ixgbevf_main.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563
  1. /*******************************************************************************
  2. Intel 82599 Virtual Function driver
  3. Copyright(c) 1999 - 2010 Intel Corporation.
  4. This program is free software; you can redistribute it and/or modify it
  5. under the terms and conditions of the GNU General Public License,
  6. version 2, as published by the Free Software Foundation.
  7. This program is distributed in the hope it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc.,
  13. 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  14. The full GNU General Public License is included in this distribution in
  15. the file called "COPYING".
  16. Contact Information:
  17. e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /******************************************************************************
  21. Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
  22. ******************************************************************************/
  23. #include <linux/types.h>
  24. #include <linux/module.h>
  25. #include <linux/pci.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/string.h>
  29. #include <linux/in.h>
  30. #include <linux/ip.h>
  31. #include <linux/tcp.h>
  32. #include <linux/ipv6.h>
  33. #include <linux/slab.h>
  34. #include <net/checksum.h>
  35. #include <net/ip6_checksum.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/if_vlan.h>
  38. #include "ixgbevf.h"
  39. char ixgbevf_driver_name[] = "ixgbevf";
  40. static const char ixgbevf_driver_string[] =
  41. "Intel(R) 82599 Virtual Function";
  42. #define DRV_VERSION "1.0.12-k0"
  43. const char ixgbevf_driver_version[] = DRV_VERSION;
  44. static char ixgbevf_copyright[] =
  45. "Copyright (c) 2009 - 2010 Intel Corporation.";
  46. static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
  47. [board_82599_vf] = &ixgbevf_vf_info,
  48. };
  49. /* ixgbevf_pci_tbl - PCI Device ID Table
  50. *
  51. * Wildcard entries (PCI_ANY_ID) should come last
  52. * Last entry must be all 0s
  53. *
  54. * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  55. * Class, Class Mask, private data (not used) }
  56. */
  57. static struct pci_device_id ixgbevf_pci_tbl[] = {
  58. {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
  59. board_82599_vf},
  60. /* required last entry */
  61. {0, }
  62. };
  63. MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
  64. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  65. MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
  66. MODULE_LICENSE("GPL");
  67. MODULE_VERSION(DRV_VERSION);
  68. #define DEFAULT_DEBUG_LEVEL_SHIFT 3
  69. /* forward decls */
  70. static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
  71. static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
  72. u32 itr_reg);
  73. static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
  74. struct ixgbevf_ring *rx_ring,
  75. u32 val)
  76. {
  77. /*
  78. * Force memory writes to complete before letting h/w
  79. * know there are new descriptors to fetch. (Only
  80. * applicable for weak-ordered memory model archs,
  81. * such as IA-64).
  82. */
  83. wmb();
  84. IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
  85. }
  86. /*
  87. * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
  88. * @adapter: pointer to adapter struct
  89. * @direction: 0 for Rx, 1 for Tx, -1 for other causes
  90. * @queue: queue to map the corresponding interrupt to
  91. * @msix_vector: the vector to map to the corresponding queue
  92. *
  93. */
  94. static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
  95. u8 queue, u8 msix_vector)
  96. {
  97. u32 ivar, index;
  98. struct ixgbe_hw *hw = &adapter->hw;
  99. if (direction == -1) {
  100. /* other causes */
  101. msix_vector |= IXGBE_IVAR_ALLOC_VAL;
  102. ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
  103. ivar &= ~0xFF;
  104. ivar |= msix_vector;
  105. IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
  106. } else {
  107. /* tx or rx causes */
  108. msix_vector |= IXGBE_IVAR_ALLOC_VAL;
  109. index = ((16 * (queue & 1)) + (8 * direction));
  110. ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
  111. ivar &= ~(0xFF << index);
  112. ivar |= (msix_vector << index);
  113. IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
  114. }
  115. }
  116. static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
  117. struct ixgbevf_tx_buffer
  118. *tx_buffer_info)
  119. {
  120. if (tx_buffer_info->dma) {
  121. if (tx_buffer_info->mapped_as_page)
  122. dma_unmap_page(&adapter->pdev->dev,
  123. tx_buffer_info->dma,
  124. tx_buffer_info->length,
  125. DMA_TO_DEVICE);
  126. else
  127. dma_unmap_single(&adapter->pdev->dev,
  128. tx_buffer_info->dma,
  129. tx_buffer_info->length,
  130. DMA_TO_DEVICE);
  131. tx_buffer_info->dma = 0;
  132. }
  133. if (tx_buffer_info->skb) {
  134. dev_kfree_skb_any(tx_buffer_info->skb);
  135. tx_buffer_info->skb = NULL;
  136. }
  137. tx_buffer_info->time_stamp = 0;
  138. /* tx_buffer_info must be completely set up in the transmit path */
  139. }
  140. static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
  141. struct ixgbevf_ring *tx_ring,
  142. unsigned int eop)
  143. {
  144. struct ixgbe_hw *hw = &adapter->hw;
  145. u32 head, tail;
  146. /* Detect a transmit hang in hardware, this serializes the
  147. * check with the clearing of time_stamp and movement of eop */
  148. head = readl(hw->hw_addr + tx_ring->head);
  149. tail = readl(hw->hw_addr + tx_ring->tail);
  150. adapter->detect_tx_hung = false;
  151. if ((head != tail) &&
  152. tx_ring->tx_buffer_info[eop].time_stamp &&
  153. time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
  154. /* detected Tx unit hang */
  155. union ixgbe_adv_tx_desc *tx_desc;
  156. tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
  157. printk(KERN_ERR "Detected Tx Unit Hang\n"
  158. " Tx Queue <%d>\n"
  159. " TDH, TDT <%x>, <%x>\n"
  160. " next_to_use <%x>\n"
  161. " next_to_clean <%x>\n"
  162. "tx_buffer_info[next_to_clean]\n"
  163. " time_stamp <%lx>\n"
  164. " jiffies <%lx>\n",
  165. tx_ring->queue_index,
  166. head, tail,
  167. tx_ring->next_to_use, eop,
  168. tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
  169. return true;
  170. }
  171. return false;
  172. }
  173. #define IXGBE_MAX_TXD_PWR 14
  174. #define IXGBE_MAX_DATA_PER_TXD (1 << IXGBE_MAX_TXD_PWR)
  175. /* Tx Descriptors needed, worst case */
  176. #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
  177. (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
  178. #ifdef MAX_SKB_FRAGS
  179. #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
  180. MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1) /* for context */
  181. #else
  182. #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
  183. #endif
  184. static void ixgbevf_tx_timeout(struct net_device *netdev);
  185. /**
  186. * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
  187. * @adapter: board private structure
  188. * @tx_ring: tx ring to clean
  189. **/
  190. static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
  191. struct ixgbevf_ring *tx_ring)
  192. {
  193. struct net_device *netdev = adapter->netdev;
  194. struct ixgbe_hw *hw = &adapter->hw;
  195. union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
  196. struct ixgbevf_tx_buffer *tx_buffer_info;
  197. unsigned int i, eop, count = 0;
  198. unsigned int total_bytes = 0, total_packets = 0;
  199. i = tx_ring->next_to_clean;
  200. eop = tx_ring->tx_buffer_info[i].next_to_watch;
  201. eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
  202. while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
  203. (count < tx_ring->work_limit)) {
  204. bool cleaned = false;
  205. rmb(); /* read buffer_info after eop_desc */
  206. for ( ; !cleaned; count++) {
  207. struct sk_buff *skb;
  208. tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
  209. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  210. cleaned = (i == eop);
  211. skb = tx_buffer_info->skb;
  212. if (cleaned && skb) {
  213. unsigned int segs, bytecount;
  214. /* gso_segs is currently only valid for tcp */
  215. segs = skb_shinfo(skb)->gso_segs ?: 1;
  216. /* multiply data chunks by size of headers */
  217. bytecount = ((segs - 1) * skb_headlen(skb)) +
  218. skb->len;
  219. total_packets += segs;
  220. total_bytes += bytecount;
  221. }
  222. ixgbevf_unmap_and_free_tx_resource(adapter,
  223. tx_buffer_info);
  224. tx_desc->wb.status = 0;
  225. i++;
  226. if (i == tx_ring->count)
  227. i = 0;
  228. }
  229. eop = tx_ring->tx_buffer_info[i].next_to_watch;
  230. eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
  231. }
  232. tx_ring->next_to_clean = i;
  233. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  234. if (unlikely(count && netif_carrier_ok(netdev) &&
  235. (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  236. /* Make sure that anybody stopping the queue after this
  237. * sees the new next_to_clean.
  238. */
  239. smp_mb();
  240. #ifdef HAVE_TX_MQ
  241. if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
  242. !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
  243. netif_wake_subqueue(netdev, tx_ring->queue_index);
  244. ++adapter->restart_queue;
  245. }
  246. #else
  247. if (netif_queue_stopped(netdev) &&
  248. !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
  249. netif_wake_queue(netdev);
  250. ++adapter->restart_queue;
  251. }
  252. #endif
  253. }
  254. if (adapter->detect_tx_hung) {
  255. if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
  256. /* schedule immediate reset if we believe we hung */
  257. printk(KERN_INFO
  258. "tx hang %d detected, resetting adapter\n",
  259. adapter->tx_timeout_count + 1);
  260. ixgbevf_tx_timeout(adapter->netdev);
  261. }
  262. }
  263. /* re-arm the interrupt */
  264. if ((count >= tx_ring->work_limit) &&
  265. (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
  266. IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
  267. }
  268. tx_ring->total_bytes += total_bytes;
  269. tx_ring->total_packets += total_packets;
  270. netdev->stats.tx_bytes += total_bytes;
  271. netdev->stats.tx_packets += total_packets;
  272. return count < tx_ring->work_limit;
  273. }
  274. /**
  275. * ixgbevf_receive_skb - Send a completed packet up the stack
  276. * @q_vector: structure containing interrupt and ring information
  277. * @skb: packet to send up
  278. * @status: hardware indication of status of receive
  279. * @rx_ring: rx descriptor ring (for a specific queue) to setup
  280. * @rx_desc: rx descriptor
  281. **/
  282. static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
  283. struct sk_buff *skb, u8 status,
  284. struct ixgbevf_ring *ring,
  285. union ixgbe_adv_rx_desc *rx_desc)
  286. {
  287. struct ixgbevf_adapter *adapter = q_vector->adapter;
  288. bool is_vlan = (status & IXGBE_RXD_STAT_VP);
  289. u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
  290. int ret;
  291. if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
  292. if (adapter->vlgrp && is_vlan)
  293. vlan_gro_receive(&q_vector->napi,
  294. adapter->vlgrp,
  295. tag, skb);
  296. else
  297. napi_gro_receive(&q_vector->napi, skb);
  298. } else {
  299. if (adapter->vlgrp && is_vlan)
  300. ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
  301. else
  302. ret = netif_rx(skb);
  303. }
  304. }
  305. /**
  306. * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
  307. * @adapter: address of board private structure
  308. * @status_err: hardware indication of status of receive
  309. * @skb: skb currently being received and modified
  310. **/
  311. static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
  312. u32 status_err, struct sk_buff *skb)
  313. {
  314. skb_checksum_none_assert(skb);
  315. /* Rx csum disabled */
  316. if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
  317. return;
  318. /* if IP and error */
  319. if ((status_err & IXGBE_RXD_STAT_IPCS) &&
  320. (status_err & IXGBE_RXDADV_ERR_IPE)) {
  321. adapter->hw_csum_rx_error++;
  322. return;
  323. }
  324. if (!(status_err & IXGBE_RXD_STAT_L4CS))
  325. return;
  326. if (status_err & IXGBE_RXDADV_ERR_TCPE) {
  327. adapter->hw_csum_rx_error++;
  328. return;
  329. }
  330. /* It must be a TCP or UDP packet with a valid checksum */
  331. skb->ip_summed = CHECKSUM_UNNECESSARY;
  332. adapter->hw_csum_rx_good++;
  333. }
  334. /**
  335. * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
  336. * @adapter: address of board private structure
  337. **/
  338. static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
  339. struct ixgbevf_ring *rx_ring,
  340. int cleaned_count)
  341. {
  342. struct pci_dev *pdev = adapter->pdev;
  343. union ixgbe_adv_rx_desc *rx_desc;
  344. struct ixgbevf_rx_buffer *bi;
  345. struct sk_buff *skb;
  346. unsigned int i;
  347. unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
  348. i = rx_ring->next_to_use;
  349. bi = &rx_ring->rx_buffer_info[i];
  350. while (cleaned_count--) {
  351. rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
  352. if (!bi->page_dma &&
  353. (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
  354. if (!bi->page) {
  355. bi->page = netdev_alloc_page(adapter->netdev);
  356. if (!bi->page) {
  357. adapter->alloc_rx_page_failed++;
  358. goto no_buffers;
  359. }
  360. bi->page_offset = 0;
  361. } else {
  362. /* use a half page if we're re-using */
  363. bi->page_offset ^= (PAGE_SIZE / 2);
  364. }
  365. bi->page_dma = dma_map_page(&pdev->dev, bi->page,
  366. bi->page_offset,
  367. (PAGE_SIZE / 2),
  368. DMA_FROM_DEVICE);
  369. }
  370. skb = bi->skb;
  371. if (!skb) {
  372. skb = netdev_alloc_skb(adapter->netdev,
  373. bufsz);
  374. if (!skb) {
  375. adapter->alloc_rx_buff_failed++;
  376. goto no_buffers;
  377. }
  378. /*
  379. * Make buffer alignment 2 beyond a 16 byte boundary
