i915_gem.c 137 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. struct change_domains {
  37. uint32_t invalidate_domains;
  38. uint32_t flush_domains;
  39. uint32_t flush_rings;
  40. };
  41. static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
  42. static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
  43. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  44. bool pipelined);
  45. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  46. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  47. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  48. int write);
  49. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  50. uint64_t offset,
  51. uint64_t size);
  52. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  53. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  54. bool interruptible);
  55. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  56. unsigned alignment,
  57. bool map_and_fenceable);
  58. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  59. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  60. struct drm_i915_gem_pwrite *args,
  61. struct drm_file *file_priv);
  62. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  63. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  64. int nr_to_scan,
  65. gfp_t gfp_mask);
  66. /* some bookkeeping */
  67. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  68. size_t size)
  69. {
  70. dev_priv->mm.object_count++;
  71. dev_priv->mm.object_memory += size;
  72. }
  73. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  74. size_t size)
  75. {
  76. dev_priv->mm.object_count--;
  77. dev_priv->mm.object_memory -= size;
  78. }
  79. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  80. struct drm_i915_gem_object *obj)
  81. {
  82. dev_priv->mm.gtt_count++;
  83. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  84. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  85. dev_priv->mm.mappable_gtt_used +=
  86. min_t(size_t, obj->gtt_space->size,
  87. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  88. }
  89. }
  90. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  91. struct drm_i915_gem_object *obj)
  92. {
  93. dev_priv->mm.gtt_count--;
  94. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  95. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  96. dev_priv->mm.mappable_gtt_used -=
  97. min_t(size_t, obj->gtt_space->size,
  98. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  99. }
  100. }
  101. /**
  102. * Update the mappable working set counters. Call _only_ when there is a change
  103. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  104. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  105. */
  106. static void
  107. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  108. struct drm_i915_gem_object *obj,
  109. bool mappable)
  110. {
  111. if (mappable) {
  112. if (obj->pin_mappable && obj->fault_mappable)
  113. /* Combined state was already mappable. */
  114. return;
  115. dev_priv->mm.gtt_mappable_count++;
  116. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  117. } else {
  118. if (obj->pin_mappable || obj->fault_mappable)
  119. /* Combined state still mappable. */
  120. return;
  121. dev_priv->mm.gtt_mappable_count--;
  122. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  123. }
  124. }
  125. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  126. struct drm_i915_gem_object *obj,
  127. bool mappable)
  128. {
  129. dev_priv->mm.pin_count++;
  130. dev_priv->mm.pin_memory += obj->gtt_space->size;
  131. if (mappable) {
  132. obj->pin_mappable = true;
  133. i915_gem_info_update_mappable(dev_priv, obj, true);
  134. }
  135. }
  136. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  137. struct drm_i915_gem_object *obj)
  138. {
  139. dev_priv->mm.pin_count--;
  140. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  141. if (obj->pin_mappable) {
  142. obj->pin_mappable = false;
  143. i915_gem_info_update_mappable(dev_priv, obj, false);
  144. }
  145. }
  146. int
  147. i915_gem_check_is_wedged(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. struct completion *x = &dev_priv->error_completion;
  151. unsigned long flags;
  152. int ret;
  153. if (!atomic_read(&dev_priv->mm.wedged))
  154. return 0;
  155. ret = wait_for_completion_interruptible(x);
  156. if (ret)
  157. return ret;
  158. /* Success, we reset the GPU! */
  159. if (!atomic_read(&dev_priv->mm.wedged))
  160. return 0;
  161. /* GPU is hung, bump the completion count to account for
  162. * the token we just consumed so that we never hit zero and
  163. * end up waiting upon a subsequent completion event that
  164. * will never happen.
  165. */
  166. spin_lock_irqsave(&x->wait.lock, flags);
  167. x->done++;
  168. spin_unlock_irqrestore(&x->wait.lock, flags);
  169. return -EIO;
  170. }
  171. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  172. {
  173. struct drm_i915_private *dev_priv = dev->dev_private;
  174. int ret;
  175. ret = i915_gem_check_is_wedged(dev);
  176. if (ret)
  177. return ret;
  178. ret = mutex_lock_interruptible(&dev->struct_mutex);
  179. if (ret)
  180. return ret;
  181. if (atomic_read(&dev_priv->mm.wedged)) {
  182. mutex_unlock(&dev->struct_mutex);
  183. return -EAGAIN;
  184. }
  185. WARN_ON(i915_verify_lists(dev));
  186. return 0;
  187. }
  188. static inline bool
  189. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  190. {
  191. return obj_priv->gtt_space &&
  192. !obj_priv->active &&
  193. obj_priv->pin_count == 0;
  194. }
  195. int i915_gem_do_init(struct drm_device *dev,
  196. unsigned long start,
  197. unsigned long mappable_end,
  198. unsigned long end)
  199. {
  200. drm_i915_private_t *dev_priv = dev->dev_private;
  201. if (start >= end ||
  202. (start & (PAGE_SIZE - 1)) != 0 ||
  203. (end & (PAGE_SIZE - 1)) != 0) {
  204. return -EINVAL;
  205. }
  206. drm_mm_init(&dev_priv->mm.gtt_space, start,
  207. end - start);
  208. dev_priv->mm.gtt_total = end - start;
  209. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  210. dev_priv->mm.gtt_mappable_end = mappable_end;
  211. return 0;
  212. }
  213. int
  214. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_init *args = data;
  218. int ret;
  219. mutex_lock(&dev->struct_mutex);
  220. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  221. mutex_unlock(&dev->struct_mutex);
  222. return ret;
  223. }
  224. int
  225. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  226. struct drm_file *file_priv)
  227. {
  228. struct drm_i915_private *dev_priv = dev->dev_private;
  229. struct drm_i915_gem_get_aperture *args = data;
  230. if (!(dev->driver->driver_features & DRIVER_GEM))
  231. return -ENODEV;
  232. mutex_lock(&dev->struct_mutex);
  233. args->aper_size = dev_priv->mm.gtt_total;
  234. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  235. mutex_unlock(&dev->struct_mutex);
  236. return 0;
  237. }
  238. /**
  239. * Creates a new mm object and returns a handle to it.
