_timer))
  851. hrtimer_cancel(&rq->hrtick_timer);
  852. }
  853. /*
  854. * High-resolution timer tick.
  855. * Runs from hardirq context with interrupts disabled.
  856. */
  857. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  858. {
  859. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  860. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  861. raw_spin_lock(&rq->lock);
  862. update_rq_clock(rq);
  863. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  864. raw_spin_unlock(&rq->lock);
  865. return HRTIMER_NORESTART;
  866. }
  867. #ifdef CONFIG_SMP
  868. /*
  869. * called from hardirq (IPI) context
  870. */
  871. static void __hrtick_start(void *arg)
  872. {
  873. struct rq *rq = arg;
  874. raw_spin_lock(&rq->lock);
  875. hrtimer_restart(&rq->hrtick_timer);
  876. rq->hrtick_csd_pending = 0;
  877. raw_spin_unlock(&rq->lock);
  878. }
  879. /*
  880. * Called to set the hrtick timer state.
  881. *
  882. * called with rq->lock held and irqs disabled
  883. */
  884. static void hrtick_start(struct rq *rq, u64 delay)
  885. {
  886. struct hrtimer *timer = &rq->hrtick_timer;
  887. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  888. hrtimer_set_expires(timer, time);
  889. if (rq == this_rq()) {
  890. hrtimer_restart(timer);
  891. } else if (!rq->hrtick_csd_pending) {
  892. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  893. rq->hrtick_csd_pending = 1;
  894. }
  895. }
  896. static int
  897. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  898. {
  899. int cpu = (int)(long)hcpu;
  900. switch (action) {
  901. case CPU_UP_CANCELED:
  902. case CPU_UP_CANCELED_FROZEN:
  903. case CPU_DOWN_PREPARE:
  904. case CPU_DOWN_PREPARE_FROZEN:
  905. case CPU_DEAD:
  906. case CPU_DEAD_FROZEN:
  907. hrtick_clear(cpu_rq(cpu));
  908. return NOTIFY_OK;
  909. }
  910. return NOTIFY_DONE;
  911. }
  912. static __init void init_hrtick(void)
  913. {
  914. hotcpu_notifier(hotplug_hrtick, 0);
  915. }
  916. #else
  917. /*
  918. * Called to set the hrtick timer state.
  919. *
  920. * called with rq->lock held and irqs disabled
  921. */
  922. static void hrtick_start(struct rq *rq, u64 delay)
  923. {
  924. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  925. HRTIMER_MODE_REL_PINNED, 0);
  926. }
  927. static inline void init_hrtick(void)
  928. {
  929. }
  930. #endif /* CONFIG_SMP */
  931. static void init_rq_hrtick(struct rq *rq)
  932. {
  933. #ifdef CONFIG_SMP
  934. rq->hrtick_csd_pending = 0;
  935. rq->hrtick_csd.flags = 0;
  936. rq->hrtick_csd.func = __hrtick_start;
  937. rq->hrtick_csd.info = rq;
  938. #endif
  939. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  940. rq->hrtick_timer.function = hrtick;
  941. }
  942. #else /* CONFIG_SCHED_HRTICK */
  943. static inline void hrtick_clear(struct rq *rq)
  944. {
  945. }
  946. static inline void init_rq_hrtick(struct rq *rq)
  947. {
  948. }
  949. static inline void init_hrtick(void)
  950. {
  951. }
  952. #endif /* CONFIG_SCHED_HRTICK */
  953. /*
  954. * resched_task - mark a task 'to be rescheduled now'.
  955. *
  956. * On UP this means the setting of the need_resched flag, on SMP it
  957. * might also involve a cross-CPU call to trigger the scheduler on
  958. * the target CPU.
  959. */
  960. #ifdef CONFIG_SMP
  961. #ifndef tsk_is_polling
  962. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  963. #endif
  964. static void resched_task(struct task_struct *p)
  965. {
  966. int cpu;
  967. assert_raw_spin_locked(&task_rq(p)->lock);
  968. if (test_tsk_need_resched(p))
  969. return;
  970. set_tsk_need_resched(p);
  971. cpu = task_cpu(p);
  972. if (cpu == smp_processor_id())
  973. return;
  974. /* NEED_RESCHED must be visible before we test polling */
  975. smp_mb();
  976. if (!tsk_is_polling(p))
  977. smp_send_reschedule(cpu);
  978. }
  979. static void resched_cpu(int cpu)
  980. {
  981. struct rq *rq = cpu_rq(cpu);
  982. unsigned long flags;
  983. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  984. return;
  985. resched_task(cpu_curr(cpu));
  986. raw_spin_unlock_irqrestore(&rq->lock, flags);
  987. }
  988. #ifdef CONFIG_NO_HZ
  989. /*
  990. * In the semi idle case, use the nearest busy cpu for migrating timers
  991. * from an idle cpu. This is good for power-savings.
  992. *
  993. * We don't do similar optimization for completely idle system, as
  994. * selecting an idle cpu will add more delays to the timers than intended
  995. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  996. */
  997. int get_nohz_timer_target(void)
  998. {
  999. int cpu = smp_processor_id();
  1000. int i;
  1001. struct sched_domain *sd;
  1002. for_each_domain(cpu, sd) {
  1003. for_each_cpu(i, sched_domain_span(sd))
  1004. if (!idle_cpu(i))
  1005. return i;
  1006. }
  1007. return cpu;
  1008. }
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. /*
  1054. * Inline assembly required to prevent the compiler
  1055. * optimising this loop into a divmod call.
  1056. * See __iter_div_u64_rem() for another example of this.
  1057. */
  1058. asm("" : "+rm" (rq->age_stamp));
  1059. rq->age_stamp += period;
  1060. rq->rt_avg /= 2;
  1061. }
  1062. }
  1063. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1064. {
  1065. rq->rt_avg += rt_delta;
  1066. sched_avg_update(rq);
  1067. }
  1068. #else /* !CONFIG_SMP */
  1069. static void resched_task(struct task_struct *p)
  1070. {
  1071. assert_raw_spin_locked(&task_rq(p)->lock);
  1072. set_tsk_need_resched(p);
  1073. }
  1074. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1075. {
  1076. }
  1077. static void sched_avg_update(struct rq *rq)
  1078. {
  1079. }
  1080. #endif /* CONFIG_SMP */
  1081. #if BITS_PER_LONG == 32
  1082. # define WMULT_CONST (~0UL)
  1083. #else
  1084. # define WMULT_CONST (1UL << 32)
  1085. #endif
  1086. #define WMULT_SHIFT 32
  1087. /*
  1088. * Shift right and round:
  1089. */
  1090. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1091. /*
  1092. * delta *= weight / lw
  1093. */
  1094. static unsigned long
  1095. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1096. struct load_weight *lw)
  1097. {
  1098. u64 tmp;
  1099. if (!lw->inv_weight) {
  1100. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1101. lw->inv_weight = 1;
  1102. else
  1103. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1104. / (lw->weight+1);
  1105. }
  1106. tmp = (u64)delta_exec * weight;
  1107. /*
  1108. * Check whether we'd overflow the 64-bit multiplication:
  1109. */
  1110. if (unlikely(tmp > WMULT_CONST))
  1111. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1112. WMULT_SHIFT/2);
  1113. else
  1114. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1115. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1116. }
  1117. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1118. {
  1119. lw->weight += inc;
  1120. lw->inv_weight = 0;
  1121. }
  1122. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1123. {
  1124. lw->weight -= dec;
  1125. lw->inv_weight = 0;
  1126. }
  1127. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1128. {
  1129. lw->weight = w;
  1130. lw->inv_weight = 0;
  1131. }
  1132. /*
  1133. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1134. * of tasks with abnormal "nice" values across CPUs the contribution that
  1135. * each task makes to its run queue's load is weighted according to its
  1136. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1137. * scaled version of the new time slice allocation that they receive on time
  1138. * slice expiry etc.
  1139. */
  1140. #define WEIGHT_IDLEPRIO 3
  1141. #define WMULT_IDLEPRIO 1431655765
  1142. /*
  1143. * Nice levels are multiplicative, with a gentle 10% change for every
  1144. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1145. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1146. * that remained on nice 0.
  1147. *
  1148. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1149. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1150. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1151. * If a task goes up by ~10% and another task goes down by ~10% then
  1152. * the relative distance between them is ~25%.)
  1153. */
  1154. static const int prio_to_weight[40] = {
  1155. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1156. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1157. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1158. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1159. /* 0 */ 1024, 820, 655, 526, 423,
  1160. /* 5 */ 335, 272, 215, 172, 137,
  1161. /* 10 */ 110, 87, 70, 56, 45,
  1162. /* 15 */ 36, 29, 23, 18, 15,
  1163. };
  1164. /*
  1165. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1166. *
  1167. * In cases where the weight does not change often, we can use the
  1168. * precalculated inverse to speed up arithmetics by turning divisions
  1169. * into multiplications:
  1170. */
  1171. static const u32 prio_to_wmult[40] = {
  1172. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1173. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1174. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1175. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1176. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1177. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1178. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1179. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1180. };
  1181. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1182. enum cpuacct_stat_index {
  1183. CPUACCT_STAT_USER, /* ... user mode */
  1184. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1185. CPUACCT_STAT_NSTATS,
  1186. };
  1187. #ifdef CONFIG_CGROUP_CPUACCT
  1188. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1189. static void cpuacct_update_stats(struct task_struct *tsk,
  1190. enum cpuacct_stat_index idx, cputime_t val);
  1191. #else
  1192. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1193. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1194. enum cpuacct_stat_index idx, cputime_t val) {}
  1195. #endif
  1196. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_add(&rq->load, load);
  1199. }
  1200. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1201. {
  1202. update_load_sub(&rq->load, load);
  1203. }
  1204. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1205. typedef int (*tg_visitor)(struct task_group *, void *);
  1206. /*
  1207. * Iterate the full tree, calling @down when first entering a node and @up when
  1208. * leaving it for the final time.
  1209. */
  1210. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1211. {
  1212. struct task_group *parent, *child;
  1213. int ret;
  1214. rcu_read_lock();
  1215. parent = &root_task_group;
  1216. down:
  1217. ret = (*down)(parent, data);
  1218. if (ret)
  1219. goto out_unlock;
  1220. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1221. parent = child;
  1222. goto down;
  1223. up:
  1224. continue;
  1225. }
  1226. ret = (*up)(parent, data);
  1227. if (ret)
  1228. goto out_unlock;
  1229. child = parent;
  1230. parent = parent->parent;
  1231. if (parent)
  1232. goto up;
  1233. out_unlock:
  1234. rcu_read_unlock();
  1235. return ret;
  1236. }
  1237. static int tg_nop(struct task_group *tg, void *data)
  1238. {
  1239. return 0;
  1240. }
  1241. #endif
  1242. #ifdef CONFIG_SMP
  1243. /* Used instead of source_load when we know the type == 0 */
  1244. static unsigned long weighted_cpuload(const int cpu)
  1245. {
  1246. return cpu_rq(cpu)->load.weight;
  1247. }
  1248. /*
  1249. * Return a low guess at the load of a migration-source cpu weighted
  1250. * according to the scheduling class and "nice" value.
  1251. *
  1252. * We want to under-estimate the load of migration sources, to
  1253. * balance conservatively.
  1254. */
  1255. static unsigned long source_load(int cpu, int type)
  1256. {
  1257. struct rq *rq = cpu_rq(cpu);
  1258. unsigned long total = weighted_cpuload(cpu);
  1259. if (type == 0 || !sched_feat(LB_BIAS))
  1260. return total;
  1261. return min(rq->cpu_load[type-1], total);
  1262. }
  1263. /*
  1264. * Return a high guess at the load of a migration-target cpu weighted
  1265. * according to the scheduling class and "nice" value.
  1266. */
  1267. static unsigned long target_load(int cpu, int type)
  1268. {
  1269. struct rq *rq = cpu_rq(cpu);
  1270. unsigned long total = weighted_cpuload(cpu);
  1271. if (type == 0 || !sched_feat(LB_BIAS))
  1272. return total;
  1273. return max(rq->cpu_load[type-1], total);
  1274. }
  1275. static unsigned long power_of(int cpu)
  1276. {
  1277. return cpu_rq(cpu)->cpu_power;
  1278. }
  1279. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1280. static unsigned long cpu_avg_load_per_task(int cpu)
  1281. {
  1282. struct rq *rq = cpu_rq(cpu);
  1283. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1284. if (nr_running)
  1285. rq->avg_load_per_task = rq->load.weight / nr_running;
  1286. else
  1287. rq->avg_load_per_task = 0;
  1288. return rq->avg_load_per_task;
  1289. }
  1290. #ifdef CONFIG_FAIR_GROUP_SCHED
  1291. /*
  1292. * Compute the cpu's hierarchical load factor for each task group.
  1293. * This needs to be done in a top-down fashion because the load of a child
  1294. * group is a fraction of its parents load.
  1295. */
  1296. static int tg_load_down(struct task_group *tg, void *data)
  1297. {
  1298. unsigned long load;
  1299. long cpu = (long)data;
  1300. if (!tg->parent) {
  1301. load = cpu_rq(cpu)->load.weight;
  1302. } else {
  1303. load = tg->parent->cfs_rq[cpu]->h_load;
  1304. load *= tg->se[cpu]->load.weight;
  1305. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1306. }
  1307. tg->cfs_rq[cpu]->h_load = load;
  1308. return 0;
  1309. }
  1310. static void update_h_load(long cpu)
  1311. {
  1312. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1313. }
  1314. #endif
  1315. #ifdef CONFIG_PREEMPT
  1316. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1317. /*
  1318. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1319. * way at the expense of forcing extra atomic operations in all
  1320. * invocations. This assures that the double_lock is acquired using the
  1321. * same underlying policy as the spinlock_t on this architecture, which
  1322. * reduces latency compared to the unfair variant below. However, it
  1323. * also adds more overhead and therefore may reduce throughput.
  1324. */
  1325. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1326. __releases(this_rq->lock)
  1327. __acquires(busiest->lock)
  1328. __acquires(this_rq->lock)
  1329. {
  1330. raw_spin_unlock(&this_rq->lock);
  1331. double_rq_lock(this_rq, busiest);
  1332. return 1;
  1333. }
  1334. #else
  1335. /*
  1336. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1337. * latency by eliminating extra atomic operations when the locks are
  1338. * already in proper order on entry. This favors lower cpu-ids and will
  1339. * grant the double lock to lower cpus over higher ids under contention,
  1340. * regardless of entry order into the function.
  1341. */
  1342. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1343. __releases(this_rq->lock)
  1344. __acquires(busiest->lock)
  1345. __acquires(this_rq->lock)
  1346. {
  1347. int ret = 0;
  1348. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1349. if (busiest < this_rq) {
  1350. raw_spin_unlock(&this_rq->lock);
  1351. raw_spin_lock(&busiest->lock);
  1352. raw_spin_lock_nested(&this_rq->lock,
  1353. SINGLE_DEPTH_NESTING);
  1354. ret = 1;
  1355. } else
  1356. raw_spin_lock_nested(&busiest->lock,
  1357. SINGLE_DEPTH_NESTING);
  1358. }
  1359. return ret;
  1360. }
  1361. #endif /* CONFIG_PREEMPT */
  1362. /*
  1363. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1364. */
  1365. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1366. {
  1367. if (unlikely(!irqs_disabled())) {
  1368. /* printk() doesn't work good under rq->lock */
  1369. raw_spin_unlock(&this_rq->lock);
  1370. BUG_ON(1);
  1371. }
  1372. return _double_lock_balance(this_rq, busiest);
  1373. }
  1374. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1375. __releases(busiest->lock)
  1376. {
  1377. raw_spin_unlock(&busiest->lock);
  1378. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1379. }
  1380. /*
  1381. * double_rq_lock - safely lock two runqueues
  1382. *
  1383. * Note this does not disable interrupts like task_rq_lock,
  1384. * you need to do so manually before calling.
  1385. */
  1386. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1387. __acquires(rq1->lock)
  1388. __acquires(rq2->lock)
  1389. {
  1390. BUG_ON(!irqs_disabled());
  1391. if (rq1 == rq2) {
  1392. raw_spin_lock(&rq1->lock);
  1393. __acquire(rq2->lock); /* Fake it out ;) */
  1394. } else {
  1395. if (rq1 < rq2) {
  1396. raw_spin_lock(&rq1->lock);
  1397. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1398. } else {
  1399. raw_spin_lock(&rq2->lock);
  1400. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1401. }
  1402. }
  1403. }
  1404. /*
  1405. * double_rq_unlock - safely unlock two runqueues
  1406. *
  1407. * Note this does not restore interrupts like task_rq_unlock,
  1408. * you need to do so manually after calling.
  1409. */
  1410. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1411. __releases(rq1->lock)
  1412. __releases(rq2->lock)
  1413. {
  1414. raw_spin_unlock(&rq1->lock);
  1415. if (rq1 != rq2)
  1416. raw_spin_unlock(&rq2->lock);
  1417. else
  1418. __release(rq2->lock);
  1419. }
  1420. #else /* CONFIG_SMP */
  1421. /*
  1422. * double_rq_lock - safely lock two runqueues
  1423. *
  1424. * Note this does not disable interrupts like task_rq_lock,
  1425. * you need to do so manually before calling.
  1426. */
  1427. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1428. __acquires(rq1->lock)
  1429. __acquires(rq2->lock)
  1430. {
  1431. BUG_ON(!irqs_disabled());
  1432. BUG_ON(rq1 != rq2);
  1433. raw_spin_lock(&rq1->lock);
  1434. __acquire(rq2->lock); /* Fake it out ;) */
  1435. }
  1436. /*
  1437. * double_rq_unlock - safely unlock two runqueues
  1438. *
  1439. * Note this does not restore interrupts like task_rq_unlock,
  1440. * you need to do so manually after calling.
  1441. */
  1442. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1443. __releases(rq1->lock)
  1444. __releases(rq2->lock)
  1445. {
  1446. BUG_ON(rq1 != rq2);
  1447. raw_spin_unlock(&rq1->lock);
  1448. __release(rq2->lock);
  1449. }
  1450. #endif
  1451. static void calc_load_account_idle(struct rq *this_rq);
  1452. static void update_sysctl(void);
  1453. static int get_update_sysctl_factor(void);
  1454. static void update_cpu_load(struct rq *this_rq);
  1455. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1456. {
  1457. set_task_rq(p, cpu);
  1458. #ifdef CONFIG_SMP
  1459. /*
  1460. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1461. * successfuly executed on another CPU. We must ensure that updates of
  1462. * per-task data have been completed by this moment.
  1463. */
  1464. smp_wmb();
  1465. task_thread_info(p)->cpu = cpu;
  1466. #endif
  1467. }
  1468. static const struct sched_class rt_sched_class;
  1469. #define sched_class_highest (&stop_sched_class)
  1470. #define for_each_class(class) \
  1471. for (class = sched_class_highest; class; class = class->next)
  1472. #include "sched_stats.h"
  1473. static void inc_nr_running(struct rq *rq)
  1474. {
  1475. rq->nr_running++;
  1476. }
  1477. static void dec_nr_running(struct rq *rq)
  1478. {
  1479. rq->nr_running--;
  1480. }
  1481. static void set_load_weight(struct task_struct *p)
  1482. {
  1483. /*
  1484. * SCHED_IDLE tasks get minimal weight:
  1485. */
  1486. if (p->policy == SCHED_IDLE) {
  1487. p->se.load.weight = WEIGHT_IDLEPRIO;
  1488. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1489. return;
  1490. }
  1491. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1492. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1493. }
  1494. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1495. {
  1496. update_rq_clock(rq);
  1497. sched_info_queued(p);
  1498. p->sched_class->enqueue_task(rq, p, flags);
  1499. }
  1500. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1501. {
  1502. update_rq_clock(rq);
  1503. sched_info_dequeued(p);
  1504. p->sched_class->dequeue_task(rq, p, flags);
  1505. }
  1506. /*
  1507. * activate_task - move a task to the runqueue.
  1508. */
  1509. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1510. {
  1511. if (task_contributes_to_load(p))
  1512. rq->nr_uninterruptible--;
  1513. enqueue_task(rq, p, flags);
  1514. inc_nr_running(rq);
  1515. }
  1516. /*
  1517. * deactivate_task - remove a task from the runqueue.
  1518. */
  1519. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1520. {
  1521. if (task_contributes_to_load(p))
  1522. rq->nr_uninterruptible++;
  1523. dequeue_task(rq, p, flags);
  1524. dec_nr_running(rq);
  1525. }
  1526. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1527. /*
  1528. * There are no locks covering percpu hardirq/softirq time.
  1529. * They are only modified in account_system_vtime, on corresponding CPU
  1530. * with interrupts disabled. So, writes are safe.
  1531. * They are read and saved off onto struct rq in update_rq_clock().
  1532. * This may result in other CPU reading this CPU's irq time and can
  1533. * race with irq/account_system_vtime on this CPU. We would either get old
  1534. * or new value with a side effect of accounting a slice of irq time to wrong
  1535. * task when irq is in progress while we read rq->clock. That is a worthy
  1536. * compromise in place of having locks on each irq in account_system_time.
  1537. */
  1538. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1539. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1540. static DEFINE_PER_CPU(u64, irq_start_time);
  1541. static int sched_clock_irqtime;
  1542. void enable_sched_clock_irqtime(void)
  1543. {
  1544. sched_clock_irqtime = 1;
  1545. }
  1546. void disable_sched_clock_irqtime(void)
  1547. {
  1548. sched_clock_irqtime = 0;
  1549. }
  1550. #ifndef CONFIG_64BIT
  1551. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1552. static inline void irq_time_write_begin(void)
  1553. {
  1554. __this_cpu_inc(irq_time_seq.sequence);
  1555. smp_wmb();
  1556. }
  1557. static inline void irq_time_write_end(void)
  1558. {
  1559. smp_wmb();
  1560. __this_cpu_inc(irq_time_seq.sequence);
  1561. }
  1562. static inline u64 irq_time_read(int cpu)
  1563. {
  1564. u64 irq_time;
  1565. unsigned seq;
  1566. do {
  1567. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1568. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1569. per_cpu(cpu_hardirq_time, cpu);
  1570. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1571. return irq_time;
  1572. }
  1573. #else /* CONFIG_64BIT */
  1574. static inline void irq_time_write_begin(void)
  1575. {
  1576. }
  1577. static inline void irq_time_write_end(void)
  1578. {
  1579. }
  1580. static inline u64 irq_time_read(int cpu)
  1581. {
  1582. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1583. }
  1584. #endif /* CONFIG_64BIT */
  1585. /*
  1586. * Called before incrementing preempt_count on {soft,}irq_enter
  1587. * and before decrementing preempt_count on {soft,}irq_exit.
  1588. */
  1589. void account_system_vtime(struct task_struct *curr)
  1590. {
  1591. unsigned long flags;
  1592. s64 delta;
  1593. int cpu;
  1594. if (!sched_clock_irqtime)
  1595. return;
  1596. local_irq_save(flags);
  1597. cpu = smp_processor_id();
  1598. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1599. __this_cpu_add(irq_start_time, delta);
  1600. irq_time_write_begin();
  1601. /*
  1602. * We do not account for softirq time from ksoftirqd here.
  1603. * We want to continue accounting softirq time to ksoftirqd thread
  1604. * in that case, so as not to confuse scheduler with a special task
  1605. * that do not consume any time, but still wants to run.
  1606. */
  1607. if (hardirq_count())
  1608. __this_cpu_add(cpu_hardirq_time, delta);
  1609. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1610. __this_cpu_add(cpu_softirq_time, delta);
  1611. irq_time_write_end();
  1612. local_irq_restore(flags);
  1613. }
  1614. EXPORT_SYMBOL_GPL(account_system_vtime);
  1615. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1616. {
  1617. s64 irq_delta;
  1618. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1619. /*
  1620. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1621. * this case when a previous update_rq_clock() happened inside a
  1622. * {soft,}irq region.
  1623. *
  1624. * When this happens, we stop ->clock_task and only update the
  1625. * prev_irq_time stamp to account for the part that fit, so that a next
  1626. * update will consume the rest. This ensures ->clock_task is
  1627. * monotonic.
  1628. *
  1629. * It does however cause some slight miss-attribution of {soft,}irq
  1630. * time, a more accurate solution would be to update the irq_time using
  1631. * the current rq->clock timestamp, except that would require using
  1632. * atomic ops.
  1633. */
  1634. if (irq_delta > delta)
  1635. irq_delta = delta;
  1636. rq->prev_irq_time += irq_delta;
  1637. delta -= irq_delta;
  1638. rq->clock_task += delta;
  1639. if (irq_delta && sched_feat(NONIRQ_POWER))
  1640. sched_rt_avg_update(rq, irq_delta);
  1641. }
  1642. static int irqtime_account_hi_update(void)
  1643. {
  1644. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1645. unsigned long flags;
  1646. u64 latest_ns;
  1647. int ret = 0;
  1648. local_irq_save(flags);
  1649. latest_ns = this_cpu_read(cpu_hardirq_time);
  1650. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1651. ret = 1;
  1652. local_irq_restore(flags);
  1653. return ret;
  1654. }
  1655. static int irqtime_account_si_update(void)
  1656. {
  1657. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1658. unsigned long flags;
  1659. u64 latest_ns;
  1660. int ret = 0;
  1661. local_irq_save(flags);
  1662. latest_ns = this_cpu_read(cpu_softirq_time);
  1663. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1664. ret = 1;
  1665. local_irq_restore(flags);
  1666. return ret;
  1667. }
  1668. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1669. #define sched_clock_irqtime (0)
  1670. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1671. {
  1672. rq->clock_task += delta;
  1673. }
  1674. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1675. #include "sched_idletask.c"
  1676. #include "sched_fair.c"
  1677. #include "sched_rt.c"
  1678. #include "sched_autogroup.c"
  1679. #include "sched_stoptask.c"
  1680. #ifdef CONFIG_SCHED_DEBUG
  1681. # include "sched_debug.c"
  1682. #endif
  1683. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1684. {
  1685. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1686. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1687. if (stop) {
  1688. /*
  1689. * Make it appear like a SCHED_FIFO task, its something
  1690. * userspace knows about and won't get confused about.
  1691. *
  1692. * Also, it will make PI more or less work without too
  1693. * much confusion -- but then, stop work should not
  1694. * rely on PI working anyway.
  1695. */
  1696. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1697. stop->sched_class = &stop_sched_class;
  1698. }
  1699. cpu_rq(cpu)->stop = stop;
  1700. if (old_stop) {
  1701. /*
  1702. * Reset it back to a normal scheduling class so that
  1703. * it can die in pieces.
  1704. */
  1705. old_stop->sched_class = &rt_sched_class;
  1706. }
  1707. }
  1708. /*
  1709. * __normal_prio - return the priority that is based on the static prio
  1710. */
  1711. static inline int __normal_prio(struct task_struct *p)
  1712. {
  1713. return p->static_prio;
  1714. }
  1715. /*
  1716. * Calculate the expected normal priority: i.e. priority
  1717. * without taking RT-inheritance into account. Might be
  1718. * boosted by interactivity modifiers. Changes upon fork,
  1719. * setprio syscalls, and whenever the interactivity
  1720. * estimator recalculates.
  1721. */
  1722. static inline int normal_prio(struct task_struct *p)
  1723. {
  1724. int prio;
  1725. if (task_has_rt_policy(p))
  1726. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1727. else
  1728. prio = __normal_prio(p);
  1729. return prio;
  1730. }
  1731. /*
  1732. * Calculate the current priority, i.e. the priority
  1733. * taken into account by the scheduler. This value might
  1734. * be boosted by RT tasks, or might be boosted by
  1735. * interactivity modifiers. Will be RT if the task got
  1736. * RT-boosted. If not then it returns p->normal_prio.
  1737. */
  1738. static int effective_prio(struct task_struct *p)
  1739. {
  1740. p->normal_prio = normal_prio(p);
  1741. /*
  1742. * If we are RT tasks or we were boosted to RT priority,
  1743. * keep the priority unchanged. Otherwise, update priority
  1744. * to the normal priority:
  1745. */
  1746. if (!rt_prio(p->prio))
  1747. return p->normal_prio;
  1748. return p->prio;
  1749. }
  1750. /**
  1751. * task_curr - is this task currently executing on a CPU?
  1752. * @p: the task in question.
  1753. */
  1754. inline int task_curr(const struct task_struct *p)
  1755. {
  1756. return cpu_curr(task_cpu(p)) == p;
  1757. }
  1758. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1759. const struct sched_class *prev_class,
  1760. int oldprio)
  1761. {
  1762. if (prev_class != p->sched_class) {
  1763. if (prev_class->switched_from)
  1764. prev_class->switched_from(rq, p);
  1765. p->sched_class->switched_to(rq, p);
  1766. } else if (oldprio != p->prio)
  1767. p->sched_class->prio_changed(rq, p, oldprio);
  1768. }
  1769. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1770. {
  1771. const struct sched_class *class;
  1772. if (p->sched_class == rq->curr->sched_class) {
  1773. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1774. } else {
  1775. for_each_class(class) {
  1776. if (class == rq->curr->sched_class)
  1777. break;
  1778. if (class == p->sched_class) {
  1779. resched_task(rq->curr);
  1780. break;
  1781. }
  1782. }
  1783. }
  1784. /*
  1785. * A queue event has occurred, and we're going to schedule. In
  1786. * this case, we can save a useless back to back clock update.
  1787. */
  1788. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1789. rq->skip_clock_update = 1;
  1790. }
  1791. #ifdef CONFIG_SMP
  1792. /*
  1793. * Is this task likely cache-hot:
  1794. */
  1795. static int
  1796. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1797. {
  1798. s64 delta;
  1799. if (p->sched_class != &fair_sched_class)
  1800. return 0;
  1801. if (unlikely(p->policy == SCHED_IDLE))
  1802. return 0;
  1803. /*
  1804. * Buddy candidates are cache hot:
  1805. */
  1806. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1807. (&p->se == cfs_rq_of(&p->se)->next ||
  1808. &p->se == cfs_rq_of(&p->se)->last))
  1809. return 1;
  1810. if (sysctl_sched_migration_cost == -1)
  1811. return 1;
  1812. if (sysctl_sched_migration_cost == 0)
  1813. return 0;
  1814. delta = now - p->se.exec_start;
  1815. return delta < (s64)sysctl_sched_migration_cost;
  1816. }
  1817. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1818. {
  1819. #ifdef CONFIG_SCHED_DEBUG
  1820. /*
  1821. * We should never call set_task_cpu() on a blocked task,
  1822. * ttwu() will sort out the placement.