  380. * this will result in a 16 byte aligned IP header after
  381. * the 14 byte MAC header is removed
  382. */
  383. skb_reserve(skb, NET_IP_ALIGN);
  384. bi->skb = skb;
  385. }
  386. if (!bi->dma) {
  387. bi->dma = dma_map_single(&pdev->dev, skb->data,
  388. rx_ring->rx_buf_len,
  389. DMA_FROM_DEVICE);
  390. }
  391. /* Refresh the desc even if buffer_addrs didn't change because
  392. * each write-back erases this info. */
  393. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  394. rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
  395. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  396. } else {
  397. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  398. }
  399. i++;
  400. if (i == rx_ring->count)
  401. i = 0;
  402. bi = &rx_ring->rx_buffer_info[i];
  403. }
  404. no_buffers:
  405. if (rx_ring->next_to_use != i) {
  406. rx_ring->next_to_use = i;
  407. if (i-- == 0)
  408. i = (rx_ring->count - 1);
  409. ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
  410. }
  411. }
  412. static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
  413. u64 qmask)
  414. {
  415. u32 mask;
  416. struct ixgbe_hw *hw = &adapter->hw;
  417. mask = (qmask & 0xFFFFFFFF);
  418. IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
  419. }
  420. static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
  421. {
  422. return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
  423. }
  424. static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
  425. {
  426. return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
  427. }
  428. static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
  429. struct ixgbevf_ring *rx_ring,
  430. int *work_done, int work_to_do)
  431. {
  432. struct ixgbevf_adapter *adapter = q_vector->adapter;
  433. struct pci_dev *pdev = adapter->pdev;
  434. union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
  435. struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
  436. struct sk_buff *skb;
  437. unsigned int i;
  438. u32 len, staterr;
  439. u16 hdr_info;
  440. bool cleaned = false;
  441. int cleaned_count = 0;
  442. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  443. i = rx_ring->next_to_clean;
  444. rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
  445. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  446. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  447. while (staterr & IXGBE_RXD_STAT_DD) {
  448. u32 upper_len = 0;
  449. if (*work_done >= work_to_do)
  450. break;
  451. (*work_done)++;
  452. rmb(); /* read descriptor and rx_buffer_info after status DD */
  453. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  454. hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
  455. len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
  456. IXGBE_RXDADV_HDRBUFLEN_SHIFT;
  457. if (hdr_info & IXGBE_RXDADV_SPH)
  458. adapter->rx_hdr_split++;
  459. if (len > IXGBEVF_RX_HDR_SIZE)
  460. len = IXGBEVF_RX_HDR_SIZE;
  461. upper_len = le16_to_cpu(rx_desc->wb.upper.length);
  462. } else {
  463. len = le16_to_cpu(rx_desc->wb.upper.length);
  464. }
  465. cleaned = true;
  466. skb = rx_buffer_info->skb;
  467. prefetch(skb->data - NET_IP_ALIGN);
  468. rx_buffer_info->skb = NULL;
  469. if (rx_buffer_info->dma) {
  470. dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
  471. rx_ring->rx_buf_len,
  472. DMA_FROM_DEVICE);
  473. rx_buffer_info->dma = 0;
  474. skb_put(skb, len);
  475. }
  476. if (upper_len) {
  477. dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
  478. PAGE_SIZE / 2, DMA_FROM_DEVICE);
  479. rx_buffer_info->page_dma = 0;
  480. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  481. rx_buffer_info->page,
  482. rx_buffer_info->page_offset,
  483. upper_len);
  484. if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
  485. (page_count(rx_buffer_info->page) != 1))
  486. rx_buffer_info->page = NULL;
  487. else
  488. get_page(rx_buffer_info->page);
  489. skb->len += upper_len;
  490. skb->data_len += upper_len;
  491. skb->truesize += upper_len;
  492. }
  493. i++;
  494. if (i == rx_ring->count)
  495. i = 0;
  496. next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
  497. prefetch(next_rxd);
  498. cleaned_count++;
  499. next_buffer = &rx_ring->rx_buffer_info[i];
  500. if (!(staterr & IXGBE_RXD_STAT_EOP)) {
  501. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  502. rx_buffer_info->skb = next_buffer->skb;
  503. rx_buffer_info->dma = next_buffer->dma;
  504. next_buffer->skb = skb;
  505. next_buffer->dma = 0;
  506. } else {
  507. skb->next = next_buffer->skb;
  508. skb->next->prev = skb;
  509. }
  510. adapter->non_eop_descs++;
  511. goto next_desc;
  512. }
  513. /* ERR_MASK will only have valid bits if EOP set */
  514. if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
  515. dev_kfree_skb_irq(skb);
  516. goto next_desc;
  517. }
  518. ixgbevf_rx_checksum(adapter, staterr, skb);
  519. /* probably a little skewed due to removing CRC */
  520. total_rx_bytes += skb->len;
  521. total_rx_packets++;
  522. /*
  523. * Work around issue of some types of VM to VM loop back
  524. * packets not getting split correctly
  525. */
  526. if (staterr & IXGBE_RXD_STAT_LB) {
  527. u32 header_fixup_len = skb_headlen(skb);
  528. if (header_fixup_len < 14)
  529. skb_push(skb, header_fixup_len);
  530. }
  531. skb->protocol = eth_type_trans(skb, adapter->netdev);
  532. ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
  533. next_desc:
  534. rx_desc->wb.upper.status_error = 0;
  535. /* return some buffers to hardware, one at a time is too slow */
  536. if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
  537. ixgbevf_alloc_rx_buffers(adapter, rx_ring,
  538. cleaned_count);
  539. cleaned_count = 0;
  540. }
  541. /* use prefetched values */
  542. rx_desc = next_rxd;
  543. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  544. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  545. }
  546. rx_ring->next_to_clean = i;
  547. cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
  548. if (cleaned_count)
  549. ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
  550. rx_ring->total_packets += total_rx_packets;
  551. rx_ring->total_bytes += total_rx_bytes;
  552. adapter->netdev->stats.rx_bytes += total_rx_bytes;
  553. adapter->netdev->stats.rx_packets += total_rx_packets;
  554. return cleaned;
  555. }
  556. /**
  557. * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
  558. * @napi: napi struct with our devices info in it
  559. * @budget: amount of work driver is allowed to do this pass, in packets
  560. *
  561. * This function is optimized for cleaning one queue only on a single
  562. * q_vector!!!
  563. **/
  564. static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
  565. {
  566. struct ixgbevf_q_vector *q_vector =
  567. container_of(napi, struct ixgbevf_q_vector, napi);
  568. struct ixgbevf_adapter *adapter = q_vector->adapter;
  569. struct ixgbevf_ring *rx_ring = NULL;
  570. int work_done = 0;
  571. long r_idx;
  572. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  573. rx_ring = &(adapter->rx_ring[r_idx]);
  574. ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
  575. /* If all Rx work done, exit the polling mode */
  576. if (work_done < budget) {
  577. napi_complete(napi);
  578. if (adapter->itr_setting & 1)
  579. ixgbevf_set_itr_msix(q_vector);
  580. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  581. ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
  582. }
  583. return work_done;
  584. }
  585. /**
  586. * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
  587. * @napi: napi struct with our devices info in it
  588. * @budget: amount of work driver is allowed to do this pass, in packets
  589. *
  590. * This function will clean more than one rx queue associated with a
  591. * q_vector.
  592. **/
  593. static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
  594. {
  595. struct ixgbevf_q_vector *q_vector =
  596. container_of(napi, struct ixgbevf_q_vector, napi);
  597. struct ixgbevf_adapter *adapter = q_vector->adapter;
  598. struct ixgbevf_ring *rx_ring = NULL;
  599. int work_done = 0, i;
  600. long r_idx;
  601. u64 enable_mask = 0;
  602. /* attempt to distribute budget to each queue fairly, but don't allow
  603. * the budget to go below 1 because we'll exit polling */
  604. budget /= (q_vector->rxr_count ?: 1);
  605. budget = max(budget, 1);
  606. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  607. for (i = 0; i < q_vector->rxr_count; i++) {
  608. rx_ring = &(adapter->rx_ring[r_idx]);
  609. ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
  610. enable_mask |= rx_ring->v_idx;
  611. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  612. r_idx + 1);
  613. }
  614. #ifndef HAVE_NETDEV_NAPI_LIST
  615. if (!netif_running(adapter->netdev))
  616. work_done = 0;
  617. #endif
  618. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  619. rx_ring = &(adapter->rx_ring[r_idx]);
  620. /* If all Rx work done, exit the polling mode */
  621. if (work_done < budget) {
  622. napi_complete(napi);
  623. if (adapter->itr_setting & 1)
  624. ixgbevf_set_itr_msix(q_vector);
  625. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  626. ixgbevf_irq_enable_queues(adapter, enable_mask);
  627. }
  628. return work_done;
  629. }
  630. /**
  631. * ixgbevf_configure_msix - Configure MSI-X hardware
  632. * @adapter: board private structure
  633. *
  634. * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
  635. * interrupts.
  636. **/
  637. static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
  638. {
  639. struct ixgbevf_q_vector *q_vector;
  640. struct ixgbe_hw *hw = &adapter->hw;
  641. int i, j, q_vectors, v_idx, r_idx;
  642. u32 mask;
  643. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  644. /*
  645. * Populate the IVAR table and set the ITR values to the
  646. * corresponding register.
  647. */
  648. for (v_idx = 0; v_idx < q_vectors; v_idx++) {
  649. q_vector = adapter->q_vector[v_idx];
  650. /* XXX for_each_set_bit(...) */
  651. r_idx = find_first_bit(q_vector->rxr_idx,
  652. adapter->num_rx_queues);
  653. for (i = 0; i < q_vector->rxr_count; i++) {
  654. j = adapter->rx_ring[r_idx].reg_idx;
  655. ixgbevf_set_ivar(adapter, 0, j, v_idx);
  656. r_idx = find_next_bit(q_vector->rxr_idx,
  657. adapter->num_rx_queues,
  658. r_idx + 1);
  659. }
  660. r_idx = find_first_bit(q_vector->txr_idx,
  661. adapter->num_tx_queues);
  662. for (i = 0; i < q_vector->txr_count; i++) {
  663. j = adapter->tx_ring[r_idx].reg_idx;
  664. ixgbevf_set_ivar(adapter, 1, j, v_idx);
  665. r_idx = find_next_bit(q_vector->txr_idx,
  666. adapter->num_tx_queues,
  667. r_idx + 1);
  668. }
  669. /* if this is a tx only vector halve the interrupt rate */
  670. if (q_vector->txr_count && !q_vector->rxr_count)
  671. q_vector->eitr = (adapter->eitr_param >> 1);
  672. else if (q_vector->rxr_count)
  673. /* rx only */
  674. q_vector->eitr = adapter->eitr_param;
  675. ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
  676. }
  677. ixgbevf_set_ivar(adapter, -1, 1, v_idx);
  678. /* set up to autoclear timer, and the vectors */
  679. mask = IXGBE_EIMS_ENABLE_MASK;
  680. mask &= ~IXGBE_EIMS_OTHER;
  681. IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
  682. }
  683. enum latency_range {
  684. lowest_latency = 0,
  685. low_latency = 1,
  686. bulk_latency = 2,
  687. latency_invalid = 255
  688. };
  689. /**
  690. * ixgbevf_update_itr - update the dynamic ITR value based on statistics
  691. * @adapter: pointer to adapter
  692. * @eitr: eitr setting (ints per sec) to give last timeslice
  693. * @itr_setting: current throttle rate in ints/second
  694. * @packets: the number of packets during this measurement interval
  695. * @bytes: the number of bytes during this measurement interval
  696. *
  697. * Stores a new ITR value based on packets and byte
  698. * counts during the last interrupt. The advantage of per interrupt
  699. * computation is faster updates and more accurate ITR for the current
  700. * traffic pattern. Constants in this function were computed
  701. * based on theoretical maximum wire speed and thresholds were set based
  702. * on testing data as well as attempting to minimize response time
  703. * while increasing bulk throughput.
  704. **/
  705. static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
  706. u32 eitr, u8 itr_setting,
  707. int packets, int bytes)
  708. {
  709. unsigned int retval = itr_setting;
  710. u32 timepassed_us;
  711. u64 bytes_perint;
  712. if (packets == 0)
  713. goto update_itr_done;
  714. /* simple throttlerate management
  715. * 0-20MB/s lowest (100000 ints/s)
  716. * 20-100MB/s low (20000 ints/s)
  717. * 100-1249MB/s bulk (8000 ints/s)
  718. */
  719. /* what was last interrupt timeslice? */
  720. timepassed_us = 1000000/eitr;
  721. bytes_perint = bytes / timepassed_us; /* bytes/usec */
  722. switch (itr_setting) {
  723. case lowest_latency:
  724. if (bytes_perint > adapter->eitr_low)
  725. retval = low_latency;
  726. break;
  727. case low_latency:
  728. if (bytes_perint > adapter->eitr_high)
  729. retval = bulk_latency;
  730. else if (bytes_perint <= adapter->eitr_low)
  731. retval = lowest_latency;
  732. break;
  733. case bulk_latency:
  734. if (bytes_perint <= adapter->eitr_high)
  735. retval = low_latency;
  736. break;
  737. }
  738. update_itr_done:
  739. return retval;
  740. }
  741. /**
  742. * ixgbevf_write_eitr - write VTEITR register in hardware specific way
  743. * @adapter: pointer to adapter struct
  744. * @v_idx: vector index into q_vector array
  745. * @itr_reg: new value to be written in *register* format, not ints/s
  746. *
  747. * This function is made to be called by ethtool and by the driver
  748. * when it needs to update VTEITR registers at runtime. Hardware
  749. * specific quirks/differences are taken care of here.