  240. */
  241. int
  242. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  243. struct drm_file *file_priv)
  244. {
  245. struct drm_i915_gem_create *args = data;
  246. struct drm_gem_object *obj;
  247. int ret;
  248. u32 handle;
  249. args->size = roundup(args->size, PAGE_SIZE);
  250. /* Allocate the new object */
  251. obj = i915_gem_alloc_object(dev, args->size);
  252. if (obj == NULL)
  253. return -ENOMEM;
  254. ret = drm_gem_handle_create(file_priv, obj, &handle);
  255. if (ret) {
  256. drm_gem_object_release(obj);
  257. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  258. kfree(obj);
  259. return ret;
  260. }
  261. /* drop reference from allocate - handle holds it now */
  262. drm_gem_object_unreference(obj);
  263. trace_i915_gem_object_create(obj);
  264. args->handle = handle;
  265. return 0;
  266. }
  267. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  268. {
  269. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  270. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  271. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  272. obj_priv->tiling_mode != I915_TILING_NONE;
  273. }
  274. static inline void
  275. slow_shmem_copy(struct page *dst_page,
  276. int dst_offset,
  277. struct page *src_page,
  278. int src_offset,
  279. int length)
  280. {
  281. char *dst_vaddr, *src_vaddr;
  282. dst_vaddr = kmap(dst_page);
  283. src_vaddr = kmap(src_page);
  284. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  285. kunmap(src_page);
  286. kunmap(dst_page);
  287. }
  288. static inline void
  289. slow_shmem_bit17_copy(struct page *gpu_page,
  290. int gpu_offset,
  291. struct page *cpu_page,
  292. int cpu_offset,
  293. int length,
  294. int is_read)
  295. {
  296. char *gpu_vaddr, *cpu_vaddr;
  297. /* Use the unswizzled path if this page isn't affected. */
  298. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  299. if (is_read)
  300. return slow_shmem_copy(cpu_page, cpu_offset,
  301. gpu_page, gpu_offset, length);
  302. else
  303. return slow_shmem_copy(gpu_page, gpu_offset,
  304. cpu_page, cpu_offset, length);
  305. }
  306. gpu_vaddr = kmap(gpu_page);
  307. cpu_vaddr = kmap(cpu_page);
  308. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  309. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  310. */
  311. while (length > 0) {
  312. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  313. int this_length = min(cacheline_end - gpu_offset, length);
  314. int swizzled_gpu_offset = gpu_offset ^ 64;
  315. if (is_read) {
  316. memcpy(cpu_vaddr + cpu_offset,
  317. gpu_vaddr + swizzled_gpu_offset,
  318. this_length);
  319. } else {
  320. memcpy(gpu_vaddr + swizzled_gpu_offset,
  321. cpu_vaddr + cpu_offset,
  322. this_length);
  323. }
  324. cpu_offset += this_length;
  325. gpu_offset += this_length;
  326. length -= this_length;
  327. }
  328. kunmap(cpu_page);
  329. kunmap(gpu_page);
  330. }
  331. /**
  332. * This is the fast shmem pread path, which attempts to copy_from_user directly
  333. * from the backing pages of the object to the user's address space. On a
  334. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  335. */
  336. static int
  337. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  338. struct drm_i915_gem_pread *args,
  339. struct drm_file *file_priv)
  340. {
  341. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  342. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  343. ssize_t remain;
  344. loff_t offset;
  345. char __user *user_data;
  346. int page_offset, page_length;
  347. user_data = (char __user *) (uintptr_t) args->data_ptr;
  348. remain = args->size;
  349. obj_priv = to_intel_bo(obj);
  350. offset = args->offset;
  351. while (remain > 0) {
  352. struct page *page;
  353. char *vaddr;
  354. int ret;
  355. /* Operation in this page
  356. *
  357. * page_offset = offset within page
  358. * page_length = bytes to copy for this page
  359. */
  360. page_offset = offset & (PAGE_SIZE-1);
  361. page_length = remain;
  362. if ((page_offset + remain) > PAGE_SIZE)
  363. page_length = PAGE_SIZE - page_offset;
  364. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  365. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  366. if (IS_ERR(page))
  367. return PTR_ERR(page);
  368. vaddr = kmap_atomic(page);
  369. ret = __copy_to_user_inatomic(user_data,
  370. vaddr + page_offset,
  371. page_length);
  372. kunmap_atomic(vaddr);
  373. mark_page_accessed(page);
  374. page_cache_release(page);
  375. if (ret)
  376. return -EFAULT;
  377. remain -= page_length;
  378. user_data += page_length;
  379. offset += page_length;
  380. }
  381. return 0;
  382. }
  383. /**
  384. * This is the fallback shmem pread path, which allocates temporary storage
  385. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  386. * can copy out of the object's backing pages while holding the struct mutex
  387. * and not take page faults.
  388. */
  389. static int
  390. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  391. struct drm_i915_gem_pread *args,
  392. struct drm_file *file_priv)
  393. {
  394. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  395. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  396. struct mm_struct *mm = current->mm;
  397. struct page **user_pages;
  398. ssize_t remain;
  399. loff_t offset, pinned_pages, i;
  400. loff_t first_data_page, last_data_page, num_pages;
  401. int shmem_page_offset;
  402. int data_page_index, data_page_offset;
  403. int page_length;
  404. int ret;
  405. uint64_t data_ptr = args->data_ptr;
  406. int do_bit17_swizzling;
  407. remain = args->size;
  408. /* Pin the user pages containing the data. We can't fault while
  409. * holding the struct mutex, yet we want to hold it while
  410. * dereferencing the user data.
  411. */
  412. first_data_page = data_ptr / PAGE_SIZE;
  413. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  414. num_pages = last_data_page - first_data_page + 1;
  415. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  416. if (user_pages == NULL)
  417. return -ENOMEM;
  418. mutex_unlock(&dev->struct_mutex);
  419. down_read(&mm->mmap_sem);
  420. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  421. num_pages, 1, 0, user_pages, NULL);
  422. up_read(&mm->mmap_sem);
  423. mutex_lock(&dev->struct_mutex);
  424. if (pinned_pages < num_pages) {
  425. ret = -EFAULT;
  426. goto out;
  427. }
  428. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  429. args->offset,
  430. args->size);
  431. if (ret)
  432. goto out;
  433. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  434. obj_priv = to_intel_bo(obj);
  435. offset = args->offset;
  436. while (remain > 0) {
  437. struct page *page;
  438. /* Operation in this page
  439. *
  440. * shmem_page_offset = offset within page in shmem file
  441. * data_page_index = page number in get_user_pages return
  442. * data_page_offset = offset with data_page_index page.
  443. * page_length = bytes to copy for this page
  444. */
  445. shmem_page_offset = offset & ~PAGE_MASK;
  446. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  447. data_page_offset = data_ptr & ~PAGE_MASK;
  448. page_length = remain;
  449. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  450. page_length = PAGE_SIZE - shmem_page_offset;
  451. if ((data_page_offset + page_length) > PAGE_SIZE)
  452. page_length = PAGE_SIZE - data_page_offset;
  453. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  454. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  455. if (IS_ERR(page))
  456. return PTR_ERR(page);
  457. if (do_bit17_swizzling) {
  458. slow_shmem_bit17_copy(page,
  459. shmem_page_offset,
  460. user_pages[data_page_index],
  461. data_page_offset,
  462. page_length,
  463. 1);
  464. } else {
  465. slow_shmem_copy(user_pages[data_page_index],
  466. data_page_offset,
  467. page,
  468. shmem_page_offset,
  469. page_length);
  470. }
  471. mark_page_accessed(page);
  472. page_cache_release(page);
  473. remain -= page_length;
  474. data_ptr += page_length;
  475. offset += page_length;
  476. }
  477. out:
  478. for (i = 0; i < pinned_pages; i++) {
  479. SetPageDirty(user_pages[i]);
  480. mark_page_accessed(user_pages[i]);
  481. page_cache_release(user_pages[i]);
  482. }
  483. drm_free_large(user_pages);
  484. return ret;
  485. }
  486. /**
  487. * Reads data from the object referenced by handle.
  488. *
  489. * On error, the contents of *data are undefined.