  1823. */
  1824. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1825. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1826. #ifdef CONFIG_LOCKDEP
  1827. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1828. lockdep_is_held(&task_rq(p)->lock)));
  1829. #endif
  1830. #endif
  1831. trace_sched_migrate_task(p, new_cpu);
  1832. if (task_cpu(p) != new_cpu) {
  1833. p->se.nr_migrations++;
  1834. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1835. }
  1836. __set_task_cpu(p, new_cpu);
  1837. }
  1838. struct migration_arg {
  1839. struct task_struct *task;
  1840. int dest_cpu;
  1841. };
  1842. static int migration_cpu_stop(void *data);
  1843. /*
  1844. * The task's runqueue lock must be held.
  1845. * Returns true if you have to wait for migration thread.
  1846. */
  1847. static bool need_migrate_task(struct task_struct *p)
  1848. {
  1849. /*
  1850. * If the task is not on a runqueue (and not running), then
  1851. * the next wake-up will properly place the task.
  1852. */
  1853. bool running = p->on_rq || p->on_cpu;
  1854. smp_rmb(); /* finish_lock_switch() */
  1855. return running;
  1856. }
  1857. /*
  1858. * wait_task_inactive - wait for a thread to unschedule.
  1859. *
  1860. * If @match_state is nonzero, it's the @p->state value just checked and
  1861. * not expected to change. If it changes, i.e. @p might have woken up,
  1862. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1863. * we return a positive number (its total switch count). If a second call
  1864. * a short while later returns the same number, the caller can be sure that
  1865. * @p has remained unscheduled the whole time.
  1866. *
  1867. * The caller must ensure that the task *will* unschedule sometime soon,
  1868. * else this function might spin for a *long* time. This function can't
  1869. * be called with interrupts off, or it may introduce deadlock with
  1870. * smp_call_function() if an IPI is sent by the same process we are
  1871. * waiting to become inactive.
  1872. */
  1873. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1874. {
  1875. unsigned long flags;
  1876. int running, on_rq;
  1877. unsigned long ncsw;
  1878. struct rq *rq;
  1879. for (;;) {
  1880. /*
  1881. * We do the initial early heuristics without holding
  1882. * any task-queue locks at all. We'll only try to get
  1883. * the runqueue lock when things look like they will
  1884. * work out!
  1885. */
  1886. rq = task_rq(p);
  1887. /*
  1888. * If the task is actively running on another CPU
  1889. * still, just relax and busy-wait without holding
  1890. * any locks.
  1891. *
  1892. * NOTE! Since we don't hold any locks, it's not
  1893. * even sure that "rq" stays as the right runqueue!
  1894. * But we don't care, since "task_running()" will
  1895. * return false if the runqueue has changed and p
  1896. * is actually now running somewhere else!
  1897. */
  1898. while (task_running(rq, p)) {
  1899. if (match_state && unlikely(p->state != match_state))
  1900. return 0;
  1901. cpu_relax();
  1902. }
  1903. /*
  1904. * Ok, time to look more closely! We need the rq
  1905. * lock now, to be *sure*. If we're wrong, we'll
  1906. * just go back and repeat.
  1907. */
  1908. rq = task_rq_lock(p, &flags);
  1909. trace_sched_wait_task(p);
  1910. running = task_running(rq, p);
  1911. on_rq = p->on_rq;
  1912. ncsw = 0;
  1913. if (!match_state || p->state == match_state)
  1914. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1915. task_rq_unlock(rq, p, &flags);
  1916. /*
  1917. * If it changed from the expected state, bail out now.
  1918. */
  1919. if (unlikely(!ncsw))
  1920. break;
  1921. /*
  1922. * Was it really running after all now that we
  1923. * checked with the proper locks actually held?
  1924. *
  1925. * Oops. Go back and try again..
  1926. */
  1927. if (unlikely(running)) {
  1928. cpu_relax();
  1929. continue;
  1930. }
  1931. /*
  1932. * It's not enough that it's not actively running,
  1933. * it must be off the runqueue _entirely_, and not
  1934. * preempted!
  1935. *
  1936. * So if it was still runnable (but just not actively
  1937. * running right now), it's preempted, and we should
  1938. * yield - it could be a while.
  1939. */
  1940. if (unlikely(on_rq)) {
  1941. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1942. set_current_state(TASK_UNINTERRUPTIBLE);
  1943. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1944. continue;
  1945. }
  1946. /*
  1947. * Ahh, all good. It wasn't running, and it wasn't
  1948. * runnable, which means that it will never become
  1949. * running in the future either. We're all done!
  1950. */
  1951. break;
  1952. }
  1953. return ncsw;
  1954. }
  1955. /***
  1956. * kick_process - kick a running thread to enter/exit the kernel
  1957. * @p: the to-be-kicked thread
  1958. *
  1959. * Cause a process which is running on another CPU to enter
  1960. * kernel-mode, without any delay. (to get signals handled.)
  1961. *
  1962. * NOTE: this function doesn't have to take the runqueue lock,
  1963. * because all it wants to ensure is that the remote task enters
  1964. * the kernel. If the IPI races and the task has been migrated
  1965. * to another CPU then no harm is done and the purpose has been
  1966. * achieved as well.
  1967. */
  1968. void kick_process(struct task_struct *p)
  1969. {
  1970. int cpu;
  1971. preempt_disable();
  1972. cpu = task_cpu(p);
  1973. if ((cpu != smp_processor_id()) && task_curr(p))
  1974. smp_send_reschedule(cpu);
  1975. preempt_enable();
  1976. }
  1977. EXPORT_SYMBOL_GPL(kick_process);
  1978. #endif /* CONFIG_SMP */
  1979. #ifdef CONFIG_SMP
  1980. /*
  1981. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1982. */
  1983. static int select_fallback_rq(int cpu, struct task_struct *p)
  1984. {
  1985. int dest_cpu;
  1986. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1987. /* Look for allowed, online CPU in same node. */
  1988. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1989. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1990. return dest_cpu;
  1991. /* Any allowed, online CPU? */
  1992. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1993. if (dest_cpu < nr_cpu_ids)
  1994. return dest_cpu;
  1995. /* No more Mr. Nice Guy. */
  1996. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1997. /*
  1998. * Don't tell them about moving exiting tasks or
  1999. * kernel threads (both mm NULL), since they never
  2000. * leave kernel.
  2001. */
  2002. if (p->mm && printk_ratelimit()) {
  2003. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2004. task_pid_nr(p), p->comm, cpu);
  2005. }
  2006. return dest_cpu;
  2007. }
  2008. /*
  2009. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2010. */
  2011. static inline
  2012. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2013. {
  2014. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2015. /*
  2016. * In order not to call set_task_cpu() on a blocking task we need
  2017. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2018. * cpu.
  2019. *
  2020. * Since this is common to all placement strategies, this lives here.
  2021. *
  2022. * [ this allows ->select_task() to simply return task_cpu(p) and
  2023. * not worry about this generic constraint ]
  2024. */
  2025. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2026. !cpu_online(cpu)))
  2027. cpu = select_fallback_rq(task_cpu(p), p);
  2028. return cpu;
  2029. }
  2030. static void update_avg(u64 *avg, u64 sample)
  2031. {
  2032. s64 diff = sample - *avg;
  2033. *avg += diff >> 3;
  2034. }
  2035. #endif
  2036. static void
  2037. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2038. {
  2039. #ifdef CONFIG_SCHEDSTATS
  2040. struct rq *rq = this_rq();
  2041. #ifdef CONFIG_SMP
  2042. int this_cpu = smp_processor_id();
  2043. if (cpu == this_cpu) {
  2044. schedstat_inc(rq, ttwu_local);
  2045. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2046. } else {
  2047. struct sched_domain *sd;
  2048. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2049. for_each_domain(this_cpu, sd) {
  2050. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2051. schedstat_inc(sd, ttwu_wake_remote);
  2052. break;
  2053. }
  2054. }
  2055. }
  2056. #endif /* CONFIG_SMP */
  2057. schedstat_inc(rq, ttwu_count);
  2058. schedstat_inc(p, se.statistics.nr_wakeups);
  2059. if (wake_flags & WF_SYNC)
  2060. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2061. if (cpu != task_cpu(p))
  2062. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2063. #endif /* CONFIG_SCHEDSTATS */
  2064. }
  2065. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2066. {
  2067. activate_task(rq, p, en_flags);
  2068. p->on_rq = 1;
  2069. /* if a worker is waking up, notify workqueue */
  2070. if (p->flags & PF_WQ_WORKER)
  2071. wq_worker_waking_up(p, cpu_of(rq));
  2072. }
  2073. /*
  2074. * Mark the task runnable and perform wakeup-preemption.
  2075. */
  2076. static void
  2077. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2078. {
  2079. trace_sched_wakeup(p, true);
  2080. check_preempt_curr(rq, p, wake_flags);
  2081. p->state = TASK_RUNNING;
  2082. #ifdef CONFIG_SMP
  2083. if (p->sched_class->task_woken)
  2084. p->sched_class->task_woken(rq, p);
  2085. if (unlikely(rq->idle_stamp)) {
  2086. u64 delta = rq->clock - rq->idle_stamp;
  2087. u64 max = 2*sysctl_sched_migration_cost;
  2088. if (delta > max)
  2089. rq->avg_idle = max;
  2090. else
  2091. update_avg(&rq->avg_idle, delta);
  2092. rq->idle_stamp = 0;
  2093. }
  2094. #endif
  2095. }
  2096. /**
  2097. * try_to_wake_up - wake up a thread
  2098. * @p: the thread to be awakened
  2099. * @state: the mask of task states that can be woken
  2100. * @wake_flags: wake modifier flags (WF_*)
  2101. *
  2102. * Put it on the run-queue if it's not already there. The "current"
  2103. * thread is always on the run-queue (except when the actual
  2104. * re-schedule is in progress), and as such you're allowed to do
  2105. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2106. * runnable without the overhead of this.
  2107. *
  2108. * Returns %true if @p was woken up, %false if it was already running
  2109. * or @state didn't match @p's state.
  2110. */
  2111. static int
  2112. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2113. {
  2114. int cpu, this_cpu, success = 0;
  2115. unsigned long flags;
  2116. struct rq *rq;
  2117. this_cpu = get_cpu();
  2118. smp_wmb();
  2119. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2120. if (!(p->state & state))
  2121. goto out;
  2122. cpu = task_cpu(p);
  2123. if (p->on_rq) {
  2124. rq = __task_rq_lock(p);
  2125. if (p->on_rq)
  2126. goto out_running;
  2127. __task_rq_unlock(rq);
  2128. }
  2129. #ifdef CONFIG_SMP
  2130. while (p->on_cpu) {
  2131. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2132. /*
  2133. * If called from interrupt context we could have landed in the
  2134. * middle of schedule(), in this case we should take care not
  2135. * to spin on ->on_cpu if p is current, since that would
  2136. * deadlock.
  2137. */
  2138. if (p == current)
  2139. goto out_activate;
  2140. #endif
  2141. cpu_relax();
  2142. }
  2143. /*
  2144. * Pairs with the smp_wmb() in finish_lock_switch().
  2145. */
  2146. smp_rmb();
  2147. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2148. p->state = TASK_WAKING;
  2149. if (p->sched_class->task_waking)
  2150. p->sched_class->task_waking(p);
  2151. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2152. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2153. out_activate:
  2154. #endif
  2155. #endif /* CONFIG_SMP */
  2156. rq = cpu_rq(cpu);
  2157. raw_spin_lock(&rq->lock);
  2158. #ifdef CONFIG_SMP
  2159. if (cpu != task_cpu(p))
  2160. set_task_cpu(p, cpu);
  2161. if (p->sched_contributes_to_load)
  2162. rq->nr_uninterruptible--;
  2163. #endif
  2164. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2165. out_running:
  2166. ttwu_do_wakeup(rq, p, wake_flags);
  2167. success = 1;
  2168. __task_rq_unlock(rq);
  2169. ttwu_stat(p, cpu, wake_flags);
  2170. out:
  2171. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2172. put_cpu();
  2173. return success;
  2174. }
  2175. /**
  2176. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2177. * @p: the thread to be awakened
  2178. *
  2179. * Put @p on the run-queue if it's not already there. The caller must
  2180. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2181. * the current task.
  2182. */
  2183. static void try_to_wake_up_local(struct task_struct *p)
  2184. {
  2185. struct rq *rq = task_rq(p);
  2186. BUG_ON(rq != this_rq());
  2187. BUG_ON(p == current);
  2188. lockdep_assert_held(&rq->lock);
  2189. if (!raw_spin_trylock(&p->pi_lock)) {
  2190. raw_spin_unlock(&rq->lock);
  2191. raw_spin_lock(&p->pi_lock);
  2192. raw_spin_lock(&rq->lock);
  2193. }
  2194. if (!(p->state & TASK_NORMAL))
  2195. goto out;
  2196. if (!p->on_rq)
  2197. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2198. ttwu_do_wakeup(rq, p, 0);
  2199. ttwu_stat(p, smp_processor_id(), 0);
  2200. out:
  2201. raw_spin_unlock(&p->pi_lock);
  2202. }
  2203. /**
  2204. * wake_up_process - Wake up a specific process
  2205. * @p: The process to be woken up.
  2206. *
  2207. * Attempt to wake up the nominated process and move it to the set of runnable
  2208. * processes. Returns 1 if the process was woken up, 0 if it was already
  2209. * running.
  2210. *
  2211. * It may be assumed that this function implies a write memory barrier before
  2212. * changing the task state if and only if any tasks are woken up.
  2213. */
  2214. int wake_up_process(struct task_struct *p)
  2215. {
  2216. return try_to_wake_up(p, TASK_ALL, 0);
  2217. }
  2218. EXPORT_SYMBOL(wake_up_process);
  2219. int wake_up_state(struct task_struct *p, unsigned int state)
  2220. {
  2221. return try_to_wake_up(p, state, 0);
  2222. }
  2223. /*
  2224. * Perform scheduler related setup for a newly forked process p.
  2225. * p is forked by current.
  2226. *
  2227. * __sched_fork() is basic setup used by init_idle() too:
  2228. */
  2229. static void __sched_fork(struct task_struct *p)
  2230. {
  2231. p->on_rq = 0;
  2232. p->se.on_rq = 0;
  2233. p->se.exec_start = 0;
  2234. p->se.sum_exec_runtime = 0;
  2235. p->se.prev_sum_exec_runtime = 0;
  2236. p->se.nr_migrations = 0;
  2237. p->se.vruntime = 0;
  2238. INIT_LIST_HEAD(&p->se.group_node);
  2239. #ifdef CONFIG_SCHEDSTATS
  2240. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2241. #endif
  2242. INIT_LIST_HEAD(&p->rt.run_list);
  2243. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2244. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2245. #endif
  2246. }
  2247. /*
  2248. * fork()/clone()-time setup:
  2249. */
  2250. void sched_fork(struct task_struct *p, int clone_flags)
  2251. {
  2252. unsigned long flags;
  2253. int cpu = get_cpu();
  2254. __sched_fork(p);
  2255. /*
  2256. * We mark the process as running here. This guarantees that
  2257. * nobody will actually run it, and a signal or other external
  2258. * event cannot wake it up and insert it on the runqueue either.
  2259. */
  2260. p->state = TASK_RUNNING;
  2261. /*
  2262. * Revert to default priority/policy on fork if requested.
  2263. */
  2264. if (unlikely(p->sched_reset_on_fork)) {
  2265. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2266. p->policy = SCHED_NORMAL;
  2267. p->normal_prio = p->static_prio;
  2268. }
  2269. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2270. p->static_prio = NICE_TO_PRIO(0);
  2271. p->normal_prio = p->static_prio;
  2272. set_load_weight(p);
  2273. }
  2274. /*
  2275. * We don't need the reset flag anymore after the fork. It has
  2276. * fulfilled its duty:
  2277. */
  2278. p->sched_reset_on_fork = 0;
  2279. }
  2280. /*
  2281. * Make sure we do not leak PI boosting priority to the child.
  2282. */
  2283. p->prio = current->normal_prio;
  2284. if (!rt_prio(p->prio))
  2285. p->sched_class = &fair_sched_class;
  2286. if (p->sched_class->task_fork)
  2287. p->sched_class->task_fork(p);
  2288. /*
  2289. * The child is not yet in the pid-hash so no cgroup attach races,
  2290. * and the cgroup is pinned to this child due to cgroup_fork()
  2291. * is ran before sched_fork().
  2292. *
  2293. * Silence PROVE_RCU.
  2294. */
  2295. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2296. set_task_cpu(p, cpu);
  2297. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2298. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2299. if (likely(sched_info_on()))
  2300. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2301. #endif
  2302. #if defined(CONFIG_SMP)
  2303. p->on_cpu = 0;
  2304. #endif
  2305. #ifdef CONFIG_PREEMPT
  2306. /* Want to start with kernel preemption disabled. */
  2307. task_thread_info(p)->preempt_count = 1;
  2308. #endif
  2309. #ifdef CONFIG_SMP
  2310. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2311. #endif
  2312. put_cpu();
  2313. }
  2314. /*
  2315. * wake_up_new_task - wake up a newly created task for the first time.
  2316. *
  2317. * This function will do some initial scheduler statistics housekeeping
  2318. * that must be done for every newly created context, then puts the task
  2319. * on the runqueue and wakes it.
  2320. */
  2321. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2322. {
  2323. unsigned long flags;
  2324. struct rq *rq;
  2325. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2326. #ifdef CONFIG_SMP
  2327. /*
  2328. * Fork balancing, do it here and not earlier because:
  2329. * - cpus_allowed can change in the fork path
  2330. * - any previously selected cpu might disappear through hotplug
  2331. */
  2332. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2333. #endif
  2334. rq = __task_rq_lock(p);
  2335. activate_task(rq, p, 0);
  2336. p->on_rq = 1;
  2337. trace_sched_wakeup_new(p, true);
  2338. check_preempt_curr(rq, p, WF_FORK);
  2339. #ifdef CONFIG_SMP
  2340. if (p->sched_class->task_woken)
  2341. p->sched_class->task_woken(rq, p);
  2342. #endif
  2343. task_rq_unlock(rq, p, &flags);
  2344. }
  2345. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2346. /**
  2347. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2348. * @notifier: notifier struct to register
  2349. */
  2350. void preempt_notifier_register(struct preempt_notifier *notifier)
  2351. {
  2352. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2353. }
  2354. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2355. /**
  2356. * preempt_notifier_unregister - no longer interested in preemption notifications
  2357. * @notifier: notifier struct to unregister
  2358. *
  2359. * This is safe to call from within a preemption notifier.
  2360. */
  2361. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2362. {
  2363. hlist_del(&notifier->link);
  2364. }
  2365. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2366. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2367. {
  2368. struct preempt_notifier *notifier;
  2369. struct hlist_node *node;
  2370. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2371. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2372. }
  2373. static void
  2374. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2375. struct task_struct *next)
  2376. {
  2377. struct preempt_notifier *notifier;
  2378. struct hlist_node *node;
  2379. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2380. notifier->ops->sched_out(notifier, next);
  2381. }
  2382. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2383. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2384. {
  2385. }
  2386. static void
  2387. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2388. struct task_struct *next)
  2389. {
  2390. }
  2391. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2392. /**
  2393. * prepare_task_switch - prepare to switch tasks
  2394. * @rq: the runqueue preparing to switch
  2395. * @prev: the current task that is being switched out
  2396. * @next: the task we are going to switch to.
  2397. *
  2398. * This is called with the rq lock held and interrupts off. It must
  2399. * be paired with a subsequent finish_task_switch after the context
  2400. * switch.
  2401. *
  2402. * prepare_task_switch sets up locking and calls architecture specific
  2403. * hooks.
  2404. */
  2405. static inline void
  2406. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2407. struct task_struct *next)
  2408. {
  2409. sched_info_switch(prev, next);
  2410. perf_event_task_sched_out(prev, next);
  2411. fire_sched_out_preempt_notifiers(prev, next);
  2412. prepare_lock_switch(rq, next);
  2413. prepare_arch_switch(next);
  2414. trace_sched_switch(prev, next);
  2415. }
  2416. /**
  2417. * finish_task_switch - clean up after a task-switch
  2418. * @rq: runqueue associated with task-switch
  2419. * @prev: the thread we just switched away from.
  2420. *
  2421. * finish_task_switch must be called after the context switch, paired
  2422. * with a prepare_task_switch call before the context switch.
  2423. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2424. * and do any other architecture-specific cleanup actions.
  2425. *
  2426. * Note that we may have delayed dropping an mm in context_switch(). If
  2427. * so, we finish that here outside of the runqueue lock. (Doing it
  2428. * with the lock held can cause deadlocks; see schedule() for
  2429. * details.)
  2430. */
  2431. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2432. __releases(rq->lock)
  2433. {
  2434. struct mm_struct *mm = rq->prev_mm;
  2435. long prev_state;
  2436. rq->prev_mm = NULL;
  2437. /*
  2438. * A task struct has one reference for the use as "current".
  2439. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2440. * schedule one last time. The schedule call will never return, and
  2441. * the scheduled task must drop that reference.
  2442. * The test for TASK_DEAD must occur while the runqueue locks are
  2443. * still held, otherwise prev could be scheduled on another cpu, die
  2444. * there before we look at prev->state, and then the reference would
  2445. * be dropped twice.
  2446. * Manfred Spraul <manfred@colorfullife.com>
  2447. */
  2448. prev_state = prev->state;
  2449. finish_arch_switch(prev);
  2450. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2451. local_irq_disable();
  2452. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2453. perf_event_task_sched_in(current);
  2454. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2455. local_irq_enable();
  2456. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2457. finish_lock_switch(rq, prev);
  2458. fire_sched_in_preempt_notifiers(current);
  2459. if (mm)
  2460. mmdrop(mm);
  2461. if (unlikely(prev_state == TASK_DEAD)) {
  2462. /*
  2463. * Remove function-return probe instances associated with this
  2464. * task and put them back on the free list.
  2465. */
  2466. kprobe_flush_task(prev);
  2467. put_task_struct(prev);
  2468. }
  2469. }
  2470. #ifdef CONFIG_SMP
  2471. /* assumes rq->lock is held */
  2472. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2473. {
  2474. if (prev->sched_class->pre_schedule)
  2475. prev->sched_class->pre_schedule(rq, prev);
  2476. }
  2477. /* rq->lock is NOT held, but preemption is disabled */
  2478. static inline void post_schedule(struct rq *rq)
  2479. {
  2480. if (rq->post_schedule) {
  2481. unsigned long flags;
  2482. raw_spin_lock_irqsave(&rq->lock, flags);
  2483. if (rq->curr->sched_class->post_schedule)
  2484. rq->curr->sched_class->post_schedule(rq);
  2485. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2486. rq->post_schedule = 0;
  2487. }
  2488. }
  2489. #else
  2490. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2491. {
  2492. }
  2493. static inline void post_schedule(struct rq *rq)
  2494. {
  2495. }
  2496. #endif
  2497. /**
  2498. * schedule_tail - first thing a freshly forked thread must call.
  2499. * @prev: the thread we just switched away from.
  2500. */
  2501. asmlinkage void schedule_tail(struct task_struct *prev)
  2502. __releases(rq->lock)
  2503. {
  2504. struct rq *rq = this_rq();
  2505. finish_task_switch(rq, prev);
  2506. /*
  2507. * FIXME: do we need to worry about rq being invalidated by the
  2508. * task_switch?
  2509. */
  2510. post_schedule(rq);
  2511. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2512. /* In this case, finish_task_switch does not reenable preemption */
  2513. preempt_enable();
  2514. #endif
  2515. if (current->set_child_tid)
  2516. put_user(task_pid_vnr(current), current->set_child_tid);
  2517. }
  2518. /*
  2519. * context_switch - switch to the new MM and the new
  2520. * thread's register state.
  2521. */
  2522. static inline void
  2523. context_switch(struct rq *rq, struct task_struct *prev,
  2524. struct task_struct *next)
  2525. {
  2526. struct mm_struct *mm, *oldmm;
  2527. prepare_task_switch(rq, prev, next);
  2528. mm = next->mm;
  2529. oldmm = prev->active_mm;
  2530. /*
  2531. * For paravirt, this is coupled with an exit in switch_to to
  2532. * combine the page table reload and the switch backend into
  2533. * one hypercall.
  2534. */
  2535. arch_start_context_switch(prev);
  2536. if (!mm) {
  2537. next->active_mm = oldmm;
  2538. atomic_inc(&oldmm->mm_count);
  2539. enter_lazy_tlb(oldmm, next);
  2540. } else
  2541. switch_mm(oldmm, mm, next);
  2542. if (!prev->mm) {
  2543. prev->active_mm = NULL;
  2544. rq->prev_mm = oldmm;
  2545. }
  2546. /*
  2547. * Since the runqueue lock will be released by the next
  2548. * task (which is an invalid locking op but in the case
  2549. * of the scheduler it's an obvious special-case), so we
  2550. * do an early lockdep release here:
  2551. */
  2552. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2553. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2554. #endif
  2555. /* Here we just switch the register state and the stack. */
  2556. switch_to(prev, next, prev);
  2557. barrier();
  2558. /*
  2559. * this_rq must be evaluated again because prev may have moved
  2560. * CPUs since it called schedule(), thus the 'rq' on its stack
  2561. * frame will be invalid.
  2562. */
  2563. finish_task_switch(this_rq(), prev);
  2564. }
  2565. /*
  2566. * nr_running, nr_uninterruptible and nr_context_switches:
  2567. *
  2568. * externally visible scheduler statistics: current number of runnable
  2569. * threads, current number of uninterruptible-sleeping threads, total
  2570. * number of context switches performed since bootup.
  2571. */
  2572. unsigned long nr_running(void)
  2573. {
  2574. unsigned long i, sum = 0;
  2575. for_each_online_cpu(i)
  2576. sum += cpu_rq(i)->nr_running;
  2577. return sum;
  2578. }
  2579. unsigned long nr_uninterruptible(void)
  2580. {
  2581. unsigned long i, sum = 0;
  2582. for_each_possible_cpu(i)
  2583. sum += cpu_rq(i)->nr_uninterruptible;
  2584. /*
  2585. * Since we read the counters lockless, it might be slightly
  2586. * inaccurate. Do not allow it to go below zero though:
  2587. */
  2588. if (unlikely((long)sum < 0))
  2589. sum = 0;
  2590. return sum;
  2591. }
  2592. unsigned long long nr_context_switches(void)
  2593. {
  2594. int i;
  2595. unsigned long long sum = 0;
  2596. for_each_possible_cpu(i)
  2597. sum += cpu_rq(i)->nr_switches;
  2598. return sum;
  2599. }
  2600. unsigned long nr_iowait(void)
  2601. {
  2602. unsigned long i, sum = 0;
  2603. for_each_possible_cpu(i)
  2604. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2605. return sum;
  2606. }
  2607. unsigned long nr_iowait_cpu(int cpu)
  2608. {
  2609. struct rq *this = cpu_rq(cpu);
  2610. return atomic_read(&this->nr_iowait);
  2611. }
  2612. unsigned long this_cpu_load(void)
  2613. {
  2614. struct rq *this = this_rq();
  2615. return this->cpu_load[0];
  2616. }
  2617. /* Variables and functions for calc_load */
  2618. static atomic_long_t calc_load_tasks;
  2619. static unsigned long calc_load_update;
  2620. unsigned long avenrun[3];
  2621. EXPORT_SYMBOL(avenrun);
  2622. static long calc_load_fold_active(struct rq *this_rq)
  2623. {
  2624. long nr_active, delta = 0;
  2625. nr_active = this_rq->nr_running;
  2626. nr_active += (long) this_rq->nr_uninterruptible;
  2627. if (nr_active != this_rq->calc_load_active) {
  2628. delta = nr_active - this_rq->calc_load_active;
  2629. this_rq->calc_load_active = nr_active;
  2630. }
  2631. return delta;
  2632. }
  2633. static unsigned long
  2634. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2635. {
  2636. load *= exp;
  2637. load += active * (FIXED_1 - exp);
  2638. load += 1UL << (FSHIFT - 1);
  2639. return load >> FSHIFT;
  2640. }
  2641. #ifdef CONFIG_NO_HZ
  2642. /*
  2643. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2644. *
  2645. * When making the ILB scale, we should try to pull this in as well.
  2646. */
  2647. static atomic_long_t calc_load_tasks_idle;
  2648. static void calc_load_account_idle(struct rq *this_rq)
  2649. {
  2650. long delta;
  2651. delta = calc_load_fold_active(this_rq);
  2652. if (delta)
  2653. atomic_long_add(delta, &calc_load_tasks_idle);
  2654. }
  2655. static long calc_load_fold_idle(void)
  2656. {
  2657. long delta = 0;
  2658. /*
  2659. * Its got a race, we don't care...
  2660. */
  2661. if (atomic_long_read(&calc_load_tasks_idle))
  2662. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2663. return delta;
  2664. }
  2665. /**
  2666. * fixed_power_int - compute: x^n, in O(log n) time
  2667. *
  2668. * @x: base of the power
  2669. * @frac_bits: fractional bits of @x
  2670. * @n: power to raise @x to.
  2671. *
  2672. * By exploiting the relation between the definition of the natural power
  2673. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2674. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2675. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2676. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2677. * of course trivially computable in O(log_2 n), the length of our binary
  2678. * vector.