  750. */
  751. static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
  752. u32 itr_reg)
  753. {
  754. struct ixgbe_hw *hw = &adapter->hw;
  755. itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
  756. /*
  757. * set the WDIS bit to not clear the timer bits and cause an
  758. * immediate assertion of the interrupt
  759. */
  760. itr_reg |= IXGBE_EITR_CNT_WDIS;
  761. IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
  762. }
  763. static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
  764. {
  765. struct ixgbevf_adapter *adapter = q_vector->adapter;
  766. u32 new_itr;
  767. u8 current_itr, ret_itr;
  768. int i, r_idx, v_idx = q_vector->v_idx;
  769. struct ixgbevf_ring *rx_ring, *tx_ring;
  770. r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
  771. for (i = 0; i < q_vector->txr_count; i++) {
  772. tx_ring = &(adapter->tx_ring[r_idx]);
  773. ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
  774. q_vector->tx_itr,
  775. tx_ring->total_packets,
  776. tx_ring->total_bytes);
  777. /* if the result for this queue would decrease interrupt
  778. * rate for this vector then use that result */
  779. q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
  780. q_vector->tx_itr - 1 : ret_itr);
  781. r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
  782. r_idx + 1);
  783. }
  784. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  785. for (i = 0; i < q_vector->rxr_count; i++) {
  786. rx_ring = &(adapter->rx_ring[r_idx]);
  787. ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
  788. q_vector->rx_itr,
  789. rx_ring->total_packets,
  790. rx_ring->total_bytes);
  791. /* if the result for this queue would decrease interrupt
  792. * rate for this vector then use that result */
  793. q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
  794. q_vector->rx_itr - 1 : ret_itr);
  795. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  796. r_idx + 1);
  797. }
  798. current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
  799. switch (current_itr) {
  800. /* counts and packets in update_itr are dependent on these numbers */
  801. case lowest_latency:
  802. new_itr = 100000;
  803. break;
  804. case low_latency:
  805. new_itr = 20000; /* aka hwitr = ~200 */
  806. break;
  807. case bulk_latency:
  808. default:
  809. new_itr = 8000;
  810. break;
  811. }
  812. if (new_itr != q_vector->eitr) {
  813. u32 itr_reg;
  814. /* save the algorithm value here, not the smoothed one */
  815. q_vector->eitr = new_itr;
  816. /* do an exponential smoothing */
  817. new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
  818. itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
  819. ixgbevf_write_eitr(adapter, v_idx, itr_reg);
  820. }
  821. }
  822. static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
  823. {
  824. struct net_device *netdev = data;
  825. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  826. struct ixgbe_hw *hw = &adapter->hw;
  827. u32 eicr;
  828. u32 msg;
  829. eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
  830. IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
  831. if (!hw->mbx.ops.check_for_ack(hw)) {
  832. /*
  833. * checking for the ack clears the PFACK bit. Place
  834. * it back in the v2p_mailbox cache so that anyone
  835. * polling for an ack will not miss it. Also
  836. * avoid the read below because the code to read
  837. * the mailbox will also clear the ack bit. This was
  838. * causing lost acks. Just cache the bit and exit
  839. * the IRQ handler.
  840. */
  841. hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
  842. goto out;
  843. }
  844. /* Not an ack interrupt, go ahead and read the message */
  845. hw->mbx.ops.read(hw, &msg, 1);
  846. if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
  847. mod_timer(&adapter->watchdog_timer,
  848. round_jiffies(jiffies + 1));
  849. out:
  850. return IRQ_HANDLED;
  851. }
  852. static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
  853. {
  854. struct ixgbevf_q_vector *q_vector = data;
  855. struct ixgbevf_adapter *adapter = q_vector->adapter;
  856. struct ixgbevf_ring *tx_ring;
  857. int i, r_idx;
  858. if (!q_vector->txr_count)
  859. return IRQ_HANDLED;
  860. r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
  861. for (i = 0; i < q_vector->txr_count; i++) {
  862. tx_ring = &(adapter->tx_ring[r_idx]);
  863. tx_ring->total_bytes = 0;
  864. tx_ring->total_packets = 0;
  865. ixgbevf_clean_tx_irq(adapter, tx_ring);
  866. r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
  867. r_idx + 1);
  868. }
  869. if (adapter->itr_setting & 1)
  870. ixgbevf_set_itr_msix(q_vector);
  871. return IRQ_HANDLED;
  872. }
  873. /**
  874. * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
  875. * @irq: unused
  876. * @data: pointer to our q_vector struct for this interrupt vector
  877. **/
  878. static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
  879. {
  880. struct ixgbevf_q_vector *q_vector = data;
  881. struct ixgbevf_adapter *adapter = q_vector->adapter;
  882. struct ixgbe_hw *hw = &adapter->hw;
  883. struct ixgbevf_ring *rx_ring;
  884. int r_idx;
  885. int i;
  886. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  887. for (i = 0; i < q_vector->rxr_count; i++) {
  888. rx_ring = &(adapter->rx_ring[r_idx]);
  889. rx_ring->total_bytes = 0;
  890. rx_ring->total_packets = 0;
  891. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  892. r_idx + 1);
  893. }
  894. if (!q_vector->rxr_count)
  895. return IRQ_HANDLED;
  896. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  897. rx_ring = &(adapter->rx_ring[r_idx]);
  898. /* disable interrupts on this vector only */
  899. IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
  900. napi_schedule(&q_vector->napi);
  901. return IRQ_HANDLED;
  902. }
  903. static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
  904. {
  905. ixgbevf_msix_clean_rx(irq, data);
  906. ixgbevf_msix_clean_tx(irq, data);
  907. return IRQ_HANDLED;
  908. }
  909. static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
  910. int r_idx)
  911. {
  912. struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
  913. set_bit(r_idx, q_vector->rxr_idx);
  914. q_vector->rxr_count++;
  915. a->rx_ring[r_idx].v_idx = 1 << v_idx;
  916. }
  917. static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
  918. int t_idx)
  919. {
  920. struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
  921. set_bit(t_idx, q_vector->txr_idx);
  922. q_vector->txr_count++;
  923. a->tx_ring[t_idx].v_idx = 1 << v_idx;
  924. }
  925. /**
  926. * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
  927. * @adapter: board private structure to initialize
  928. *
  929. * This function maps descriptor rings to the queue-specific vectors
  930. * we were allotted through the MSI-X enabling code. Ideally, we'd have
  931. * one vector per ring/queue, but on a constrained vector budget, we
  932. * group the rings as "efficiently" as possible. You would add new
  933. * mapping configurations in here.
  934. **/
  935. static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
  936. {
  937. int q_vectors;
  938. int v_start = 0;
  939. int rxr_idx = 0, txr_idx = 0;
  940. int rxr_remaining = adapter->num_rx_queues;
  941. int txr_remaining = adapter->num_tx_queues;
  942. int i, j;
  943. int rqpv, tqpv;
  944. int err = 0;
  945. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  946. /*
  947. * The ideal configuration...
  948. * We have enough vectors to map one per queue.
  949. */
  950. if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
  951. for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
  952. map_vector_to_rxq(adapter, v_start, rxr_idx);
  953. for (; txr_idx < txr_remaining; v_start++, txr_idx++)
  954. map_vector_to_txq(adapter, v_start, txr_idx);
  955. goto out;
  956. }
  957. /*
  958. * If we don't have enough vectors for a 1-to-1
  959. * mapping, we'll have to group them so there are
  960. * multiple queues per vector.
  961. */
  962. /* Re-adjusting *qpv takes care of the remainder. */
  963. for (i = v_start; i < q_vectors; i++) {
  964. rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
  965. for (j = 0; j < rqpv; j++) {
  966. map_vector_to_rxq(adapter, i, rxr_idx);
  967. rxr_idx++;
  968. rxr_remaining--;
  969. }
  970. }
  971. for (i = v_start; i < q_vectors; i++) {
  972. tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
  973. for (j = 0; j < tqpv; j++) {
  974. map_vector_to_txq(adapter, i, txr_idx);
  975. txr_idx++;
  976. txr_remaining--;
  977. }
  978. }
  979. out:
  980. return err;
  981. }
  982. /**
  983. * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
  984. * @adapter: board private structure
  985. *
  986. * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
  987. * interrupts from the kernel.
  988. **/
  989. static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
  990. {
  991. struct net_device *netdev = adapter->netdev;
  992. irqreturn_t (*handler)(int, void *);
  993. int i, vector, q_vectors, err;
  994. int ri = 0, ti = 0;
  995. /* Decrement for Other and TCP Timer vectors */
  996. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  997. #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count) \
  998. ? &ixgbevf_msix_clean_many : \
  999. (_v)->rxr_count ? &ixgbevf_msix_clean_rx : \
  1000. (_v)->txr_count ? &ixgbevf_msix_clean_tx : \
  1001. NULL)
  1002. for (vector = 0; vector < q_vectors; vector++) {
  1003. handler = SET_HANDLER(adapter->q_vector[vector]);
  1004. if (handler == &ixgbevf_msix_clean_rx) {
  1005. sprintf(adapter->name[vector], "%s-%s-%d",
  1006. netdev->name, "rx", ri++);
  1007. } else if (handler == &ixgbevf_msix_clean_tx) {
  1008. sprintf(adapter->name[vector], "%s-%s-%d",
  1009. netdev->name, "tx", ti++);
  1010. } else if (handler == &ixgbevf_msix_clean_many) {
  1011. sprintf(adapter->name[vector], "%s-%s-%d",
  1012. netdev->name, "TxRx", vector);
  1013. } else {
  1014. /* skip this unused q_vector */
  1015. continue;
  1016. }
  1017. err = request_irq(adapter->msix_entries[vector].vector,
  1018. handler, 0, adapter->name[vector],
  1019. adapter->q_vector[vector]);
  1020. if (err) {
  1021. hw_dbg(&adapter->hw,
  1022. "request_irq failed for MSIX interrupt "
  1023. "Error: %d\n", err);
  1024. goto free_queue_irqs;
  1025. }
  1026. }
  1027. sprintf(adapter->name[vector], "%s:mbx", netdev->name);
  1028. err = request_irq(adapter->msix_entries[vector].vector,
  1029. &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
  1030. if (err) {
  1031. hw_dbg(&adapter->hw,
  1032. "request_irq for msix_mbx failed: %d\n", err);
  1033. goto free_queue_irqs;
  1034. }
  1035. return 0;
  1036. free_queue_irqs:
  1037. for (i = vector - 1; i >= 0; i--)
  1038. free_irq(adapter->msix_entries[--vector].vector,
  1039. &(adapter->q_vector[i]));
  1040. pci_disable_msix(adapter->pdev);
  1041. kfree(adapter->msix_entries);
  1042. adapter->msix_entries = NULL;
  1043. return err;
  1044. }
  1045. static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
  1046. {
  1047. int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1048. for (i = 0; i < q_vectors; i++) {
  1049. struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
  1050. bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
  1051. bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
  1052. q_vector->rxr_count = 0;
  1053. q_vector->txr_count = 0;
  1054. q_vector->eitr = adapter->eitr_param;
  1055. }
  1056. }
  1057. /**
  1058. * ixgbevf_request_irq - initialize interrupts
  1059. * @adapter: board private structure
  1060. *
  1061. * Attempts to configure interrupts using the best available
  1062. * capabilities of the hardware and kernel.
  1063. **/
  1064. static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
  1065. {
  1066. int err = 0;
  1067. err = ixgbevf_request_msix_irqs(adapter);
  1068. if (err)
  1069. hw_dbg(&adapter->hw,
  1070. "request_irq failed, Error %d\n", err);
  1071. return err;
  1072. }
  1073. static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
  1074. {
  1075. struct net_device *netdev = adapter->netdev;
  1076. int i, q_vectors;
  1077. q_vectors = adapter->num_msix_vectors;
  1078. i = q_vectors - 1;
  1079. free_irq(adapter->msix_entries[i].vector, netdev);
  1080. i--;
  1081. for (; i >= 0; i--) {
  1082. free_irq(adapter->msix_entries[i].vector,
  1083. adapter->q_vector[i]);
  1084. }
  1085. ixgbevf_reset_q_vectors(adapter);
  1086. }
  1087. /**
  1088. * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
  1089. * @adapter: board private structure
  1090. **/
  1091. static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
  1092. {
  1093. int i;
  1094. struct ixgbe_hw *hw = &adapter->hw;
  1095. IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
  1096. IXGBE_WRITE_FLUSH(hw);
  1097. for (i = 0; i < adapter->num_msix_vectors; i++)
  1098. synchronize_irq(adapter->msix_entries[i].vector);
  1099. }
  1100. /**
  1101. * ixgbevf_irq_enable - Enable default interrupt generation settings
  1102. * @adapter: board private structure
  1103. **/
  1104. static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
  1105. bool queues, bool flush)
  1106. {
  1107. struct ixgbe_hw *hw = &adapter->hw;
  1108. u32 mask;
  1109. u64 qmask;
  1110. mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
  1111. qmask = ~0;
  1112. IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
  1113. if (queues)
  1114. ixgbevf_irq_enable_queues(adapter, qmask);
  1115. if (flush)
  1116. IXGBE_WRITE_FLUSH(hw);
  1117. }
  1118. /**
  1119. * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
  1120. * @adapter: board private structure
  1121. *
  1122. * Configure the Tx unit of the MAC after a reset.
  1123. **/
  1124. static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
  1125. {
  1126. u64 tdba;
  1127. struct ixgbe_hw *hw = &adapter->hw;
  1128. u32 i, j, tdlen, txctrl;
  1129. /* Setup the HW Tx Head and Tail descriptor pointers */
  1130. for (i = 0; i < adapter->num_tx_queues; i++) {
  1131. struct ixgbevf_ring *ring = &adapter->tx_ring[i];
  1132. j = ring->reg_idx;
  1133. tdba = ring->dma;
  1134. tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
  1135. IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
  1136. (tdba & DMA_BIT_MASK(32)));
  1137. IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
  1138. IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
  1139. IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
  1140. IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
  1141. adapter->tx_ring[i].head = IXGBE_VFTDH(j);
  1142. adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
  1143. /* Disable Tx Head Writeback RO bit, since this hoses
  1144. * bookkeeping if things aren't delivered in order.
  1145. */
  1146. txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
  1147. txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
  1148. IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
  1149. }
  1150. }
  1151. #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
  1152. static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
  1153. {
  1154. struct ixgbevf_ring *rx_ring;
  1155. struct ixgbe_hw *hw = &adapter->hw;
  1156. u32 srrctl;
  1157. rx_ring = &adapter->rx_ring[index];
  1158. srrctl = IXGBE_SRRCTL_DROP_EN;
  1159. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  1160. u16 bufsz = IXGBEVF_RXBUFFER_2048;
  1161. /* grow the amount we can receive on large page machines */
  1162. if (bufsz < (PAGE_SIZE / 2))
  1163. bufsz = (PAGE_SIZE / 2);
  1164. /* cap the bufsz at our largest descriptor size */
  1165. bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
  1166. srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1167. srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
  1168. srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
  1169. IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
  1170. IXGBE_SRRCTL_BSIZEHDR_MASK);
  1171. } else {
  1172. srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
  1173. if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
  1174. srrctl |= IXGBEVF_RXBUFFER_2048 >>
  1175. IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1176. else
  1177. srrctl |= rx_ring->rx_buf_len >>
  1178. IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1179. }
  1180. IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
  1181. }
  1182. /**
  1183. * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
  1184. * @adapter: board private structure
  1185. *
  1186. * Configure the Rx unit of the MAC after a reset.