  490. */
  491. int
  492. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  493. struct drm_file *file_priv)
  494. {
  495. struct drm_i915_gem_pread *args = data;
  496. struct drm_gem_object *obj;
  497. struct drm_i915_gem_object *obj_priv;
  498. int ret = 0;
  499. if (args->size == 0)
  500. return 0;
  501. if (!access_ok(VERIFY_WRITE,
  502. (char __user *)(uintptr_t)args->data_ptr,
  503. args->size))
  504. return -EFAULT;
  505. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  506. args->size);
  507. if (ret)
  508. return -EFAULT;
  509. ret = i915_mutex_lock_interruptible(dev);
  510. if (ret)
  511. return ret;
  512. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  513. if (obj == NULL) {
  514. ret = -ENOENT;
  515. goto unlock;
  516. }
  517. obj_priv = to_intel_bo(obj);
  518. /* Bounds check source. */
  519. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  520. ret = -EINVAL;
  521. goto out;
  522. }
  523. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  524. args->offset,
  525. args->size);
  526. if (ret)
  527. goto out;
  528. ret = -EFAULT;
  529. if (!i915_gem_object_needs_bit17_swizzle(obj))
  530. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  531. if (ret == -EFAULT)
  532. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  533. out:
  534. drm_gem_object_unreference(obj);
  535. unlock:
  536. mutex_unlock(&dev->struct_mutex);
  537. return ret;
  538. }
  539. /* This is the fast write path which cannot handle
  540. * page faults in the source data
  541. */
  542. static inline int
  543. fast_user_write(struct io_mapping *mapping,
  544. loff_t page_base, int page_offset,
  545. char __user *user_data,
  546. int length)
  547. {
  548. char *vaddr_atomic;
  549. unsigned long unwritten;
  550. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  551. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  552. user_data, length);
  553. io_mapping_unmap_atomic(vaddr_atomic);
  554. return unwritten;
  555. }
  556. /* Here's the write path which can sleep for
  557. * page faults
  558. */
  559. static inline void
  560. slow_kernel_write(struct io_mapping *mapping,
  561. loff_t gtt_base, int gtt_offset,
  562. struct page *user_page, int user_offset,
  563. int length)
  564. {
  565. char __iomem *dst_vaddr;
  566. char *src_vaddr;
  567. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  568. src_vaddr = kmap(user_page);
  569. memcpy_toio(dst_vaddr + gtt_offset,
  570. src_vaddr + user_offset,
  571. length);
  572. kunmap(user_page);
  573. io_mapping_unmap(dst_vaddr);
  574. }
  575. /**
  576. * This is the fast pwrite path, where we copy the data directly from the
  577. * user into the GTT, uncached.
  578. */
  579. static int
  580. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  581. struct drm_i915_gem_pwrite *args,
  582. struct drm_file *file_priv)
  583. {
  584. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  585. drm_i915_private_t *dev_priv = dev->dev_private;
  586. ssize_t remain;
  587. loff_t offset, page_base;
  588. char __user *user_data;
  589. int page_offset, page_length;
  590. user_data = (char __user *) (uintptr_t) args->data_ptr;
  591. remain = args->size;
  592. obj_priv = to_intel_bo(obj);
  593. offset = obj_priv->gtt_offset + args->offset;
  594. while (remain > 0) {
  595. /* Operation in this page
  596. *
  597. * page_base = page offset within aperture
  598. * page_offset = offset within page
  599. * page_length = bytes to copy for this page
  600. */
  601. page_base = (offset & ~(PAGE_SIZE-1));
  602. page_offset = offset & (PAGE_SIZE-1);
  603. page_length = remain;
  604. if ((page_offset + remain) > PAGE_SIZE)
  605. page_length = PAGE_SIZE - page_offset;
  606. /* If we get a fault while copying data, then (presumably) our
  607. * source page isn't available. Return the error and we'll
  608. * retry in the slow path.
  609. */
  610. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  611. page_offset, user_data, page_length))
  612. return -EFAULT;
  613. remain -= page_length;
  614. user_data += page_length;
  615. offset += page_length;
  616. }
  617. return 0;
  618. }
  619. /**
  620. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  621. * the memory and maps it using kmap_atomic for copying.
  622. *
  623. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  624. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  625. */
  626. static int
  627. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  628. struct drm_i915_gem_pwrite *args,
  629. struct drm_file *file_priv)
  630. {
  631. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  632. drm_i915_private_t *dev_priv = dev->dev_private;
  633. ssize_t remain;
  634. loff_t gtt_page_base, offset;
  635. loff_t first_data_page, last_data_page, num_pages;
  636. loff_t pinned_pages, i;
  637. struct page **user_pages;
  638. struct mm_struct *mm = current->mm;
  639. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  640. int ret;
  641. uint64_t data_ptr = args->data_ptr;
  642. remain = args->size;
  643. /* Pin the user pages containing the data. We can't fault while
  644. * holding the struct mutex, and all of the pwrite implementations
  645. * want to hold it while dereferencing the user data.
  646. */
  647. first_data_page = data_ptr / PAGE_SIZE;
  648. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  649. num_pages = last_data_page - first_data_page + 1;
  650. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  651. if (user_pages == NULL)
  652. return -ENOMEM;
  653. mutex_unlock(&dev->struct_mutex);
  654. down_read(&mm->mmap_sem);
  655. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  656. num_pages, 0, 0, user_pages, NULL);
  657. up_read(&mm->mmap_sem);
  658. mutex_lock(&dev->struct_mutex);
  659. if (pinned_pages < num_pages) {
  660. ret = -EFAULT;
  661. goto out_unpin_pages;
  662. }
  663. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  664. if (ret)
  665. goto out_unpin_pages;
  666. obj_priv = to_intel_bo(obj);
  667. offset = obj_priv->gtt_offset + args->offset;
  668. while (remain > 0) {
  669. /* Operation in this page
  670. *
  671. * gtt_page_base = page offset within aperture
  672. * gtt_page_offset = offset within page in aperture
  673. * data_page_index = page number in get_user_pages return
  674. * data_page_offset = offset with data_page_index page.
  675. * page_length = bytes to copy for this page
  676. */
  677. gtt_page_base = offset & PAGE_MASK;
  678. gtt_page_offset = offset & ~PAGE_MASK;
  679. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  680. data_page_offset = data_ptr & ~PAGE_MASK;
  681. page_length = remain;
  682. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  683. page_length = PAGE_SIZE - gtt_page_offset;
  684. if ((data_page_offset + page_length) > PAGE_SIZE)
  685. page_length = PAGE_SIZE - data_page_offset;
  686. slow_kernel_write(dev_priv->mm.gtt_mapping,
  687. gtt_page_base, gtt_page_offset,
  688. user_pages[data_page_index],
  689. data_page_offset,
  690. page_length);
  691. remain -= page_length;
  692. offset += page_length;
  693. data_ptr += page_length;
  694. }
  695. out_unpin_pages:
  696. for (i = 0; i < pinned_pages; i++)
  697. page_cache_release(user_pages[i]);
  698. drm_free_large(user_pages);
  699. return ret;
  700. }
  701. /**
  702. * This is the fast shmem pwrite path, which attempts to directly
  703. * copy_from_user into the kmapped pages backing the object.
  704. */
  705. static int
  706. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  707. struct drm_i915_gem_pwrite *args,
  708. struct drm_file *file_priv)
  709. {
  710. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  711. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  712. ssize_t remain;
  713. loff_t offset;
  714. char __user *user_data;
  715. int page_offset, page_length;
  716. user_data = (char __user *) (uintptr_t) args->data_ptr;
  717. remain = args->size;
  718. obj_priv = to_intel_bo(obj);
  719. offset = args->offset;
  720. obj_priv->dirty = 1;
  721. while (remain > 0) {
  722. struct page *page;
  723. char *vaddr;
  724. int ret;
  725. /* Operation in this page
  726. *
  727. * page_offset = offset within page
  728. * page_length = bytes to copy for this page
  729. */
  730. page_offset = offset & (PAGE_SIZE-1);
  731. page_length = remain;
  732. if ((page_offset + remain) > PAGE_SIZE)
  733. page_length = PAGE_SIZE - page_offset;
  734. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  735. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  736. if (IS_ERR(page))
  737. return PTR_ERR(page);
  738. vaddr = kmap_atomic(page, KM_USER0);
  739. ret = __copy_from_user_inatomic(vaddr + page_offset,
  740. user_data,
  741. page_length);
  742. kunmap_atomic(vaddr, KM_USER0);
  743. set_page_dirty(page);
  744. mark_page_accessed(page);
  745. page_cache_release(page);
  746. /* If we get a fault while copying data, then (presumably) our
  747. * source page isn't available. Return the error and we'll
  748. * retry in the slow path.