  2679. */
  2680. static unsigned long
  2681. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2682. {
  2683. unsigned long result = 1UL << frac_bits;
  2684. if (n) for (;;) {
  2685. if (n & 1) {
  2686. result *= x;
  2687. result += 1UL << (frac_bits - 1);
  2688. result >>= frac_bits;
  2689. }
  2690. n >>= 1;
  2691. if (!n)
  2692. break;
  2693. x *= x;
  2694. x += 1UL << (frac_bits - 1);
  2695. x >>= frac_bits;
  2696. }
  2697. return result;
  2698. }
  2699. /*
  2700. * a1 = a0 * e + a * (1 - e)
  2701. *
  2702. * a2 = a1 * e + a * (1 - e)
  2703. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2704. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2705. *
  2706. * a3 = a2 * e + a * (1 - e)
  2707. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2708. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2709. *
  2710. * ...
  2711. *
  2712. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2713. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2714. * = a0 * e^n + a * (1 - e^n)
  2715. *
  2716. * [1] application of the geometric series:
  2717. *
  2718. * n 1 - x^(n+1)
  2719. * S_n := \Sum x^i = -------------
  2720. * i=0 1 - x
  2721. */
  2722. static unsigned long
  2723. calc_load_n(unsigned long load, unsigned long exp,
  2724. unsigned long active, unsigned int n)
  2725. {
  2726. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2727. }
  2728. /*
  2729. * NO_HZ can leave us missing all per-cpu ticks calling
  2730. * calc_load_account_active(), but since an idle CPU folds its delta into
  2731. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2732. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2733. *
  2734. * Once we've updated the global active value, we need to apply the exponential
  2735. * weights adjusted to the number of cycles missed.
  2736. */
  2737. static void calc_global_nohz(unsigned long ticks)
  2738. {
  2739. long delta, active, n;
  2740. if (time_before(jiffies, calc_load_update))
  2741. return;
  2742. /*
  2743. * If we crossed a calc_load_update boundary, make sure to fold
  2744. * any pending idle changes, the respective CPUs might have
  2745. * missed the tick driven calc_load_account_active() update
  2746. * due to NO_HZ.
  2747. */
  2748. delta = calc_load_fold_idle();
  2749. if (delta)
  2750. atomic_long_add(delta, &calc_load_tasks);
  2751. /*
  2752. * If we were idle for multiple load cycles, apply them.
  2753. */
  2754. if (ticks >= LOAD_FREQ) {
  2755. n = ticks / LOAD_FREQ;
  2756. active = atomic_long_read(&calc_load_tasks);
  2757. active = active > 0 ? active * FIXED_1 : 0;
  2758. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2759. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2760. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2761. calc_load_update += n * LOAD_FREQ;
  2762. }
  2763. /*
  2764. * Its possible the remainder of the above division also crosses
  2765. * a LOAD_FREQ period, the regular check in calc_global_load()
  2766. * which comes after this will take care of that.
  2767. *
  2768. * Consider us being 11 ticks before a cycle completion, and us
  2769. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2770. * age us 4 cycles, and the test in calc_global_load() will
  2771. * pick up the final one.
  2772. */
  2773. }
  2774. #else
  2775. static void calc_load_account_idle(struct rq *this_rq)
  2776. {
  2777. }
  2778. static inline long calc_load_fold_idle(void)
  2779. {
  2780. return 0;
  2781. }
  2782. static void calc_global_nohz(unsigned long ticks)
  2783. {
  2784. }
  2785. #endif
  2786. /**
  2787. * get_avenrun - get the load average array
  2788. * @loads: pointer to dest load array
  2789. * @offset: offset to add
  2790. * @shift: shift count to shift the result left
  2791. *
  2792. * These values are estimates at best, so no need for locking.
  2793. */
  2794. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2795. {
  2796. loads[0] = (avenrun[0] + offset) << shift;
  2797. loads[1] = (avenrun[1] + offset) << shift;
  2798. loads[2] = (avenrun[2] + offset) << shift;
  2799. }
  2800. /*
  2801. * calc_load - update the avenrun load estimates 10 ticks after the
  2802. * CPUs have updated calc_load_tasks.
  2803. */
  2804. void calc_global_load(unsigned long ticks)
  2805. {
  2806. long active;
  2807. calc_global_nohz(ticks);
  2808. if (time_before(jiffies, calc_load_update + 10))
  2809. return;
  2810. active = atomic_long_read(&calc_load_tasks);
  2811. active = active > 0 ? active * FIXED_1 : 0;
  2812. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2813. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2814. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2815. calc_load_update += LOAD_FREQ;
  2816. }
  2817. /*
  2818. * Called from update_cpu_load() to periodically update this CPU's
  2819. * active count.
  2820. */
  2821. static void calc_load_account_active(struct rq *this_rq)
  2822. {
  2823. long delta;
  2824. if (time_before(jiffies, this_rq->calc_load_update))
  2825. return;
  2826. delta = calc_load_fold_active(this_rq);
  2827. delta += calc_load_fold_idle();
  2828. if (delta)
  2829. atomic_long_add(delta, &calc_load_tasks);
  2830. this_rq->calc_load_update += LOAD_FREQ;
  2831. }
  2832. /*
  2833. * The exact cpuload at various idx values, calculated at every tick would be
  2834. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2835. *
  2836. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2837. * on nth tick when cpu may be busy, then we have:
  2838. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2839. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2840. *
  2841. * decay_load_missed() below does efficient calculation of
  2842. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2843. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2844. *
  2845. * The calculation is approximated on a 128 point scale.
  2846. * degrade_zero_ticks is the number of ticks after which load at any
  2847. * particular idx is approximated to be zero.
  2848. * degrade_factor is a precomputed table, a row for each load idx.
  2849. * Each column corresponds to degradation factor for a power of two ticks,
  2850. * based on 128 point scale.
  2851. * Example:
  2852. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2853. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2854. *
  2855. * With this power of 2 load factors, we can degrade the load n times
  2856. * by looking at 1 bits in n and doing as many mult/shift instead of
  2857. * n mult/shifts needed by the exact degradation.
  2858. */
  2859. #define DEGRADE_SHIFT 7
  2860. static const unsigned char
  2861. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2862. static const unsigned char
  2863. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2864. {0, 0, 0, 0, 0, 0, 0, 0},
  2865. {64, 32, 8, 0, 0, 0, 0, 0},
  2866. {96, 72, 40, 12, 1, 0, 0},
  2867. {112, 98, 75, 43, 15, 1, 0},
  2868. {120, 112, 98, 76, 45, 16, 2} };
  2869. /*
  2870. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2871. * would be when CPU is idle and so we just decay the old load without
  2872. * adding any new load.
  2873. */
  2874. static unsigned long
  2875. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2876. {
  2877. int j = 0;
  2878. if (!missed_updates)
  2879. return load;
  2880. if (missed_updates >= degrade_zero_ticks[idx])
  2881. return 0;
  2882. if (idx == 1)
  2883. return load >> missed_updates;
  2884. while (missed_updates) {
  2885. if (missed_updates % 2)
  2886. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2887. missed_updates >>= 1;
  2888. j++;
  2889. }
  2890. return load;
  2891. }
  2892. /*
  2893. * Update rq->cpu_load[] statistics. This function is usually called every
  2894. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2895. * every tick. We fix it up based on jiffies.
  2896. */
  2897. static void update_cpu_load(struct rq *this_rq)
  2898. {
  2899. unsigned long this_load = this_rq->load.weight;
  2900. unsigned long curr_jiffies = jiffies;
  2901. unsigned long pending_updates;
  2902. int i, scale;
  2903. this_rq->nr_load_updates++;
  2904. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2905. if (curr_jiffies == this_rq->last_load_update_tick)
  2906. return;
  2907. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2908. this_rq->last_load_update_tick = curr_jiffies;
  2909. /* Update our load: */
  2910. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2911. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2912. unsigned long old_load, new_load;
  2913. /* scale is effectively 1 << i now, and >> i divides by scale */
  2914. old_load = this_rq->cpu_load[i];
  2915. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2916. new_load = this_load;
  2917. /*
  2918. * Round up the averaging division if load is increasing. This
  2919. * prevents us from getting stuck on 9 if the load is 10, for
  2920. * example.
  2921. */
  2922. if (new_load > old_load)
  2923. new_load += scale - 1;
  2924. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2925. }
  2926. sched_avg_update(this_rq);
  2927. }
  2928. static void update_cpu_load_active(struct rq *this_rq)
  2929. {
  2930. update_cpu_load(this_rq);
  2931. calc_load_account_active(this_rq);
  2932. }
  2933. #ifdef CONFIG_SMP
  2934. /*
  2935. * sched_exec - execve() is a valuable balancing opportunity, because at
  2936. * this point the task has the smallest effective memory and cache footprint.
  2937. */
  2938. void sched_exec(void)
  2939. {
  2940. struct task_struct *p = current;
  2941. unsigned long flags;
  2942. int dest_cpu;
  2943. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2944. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2945. if (dest_cpu == smp_processor_id())
  2946. goto unlock;
  2947. if (likely(cpu_active(dest_cpu))) {
  2948. struct migration_arg arg = { p, dest_cpu };
  2949. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2950. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2951. return;
  2952. }
  2953. unlock:
  2954. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2955. }
  2956. #endif
  2957. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2958. EXPORT_PER_CPU_SYMBOL(kstat);
  2959. /*
  2960. * Return any ns on the sched_clock that have not yet been accounted in
  2961. * @p in case that task is currently running.
  2962. *
  2963. * Called with task_rq_lock() held on @rq.
  2964. */
  2965. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2966. {
  2967. u64 ns = 0;
  2968. if (task_current(rq, p)) {
  2969. update_rq_clock(rq);
  2970. ns = rq->clock_task - p->se.exec_start;
  2971. if ((s64)ns < 0)
  2972. ns = 0;
  2973. }
  2974. return ns;
  2975. }
  2976. unsigned long long task_delta_exec(struct task_struct *p)
  2977. {
  2978. unsigned long flags;
  2979. struct rq *rq;
  2980. u64 ns = 0;
  2981. rq = task_rq_lock(p, &flags);
  2982. ns = do_task_delta_exec(p, rq);
  2983. task_rq_unlock(rq, p, &flags);
  2984. return ns;
  2985. }
  2986. /*
  2987. * Return accounted runtime for the task.
  2988. * In case the task is currently running, return the runtime plus current's
  2989. * pending runtime that have not been accounted yet.
  2990. */
  2991. unsigned long long task_sched_runtime(struct task_struct *p)
  2992. {
  2993. unsigned long flags;
  2994. struct rq *rq;
  2995. u64 ns = 0;
  2996. rq = task_rq_lock(p, &flags);
  2997. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2998. task_rq_unlock(rq, p, &flags);
  2999. return ns;
  3000. }
  3001. /*
  3002. * Return sum_exec_runtime for the thread group.
  3003. * In case the task is currently running, return the sum plus current's
  3004. * pending runtime that have not been accounted yet.
  3005. *
  3006. * Note that the thread group might have other running tasks as well,
  3007. * so the return value not includes other pending runtime that other
  3008. * running tasks might have.
  3009. */
  3010. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3011. {
  3012. struct task_cputime totals;
  3013. unsigned long flags;
  3014. struct rq *rq;
  3015. u64 ns;
  3016. rq = task_rq_lock(p, &flags);
  3017. thread_group_cputime(p, &totals);
  3018. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3019. task_rq_unlock(rq, p, &flags);
  3020. return ns;
  3021. }
  3022. /*
  3023. * Account user cpu time to a process.
  3024. * @p: the process that the cpu time gets accounted to
  3025. * @cputime: the cpu time spent in user space since the last update
  3026. * @cputime_scaled: cputime scaled by cpu frequency
  3027. */
  3028. void account_user_time(struct task_struct *p, cputime_t cputime,
  3029. cputime_t cputime_scaled)
  3030. {
  3031. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3032. cputime64_t tmp;
  3033. /* Add user time to process. */
  3034. p->utime = cputime_add(p->utime, cputime);
  3035. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3036. account_group_user_time(p, cputime);
  3037. /* Add user time to cpustat. */
  3038. tmp = cputime_to_cputime64(cputime);
  3039. if (TASK_NICE(p) > 0)
  3040. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3041. else
  3042. cpustat->user = cputime64_add(cpustat->user, tmp);
  3043. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3044. /* Account for user time used */
  3045. acct_update_integrals(p);
  3046. }
  3047. /*
  3048. * Account guest cpu time to a process.
  3049. * @p: the process that the cpu time gets accounted to
  3050. * @cputime: the cpu time spent in virtual machine since the last update
  3051. * @cputime_scaled: cputime scaled by cpu frequency
  3052. */
  3053. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3054. cputime_t cputime_scaled)
  3055. {
  3056. cputime64_t tmp;
  3057. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3058. tmp = cputime_to_cputime64(cputime);
  3059. /* Add guest time to process. */
  3060. p->utime = cputime_add(p->utime, cputime);
  3061. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3062. account_group_user_time(p, cputime);
  3063. p->gtime = cputime_add(p->gtime, cputime);
  3064. /* Add guest time to cpustat. */
  3065. if (TASK_NICE(p) > 0) {
  3066. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3067. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3068. } else {
  3069. cpustat->user = cputime64_add(cpustat->user, tmp);
  3070. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3071. }
  3072. }
  3073. /*
  3074. * Account system cpu time to a process and desired cpustat field
  3075. * @p: the process that the cpu time gets accounted to
  3076. * @cputime: the cpu time spent in kernel space since the last update
  3077. * @cputime_scaled: cputime scaled by cpu frequency
  3078. * @target_cputime64: pointer to cpustat field that has to be updated
  3079. */
  3080. static inline
  3081. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3082. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3083. {
  3084. cputime64_t tmp = cputime_to_cputime64(cputime);
  3085. /* Add system time to process. */
  3086. p->stime = cputime_add(p->stime, cputime);
  3087. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3088. account_group_system_time(p, cputime);
  3089. /* Add system time to cpustat. */
  3090. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3091. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3092. /* Account for system time used */
  3093. acct_update_integrals(p);
  3094. }
  3095. /*
  3096. * Account system cpu time to a process.
  3097. * @p: the process that the cpu time gets accounted to
  3098. * @hardirq_offset: the offset to subtract from hardirq_count()
  3099. * @cputime: the cpu time spent in kernel space since the last update
  3100. * @cputime_scaled: cputime scaled by cpu frequency
  3101. */
  3102. void account_system_time(struct task_struct *p, int hardirq_offset,
  3103. cputime_t cputime, cputime_t cputime_scaled)
  3104. {
  3105. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3106. cputime64_t *target_cputime64;
  3107. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3108. account_guest_time(p, cputime, cputime_scaled);
  3109. return;
  3110. }
  3111. if (hardirq_count() - hardirq_offset)
  3112. target_cputime64 = &cpustat->irq;
  3113. else if (in_serving_softirq())
  3114. target_cputime64 = &cpustat->softirq;
  3115. else
  3116. target_cputime64 = &cpustat->system;
  3117. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3118. }
  3119. /*
  3120. * Account for involuntary wait time.
  3121. * @cputime: the cpu time spent in involuntary wait
  3122. */
  3123. void account_steal_time(cputime_t cputime)
  3124. {
  3125. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3126. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3127. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3128. }
  3129. /*
  3130. * Account for idle time.
  3131. * @cputime: the cpu time spent in idle wait
  3132. */
  3133. void account_idle_time(cputime_t cputime)
  3134. {
  3135. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3136. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3137. struct rq *rq = this_rq();
  3138. if (atomic_read(&rq->nr_iowait) > 0)
  3139. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3140. else
  3141. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3142. }
  3143. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3144. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3145. /*
  3146. * Account a tick to a process and cpustat
  3147. * @p: the process that the cpu time gets accounted to
  3148. * @user_tick: is the tick from userspace
  3149. * @rq: the pointer to rq
  3150. *
  3151. * Tick demultiplexing follows the order
  3152. * - pending hardirq update
  3153. * - pending softirq update
  3154. * - user_time
  3155. * - idle_time
  3156. * - system time
  3157. * - check for guest_time
  3158. * - else account as system_time
  3159. *
  3160. * Check for hardirq is done both for system and user time as there is
  3161. * no timer going off while we are on hardirq and hence we may never get an
  3162. * opportunity to update it solely in system time.
  3163. * p->stime and friends are only updated on system time and not on irq
  3164. * softirq as those do not count in task exec_runtime any more.
  3165. */
  3166. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3167. struct rq *rq)
  3168. {
  3169. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3170. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3171. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3172. if (irqtime_account_hi_update()) {
  3173. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3174. } else if (irqtime_account_si_update()) {
  3175. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3176. } else if (this_cpu_ksoftirqd() == p) {
  3177. /*
  3178. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3179. * So, we have to handle it separately here.
  3180. * Also, p->stime needs to be updated for ksoftirqd.
  3181. */
  3182. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3183. &cpustat->softirq);
  3184. } else if (user_tick) {
  3185. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3186. } else if (p == rq->idle) {
  3187. account_idle_time(cputime_one_jiffy);
  3188. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3189. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3190. } else {
  3191. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3192. &cpustat->system);
  3193. }
  3194. }
  3195. static void irqtime_account_idle_ticks(int ticks)
  3196. {
  3197. int i;
  3198. struct rq *rq = this_rq();
  3199. for (i = 0; i < ticks; i++)
  3200. irqtime_account_process_tick(current, 0, rq);
  3201. }
  3202. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3203. static void irqtime_account_idle_ticks(int ticks) {}
  3204. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3205. struct rq *rq) {}
  3206. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3207. /*
  3208. * Account a single tick of cpu time.
  3209. * @p: the process that the cpu time gets accounted to
  3210. * @user_tick: indicates if the tick is a user or a system tick
  3211. */
  3212. void account_process_tick(struct task_struct *p, int user_tick)
  3213. {
  3214. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3215. struct rq *rq = this_rq();
  3216. if (sched_clock_irqtime) {
  3217. irqtime_account_process_tick(p, user_tick, rq);
  3218. return;
  3219. }
  3220. if (user_tick)
  3221. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3222. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3223. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3224. one_jiffy_scaled);
  3225. else
  3226. account_idle_time(cputime_one_jiffy);
  3227. }
  3228. /*
  3229. * Account multiple ticks of steal time.
  3230. * @p: the process from which the cpu time has been stolen
  3231. * @ticks: number of stolen ticks
  3232. */
  3233. void account_steal_ticks(unsigned long ticks)
  3234. {
  3235. account_steal_time(jiffies_to_cputime(ticks));
  3236. }
  3237. /*
  3238. * Account multiple ticks of idle time.
  3239. * @ticks: number of stolen ticks
  3240. */
  3241. void account_idle_ticks(unsigned long ticks)
  3242. {
  3243. if (sched_clock_irqtime) {
  3244. irqtime_account_idle_ticks(ticks);
  3245. return;
  3246. }
  3247. account_idle_time(jiffies_to_cputime(ticks));
  3248. }
  3249. #endif
  3250. /*
  3251. * Use precise platform statistics if available:
  3252. */
  3253. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3254. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3255. {
  3256. *ut = p->utime;
  3257. *st = p->stime;
  3258. }
  3259. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3260. {
  3261. struct task_cputime cputime;
  3262. thread_group_cputime(p, &cputime);
  3263. *ut = cputime.utime;
  3264. *st = cputime.stime;
  3265. }
  3266. #else
  3267. #ifndef nsecs_to_cputime
  3268. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3269. #endif
  3270. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3271. {
  3272. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3273. /*
  3274. * Use CFS's precise accounting:
  3275. */
  3276. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3277. if (total) {
  3278. u64 temp = rtime;
  3279. temp *= utime;
  3280. do_div(temp, total);
  3281. utime = (cputime_t)temp;
  3282. } else
  3283. utime = rtime;
  3284. /*
  3285. * Compare with previous values, to keep monotonicity:
  3286. */
  3287. p->prev_utime = max(p->prev_utime, utime);
  3288. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3289. *ut = p->prev_utime;
  3290. *st = p->prev_stime;
  3291. }
  3292. /*
  3293. * Must be called with siglock held.
  3294. */
  3295. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3296. {
  3297. struct signal_struct *sig = p->signal;
  3298. struct task_cputime cputime;
  3299. cputime_t rtime, utime, total;
  3300. thread_group_cputime(p, &cputime);
  3301. total = cputime_add(cputime.utime, cputime.stime);
  3302. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3303. if (total) {
  3304. u64 temp = rtime;
  3305. temp *= cputime.utime;
  3306. do_div(temp, total);
  3307. utime = (cputime_t)temp;
  3308. } else
  3309. utime = rtime;
  3310. sig->prev_utime = max(sig->prev_utime, utime);
  3311. sig->prev_stime = max(sig->prev_stime,
  3312. cputime_sub(rtime, sig->prev_utime));
  3313. *ut = sig->prev_utime;
  3314. *st = sig->prev_stime;
  3315. }
  3316. #endif
  3317. /*
  3318. * This function gets called by the timer code, with HZ frequency.
  3319. * We call it with interrupts disabled.
  3320. *
  3321. * It also gets called by the fork code, when changing the parent's
  3322. * timeslices.
  3323. */
  3324. void scheduler_tick(void)
  3325. {
  3326. int cpu = smp_processor_id();
  3327. struct rq *rq = cpu_rq(cpu);
  3328. struct task_struct *curr = rq->curr;
  3329. sched_clock_tick();
  3330. raw_spin_lock(&rq->lock);
  3331. update_rq_clock(rq);
  3332. update_cpu_load_active(rq);
  3333. curr->sched_class->task_tick(rq, curr, 0);
  3334. raw_spin_unlock(&rq->lock);
  3335. perf_event_task_tick();
  3336. #ifdef CONFIG_SMP
  3337. rq->idle_at_tick = idle_cpu(cpu);
  3338. trigger_load_balance(rq, cpu);
  3339. #endif
  3340. }
  3341. notrace unsigned long get_parent_ip(unsigned long addr)
  3342. {
  3343. if (in_lock_functions(addr)) {
  3344. addr = CALLER_ADDR2;
  3345. if (in_lock_functions(addr))
  3346. addr = CALLER_ADDR3;
  3347. }
  3348. return addr;
  3349. }
  3350. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3351. defined(CONFIG_PREEMPT_TRACER))
  3352. void __kprobes add_preempt_count(int val)
  3353. {
  3354. #ifdef CONFIG_DEBUG_PREEMPT
  3355. /*
  3356. * Underflow?
  3357. */
  3358. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3359. return;
  3360. #endif
  3361. preempt_count() += val;
  3362. #ifdef CONFIG_DEBUG_PREEMPT
  3363. /*
  3364. * Spinlock count overflowing soon?
  3365. */
  3366. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3367. PREEMPT_MASK - 10);
  3368. #endif
  3369. if (preempt_count() == val)
  3370. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3371. }
  3372. EXPORT_SYMBOL(add_preempt_count);
  3373. void __kprobes sub_preempt_count(int val)
  3374. {
  3375. #ifdef CONFIG_DEBUG_PREEMPT
  3376. /*
  3377. * Underflow?
  3378. */
  3379. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3380. return;
  3381. /*
  3382. * Is the spinlock portion underflowing?
  3383. */
  3384. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3385. !(preempt_count() & PREEMPT_MASK)))
  3386. return;
  3387. #endif
  3388. if (preempt_count() == val)
  3389. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3390. preempt_count() -= val;
  3391. }
  3392. EXPORT_SYMBOL(sub_preempt_count);
  3393. #endif
  3394. /*
  3395. * Print scheduling while atomic bug:
  3396. */
  3397. static noinline void __schedule_bug(struct task_struct *prev)
  3398. {
  3399. struct pt_regs *regs = get_irq_regs();
  3400. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3401. prev->comm, prev->pid, preempt_count());
  3402. debug_show_held_locks(prev);
  3403. print_modules();
  3404. if (irqs_disabled())
  3405. print_irqtrace_events(prev);
  3406. if (regs)
  3407. show_regs(regs);
  3408. else
  3409. dump_stack();
  3410. }
  3411. /*
  3412. * Various schedule()-time debugging checks and statistics:
  3413. */
  3414. static inline void schedule_debug(struct task_struct *prev)
  3415. {
  3416. /*
  3417. * Test if we are atomic. Since do_exit() needs to call into
  3418. * schedule() atomically, we ignore that path for now.
  3419. * Otherwise, whine if we are scheduling when we should not be.
  3420. */
  3421. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3422. __schedule_bug(prev);
  3423. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3424. schedstat_inc(this_rq(), sched_count);
  3425. #ifdef CONFIG_SCHEDSTATS
  3426. if (unlikely(prev->lock_depth >= 0)) {
  3427. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3428. schedstat_inc(prev, sched_info.bkl_count);
  3429. }
  3430. #endif
  3431. }
  3432. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3433. {
  3434. if (prev->on_rq)
  3435. update_rq_clock(rq);
  3436. prev->sched_class->put_prev_task(rq, prev);
  3437. }
  3438. /*
  3439. * Pick up the highest-prio task:
  3440. */
  3441. static inline struct task_struct *
  3442. pick_next_task(struct rq *rq)
  3443. {
  3444. const struct sched_class *class;
  3445. struct task_struct *p;
  3446. /*
  3447. * Optimization: we know that if all tasks are in
  3448. * the fair class we can call that function directly:
  3449. */
  3450. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3451. p = fair_sched_class.pick_next_task(rq);
  3452. if (likely(p))
  3453. return p;
  3454. }
  3455. for_each_class(class) {
  3456. p = class->pick_next_task(rq);
  3457. if (p)
  3458. return p;
  3459. }
  3460. BUG(); /* the idle class will always have a runnable task */
  3461. }
  3462. /*
  3463. * schedule() is the main scheduler function.
  3464. */
  3465. asmlinkage void __sched schedule(void)
  3466. {
  3467. struct task_struct *prev, *next;
  3468. unsigned long *switch_count;
  3469. struct rq *rq;
  3470. int cpu;
  3471. need_resched:
  3472. preempt_disable();
  3473. cpu = smp_processor_id();
  3474. rq = cpu_rq(cpu);
  3475. rcu_note_context_switch(cpu);
  3476. prev = rq->curr;
  3477. schedule_debug(prev);
  3478. if (sched_feat(HRTICK))
  3479. hrtick_clear(rq);
  3480. raw_spin_lock_irq(&rq->lock);
  3481. switch_count = &prev->nivcsw;
  3482. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3483. if (unlikely(signal_pending_state(prev->state, prev))) {
  3484. prev->state = TASK_RUNNING;
  3485. } else {
  3486. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3487. prev->on_rq = 0;
  3488. /*
  3489. * If a worker went to sleep, notify and ask workqueue
  3490. * whether it wants to wake up a task to maintain
  3491. * concurrency.
  3492. */
  3493. if (prev->flags & PF_WQ_WORKER) {
  3494. struct task_struct *to_wakeup;
  3495. to_wakeup = wq_worker_sleeping(prev, cpu);
  3496. if (to_wakeup)
  3497. try_to_wake_up_local(to_wakeup);
  3498. }
  3499. /*
  3500. * If we are going to sleep and we have plugged IO
  3501. * queued, make sure to submit it to avoid deadlocks.
  3502. */
  3503. if (blk_needs_flush_plug(prev)) {
  3504. raw_spin_unlock(&rq->lock);
  3505. blk_flush_plug(prev);
  3506. raw_spin_lock(&rq->lock);
  3507. }
  3508. }
  3509. switch_count = &prev->nvcsw;
  3510. }
  3511. pre_schedule(rq, prev);
  3512. if (unlikely(!rq->nr_running))
  3513. idle_balance(cpu, rq);
  3514. put_prev_task(rq, prev);
  3515. next = pick_next_task(rq);
  3516. clear_tsk_need_resched(prev);
  3517. rq->skip_clock_update = 0;
  3518. if (likely(prev != next)) {
  3519. rq->nr_switches++;
  3520. rq->curr = next;
  3521. ++*switch_count;
  3522. context_switch(rq, prev, next); /* unlocks the rq */
  3523. /*
  3524. * The context switch have flipped the stack from under us
  3525. * and restored the local variables which were saved when
  3526. * this task called schedule() in the past. prev == current
  3527. * is still correct, but it can be moved to another cpu/rq.
  3528. */
  3529. cpu = smp_processor_id();
  3530. rq = cpu_rq(cpu);
  3531. } else
  3532. raw_spin_unlock_irq(&rq->lock);
  3533. post_schedule(rq);
  3534. preempt_enable_no_resched();
  3535. if (need_resched())
  3536. goto need_resched;
  3537. }
  3538. EXPORT_SYMBOL(schedule);
  3539. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3540. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3541. {
  3542. bool ret = false;
  3543. rcu_read_lock();
  3544. if (lock->owner != owner)
  3545. goto fail;
  3546. /*
  3547. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3548. * lock->owner still matches owner, if that fails, owner might
  3549. * point to free()d memory, if it still matches, the rcu_read_lock()
  3550. * ensures the memory stays valid.
  3551. */
  3552. barrier();
  3553. ret = owner->on_cpu;
  3554. fail:
  3555. rcu_read_unlock();
  3556. return ret;
  3557. }
  3558. /*
  3559. * Look out! "owner" is an entirely speculative pointer
  3560. * access and not reliable.
  3561. */
  3562. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3563. {
  3564. if (!sched_feat(OWNER_SPIN))
  3565. return 0;
  3566. while (owner_running(lock, owner)) {
  3567. if (need_resched())
  3568. return 0;
  3569. arch_mutex_cpu_relax();
  3570. }
  3571. /*
  3572. * If the owner changed to another task there is likely
  3573. * heavy contention, stop spinning.
  3574. */
  3575. if (lock->owner)
  3576. return 0;
  3577. return 1;
  3578. }
  3579. #endif
  3580. #ifdef CONFIG_PREEMPT
  3581. /*
  3582. * this is the entry point to schedule() from in-kernel preemption
  3583. * off of preempt_enable. Kernel preemptions off return from interrupt
  3584. * occur there and call schedule directly.
  3585. */
  3586. asmlinkage void __sched notrace preempt_schedule(void)
  3587. {
  3588. struct thread_info *ti = current_thread_info();
  3589. /*
  3590. * If there is a non-zero preempt_count or interrupts are disabled,
  3591. * we do not want to preempt the current task. Just return..