  1187. **/
  1188. static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
  1189. {
  1190. u64 rdba;
  1191. struct ixgbe_hw *hw = &adapter->hw;
  1192. struct net_device *netdev = adapter->netdev;
  1193. int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
  1194. int i, j;
  1195. u32 rdlen;
  1196. int rx_buf_len;
  1197. /* Decide whether to use packet split mode or not */
  1198. if (netdev->mtu > ETH_DATA_LEN) {
  1199. if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
  1200. adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
  1201. else
  1202. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  1203. } else {
  1204. if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
  1205. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  1206. else
  1207. adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
  1208. }
  1209. /* Set the RX buffer length according to the mode */
  1210. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  1211. /* PSRTYPE must be initialized in 82599 */
  1212. u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
  1213. IXGBE_PSRTYPE_UDPHDR |
  1214. IXGBE_PSRTYPE_IPV4HDR |
  1215. IXGBE_PSRTYPE_IPV6HDR |
  1216. IXGBE_PSRTYPE_L2HDR;
  1217. IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
  1218. rx_buf_len = IXGBEVF_RX_HDR_SIZE;
  1219. } else {
  1220. IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
  1221. if (netdev->mtu <= ETH_DATA_LEN)
  1222. rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
  1223. else
  1224. rx_buf_len = ALIGN(max_frame, 1024);
  1225. }
  1226. rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
  1227. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1228. * the Base and Length of the Rx Descriptor Ring */
  1229. for (i = 0; i < adapter->num_rx_queues; i++) {
  1230. rdba = adapter->rx_ring[i].dma;
  1231. j = adapter->rx_ring[i].reg_idx;
  1232. IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
  1233. (rdba & DMA_BIT_MASK(32)));
  1234. IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
  1235. IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
  1236. IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
  1237. IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
  1238. adapter->rx_ring[i].head = IXGBE_VFRDH(j);
  1239. adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
  1240. adapter->rx_ring[i].rx_buf_len = rx_buf_len;
  1241. ixgbevf_configure_srrctl(adapter, j);
  1242. }
  1243. }
  1244. static void ixgbevf_vlan_rx_register(struct net_device *netdev,
  1245. struct vlan_group *grp)
  1246. {
  1247. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1248. struct ixgbe_hw *hw = &adapter->hw;
  1249. int i, j;
  1250. u32 ctrl;
  1251. adapter->vlgrp = grp;
  1252. for (i = 0; i < adapter->num_rx_queues; i++) {
  1253. j = adapter->rx_ring[i].reg_idx;
  1254. ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
  1255. ctrl |= IXGBE_RXDCTL_VME;
  1256. IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
  1257. }
  1258. }
  1259. static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
  1260. {
  1261. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1262. struct ixgbe_hw *hw = &adapter->hw;
  1263. /* add VID to filter table */
  1264. if (hw->mac.ops.set_vfta)
  1265. hw->mac.ops.set_vfta(hw, vid, 0, true);
  1266. }
  1267. static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
  1268. {
  1269. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1270. struct ixgbe_hw *hw = &adapter->hw;
  1271. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  1272. ixgbevf_irq_disable(adapter);
  1273. vlan_group_set_device(adapter->vlgrp, vid, NULL);
  1274. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  1275. ixgbevf_irq_enable(adapter, true, true);
  1276. /* remove VID from filter table */
  1277. if (hw->mac.ops.set_vfta)
  1278. hw->mac.ops.set_vfta(hw, vid, 0, false);
  1279. }
  1280. static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
  1281. {
  1282. ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  1283. if (adapter->vlgrp) {
  1284. u16 vid;
  1285. for (vid = 0; vid < VLAN_N_VID; vid++) {
  1286. if (!vlan_group_get_device(adapter->vlgrp, vid))
  1287. continue;
  1288. ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
  1289. }
  1290. }
  1291. }
  1292. /**
  1293. * ixgbevf_set_rx_mode - Multicast set
  1294. * @netdev: network interface device structure
  1295. *
  1296. * The set_rx_method entry point is called whenever the multicast address
  1297. * list or the network interface flags are updated. This routine is
  1298. * responsible for configuring the hardware for proper multicast mode.
  1299. **/
  1300. static void ixgbevf_set_rx_mode(struct net_device *netdev)
  1301. {
  1302. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1303. struct ixgbe_hw *hw = &adapter->hw;
  1304. /* reprogram multicast list */
  1305. if (hw->mac.ops.update_mc_addr_list)
  1306. hw->mac.ops.update_mc_addr_list(hw, netdev);
  1307. }
  1308. static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
  1309. {
  1310. int q_idx;
  1311. struct ixgbevf_q_vector *q_vector;
  1312. int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1313. for (q_idx = 0; q_idx < q_vectors; q_idx++) {
  1314. struct napi_struct *napi;
  1315. q_vector = adapter->q_vector[q_idx];
  1316. if (!q_vector->rxr_count)
  1317. continue;
  1318. napi = &q_vector->napi;
  1319. if (q_vector->rxr_count > 1)
  1320. napi->poll = &ixgbevf_clean_rxonly_many;
  1321. napi_enable(napi);
  1322. }
  1323. }
  1324. static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
  1325. {
  1326. int q_idx;
  1327. struct ixgbevf_q_vector *q_vector;
  1328. int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1329. for (q_idx = 0; q_idx < q_vectors; q_idx++) {
  1330. q_vector = adapter->q_vector[q_idx];
  1331. if (!q_vector->rxr_count)
  1332. continue;
  1333. napi_disable(&q_vector->napi);
  1334. }
  1335. }
  1336. static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
  1337. {
  1338. struct net_device *netdev = adapter->netdev;
  1339. int i;
  1340. ixgbevf_set_rx_mode(netdev);
  1341. ixgbevf_restore_vlan(adapter);
  1342. ixgbevf_configure_tx(adapter);
  1343. ixgbevf_configure_rx(adapter);
  1344. for (i = 0; i < adapter->num_rx_queues; i++) {
  1345. struct ixgbevf_ring *ring = &adapter->rx_ring[i];
  1346. ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
  1347. ring->next_to_use = ring->count - 1;
  1348. writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
  1349. }
  1350. }
  1351. #define IXGBE_MAX_RX_DESC_POLL 10
  1352. static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
  1353. int rxr)
  1354. {
  1355. struct ixgbe_hw *hw = &adapter->hw;
  1356. int j = adapter->rx_ring[rxr].reg_idx;
  1357. int k;
  1358. for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
  1359. if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
  1360. break;
  1361. else
  1362. msleep(1);
  1363. }
  1364. if (k >= IXGBE_MAX_RX_DESC_POLL) {
  1365. hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
  1366. "not set within the polling period\n", rxr);
  1367. }
  1368. ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
  1369. (adapter->rx_ring[rxr].count - 1));
  1370. }
  1371. static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
  1372. {
  1373. /* Only save pre-reset stats if there are some */
  1374. if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
  1375. adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
  1376. adapter->stats.base_vfgprc;
  1377. adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
  1378. adapter->stats.base_vfgptc;
  1379. adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
  1380. adapter->stats.base_vfgorc;
  1381. adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
  1382. adapter->stats.base_vfgotc;
  1383. adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
  1384. adapter->stats.base_vfmprc;
  1385. }
  1386. }
  1387. static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
  1388. {
  1389. struct ixgbe_hw *hw = &adapter->hw;
  1390. adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
  1391. adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
  1392. adapter->stats.last_vfgorc |=
  1393. (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
  1394. adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
  1395. adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
  1396. adapter->stats.last_vfgotc |=
  1397. (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
  1398. adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
  1399. adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
  1400. adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
  1401. adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
  1402. adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
  1403. adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
  1404. }
  1405. static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
  1406. {
  1407. struct net_device *netdev = adapter->netdev;
  1408. struct ixgbe_hw *hw = &adapter->hw;
  1409. int i, j = 0;
  1410. int num_rx_rings = adapter->num_rx_queues;
  1411. u32 txdctl, rxdctl;
  1412. for (i = 0; i < adapter->num_tx_queues; i++) {
  1413. j = adapter->tx_ring[i].reg_idx;
  1414. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1415. /* enable WTHRESH=8 descriptors, to encourage burst writeback */
  1416. txdctl |= (8 << 16);
  1417. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
  1418. }
  1419. for (i = 0; i < adapter->num_tx_queues; i++) {
  1420. j = adapter->tx_ring[i].reg_idx;
  1421. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1422. txdctl |= IXGBE_TXDCTL_ENABLE;
  1423. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
  1424. }
  1425. for (i = 0; i < num_rx_rings; i++) {
  1426. j = adapter->rx_ring[i].reg_idx;
  1427. rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
  1428. rxdctl |= IXGBE_RXDCTL_ENABLE;
  1429. IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
  1430. ixgbevf_rx_desc_queue_enable(adapter, i);
  1431. }
  1432. ixgbevf_configure_msix(adapter);
  1433. if (hw->mac.ops.set_rar) {
  1434. if (is_valid_ether_addr(hw->mac.addr))
  1435. hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
  1436. else
  1437. hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
  1438. }
  1439. clear_bit(__IXGBEVF_DOWN, &adapter->state);
  1440. ixgbevf_napi_enable_all(adapter);
  1441. /* enable transmits */
  1442. netif_tx_start_all_queues(netdev);
  1443. ixgbevf_save_reset_stats(adapter);
  1444. ixgbevf_init_last_counter_stats(adapter);
  1445. /* bring the link up in the watchdog, this could race with our first
  1446. * link up interrupt but shouldn't be a problem */
  1447. adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
  1448. adapter->link_check_timeout = jiffies;
  1449. mod_timer(&adapter->watchdog_timer, jiffies);
  1450. return 0;
  1451. }
  1452. int ixgbevf_up(struct ixgbevf_adapter *adapter)
  1453. {
  1454. int err;
  1455. struct ixgbe_hw *hw = &adapter->hw;
  1456. ixgbevf_configure(adapter);
  1457. err = ixgbevf_up_complete(adapter);
  1458. /* clear any pending interrupts, may auto mask */
  1459. IXGBE_READ_REG(hw, IXGBE_VTEICR);
  1460. ixgbevf_irq_enable(adapter, true, true);
  1461. return err;
  1462. }
  1463. /**
  1464. * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
  1465. * @adapter: board private structure
  1466. * @rx_ring: ring to free buffers from
  1467. **/
  1468. static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
  1469. struct ixgbevf_ring *rx_ring)
  1470. {
  1471. struct pci_dev *pdev = adapter->pdev;
  1472. unsigned long size;
  1473. unsigned int i;
  1474. if (!rx_ring->rx_buffer_info)
  1475. return;
  1476. /* Free all the Rx ring sk_buffs */
  1477. for (i = 0; i < rx_ring->count; i++) {
  1478. struct ixgbevf_rx_buffer *rx_buffer_info;
  1479. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  1480. if (rx_buffer_info->dma) {
  1481. dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
  1482. rx_ring->rx_buf_len,
  1483. DMA_FROM_DEVICE);
  1484. rx_buffer_info->dma = 0;
  1485. }
  1486. if (rx_buffer_info->skb) {
  1487. struct sk_buff *skb = rx_buffer_info->skb;
  1488. rx_buffer_info->skb = NULL;
  1489. do {
  1490. struct sk_buff *this = skb;
  1491. skb = skb->prev;
  1492. dev_kfree_skb(this);
  1493. } while (skb);
  1494. }
  1495. if (!rx_buffer_info->page)
  1496. continue;
  1497. dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
  1498. PAGE_SIZE / 2, DMA_FROM_DEVICE);
  1499. rx_buffer_info->page_dma = 0;
  1500. put_page(rx_buffer_info->page);
  1501. rx_buffer_info->page = NULL;
  1502. rx_buffer_info->page_offset = 0;
  1503. }
  1504. size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
  1505. memset(rx_ring->rx_buffer_info, 0, size);
  1506. /* Zero out the descriptor ring */
  1507. memset(rx_ring->desc, 0, rx_ring->size);
  1508. rx_ring->next_to_clean = 0;
  1509. rx_ring->next_to_use = 0;
  1510. if (rx_ring->head)
  1511. writel(0, adapter->hw.hw_addr + rx_ring->head);
  1512. if (rx_ring->tail)
  1513. writel(0, adapter->hw.hw_addr + rx_ring->tail);
  1514. }
  1515. /**
  1516. * ixgbevf_clean_tx_ring - Free Tx Buffers
  1517. * @adapter: board private structure
  1518. * @tx_ring: ring to be cleaned
  1519. **/
  1520. static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
  1521. struct ixgbevf_ring *tx_ring)
  1522. {
  1523. struct ixgbevf_tx_buffer *tx_buffer_info;
  1524. unsigned long size;
  1525. unsigned int i;
  1526. if (!tx_ring->tx_buffer_info)
  1527. return;
  1528. /* Free all the Tx ring sk_buffs */
  1529. for (i = 0; i < tx_ring->count; i++) {
  1530. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  1531. ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
  1532. }
  1533. size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
  1534. memset(tx_ring->tx_buffer_info, 0, size);
  1535. memset(tx_ring->desc, 0, tx_ring->size);
  1536. tx_ring->next_to_use = 0;
  1537. tx_ring->next_to_clean = 0;
  1538. if (tx_ring->head)
  1539. writel(0, adapter->hw.hw_addr + tx_ring->head);
  1540. if (tx_ring->tail)
  1541. writel(0, adapter->hw.hw_addr + tx_ring->tail);
  1542. }
  1543. /**
  1544. * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
  1545. * @adapter: board private structure
  1546. **/
  1547. static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
  1548. {
  1549. int i;
  1550. for (i = 0; i < adapter->num_rx_queues; i++)
  1551. ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1552. }
  1553. /**
  1554. * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
  1555. * @adapter: board private structure
  1556. **/
  1557. static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
  1558. {
  1559. int i;
  1560. for (i = 0; i < adapter->num_tx_queues; i++)
  1561. ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1562. }
  1563. void ixgbevf_down(struct ixgbevf_adapter *adapter)
  1564. {
  1565. struct net_device *netdev = adapter->netdev;
  1566. struct ixgbe_hw *hw = &adapter->hw;
  1567. u32 txdctl;
  1568. int i, j;
  1569. /* signal that we are down to the interrupt handler */
  1570. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1571. /* disable receives */
  1572. netif_tx_disable(netdev);
  1573. msleep(10);
  1574. netif_tx_stop_all_queues(netdev);
  1575. ixgbevf_irq_disable(adapter);
  1576. ixgbevf_napi_disable_all(adapter);
  1577. del_timer_sync(&adapter->watchdog_timer);
  1578. /* can't call flush scheduled work here because it can deadlock
  1579. * if linkwatch_event tries to acquire the rtnl_lock which we are
  1580. * holding */
  1581. while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
  1582. msleep(1);
  1583. /* disable transmits in the hardware now that interrupts are off */
  1584. for (i = 0; i < adapter->num_tx_queues; i++) {
  1585. j = adapter->tx_ring[i].reg_idx;
  1586. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1587. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
  1588. (txdctl & ~IXGBE_TXDCTL_ENABLE));
  1589. }
  1590. netif_carrier_off(netdev);
  1591. if (!pci_channel_offline(adapter->pdev))
  1592. ixgbevf_reset(adapter);
  1593. ixgbevf_clean_all_tx_rings(adapter);
  1594. ixgbevf_clean_all_rx_rings(adapter);
  1595. }
  1596. void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
  1597. {
  1598. struct ixgbe_hw *hw = &adapter->hw;
  1599. WARN_ON(in_interrupt());
  1600. while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
  1601. msleep(1);
  1602. /*
  1603. * Check if PF is up before re-init. If not then skip until
  1604. * later when the PF is up and ready to service requests from
  1605. * the VF via mailbox. If the VF is up and running then the
  1606. * watchdog task will continue to schedule reset tasks until
  1607. * the PF is up and running.