  749. */
  750. if (ret)
  751. return -EFAULT;
  752. remain -= page_length;
  753. user_data += page_length;
  754. offset += page_length;
  755. }
  756. return 0;
  757. }
  758. /**
  759. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  760. * the memory and maps it using kmap_atomic for copying.
  761. *
  762. * This avoids taking mmap_sem for faulting on the user's address while the
  763. * struct_mutex is held.
  764. */
  765. static int
  766. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  767. struct drm_i915_gem_pwrite *args,
  768. struct drm_file *file_priv)
  769. {
  770. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  771. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  772. struct mm_struct *mm = current->mm;
  773. struct page **user_pages;
  774. ssize_t remain;
  775. loff_t offset, pinned_pages, i;
  776. loff_t first_data_page, last_data_page, num_pages;
  777. int shmem_page_offset;
  778. int data_page_index, data_page_offset;
  779. int page_length;
  780. int ret;
  781. uint64_t data_ptr = args->data_ptr;
  782. int do_bit17_swizzling;
  783. remain = args->size;
  784. /* Pin the user pages containing the data. We can't fault while
  785. * holding the struct mutex, and all of the pwrite implementations
  786. * want to hold it while dereferencing the user data.
  787. */
  788. first_data_page = data_ptr / PAGE_SIZE;
  789. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  790. num_pages = last_data_page - first_data_page + 1;
  791. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  792. if (user_pages == NULL)
  793. return -ENOMEM;
  794. mutex_unlock(&dev->struct_mutex);
  795. down_read(&mm->mmap_sem);
  796. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  797. num_pages, 0, 0, user_pages, NULL);
  798. up_read(&mm->mmap_sem);
  799. mutex_lock(&dev->struct_mutex);
  800. if (pinned_pages < num_pages) {
  801. ret = -EFAULT;
  802. goto out;
  803. }
  804. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  805. if (ret)
  806. goto out;
  807. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  808. obj_priv = to_intel_bo(obj);
  809. offset = args->offset;
  810. obj_priv->dirty = 1;
  811. while (remain > 0) {
  812. struct page *page;
  813. /* Operation in this page
  814. *
  815. * shmem_page_offset = offset within page in shmem file
  816. * data_page_index = page number in get_user_pages return
  817. * data_page_offset = offset with data_page_index page.
  818. * page_length = bytes to copy for this page
  819. */
  820. shmem_page_offset = offset & ~PAGE_MASK;
  821. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  822. data_page_offset = data_ptr & ~PAGE_MASK;
  823. page_length = remain;
  824. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  825. page_length = PAGE_SIZE - shmem_page_offset;
  826. if ((data_page_offset + page_length) > PAGE_SIZE)
  827. page_length = PAGE_SIZE - data_page_offset;
  828. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  829. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  830. if (IS_ERR(page)) {
  831. ret = PTR_ERR(page);
  832. goto out;
  833. }
  834. if (do_bit17_swizzling) {
  835. slow_shmem_bit17_copy(page,
  836. shmem_page_offset,
  837. user_pages[data_page_index],
  838. data_page_offset,
  839. page_length,
  840. 0);
  841. } else {
  842. slow_shmem_copy(page,
  843. shmem_page_offset,
  844. user_pages[data_page_index],
  845. data_page_offset,
  846. page_length);
  847. }
  848. set_page_dirty(page);
  849. mark_page_accessed(page);
  850. page_cache_release(page);
  851. remain -= page_length;
  852. data_ptr += page_length;
  853. offset += page_length;
  854. }
  855. out:
  856. for (i = 0; i < pinned_pages; i++)
  857. page_cache_release(user_pages[i]);
  858. drm_free_large(user_pages);
  859. return ret;
  860. }
  861. /**
  862. * Writes data to the object referenced by handle.
  863. *
  864. * On error, the contents of the buffer that were to be modified are undefined.
  865. */
  866. int
  867. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  868. struct drm_file *file)
  869. {
  870. struct drm_i915_gem_pwrite *args = data;
  871. struct drm_gem_object *obj;
  872. struct drm_i915_gem_object *obj_priv;
  873. int ret;
  874. if (args->size == 0)
  875. return 0;
  876. if (!access_ok(VERIFY_READ,
  877. (char __user *)(uintptr_t)args->data_ptr,
  878. args->size))
  879. return -EFAULT;
  880. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  881. args->size);
  882. if (ret)
  883. return -EFAULT;
  884. ret = i915_mutex_lock_interruptible(dev);
  885. if (ret)
  886. return ret;
  887. obj = drm_gem_object_lookup(dev, file, args->handle);
  888. if (obj == NULL) {
  889. ret = -ENOENT;
  890. goto unlock;
  891. }
  892. obj_priv = to_intel_bo(obj);
  893. /* Bounds check destination. */
  894. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  895. ret = -EINVAL;
  896. goto out;
  897. }
  898. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  899. * it would end up going through the fenced access, and we'll get
  900. * different detiling behavior between reading and writing.
  901. * pread/pwrite currently are reading and writing from the CPU
  902. * perspective, requiring manual detiling by the client.
  903. */
  904. if (obj_priv->phys_obj)
  905. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  906. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  907. obj_priv->gtt_space &&
  908. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  909. ret = i915_gem_object_pin(obj, 0, true);
  910. if (ret)
  911. goto out;
  912. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  913. if (ret)
  914. goto out_unpin;
  915. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  916. if (ret == -EFAULT)
  917. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  918. out_unpin:
  919. i915_gem_object_unpin(obj);
  920. } else {
  921. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  922. if (ret)
  923. goto out;
  924. ret = -EFAULT;
  925. if (!i915_gem_object_needs_bit17_swizzle(obj))
  926. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  927. if (ret == -EFAULT)
  928. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  929. }
  930. out:
  931. drm_gem_object_unreference(obj);
  932. unlock:
  933. mutex_unlock(&dev->struct_mutex);
  934. return ret;
  935. }
  936. /**
  937. * Called when user space prepares to use an object with the CPU, either
  938. * through the mmap ioctl's mapping or a GTT mapping.
  939. */
  940. int
  941. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  942. struct drm_file *file_priv)
  943. {
  944. struct drm_i915_private *dev_priv = dev->dev_private;
  945. struct drm_i915_gem_set_domain *args = data;
  946. struct drm_gem_object *obj;
  947. struct drm_i915_gem_object *obj_priv;
  948. uint32_t read_domains = args->read_domains;
  949. uint32_t write_domain = args->write_domain;
  950. int ret;
  951. if (!(dev->driver->driver_features & DRIVER_GEM))
  952. return -ENODEV;
  953. /* Only handle setting domains to types used by the CPU. */
  954. if (write_domain & I915_GEM_GPU_DOMAINS)
  955. return -EINVAL;
  956. if (read_domains & I915_GEM_GPU_DOMAINS)
  957. return -EINVAL;
  958. /* Having something in the write domain implies it's in the read
  959. * domain, and only that read domain. Enforce that in the request.
  960. */
  961. if (write_domain != 0 && read_domains != write_domain)
  962. return -EINVAL;
  963. ret = i915_mutex_lock_interruptible(dev);
  964. if (ret)
  965. return ret;
  966. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  967. if (obj == NULL) {
  968. ret = -ENOENT;
  969. goto unlock;
  970. }
  971. obj_priv = to_intel_bo(obj);
  972. intel_mark_busy(dev, obj);
  973. if (read_domains & I915_GEM_DOMAIN_GTT) {
  974. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  975. /* Update the LRU on the fence for the CPU access that's
  976. * about to occur.