  3592. */
  3593. if (likely(ti->preempt_count || irqs_disabled()))
  3594. return;
  3595. do {
  3596. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3597. schedule();
  3598. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3599. /*
  3600. * Check again in case we missed a preemption opportunity
  3601. * between schedule and now.
  3602. */
  3603. barrier();
  3604. } while (need_resched());
  3605. }
  3606. EXPORT_SYMBOL(preempt_schedule);
  3607. /*
  3608. * this is the entry point to schedule() from kernel preemption
  3609. * off of irq context.
  3610. * Note, that this is called and return with irqs disabled. This will
  3611. * protect us against recursive calling from irq.
  3612. */
  3613. asmlinkage void __sched preempt_schedule_irq(void)
  3614. {
  3615. struct thread_info *ti = current_thread_info();
  3616. /* Catch callers which need to be fixed */
  3617. BUG_ON(ti->preempt_count || !irqs_disabled());
  3618. do {
  3619. add_preempt_count(PREEMPT_ACTIVE);
  3620. local_irq_enable();
  3621. schedule();
  3622. local_irq_disable();
  3623. sub_preempt_count(PREEMPT_ACTIVE);
  3624. /*
  3625. * Check again in case we missed a preemption opportunity
  3626. * between schedule and now.
  3627. */
  3628. barrier();
  3629. } while (need_resched());
  3630. }
  3631. #endif /* CONFIG_PREEMPT */
  3632. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3633. void *key)
  3634. {
  3635. return try_to_wake_up(curr->private, mode, wake_flags);
  3636. }
  3637. EXPORT_SYMBOL(default_wake_function);
  3638. /*
  3639. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3640. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3641. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3642. *
  3643. * There are circumstances in which we can try to wake a task which has already
  3644. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3645. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3646. */
  3647. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3648. int nr_exclusive, int wake_flags, void *key)
  3649. {
  3650. wait_queue_t *curr, *next;
  3651. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3652. unsigned flags = curr->flags;
  3653. if (curr->func(curr, mode, wake_flags, key) &&
  3654. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3655. break;
  3656. }
  3657. }
  3658. /**
  3659. * __wake_up - wake up threads blocked on a waitqueue.
  3660. * @q: the waitqueue
  3661. * @mode: which threads
  3662. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3663. * @key: is directly passed to the wakeup function
  3664. *
  3665. * It may be assumed that this function implies a write memory barrier before
  3666. * changing the task state if and only if any tasks are woken up.
  3667. */
  3668. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3669. int nr_exclusive, void *key)
  3670. {
  3671. unsigned long flags;
  3672. spin_lock_irqsave(&q->lock, flags);
  3673. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3674. spin_unlock_irqrestore(&q->lock, flags);
  3675. }
  3676. EXPORT_SYMBOL(__wake_up);
  3677. /*
  3678. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3679. */
  3680. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3681. {
  3682. __wake_up_common(q, mode, 1, 0, NULL);
  3683. }
  3684. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3685. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3686. {
  3687. __wake_up_common(q, mode, 1, 0, key);
  3688. }
  3689. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3690. /**
  3691. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3692. * @q: the waitqueue
  3693. * @mode: which threads
  3694. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3695. * @key: opaque value to be passed to wakeup targets
  3696. *
  3697. * The sync wakeup differs that the waker knows that it will schedule
  3698. * away soon, so while the target thread will be woken up, it will not
  3699. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3700. * with each other. This can prevent needless bouncing between CPUs.
  3701. *
  3702. * On UP it can prevent extra preemption.
  3703. *
  3704. * It may be assumed that this function implies a write memory barrier before
  3705. * changing the task state if and only if any tasks are woken up.
  3706. */
  3707. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3708. int nr_exclusive, void *key)
  3709. {
  3710. unsigned long flags;
  3711. int wake_flags = WF_SYNC;
  3712. if (unlikely(!q))
  3713. return;
  3714. if (unlikely(!nr_exclusive))
  3715. wake_flags = 0;
  3716. spin_lock_irqsave(&q->lock, flags);
  3717. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3718. spin_unlock_irqrestore(&q->lock, flags);
  3719. }
  3720. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3721. /*
  3722. * __wake_up_sync - see __wake_up_sync_key()
  3723. */
  3724. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3725. {
  3726. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3727. }
  3728. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3729. /**
  3730. * complete: - signals a single thread waiting on this completion
  3731. * @x: holds the state of this particular completion
  3732. *
  3733. * This will wake up a single thread waiting on this completion. Threads will be
  3734. * awakened in the same order in which they were queued.
  3735. *
  3736. * See also complete_all(), wait_for_completion() and related routines.
  3737. *
  3738. * It may be assumed that this function implies a write memory barrier before
  3739. * changing the task state if and only if any tasks are woken up.
  3740. */
  3741. void complete(struct completion *x)
  3742. {
  3743. unsigned long flags;
  3744. spin_lock_irqsave(&x->wait.lock, flags);
  3745. x->done++;
  3746. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3747. spin_unlock_irqrestore(&x->wait.lock, flags);
  3748. }
  3749. EXPORT_SYMBOL(complete);
  3750. /**
  3751. * complete_all: - signals all threads waiting on this completion
  3752. * @x: holds the state of this particular completion
  3753. *
  3754. * This will wake up all threads waiting on this particular completion event.
  3755. *
  3756. * It may be assumed that this function implies a write memory barrier before
  3757. * changing the task state if and only if any tasks are woken up.
  3758. */
  3759. void complete_all(struct completion *x)
  3760. {
  3761. unsigned long flags;
  3762. spin_lock_irqsave(&x->wait.lock, flags);
  3763. x->done += UINT_MAX/2;
  3764. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3765. spin_unlock_irqrestore(&x->wait.lock, flags);
  3766. }
  3767. EXPORT_SYMBOL(complete_all);
  3768. static inline long __sched
  3769. do_wait_for_common(struct completion *x, long timeout, int state)
  3770. {
  3771. if (!x->done) {
  3772. DECLARE_WAITQUEUE(wait, current);
  3773. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3774. do {
  3775. if (signal_pending_state(state, current)) {
  3776. timeout = -ERESTARTSYS;
  3777. break;
  3778. }
  3779. __set_current_state(state);
  3780. spin_unlock_irq(&x->wait.lock);
  3781. timeout = schedule_timeout(timeout);
  3782. spin_lock_irq(&x->wait.lock);
  3783. } while (!x->done && timeout);
  3784. __remove_wait_queue(&x->wait, &wait);
  3785. if (!x->done)
  3786. return timeout;
  3787. }
  3788. x->done--;
  3789. return timeout ?: 1;
  3790. }
  3791. static long __sched
  3792. wait_for_common(struct completion *x, long timeout, int state)
  3793. {
  3794. might_sleep();
  3795. spin_lock_irq(&x->wait.lock);
  3796. timeout = do_wait_for_common(x, timeout, state);
  3797. spin_unlock_irq(&x->wait.lock);
  3798. return timeout;
  3799. }
  3800. /**
  3801. * wait_for_completion: - waits for completion of a task
  3802. * @x: holds the state of this particular completion
  3803. *
  3804. * This waits to be signaled for completion of a specific task. It is NOT
  3805. * interruptible and there is no timeout.
  3806. *
  3807. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3808. * and interrupt capability. Also see complete().
  3809. */
  3810. void __sched wait_for_completion(struct completion *x)
  3811. {
  3812. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3813. }
  3814. EXPORT_SYMBOL(wait_for_completion);
  3815. /**
  3816. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3817. * @x: holds the state of this particular completion
  3818. * @timeout: timeout value in jiffies
  3819. *
  3820. * This waits for either a completion of a specific task to be signaled or for a
  3821. * specified timeout to expire. The timeout is in jiffies. It is not
  3822. * interruptible.
  3823. */
  3824. unsigned long __sched
  3825. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3826. {
  3827. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3828. }
  3829. EXPORT_SYMBOL(wait_for_completion_timeout);
  3830. /**
  3831. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3832. * @x: holds the state of this particular completion
  3833. *
  3834. * This waits for completion of a specific task to be signaled. It is
  3835. * interruptible.
  3836. */
  3837. int __sched wait_for_completion_interruptible(struct completion *x)
  3838. {
  3839. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3840. if (t == -ERESTARTSYS)
  3841. return t;
  3842. return 0;
  3843. }
  3844. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3845. /**
  3846. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3847. * @x: holds the state of this particular completion
  3848. * @timeout: timeout value in jiffies
  3849. *
  3850. * This waits for either a completion of a specific task to be signaled or for a
  3851. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3852. */
  3853. long __sched
  3854. wait_for_completion_interruptible_timeout(struct completion *x,
  3855. unsigned long timeout)
  3856. {
  3857. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3858. }
  3859. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3860. /**
  3861. * wait_for_completion_killable: - waits for completion of a task (killable)
  3862. * @x: holds the state of this particular completion
  3863. *
  3864. * This waits to be signaled for completion of a specific task. It can be
  3865. * interrupted by a kill signal.
  3866. */
  3867. int __sched wait_for_completion_killable(struct completion *x)
  3868. {
  3869. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3870. if (t == -ERESTARTSYS)
  3871. return t;
  3872. return 0;
  3873. }
  3874. EXPORT_SYMBOL(wait_for_completion_killable);
  3875. /**
  3876. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3877. * @x: holds the state of this particular completion
  3878. * @timeout: timeout value in jiffies
  3879. *
  3880. * This waits for either a completion of a specific task to be
  3881. * signaled or for a specified timeout to expire. It can be
  3882. * interrupted by a kill signal. The timeout is in jiffies.
  3883. */
  3884. long __sched
  3885. wait_for_completion_killable_timeout(struct completion *x,
  3886. unsigned long timeout)
  3887. {
  3888. return wait_for_common(x, timeout, TASK_KILLABLE);
  3889. }
  3890. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3891. /**
  3892. * try_wait_for_completion - try to decrement a completion without blocking
  3893. * @x: completion structure
  3894. *
  3895. * Returns: 0 if a decrement cannot be done without blocking
  3896. * 1 if a decrement succeeded.
  3897. *
  3898. * If a completion is being used as a counting completion,
  3899. * attempt to decrement the counter without blocking. This
  3900. * enables us to avoid waiting if the resource the completion
  3901. * is protecting is not available.
  3902. */
  3903. bool try_wait_for_completion(struct completion *x)
  3904. {
  3905. unsigned long flags;
  3906. int ret = 1;
  3907. spin_lock_irqsave(&x->wait.lock, flags);
  3908. if (!x->done)
  3909. ret = 0;
  3910. else
  3911. x->done--;
  3912. spin_unlock_irqrestore(&x->wait.lock, flags);
  3913. return ret;
  3914. }
  3915. EXPORT_SYMBOL(try_wait_for_completion);
  3916. /**
  3917. * completion_done - Test to see if a completion has any waiters
  3918. * @x: completion structure
  3919. *
  3920. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3921. * 1 if there are no waiters.
  3922. *
  3923. */
  3924. bool completion_done(struct completion *x)
  3925. {
  3926. unsigned long flags;
  3927. int ret = 1;
  3928. spin_lock_irqsave(&x->wait.lock, flags);
  3929. if (!x->done)
  3930. ret = 0;
  3931. spin_unlock_irqrestore(&x->wait.lock, flags);
  3932. return ret;
  3933. }
  3934. EXPORT_SYMBOL(completion_done);
  3935. static long __sched
  3936. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3937. {
  3938. unsigned long flags;
  3939. wait_queue_t wait;
  3940. init_waitqueue_entry(&wait, current);
  3941. __set_current_state(state);
  3942. spin_lock_irqsave(&q->lock, flags);
  3943. __add_wait_queue(q, &wait);
  3944. spin_unlock(&q->lock);
  3945. timeout = schedule_timeout(timeout);
  3946. spin_lock_irq(&q->lock);
  3947. __remove_wait_queue(q, &wait);
  3948. spin_unlock_irqrestore(&q->lock, flags);
  3949. return timeout;
  3950. }
  3951. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3952. {
  3953. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3954. }
  3955. EXPORT_SYMBOL(interruptible_sleep_on);
  3956. long __sched
  3957. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3958. {
  3959. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3960. }
  3961. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3962. void __sched sleep_on(wait_queue_head_t *q)
  3963. {
  3964. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3965. }
  3966. EXPORT_SYMBOL(sleep_on);
  3967. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3968. {
  3969. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3970. }
  3971. EXPORT_SYMBOL(sleep_on_timeout);
  3972. #ifdef CONFIG_RT_MUTEXES
  3973. /*
  3974. * rt_mutex_setprio - set the current priority of a task
  3975. * @p: task
  3976. * @prio: prio value (kernel-internal form)
  3977. *
  3978. * This function changes the 'effective' priority of a task. It does
  3979. * not touch ->normal_prio like __setscheduler().
  3980. *
  3981. * Used by the rt_mutex code to implement priority inheritance logic.
  3982. */
  3983. void rt_mutex_setprio(struct task_struct *p, int prio)
  3984. {
  3985. int oldprio, on_rq, running;
  3986. struct rq *rq;
  3987. const struct sched_class *prev_class;
  3988. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3989. rq = __task_rq_lock(p);
  3990. trace_sched_pi_setprio(p, prio);
  3991. oldprio = p->prio;
  3992. prev_class = p->sched_class;
  3993. on_rq = p->on_rq;
  3994. running = task_current(rq, p);
  3995. if (on_rq)
  3996. dequeue_task(rq, p, 0);
  3997. if (running)
  3998. p->sched_class->put_prev_task(rq, p);
  3999. if (rt_prio(prio))
  4000. p->sched_class = &rt_sched_class;
  4001. else
  4002. p->sched_class = &fair_sched_class;
  4003. p->prio = prio;
  4004. if (running)
  4005. p->sched_class->set_curr_task(rq);
  4006. if (on_rq)
  4007. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4008. check_class_changed(rq, p, prev_class, oldprio);
  4009. __task_rq_unlock(rq);
  4010. }
  4011. #endif
  4012. void set_user_nice(struct task_struct *p, long nice)
  4013. {
  4014. int old_prio, delta, on_rq;
  4015. unsigned long flags;
  4016. struct rq *rq;
  4017. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4018. return;
  4019. /*
  4020. * We have to be careful, if called from sys_setpriority(),
  4021. * the task might be in the middle of scheduling on another CPU.
  4022. */
  4023. rq = task_rq_lock(p, &flags);
  4024. /*
  4025. * The RT priorities are set via sched_setscheduler(), but we still
  4026. * allow the 'normal' nice value to be set - but as expected
  4027. * it wont have any effect on scheduling until the task is
  4028. * SCHED_FIFO/SCHED_RR:
  4029. */
  4030. if (task_has_rt_policy(p)) {
  4031. p->static_prio = NICE_TO_PRIO(nice);
  4032. goto out_unlock;
  4033. }
  4034. on_rq = p->on_rq;
  4035. if (on_rq)
  4036. dequeue_task(rq, p, 0);
  4037. p->static_prio = NICE_TO_PRIO(nice);
  4038. set_load_weight(p);
  4039. old_prio = p->prio;
  4040. p->prio = effective_prio(p);
  4041. delta = p->prio - old_prio;
  4042. if (on_rq) {
  4043. enqueue_task(rq, p, 0);
  4044. /*
  4045. * If the task increased its priority or is running and
  4046. * lowered its priority, then reschedule its CPU:
  4047. */
  4048. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4049. resched_task(rq->curr);
  4050. }
  4051. out_unlock:
  4052. task_rq_unlock(rq, p, &flags);
  4053. }
  4054. EXPORT_SYMBOL(set_user_nice);
  4055. /*
  4056. * can_nice - check if a task can reduce its nice value
  4057. * @p: task
  4058. * @nice: nice value
  4059. */
  4060. int can_nice(const struct task_struct *p, const int nice)
  4061. {
  4062. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4063. int nice_rlim = 20 - nice;
  4064. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4065. capable(CAP_SYS_NICE));
  4066. }
  4067. #ifdef __ARCH_WANT_SYS_NICE
  4068. /*
  4069. * sys_nice - change the priority of the current process.
  4070. * @increment: priority increment
  4071. *
  4072. * sys_setpriority is a more generic, but much slower function that
  4073. * does similar things.
  4074. */
  4075. SYSCALL_DEFINE1(nice, int, increment)
  4076. {
  4077. long nice, retval;
  4078. /*
  4079. * Setpriority might change our priority at the same moment.
  4080. * We don't have to worry. Conceptually one call occurs first
  4081. * and we have a single winner.
  4082. */
  4083. if (increment < -40)
  4084. increment = -40;
  4085. if (increment > 40)
  4086. increment = 40;
  4087. nice = TASK_NICE(current) + increment;
  4088. if (nice < -20)
  4089. nice = -20;
  4090. if (nice > 19)
  4091. nice = 19;
  4092. if (increment < 0 && !can_nice(current, nice))
  4093. return -EPERM;
  4094. retval = security_task_setnice(current, nice);
  4095. if (retval)
  4096. return retval;
  4097. set_user_nice(current, nice);
  4098. return 0;
  4099. }
  4100. #endif
  4101. /**
  4102. * task_prio - return the priority value of a given task.
  4103. * @p: the task in question.
  4104. *
  4105. * This is the priority value as seen by users in /proc.
  4106. * RT tasks are offset by -200. Normal tasks are centered
  4107. * around 0, value goes from -16 to +15.
  4108. */
  4109. int task_prio(const struct task_struct *p)
  4110. {
  4111. return p->prio - MAX_RT_PRIO;
  4112. }
  4113. /**
  4114. * task_nice - return the nice value of a given task.
  4115. * @p: the task in question.
  4116. */
  4117. int task_nice(const struct task_struct *p)
  4118. {
  4119. return TASK_NICE(p);
  4120. }
  4121. EXPORT_SYMBOL(task_nice);
  4122. /**
  4123. * idle_cpu - is a given cpu idle currently?
  4124. * @cpu: the processor in question.
  4125. */
  4126. int idle_cpu(int cpu)
  4127. {
  4128. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4129. }
  4130. /**
  4131. * idle_task - return the idle task for a given cpu.
  4132. * @cpu: the processor in question.
  4133. */
  4134. struct task_struct *idle_task(int cpu)
  4135. {
  4136. return cpu_rq(cpu)->idle;
  4137. }
  4138. /**
  4139. * find_process_by_pid - find a process with a matching PID value.
  4140. * @pid: the pid in question.
  4141. */
  4142. static struct task_struct *find_process_by_pid(pid_t pid)
  4143. {
  4144. return pid ? find_task_by_vpid(pid) : current;
  4145. }
  4146. /* Actually do priority change: must hold rq lock. */
  4147. static void
  4148. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4149. {
  4150. p->policy = policy;
  4151. p->rt_priority = prio;
  4152. p->normal_prio = normal_prio(p);
  4153. /* we are holding p->pi_lock already */
  4154. p->prio = rt_mutex_getprio(p);
  4155. if (rt_prio(p->prio))
  4156. p->sched_class = &rt_sched_class;
  4157. else
  4158. p->sched_class = &fair_sched_class;
  4159. set_load_weight(p);
  4160. }
  4161. /*
  4162. * check the target process has a UID that matches the current process's
  4163. */
  4164. static bool check_same_owner(struct task_struct *p)
  4165. {
  4166. const struct cred *cred = current_cred(), *pcred;
  4167. bool match;
  4168. rcu_read_lock();
  4169. pcred = __task_cred(p);
  4170. if (cred->user->user_ns == pcred->user->user_ns)
  4171. match = (cred->euid == pcred->euid ||
  4172. cred->euid == pcred->uid);
  4173. else
  4174. match = false;
  4175. rcu_read_unlock();
  4176. return match;
  4177. }
  4178. static int __sched_setscheduler(struct task_struct *p, int policy,
  4179. const struct sched_param *param, bool user)
  4180. {
  4181. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4182. unsigned long flags;
  4183. const struct sched_class *prev_class;
  4184. struct rq *rq;
  4185. int reset_on_fork;
  4186. /* may grab non-irq protected spin_locks */
  4187. BUG_ON(in_interrupt());
  4188. recheck:
  4189. /* double check policy once rq lock held */
  4190. if (policy < 0) {
  4191. reset_on_fork = p->sched_reset_on_fork;
  4192. policy = oldpolicy = p->policy;
  4193. } else {
  4194. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4195. policy &= ~SCHED_RESET_ON_FORK;
  4196. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4197. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4198. policy != SCHED_IDLE)
  4199. return -EINVAL;
  4200. }
  4201. /*
  4202. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4203. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4204. * SCHED_BATCH and SCHED_IDLE is 0.
  4205. */
  4206. if (param->sched_priority < 0 ||
  4207. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4208. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4209. return -EINVAL;
  4210. if (rt_policy(policy) != (param->sched_priority != 0))
  4211. return -EINVAL;
  4212. /*
  4213. * Allow unprivileged RT tasks to decrease priority:
  4214. */
  4215. if (user && !capable(CAP_SYS_NICE)) {
  4216. if (rt_policy(policy)) {
  4217. unsigned long rlim_rtprio =
  4218. task_rlimit(p, RLIMIT_RTPRIO);
  4219. /* can't set/change the rt policy */
  4220. if (policy != p->policy && !rlim_rtprio)
  4221. return -EPERM;
  4222. /* can't increase priority */
  4223. if (param->sched_priority > p->rt_priority &&
  4224. param->sched_priority > rlim_rtprio)
  4225. return -EPERM;
  4226. }
  4227. /*
  4228. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4229. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4230. */
  4231. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4232. if (!can_nice(p, TASK_NICE(p)))
  4233. return -EPERM;
  4234. }
  4235. /* can't change other user's priorities */
  4236. if (!check_same_owner(p))
  4237. return -EPERM;
  4238. /* Normal users shall not reset the sched_reset_on_fork flag */
  4239. if (p->sched_reset_on_fork && !reset_on_fork)
  4240. return -EPERM;
  4241. }
  4242. if (user) {
  4243. retval = security_task_setscheduler(p);
  4244. if (retval)
  4245. return retval;
  4246. }
  4247. /*
  4248. * make sure no PI-waiters arrive (or leave) while we are
  4249. * changing the priority of the task:
  4250. *
  4251. * To be able to change p->policy safely, the appropriate
  4252. * runqueue lock must be held.
  4253. */
  4254. rq = task_rq_lock(p, &flags);
  4255. /*
  4256. * Changing the policy of the stop threads its a very bad idea
  4257. */
  4258. if (p == rq->stop) {
  4259. task_rq_unlock(rq, p, &flags);
  4260. return -EINVAL;
  4261. }
  4262. /*
  4263. * If not changing anything there's no need to proceed further:
  4264. */
  4265. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4266. param->sched_priority == p->rt_priority))) {
  4267. __task_rq_unlock(rq);
  4268. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4269. return 0;
  4270. }
  4271. #ifdef CONFIG_RT_GROUP_SCHED
  4272. if (user) {
  4273. /*
  4274. * Do not allow realtime tasks into groups that have no runtime
  4275. * assigned.
  4276. */
  4277. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4278. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4279. !task_group_is_autogroup(task_group(p))) {
  4280. task_rq_unlock(rq, p, &flags);
  4281. return -EPERM;
  4282. }
  4283. }
  4284. #endif
  4285. /* recheck policy now with rq lock held */
  4286. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4287. policy = oldpolicy = -1;
  4288. task_rq_unlock(rq, p, &flags);
  4289. goto recheck;
  4290. }
  4291. on_rq = p->on_rq;
  4292. running = task_current(rq, p);
  4293. if (on_rq)
  4294. deactivate_task(rq, p, 0);
  4295. if (running)
  4296. p->sched_class->put_prev_task(rq, p);
  4297. p->sched_reset_on_fork = reset_on_fork;
  4298. oldprio = p->prio;
  4299. prev_class = p->sched_class;
  4300. __setscheduler(rq, p, policy, param->sched_priority);
  4301. if (running)
  4302. p->sched_class->set_curr_task(rq);
  4303. if (on_rq)
  4304. activate_task(rq, p, 0);
  4305. check_class_changed(rq, p, prev_class, oldprio);
  4306. task_rq_unlock(rq, p, &flags);
  4307. rt_mutex_adjust_pi(p);
  4308. return 0;
  4309. }
  4310. /**
  4311. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4312. * @p: the task in question.
  4313. * @policy: new policy.
  4314. * @param: structure containing the new RT priority.
  4315. *
  4316. * NOTE that the task may be already dead.
  4317. */
  4318. int sched_setscheduler(struct task_struct *p, int policy,
  4319. const struct sched_param *param)
  4320. {
  4321. return __sched_setscheduler(p, policy, param, true);
  4322. }
  4323. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4324. /**
  4325. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4326. * @p: the task in question.
  4327. * @policy: new policy.
  4328. * @param: structure containing the new RT priority.
  4329. *
  4330. * Just like sched_setscheduler, only don't bother checking if the
  4331. * current context has permission. For example, this is needed in
  4332. * stop_machine(): we create temporary high priority worker threads,
  4333. * but our caller might not have that capability.
  4334. */
  4335. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4336. const struct sched_param *param)
  4337. {
  4338. return __sched_setscheduler(p, policy, param, false);
  4339. }
  4340. static int
  4341. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4342. {
  4343. struct sched_param lparam;
  4344. struct task_struct *p;
  4345. int retval;
  4346. if (!param || pid < 0)
  4347. return -EINVAL;
  4348. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4349. return -EFAULT;
  4350. rcu_read_lock();
  4351. retval = -ESRCH;
  4352. p = find_process_by_pid(pid);
  4353. if (p != NULL)
  4354. retval = sched_setscheduler(p, policy, &lparam);
  4355. rcu_read_unlock();
  4356. return retval;
  4357. }
  4358. /**
  4359. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4360. * @pid: the pid in question.
  4361. * @policy: new policy.
  4362. * @param: structure containing the new RT priority.
  4363. */
  4364. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4365. struct sched_param __user *, param)
  4366. {
  4367. /* negative values for policy are not valid */
  4368. if (policy < 0)
  4369. return -EINVAL;
  4370. return do_sched_setscheduler(pid, policy, param);
  4371. }
  4372. /**
  4373. * sys_sched_setparam - set/change the RT priority of a thread
  4374. * @pid: the pid in question.
  4375. * @param: structure containing the new RT priority.
  4376. */
  4377. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4378. {
  4379. return do_sched_setscheduler(pid, -1, param);
  4380. }
  4381. /**
  4382. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4383. * @pid: the pid in question.
  4384. */
  4385. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4386. {
  4387. struct task_struct *p;
  4388. int retval;
  4389. if (pid < 0)
  4390. return -EINVAL;
  4391. retval = -ESRCH;
  4392. rcu_read_lock();
  4393. p = find_process_by_pid(pid);
  4394. if (p) {
  4395. retval = security_task_getscheduler(p);
  4396. if (!retval)
  4397. retval = p->policy
  4398. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4399. }
  4400. rcu_read_unlock();
  4401. return retval;
  4402. }
  4403. /**
  4404. * sys_sched_getparam - get the RT priority of a thread
  4405. * @pid: the pid in question.
  4406. * @param: structure containing the RT priority.
  4407. */
  4408. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4409. {
  4410. struct sched_param lp;
  4411. struct task_struct *p;
  4412. int retval;
  4413. if (!param || pid < 0)
  4414. return -EINVAL;
  4415. rcu_read_lock();
  4416. p = find_process_by_pid(pid);
  4417. retval = -ESRCH;
  4418. if (!p)
  4419. goto out_unlock;
  4420. retval = security_task_getscheduler(p);
  4421. if (retval)
  4422. goto out_unlock;
  4423. lp.sched_priority = p->rt_priority;
  4424. rcu_read_unlock();
  4425. /*
  4426. * This one might sleep, we cannot do it with a spinlock held ...
  4427. */
  4428. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4429. return retval;
  4430. out_unlock:
  4431. rcu_read_unlock();
  4432. return retval;
  4433. }
  4434. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4435. {
  4436. cpumask_var_t cpus_allowed, new_mask;
  4437. struct task_struct *p;
  4438. int retval;
  4439. get_online_cpus();
  4440. rcu_read_lock();
  4441. p = find_process_by_pid(pid);
  4442. if (!p) {
  4443. rcu_read_unlock();
  4444. put_online_cpus();
  4445. return -ESRCH;
  4446. }
  4447. /* Prevent p going away */
  4448. get_task_struct(p);
  4449. rcu_read_unlock();
  4450. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4451. retval = -ENOMEM;
  4452. goto out_put_task;
  4453. }
  4454. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4455. retval = -ENOMEM;
  4456. goto out_free_cpus_allowed;
  4457. }
  4458. retval = -EPERM;
  4459. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4460. goto out_unlock;
  4461. retval = security_task_setscheduler(p);
  4462. if (retval)
  4463. goto out_unlock;
  4464. cpuset_cpus_allowed(p, cpus_allowed);
  4465. cpumask_and(new_mask, in_mask, cpus_allowed);
  4466. again:
  4467. retval = set_cpus_allowed_ptr(p, new_mask);
  4468. if (!retval) {
  4469. cpuset_cpus_allowed(p, cpus_allowed);
  4470. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4471. /*
  4472. * We must have raced with a concurrent cpuset
  4473. * update. Just reset the cpus_allowed to the
  4474. * cpuset's cpus_allowed
  4475. */
  4476. cpumask_copy(new_mask, cpus_allowed);
  4477. goto again;
  4478. }
  4479. }
  4480. out_unlock:
  4481. free_cpumask_var(new_mask);
  4482. out_free_cpus_allowed:
  4483. free_cpumask_var(cpus_allowed);
  4484. out_put_task:
  4485. put_task_struct(p);
  4486. put_online_cpus();
  4487. return retval;
  4488. }
  4489. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4490. struct cpumask *new_mask)
  4491. {
  4492. if (len < cpumask_size())
  4493. cpumask_clear(new_mask);
  4494. else if (len > cpumask_size())
  4495. len = cpumask_size();
  4496. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4497. }
  4498. /**
  4499. * sys_sched_setaffinity - set the cpu affinity of a process
  4500. * @pid: pid of the process
  4501. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4502. * @user_mask_ptr: user-space pointer to the new cpu mask
  4503. */
  4504. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4505. unsigned long __user *, user_mask_ptr)
  4506. {
  4507. cpumask_var_t new_mask;
  4508. int retval;
  4509. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4510. return -ENOMEM;
  4511. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4512. if (retval == 0)
  4513. retval = sched_setaffinity(pid, new_mask);
  4514. free_cpumask_var(new_mask);
  4515. return retval;
  4516. }
  4517. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4518. {
  4519. struct task_struct *p;
  4520. unsigned long flags;
  4521. int retval;
  4522. get_online_cpus();
  4523. rcu_read_lock();
  4524. retval = -ESRCH;
  4525. p = find_process_by_pid(pid);
  4526. if (!p)
  4527. goto out_unlock;
  4528. retval = security_task_getscheduler(p);
  4529. if (retval)
  4530. goto out_unlock;
  4531. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4532. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4533. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4534. out_unlock:
  4535. rcu_read_unlock();
  4536. put_online_cpus();
  4537. return retval;
  4538. }
  4539. /**
  4540. * sys_sched_getaffinity - get the cpu affinity of a process
  4541. * @pid: pid of the process
  4542. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4543. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4544. */
  4545. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4546. unsigned long __user *, user_mask_ptr)
  4547. {
  4548. int ret;
  4549. cpumask_var_t mask;
  4550. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4551. return -EINVAL;
  4552. if (len & (sizeof(unsigned long)-1))
  4553. return -EINVAL;
  4554. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4555. return -ENOMEM;
  4556. ret = sched_getaffinity(pid, mask);
  4557. if (ret == 0) {
  4558. size_t retlen = min_t(size_t, len, cpumask_size());
  4559. if (copy_to_user(user_mask_ptr, mask, retlen))
  4560. ret = -EFAULT;
  4561. else
  4562. ret = retlen;
  4563. }
  4564. free_cpumask_var(mask);
  4565. return ret;
  4566. }
  4567. /**
  4568. * sys_sched_yield - yield the current processor to other threads.