  1608. */
  1609. if (!hw->mac.ops.reset_hw(hw)) {
  1610. ixgbevf_down(adapter);
  1611. ixgbevf_up(adapter);
  1612. }
  1613. clear_bit(__IXGBEVF_RESETTING, &adapter->state);
  1614. }
  1615. void ixgbevf_reset(struct ixgbevf_adapter *adapter)
  1616. {
  1617. struct ixgbe_hw *hw = &adapter->hw;
  1618. struct net_device *netdev = adapter->netdev;
  1619. if (hw->mac.ops.reset_hw(hw))
  1620. hw_dbg(hw, "PF still resetting\n");
  1621. else
  1622. hw->mac.ops.init_hw(hw);
  1623. if (is_valid_ether_addr(adapter->hw.mac.addr)) {
  1624. memcpy(netdev->dev_addr, adapter->hw.mac.addr,
  1625. netdev->addr_len);
  1626. memcpy(netdev->perm_addr, adapter->hw.mac.addr,
  1627. netdev->addr_len);
  1628. }
  1629. }
  1630. static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
  1631. int vectors)
  1632. {
  1633. int err, vector_threshold;
  1634. /* We'll want at least 3 (vector_threshold):
  1635. * 1) TxQ[0] Cleanup
  1636. * 2) RxQ[0] Cleanup
  1637. * 3) Other (Link Status Change, etc.)
  1638. */
  1639. vector_threshold = MIN_MSIX_COUNT;
  1640. /* The more we get, the more we will assign to Tx/Rx Cleanup
  1641. * for the separate queues...where Rx Cleanup >= Tx Cleanup.
  1642. * Right now, we simply care about how many we'll get; we'll
  1643. * set them up later while requesting irq's.
  1644. */
  1645. while (vectors >= vector_threshold) {
  1646. err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
  1647. vectors);
  1648. if (!err) /* Success in acquiring all requested vectors. */
  1649. break;
  1650. else if (err < 0)
  1651. vectors = 0; /* Nasty failure, quit now */
  1652. else /* err == number of vectors we should try again with */
  1653. vectors = err;
  1654. }
  1655. if (vectors < vector_threshold) {
  1656. /* Can't allocate enough MSI-X interrupts? Oh well.
  1657. * This just means we'll go with either a single MSI
  1658. * vector or fall back to legacy interrupts.
  1659. */
  1660. hw_dbg(&adapter->hw,
  1661. "Unable to allocate MSI-X interrupts\n");
  1662. kfree(adapter->msix_entries);
  1663. adapter->msix_entries = NULL;
  1664. } else {
  1665. /*
  1666. * Adjust for only the vectors we'll use, which is minimum
  1667. * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
  1668. * vectors we were allocated.
  1669. */
  1670. adapter->num_msix_vectors = vectors;
  1671. }
  1672. }
  1673. /*
  1674. * ixgbe_set_num_queues: Allocate queues for device, feature dependant
  1675. * @adapter: board private structure to initialize
  1676. *
  1677. * This is the top level queue allocation routine. The order here is very
  1678. * important, starting with the "most" number of features turned on at once,
  1679. * and ending with the smallest set of features. This way large combinations
  1680. * can be allocated if they're turned on, and smaller combinations are the
  1681. * fallthrough conditions.
  1682. *
  1683. **/
  1684. static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
  1685. {
  1686. /* Start with base case */
  1687. adapter->num_rx_queues = 1;
  1688. adapter->num_tx_queues = 1;
  1689. adapter->num_rx_pools = adapter->num_rx_queues;
  1690. adapter->num_rx_queues_per_pool = 1;
  1691. }
  1692. /**
  1693. * ixgbevf_alloc_queues - Allocate memory for all rings
  1694. * @adapter: board private structure to initialize
  1695. *
  1696. * We allocate one ring per queue at run-time since we don't know the
  1697. * number of queues at compile-time. The polling_netdev array is
  1698. * intended for Multiqueue, but should work fine with a single queue.
  1699. **/
  1700. static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
  1701. {
  1702. int i;
  1703. adapter->tx_ring = kcalloc(adapter->num_tx_queues,
  1704. sizeof(struct ixgbevf_ring), GFP_KERNEL);
  1705. if (!adapter->tx_ring)
  1706. goto err_tx_ring_allocation;
  1707. adapter->rx_ring = kcalloc(adapter->num_rx_queues,
  1708. sizeof(struct ixgbevf_ring), GFP_KERNEL);
  1709. if (!adapter->rx_ring)
  1710. goto err_rx_ring_allocation;
  1711. for (i = 0; i < adapter->num_tx_queues; i++) {
  1712. adapter->tx_ring[i].count = adapter->tx_ring_count;
  1713. adapter->tx_ring[i].queue_index = i;
  1714. adapter->tx_ring[i].reg_idx = i;
  1715. }
  1716. for (i = 0; i < adapter->num_rx_queues; i++) {
  1717. adapter->rx_ring[i].count = adapter->rx_ring_count;
  1718. adapter->rx_ring[i].queue_index = i;
  1719. adapter->rx_ring[i].reg_idx = i;
  1720. }
  1721. return 0;
  1722. err_rx_ring_allocation:
  1723. kfree(adapter->tx_ring);
  1724. err_tx_ring_allocation:
  1725. return -ENOMEM;
  1726. }
  1727. /**
  1728. * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
  1729. * @adapter: board private structure to initialize
  1730. *
  1731. * Attempt to configure the interrupts using the best available
  1732. * capabilities of the hardware and the kernel.
  1733. **/
  1734. static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
  1735. {
  1736. int err = 0;
  1737. int vector, v_budget;
  1738. /*
  1739. * It's easy to be greedy for MSI-X vectors, but it really
  1740. * doesn't do us much good if we have a lot more vectors
  1741. * than CPU's. So let's be conservative and only ask for
  1742. * (roughly) twice the number of vectors as there are CPU's.
  1743. */
  1744. v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
  1745. (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
  1746. /* A failure in MSI-X entry allocation isn't fatal, but it does
  1747. * mean we disable MSI-X capabilities of the adapter. */
  1748. adapter->msix_entries = kcalloc(v_budget,
  1749. sizeof(struct msix_entry), GFP_KERNEL);
  1750. if (!adapter->msix_entries) {
  1751. err = -ENOMEM;
  1752. goto out;
  1753. }
  1754. for (vector = 0; vector < v_budget; vector++)
  1755. adapter->msix_entries[vector].entry = vector;
  1756. ixgbevf_acquire_msix_vectors(adapter, v_budget);
  1757. out:
  1758. return err;
  1759. }
  1760. /**
  1761. * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
  1762. * @adapter: board private structure to initialize
  1763. *
  1764. * We allocate one q_vector per queue interrupt. If allocation fails we
  1765. * return -ENOMEM.
  1766. **/
  1767. static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
  1768. {
  1769. int q_idx, num_q_vectors;
  1770. struct ixgbevf_q_vector *q_vector;
  1771. int napi_vectors;
  1772. int (*poll)(struct napi_struct *, int);
  1773. num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1774. napi_vectors = adapter->num_rx_queues;
  1775. poll = &ixgbevf_clean_rxonly;
  1776. for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
  1777. q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
  1778. if (!q_vector)
  1779. goto err_out;
  1780. q_vector->adapter = adapter;
  1781. q_vector->v_idx = q_idx;
  1782. q_vector->eitr = adapter->eitr_param;
  1783. if (q_idx < napi_vectors)
  1784. netif_napi_add(adapter->netdev, &q_vector->napi,
  1785. (*poll), 64);
  1786. adapter->q_vector[q_idx] = q_vector;
  1787. }
  1788. return 0;
  1789. err_out:
  1790. while (q_idx) {
  1791. q_idx--;
  1792. q_vector = adapter->q_vector[q_idx];
  1793. netif_napi_del(&q_vector->napi);
  1794. kfree(q_vector);
  1795. adapter->q_vector[q_idx] = NULL;
  1796. }
  1797. return -ENOMEM;
  1798. }
  1799. /**
  1800. * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
  1801. * @adapter: board private structure to initialize
  1802. *
  1803. * This function frees the memory allocated to the q_vectors. In addition if
  1804. * NAPI is enabled it will delete any references to the NAPI struct prior
  1805. * to freeing the q_vector.
  1806. **/
  1807. static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
  1808. {
  1809. int q_idx, num_q_vectors;
  1810. int napi_vectors;
  1811. num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1812. napi_vectors = adapter->num_rx_queues;
  1813. for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
  1814. struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
  1815. adapter->q_vector[q_idx] = NULL;
  1816. if (q_idx < napi_vectors)
  1817. netif_napi_del(&q_vector->napi);
  1818. kfree(q_vector);
  1819. }
  1820. }
  1821. /**
  1822. * ixgbevf_reset_interrupt_capability - Reset MSIX setup
  1823. * @adapter: board private structure
  1824. *
  1825. **/
  1826. static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
  1827. {
  1828. pci_disable_msix(adapter->pdev);
  1829. kfree(adapter->msix_entries);
  1830. adapter->msix_entries = NULL;
  1831. }
  1832. /**
  1833. * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
  1834. * @adapter: board private structure to initialize
  1835. *
  1836. **/
  1837. static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
  1838. {
  1839. int err;
  1840. /* Number of supported queues */
  1841. ixgbevf_set_num_queues(adapter);
  1842. err = ixgbevf_set_interrupt_capability(adapter);
  1843. if (err) {
  1844. hw_dbg(&adapter->hw,
  1845. "Unable to setup interrupt capabilities\n");
  1846. goto err_set_interrupt;
  1847. }
  1848. err = ixgbevf_alloc_q_vectors(adapter);
  1849. if (err) {
  1850. hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
  1851. "vectors\n");
  1852. goto err_alloc_q_vectors;
  1853. }
  1854. err = ixgbevf_alloc_queues(adapter);
  1855. if (err) {
  1856. printk(KERN_ERR "Unable to allocate memory for queues\n");
  1857. goto err_alloc_queues;
  1858. }
  1859. hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
  1860. "Tx Queue count = %u\n",
  1861. (adapter->num_rx_queues > 1) ? "Enabled" :
  1862. "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
  1863. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1864. return 0;
  1865. err_alloc_queues:
  1866. ixgbevf_free_q_vectors(adapter);
  1867. err_alloc_q_vectors:
  1868. ixgbevf_reset_interrupt_capability(adapter);
  1869. err_set_interrupt:
  1870. return err;
  1871. }
  1872. /**
  1873. * ixgbevf_sw_init - Initialize general software structures
  1874. * (struct ixgbevf_adapter)
  1875. * @adapter: board private structure to initialize
  1876. *
  1877. * ixgbevf_sw_init initializes the Adapter private data structure.
  1878. * Fields are initialized based on PCI device information and
  1879. * OS network device settings (MTU size).