  977. */
  978. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  979. struct drm_i915_fence_reg *reg =
  980. &dev_priv->fence_regs[obj_priv->fence_reg];
  981. list_move_tail(&reg->lru_list,
  982. &dev_priv->mm.fence_list);
  983. }
  984. /* Silently promote "you're not bound, there was nothing to do"
  985. * to success, since the client was just asking us to
  986. * make sure everything was done.
  987. */
  988. if (ret == -EINVAL)
  989. ret = 0;
  990. } else {
  991. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  992. }
  993. /* Maintain LRU order of "inactive" objects */
  994. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  995. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  996. drm_gem_object_unreference(obj);
  997. unlock:
  998. mutex_unlock(&dev->struct_mutex);
  999. return ret;
  1000. }
  1001. /**
  1002. * Called when user space has done writes to this buffer
  1003. */
  1004. int
  1005. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1006. struct drm_file *file_priv)
  1007. {
  1008. struct drm_i915_gem_sw_finish *args = data;
  1009. struct drm_gem_object *obj;
  1010. int ret = 0;
  1011. if (!(dev->driver->driver_features & DRIVER_GEM))
  1012. return -ENODEV;
  1013. ret = i915_mutex_lock_interruptible(dev);
  1014. if (ret)
  1015. return ret;
  1016. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1017. if (obj == NULL) {
  1018. ret = -ENOENT;
  1019. goto unlock;
  1020. }
  1021. /* Pinned buffers may be scanout, so flush the cache */
  1022. if (to_intel_bo(obj)->pin_count)
  1023. i915_gem_object_flush_cpu_write_domain(obj);
  1024. drm_gem_object_unreference(obj);
  1025. unlock:
  1026. mutex_unlock(&dev->struct_mutex);
  1027. return ret;
  1028. }
  1029. /**
  1030. * Maps the contents of an object, returning the address it is mapped
  1031. * into.
  1032. *
  1033. * While the mapping holds a reference on the contents of the object, it doesn't
  1034. * imply a ref on the object itself.
  1035. */
  1036. int
  1037. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1038. struct drm_file *file_priv)
  1039. {
  1040. struct drm_i915_private *dev_priv = dev->dev_private;
  1041. struct drm_i915_gem_mmap *args = data;
  1042. struct drm_gem_object *obj;
  1043. loff_t offset;
  1044. unsigned long addr;
  1045. if (!(dev->driver->driver_features & DRIVER_GEM))
  1046. return -ENODEV;
  1047. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1048. if (obj == NULL)
  1049. return -ENOENT;
  1050. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1051. drm_gem_object_unreference_unlocked(obj);
  1052. return -E2BIG;
  1053. }
  1054. offset = args->offset;
  1055. down_write(&current->mm->mmap_sem);
  1056. addr = do_mmap(obj->filp, 0, args->size,
  1057. PROT_READ | PROT_WRITE, MAP_SHARED,
  1058. args->offset);
  1059. up_write(&current->mm->mmap_sem);
  1060. drm_gem_object_unreference_unlocked(obj);
  1061. if (IS_ERR((void *)addr))
  1062. return addr;
  1063. args->addr_ptr = (uint64_t) addr;
  1064. return 0;
  1065. }
  1066. /**
  1067. * i915_gem_fault - fault a page into the GTT
  1068. * vma: VMA in question
  1069. * vmf: fault info
  1070. *
  1071. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1072. * from userspace. The fault handler takes care of binding the object to
  1073. * the GTT (if needed), allocating and programming a fence register (again,
  1074. * only if needed based on whether the old reg is still valid or the object
  1075. * is tiled) and inserting a new PTE into the faulting process.
  1076. *
  1077. * Note that the faulting process may involve evicting existing objects
  1078. * from the GTT and/or fence registers to make room. So performance may
  1079. * suffer if the GTT working set is large or there are few fence registers
  1080. * left.
  1081. */
  1082. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1083. {
  1084. struct drm_gem_object *obj = vma->vm_private_data;
  1085. struct drm_device *dev = obj->dev;
  1086. drm_i915_private_t *dev_priv = dev->dev_private;
  1087. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1088. pgoff_t page_offset;
  1089. unsigned long pfn;
  1090. int ret = 0;
  1091. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1092. /* We don't use vmf->pgoff since that has the fake offset */
  1093. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1094. PAGE_SHIFT;
  1095. /* Now bind it into the GTT if needed */
  1096. mutex_lock(&dev->struct_mutex);
  1097. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1098. if (obj_priv->gtt_space) {
  1099. if (!obj_priv->map_and_fenceable) {
  1100. ret = i915_gem_object_unbind(obj);
  1101. if (ret)
  1102. goto unlock;
  1103. }
  1104. }
  1105. if (!obj_priv->gtt_space) {
  1106. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1107. if (ret)
  1108. goto unlock;
  1109. }
  1110. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1111. if (ret)
  1112. goto unlock;
  1113. if (!obj_priv->fault_mappable) {
  1114. obj_priv->fault_mappable = true;
  1115. i915_gem_info_update_mappable(dev_priv, obj_priv, true);
  1116. }
  1117. /* Need a new fence register? */
  1118. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1119. ret = i915_gem_object_get_fence_reg(obj, true);
  1120. if (ret)
  1121. goto unlock;
  1122. }
  1123. if (i915_gem_object_is_inactive(obj_priv))
  1124. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1125. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1126. page_offset;
  1127. /* Finally, remap it using the new GTT offset */
  1128. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1129. unlock:
  1130. mutex_unlock(&dev->struct_mutex);
  1131. switch (ret) {
  1132. case -EAGAIN:
  1133. set_need_resched();
  1134. case 0:
  1135. case -ERESTARTSYS:
  1136. return VM_FAULT_NOPAGE;
  1137. case -ENOMEM:
  1138. return VM_FAULT_OOM;
  1139. default:
  1140. return VM_FAULT_SIGBUS;
  1141. }
  1142. }
  1143. /**
  1144. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1145. * @obj: obj in question
  1146. *
  1147. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1148. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1149. * up the object based on the offset and sets up the various memory mapping
  1150. * structures.
  1151. *
  1152. * This routine allocates and attaches a fake offset for @obj.
  1153. */
  1154. static int
  1155. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1156. {
  1157. struct drm_device *dev = obj->dev;
  1158. struct drm_gem_mm *mm = dev->mm_private;
  1159. struct drm_map_list *list;
  1160. struct drm_local_map *map;
  1161. int ret = 0;
  1162. /* Set the object up for mmap'ing */
  1163. list = &obj->map_list;
  1164. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1165. if (!list->map)
  1166. return -ENOMEM;
  1167. map = list->map;
  1168. map->type = _DRM_GEM;
  1169. map->size = obj->size;
  1170. map->handle = obj;
  1171. /* Get a DRM GEM mmap offset allocated... */
  1172. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1173. obj->size / PAGE_SIZE, 0, 0);
  1174. if (!list->file_offset_node) {
  1175. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1176. ret = -ENOSPC;
  1177. goto out_free_list;
  1178. }
  1179. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1180. obj->size / PAGE_SIZE, 0);
  1181. if (!list->file_offset_node) {
  1182. ret = -ENOMEM;
  1183. goto out_free_list;
  1184. }
  1185. list->hash.key = list->file_offset_node->start;
  1186. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1187. if (ret) {
  1188. DRM_ERROR("failed to add to map hash\n");
  1189. goto out_free_mm;
  1190. }
  1191. return 0;
  1192. out_free_mm:
  1193. drm_mm_put_block(list->file_offset_node);
  1194. out_free_list:
  1195. kfree(list->map);
  1196. list->map = NULL;
  1197. return ret;
  1198. }
  1199. /**
  1200. * i915_gem_release_mmap - remove physical page mappings
  1201. * @obj: obj in question
  1202. *
  1203. * Preserve the reservation of the mmapping with the DRM core code, but
  1204. * relinquish ownership of the pages back to the system.