  4569. *
  4570. * This function yields the current CPU to other tasks. If there are no
  4571. * other threads running on this CPU then this function will return.
  4572. */
  4573. SYSCALL_DEFINE0(sched_yield)
  4574. {
  4575. struct rq *rq = this_rq_lock();
  4576. schedstat_inc(rq, yld_count);
  4577. current->sched_class->yield_task(rq);
  4578. /*
  4579. * Since we are going to call schedule() anyway, there's
  4580. * no need to preempt or enable interrupts:
  4581. */
  4582. __release(rq->lock);
  4583. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4584. do_raw_spin_unlock(&rq->lock);
  4585. preempt_enable_no_resched();
  4586. schedule();
  4587. return 0;
  4588. }
  4589. static inline int should_resched(void)
  4590. {
  4591. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4592. }
  4593. static void __cond_resched(void)
  4594. {
  4595. add_preempt_count(PREEMPT_ACTIVE);
  4596. schedule();
  4597. sub_preempt_count(PREEMPT_ACTIVE);
  4598. }
  4599. int __sched _cond_resched(void)
  4600. {
  4601. if (should_resched()) {
  4602. __cond_resched();
  4603. return 1;
  4604. }
  4605. return 0;
  4606. }
  4607. EXPORT_SYMBOL(_cond_resched);
  4608. /*
  4609. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4610. * call schedule, and on return reacquire the lock.
  4611. *
  4612. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4613. * operations here to prevent schedule() from being called twice (once via
  4614. * spin_unlock(), once by hand).
  4615. */
  4616. int __cond_resched_lock(spinlock_t *lock)
  4617. {
  4618. int resched = should_resched();
  4619. int ret = 0;
  4620. lockdep_assert_held(lock);
  4621. if (spin_needbreak(lock) || resched) {
  4622. spin_unlock(lock);
  4623. if (resched)
  4624. __cond_resched();
  4625. else
  4626. cpu_relax();
  4627. ret = 1;
  4628. spin_lock(lock);
  4629. }
  4630. return ret;
  4631. }
  4632. EXPORT_SYMBOL(__cond_resched_lock);
  4633. int __sched __cond_resched_softirq(void)
  4634. {
  4635. BUG_ON(!in_softirq());
  4636. if (should_resched()) {
  4637. local_bh_enable();
  4638. __cond_resched();
  4639. local_bh_disable();
  4640. return 1;
  4641. }
  4642. return 0;
  4643. }
  4644. EXPORT_SYMBOL(__cond_resched_softirq);
  4645. /**
  4646. * yield - yield the current processor to other threads.
  4647. *
  4648. * This is a shortcut for kernel-space yielding - it marks the
  4649. * thread runnable and calls sys_sched_yield().
  4650. */
  4651. void __sched yield(void)
  4652. {
  4653. set_current_state(TASK_RUNNING);
  4654. sys_sched_yield();
  4655. }
  4656. EXPORT_SYMBOL(yield);
  4657. /**
  4658. * yield_to - yield the current processor to another thread in
  4659. * your thread group, or accelerate that thread toward the
  4660. * processor it's on.
  4661. * @p: target task
  4662. * @preempt: whether task preemption is allowed or not
  4663. *
  4664. * It's the caller's job to ensure that the target task struct
  4665. * can't go away on us before we can do any checks.
  4666. *
  4667. * Returns true if we indeed boosted the target task.
  4668. */
  4669. bool __sched yield_to(struct task_struct *p, bool preempt)
  4670. {
  4671. struct task_struct *curr = current;
  4672. struct rq *rq, *p_rq;
  4673. unsigned long flags;
  4674. bool yielded = 0;
  4675. local_irq_save(flags);
  4676. rq = this_rq();
  4677. again:
  4678. p_rq = task_rq(p);
  4679. double_rq_lock(rq, p_rq);
  4680. while (task_rq(p) != p_rq) {
  4681. double_rq_unlock(rq, p_rq);
  4682. goto again;
  4683. }
  4684. if (!curr->sched_class->yield_to_task)
  4685. goto out;
  4686. if (curr->sched_class != p->sched_class)
  4687. goto out;
  4688. if (task_running(p_rq, p) || p->state)
  4689. goto out;
  4690. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4691. if (yielded) {
  4692. schedstat_inc(rq, yld_count);
  4693. /*
  4694. * Make p's CPU reschedule; pick_next_entity takes care of
  4695. * fairness.
  4696. */
  4697. if (preempt && rq != p_rq)
  4698. resched_task(p_rq->curr);
  4699. }
  4700. out:
  4701. double_rq_unlock(rq, p_rq);
  4702. local_irq_restore(flags);
  4703. if (yielded)
  4704. schedule();
  4705. return yielded;
  4706. }
  4707. EXPORT_SYMBOL_GPL(yield_to);
  4708. /*
  4709. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4710. * that process accounting knows that this is a task in IO wait state.
  4711. */
  4712. void __sched io_schedule(void)
  4713. {
  4714. struct rq *rq = raw_rq();
  4715. delayacct_blkio_start();
  4716. atomic_inc(&rq->nr_iowait);
  4717. blk_flush_plug(current);
  4718. current->in_iowait = 1;
  4719. schedule();
  4720. current->in_iowait = 0;
  4721. atomic_dec(&rq->nr_iowait);
  4722. delayacct_blkio_end();
  4723. }
  4724. EXPORT_SYMBOL(io_schedule);
  4725. long __sched io_schedule_timeout(long timeout)
  4726. {
  4727. struct rq *rq = raw_rq();
  4728. long ret;
  4729. delayacct_blkio_start();
  4730. atomic_inc(&rq->nr_iowait);
  4731. blk_flush_plug(current);
  4732. current->in_iowait = 1;
  4733. ret = schedule_timeout(timeout);
  4734. current->in_iowait = 0;
  4735. atomic_dec(&rq->nr_iowait);
  4736. delayacct_blkio_end();
  4737. return ret;
  4738. }
  4739. /**
  4740. * sys_sched_get_priority_max - return maximum RT priority.
  4741. * @policy: scheduling class.
  4742. *
  4743. * this syscall returns the maximum rt_priority that can be used
  4744. * by a given scheduling class.
  4745. */
  4746. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4747. {
  4748. int ret = -EINVAL;
  4749. switch (policy) {
  4750. case SCHED_FIFO:
  4751. case SCHED_RR:
  4752. ret = MAX_USER_RT_PRIO-1;
  4753. break;
  4754. case SCHED_NORMAL:
  4755. case SCHED_BATCH:
  4756. case SCHED_IDLE:
  4757. ret = 0;
  4758. break;
  4759. }
  4760. return ret;
  4761. }
  4762. /**
  4763. * sys_sched_get_priority_min - return minimum RT priority.
  4764. * @policy: scheduling class.
  4765. *
  4766. * this syscall returns the minimum rt_priority that can be used
  4767. * by a given scheduling class.
  4768. */
  4769. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4770. {
  4771. int ret = -EINVAL;
  4772. switch (policy) {
  4773. case SCHED_FIFO:
  4774. case SCHED_RR:
  4775. ret = 1;
  4776. break;
  4777. case SCHED_NORMAL:
  4778. case SCHED_BATCH:
  4779. case SCHED_IDLE:
  4780. ret = 0;
  4781. }
  4782. return ret;
  4783. }
  4784. /**
  4785. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4786. * @pid: pid of the process.
  4787. * @interval: userspace pointer to the timeslice value.
  4788. *
  4789. * this syscall writes the default timeslice value of a given process
  4790. * into the user-space timespec buffer. A value of '0' means infinity.
  4791. */
  4792. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4793. struct timespec __user *, interval)
  4794. {
  4795. struct task_struct *p;
  4796. unsigned int time_slice;
  4797. unsigned long flags;
  4798. struct rq *rq;
  4799. int retval;
  4800. struct timespec t;
  4801. if (pid < 0)
  4802. return -EINVAL;
  4803. retval = -ESRCH;
  4804. rcu_read_lock();
  4805. p = find_process_by_pid(pid);
  4806. if (!p)
  4807. goto out_unlock;
  4808. retval = security_task_getscheduler(p);
  4809. if (retval)
  4810. goto out_unlock;
  4811. rq = task_rq_lock(p, &flags);
  4812. time_slice = p->sched_class->get_rr_interval(rq, p);
  4813. task_rq_unlock(rq, p, &flags);
  4814. rcu_read_unlock();
  4815. jiffies_to_timespec(time_slice, &t);
  4816. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4817. return retval;
  4818. out_unlock:
  4819. rcu_read_unlock();
  4820. return retval;
  4821. }
  4822. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4823. void sched_show_task(struct task_struct *p)
  4824. {
  4825. unsigned long free = 0;
  4826. unsigned state;
  4827. state = p->state ? __ffs(p->state) + 1 : 0;
  4828. printk(KERN_INFO "%-15.15s %c", p->comm,
  4829. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4830. #if BITS_PER_LONG == 32
  4831. if (state == TASK_RUNNING)
  4832. printk(KERN_CONT " running ");
  4833. else
  4834. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4835. #else
  4836. if (state == TASK_RUNNING)
  4837. printk(KERN_CONT " running task ");
  4838. else
  4839. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4840. #endif
  4841. #ifdef CONFIG_DEBUG_STACK_USAGE
  4842. free = stack_not_used(p);
  4843. #endif
  4844. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4845. task_pid_nr(p), task_pid_nr(p->real_parent),
  4846. (unsigned long)task_thread_info(p)->flags);
  4847. show_stack(p, NULL);
  4848. }
  4849. void show_state_filter(unsigned long state_filter)
  4850. {
  4851. struct task_struct *g, *p;
  4852. #if BITS_PER_LONG == 32
  4853. printk(KERN_INFO
  4854. " task PC stack pid father\n");
  4855. #else
  4856. printk(KERN_INFO
  4857. " task PC stack pid father\n");
  4858. #endif
  4859. read_lock(&tasklist_lock);
  4860. do_each_thread(g, p) {
  4861. /*
  4862. * reset the NMI-timeout, listing all files on a slow
  4863. * console might take a lot of time:
  4864. */
  4865. touch_nmi_watchdog();
  4866. if (!state_filter || (p->state & state_filter))
  4867. sched_show_task(p);
  4868. } while_each_thread(g, p);
  4869. touch_all_softlockup_watchdogs();
  4870. #ifdef CONFIG_SCHED_DEBUG
  4871. sysrq_sched_debug_show();
  4872. #endif
  4873. read_unlock(&tasklist_lock);
  4874. /*
  4875. * Only show locks if all tasks are dumped:
  4876. */
  4877. if (!state_filter)
  4878. debug_show_all_locks();
  4879. }
  4880. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4881. {
  4882. idle->sched_class = &idle_sched_class;
  4883. }
  4884. /**
  4885. * init_idle - set up an idle thread for a given CPU
  4886. * @idle: task in question
  4887. * @cpu: cpu the idle task belongs to
  4888. *
  4889. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4890. * flag, to make booting more robust.
  4891. */
  4892. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4893. {
  4894. struct rq *rq = cpu_rq(cpu);
  4895. unsigned long flags;
  4896. raw_spin_lock_irqsave(&rq->lock, flags);
  4897. __sched_fork(idle);
  4898. idle->state = TASK_RUNNING;
  4899. idle->se.exec_start = sched_clock();
  4900. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4901. /*
  4902. * We're having a chicken and egg problem, even though we are
  4903. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4904. * lockdep check in task_group() will fail.
  4905. *
  4906. * Similar case to sched_fork(). / Alternatively we could
  4907. * use task_rq_lock() here and obtain the other rq->lock.
  4908. *
  4909. * Silence PROVE_RCU
  4910. */
  4911. rcu_read_lock();
  4912. __set_task_cpu(idle, cpu);
  4913. rcu_read_unlock();
  4914. rq->curr = rq->idle = idle;
  4915. #if defined(CONFIG_SMP)
  4916. idle->on_cpu = 1;
  4917. #endif
  4918. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4919. /* Set the preempt count _outside_ the spinlocks! */
  4920. #if defined(CONFIG_PREEMPT)
  4921. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4922. #else
  4923. task_thread_info(idle)->preempt_count = 0;
  4924. #endif
  4925. /*
  4926. * The idle tasks have their own, simple scheduling class:
  4927. */
  4928. idle->sched_class = &idle_sched_class;
  4929. ftrace_graph_init_idle_task(idle, cpu);
  4930. }
  4931. /*
  4932. * In a system that switches off the HZ timer nohz_cpu_mask
  4933. * indicates which cpus entered this state. This is used
  4934. * in the rcu update to wait only for active cpus. For system
  4935. * which do not switch off the HZ timer nohz_cpu_mask should
  4936. * always be CPU_BITS_NONE.
  4937. */
  4938. cpumask_var_t nohz_cpu_mask;
  4939. /*
  4940. * Increase the granularity value when there are more CPUs,
  4941. * because with more CPUs the 'effective latency' as visible
  4942. * to users decreases. But the relationship is not linear,
  4943. * so pick a second-best guess by going with the log2 of the
  4944. * number of CPUs.
  4945. *
  4946. * This idea comes from the SD scheduler of Con Kolivas:
  4947. */
  4948. static int get_update_sysctl_factor(void)
  4949. {
  4950. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4951. unsigned int factor;
  4952. switch (sysctl_sched_tunable_scaling) {
  4953. case SCHED_TUNABLESCALING_NONE:
  4954. factor = 1;
  4955. break;
  4956. case SCHED_TUNABLESCALING_LINEAR:
  4957. factor = cpus;
  4958. break;
  4959. case SCHED_TUNABLESCALING_LOG:
  4960. default:
  4961. factor = 1 + ilog2(cpus);
  4962. break;
  4963. }
  4964. return factor;
  4965. }
  4966. static void update_sysctl(void)
  4967. {
  4968. unsigned int factor = get_update_sysctl_factor();
  4969. #define SET_SYSCTL(name) \
  4970. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4971. SET_SYSCTL(sched_min_granularity);
  4972. SET_SYSCTL(sched_latency);
  4973. SET_SYSCTL(sched_wakeup_granularity);
  4974. #undef SET_SYSCTL
  4975. }
  4976. static inline void sched_init_granularity(void)
  4977. {
  4978. update_sysctl();
  4979. }
  4980. #ifdef CONFIG_SMP
  4981. /*
  4982. * This is how migration works:
  4983. *
  4984. * 1) we invoke migration_cpu_stop() on the target CPU using
  4985. * stop_one_cpu().
  4986. * 2) stopper starts to run (implicitly forcing the migrated thread
  4987. * off the CPU)
  4988. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4989. * 4) if it's in the wrong runqueue then the migration thread removes
  4990. * it and puts it into the right queue.
  4991. * 5) stopper completes and stop_one_cpu() returns and the migration
  4992. * is done.
  4993. */
  4994. /*
  4995. * Change a given task's CPU affinity. Migrate the thread to a
  4996. * proper CPU and schedule it away if the CPU it's executing on
  4997. * is removed from the allowed bitmask.
  4998. *
  4999. * NOTE: the caller must have a valid reference to the task, the
  5000. * task must not exit() & deallocate itself prematurely. The
  5001. * call is not atomic; no spinlocks may be held.
  5002. */
  5003. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5004. {
  5005. unsigned long flags;
  5006. struct rq *rq;
  5007. unsigned int dest_cpu;
  5008. int ret = 0;
  5009. rq = task_rq_lock(p, &flags);
  5010. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5011. ret = -EINVAL;
  5012. goto out;
  5013. }
  5014. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5015. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5016. ret = -EINVAL;
  5017. goto out;
  5018. }
  5019. if (p->sched_class->set_cpus_allowed)
  5020. p->sched_class->set_cpus_allowed(p, new_mask);
  5021. else {
  5022. cpumask_copy(&p->cpus_allowed, new_mask);
  5023. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5024. }
  5025. /* Can the task run on the task's current CPU? If so, we're done */
  5026. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5027. goto out;
  5028. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5029. if (need_migrate_task(p)) {
  5030. struct migration_arg arg = { p, dest_cpu };
  5031. /* Need help from migration thread: drop lock and wait. */
  5032. task_rq_unlock(rq, p, &flags);
  5033. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5034. tlb_migrate_finish(p->mm);
  5035. return 0;
  5036. }
  5037. out:
  5038. task_rq_unlock(rq, p, &flags);
  5039. return ret;
  5040. }
  5041. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5042. /*
  5043. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5044. * this because either it can't run here any more (set_cpus_allowed()
  5045. * away from this CPU, or CPU going down), or because we're
  5046. * attempting to rebalance this task on exec (sched_exec).
  5047. *
  5048. * So we race with normal scheduler movements, but that's OK, as long
  5049. * as the task is no longer on this CPU.
  5050. *
  5051. * Returns non-zero if task was successfully migrated.
  5052. */
  5053. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5054. {
  5055. struct rq *rq_dest, *rq_src;
  5056. int ret = 0;
  5057. if (unlikely(!cpu_active(dest_cpu)))
  5058. return ret;
  5059. rq_src = cpu_rq(src_cpu);
  5060. rq_dest = cpu_rq(dest_cpu);
  5061. raw_spin_lock(&p->pi_lock);
  5062. double_rq_lock(rq_src, rq_dest);
  5063. /* Already moved. */
  5064. if (task_cpu(p) != src_cpu)
  5065. goto done;
  5066. /* Affinity changed (again). */
  5067. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5068. goto fail;
  5069. /*
  5070. * If we're not on a rq, the next wake-up will ensure we're
  5071. * placed properly.
  5072. */
  5073. if (p->on_rq) {
  5074. deactivate_task(rq_src, p, 0);
  5075. set_task_cpu(p, dest_cpu);
  5076. activate_task(rq_dest, p, 0);
  5077. check_preempt_curr(rq_dest, p, 0);
  5078. }
  5079. done:
  5080. ret = 1;
  5081. fail:
  5082. double_rq_unlock(rq_src, rq_dest);
  5083. raw_spin_unlock(&p->pi_lock);
  5084. return ret;
  5085. }
  5086. /*
  5087. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5088. * and performs thread migration by bumping thread off CPU then
  5089. * 'pushing' onto another runqueue.
  5090. */
  5091. static int migration_cpu_stop(void *data)
  5092. {
  5093. struct migration_arg *arg = data;
  5094. /*
  5095. * The original target cpu might have gone down and we might
  5096. * be on another cpu but it doesn't matter.
  5097. */
  5098. local_irq_disable();
  5099. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5100. local_irq_enable();
  5101. return 0;
  5102. }
  5103. #ifdef CONFIG_HOTPLUG_CPU
  5104. /*
  5105. * Ensures that the idle task is using init_mm right before its cpu goes
  5106. * offline.
  5107. */
  5108. void idle_task_exit(void)
  5109. {
  5110. struct mm_struct *mm = current->active_mm;
  5111. BUG_ON(cpu_online(smp_processor_id()));
  5112. if (mm != &init_mm)
  5113. switch_mm(mm, &init_mm, current);
  5114. mmdrop(mm);
  5115. }
  5116. /*
  5117. * While a dead CPU has no uninterruptible tasks queued at this point,
  5118. * it might still have a nonzero ->nr_uninterruptible counter, because
  5119. * for performance reasons the counter is not stricly tracking tasks to
  5120. * their home CPUs. So we just add the counter to another CPU's counter,
  5121. * to keep the global sum constant after CPU-down:
  5122. */
  5123. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5124. {
  5125. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5126. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5127. rq_src->nr_uninterruptible = 0;
  5128. }
  5129. /*
  5130. * remove the tasks which were accounted by rq from calc_load_tasks.
  5131. */
  5132. static void calc_global_load_remove(struct rq *rq)
  5133. {
  5134. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5135. rq->calc_load_active = 0;
  5136. }
  5137. /*
  5138. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5139. * try_to_wake_up()->select_task_rq().
  5140. *
  5141. * Called with rq->lock held even though we'er in stop_machine() and
  5142. * there's no concurrency possible, we hold the required locks anyway
  5143. * because of lock validation efforts.
  5144. */
  5145. static void migrate_tasks(unsigned int dead_cpu)
  5146. {
  5147. struct rq *rq = cpu_rq(dead_cpu);
  5148. struct task_struct *next, *stop = rq->stop;
  5149. int dest_cpu;
  5150. /*
  5151. * Fudge the rq selection such that the below task selection loop
  5152. * doesn't get stuck on the currently eligible stop task.
  5153. *
  5154. * We're currently inside stop_machine() and the rq is either stuck
  5155. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5156. * either way we should never end up calling schedule() until we're
  5157. * done here.
  5158. */
  5159. rq->stop = NULL;
  5160. for ( ; ; ) {
  5161. /*
  5162. * There's this thread running, bail when that's the only
  5163. * remaining thread.
  5164. */
  5165. if (rq->nr_running == 1)
  5166. break;
  5167. next = pick_next_task(rq);
  5168. BUG_ON(!next);
  5169. next->sched_class->put_prev_task(rq, next);
  5170. /* Find suitable destination for @next, with force if needed. */
  5171. dest_cpu = select_fallback_rq(dead_cpu, next);
  5172. raw_spin_unlock(&rq->lock);
  5173. __migrate_task(next, dead_cpu, dest_cpu);
  5174. raw_spin_lock(&rq->lock);
  5175. }
  5176. rq->stop = stop;
  5177. }
  5178. #endif /* CONFIG_HOTPLUG_CPU */
  5179. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5180. static struct ctl_table sd_ctl_dir[] = {
  5181. {
  5182. .procname = "sched_domain",
  5183. .mode = 0555,
  5184. },
  5185. {}
  5186. };
  5187. static struct ctl_table sd_ctl_root[] = {
  5188. {
  5189. .procname = "kernel",
  5190. .mode = 0555,
  5191. .child = sd_ctl_dir,
  5192. },
  5193. {}
  5194. };
  5195. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5196. {
  5197. struct ctl_table *entry =
  5198. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5199. return entry;
  5200. }
  5201. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5202. {
  5203. struct ctl_table *entry;
  5204. /*
  5205. * In the intermediate directories, both the child directory and
  5206. * procname are dynamically allocated and could fail but the mode
  5207. * will always be set. In the lowest directory the names are
  5208. * static strings and all have proc handlers.
  5209. */
  5210. for (entry = *tablep; entry->mode; entry++) {
  5211. if (entry->child)
  5212. sd_free_ctl_entry(&entry->child);
  5213. if (entry->proc_handler == NULL)
  5214. kfree(entry->procname);
  5215. }
  5216. kfree(*tablep);
  5217. *tablep = NULL;
  5218. }
  5219. static void
  5220. set_table_entry(struct ctl_table *entry,
  5221. const char *procname, void *data, int maxlen,
  5222. mode_t mode, proc_handler *proc_handler)
  5223. {
  5224. entry->procname = procname;
  5225. entry->data = data;
  5226. entry->maxlen = maxlen;
  5227. entry->mode = mode;
  5228. entry->proc_handler = proc_handler;
  5229. }
  5230. static struct ctl_table *
  5231. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5232. {
  5233. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5234. if (table == NULL)
  5235. return NULL;
  5236. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5237. sizeof(long), 0644, proc_doulongvec_minmax);
  5238. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5239. sizeof(long), 0644, proc_doulongvec_minmax);
  5240. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5241. sizeof(int), 0644, proc_dointvec_minmax);
  5242. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5243. sizeof(int), 0644, proc_dointvec_minmax);
  5244. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5245. sizeof(int), 0644, proc_dointvec_minmax);
  5246. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5247. sizeof(int), 0644, proc_dointvec_minmax);
  5248. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5249. sizeof(int), 0644, proc_dointvec_minmax);
  5250. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5251. sizeof(int), 0644, proc_dointvec_minmax);
  5252. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5253. sizeof(int), 0644, proc_dointvec_minmax);
  5254. set_table_entry(&table[9], "cache_nice_tries",
  5255. &sd->cache_nice_tries,
  5256. sizeof(int), 0644, proc_dointvec_minmax);
  5257. set_table_entry(&table[10], "flags", &sd->flags,
  5258. sizeof(int), 0644, proc_dointvec_minmax);
  5259. set_table_entry(&table[11], "name", sd->name,
  5260. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5261. /* &table[12] is terminator */
  5262. return table;
  5263. }
  5264. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5265. {
  5266. struct ctl_table *entry, *table;
  5267. struct sched_domain *sd;
  5268. int domain_num = 0, i;
  5269. char buf[32];
  5270. for_each_domain(cpu, sd)
  5271. domain_num++;
  5272. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5273. if (table == NULL)
  5274. return NULL;
  5275. i = 0;
  5276. for_each_domain(cpu, sd) {
  5277. snprintf(buf, 32, "domain%d", i);
  5278. entry->procname = kstrdup(buf, GFP_KERNEL);
  5279. entry->mode = 0555;
  5280. entry->child = sd_alloc_ctl_domain_table(sd);
  5281. entry++;
  5282. i++;
  5283. }
  5284. return table;
  5285. }
  5286. static struct ctl_table_header *sd_sysctl_header;
  5287. static void register_sched_domain_sysctl(void)
  5288. {
  5289. int i, cpu_num = num_possible_cpus();
  5290. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5291. char buf[32];
  5292. WARN_ON(sd_ctl_dir[0].child);
  5293. sd_ctl_dir[0].child = entry;
  5294. if (entry == NULL)
  5295. return;
  5296. for_each_possible_cpu(i) {
  5297. snprintf(buf, 32, "cpu%d", i);
  5298. entry->procname = kstrdup(buf, GFP_KERNEL);
  5299. entry->mode = 0555;
  5300. entry->child = sd_alloc_ctl_cpu_table(i);
  5301. entry++;
  5302. }
  5303. WARN_ON(sd_sysctl_header);
  5304. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5305. }
  5306. /* may be called multiple times per register */
  5307. static void unregister_sched_domain_sysctl(void)
  5308. {
  5309. if (sd_sysctl_header)
  5310. unregister_sysctl_table(sd_sysctl_header);
  5311. sd_sysctl_header = NULL;
  5312. if (sd_ctl_dir[0].child)
  5313. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5314. }
  5315. #else
  5316. static void register_sched_domain_sysctl(void)
  5317. {
  5318. }
  5319. static void unregister_sched_domain_sysctl(void)
  5320. {
  5321. }
  5322. #endif
  5323. static void set_rq_online(struct rq *rq)
  5324. {
  5325. if (!rq->online) {
  5326. const struct sched_class *class;
  5327. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5328. rq->online = 1;
  5329. for_each_class(class) {
  5330. if (class->rq_online)
  5331. class->rq_online(rq);
  5332. }
  5333. }
  5334. }
  5335. static void set_rq_offline(struct rq *rq)
  5336. {
  5337. if (rq->online) {
  5338. const struct sched_class *class;
  5339. for_each_class(class) {
  5340. if (class->rq_offline)
  5341. class->rq_offline(rq);
  5342. }
  5343. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5344. rq->online = 0;
  5345. }
  5346. }
  5347. /*
  5348. * migration_call - callback that gets triggered when a CPU is added.
  5349. * Here we can start up the necessary migration thread for the new CPU.
  5350. */
  5351. static int __cpuinit
  5352. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5353. {
  5354. int cpu = (long)hcpu;
  5355. unsigned long flags;
  5356. struct rq *rq = cpu_rq(cpu);
  5357. switch (action & ~CPU_TASKS_FROZEN) {
  5358. case CPU_UP_PREPARE:
  5359. rq->calc_load_update = calc_load_update;
  5360. break;
  5361. case CPU_ONLINE:
  5362. /* Update our root-domain */
  5363. raw_spin_lock_irqsave(&rq->lock, flags);
  5364. if (rq->rd) {
  5365. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5366. set_rq_online(rq);
  5367. }
  5368. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5369. break;
  5370. #ifdef CONFIG_HOTPLUG_CPU
  5371. case CPU_DYING:
  5372. /* Update our root-domain */
  5373. raw_spin_lock_irqsave(&rq->lock, flags);
  5374. if (rq->rd) {
  5375. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5376. set_rq_offline(rq);
  5377. }
  5378. migrate_tasks(cpu);
  5379. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5380. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5381. migrate_nr_uninterruptible(rq);
  5382. calc_global_load_remove(rq);
  5383. break;
  5384. #endif
  5385. }
  5386. update_max_interval();
  5387. return NOTIFY_OK;
  5388. }
  5389. /*
  5390. * Register at high priority so that task migration (migrate_all_tasks)
  5391. * happens before everything else. This has to be lower priority than
  5392. * the notifier in the perf_event subsystem, though.