  1880. **/
  1881. static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
  1882. {
  1883. struct ixgbe_hw *hw = &adapter->hw;
  1884. struct pci_dev *pdev = adapter->pdev;
  1885. int err;
  1886. /* PCI config space info */
  1887. hw->vendor_id = pdev->vendor;
  1888. hw->device_id = pdev->device;
  1889. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  1890. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  1891. hw->subsystem_device_id = pdev->subsystem_device;
  1892. hw->mbx.ops.init_params(hw);
  1893. hw->mac.max_tx_queues = MAX_TX_QUEUES;
  1894. hw->mac.max_rx_queues = MAX_RX_QUEUES;
  1895. err = hw->mac.ops.reset_hw(hw);
  1896. if (err) {
  1897. dev_info(&pdev->dev,
  1898. "PF still in reset state, assigning new address\n");
  1899. dev_hw_addr_random(adapter->netdev, hw->mac.addr);
  1900. } else {
  1901. err = hw->mac.ops.init_hw(hw);
  1902. if (err) {
  1903. printk(KERN_ERR "init_shared_code failed: %d\n", err);
  1904. goto out;
  1905. }
  1906. }
  1907. /* Enable dynamic interrupt throttling rates */
  1908. adapter->eitr_param = 20000;
  1909. adapter->itr_setting = 1;
  1910. /* set defaults for eitr in MegaBytes */
  1911. adapter->eitr_low = 10;
  1912. adapter->eitr_high = 20;
  1913. /* set default ring sizes */
  1914. adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
  1915. adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
  1916. /* enable rx csum by default */
  1917. adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
  1918. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1919. out:
  1920. return err;
  1921. }
  1922. #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
  1923. { \
  1924. u32 current_counter = IXGBE_READ_REG(hw, reg); \
  1925. if (current_counter < last_counter) \
  1926. counter += 0x100000000LL; \
  1927. last_counter = current_counter; \
  1928. counter &= 0xFFFFFFFF00000000LL; \
  1929. counter |= current_counter; \
  1930. }
  1931. #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
  1932. { \
  1933. u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
  1934. u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
  1935. u64 current_counter = (current_counter_msb << 32) | \
  1936. current_counter_lsb; \
  1937. if (current_counter < last_counter) \
  1938. counter += 0x1000000000LL; \
  1939. last_counter = current_counter; \
  1940. counter &= 0xFFFFFFF000000000LL; \
  1941. counter |= current_counter; \
  1942. }
  1943. /**
  1944. * ixgbevf_update_stats - Update the board statistics counters.
  1945. * @adapter: board private structure
  1946. **/
  1947. void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
  1948. {
  1949. struct ixgbe_hw *hw = &adapter->hw;
  1950. UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
  1951. adapter->stats.vfgprc);
  1952. UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
  1953. adapter->stats.vfgptc);
  1954. UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
  1955. adapter->stats.last_vfgorc,
  1956. adapter->stats.vfgorc);
  1957. UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
  1958. adapter->stats.last_vfgotc,
  1959. adapter->stats.vfgotc);
  1960. UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
  1961. adapter->stats.vfmprc);
  1962. /* Fill out the OS statistics structure */
  1963. adapter->netdev->stats.multicast = adapter->stats.vfmprc -
  1964. adapter->stats.base_vfmprc;
  1965. }
  1966. /**
  1967. * ixgbevf_watchdog - Timer Call-back
  1968. * @data: pointer to adapter cast into an unsigned long
  1969. **/
  1970. static void ixgbevf_watchdog(unsigned long data)
  1971. {
  1972. struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
  1973. struct ixgbe_hw *hw = &adapter->hw;
  1974. u64 eics = 0;
  1975. int i;
  1976. /*
  1977. * Do the watchdog outside of interrupt context due to the lovely
  1978. * delays that some of the newer hardware requires
  1979. */
  1980. if (test_bit(__IXGBEVF_DOWN, &adapter->state))
  1981. goto watchdog_short_circuit;
  1982. /* get one bit for every active tx/rx interrupt vector */
  1983. for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
  1984. struct ixgbevf_q_vector *qv = adapter->q_vector[i];
  1985. if (qv->rxr_count || qv->txr_count)
  1986. eics |= (1 << i);
  1987. }
  1988. IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
  1989. watchdog_short_circuit:
  1990. schedule_work(&adapter->watchdog_task);
  1991. }
  1992. /**
  1993. * ixgbevf_tx_timeout - Respond to a Tx Hang
  1994. * @netdev: network interface device structure
  1995. **/
  1996. static void ixgbevf_tx_timeout(struct net_device *netdev)
  1997. {
  1998. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1999. /* Do the reset outside of interrupt context */
  2000. schedule_work(&adapter->reset_task);
  2001. }
  2002. static void ixgbevf_reset_task(struct work_struct *work)
  2003. {
  2004. struct ixgbevf_adapter *adapter;
  2005. adapter = container_of(work, struct ixgbevf_adapter, reset_task);
  2006. /* If we're already down or resetting, just bail */
  2007. if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
  2008. test_bit(__IXGBEVF_RESETTING, &adapter->state))
  2009. return;
  2010. adapter->tx_timeout_count++;
  2011. ixgbevf_reinit_locked(adapter);
  2012. }
  2013. /**
  2014. * ixgbevf_watchdog_task - worker thread to bring link up
  2015. * @work: pointer to work_struct containing our data
  2016. **/
  2017. static void ixgbevf_watchdog_task(struct work_struct *work)
  2018. {
  2019. struct ixgbevf_adapter *adapter = container_of(work,
  2020. struct ixgbevf_adapter,
  2021. watchdog_task);
  2022. struct net_device *netdev = adapter->netdev;
  2023. struct ixgbe_hw *hw = &adapter->hw;
  2024. u32 link_speed = adapter->link_speed;
  2025. bool link_up = adapter->link_up;
  2026. adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
  2027. /*
  2028. * Always check the link on the watchdog because we have
  2029. * no LSC interrupt
  2030. */
  2031. if (hw->mac.ops.check_link) {
  2032. if ((hw->mac.ops.check_link(hw, &link_speed,
  2033. &link_up, false)) != 0) {
  2034. adapter->link_up = link_up;
  2035. adapter->link_speed = link_speed;
  2036. netif_carrier_off(netdev);
  2037. netif_tx_stop_all_queues(netdev);
  2038. schedule_work(&adapter->reset_task);
  2039. goto pf_has_reset;
  2040. }
  2041. } else {
  2042. /* always assume link is up, if no check link
  2043. * function */
  2044. link_speed = IXGBE_LINK_SPEED_10GB_FULL;
  2045. link_up = true;
  2046. }
  2047. adapter->link_up = link_up;
  2048. adapter->link_speed = link_speed;
  2049. if (link_up) {
  2050. if (!netif_carrier_ok(netdev)) {
  2051. hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
  2052. (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
  2053. 10 : 1);
  2054. netif_carrier_on(netdev);
  2055. netif_tx_wake_all_queues(netdev);
  2056. } else {
  2057. /* Force detection of hung controller */
  2058. adapter->detect_tx_hung = true;
  2059. }
  2060. } else {
  2061. adapter->link_up = false;
  2062. adapter->link_speed = 0;
  2063. if (netif_carrier_ok(netdev)) {
  2064. hw_dbg(&adapter->hw, "NIC Link is Down\n");
  2065. netif_carrier_off(netdev);
  2066. netif_tx_stop_all_queues(netdev);
  2067. }
  2068. }
  2069. ixgbevf_update_stats(adapter);
  2070. pf_has_reset:
  2071. /* Force detection of hung controller every watchdog period */
  2072. adapter->detect_tx_hung = true;
  2073. /* Reset the timer */
  2074. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  2075. mod_timer(&adapter->watchdog_timer,
  2076. round_jiffies(jiffies + (2 * HZ)));
  2077. adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
  2078. }
  2079. /**
  2080. * ixgbevf_free_tx_resources - Free Tx Resources per Queue
  2081. * @adapter: board private structure
  2082. * @tx_ring: Tx descriptor ring for a specific queue
  2083. *
  2084. * Free all transmit software resources
  2085. **/
  2086. void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
  2087. struct ixgbevf_ring *tx_ring)
  2088. {
  2089. struct pci_dev *pdev = adapter->pdev;
  2090. ixgbevf_clean_tx_ring(adapter, tx_ring);
  2091. vfree(tx_ring->tx_buffer_info);
  2092. tx_ring->tx_buffer_info = NULL;
  2093. dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
  2094. tx_ring->dma);
  2095. tx_ring->desc = NULL;
  2096. }
  2097. /**
  2098. * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
  2099. * @adapter: board private structure
  2100. *
  2101. * Free all transmit software resources
  2102. **/
  2103. static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
  2104. {
  2105. int i;
  2106. for (i = 0; i < adapter->num_tx_queues; i++)
  2107. if (adapter->tx_ring[i].desc)
  2108. ixgbevf_free_tx_resources(adapter,
  2109. &adapter->tx_ring[i]);
  2110. }
  2111. /**
  2112. * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
  2113. * @adapter: board private structure
  2114. * @tx_ring: tx descriptor ring (for a specific queue) to setup
  2115. *
  2116. * Return 0 on success, negative on failure
  2117. **/
  2118. int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
  2119. struct ixgbevf_ring *tx_ring)
  2120. {
  2121. struct pci_dev *pdev = adapter->pdev;
  2122. int size;
  2123. size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
  2124. tx_ring->tx_buffer_info = vzalloc(size);
  2125. if (!tx_ring->tx_buffer_info)
  2126. goto err;
  2127. /* round up to nearest 4K */
  2128. tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
  2129. tx_ring->size = ALIGN(tx_ring->size, 4096);
  2130. tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
  2131. &tx_ring->dma, GFP_KERNEL);
  2132. if (!tx_ring->desc)
  2133. goto err;
  2134. tx_ring->next_to_use = 0;
  2135. tx_ring->next_to_clean = 0;
  2136. tx_ring->work_limit = tx_ring->count;
  2137. return 0;
  2138. err:
  2139. vfree(tx_ring->tx_buffer_info);
  2140. tx_ring->tx_buffer_info = NULL;
  2141. hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
  2142. "descriptor ring\n");
  2143. return -ENOMEM;
  2144. }
  2145. /**
  2146. * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
  2147. * @adapter: board private structure
  2148. *
  2149. * If this function returns with an error, then it's possible one or
  2150. * more of the rings is populated (while the rest are not). It is the
  2151. * callers duty to clean those orphaned rings.
  2152. *
  2153. * Return 0 on success, negative on failure
  2154. **/
  2155. static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
  2156. {
  2157. int i, err = 0;
  2158. for (i = 0; i < adapter->num_tx_queues; i++) {
  2159. err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  2160. if (!err)
  2161. continue;
  2162. hw_dbg(&adapter->hw,
  2163. "Allocation for Tx Queue %u failed\n", i);
  2164. break;
  2165. }
  2166. return err;
  2167. }
  2168. /**
  2169. * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
  2170. * @adapter: board private structure
  2171. * @rx_ring: rx descriptor ring (for a specific queue) to setup
  2172. *
  2173. * Returns 0 on success, negative on failure
  2174. **/
  2175. int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
  2176. struct ixgbevf_ring *rx_ring)
  2177. {
  2178. struct pci_dev *pdev = adapter->pdev;
  2179. int size;
  2180. size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
  2181. rx_ring->rx_buffer_info = vzalloc(size);
  2182. if (!rx_ring->rx_buffer_info) {
  2183. hw_dbg(&adapter->hw,
  2184. "Unable to vmalloc buffer memory for "
  2185. "the receive descriptor ring\n");
  2186. goto alloc_failed;
  2187. }
  2188. /* Round up to nearest 4K */
  2189. rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
  2190. rx_ring->size = ALIGN(rx_ring->size, 4096);
  2191. rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
  2192. &rx_ring->dma, GFP_KERNEL);
  2193. if (!rx_ring->desc) {
  2194. hw_dbg(&adapter->hw,
  2195. "Unable to allocate memory for "
  2196. "the receive descriptor ring\n");
  2197. vfree(rx_ring->rx_buffer_info);
  2198. rx_ring->rx_buffer_info = NULL;
  2199. goto alloc_failed;
  2200. }
  2201. rx_ring->next_to_clean = 0;
  2202. rx_ring->next_to_use = 0;
  2203. return 0;
  2204. alloc_failed:
  2205. return -ENOMEM;
  2206. }
  2207. /**
  2208. * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
  2209. * @adapter: board private structure
  2210. *
  2211. * If this function returns with an error, then it's possible one or
  2212. * more of the rings is populated (while the rest are not). It is the
  2213. * callers duty to clean those orphaned rings.
  2214. *
  2215. * Return 0 on success, negative on failure
  2216. **/
  2217. static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
  2218. {
  2219. int i, err = 0;
  2220. for (i = 0; i < adapter->num_rx_queues; i++) {
  2221. err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  2222. if (!err)
  2223. continue;
  2224. hw_dbg(&adapter->hw,
  2225. "Allocation for Rx Queue %u failed\n", i);
  2226. break;
  2227. }
  2228. return err;
  2229. }
  2230. /**
  2231. * ixgbevf_free_rx_resources - Free Rx Resources
  2232. * @adapter: board private structure
  2233. * @rx_ring: ring to clean the resources from
  2234. *
  2235. * Free all receive software resources
  2236. **/
  2237. void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
  2238. struct ixgbevf_ring *rx_ring)
  2239. {
  2240. struct pci_dev *pdev = adapter->pdev;
  2241. ixgbevf_clean_rx_ring(adapter, rx_ring);
  2242. vfree(rx_ring->rx_buffer_info);
  2243. rx_ring->rx_buffer_info = NULL;
  2244. dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
  2245. rx_ring->dma);
  2246. rx_ring->desc = NULL;
  2247. }
  2248. /**
  2249. * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
  2250. * @adapter: board private structure
  2251. *
  2252. * Free all receive software resources
  2253. **/
  2254. static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
  2255. {
  2256. int i;
  2257. for (i = 0; i < adapter->num_rx_queues; i++)
  2258. if (adapter->rx_ring[i].desc)
  2259. ixgbevf_free_rx_resources(adapter,
  2260. &adapter->rx_ring[i]);
  2261. }
  2262. /**
  2263. * ixgbevf_open - Called when a network interface is made active
  2264. * @netdev: network interface device structure
  2265. *
  2266. * Returns 0 on success, negative value on failure
  2267. *
  2268. * The open entry point is called when a network interface is made
  2269. * active by the system (IFF_UP). At this point all resources needed
  2270. * for transmit and receive operations are allocated, the interrupt
  2271. * handler is registered with the OS, the watchdog timer is started,
  2272. * and the stack is notified that the interface is ready.