  1205. *
  1206. * It is vital that we remove the page mapping if we have mapped a tiled
  1207. * object through the GTT and then lose the fence register due to
  1208. * resource pressure. Similarly if the object has been moved out of the
  1209. * aperture, than pages mapped into userspace must be revoked. Removing the
  1210. * mapping will then trigger a page fault on the next user access, allowing
  1211. * fixup by i915_gem_fault().
  1212. */
  1213. void
  1214. i915_gem_release_mmap(struct drm_gem_object *obj)
  1215. {
  1216. struct drm_device *dev = obj->dev;
  1217. struct drm_i915_private *dev_priv = dev->dev_private;
  1218. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1219. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1220. unmap_mapping_range(dev->dev_mapping,
  1221. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1222. obj->size, 1);
  1223. if (obj_priv->fault_mappable) {
  1224. obj_priv->fault_mappable = false;
  1225. i915_gem_info_update_mappable(dev_priv, obj_priv, false);
  1226. }
  1227. }
  1228. static void
  1229. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1230. {
  1231. struct drm_device *dev = obj->dev;
  1232. struct drm_gem_mm *mm = dev->mm_private;
  1233. struct drm_map_list *list = &obj->map_list;
  1234. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1235. drm_mm_put_block(list->file_offset_node);
  1236. kfree(list->map);
  1237. list->map = NULL;
  1238. }
  1239. /**
  1240. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1241. * @obj: object to check
  1242. *
  1243. * Return the required GTT alignment for an object, taking into account
  1244. * potential fence register mapping.
  1245. */
  1246. static uint32_t
  1247. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1248. {
  1249. struct drm_device *dev = obj_priv->base.dev;
  1250. /*
  1251. * Minimum alignment is 4k (GTT page size), but might be greater
  1252. * if a fence register is needed for the object.
  1253. */
  1254. if (INTEL_INFO(dev)->gen >= 4 ||
  1255. obj_priv->tiling_mode == I915_TILING_NONE)
  1256. return 4096;
  1257. /*
  1258. * Previous chips need to be aligned to the size of the smallest
  1259. * fence register that can contain the object.
  1260. */
  1261. return i915_gem_get_gtt_size(obj_priv);
  1262. }
  1263. /**
  1264. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1265. * unfenced object
  1266. * @obj: object to check
  1267. *
  1268. * Return the required GTT alignment for an object, only taking into account
  1269. * unfenced tiled surface requirements.
  1270. */
  1271. static uint32_t
  1272. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1273. {
  1274. struct drm_device *dev = obj_priv->base.dev;
  1275. int tile_height;
  1276. /*
  1277. * Minimum alignment is 4k (GTT page size) for sane hw.
  1278. */
  1279. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1280. obj_priv->tiling_mode == I915_TILING_NONE)
  1281. return 4096;
  1282. /*
  1283. * Older chips need unfenced tiled buffers to be aligned to the left
  1284. * edge of an even tile row (where tile rows are counted as if the bo is
  1285. * placed in a fenced gtt region).
  1286. */
  1287. if (IS_GEN2(dev) ||
  1288. (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1289. tile_height = 32;
  1290. else
  1291. tile_height = 8;
  1292. return tile_height * obj_priv->stride * 2;
  1293. }
  1294. static uint32_t
  1295. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
  1296. {
  1297. struct drm_device *dev = obj_priv->base.dev;
  1298. uint32_t size;
  1299. /*
  1300. * Minimum alignment is 4k (GTT page size), but might be greater
  1301. * if a fence register is needed for the object.
  1302. */
  1303. if (INTEL_INFO(dev)->gen >= 4)
  1304. return obj_priv->base.size;
  1305. /*
  1306. * Previous chips need to be aligned to the size of the smallest
  1307. * fence register that can contain the object.
  1308. */
  1309. if (INTEL_INFO(dev)->gen == 3)
  1310. size = 1024*1024;
  1311. else
  1312. size = 512*1024;
  1313. while (size < obj_priv->base.size)
  1314. size <<= 1;
  1315. return size;
  1316. }
  1317. /**
  1318. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1319. * @dev: DRM device
  1320. * @data: GTT mapping ioctl data
  1321. * @file_priv: GEM object info
  1322. *
  1323. * Simply returns the fake offset to userspace so it can mmap it.
  1324. * The mmap call will end up in drm_gem_mmap(), which will set things
  1325. * up so we can get faults in the handler above.
  1326. *
  1327. * The fault handler will take care of binding the object into the GTT
  1328. * (since it may have been evicted to make room for something), allocating
  1329. * a fence register, and mapping the appropriate aperture address into
  1330. * userspace.
  1331. */
  1332. int
  1333. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1334. struct drm_file *file_priv)
  1335. {
  1336. struct drm_i915_private *dev_priv = dev->dev_private;
  1337. struct drm_i915_gem_mmap_gtt *args = data;
  1338. struct drm_gem_object *obj;
  1339. struct drm_i915_gem_object *obj_priv;
  1340. int ret;
  1341. if (!(dev->driver->driver_features & DRIVER_GEM))
  1342. return -ENODEV;
  1343. ret = i915_mutex_lock_interruptible(dev);
  1344. if (ret)
  1345. return ret;
  1346. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1347. if (obj == NULL) {
  1348. ret = -ENOENT;
  1349. goto unlock;
  1350. }
  1351. obj_priv = to_intel_bo(obj);
  1352. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1353. ret = -E2BIG;
  1354. goto unlock;
  1355. }
  1356. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1357. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1358. ret = -EINVAL;
  1359. goto out;
  1360. }
  1361. if (!obj->map_list.map) {
  1362. ret = i915_gem_create_mmap_offset(obj);
  1363. if (ret)
  1364. goto out;
  1365. }
  1366. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1367. out:
  1368. drm_gem_object_unreference(obj);
  1369. unlock:
  1370. mutex_unlock(&dev->struct_mutex);
  1371. return ret;
  1372. }
  1373. static int
  1374. i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
  1375. gfp_t gfpmask)
  1376. {
  1377. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1378. int page_count, i;
  1379. struct address_space *mapping;
  1380. struct inode *inode;
  1381. struct page *page;
  1382. /* Get the list of pages out of our struct file. They'll be pinned
  1383. * at this point until we release them.