  5393. */
  5394. static struct notifier_block __cpuinitdata migration_notifier = {
  5395. .notifier_call = migration_call,
  5396. .priority = CPU_PRI_MIGRATION,
  5397. };
  5398. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5399. unsigned long action, void *hcpu)
  5400. {
  5401. switch (action & ~CPU_TASKS_FROZEN) {
  5402. case CPU_ONLINE:
  5403. case CPU_DOWN_FAILED:
  5404. set_cpu_active((long)hcpu, true);
  5405. return NOTIFY_OK;
  5406. default:
  5407. return NOTIFY_DONE;
  5408. }
  5409. }
  5410. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5411. unsigned long action, void *hcpu)
  5412. {
  5413. switch (action & ~CPU_TASKS_FROZEN) {
  5414. case CPU_DOWN_PREPARE:
  5415. set_cpu_active((long)hcpu, false);
  5416. return NOTIFY_OK;
  5417. default:
  5418. return NOTIFY_DONE;
  5419. }
  5420. }
  5421. static int __init migration_init(void)
  5422. {
  5423. void *cpu = (void *)(long)smp_processor_id();
  5424. int err;
  5425. /* Initialize migration for the boot CPU */
  5426. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5427. BUG_ON(err == NOTIFY_BAD);
  5428. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5429. register_cpu_notifier(&migration_notifier);
  5430. /* Register cpu active notifiers */
  5431. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5432. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5433. return 0;
  5434. }
  5435. early_initcall(migration_init);
  5436. #endif
  5437. #ifdef CONFIG_SMP
  5438. #ifdef CONFIG_SCHED_DEBUG
  5439. static __read_mostly int sched_domain_debug_enabled;
  5440. static int __init sched_domain_debug_setup(char *str)
  5441. {
  5442. sched_domain_debug_enabled = 1;
  5443. return 0;
  5444. }
  5445. early_param("sched_debug", sched_domain_debug_setup);
  5446. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5447. struct cpumask *groupmask)
  5448. {
  5449. struct sched_group *group = sd->groups;
  5450. char str[256];
  5451. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5452. cpumask_clear(groupmask);
  5453. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5454. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5455. printk("does not load-balance\n");
  5456. if (sd->parent)
  5457. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5458. " has parent");
  5459. return -1;
  5460. }
  5461. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5462. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5463. printk(KERN_ERR "ERROR: domain->span does not contain "
  5464. "CPU%d\n", cpu);
  5465. }
  5466. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5467. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5468. " CPU%d\n", cpu);
  5469. }
  5470. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5471. do {
  5472. if (!group) {
  5473. printk("\n");
  5474. printk(KERN_ERR "ERROR: group is NULL\n");
  5475. break;
  5476. }
  5477. if (!group->cpu_power) {
  5478. printk(KERN_CONT "\n");
  5479. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5480. "set\n");
  5481. break;
  5482. }
  5483. if (!cpumask_weight(sched_group_cpus(group))) {
  5484. printk(KERN_CONT "\n");
  5485. printk(KERN_ERR "ERROR: empty group\n");
  5486. break;
  5487. }
  5488. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5489. printk(KERN_CONT "\n");
  5490. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5491. break;
  5492. }
  5493. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5494. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5495. printk(KERN_CONT " %s", str);
  5496. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5497. printk(KERN_CONT " (cpu_power = %d)",
  5498. group->cpu_power);
  5499. }
  5500. group = group->next;
  5501. } while (group != sd->groups);
  5502. printk(KERN_CONT "\n");
  5503. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5504. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5505. if (sd->parent &&
  5506. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5507. printk(KERN_ERR "ERROR: parent span is not a superset "
  5508. "of domain->span\n");
  5509. return 0;
  5510. }
  5511. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5512. {
  5513. cpumask_var_t groupmask;
  5514. int level = 0;
  5515. if (!sched_domain_debug_enabled)
  5516. return;
  5517. if (!sd) {
  5518. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5519. return;
  5520. }
  5521. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5522. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5523. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5524. return;
  5525. }
  5526. for (;;) {
  5527. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5528. break;
  5529. level++;
  5530. sd = sd->parent;
  5531. if (!sd)
  5532. break;
  5533. }
  5534. free_cpumask_var(groupmask);
  5535. }
  5536. #else /* !CONFIG_SCHED_DEBUG */
  5537. # define sched_domain_debug(sd, cpu) do { } while (0)
  5538. #endif /* CONFIG_SCHED_DEBUG */
  5539. static int sd_degenerate(struct sched_domain *sd)
  5540. {
  5541. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5542. return 1;
  5543. /* Following flags need at least 2 groups */
  5544. if (sd->flags & (SD_LOAD_BALANCE |
  5545. SD_BALANCE_NEWIDLE |
  5546. SD_BALANCE_FORK |
  5547. SD_BALANCE_EXEC |
  5548. SD_SHARE_CPUPOWER |
  5549. SD_SHARE_PKG_RESOURCES)) {
  5550. if (sd->groups != sd->groups->next)
  5551. return 0;
  5552. }
  5553. /* Following flags don't use groups */
  5554. if (sd->flags & (SD_WAKE_AFFINE))
  5555. return 0;
  5556. return 1;
  5557. }
  5558. static int
  5559. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5560. {
  5561. unsigned long cflags = sd->flags, pflags = parent->flags;
  5562. if (sd_degenerate(parent))
  5563. return 1;
  5564. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5565. return 0;
  5566. /* Flags needing groups don't count if only 1 group in parent */
  5567. if (parent->groups == parent->groups->next) {
  5568. pflags &= ~(SD_LOAD_BALANCE |
  5569. SD_BALANCE_NEWIDLE |
  5570. SD_BALANCE_FORK |
  5571. SD_BALANCE_EXEC |
  5572. SD_SHARE_CPUPOWER |
  5573. SD_SHARE_PKG_RESOURCES);
  5574. if (nr_node_ids == 1)
  5575. pflags &= ~SD_SERIALIZE;
  5576. }
  5577. if (~cflags & pflags)
  5578. return 0;
  5579. return 1;
  5580. }
  5581. static void free_rootdomain(struct root_domain *rd)
  5582. {
  5583. synchronize_sched();
  5584. cpupri_cleanup(&rd->cpupri);
  5585. free_cpumask_var(rd->rto_mask);
  5586. free_cpumask_var(rd->online);
  5587. free_cpumask_var(rd->span);
  5588. kfree(rd);
  5589. }
  5590. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5591. {
  5592. struct root_domain *old_rd = NULL;
  5593. unsigned long flags;
  5594. raw_spin_lock_irqsave(&rq->lock, flags);
  5595. if (rq->rd) {
  5596. old_rd = rq->rd;
  5597. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5598. set_rq_offline(rq);
  5599. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5600. /*
  5601. * If we dont want to free the old_rt yet then
  5602. * set old_rd to NULL to skip the freeing later
  5603. * in this function:
  5604. */
  5605. if (!atomic_dec_and_test(&old_rd->refcount))
  5606. old_rd = NULL;
  5607. }
  5608. atomic_inc(&rd->refcount);
  5609. rq->rd = rd;
  5610. cpumask_set_cpu(rq->cpu, rd->span);
  5611. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5612. set_rq_online(rq);
  5613. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5614. if (old_rd)
  5615. free_rootdomain(old_rd);
  5616. }
  5617. static int init_rootdomain(struct root_domain *rd)
  5618. {
  5619. memset(rd, 0, sizeof(*rd));
  5620. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5621. goto out;
  5622. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5623. goto free_span;
  5624. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5625. goto free_online;
  5626. if (cpupri_init(&rd->cpupri) != 0)
  5627. goto free_rto_mask;
  5628. return 0;
  5629. free_rto_mask:
  5630. free_cpumask_var(rd->rto_mask);
  5631. free_online:
  5632. free_cpumask_var(rd->online);
  5633. free_span:
  5634. free_cpumask_var(rd->span);
  5635. out:
  5636. return -ENOMEM;
  5637. }
  5638. static void init_defrootdomain(void)
  5639. {
  5640. init_rootdomain(&def_root_domain);
  5641. atomic_set(&def_root_domain.refcount, 1);
  5642. }
  5643. static struct root_domain *alloc_rootdomain(void)
  5644. {
  5645. struct root_domain *rd;
  5646. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5647. if (!rd)
  5648. return NULL;
  5649. if (init_rootdomain(rd) != 0) {
  5650. kfree(rd);
  5651. return NULL;
  5652. }
  5653. return rd;
  5654. }
  5655. /*
  5656. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5657. * hold the hotplug lock.
  5658. */
  5659. static void
  5660. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5661. {
  5662. struct rq *rq = cpu_rq(cpu);
  5663. struct sched_domain *tmp;
  5664. for (tmp = sd; tmp; tmp = tmp->parent)
  5665. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5666. /* Remove the sched domains which do not contribute to scheduling. */
  5667. for (tmp = sd; tmp; ) {
  5668. struct sched_domain *parent = tmp->parent;
  5669. if (!parent)
  5670. break;
  5671. if (sd_parent_degenerate(tmp, parent)) {
  5672. tmp->parent = parent->parent;
  5673. if (parent->parent)
  5674. parent->parent->child = tmp;
  5675. } else
  5676. tmp = tmp->parent;
  5677. }
  5678. if (sd && sd_degenerate(sd)) {
  5679. sd = sd->parent;
  5680. if (sd)
  5681. sd->child = NULL;
  5682. }
  5683. sched_domain_debug(sd, cpu);
  5684. rq_attach_root(rq, rd);
  5685. rcu_assign_pointer(rq->sd, sd);
  5686. }
  5687. /* cpus with isolated domains */
  5688. static cpumask_var_t cpu_isolated_map;
  5689. /* Setup the mask of cpus configured for isolated domains */
  5690. static int __init isolated_cpu_setup(char *str)
  5691. {
  5692. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5693. cpulist_parse(str, cpu_isolated_map);
  5694. return 1;
  5695. }
  5696. __setup("isolcpus=", isolated_cpu_setup);
  5697. /*
  5698. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5699. * to a function which identifies what group(along with sched group) a CPU
  5700. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5701. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5702. *
  5703. * init_sched_build_groups will build a circular linked list of the groups
  5704. * covered by the given span, and will set each group's ->cpumask correctly,
  5705. * and ->cpu_power to 0.
  5706. */
  5707. static void
  5708. init_sched_build_groups(const struct cpumask *span,
  5709. const struct cpumask *cpu_map,
  5710. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5711. struct sched_group **sg,
  5712. struct cpumask *tmpmask),
  5713. struct cpumask *covered, struct cpumask *tmpmask)
  5714. {
  5715. struct sched_group *first = NULL, *last = NULL;
  5716. int i;
  5717. cpumask_clear(covered);
  5718. for_each_cpu(i, span) {
  5719. struct sched_group *sg;
  5720. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5721. int j;
  5722. if (cpumask_test_cpu(i, covered))
  5723. continue;
  5724. cpumask_clear(sched_group_cpus(sg));
  5725. sg->cpu_power = 0;
  5726. for_each_cpu(j, span) {
  5727. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5728. continue;
  5729. cpumask_set_cpu(j, covered);
  5730. cpumask_set_cpu(j, sched_group_cpus(sg));
  5731. }
  5732. if (!first)
  5733. first = sg;
  5734. if (last)
  5735. last->next = sg;
  5736. last = sg;
  5737. }
  5738. last->next = first;
  5739. }
  5740. #define SD_NODES_PER_DOMAIN 16
  5741. #ifdef CONFIG_NUMA
  5742. /**
  5743. * find_next_best_node - find the next node to include in a sched_domain
  5744. * @node: node whose sched_domain we're building
  5745. * @used_nodes: nodes already in the sched_domain
  5746. *
  5747. * Find the next node to include in a given scheduling domain. Simply
  5748. * finds the closest node not already in the @used_nodes map.
  5749. *
  5750. * Should use nodemask_t.
  5751. */
  5752. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5753. {
  5754. int i, n, val, min_val, best_node = 0;
  5755. min_val = INT_MAX;
  5756. for (i = 0; i < nr_node_ids; i++) {
  5757. /* Start at @node */
  5758. n = (node + i) % nr_node_ids;
  5759. if (!nr_cpus_node(n))
  5760. continue;
  5761. /* Skip already used nodes */
  5762. if (node_isset(n, *used_nodes))
  5763. continue;
  5764. /* Simple min distance search */
  5765. val = node_distance(node, n);
  5766. if (val < min_val) {
  5767. min_val = val;
  5768. best_node = n;
  5769. }
  5770. }
  5771. node_set(best_node, *used_nodes);
  5772. return best_node;
  5773. }
  5774. /**
  5775. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5776. * @node: node whose cpumask we're constructing
  5777. * @span: resulting cpumask
  5778. *
  5779. * Given a node, construct a good cpumask for its sched_domain to span. It
  5780. * should be one that prevents unnecessary balancing, but also spreads tasks
  5781. * out optimally.
  5782. */
  5783. static void sched_domain_node_span(int node, struct cpumask *span)
  5784. {
  5785. nodemask_t used_nodes;
  5786. int i;
  5787. cpumask_clear(span);
  5788. nodes_clear(used_nodes);
  5789. cpumask_or(span, span, cpumask_of_node(node));
  5790. node_set(node, used_nodes);
  5791. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5792. int next_node = find_next_best_node(node, &used_nodes);
  5793. cpumask_or(span, span, cpumask_of_node(next_node));
  5794. }
  5795. }
  5796. #endif /* CONFIG_NUMA */
  5797. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5798. /*
  5799. * The cpus mask in sched_group and sched_domain hangs off the end.
  5800. *
  5801. * ( See the the comments in include/linux/sched.h:struct sched_group
  5802. * and struct sched_domain. )
  5803. */
  5804. struct static_sched_group {
  5805. struct sched_group sg;
  5806. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5807. };
  5808. struct static_sched_domain {
  5809. struct sched_domain sd;
  5810. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5811. };
  5812. struct s_data {
  5813. #ifdef CONFIG_NUMA
  5814. int sd_allnodes;
  5815. cpumask_var_t domainspan;
  5816. cpumask_var_t covered;
  5817. cpumask_var_t notcovered;
  5818. #endif
  5819. cpumask_var_t nodemask;
  5820. cpumask_var_t this_sibling_map;
  5821. cpumask_var_t this_core_map;
  5822. cpumask_var_t this_book_map;
  5823. cpumask_var_t send_covered;
  5824. cpumask_var_t tmpmask;
  5825. struct sched_group **sched_group_nodes;
  5826. struct root_domain *rd;
  5827. };
  5828. enum s_alloc {
  5829. sa_sched_groups = 0,
  5830. sa_rootdomain,
  5831. sa_tmpmask,
  5832. sa_send_covered,
  5833. sa_this_book_map,
  5834. sa_this_core_map,
  5835. sa_this_sibling_map,
  5836. sa_nodemask,
  5837. sa_sched_group_nodes,
  5838. #ifdef CONFIG_NUMA
  5839. sa_notcovered,
  5840. sa_covered,
  5841. sa_domainspan,
  5842. #endif
  5843. sa_none,
  5844. };
  5845. /*
  5846. * SMT sched-domains:
  5847. */
  5848. #ifdef CONFIG_SCHED_SMT
  5849. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5850. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5851. static int
  5852. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5853. struct sched_group **sg, struct cpumask *unused)
  5854. {
  5855. if (sg)
  5856. *sg = &per_cpu(sched_groups, cpu).sg;
  5857. return cpu;
  5858. }
  5859. #endif /* CONFIG_SCHED_SMT */
  5860. /*
  5861. * multi-core sched-domains:
  5862. */
  5863. #ifdef CONFIG_SCHED_MC
  5864. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5865. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5866. static int
  5867. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5868. struct sched_group **sg, struct cpumask *mask)
  5869. {
  5870. int group;
  5871. #ifdef CONFIG_SCHED_SMT
  5872. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5873. group = cpumask_first(mask);
  5874. #else
  5875. group = cpu;
  5876. #endif
  5877. if (sg)
  5878. *sg = &per_cpu(sched_group_core, group).sg;
  5879. return group;
  5880. }
  5881. #endif /* CONFIG_SCHED_MC */
  5882. /*
  5883. * book sched-domains:
  5884. */
  5885. #ifdef CONFIG_SCHED_BOOK
  5886. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5887. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5888. static int
  5889. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5890. struct sched_group **sg, struct cpumask *mask)
  5891. {
  5892. int group = cpu;
  5893. #ifdef CONFIG_SCHED_MC
  5894. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5895. group = cpumask_first(mask);
  5896. #elif defined(CONFIG_SCHED_SMT)
  5897. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5898. group = cpumask_first(mask);
  5899. #endif
  5900. if (sg)
  5901. *sg = &per_cpu(sched_group_book, group).sg;
  5902. return group;
  5903. }
  5904. #endif /* CONFIG_SCHED_BOOK */
  5905. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5906. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5907. static int
  5908. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5909. struct sched_group **sg, struct cpumask *mask)
  5910. {
  5911. int group;
  5912. #ifdef CONFIG_SCHED_BOOK
  5913. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5914. group = cpumask_first(mask);
  5915. #elif defined(CONFIG_SCHED_MC)
  5916. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5917. group = cpumask_first(mask);
  5918. #elif defined(CONFIG_SCHED_SMT)
  5919. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5920. group = cpumask_first(mask);
  5921. #else
  5922. group = cpu;
  5923. #endif
  5924. if (sg)
  5925. *sg = &per_cpu(sched_group_phys, group).sg;
  5926. return group;
  5927. }
  5928. #ifdef CONFIG_NUMA
  5929. /*
  5930. * The init_sched_build_groups can't handle what we want to do with node
  5931. * groups, so roll our own. Now each node has its own list of groups which
  5932. * gets dynamically allocated.
  5933. */
  5934. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5935. static struct sched_group ***sched_group_nodes_bycpu;
  5936. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5937. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5938. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5939. struct sched_group **sg,
  5940. struct cpumask *nodemask)
  5941. {
  5942. int group;
  5943. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5944. group = cpumask_first(nodemask);
  5945. if (sg)
  5946. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5947. return group;
  5948. }
  5949. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5950. {
  5951. struct sched_group *sg = group_head;
  5952. int j;
  5953. if (!sg)
  5954. return;
  5955. do {
  5956. for_each_cpu(j, sched_group_cpus(sg)) {
  5957. struct sched_domain *sd;
  5958. sd = &per_cpu(phys_domains, j).sd;
  5959. if (j != group_first_cpu(sd->groups)) {
  5960. /*
  5961. * Only add "power" once for each
  5962. * physical package.
  5963. */
  5964. continue;
  5965. }
  5966. sg->cpu_power += sd->groups->cpu_power;
  5967. }
  5968. sg = sg->next;
  5969. } while (sg != group_head);
  5970. }
  5971. static int build_numa_sched_groups(struct s_data *d,
  5972. const struct cpumask *cpu_map, int num)
  5973. {
  5974. struct sched_domain *sd;
  5975. struct sched_group *sg, *prev;
  5976. int n, j;
  5977. cpumask_clear(d->covered);
  5978. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5979. if (cpumask_empty(d->nodemask)) {
  5980. d->sched_group_nodes[num] = NULL;
  5981. goto out;
  5982. }
  5983. sched_domain_node_span(num, d->domainspan);
  5984. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5985. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5986. GFP_KERNEL, num);
  5987. if (!sg) {
  5988. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5989. num);
  5990. return -ENOMEM;
  5991. }
  5992. d->sched_group_nodes[num] = sg;
  5993. for_each_cpu(j, d->nodemask) {
  5994. sd = &per_cpu(node_domains, j).sd;
  5995. sd->groups = sg;
  5996. }
  5997. sg->cpu_power = 0;
  5998. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5999. sg->next = sg;
  6000. cpumask_or(d->covered, d->covered, d->nodemask);
  6001. prev = sg;
  6002. for (j = 0; j < nr_node_ids; j++) {
  6003. n = (num + j) % nr_node_ids;
  6004. cpumask_complement(d->notcovered, d->covered);
  6005. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6006. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6007. if (cpumask_empty(d->tmpmask))
  6008. break;
  6009. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6010. if (cpumask_empty(d->tmpmask))
  6011. continue;
  6012. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6013. GFP_KERNEL, num);
  6014. if (!sg) {
  6015. printk(KERN_WARNING
  6016. "Can not alloc domain group for node %d\n", j);
  6017. return -ENOMEM;
  6018. }
  6019. sg->cpu_power = 0;
  6020. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6021. sg->next = prev->next;
  6022. cpumask_or(d->covered, d->covered, d->tmpmask);
  6023. prev->next = sg;
  6024. prev = sg;
  6025. }
  6026. out:
  6027. return 0;
  6028. }
  6029. #endif /* CONFIG_NUMA */
  6030. #ifdef CONFIG_NUMA
  6031. /* Free memory allocated for various sched_group structures */
  6032. static void free_sched_groups(const struct cpumask *cpu_map,
  6033. struct cpumask *nodemask)
  6034. {
  6035. int cpu, i;
  6036. for_each_cpu(cpu, cpu_map) {
  6037. struct sched_group **sched_group_nodes
  6038. = sched_group_nodes_bycpu[cpu];
  6039. if (!sched_group_nodes)
  6040. continue;
  6041. for (i = 0; i < nr_node_ids; i++) {
  6042. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6043. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6044. if (cpumask_empty(nodemask))
  6045. continue;
  6046. if (sg == NULL)
  6047. continue;
  6048. sg = sg->next;
  6049. next_sg:
  6050. oldsg = sg;
  6051. sg = sg->next;
  6052. kfree(oldsg);
  6053. if (oldsg != sched_group_nodes[i])
  6054. goto next_sg;
  6055. }
  6056. kfree(sched_group_nodes);
  6057. sched_group_nodes_bycpu[cpu] = NULL;
  6058. }
  6059. }
  6060. #else /* !CONFIG_NUMA */
  6061. static void free_sched_groups(const struct cpumask *cpu_map,
  6062. struct cpumask *nodemask)
  6063. {
  6064. }
  6065. #endif /* CONFIG_NUMA */
  6066. /*
  6067. * Initialize sched groups cpu_power.
  6068. *
  6069. * cpu_power indicates the capacity of sched group, which is used while
  6070. * distributing the load between different sched groups in a sched domain.
  6071. * Typically cpu_power for all the groups in a sched domain will be same unless
  6072. * there are asymmetries in the topology. If there are asymmetries, group
  6073. * having more cpu_power will pickup more load compared to the group having
  6074. * less cpu_power.
  6075. */
  6076. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6077. {
  6078. struct sched_domain *child;
  6079. struct sched_group *group;
  6080. long power;
  6081. int weight;
  6082. WARN_ON(!sd || !sd->groups);
  6083. if (cpu != group_first_cpu(sd->groups))
  6084. return;
  6085. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6086. child = sd->child;
  6087. sd->groups->cpu_power = 0;
  6088. if (!child) {
  6089. power = SCHED_LOAD_SCALE;
  6090. weight = cpumask_weight(sched_domain_span(sd));
  6091. /*
  6092. * SMT siblings share the power of a single core.
  6093. * Usually multiple threads get a better yield out of
  6094. * that one core than a single thread would have,
  6095. * reflect that in sd->smt_gain.
  6096. */
  6097. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6098. power *= sd->smt_gain;
  6099. power /= weight;
  6100. power >>= SCHED_LOAD_SHIFT;
  6101. }
  6102. sd->groups->cpu_power += power;
  6103. return;
  6104. }
  6105. /*
  6106. * Add cpu_power of each child group to this groups cpu_power.
  6107. */
  6108. group = child->groups;
  6109. do {
  6110. sd->groups->cpu_power += group->cpu_power;
  6111. group = group->next;
  6112. } while (group != child->groups);
  6113. }
  6114. /*
  6115. * Initializers for schedule domains
  6116. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6117. */
  6118. #ifdef CONFIG_SCHED_DEBUG
  6119. # define SD_INIT_NAME(sd, type) sd->name = #type
  6120. #else
  6121. # define SD_INIT_NAME(sd, type) do { } while (0)
  6122. #endif
  6123. #define SD_INIT(sd, type) sd_init_##type(sd)
  6124. #define SD_INIT_FUNC(type) \
  6125. static noinline void sd_init_##type(struct sched_domain *sd) \
  6126. { \
  6127. memset(sd, 0, sizeof(*sd)); \
  6128. *sd = SD_##type##_INIT; \
  6129. sd->level = SD_LV_##type; \
  6130. SD_INIT_NAME(sd, type); \
  6131. }
  6132. SD_INIT_FUNC(CPU)
  6133. #ifdef CONFIG_NUMA
  6134. SD_INIT_FUNC(ALLNODES)
  6135. SD_INIT_FUNC(NODE)
  6136. #endif
  6137. #ifdef CONFIG_SCHED_SMT
  6138. SD_INIT_FUNC(SIBLING)
  6139. #endif
  6140. #ifdef CONFIG_SCHED_MC
  6141. SD_INIT_FUNC(MC)
  6142. #endif
  6143. #ifdef CONFIG_SCHED_BOOK
  6144. SD_INIT_FUNC(BOOK)
  6145. #endif
  6146. static int default_relax_domain_level = -1;
  6147. static int __init setup_relax_domain_level(char *str)
  6148. {
  6149. unsigned long val;
  6150. val = simple_strtoul(str, NULL, 0);
  6151. if (val < SD_LV_MAX)
  6152. default_relax_domain_level = val;
  6153. return 1;
  6154. }
  6155. __setup("relax_domain_level=", setup_relax_domain_level);
  6156. static void set_domain_attribute(struct sched_domain *sd,
  6157. struct sched_domain_attr *attr)
  6158. {
  6159. int request;
  6160. if (!attr || attr->relax_domain_level < 0) {
  6161. if (default_relax_domain_level < 0)
  6162. return;
  6163. else
  6164. request = default_relax_domain_level;
  6165. } else
  6166. request = attr->relax_domain_level;
  6167. if (request < sd->level) {
  6168. /* turn off idle balance on this domain */
  6169. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6170. } else {
  6171. /* turn on idle balance on this domain */
  6172. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6173. }
  6174. }
  6175. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6176. const struct cpumask *cpu_map)
  6177. {
  6178. switch (what) {
  6179. case sa_sched_groups:
  6180. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6181. d->sched_group_nodes = NULL;
  6182. case sa_rootdomain:
  6183. free_rootdomain(d->rd); /* fall through */
  6184. case sa_tmpmask:
  6185. free_cpumask_var(d->tmpmask); /* fall through */
  6186. case sa_send_covered:
  6187. free_cpumask_var(d->send_covered); /* fall through */
  6188. case sa_this_book_map:
  6189. free_cpumask_var(d->this_book_map); /* fall through */
  6190. case sa_this_core_map:
  6191. free_cpumask_var(d->this_core_map); /* fall through */
  6192. case sa_this_sibling_map:
  6193. free_cpumask_var(d->this_sibling_map); /* fall through */
  6194. case sa_nodemask:
  6195. free_cpumask_var(d->nodemask); /* fall through */
  6196. case sa_sched_group_nodes:
  6197. #ifdef CONFIG_NUMA
  6198. kfree(d->sched_group_nodes); /* fall through */
  6199. case sa_notcovered:
  6200. free_cpumask_var(d->notcovered); /* fall through */
  6201. case sa_covered:
  6202. free_cpumask_var(d->covered); /* fall through */
  6203. case sa_domainspan:
  6204. free_cpumask_var(d->domainspan); /* fall through */
  6205. #endif
  6206. case sa_none:
  6207. break;
  6208. }
  6209. }
  6210. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6211. const struct cpumask *cpu_map)
  6212. {
  6213. #ifdef CONFIG_NUMA
  6214. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6215. return sa_none;
  6216. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6217. return sa_domainspan;
  6218. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6219. return sa_covered;
  6220. /* Allocate the per-node list of sched groups */
  6221. d->sched_group_nodes = kcalloc(nr_node_ids,
  6222. sizeof(struct sched_group *), GFP_KERNEL);
  6223. if (!d->sched_group_nodes) {
  6224. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6225. return sa_notcovered;
  6226. }
  6227. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6228. #endif
  6229. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6230. return sa_sched_group_nodes;
  6231. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6232. return sa_nodemask;
  6233. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6234. return sa_this_sibling_map;
  6235. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6236. return sa_this_core_map;
  6237. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6238. return sa_this_book_map;
  6239. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6240. return sa_send_covered;
  6241. d->rd = alloc_rootdomain();
  6242. if (!d->rd) {
  6243. printk(KERN_WARNING "Cannot alloc root domain\n");
  6244. return sa_tmpmask;
  6245. }
  6246. return sa_rootdomain;
  6247. }
  6248. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6249. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6250. {
  6251. struct sched_domain *sd = NULL;
  6252. #ifdef CONFIG_NUMA
  6253. struct sched_domain *parent;
  6254. d->sd_allnodes = 0;
  6255. if (cpumask_weight(cpu_map) >
  6256. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6257. sd = &per_cpu(allnodes_domains, i).sd;
  6258. SD_INIT(sd, ALLNODES);
  6259. set_domain_attribute(sd, attr);
  6260. cpumask_copy(sched_domain_span(sd), cpu_map);
  6261. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6262. d->sd_allnodes = 1;
  6263. }
  6264. parent = sd;
  6265. sd = &per_cpu(node_domains, i).sd;
  6266. SD_INIT(sd, NODE);
  6267. set_domain_attribute(sd, attr);
  6268. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6269. sd->parent = parent;
  6270. if (parent)
  6271. parent->child = sd;
  6272. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6273. #endif
  6274. return sd;
  6275. }
  6276. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6277. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6278. struct sched_domain *parent, int i)
  6279. {
  6280. struct sched_domain *sd;
  6281. sd = &per_cpu(phys_domains, i).sd;
  6282. SD_INIT(sd, CPU);
  6283. set_domain_attribute(sd, attr);
  6284. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6285. sd->parent = parent;
  6286. if (parent)
  6287. parent->child = sd;
  6288. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6289. return sd;
  6290. }
  6291. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6292. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6293. struct sched_domain *parent, int i)
  6294. {
  6295. struct sched_domain *sd = parent;
  6296. #ifdef CONFIG_SCHED_BOOK
  6297. sd = &per_cpu(book_domains, i).sd;
  6298. SD_INIT(sd, BOOK);
  6299. set_domain_attribute(sd, attr);
  6300. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6301. sd->parent = parent;
  6302. parent->child = sd;
  6303. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6304. #endif
  6305. return sd;
  6306. }
  6307. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6308. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6309. struct sched_domain *parent, int i)
  6310. {
  6311. struct sched_domain *sd = parent;
  6312. #ifdef CONFIG_SCHED_MC
  6313. sd = &per_cpu(core_domains, i).sd;
  6314. SD_INIT(sd, MC);
  6315. set_domain_attribute(sd, attr);
  6316. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6317. sd->parent = parent;
  6318. parent->child = sd;
  6319. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6320. #endif
  6321. return sd;
  6322. }
  6323. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6324. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6325. struct sched_domain *parent, int i)
  6326. {
  6327. struct sched_domain *sd = parent;
  6328. #ifdef CONFIG_SCHED_SMT
  6329. sd = &per_cpu(cpu_domains, i).sd;
  6330. SD_INIT(sd, SIBLING);
  6331. set_domain_attribute(sd, attr);
  6332. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6333. sd->parent = parent;
  6334. parent->child = sd;
  6335. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6336. #endif
  6337. return sd;
  6338. }
  6339. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6340. const struct cpumask *cpu_map, int cpu)
  6341. {
  6342. switch (l) {
  6343. #ifdef CONFIG_SCHED_SMT
  6344. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6345. cpumask_and(d->this_sibling_map, cpu_map,
  6346. topology_thread_cpumask(cpu));
  6347. if (cpu == cpumask_first(d->this_sibling_map))
  6348. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6349. &cpu_to_cpu_group,
  6350. d->send_covered, d->tmpmask);
  6351. break;
  6352. #endif
  6353. #ifdef CONFIG_SCHED_MC
  6354. case SD_LV_MC: /* set up multi-core groups */
  6355. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6356. if (cpu == cpumask_first(d->this_core_map))
  6357. init_sched_build_groups(d->this_core_map, cpu_map,
  6358. &cpu_to_core_group,
  6359. d->send_covered, d->tmpmask);
  6360. break;
  6361. #endif
  6362. #ifdef CONFIG_SCHED_BOOK
  6363. case SD_LV_BOOK: /* set up book groups */
  6364. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6365. if (cpu == cpumask_first(d->this_book_map))
  6366. init_sched_build_groups(d->this_book_map, cpu_map,
  6367. &cpu_to_book_group,
  6368. d->send_covered, d->tmpmask);
  6369. break;
  6370. #endif
  6371. case SD_LV_CPU: /* set up physical groups */
  6372. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6373. if (!cpumask_empty(d->nodemask))
  6374. init_sched_build_groups(d->nodemask, cpu_map,
  6375. &cpu_to_phys_group,
  6376. d->send_covered, d->tmpmask);
  6377. break;
  6378. #ifdef CONFIG_NUMA
  6379. case SD_LV_ALLNODES:
  6380. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6381. d->send_covered, d->tmpmask);
  6382. break;
  6383. #endif
  6384. default:
  6385. break;
  6386. }
  6387. }
  6388. /*
  6389. * Build sched domains for a given set of cpus and attach the sched domains
  6390. * to the individual cpus
  6391. */
  6392. static int __build_sched_domains(const struct cpumask *cpu_map,
  6393. struct sched_domain_attr *attr)
  6394. {
  6395. enum s_alloc alloc_state = sa_none;
  6396. struct s_data d;
  6397. struct sched_domain *sd;
  6398. int i;
  6399. #ifdef CONFIG_NUMA
  6400. d.sd_allnodes = 0;
  6401. #endif
  6402. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6403. if (alloc_state != sa_rootdomain)
  6404. goto error;
  6405. alloc_state = sa_sched_groups;
  6406. /*
  6407. * Set up domains for cpus specified by the cpu_map.