  2273. **/
  2274. static int ixgbevf_open(struct net_device *netdev)
  2275. {
  2276. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2277. struct ixgbe_hw *hw = &adapter->hw;
  2278. int err;
  2279. /* disallow open during test */
  2280. if (test_bit(__IXGBEVF_TESTING, &adapter->state))
  2281. return -EBUSY;
  2282. if (hw->adapter_stopped) {
  2283. ixgbevf_reset(adapter);
  2284. /* if adapter is still stopped then PF isn't up and
  2285. * the vf can't start. */
  2286. if (hw->adapter_stopped) {
  2287. err = IXGBE_ERR_MBX;
  2288. printk(KERN_ERR "Unable to start - perhaps the PF"
  2289. " Driver isn't up yet\n");
  2290. goto err_setup_reset;
  2291. }
  2292. }
  2293. /* allocate transmit descriptors */
  2294. err = ixgbevf_setup_all_tx_resources(adapter);
  2295. if (err)
  2296. goto err_setup_tx;
  2297. /* allocate receive descriptors */
  2298. err = ixgbevf_setup_all_rx_resources(adapter);
  2299. if (err)
  2300. goto err_setup_rx;
  2301. ixgbevf_configure(adapter);
  2302. /*
  2303. * Map the Tx/Rx rings to the vectors we were allotted.
  2304. * if request_irq will be called in this function map_rings
  2305. * must be called *before* up_complete
  2306. */
  2307. ixgbevf_map_rings_to_vectors(adapter);
  2308. err = ixgbevf_up_complete(adapter);
  2309. if (err)
  2310. goto err_up;
  2311. /* clear any pending interrupts, may auto mask */
  2312. IXGBE_READ_REG(hw, IXGBE_VTEICR);
  2313. err = ixgbevf_request_irq(adapter);
  2314. if (err)
  2315. goto err_req_irq;
  2316. ixgbevf_irq_enable(adapter, true, true);
  2317. return 0;
  2318. err_req_irq:
  2319. ixgbevf_down(adapter);
  2320. err_up:
  2321. ixgbevf_free_irq(adapter);
  2322. err_setup_rx:
  2323. ixgbevf_free_all_rx_resources(adapter);
  2324. err_setup_tx:
  2325. ixgbevf_free_all_tx_resources(adapter);
  2326. ixgbevf_reset(adapter);
  2327. err_setup_reset:
  2328. return err;
  2329. }
  2330. /**
  2331. * ixgbevf_close - Disables a network interface
  2332. * @netdev: network interface device structure
  2333. *
  2334. * Returns 0, this is not allowed to fail
  2335. *
  2336. * The close entry point is called when an interface is de-activated
  2337. * by the OS. The hardware is still under the drivers control, but
  2338. * needs to be disabled. A global MAC reset is issued to stop the
  2339. * hardware, and all transmit and receive resources are freed.
  2340. **/
  2341. static int ixgbevf_close(struct net_device *netdev)
  2342. {
  2343. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2344. ixgbevf_down(adapter);
  2345. ixgbevf_free_irq(adapter);
  2346. ixgbevf_free_all_tx_resources(adapter);
  2347. ixgbevf_free_all_rx_resources(adapter);
  2348. return 0;
  2349. }
  2350. static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
  2351. struct ixgbevf_ring *tx_ring,
  2352. struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
  2353. {
  2354. struct ixgbe_adv_tx_context_desc *context_desc;
  2355. unsigned int i;
  2356. int err;
  2357. struct ixgbevf_tx_buffer *tx_buffer_info;
  2358. u32 vlan_macip_lens = 0, type_tucmd_mlhl;
  2359. u32 mss_l4len_idx, l4len;
  2360. if (skb_is_gso(skb)) {
  2361. if (skb_header_cloned(skb)) {
  2362. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2363. if (err)
  2364. return err;
  2365. }
  2366. l4len = tcp_hdrlen(skb);
  2367. *hdr_len += l4len;
  2368. if (skb->protocol == htons(ETH_P_IP)) {
  2369. struct iphdr *iph = ip_hdr(skb);
  2370. iph->tot_len = 0;
  2371. iph->check = 0;
  2372. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2373. iph->daddr, 0,
  2374. IPPROTO_TCP,
  2375. 0);
  2376. adapter->hw_tso_ctxt++;
  2377. } else if (skb_is_gso_v6(skb)) {
  2378. ipv6_hdr(skb)->payload_len = 0;
  2379. tcp_hdr(skb)->check =
  2380. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2381. &ipv6_hdr(skb)->daddr,
  2382. 0, IPPROTO_TCP, 0);
  2383. adapter->hw_tso6_ctxt++;
  2384. }
  2385. i = tx_ring->next_to_use;
  2386. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2387. context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
  2388. /* VLAN MACLEN IPLEN */
  2389. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2390. vlan_macip_lens |=
  2391. (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
  2392. vlan_macip_lens |= ((skb_network_offset(skb)) <<
  2393. IXGBE_ADVTXD_MACLEN_SHIFT);
  2394. *hdr_len += skb_network_offset(skb);
  2395. vlan_macip_lens |=
  2396. (skb_transport_header(skb) - skb_network_header(skb));
  2397. *hdr_len +=
  2398. (skb_transport_header(skb) - skb_network_header(skb));
  2399. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  2400. context_desc->seqnum_seed = 0;
  2401. /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
  2402. type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
  2403. IXGBE_ADVTXD_DTYP_CTXT);
  2404. if (skb->protocol == htons(ETH_P_IP))
  2405. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
  2406. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2407. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
  2408. /* MSS L4LEN IDX */
  2409. mss_l4len_idx =
  2410. (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
  2411. mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
  2412. /* use index 1 for TSO */
  2413. mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
  2414. context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
  2415. tx_buffer_info->time_stamp = jiffies;
  2416. tx_buffer_info->next_to_watch = i;
  2417. i++;
  2418. if (i == tx_ring->count)
  2419. i = 0;
  2420. tx_ring->next_to_use = i;
  2421. return true;
  2422. }
  2423. return false;
  2424. }
  2425. static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
  2426. struct ixgbevf_ring *tx_ring,
  2427. struct sk_buff *skb, u32 tx_flags)
  2428. {
  2429. struct ixgbe_adv_tx_context_desc *context_desc;
  2430. unsigned int i;
  2431. struct ixgbevf_tx_buffer *tx_buffer_info;
  2432. u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
  2433. if (skb->ip_summed == CHECKSUM_PARTIAL ||
  2434. (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
  2435. i = tx_ring->next_to_use;
  2436. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2437. context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
  2438. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2439. vlan_macip_lens |= (tx_flags &
  2440. IXGBE_TX_FLAGS_VLAN_MASK);
  2441. vlan_macip_lens |= (skb_network_offset(skb) <<
  2442. IXGBE_ADVTXD_MACLEN_SHIFT);
  2443. if (skb->ip_summed == CHECKSUM_PARTIAL)
  2444. vlan_macip_lens |= (skb_transport_header(skb) -
  2445. skb_network_header(skb));
  2446. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  2447. context_desc->seqnum_seed = 0;
  2448. type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
  2449. IXGBE_ADVTXD_DTYP_CTXT);
  2450. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2451. switch (skb->protocol) {
  2452. case __constant_htons(ETH_P_IP):
  2453. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
  2454. if (ip_hdr(skb)->protocol == IPPROTO_TCP)
  2455. type_tucmd_mlhl |=
  2456. IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2457. break;
  2458. case __constant_htons(ETH_P_IPV6):
  2459. /* XXX what about other V6 headers?? */
  2460. if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
  2461. type_tucmd_mlhl |=
  2462. IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2463. break;
  2464. default:
  2465. if (unlikely(net_ratelimit())) {
  2466. printk(KERN_WARNING
  2467. "partial checksum but "
  2468. "proto=%x!\n",
  2469. skb->protocol);
  2470. }
  2471. break;
  2472. }
  2473. }
  2474. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
  2475. /* use index zero for tx checksum offload */
  2476. context_desc->mss_l4len_idx = 0;
  2477. tx_buffer_info->time_stamp = jiffies;
  2478. tx_buffer_info->next_to_watch = i;
  2479. adapter->hw_csum_tx_good++;
  2480. i++;
  2481. if (i == tx_ring->count)
  2482. i = 0;
  2483. tx_ring->next_to_use = i;
  2484. return true;
  2485. }
  2486. return false;
  2487. }
  2488. static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
  2489. struct ixgbevf_ring *tx_ring,
  2490. struct sk_buff *skb, u32 tx_flags,
  2491. unsigned int first)
  2492. {
  2493. struct pci_dev *pdev = adapter->pdev;
  2494. struct ixgbevf_tx_buffer *tx_buffer_info;
  2495. unsigned int len;
  2496. unsigned int total = skb->len;
  2497. unsigned int offset = 0, size;
  2498. int count = 0;
  2499. unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
  2500. unsigned int f;
  2501. int i;
  2502. i = tx_ring->next_to_use;
  2503. len = min(skb_headlen(skb), total);
  2504. while (len) {
  2505. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2506. size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
  2507. tx_buffer_info->length = size;
  2508. tx_buffer_info->mapped_as_page = false;
  2509. tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
  2510. skb->data + offset,
  2511. size, DMA_TO_DEVICE);
  2512. if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
  2513. goto dma_error;
  2514. tx_buffer_info->time_stamp = jiffies;
  2515. tx_buffer_info->next_to_watch = i;
  2516. len -= size;
  2517. total -= size;
  2518. offset += size;
  2519. count++;
  2520. i++;
  2521. if (i == tx_ring->count)
  2522. i = 0;
  2523. }
  2524. for (f = 0; f < nr_frags; f++) {
  2525. struct skb_frag_struct *frag;
  2526. frag = &skb_shinfo(skb)->frags[f];
  2527. len = min((unsigned int)frag->size, total);
  2528. offset = frag->page_offset;
  2529. while (len) {
  2530. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2531. size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
  2532. tx_buffer_info->length = size;
  2533. tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
  2534. frag->page,
  2535. offset,
  2536. size,
  2537. DMA_TO_DEVICE);
  2538. tx_buffer_info->mapped_as_page = true;
  2539. if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
  2540. goto dma_error;
  2541. tx_buffer_info->time_stamp = jiffies;
  2542. tx_buffer_info->next_to_watch = i;
  2543. len -= size;
  2544. total -= size;
  2545. offset += size;
  2546. count++;
  2547. i++;
  2548. if (i == tx_ring->count)
  2549. i = 0;
  2550. }
  2551. if (total == 0)
  2552. break;
  2553. }
  2554. if (i == 0)
  2555. i = tx_ring->count - 1;
  2556. else
  2557. i = i - 1;
  2558. tx_ring->tx_buffer_info[i].skb = skb;
  2559. tx_ring->tx_buffer_info[first].next_to_watch = i;
  2560. return count;
  2561. dma_error:
  2562. dev_err(&pdev->dev, "TX DMA map failed\n");
  2563. /* clear timestamp and dma mappings for failed tx_buffer_info map */
  2564. tx_buffer_info->dma = 0;
  2565. tx_buffer_info->time_stamp = 0;
  2566. tx_buffer_info->next_to_watch = 0;
  2567. count--;
  2568. /* clear timestamp and dma mappings for remaining portion of packet */
  2569. while (count >= 0) {
  2570. count--;
  2571. i--;
  2572. if (i < 0)
  2573. i += tx_ring->count;
  2574. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2575. ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
  2576. }
  2577. return count;
  2578. }
  2579. static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
  2580. struct ixgbevf_ring *tx_ring, int tx_flags,
  2581. int count, u32 paylen, u8 hdr_len)
  2582. {
  2583. union ixgbe_adv_tx_desc *tx_desc = NULL;
  2584. struct ixgbevf_tx_buffer *tx_buffer_info;
  2585. u32 olinfo_status = 0, cmd_type_len = 0;
  2586. unsigned int i;
  2587. u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
  2588. cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
  2589. cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
  2590. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2591. cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
  2592. if (tx_flags & IXGBE_TX_FLAGS_TSO) {
  2593. cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
  2594. olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
  2595. IXGBE_ADVTXD_POPTS_SHIFT;
  2596. /* use index 1 context for tso */
  2597. olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
  2598. if (tx_flags & IXGBE_TX_FLAGS_IPV4)
  2599. olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
  2600. IXGBE_ADVTXD_POPTS_SHIFT;
  2601. } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
  2602. olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
  2603. IXGBE_ADVTXD_POPTS_SHIFT;
  2604. olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
  2605. i = tx_ring->next_to_use;
  2606. while (count--) {
  2607. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2608. tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
  2609. tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
  2610. tx_desc->read.cmd_type_len =
  2611. cpu_to_le32(cmd_type_len | tx_buffer_info->length);
  2612. tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
  2613. i++;
  2614. if (i == tx_ring->count)
  2615. i = 0;
  2616. }
  2617. tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
  2618. /*
  2619. * Force memory writes to complete before letting h/w
  2620. * know there are new descriptors to fetch. (Only
  2621. * applicable for weak-ordered memory model archs,
  2622. * such as IA-64).