  1384. */
  1385. page_count = obj->size / PAGE_SIZE;
  1386. BUG_ON(obj_priv->pages != NULL);
  1387. obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1388. if (obj_priv->pages == NULL)
  1389. return -ENOMEM;
  1390. inode = obj->filp->f_path.dentry->d_inode;
  1391. mapping = inode->i_mapping;
  1392. for (i = 0; i < page_count; i++) {
  1393. page = read_cache_page_gfp(mapping, i,
  1394. GFP_HIGHUSER |
  1395. __GFP_COLD |
  1396. __GFP_RECLAIMABLE |
  1397. gfpmask);
  1398. if (IS_ERR(page))
  1399. goto err_pages;
  1400. obj_priv->pages[i] = page;
  1401. }
  1402. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1403. i915_gem_object_do_bit_17_swizzle(obj);
  1404. return 0;
  1405. err_pages:
  1406. while (i--)
  1407. page_cache_release(obj_priv->pages[i]);
  1408. drm_free_large(obj_priv->pages);
  1409. obj_priv->pages = NULL;
  1410. return PTR_ERR(page);
  1411. }
  1412. static void
  1413. i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
  1414. {
  1415. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1416. int page_count = obj->size / PAGE_SIZE;
  1417. int i;
  1418. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1419. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1420. i915_gem_object_save_bit_17_swizzle(obj);
  1421. if (obj_priv->madv == I915_MADV_DONTNEED)
  1422. obj_priv->dirty = 0;
  1423. for (i = 0; i < page_count; i++) {
  1424. if (obj_priv->dirty)
  1425. set_page_dirty(obj_priv->pages[i]);
  1426. if (obj_priv->madv == I915_MADV_WILLNEED)
  1427. mark_page_accessed(obj_priv->pages[i]);
  1428. page_cache_release(obj_priv->pages[i]);
  1429. }
  1430. obj_priv->dirty = 0;
  1431. drm_free_large(obj_priv->pages);
  1432. obj_priv->pages = NULL;
  1433. }
  1434. static uint32_t
  1435. i915_gem_next_request_seqno(struct drm_device *dev,
  1436. struct intel_ring_buffer *ring)
  1437. {
  1438. drm_i915_private_t *dev_priv = dev->dev_private;
  1439. return ring->outstanding_lazy_request = dev_priv->next_seqno;
  1440. }
  1441. static void
  1442. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1443. struct intel_ring_buffer *ring)
  1444. {
  1445. struct drm_device *dev = obj->dev;
  1446. struct drm_i915_private *dev_priv = dev->dev_private;
  1447. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1448. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1449. BUG_ON(ring == NULL);
  1450. obj_priv->ring = ring;
  1451. /* Add a reference if we're newly entering the active list. */
  1452. if (!obj_priv->active) {
  1453. drm_gem_object_reference(obj);
  1454. obj_priv->active = 1;
  1455. }
  1456. /* Move from whatever list we were on to the tail of execution. */
  1457. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1458. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1459. obj_priv->last_rendering_seqno = seqno;
  1460. }
  1461. static void
  1462. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1463. {
  1464. struct drm_device *dev = obj->dev;
  1465. drm_i915_private_t *dev_priv = dev->dev_private;
  1466. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1467. BUG_ON(!obj_priv->active);
  1468. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1469. list_del_init(&obj_priv->ring_list);
  1470. obj_priv->last_rendering_seqno = 0;
  1471. }
  1472. /* Immediately discard the backing storage */
  1473. static void
  1474. i915_gem_object_truncate(struct drm_gem_object *obj)
  1475. {
  1476. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1477. struct inode *inode;
  1478. /* Our goal here is to return as much of the memory as
  1479. * is possible back to the system as we are called from OOM.
  1480. * To do this we must instruct the shmfs to drop all of its
  1481. * backing pages, *now*. Here we mirror the actions taken
  1482. * when by shmem_delete_inode() to release the backing store.
  1483. */
  1484. inode = obj->filp->f_path.dentry->d_inode;
  1485. truncate_inode_pages(inode->i_mapping, 0);
  1486. if (inode->i_op->truncate_range)
  1487. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1488. obj_priv->madv = __I915_MADV_PURGED;
  1489. }
  1490. static inline int
  1491. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1492. {
  1493. return obj_priv->madv == I915_MADV_DONTNEED;
  1494. }
  1495. static void
  1496. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1497. {
  1498. struct drm_device *dev = obj->dev;
  1499. drm_i915_private_t *dev_priv = dev->dev_private;
  1500. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1501. if (obj_priv->pin_count != 0)
  1502. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1503. else
  1504. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1505. list_del_init(&obj_priv->ring_list);
  1506. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1507. obj_priv->last_rendering_seqno = 0;
  1508. obj_priv->ring = NULL;
  1509. if (obj_priv->active) {
  1510. obj_priv->active = 0;
  1511. drm_gem_object_unreference(obj);
  1512. }
  1513. WARN_ON(i915_verify_lists(dev));
  1514. }
  1515. static void
  1516. i915_gem_process_flushing_list(struct drm_device *dev,
  1517. uint32_t flush_domains,
  1518. struct intel_ring_buffer *ring)
  1519. {
  1520. drm_i915_private_t *dev_priv = dev->dev_private;
  1521. struct drm_i915_gem_object *obj_priv, *next;
  1522. list_for_each_entry_safe(obj_priv, next,
  1523. &ring->gpu_write_list,
  1524. gpu_write_list) {
  1525. struct drm_gem_object *obj = &obj_priv->base;
  1526. if (obj->write_domain & flush_domains) {
  1527. uint32_t old_write_domain = obj->write_domain;
  1528. obj->write_domain = 0;
  1529. list_del_init(&obj_priv->gpu_write_list);
  1530. i915_gem_object_move_to_active(obj, ring);
  1531. /* update the fence lru list */
  1532. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1533. struct drm_i915_fence_reg *reg =
  1534. &dev_priv->fence_regs[obj_priv->fence_reg];
  1535. list_move_tail(&reg->lru_list,
  1536. &dev_priv->mm.fence_list);
  1537. }
  1538. trace_i915_gem_object_change_domain(obj,
  1539. obj->read_domains,
  1540. old_write_domain);
  1541. }
  1542. }
  1543. }
  1544. int
  1545. i915_add_request(struct drm_device *dev,
  1546. struct drm_file *file,
  1547. struct drm_i915_gem_request *request,
  1548. struct intel_ring_buffer *ring)
  1549. {
  1550. drm_i915_private_t *dev_priv = dev->dev_private;
  1551. struct drm_i915_file_private *file_priv = NULL;
  1552. uint32_t seqno;
  1553. int was_empty;
  1554. int ret;
  1555. BUG_ON(request == NULL);
  1556. if (file != NULL)
  1557. file_priv = file->driver_priv;
  1558. ret = ring->add_request(ring, &seqno);
  1559. if (ret)
  1560. return ret;
  1561. ring->outstanding_lazy_request = false;
  1562. request->seqno = seqno;
  1563. request->ring = ring;
  1564. request->emitted_jiffies = jiffies;
  1565. was_empty = list_empty(&ring->request_list);
  1566. list_add_tail(&request->list, &ring->request_list);
  1567. if (file_priv) {
  1568. spin_lock(&file_priv->mm.lock);
  1569. request->file_priv = file_priv;
  1570. list_add_tail(&request->client_list,
  1571. &file_priv->mm.request_list);
  1572. spin_unlock(&file_priv->mm.lock);
  1573. }
  1574. if (!dev_priv->mm.suspended) {
  1575. mod_timer(&dev_priv->hangcheck_timer,
  1576. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1577. if (was_empty)
  1578. queue_delayed_work(dev_priv->wq,
  1579. &dev_priv->mm.retire_work, HZ);
  1580. }
  1581. return 0;
  1582. }
  1583. /**
  1584. * Command execution barrier
  1585. *
  1586. * Ensures that all commands in the ring are finished
  1587. * before signalling the CPU
  1588. */
  1589. static void
  1590. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1591. {
  1592. uint32_t flush_domains = 0;
  1593. /* The sampler always gets flushed on i965 (sigh) */
  1594. if (INTEL_INFO(dev)->gen >= 4)
  1595. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1596. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1597. }
  1598. static inline void
  1599. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1600. {
  1601. struct drm_i915_file_private *file_priv = request->file_priv;
  1602. if (!file_priv)
  1603. return;
  1604. spin_lock(&file_priv->mm.lock);
  1605. list_del(&request->client_list);
  1606. request->file_priv = NULL;
  1607. spin_unlock(&file_priv->mm.lock);
  1608. }
  1609. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1610. struct intel_ring_buffer *ring)
  1611. {
  1612. while (!list_empty(&ring->request_list)) {
  1613. struct drm_i915_gem_request *request;
  1614. request = list_first_entry(&ring->request_list,
  1615. struct drm_i915_gem_request,
  1616. list);
  1617. list_del(&request->list);
  1618. i915_gem_request_remove_from_client(request);
  1619. kfree(request);
  1620. }
  1621. while (!list_empty(&ring->active_list)) {
  1622. struct drm_i915_gem_object *obj_priv;
  1623. obj_priv = list_first_entry(&ring->active_list,
  1624. struct drm_i915_gem_object,
  1625. ring_list);
  1626. obj_priv->base.write_domain = 0;
  1627. list_del_init(&obj_priv->gpu_write_list);
  1628. i915_gem_object_move_to_inactive(&obj_priv->base);
  1629. }
  1630. }
  1631. void i915_gem_reset(struct drm_device *dev)
  1632. {
  1633. struct drm_i915_private *dev_priv = dev->dev_private;
  1634. struct drm_i915_gem_object *obj_priv;
  1635. int i;
  1636. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1637. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1638. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1639. /* Remove anything from the flushing lists. The GPU cache is likely
  1640. * to be lost on reset along with the data, so simply move the
  1641. * lost bo to the inactive list.