  6408. */
  6409. for_each_cpu(i, cpu_map) {
  6410. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6411. cpu_map);
  6412. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6413. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6414. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6415. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6416. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6417. }
  6418. for_each_cpu(i, cpu_map) {
  6419. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6420. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6421. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6422. }
  6423. /* Set up physical groups */
  6424. for (i = 0; i < nr_node_ids; i++)
  6425. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6426. #ifdef CONFIG_NUMA
  6427. /* Set up node groups */
  6428. if (d.sd_allnodes)
  6429. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6430. for (i = 0; i < nr_node_ids; i++)
  6431. if (build_numa_sched_groups(&d, cpu_map, i))
  6432. goto error;
  6433. #endif
  6434. /* Calculate CPU power for physical packages and nodes */
  6435. #ifdef CONFIG_SCHED_SMT
  6436. for_each_cpu(i, cpu_map) {
  6437. sd = &per_cpu(cpu_domains, i).sd;
  6438. init_sched_groups_power(i, sd);
  6439. }
  6440. #endif
  6441. #ifdef CONFIG_SCHED_MC
  6442. for_each_cpu(i, cpu_map) {
  6443. sd = &per_cpu(core_domains, i).sd;
  6444. init_sched_groups_power(i, sd);
  6445. }
  6446. #endif
  6447. #ifdef CONFIG_SCHED_BOOK
  6448. for_each_cpu(i, cpu_map) {
  6449. sd = &per_cpu(book_domains, i).sd;
  6450. init_sched_groups_power(i, sd);
  6451. }
  6452. #endif
  6453. for_each_cpu(i, cpu_map) {
  6454. sd = &per_cpu(phys_domains, i).sd;
  6455. init_sched_groups_power(i, sd);
  6456. }
  6457. #ifdef CONFIG_NUMA
  6458. for (i = 0; i < nr_node_ids; i++)
  6459. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6460. if (d.sd_allnodes) {
  6461. struct sched_group *sg;
  6462. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6463. d.tmpmask);
  6464. init_numa_sched_groups_power(sg);
  6465. }
  6466. #endif
  6467. /* Attach the domains */
  6468. for_each_cpu(i, cpu_map) {
  6469. #ifdef CONFIG_SCHED_SMT
  6470. sd = &per_cpu(cpu_domains, i).sd;
  6471. #elif defined(CONFIG_SCHED_MC)
  6472. sd = &per_cpu(core_domains, i).sd;
  6473. #elif defined(CONFIG_SCHED_BOOK)
  6474. sd = &per_cpu(book_domains, i).sd;
  6475. #else
  6476. sd = &per_cpu(phys_domains, i).sd;
  6477. #endif
  6478. cpu_attach_domain(sd, d.rd, i);
  6479. }
  6480. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6481. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6482. return 0;
  6483. error:
  6484. __free_domain_allocs(&d, alloc_state, cpu_map);
  6485. return -ENOMEM;
  6486. }
  6487. static int build_sched_domains(const struct cpumask *cpu_map)
  6488. {
  6489. return __build_sched_domains(cpu_map, NULL);
  6490. }
  6491. static cpumask_var_t *doms_cur; /* current sched domains */
  6492. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6493. static struct sched_domain_attr *dattr_cur;
  6494. /* attribues of custom domains in 'doms_cur' */
  6495. /*
  6496. * Special case: If a kmalloc of a doms_cur partition (array of
  6497. * cpumask) fails, then fallback to a single sched domain,
  6498. * as determined by the single cpumask fallback_doms.
  6499. */
  6500. static cpumask_var_t fallback_doms;
  6501. /*
  6502. * arch_update_cpu_topology lets virtualized architectures update the
  6503. * cpu core maps. It is supposed to return 1 if the topology changed
  6504. * or 0 if it stayed the same.
  6505. */
  6506. int __attribute__((weak)) arch_update_cpu_topology(void)
  6507. {
  6508. return 0;
  6509. }
  6510. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6511. {
  6512. int i;
  6513. cpumask_var_t *doms;
  6514. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6515. if (!doms)
  6516. return NULL;
  6517. for (i = 0; i < ndoms; i++) {
  6518. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6519. free_sched_domains(doms, i);
  6520. return NULL;
  6521. }
  6522. }
  6523. return doms;
  6524. }
  6525. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6526. {
  6527. unsigned int i;
  6528. for (i = 0; i < ndoms; i++)
  6529. free_cpumask_var(doms[i]);
  6530. kfree(doms);
  6531. }
  6532. /*
  6533. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6534. * For now this just excludes isolated cpus, but could be used to
  6535. * exclude other special cases in the future.
  6536. */
  6537. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6538. {
  6539. int err;
  6540. arch_update_cpu_topology();
  6541. ndoms_cur = 1;
  6542. doms_cur = alloc_sched_domains(ndoms_cur);
  6543. if (!doms_cur)
  6544. doms_cur = &fallback_doms;
  6545. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6546. dattr_cur = NULL;
  6547. err = build_sched_domains(doms_cur[0]);
  6548. register_sched_domain_sysctl();
  6549. return err;
  6550. }
  6551. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6552. struct cpumask *tmpmask)
  6553. {
  6554. free_sched_groups(cpu_map, tmpmask);
  6555. }
  6556. /*
  6557. * Detach sched domains from a group of cpus specified in cpu_map
  6558. * These cpus will now be attached to the NULL domain
  6559. */
  6560. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6561. {
  6562. /* Save because hotplug lock held. */
  6563. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6564. int i;
  6565. for_each_cpu(i, cpu_map)
  6566. cpu_attach_domain(NULL, &def_root_domain, i);
  6567. synchronize_sched();
  6568. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6569. }
  6570. /* handle null as "default" */
  6571. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6572. struct sched_domain_attr *new, int idx_new)
  6573. {
  6574. struct sched_domain_attr tmp;
  6575. /* fast path */
  6576. if (!new && !cur)
  6577. return 1;
  6578. tmp = SD_ATTR_INIT;
  6579. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6580. new ? (new + idx_new) : &tmp,
  6581. sizeof(struct sched_domain_attr));
  6582. }
  6583. /*
  6584. * Partition sched domains as specified by the 'ndoms_new'
  6585. * cpumasks in the array doms_new[] of cpumasks. This compares
  6586. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6587. * It destroys each deleted domain and builds each new domain.
  6588. *
  6589. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6590. * The masks don't intersect (don't overlap.) We should setup one
  6591. * sched domain for each mask. CPUs not in any of the cpumasks will
  6592. * not be load balanced. If the same cpumask appears both in the
  6593. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6594. * it as it is.
  6595. *
  6596. * The passed in 'doms_new' should be allocated using
  6597. * alloc_sched_domains. This routine takes ownership of it and will
  6598. * free_sched_domains it when done with it. If the caller failed the
  6599. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6600. * and partition_sched_domains() will fallback to the single partition
  6601. * 'fallback_doms', it also forces the domains to be rebuilt.
  6602. *
  6603. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6604. * ndoms_new == 0 is a special case for destroying existing domains,
  6605. * and it will not create the default domain.
  6606. *
  6607. * Call with hotplug lock held
  6608. */
  6609. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6610. struct sched_domain_attr *dattr_new)
  6611. {
  6612. int i, j, n;
  6613. int new_topology;
  6614. mutex_lock(&sched_domains_mutex);
  6615. /* always unregister in case we don't destroy any domains */
  6616. unregister_sched_domain_sysctl();
  6617. /* Let architecture update cpu core mappings. */
  6618. new_topology = arch_update_cpu_topology();
  6619. n = doms_new ? ndoms_new : 0;
  6620. /* Destroy deleted domains */
  6621. for (i = 0; i < ndoms_cur; i++) {
  6622. for (j = 0; j < n && !new_topology; j++) {
  6623. if (cpumask_equal(doms_cur[i], doms_new[j])
  6624. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6625. goto match1;
  6626. }
  6627. /* no match - a current sched domain not in new doms_new[] */
  6628. detach_destroy_domains(doms_cur[i]);
  6629. match1:
  6630. ;
  6631. }
  6632. if (doms_new == NULL) {
  6633. ndoms_cur = 0;
  6634. doms_new = &fallback_doms;
  6635. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6636. WARN_ON_ONCE(dattr_new);
  6637. }
  6638. /* Build new domains */
  6639. for (i = 0; i < ndoms_new; i++) {
  6640. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6641. if (cpumask_equal(doms_new[i], doms_cur[j])
  6642. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6643. goto match2;
  6644. }
  6645. /* no match - add a new doms_new */
  6646. __build_sched_domains(doms_new[i],
  6647. dattr_new ? dattr_new + i : NULL);
  6648. match2:
  6649. ;
  6650. }
  6651. /* Remember the new sched domains */
  6652. if (doms_cur != &fallback_doms)
  6653. free_sched_domains(doms_cur, ndoms_cur);
  6654. kfree(dattr_cur); /* kfree(NULL) is safe */
  6655. doms_cur = doms_new;
  6656. dattr_cur = dattr_new;
  6657. ndoms_cur = ndoms_new;
  6658. register_sched_domain_sysctl();
  6659. mutex_unlock(&sched_domains_mutex);
  6660. }
  6661. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6662. static void arch_reinit_sched_domains(void)
  6663. {
  6664. get_online_cpus();
  6665. /* Destroy domains first to force the rebuild */
  6666. partition_sched_domains(0, NULL, NULL);
  6667. rebuild_sched_domains();
  6668. put_online_cpus();
  6669. }
  6670. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6671. {
  6672. unsigned int level = 0;
  6673. if (sscanf(buf, "%u", &level) != 1)
  6674. return -EINVAL;
  6675. /*
  6676. * level is always be positive so don't check for
  6677. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6678. * What happens on 0 or 1 byte write,
  6679. * need to check for count as well?
  6680. */
  6681. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6682. return -EINVAL;
  6683. if (smt)
  6684. sched_smt_power_savings = level;
  6685. else
  6686. sched_mc_power_savings = level;
  6687. arch_reinit_sched_domains();
  6688. return count;
  6689. }
  6690. #ifdef CONFIG_SCHED_MC
  6691. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6692. struct sysdev_class_attribute *attr,
  6693. char *page)
  6694. {
  6695. return sprintf(page, "%u\n", sched_mc_power_savings);
  6696. }
  6697. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6698. struct sysdev_class_attribute *attr,
  6699. const char *buf, size_t count)
  6700. {
  6701. return sched_power_savings_store(buf, count, 0);
  6702. }
  6703. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6704. sched_mc_power_savings_show,
  6705. sched_mc_power_savings_store);
  6706. #endif
  6707. #ifdef CONFIG_SCHED_SMT
  6708. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6709. struct sysdev_class_attribute *attr,
  6710. char *page)
  6711. {
  6712. return sprintf(page, "%u\n", sched_smt_power_savings);
  6713. }
  6714. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6715. struct sysdev_class_attribute *attr,
  6716. const char *buf, size_t count)
  6717. {
  6718. return sched_power_savings_store(buf, count, 1);
  6719. }
  6720. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6721. sched_smt_power_savings_show,
  6722. sched_smt_power_savings_store);
  6723. #endif
  6724. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6725. {
  6726. int err = 0;
  6727. #ifdef CONFIG_SCHED_SMT
  6728. if (smt_capable())
  6729. err = sysfs_create_file(&cls->kset.kobj,
  6730. &attr_sched_smt_power_savings.attr);
  6731. #endif
  6732. #ifdef CONFIG_SCHED_MC
  6733. if (!err && mc_capable())
  6734. err = sysfs_create_file(&cls->kset.kobj,
  6735. &attr_sched_mc_power_savings.attr);
  6736. #endif
  6737. return err;
  6738. }
  6739. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6740. /*
  6741. * Update cpusets according to cpu_active mask. If cpusets are
  6742. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6743. * around partition_sched_domains().
  6744. */
  6745. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6746. void *hcpu)
  6747. {
  6748. switch (action & ~CPU_TASKS_FROZEN) {
  6749. case CPU_ONLINE:
  6750. case CPU_DOWN_FAILED:
  6751. cpuset_update_active_cpus();
  6752. return NOTIFY_OK;
  6753. default:
  6754. return NOTIFY_DONE;
  6755. }
  6756. }
  6757. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6758. void *hcpu)
  6759. {
  6760. switch (action & ~CPU_TASKS_FROZEN) {
  6761. case CPU_DOWN_PREPARE:
  6762. cpuset_update_active_cpus();
  6763. return NOTIFY_OK;
  6764. default:
  6765. return NOTIFY_DONE;
  6766. }
  6767. }
  6768. static int update_runtime(struct notifier_block *nfb,
  6769. unsigned long action, void *hcpu)
  6770. {
  6771. int cpu = (int)(long)hcpu;
  6772. switch (action) {
  6773. case CPU_DOWN_PREPARE:
  6774. case CPU_DOWN_PREPARE_FROZEN:
  6775. disable_runtime(cpu_rq(cpu));
  6776. return NOTIFY_OK;
  6777. case CPU_DOWN_FAILED:
  6778. case CPU_DOWN_FAILED_FROZEN:
  6779. case CPU_ONLINE:
  6780. case CPU_ONLINE_FROZEN:
  6781. enable_runtime(cpu_rq(cpu));
  6782. return NOTIFY_OK;
  6783. default:
  6784. return NOTIFY_DONE;
  6785. }
  6786. }
  6787. void __init sched_init_smp(void)
  6788. {
  6789. cpumask_var_t non_isolated_cpus;
  6790. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6791. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6792. #if defined(CONFIG_NUMA)
  6793. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6794. GFP_KERNEL);
  6795. BUG_ON(sched_group_nodes_bycpu == NULL);
  6796. #endif
  6797. get_online_cpus();
  6798. mutex_lock(&sched_domains_mutex);
  6799. arch_init_sched_domains(cpu_active_mask);
  6800. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6801. if (cpumask_empty(non_isolated_cpus))
  6802. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6803. mutex_unlock(&sched_domains_mutex);
  6804. put_online_cpus();
  6805. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6806. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6807. /* RT runtime code needs to handle some hotplug events */
  6808. hotcpu_notifier(update_runtime, 0);
  6809. init_hrtick();
  6810. /* Move init over to a non-isolated CPU */
  6811. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6812. BUG();
  6813. sched_init_granularity();
  6814. free_cpumask_var(non_isolated_cpus);
  6815. init_sched_rt_class();
  6816. }
  6817. #else
  6818. void __init sched_init_smp(void)
  6819. {
  6820. sched_init_granularity();
  6821. }
  6822. #endif /* CONFIG_SMP */
  6823. const_debug unsigned int sysctl_timer_migration = 1;
  6824. int in_sched_functions(unsigned long addr)
  6825. {
  6826. return in_lock_functions(addr) ||
  6827. (addr >= (unsigned long)__sched_text_start
  6828. && addr < (unsigned long)__sched_text_end);
  6829. }
  6830. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6831. {
  6832. cfs_rq->tasks_timeline = RB_ROOT;
  6833. INIT_LIST_HEAD(&cfs_rq->tasks);
  6834. #ifdef CONFIG_FAIR_GROUP_SCHED
  6835. cfs_rq->rq = rq;
  6836. /* allow initial update_cfs_load() to truncate */
  6837. #ifdef CONFIG_SMP
  6838. cfs_rq->load_stamp = 1;
  6839. #endif
  6840. #endif
  6841. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6842. }
  6843. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6844. {
  6845. struct rt_prio_array *array;
  6846. int i;
  6847. array = &rt_rq->active;
  6848. for (i = 0; i < MAX_RT_PRIO; i++) {
  6849. INIT_LIST_HEAD(array->queue + i);
  6850. __clear_bit(i, array->bitmap);
  6851. }
  6852. /* delimiter for bitsearch: */
  6853. __set_bit(MAX_RT_PRIO, array->bitmap);
  6854. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6855. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6856. #ifdef CONFIG_SMP
  6857. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6858. #endif
  6859. #endif
  6860. #ifdef CONFIG_SMP
  6861. rt_rq->rt_nr_migratory = 0;
  6862. rt_rq->overloaded = 0;
  6863. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6864. #endif
  6865. rt_rq->rt_time = 0;
  6866. rt_rq->rt_throttled = 0;
  6867. rt_rq->rt_runtime = 0;
  6868. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6869. #ifdef CONFIG_RT_GROUP_SCHED
  6870. rt_rq->rt_nr_boosted = 0;
  6871. rt_rq->rq = rq;
  6872. #endif
  6873. }
  6874. #ifdef CONFIG_FAIR_GROUP_SCHED
  6875. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6876. struct sched_entity *se, int cpu,
  6877. struct sched_entity *parent)
  6878. {
  6879. struct rq *rq = cpu_rq(cpu);
  6880. tg->cfs_rq[cpu] = cfs_rq;
  6881. init_cfs_rq(cfs_rq, rq);
  6882. cfs_rq->tg = tg;
  6883. tg->se[cpu] = se;
  6884. /* se could be NULL for root_task_group */
  6885. if (!se)
  6886. return;
  6887. if (!parent)
  6888. se->cfs_rq = &rq->cfs;
  6889. else
  6890. se->cfs_rq = parent->my_q;
  6891. se->my_q = cfs_rq;
  6892. update_load_set(&se->load, 0);
  6893. se->parent = parent;
  6894. }
  6895. #endif
  6896. #ifdef CONFIG_RT_GROUP_SCHED
  6897. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6898. struct sched_rt_entity *rt_se, int cpu,
  6899. struct sched_rt_entity *parent)
  6900. {
  6901. struct rq *rq = cpu_rq(cpu);
  6902. tg->rt_rq[cpu] = rt_rq;
  6903. init_rt_rq(rt_rq, rq);
  6904. rt_rq->tg = tg;
  6905. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6906. tg->rt_se[cpu] = rt_se;
  6907. if (!rt_se)
  6908. return;
  6909. if (!parent)
  6910. rt_se->rt_rq = &rq->rt;
  6911. else
  6912. rt_se->rt_rq = parent->my_q;
  6913. rt_se->my_q = rt_rq;
  6914. rt_se->parent = parent;
  6915. INIT_LIST_HEAD(&rt_se->run_list);
  6916. }
  6917. #endif
  6918. void __init sched_init(void)
  6919. {
  6920. int i, j;
  6921. unsigned long alloc_size = 0, ptr;
  6922. #ifdef CONFIG_FAIR_GROUP_SCHED
  6923. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6924. #endif
  6925. #ifdef CONFIG_RT_GROUP_SCHED
  6926. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6927. #endif
  6928. #ifdef CONFIG_CPUMASK_OFFSTACK
  6929. alloc_size += num_possible_cpus() * cpumask_size();
  6930. #endif
  6931. if (alloc_size) {
  6932. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6933. #ifdef CONFIG_FAIR_GROUP_SCHED
  6934. root_task_group.se = (struct sched_entity **)ptr;
  6935. ptr += nr_cpu_ids * sizeof(void **);
  6936. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6937. ptr += nr_cpu_ids * sizeof(void **);
  6938. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6939. #ifdef CONFIG_RT_GROUP_SCHED
  6940. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6941. ptr += nr_cpu_ids * sizeof(void **);
  6942. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6943. ptr += nr_cpu_ids * sizeof(void **);
  6944. #endif /* CONFIG_RT_GROUP_SCHED */
  6945. #ifdef CONFIG_CPUMASK_OFFSTACK
  6946. for_each_possible_cpu(i) {
  6947. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6948. ptr += cpumask_size();
  6949. }
  6950. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6951. }
  6952. #ifdef CONFIG_SMP
  6953. init_defrootdomain();
  6954. #endif
  6955. init_rt_bandwidth(&def_rt_bandwidth,
  6956. global_rt_period(), global_rt_runtime());
  6957. #ifdef CONFIG_RT_GROUP_SCHED
  6958. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6959. global_rt_period(), global_rt_runtime());
  6960. #endif /* CONFIG_RT_GROUP_SCHED */
  6961. #ifdef CONFIG_CGROUP_SCHED
  6962. list_add(&root_task_group.list, &task_groups);
  6963. INIT_LIST_HEAD(&root_task_group.children);
  6964. autogroup_init(&init_task);
  6965. #endif /* CONFIG_CGROUP_SCHED */
  6966. for_each_possible_cpu(i) {
  6967. struct rq *rq;
  6968. rq = cpu_rq(i);
  6969. raw_spin_lock_init(&rq->lock);
  6970. rq->nr_running = 0;
  6971. rq->calc_load_active = 0;
  6972. rq->calc_load_update = jiffies + LOAD_FREQ;
  6973. init_cfs_rq(&rq->cfs, rq);
  6974. init_rt_rq(&rq->rt, rq);
  6975. #ifdef CONFIG_FAIR_GROUP_SCHED
  6976. root_task_group.shares = root_task_group_load;
  6977. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6978. /*
  6979. * How much cpu bandwidth does root_task_group get?
  6980. *
  6981. * In case of task-groups formed thr' the cgroup filesystem, it
  6982. * gets 100% of the cpu resources in the system. This overall
  6983. * system cpu resource is divided among the tasks of
  6984. * root_task_group and its child task-groups in a fair manner,
  6985. * based on each entity's (task or task-group's) weight
  6986. * (se->load.weight).
  6987. *
  6988. * In other words, if root_task_group has 10 tasks of weight
  6989. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6990. * then A0's share of the cpu resource is:
  6991. *
  6992. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6993. *
  6994. * We achieve this by letting root_task_group's tasks sit
  6995. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6996. */
  6997. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6998. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6999. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7000. #ifdef CONFIG_RT_GROUP_SCHED
  7001. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7002. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7003. #endif
  7004. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7005. rq->cpu_load[j] = 0;
  7006. rq->last_load_update_tick = jiffies;
  7007. #ifdef CONFIG_SMP
  7008. rq->sd = NULL;
  7009. rq->rd = NULL;
  7010. rq->cpu_power = SCHED_LOAD_SCALE;
  7011. rq->post_schedule = 0;
  7012. rq->active_balance = 0;
  7013. rq->next_balance = jiffies;
  7014. rq->push_cpu = 0;
  7015. rq->cpu = i;
  7016. rq->online = 0;
  7017. rq->idle_stamp = 0;
  7018. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7019. rq_attach_root(rq, &def_root_domain);
  7020. #ifdef CONFIG_NO_HZ
  7021. rq->nohz_balance_kick = 0;
  7022. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7023. #endif
  7024. #endif
  7025. init_rq_hrtick(rq);
  7026. atomic_set(&rq->nr_iowait, 0);
  7027. }
  7028. set_load_weight(&init_task);
  7029. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7030. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7031. #endif
  7032. #ifdef CONFIG_SMP
  7033. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7034. #endif
  7035. #ifdef CONFIG_RT_MUTEXES
  7036. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7037. #endif
  7038. /*
  7039. * The boot idle thread does lazy MMU switching as well:
  7040. */
  7041. atomic_inc(&init_mm.mm_count);
  7042. enter_lazy_tlb(&init_mm, current);
  7043. /*
  7044. * Make us the idle thread. Technically, schedule() should not be
  7045. * called from this thread, however somewhere below it might be,
  7046. * but because we are the idle thread, we just pick up running again
  7047. * when this runqueue becomes "idle".
  7048. */
  7049. init_idle(current, smp_processor_id());
  7050. calc_load_update = jiffies + LOAD_FREQ;
  7051. /*
  7052. * During early bootup we pretend to be a normal task:
  7053. */
  7054. current->sched_class = &fair_sched_class;
  7055. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7056. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7057. #ifdef CONFIG_SMP
  7058. #ifdef CONFIG_NO_HZ
  7059. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7060. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7061. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7062. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7063. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7064. #endif
  7065. /* May be allocated at isolcpus cmdline parse time */
  7066. if (cpu_isolated_map == NULL)
  7067. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7068. #endif /* SMP */
  7069. scheduler_running = 1;
  7070. }
  7071. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7072. static inline int preempt_count_equals(int preempt_offset)
  7073. {
  7074. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7075. return (nested == preempt_offset);
  7076. }
  7077. void __might_sleep(const char *file, int line, int preempt_offset)
  7078. {
  7079. #ifdef in_atomic
  7080. static unsigned long prev_jiffy; /* ratelimiting */
  7081. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7082. system_state != SYSTEM_RUNNING || oops_in_progress)
  7083. return;
  7084. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7085. return;
  7086. prev_jiffy = jiffies;
  7087. printk(KERN_ERR
  7088. "BUG: sleeping function called from invalid context at %s:%d\n",
  7089. file, line);
  7090. printk(KERN_ERR
  7091. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7092. in_atomic(), irqs_disabled(),
  7093. current->pid, current->comm);
  7094. debug_show_held_locks(current);
  7095. if (irqs_disabled())
  7096. print_irqtrace_events(current);
  7097. dump_stack();
  7098. #endif
  7099. }
  7100. EXPORT_SYMBOL(__might_sleep);
  7101. #endif
  7102. #ifdef CONFIG_MAGIC_SYSRQ
  7103. static void normalize_task(struct rq *rq, struct task_struct *p)
  7104. {
  7105. const struct sched_class *prev_class = p->sched_class;
  7106. int old_prio = p->prio;
  7107. int on_rq;
  7108. on_rq = p->on_rq;
  7109. if (on_rq)
  7110. deactivate_task(rq, p, 0);
  7111. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7112. if (on_rq) {
  7113. activate_task(rq, p, 0);
  7114. resched_task(rq->curr);
  7115. }
  7116. check_class_changed(rq, p, prev_class, old_prio);
  7117. }
  7118. void normalize_rt_tasks(void)
  7119. {
  7120. struct task_struct *g, *p;
  7121. unsigned long flags;
  7122. struct rq *rq;
  7123. read_lock_irqsave(&tasklist_lock, flags);
  7124. do_each_thread(g, p) {
  7125. /*
  7126. * Only normalize user tasks:
  7127. */
  7128. if (!p->mm)
  7129. continue;
  7130. p->se.exec_start = 0;
  7131. #ifdef CONFIG_SCHEDSTATS
  7132. p->se.statistics.wait_start = 0;
  7133. p->se.statistics.sleep_start = 0;
  7134. p->se.statistics.block_start = 0;
  7135. #endif
  7136. if (!rt_task(p)) {
  7137. /*
  7138. * Renice negative nice level userspace
  7139. * tasks back to 0:
  7140. */
  7141. if (TASK_NICE(p) < 0 && p->mm)
  7142. set_user_nice(p, 0);
  7143. continue;
  7144. }
  7145. raw_spin_lock(&p->pi_lock);
  7146. rq = __task_rq_lock(p);
  7147. normalize_task(rq, p);
  7148. __task_rq_unlock(rq);
  7149. raw_spin_unlock(&p->pi_lock);
  7150. } while_each_thread(g, p);
  7151. read_unlock_irqrestore(&tasklist_lock, flags);
  7152. }
  7153. #endif /* CONFIG_MAGIC_SYSRQ */
  7154. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7155. /*
  7156. * These functions are only useful for the IA64 MCA handling, or kdb.