  2623. */
  2624. wmb();
  2625. tx_ring->next_to_use = i;
  2626. writel(i, adapter->hw.hw_addr + tx_ring->tail);
  2627. }
  2628. static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
  2629. struct ixgbevf_ring *tx_ring, int size)
  2630. {
  2631. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2632. netif_stop_subqueue(netdev, tx_ring->queue_index);
  2633. /* Herbert's original patch had:
  2634. * smp_mb__after_netif_stop_queue();
  2635. * but since that doesn't exist yet, just open code it. */
  2636. smp_mb();
  2637. /* We need to check again in a case another CPU has just
  2638. * made room available. */
  2639. if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
  2640. return -EBUSY;
  2641. /* A reprieve! - use start_queue because it doesn't call schedule */
  2642. netif_start_subqueue(netdev, tx_ring->queue_index);
  2643. ++adapter->restart_queue;
  2644. return 0;
  2645. }
  2646. static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
  2647. struct ixgbevf_ring *tx_ring, int size)
  2648. {
  2649. if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
  2650. return 0;
  2651. return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
  2652. }
  2653. static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2654. {
  2655. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2656. struct ixgbevf_ring *tx_ring;
  2657. unsigned int first;
  2658. unsigned int tx_flags = 0;
  2659. u8 hdr_len = 0;
  2660. int r_idx = 0, tso;
  2661. int count = 0;
  2662. unsigned int f;
  2663. tx_ring = &adapter->tx_ring[r_idx];
  2664. if (vlan_tx_tag_present(skb)) {
  2665. tx_flags |= vlan_tx_tag_get(skb);
  2666. tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
  2667. tx_flags |= IXGBE_TX_FLAGS_VLAN;
  2668. }
  2669. /* four things can cause us to need a context descriptor */
  2670. if (skb_is_gso(skb) ||
  2671. (skb->ip_summed == CHECKSUM_PARTIAL) ||
  2672. (tx_flags & IXGBE_TX_FLAGS_VLAN))
  2673. count++;
  2674. count += TXD_USE_COUNT(skb_headlen(skb));
  2675. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  2676. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  2677. if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
  2678. adapter->tx_busy++;
  2679. return NETDEV_TX_BUSY;
  2680. }
  2681. first = tx_ring->next_to_use;
  2682. if (skb->protocol == htons(ETH_P_IP))
  2683. tx_flags |= IXGBE_TX_FLAGS_IPV4;
  2684. tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
  2685. if (tso < 0) {
  2686. dev_kfree_skb_any(skb);
  2687. return NETDEV_TX_OK;
  2688. }
  2689. if (tso)
  2690. tx_flags |= IXGBE_TX_FLAGS_TSO;
  2691. else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
  2692. (skb->ip_summed == CHECKSUM_PARTIAL))
  2693. tx_flags |= IXGBE_TX_FLAGS_CSUM;
  2694. ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
  2695. ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
  2696. skb->len, hdr_len);
  2697. ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
  2698. return NETDEV_TX_OK;
  2699. }
  2700. /**
  2701. * ixgbevf_set_mac - Change the Ethernet Address of the NIC
  2702. * @netdev: network interface device structure
  2703. * @p: pointer to an address structure
  2704. *
  2705. * Returns 0 on success, negative on failure
  2706. **/
  2707. static int ixgbevf_set_mac(struct net_device *netdev, void *p)
  2708. {
  2709. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2710. struct ixgbe_hw *hw = &adapter->hw;
  2711. struct sockaddr *addr = p;
  2712. if (!is_valid_ether_addr(addr->sa_data))
  2713. return -EADDRNOTAVAIL;
  2714. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  2715. memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
  2716. if (hw->mac.ops.set_rar)
  2717. hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
  2718. return 0;
  2719. }
  2720. /**
  2721. * ixgbevf_change_mtu - Change the Maximum Transfer Unit
  2722. * @netdev: network interface device structure
  2723. * @new_mtu: new value for maximum frame size
  2724. *
  2725. * Returns 0 on success, negative on failure
  2726. **/
  2727. static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
  2728. {
  2729. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2730. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
  2731. /* MTU < 68 is an error and causes problems on some kernels */
  2732. if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
  2733. return -EINVAL;
  2734. hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
  2735. netdev->mtu, new_mtu);
  2736. /* must set new MTU before calling down or up */
  2737. netdev->mtu = new_mtu;
  2738. if (netif_running(netdev))
  2739. ixgbevf_reinit_locked(adapter);
  2740. return 0;
  2741. }
  2742. static void ixgbevf_shutdown(struct pci_dev *pdev)
  2743. {
  2744. struct net_device *netdev = pci_get_drvdata(pdev);
  2745. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2746. netif_device_detach(netdev);
  2747. if (netif_running(netdev)) {
  2748. ixgbevf_down(adapter);
  2749. ixgbevf_free_irq(adapter);
  2750. ixgbevf_free_all_tx_resources(adapter);
  2751. ixgbevf_free_all_rx_resources(adapter);
  2752. }
  2753. #ifdef CONFIG_PM
  2754. pci_save_state(pdev);
  2755. #endif
  2756. pci_disable_device(pdev);
  2757. }
  2758. static const struct net_device_ops ixgbe_netdev_ops = {
  2759. .ndo_open = &ixgbevf_open,
  2760. .ndo_stop = &ixgbevf_close,
  2761. .ndo_start_xmit = &ixgbevf_xmit_frame,
  2762. .ndo_set_rx_mode = &ixgbevf_set_rx_mode,
  2763. .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
  2764. .ndo_validate_addr = eth_validate_addr,
  2765. .ndo_set_mac_address = &ixgbevf_set_mac,
  2766. .ndo_change_mtu = &ixgbevf_change_mtu,
  2767. .ndo_tx_timeout = &ixgbevf_tx_timeout,
  2768. .ndo_vlan_rx_register = &ixgbevf_vlan_rx_register,
  2769. .ndo_vlan_rx_add_vid = &ixgbevf_vlan_rx_add_vid,
  2770. .ndo_vlan_rx_kill_vid = &ixgbevf_vlan_rx_kill_vid,
  2771. };
  2772. static void ixgbevf_assign_netdev_ops(struct net_device *dev)
  2773. {
  2774. struct ixgbevf_adapter *adapter;
  2775. adapter = netdev_priv(dev);
  2776. dev->netdev_ops = &ixgbe_netdev_ops;
  2777. ixgbevf_set_ethtool_ops(dev);
  2778. dev->watchdog_timeo = 5 * HZ;
  2779. }
  2780. /**
  2781. * ixgbevf_probe - Device Initialization Routine
  2782. * @pdev: PCI device information struct
  2783. * @ent: entry in ixgbevf_pci_tbl
  2784. *
  2785. * Returns 0 on success, negative on failure
  2786. *
  2787. * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
  2788. * The OS initialization, configuring of the adapter private structure,
  2789. * and a hardware reset occur.
  2790. **/
  2791. static int __devinit ixgbevf_probe(struct pci_dev *pdev,
  2792. const struct pci_device_id *ent)
  2793. {
  2794. struct net_device *netdev;
  2795. struct ixgbevf_adapter *adapter = NULL;
  2796. struct ixgbe_hw *hw = NULL;
  2797. const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
  2798. static int cards_found;
  2799. int err, pci_using_dac;
  2800. err = pci_enable_device(pdev);
  2801. if (err)
  2802. return err;
  2803. if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
  2804. !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
  2805. pci_using_dac = 1;
  2806. } else {
  2807. err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
  2808. if (err) {
  2809. err = dma_set_coherent_mask(&pdev->dev,
  2810. DMA_BIT_MASK(32));
  2811. if (err) {
  2812. dev_err(&pdev->dev, "No usable DMA "
  2813. "configuration, aborting\n");
  2814. goto err_dma;
  2815. }
  2816. }
  2817. pci_using_dac = 0;
  2818. }
  2819. err = pci_request_regions(pdev, ixgbevf_driver_name);
  2820. if (err) {
  2821. dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
  2822. goto err_pci_reg;
  2823. }
  2824. pci_set_master(pdev);
  2825. #ifdef HAVE_TX_MQ
  2826. netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
  2827. MAX_TX_QUEUES);
  2828. #else
  2829. netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
  2830. #endif
  2831. if (!netdev) {
  2832. err = -ENOMEM;
  2833. goto err_alloc_etherdev;
  2834. }
  2835. SET_NETDEV_DEV(netdev, &pdev->dev);
  2836. pci_set_drvdata(pdev, netdev);
  2837. adapter = netdev_priv(netdev);
  2838. adapter->netdev = netdev;
  2839. adapter->pdev = pdev;
  2840. hw = &adapter->hw;
  2841. hw->back = adapter;
  2842. adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
  2843. /*
  2844. * call save state here in standalone driver because it relies on
  2845. * adapter struct to exist, and needs to call netdev_priv
  2846. */
  2847. pci_save_state(pdev);
  2848. hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
  2849. pci_resource_len(pdev, 0));
  2850. if (!hw->hw_addr) {
  2851. err = -EIO;
  2852. goto err_ioremap;
  2853. }
  2854. ixgbevf_assign_netdev_ops(netdev);
  2855. adapter->bd_number = cards_found;
  2856. /* Setup hw api */
  2857. memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
  2858. hw->mac.type = ii->mac;
  2859. memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
  2860. sizeof(struct ixgbe_mac_operations));
  2861. adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
  2862. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  2863. adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
  2864. /* setup the private structure */
  2865. err = ixgbevf_sw_init(adapter);
  2866. netdev->features = NETIF_F_SG |
  2867. NETIF_F_IP_CSUM |
  2868. NETIF_F_HW_VLAN_TX |
  2869. NETIF_F_HW_VLAN_RX |
  2870. NETIF_F_HW_VLAN_FILTER;
  2871. netdev->features |= NETIF_F_IPV6_CSUM;
  2872. netdev->features |= NETIF_F_TSO;
  2873. netdev->features |= NETIF_F_TSO6;
  2874. netdev->features |= NETIF_F_GRO;
  2875. netdev->vlan_features |= NETIF_F_TSO;
  2876. netdev->vlan_features |= NETIF_F_TSO6;
  2877. netdev->vlan_features |= NETIF_F_IP_CSUM;
  2878. netdev->vlan_features |= NETIF_F_IPV6_CSUM;
  2879. netdev->vlan_features |= NETIF_F_SG;
  2880. if (pci_using_dac)
  2881. netdev->features |= NETIF_F_HIGHDMA;
  2882. /* The HW MAC address was set and/or determined in sw_init */
  2883. memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
  2884. memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
  2885. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2886. printk(KERN_ERR "invalid MAC address\n");
  2887. err = -EIO;
  2888. goto err_sw_init;
  2889. }
  2890. init_timer(&adapter->watchdog_timer);
  2891. adapter->watchdog_timer.function = ixgbevf_watchdog;
  2892. adapter->watchdog_timer.data = (unsigned long)adapter;
  2893. INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
  2894. INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
  2895. err = ixgbevf_init_interrupt_scheme(adapter);
  2896. if (err)
  2897. goto err_sw_init;
  2898. /* pick up the PCI bus settings for reporting later */
  2899. if (hw->mac.ops.get_bus_info)
  2900. hw->mac.ops.get_bus_info(hw);
  2901. strcpy(netdev->name, "eth%d");
  2902. err = register_netdev(netdev);
  2903. if (err)
  2904. goto err_register;
  2905. adapter->netdev_registered = true;
  2906. netif_carrier_off(netdev);
  2907. ixgbevf_init_last_counter_stats(adapter);
  2908. /* print the MAC address */
  2909. hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  2910. netdev->dev_addr[0],
  2911. netdev->dev_addr[1],
  2912. netdev->dev_addr[2],
  2913. netdev->dev_addr[3],
  2914. netdev->dev_addr[4],
  2915. netdev->dev_addr[5]);
  2916. hw_dbg(hw, "MAC: %d\n", hw->mac.type);
  2917. hw_dbg(hw, "LRO is disabled\n");
  2918. hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
  2919. cards_found++;
  2920. return 0;
  2921. err_register:
  2922. err_sw_init:
  2923. ixgbevf_reset_interrupt_capability(adapter);
  2924. iounmap(hw->hw_addr);
  2925. err_ioremap:
  2926. free_netdev(netdev);
  2927. err_alloc_etherdev:
  2928. pci_release_regions(pdev);
  2929. err_pci_reg:
  2930. err_dma:
  2931. pci_disable_device(pdev);
  2932. return err;
  2933. }
  2934. /**
  2935. * ixgbevf_remove - Device Removal Routine
  2936. * @pdev: PCI device information struct
  2937. *
  2938. * ixgbevf_remove is called by the PCI subsystem to alert the driver
  2939. * that it should release a PCI device. The could be caused by a
  2940. * Hot-Plug event, or because the driver is going to be removed from
  2941. * memory.
  2942. **/
  2943. static void __devexit ixgbevf_remove(struct pci_dev *pdev)
  2944. {
  2945. struct net_device *netdev = pci_get_drvdata(pdev);
  2946. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2947. set_bit(__IXGBEVF_DOWN, &adapter->state);
  2948. del_timer_sync(&adapter->watchdog_timer);
  2949. cancel_work_sync(&adapter->reset_task);
  2950. cancel_work_sync(&adapter->watchdog_task);
  2951. if (adapter->netdev_registered) {
  2952. unregister_netdev(netdev);
  2953. adapter->netdev_registered = false;
  2954. }
  2955. ixgbevf_reset_interrupt_capability(adapter);
  2956. iounmap(adapter->hw.hw_addr);
  2957. pci_release_regions(pdev);
  2958. hw_dbg(&adapter->hw, "Remove complete\n");
  2959. kfree(adapter->tx_ring);
  2960. kfree(adapter->rx_ring);
  2961. free_netdev(netdev);
  2962. pci_disable_device(pdev);
  2963. }
  2964. static struct pci_driver ixgbevf_driver = {
  2965. .name = ixgbevf_driver_name,
  2966. .id_table = ixgbevf_pci_tbl,
  2967. .probe = ixgbevf_probe,
  2968. .remove = __devexit_p(ixgbevf_remove),
  2969. .shutdown = ixgbevf_shutdown,
  2970. };
  2971. /**
  2972. * ixgbe_init_module - Driver Registration Routine
  2973. *
  2974. * ixgbe_init_module is the first routine called when the driver is
  2975. * loaded. All it does is register with the PCI subsystem.
  2976. **/
  2977. static int __init ixgbevf_init_module(void)
  2978. {
  2979. int ret;
  2980. printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
  2981. ixgbevf_driver_version);
  2982. printk(KERN_INFO "%s\n", ixgbevf_copyright);
  2983. ret = pci_register_driver(&ixgbevf_driver);
  2984. return ret;
  2985. }
  2986. module_init(ixgbevf_init_module);
  2987. /**
  2988. * ixgbe_exit_module - Driver Exit Cleanup Routine
  2989. *
  2990. * ixgbe_exit_module is called just before the driver is removed
  2991. * from memory.
  2992. **/
  2993. static void __exit ixgbevf_exit_module(void)
  2994. {
  2995. pci_unregister_driver(&ixgbevf_driver);
  2996. }
  2997. #ifdef DEBUG
  2998. /**
  2999. * ixgbe_get_hw_dev_name - return device name string
  3000. * used by hardware layer to print debugging information
  3001. **/
  3002. char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
  3003. {
  3004. struct ixgbevf_adapter *adapter = hw->back;
  3005. return adapter->netdev->name;
  3006. }
  3007. #endif
  3008. module_exit(ixgbevf_exit_module);
  3009. /* ixgbevf_main.c */