  7157. *
  7158. * They can only be called when the whole system has been
  7159. * stopped - every CPU needs to be quiescent, and no scheduling
  7160. * activity can take place. Using them for anything else would
  7161. * be a serious bug, and as a result, they aren't even visible
  7162. * under any other configuration.
  7163. */
  7164. /**
  7165. * curr_task - return the current task for a given cpu.
  7166. * @cpu: the processor in question.
  7167. *
  7168. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7169. */
  7170. struct task_struct *curr_task(int cpu)
  7171. {
  7172. return cpu_curr(cpu);
  7173. }
  7174. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7175. #ifdef CONFIG_IA64
  7176. /**
  7177. * set_curr_task - set the current task for a given cpu.
  7178. * @cpu: the processor in question.
  7179. * @p: the task pointer to set.
  7180. *
  7181. * Description: This function must only be used when non-maskable interrupts
  7182. * are serviced on a separate stack. It allows the architecture to switch the
  7183. * notion of the current task on a cpu in a non-blocking manner. This function
  7184. * must be called with all CPU's synchronized, and interrupts disabled, the
  7185. * and caller must save the original value of the current task (see
  7186. * curr_task() above) and restore that value before reenabling interrupts and
  7187. * re-starting the system.
  7188. *
  7189. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7190. */
  7191. void set_curr_task(int cpu, struct task_struct *p)
  7192. {
  7193. cpu_curr(cpu) = p;
  7194. }
  7195. #endif
  7196. #ifdef CONFIG_FAIR_GROUP_SCHED
  7197. static void free_fair_sched_group(struct task_group *tg)
  7198. {
  7199. int i;
  7200. for_each_possible_cpu(i) {
  7201. if (tg->cfs_rq)
  7202. kfree(tg->cfs_rq[i]);
  7203. if (tg->se)
  7204. kfree(tg->se[i]);
  7205. }
  7206. kfree(tg->cfs_rq);
  7207. kfree(tg->se);
  7208. }
  7209. static
  7210. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7211. {
  7212. struct cfs_rq *cfs_rq;
  7213. struct sched_entity *se;
  7214. int i;
  7215. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7216. if (!tg->cfs_rq)
  7217. goto err;
  7218. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7219. if (!tg->se)
  7220. goto err;
  7221. tg->shares = NICE_0_LOAD;
  7222. for_each_possible_cpu(i) {
  7223. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7224. GFP_KERNEL, cpu_to_node(i));
  7225. if (!cfs_rq)
  7226. goto err;
  7227. se = kzalloc_node(sizeof(struct sched_entity),
  7228. GFP_KERNEL, cpu_to_node(i));
  7229. if (!se)
  7230. goto err_free_rq;
  7231. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7232. }
  7233. return 1;
  7234. err_free_rq:
  7235. kfree(cfs_rq);
  7236. err:
  7237. return 0;
  7238. }
  7239. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7240. {
  7241. struct rq *rq = cpu_rq(cpu);
  7242. unsigned long flags;
  7243. /*
  7244. * Only empty task groups can be destroyed; so we can speculatively
  7245. * check on_list without danger of it being re-added.
  7246. */
  7247. if (!tg->cfs_rq[cpu]->on_list)
  7248. return;
  7249. raw_spin_lock_irqsave(&rq->lock, flags);
  7250. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7251. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7252. }
  7253. #else /* !CONFG_FAIR_GROUP_SCHED */
  7254. static inline void free_fair_sched_group(struct task_group *tg)
  7255. {
  7256. }
  7257. static inline
  7258. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7259. {
  7260. return 1;
  7261. }
  7262. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7263. {
  7264. }
  7265. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7266. #ifdef CONFIG_RT_GROUP_SCHED
  7267. static void free_rt_sched_group(struct task_group *tg)
  7268. {
  7269. int i;
  7270. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7271. for_each_possible_cpu(i) {
  7272. if (tg->rt_rq)
  7273. kfree(tg->rt_rq[i]);
  7274. if (tg->rt_se)
  7275. kfree(tg->rt_se[i]);
  7276. }
  7277. kfree(tg->rt_rq);
  7278. kfree(tg->rt_se);
  7279. }
  7280. static
  7281. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7282. {
  7283. struct rt_rq *rt_rq;
  7284. struct sched_rt_entity *rt_se;
  7285. struct rq *rq;
  7286. int i;
  7287. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7288. if (!tg->rt_rq)
  7289. goto err;
  7290. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7291. if (!tg->rt_se)
  7292. goto err;
  7293. init_rt_bandwidth(&tg->rt_bandwidth,
  7294. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7295. for_each_possible_cpu(i) {
  7296. rq = cpu_rq(i);
  7297. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7298. GFP_KERNEL, cpu_to_node(i));
  7299. if (!rt_rq)
  7300. goto err;
  7301. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7302. GFP_KERNEL, cpu_to_node(i));
  7303. if (!rt_se)
  7304. goto err_free_rq;
  7305. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7306. }
  7307. return 1;
  7308. err_free_rq:
  7309. kfree(rt_rq);
  7310. err:
  7311. return 0;
  7312. }
  7313. #else /* !CONFIG_RT_GROUP_SCHED */
  7314. static inline void free_rt_sched_group(struct task_group *tg)
  7315. {
  7316. }
  7317. static inline
  7318. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7319. {
  7320. return 1;
  7321. }
  7322. #endif /* CONFIG_RT_GROUP_SCHED */
  7323. #ifdef CONFIG_CGROUP_SCHED
  7324. static void free_sched_group(struct task_group *tg)
  7325. {
  7326. free_fair_sched_group(tg);
  7327. free_rt_sched_group(tg);
  7328. autogroup_free(tg);
  7329. kfree(tg);
  7330. }
  7331. /* allocate runqueue etc for a new task group */
  7332. struct task_group *sched_create_group(struct task_group *parent)
  7333. {
  7334. struct task_group *tg;
  7335. unsigned long flags;
  7336. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7337. if (!tg)
  7338. return ERR_PTR(-ENOMEM);
  7339. if (!alloc_fair_sched_group(tg, parent))
  7340. goto err;
  7341. if (!alloc_rt_sched_group(tg, parent))
  7342. goto err;
  7343. spin_lock_irqsave(&task_group_lock, flags);
  7344. list_add_rcu(&tg->list, &task_groups);
  7345. WARN_ON(!parent); /* root should already exist */
  7346. tg->parent = parent;
  7347. INIT_LIST_HEAD(&tg->children);
  7348. list_add_rcu(&tg->siblings, &parent->children);
  7349. spin_unlock_irqrestore(&task_group_lock, flags);
  7350. return tg;
  7351. err:
  7352. free_sched_group(tg);
  7353. return ERR_PTR(-ENOMEM);
  7354. }
  7355. /* rcu callback to free various structures associated with a task group */
  7356. static void free_sched_group_rcu(struct rcu_head *rhp)
  7357. {
  7358. /* now it should be safe to free those cfs_rqs */
  7359. free_sched_group(container_of(rhp, struct task_group, rcu));
  7360. }
  7361. /* Destroy runqueue etc associated with a task group */
  7362. void sched_destroy_group(struct task_group *tg)
  7363. {
  7364. unsigned long flags;
  7365. int i;
  7366. /* end participation in shares distribution */
  7367. for_each_possible_cpu(i)
  7368. unregister_fair_sched_group(tg, i);
  7369. spin_lock_irqsave(&task_group_lock, flags);
  7370. list_del_rcu(&tg->list);
  7371. list_del_rcu(&tg->siblings);
  7372. spin_unlock_irqrestore(&task_group_lock, flags);
  7373. /* wait for possible concurrent references to cfs_rqs complete */
  7374. call_rcu(&tg->rcu, free_sched_group_rcu);
  7375. }
  7376. /* change task's runqueue when it moves between groups.
  7377. * The caller of this function should have put the task in its new group
  7378. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7379. * reflect its new group.
  7380. */
  7381. void sched_move_task(struct task_struct *tsk)
  7382. {
  7383. int on_rq, running;
  7384. unsigned long flags;
  7385. struct rq *rq;
  7386. rq = task_rq_lock(tsk, &flags);
  7387. running = task_current(rq, tsk);
  7388. on_rq = tsk->on_rq;
  7389. if (on_rq)
  7390. dequeue_task(rq, tsk, 0);
  7391. if (unlikely(running))
  7392. tsk->sched_class->put_prev_task(rq, tsk);
  7393. #ifdef CONFIG_FAIR_GROUP_SCHED
  7394. if (tsk->sched_class->task_move_group)
  7395. tsk->sched_class->task_move_group(tsk, on_rq);
  7396. else
  7397. #endif
  7398. set_task_rq(tsk, task_cpu(tsk));
  7399. if (unlikely(running))
  7400. tsk->sched_class->set_curr_task(rq);
  7401. if (on_rq)
  7402. enqueue_task(rq, tsk, 0);
  7403. task_rq_unlock(rq, tsk, &flags);
  7404. }
  7405. #endif /* CONFIG_CGROUP_SCHED */
  7406. #ifdef CONFIG_FAIR_GROUP_SCHED
  7407. static DEFINE_MUTEX(shares_mutex);
  7408. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7409. {
  7410. int i;
  7411. unsigned long flags;
  7412. /*
  7413. * We can't change the weight of the root cgroup.
  7414. */
  7415. if (!tg->se[0])
  7416. return -EINVAL;
  7417. if (shares < MIN_SHARES)
  7418. shares = MIN_SHARES;
  7419. else if (shares > MAX_SHARES)
  7420. shares = MAX_SHARES;
  7421. mutex_lock(&shares_mutex);
  7422. if (tg->shares == shares)
  7423. goto done;
  7424. tg->shares = shares;
  7425. for_each_possible_cpu(i) {
  7426. struct rq *rq = cpu_rq(i);
  7427. struct sched_entity *se;
  7428. se = tg->se[i];
  7429. /* Propagate contribution to hierarchy */
  7430. raw_spin_lock_irqsave(&rq->lock, flags);
  7431. for_each_sched_entity(se)
  7432. update_cfs_shares(group_cfs_rq(se));
  7433. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7434. }
  7435. done:
  7436. mutex_unlock(&shares_mutex);
  7437. return 0;
  7438. }
  7439. unsigned long sched_group_shares(struct task_group *tg)
  7440. {
  7441. return tg->shares;
  7442. }
  7443. #endif
  7444. #ifdef CONFIG_RT_GROUP_SCHED
  7445. /*
  7446. * Ensure that the real time constraints are schedulable.
  7447. */
  7448. static DEFINE_MUTEX(rt_constraints_mutex);
  7449. static unsigned long to_ratio(u64 period, u64 runtime)
  7450. {
  7451. if (runtime == RUNTIME_INF)
  7452. return 1ULL << 20;
  7453. return div64_u64(runtime << 20, period);
  7454. }
  7455. /* Must be called with tasklist_lock held */
  7456. static inline int tg_has_rt_tasks(struct task_group *tg)
  7457. {
  7458. struct task_struct *g, *p;
  7459. do_each_thread(g, p) {
  7460. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7461. return 1;
  7462. } while_each_thread(g, p);
  7463. return 0;
  7464. }
  7465. struct rt_schedulable_data {
  7466. struct task_group *tg;
  7467. u64 rt_period;
  7468. u64 rt_runtime;
  7469. };
  7470. static int tg_schedulable(struct task_group *tg, void *data)
  7471. {
  7472. struct rt_schedulable_data *d = data;
  7473. struct task_group *child;
  7474. unsigned long total, sum = 0;
  7475. u64 period, runtime;
  7476. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7477. runtime = tg->rt_bandwidth.rt_runtime;
  7478. if (tg == d->tg) {
  7479. period = d->rt_period;
  7480. runtime = d->rt_runtime;
  7481. }
  7482. /*
  7483. * Cannot have more runtime than the period.
  7484. */
  7485. if (runtime > period && runtime != RUNTIME_INF)
  7486. return -EINVAL;
  7487. /*
  7488. * Ensure we don't starve existing RT tasks.
  7489. */
  7490. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7491. return -EBUSY;
  7492. total = to_ratio(period, runtime);
  7493. /*
  7494. * Nobody can have more than the global setting allows.
  7495. */
  7496. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7497. return -EINVAL;
  7498. /*
  7499. * The sum of our children's runtime should not exceed our own.
  7500. */
  7501. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7502. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7503. runtime = child->rt_bandwidth.rt_runtime;
  7504. if (child == d->tg) {
  7505. period = d->rt_period;
  7506. runtime = d->rt_runtime;
  7507. }
  7508. sum += to_ratio(period, runtime);
  7509. }
  7510. if (sum > total)
  7511. return -EINVAL;
  7512. return 0;
  7513. }
  7514. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7515. {
  7516. struct rt_schedulable_data data = {
  7517. .tg = tg,
  7518. .rt_period = period,
  7519. .rt_runtime = runtime,
  7520. };
  7521. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7522. }
  7523. static int tg_set_bandwidth(struct task_group *tg,
  7524. u64 rt_period, u64 rt_runtime)
  7525. {
  7526. int i, err = 0;
  7527. mutex_lock(&rt_constraints_mutex);
  7528. read_lock(&tasklist_lock);
  7529. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7530. if (err)
  7531. goto unlock;
  7532. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7533. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7534. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7535. for_each_possible_cpu(i) {
  7536. struct rt_rq *rt_rq = tg->rt_rq[i];
  7537. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7538. rt_rq->rt_runtime = rt_runtime;
  7539. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7540. }
  7541. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7542. unlock:
  7543. read_unlock(&tasklist_lock);
  7544. mutex_unlock(&rt_constraints_mutex);
  7545. return err;
  7546. }
  7547. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7548. {
  7549. u64 rt_runtime, rt_period;
  7550. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7551. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7552. if (rt_runtime_us < 0)
  7553. rt_runtime = RUNTIME_INF;
  7554. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7555. }
  7556. long sched_group_rt_runtime(struct task_group *tg)
  7557. {
  7558. u64 rt_runtime_us;
  7559. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7560. return -1;
  7561. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7562. do_div(rt_runtime_us, NSEC_PER_USEC);
  7563. return rt_runtime_us;
  7564. }
  7565. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7566. {
  7567. u64 rt_runtime, rt_period;
  7568. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7569. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7570. if (rt_period == 0)
  7571. return -EINVAL;
  7572. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7573. }
  7574. long sched_group_rt_period(struct task_group *tg)
  7575. {
  7576. u64 rt_period_us;
  7577. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7578. do_div(rt_period_us, NSEC_PER_USEC);
  7579. return rt_period_us;
  7580. }
  7581. static int sched_rt_global_constraints(void)
  7582. {
  7583. u64 runtime, period;
  7584. int ret = 0;
  7585. if (sysctl_sched_rt_period <= 0)
  7586. return -EINVAL;
  7587. runtime = global_rt_runtime();
  7588. period = global_rt_period();
  7589. /*
  7590. * Sanity check on the sysctl variables.
  7591. */
  7592. if (runtime > period && runtime != RUNTIME_INF)
  7593. return -EINVAL;
  7594. mutex_lock(&rt_constraints_mutex);
  7595. read_lock(&tasklist_lock);
  7596. ret = __rt_schedulable(NULL, 0, 0);
  7597. read_unlock(&tasklist_lock);
  7598. mutex_unlock(&rt_constraints_mutex);
  7599. return ret;
  7600. }
  7601. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7602. {
  7603. /* Don't accept realtime tasks when there is no way for them to run */
  7604. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7605. return 0;
  7606. return 1;
  7607. }
  7608. #else /* !CONFIG_RT_GROUP_SCHED */
  7609. static int sched_rt_global_constraints(void)
  7610. {
  7611. unsigned long flags;
  7612. int i;
  7613. if (sysctl_sched_rt_period <= 0)
  7614. return -EINVAL;
  7615. /*
  7616. * There's always some RT tasks in the root group
  7617. * -- migration, kstopmachine etc..
  7618. */
  7619. if (sysctl_sched_rt_runtime == 0)
  7620. return -EBUSY;
  7621. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7622. for_each_possible_cpu(i) {
  7623. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7624. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7625. rt_rq->rt_runtime = global_rt_runtime();
  7626. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7627. }
  7628. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7629. return 0;
  7630. }
  7631. #endif /* CONFIG_RT_GROUP_SCHED */
  7632. int sched_rt_handler(struct ctl_table *table, int write,
  7633. void __user *buffer, size_t *lenp,
  7634. loff_t *ppos)
  7635. {
  7636. int ret;
  7637. int old_period, old_runtime;
  7638. static DEFINE_MUTEX(mutex);
  7639. mutex_lock(&mutex);
  7640. old_period = sysctl_sched_rt_period;
  7641. old_runtime = sysctl_sched_rt_runtime;
  7642. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7643. if (!ret && write) {
  7644. ret = sched_rt_global_constraints();
  7645. if (ret) {
  7646. sysctl_sched_rt_period = old_period;
  7647. sysctl_sched_rt_runtime = old_runtime;
  7648. } else {
  7649. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7650. def_rt_bandwidth.rt_period =
  7651. ns_to_ktime(global_rt_period());
  7652. }
  7653. }
  7654. mutex_unlock(&mutex);
  7655. return ret;
  7656. }
  7657. #ifdef CONFIG_CGROUP_SCHED
  7658. /* return corresponding task_group object of a cgroup */
  7659. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7660. {
  7661. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7662. struct task_group, css);
  7663. }
  7664. static struct cgroup_subsys_state *
  7665. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7666. {
  7667. struct task_group *tg, *parent;
  7668. if (!cgrp->parent) {
  7669. /* This is early initialization for the top cgroup */
  7670. return &root_task_group.css;
  7671. }
  7672. parent = cgroup_tg(cgrp->parent);
  7673. tg = sched_create_group(parent);
  7674. if (IS_ERR(tg))
  7675. return ERR_PTR(-ENOMEM);
  7676. return &tg->css;
  7677. }
  7678. static void
  7679. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7680. {
  7681. struct task_group *tg = cgroup_tg(cgrp);
  7682. sched_destroy_group(tg);
  7683. }
  7684. static int
  7685. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7686. {
  7687. #ifdef CONFIG_RT_GROUP_SCHED
  7688. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7689. return -EINVAL;
  7690. #else
  7691. /* We don't support RT-tasks being in separate groups */
  7692. if (tsk->sched_class != &fair_sched_class)
  7693. return -EINVAL;
  7694. #endif
  7695. return 0;
  7696. }
  7697. static int
  7698. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7699. struct task_struct *tsk, bool threadgroup)
  7700. {
  7701. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7702. if (retval)
  7703. return retval;
  7704. if (threadgroup) {
  7705. struct task_struct *c;
  7706. rcu_read_lock();
  7707. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7708. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7709. if (retval) {
  7710. rcu_read_unlock();
  7711. return retval;
  7712. }
  7713. }
  7714. rcu_read_unlock();
  7715. }
  7716. return 0;
  7717. }
  7718. static void
  7719. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7720. struct cgroup *old_cont, struct task_struct *tsk,
  7721. bool threadgroup)
  7722. {
  7723. sched_move_task(tsk);
  7724. if (threadgroup) {
  7725. struct task_struct *c;
  7726. rcu_read_lock();
  7727. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7728. sched_move_task(c);
  7729. }
  7730. rcu_read_unlock();
  7731. }
  7732. }
  7733. static void
  7734. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7735. struct cgroup *old_cgrp, struct task_struct *task)
  7736. {
  7737. /*
  7738. * cgroup_exit() is called in the copy_process() failure path.
  7739. * Ignore this case since the task hasn't ran yet, this avoids
  7740. * trying to poke a half freed task state from generic code.
  7741. */
  7742. if (!(task->flags & PF_EXITING))
  7743. return;
  7744. sched_move_task(task);
  7745. }
  7746. #ifdef CONFIG_FAIR_GROUP_SCHED
  7747. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7748. u64 shareval)
  7749. {
  7750. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7751. }
  7752. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7753. {
  7754. struct task_group *tg = cgroup_tg(cgrp);
  7755. return (u64) tg->shares;
  7756. }
  7757. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7758. #ifdef CONFIG_RT_GROUP_SCHED
  7759. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7760. s64 val)
  7761. {
  7762. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7763. }
  7764. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7765. {
  7766. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7767. }
  7768. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7769. u64 rt_period_us)
  7770. {
  7771. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7772. }
  7773. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7774. {
  7775. return sched_group_rt_period(cgroup_tg(cgrp));
  7776. }
  7777. #endif /* CONFIG_RT_GROUP_SCHED */
  7778. static struct cftype cpu_files[] = {
  7779. #ifdef CONFIG_FAIR_GROUP_SCHED
  7780. {
  7781. .name = "shares",
  7782. .read_u64 = cpu_shares_read_u64,
  7783. .write_u64 = cpu_shares_write_u64,
  7784. },
  7785. #endif
  7786. #ifdef CONFIG_RT_GROUP_SCHED
  7787. {
  7788. .name = "rt_runtime_us",
  7789. .read_s64 = cpu_rt_runtime_read,
  7790. .write_s64 = cpu_rt_runtime_write,
  7791. },
  7792. {
  7793. .name = "rt_period_us",
  7794. .read_u64 = cpu_rt_period_read_uint,
  7795. .write_u64 = cpu_rt_period_write_uint,
  7796. },
  7797. #endif
  7798. };
  7799. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7800. {
  7801. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7802. }
  7803. struct cgroup_subsys cpu_cgroup_subsys = {
  7804. .name = "cpu",
  7805. .create = cpu_cgroup_create,
  7806. .destroy = cpu_cgroup_destroy,
  7807. .can_attach = cpu_cgroup_can_attach,
  7808. .attach = cpu_cgroup_attach,
  7809. .exit = cpu_cgroup_exit,
  7810. .populate = cpu_cgroup_populate,
  7811. .subsys_id = cpu_cgroup_subsys_id,
  7812. .early_init = 1,
  7813. };
  7814. #endif /* CONFIG_CGROUP_SCHED */
  7815. #ifdef CONFIG_CGROUP_CPUACCT
  7816. /*
  7817. * CPU accounting code for task groups.
  7818. *
  7819. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7820. * (balbir@in.ibm.com).
  7821. */
  7822. /* track cpu usage of a group of tasks and its child groups */
  7823. struct cpuacct {
  7824. struct cgroup_subsys_state css;
  7825. /* cpuusage holds pointer to a u64-type object on every cpu */
  7826. u64 __percpu *cpuusage;
  7827. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7828. struct cpuacct *parent;
  7829. };
  7830. struct cgroup_subsys cpuacct_subsys;
  7831. /* return cpu accounting group corresponding to this container */
  7832. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7833. {
  7834. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7835. struct cpuacct, css);
  7836. }
  7837. /* return cpu accounting group to which this task belongs */
  7838. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7839. {
  7840. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7841. struct cpuacct, css);
  7842. }
  7843. /* create a new cpu accounting group */
  7844. static struct cgroup_subsys_state *cpuacct_create(
  7845. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7846. {
  7847. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7848. int i;
  7849. if (!ca)
  7850. goto out;
  7851. ca->cpuusage = alloc_percpu(u64);
  7852. if (!ca->cpuusage)
  7853. goto out_free_ca;
  7854. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7855. if (percpu_counter_init(&ca->cpustat[i], 0))
  7856. goto out_free_counters;
  7857. if (cgrp->parent)
  7858. ca->parent = cgroup_ca(cgrp->parent);
  7859. return &ca->css;
  7860. out_free_counters:
  7861. while (--i >= 0)
  7862. percpu_counter_destroy(&ca->cpustat[i]);
  7863. free_percpu(ca->cpuusage);
  7864. out_free_ca:
  7865. kfree(ca);
  7866. out:
  7867. return ERR_PTR(-ENOMEM);
  7868. }
  7869. /* destroy an existing cpu accounting group */
  7870. static void
  7871. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7872. {
  7873. struct cpuacct *ca = cgroup_ca(cgrp);
  7874. int i;
  7875. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7876. percpu_counter_destroy(&ca->cpustat[i]);
  7877. free_percpu(ca->cpuusage);
  7878. kfree(ca);
  7879. }
  7880. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7881. {
  7882. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7883. u64 data;
  7884. #ifndef CONFIG_64BIT
  7885. /*
  7886. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7887. */
  7888. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7889. data = *cpuusage;
  7890. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7891. #else
  7892. data = *cpuusage;
  7893. #endif
  7894. return data;
  7895. }
  7896. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7897. {
  7898. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7899. #ifndef CONFIG_64BIT
  7900. /*
  7901. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7902. */
  7903. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7904. *cpuusage = val;
  7905. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7906. #else
  7907. *cpuusage = val;
  7908. #endif
  7909. }
  7910. /* return total cpu usage (in nanoseconds) of a group */
  7911. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7912. {
  7913. struct cpuacct *ca = cgroup_ca(cgrp);
  7914. u64 totalcpuusage = 0;
  7915. int i;
  7916. for_each_present_cpu(i)
  7917. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7918. return totalcpuusage;
  7919. }
  7920. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7921. u64 reset)
  7922. {
  7923. struct cpuacct *ca = cgroup_ca(cgrp);
  7924. int err = 0;
  7925. int i;
  7926. if (reset) {
  7927. err = -EINVAL;
  7928. goto out;
  7929. }
  7930. for_each_present_cpu(i)
  7931. cpuacct_cpuusage_write(ca, i, 0);
  7932. out:
  7933. return err;
  7934. }
  7935. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7936. struct seq_file *m)
  7937. {
  7938. struct cpuacct *ca = cgroup_ca(cgroup);
  7939. u64 percpu;
  7940. int i;
  7941. for_each_present_cpu(i) {
  7942. percpu = cpuacct_cpuusage_read(ca, i);
  7943. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7944. }
  7945. seq_printf(m, "\n");
  7946. return 0;
  7947. }
  7948. static const char *cpuacct_stat_desc[] = {
  7949. [CPUACCT_STAT_USER] = "user",
  7950. [CPUACCT_STAT_SYSTEM] = "system",
  7951. };
  7952. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7953. struct cgroup_map_cb *cb)
  7954. {
  7955. struct cpuacct *ca = cgroup_ca(cgrp);
  7956. int i;
  7957. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7958. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7959. val = cputime64_to_clock_t(val);
  7960. cb->fill(cb, cpuacct_stat_desc[i], val);
  7961. }
  7962. return 0;
  7963. }
  7964. static struct cftype files[] = {
  7965. {
  7966. .name = "usage",
  7967. .read_u64 = cpuusage_read,
  7968. .write_u64 = cpuusage_write,
  7969. },
  7970. {
  7971. .name = "usage_percpu",
  7972. .read_seq_string = cpuacct_percpu_seq_read,
  7973. },
  7974. {
  7975. .name = "stat",
  7976. .read_map = cpuacct_stats_show,
  7977. },
  7978. };
  7979. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7980. {
  7981. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7982. }
  7983. /*
  7984. * charge this task's execution time to its accounting group.
  7985. *
  7986. * called with rq->lock held.
  7987. */
  7988. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7989. {
  7990. struct cpuacct *ca;
  7991. int cpu;
  7992. if (unlikely(!cpuacct_subsys.active))
  7993. return;
  7994. cpu = task_cpu(tsk);
  7995. rcu_read_lock();
  7996. ca = task_ca(tsk);
  7997. for (; ca; ca = ca->parent) {
  7998. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7999. *cpuusage += cputime;
  8000. }
  8001. rcu_read_unlock();
  8002. }
  8003. /*
  8004. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8005. * in cputime_t units. As a result, cpuacct_update_stats calls
  8006. * percpu_counter_add with values large enough to always overflow the
  8007. * per cpu batch limit causing bad SMP scalability.
  8008. *
  8009. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8010. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8011. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8012. */
  8013. #ifdef CONFIG_SMP
  8014. #define CPUACCT_BATCH \
  8015. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8016. #else
  8017. #define CPUACCT_BATCH 0
  8018. #endif
  8019. /*
  8020. * Charge the system/user time to the task's accounting group.
  8021. */
  8022. static void cpuacct_update_stats(struct task_struct *tsk,
  8023. enum cpuacct_stat_index idx, cputime_t val)
  8024. {
  8025. struct cpuacct *ca;
  8026. int batch = CPUACCT_BATCH;
  8027. if (unlikely(!cpuacct_subsys.active))
  8028. return;
  8029. rcu_read_lock();
  8030. ca = task_ca(tsk);
  8031. do {
  8032. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8033. ca = ca->parent;
  8034. } while (ca);
  8035. rcu_read_unlock();
  8036. }
  8037. struct cgroup_subsys cpuacct_subsys = {
  8038. .name = "cpuacct",
  8039. .create = cpuacct_create,
  8040. .destroy = cpuacct_destroy,
  8041. .populate = cpuacct_populate,
  8042. .subsys_id = cpuacct_subsys_id,
  8043. };
  8044. #endif /* CONFIG_CGROUP_CPUACCT */