  1642. */
  1643. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1644. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1645. struct drm_i915_gem_object,
  1646. mm_list);
  1647. obj_priv->base.write_domain = 0;
  1648. list_del_init(&obj_priv->gpu_write_list);
  1649. i915_gem_object_move_to_inactive(&obj_priv->base);
  1650. }
  1651. /* Move everything out of the GPU domains to ensure we do any
  1652. * necessary invalidation upon reuse.
  1653. */
  1654. list_for_each_entry(obj_priv,
  1655. &dev_priv->mm.inactive_list,
  1656. mm_list)
  1657. {
  1658. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1659. }
  1660. /* The fence registers are invalidated so clear them out */
  1661. for (i = 0; i < 16; i++) {
  1662. struct drm_i915_fence_reg *reg;
  1663. reg = &dev_priv->fence_regs[i];
  1664. if (!reg->obj)
  1665. continue;
  1666. i915_gem_clear_fence_reg(reg->obj);
  1667. }
  1668. }
  1669. /**
  1670. * This function clears the request list as sequence numbers are passed.
  1671. */
  1672. static void
  1673. i915_gem_retire_requests_ring(struct drm_device *dev,
  1674. struct intel_ring_buffer *ring)
  1675. {
  1676. drm_i915_private_t *dev_priv = dev->dev_private;
  1677. uint32_t seqno;
  1678. if (!ring->status_page.page_addr ||
  1679. list_empty(&ring->request_list))
  1680. return;
  1681. WARN_ON(i915_verify_lists(dev));
  1682. seqno = ring->get_seqno(ring);
  1683. while (!list_empty(&ring->request_list)) {
  1684. struct drm_i915_gem_request *request;
  1685. request = list_first_entry(&ring->request_list,
  1686. struct drm_i915_gem_request,
  1687. list);
  1688. if (!i915_seqno_passed(seqno, request->seqno))
  1689. break;
  1690. trace_i915_gem_request_retire(dev, request->seqno);
  1691. list_del(&request->list);
  1692. i915_gem_request_remove_from_client(request);
  1693. kfree(request);
  1694. }
  1695. /* Move any buffers on the active list that are no longer referenced
  1696. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1697. */
  1698. while (!list_empty(&ring->active_list)) {
  1699. struct drm_gem_object *obj;
  1700. struct drm_i915_gem_object *obj_priv;
  1701. obj_priv = list_first_entry(&ring->active_list,
  1702. struct drm_i915_gem_object,
  1703. ring_list);
  1704. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1705. break;
  1706. obj = &obj_priv->base;
  1707. if (obj->write_domain != 0)
  1708. i915_gem_object_move_to_flushing(obj);
  1709. else
  1710. i915_gem_object_move_to_inactive(obj);
  1711. }
  1712. if (unlikely (dev_priv->trace_irq_seqno &&
  1713. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1714. ring->user_irq_put(ring);
  1715. dev_priv->trace_irq_seqno = 0;
  1716. }
  1717. WARN_ON(i915_verify_lists(dev));
  1718. }
  1719. void
  1720. i915_gem_retire_requests(struct drm_device *dev)
  1721. {
  1722. drm_i915_private_t *dev_priv = dev->dev_private;
  1723. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1724. struct drm_i915_gem_object *obj_priv, *tmp;
  1725. /* We must be careful that during unbind() we do not
  1726. * accidentally infinitely recurse into retire requests.
  1727. * Currently:
  1728. * retire -> free -> unbind -> wait -> retire_ring
  1729. */
  1730. list_for_each_entry_safe(obj_priv, tmp,
  1731. &dev_priv->mm.deferred_free_list,
  1732. mm_list)
  1733. i915_gem_free_object_tail(&obj_priv->base);
  1734. }
  1735. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1736. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1737. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1738. }
  1739. static void
  1740. i915_gem_retire_work_handler(struct work_struct *work)
  1741. {
  1742. drm_i915_private_t *dev_priv;
  1743. struct drm_device *dev;
  1744. dev_priv = container_of(work, drm_i915_private_t,
  1745. mm.retire_work.work);
  1746. dev = dev_priv->dev;
  1747. /* Come back later if the device is busy... */
  1748. if (!mutex_trylock(&dev->struct_mutex)) {
  1749. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1750. return;
  1751. }
  1752. i915_gem_retire_requests(dev);
  1753. if (!dev_priv->mm.suspended &&
  1754. (!list_empty(&dev_priv->render_ring.request_list) ||
  1755. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1756. !list_empty(&dev_priv->blt_ring.request_list)))
  1757. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1758. mutex_unlock(&dev->struct_mutex);
  1759. }
  1760. int
  1761. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1762. bool interruptible, struct intel_ring_buffer *ring)
  1763. {
  1764. drm_i915_private_t *dev_priv = dev->dev_private;
  1765. u32 ier;
  1766. int ret = 0;
  1767. BUG_ON(seqno == 0);
  1768. if (atomic_read(&dev_priv->mm.wedged))
  1769. return -EAGAIN;
  1770. if (seqno == ring->outstanding_lazy_request) {
  1771. struct drm_i915_gem_request *request;
  1772. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1773. if (request == NULL)
  1774. return -ENOMEM;
  1775. ret = i915_add_request(dev, NULL, request, ring);
  1776. if (ret) {
  1777. kfree(request);
  1778. return ret;
  1779. }
  1780. seqno = request->seqno;
  1781. }
  1782. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1783. if (HAS_PCH_SPLIT(dev))
  1784. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1785. else
  1786. ier = I915_READ(IER);
  1787. if (!ier) {
  1788. DRM_ERROR("something (likely vbetool) disabled "
  1789. "interrupts, re-enabling\n");
  1790. i915_driver_irq_preinstall(dev);
  1791. i915_driver_irq_postinstall(dev);
  1792. }
  1793. trace_i915_gem_request_wait_begin(dev, seqno);
  1794. ring->waiting_seqno = seqno;
  1795. ring->user_irq_get(ring);
  1796. if (interruptible)
  1797. ret = wait_event_interruptible(ring->irq_queue,
  1798. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1799. || atomic_read(&dev_priv->mm.wedged));
  1800. else
  1801. wait_event(ring->irq_queue,
  1802. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1803. || atomic_read(&dev_priv->mm.wedged));
  1804. ring->user_irq_put(ring);
  1805. ring->waiting_seqno = 0;
  1806. trace_i915_gem_request_wait_end(dev, seqno);
  1807. }
  1808. if (atomic_read(&dev_priv->mm.wedged))
  1809. ret = -EAGAIN;
  1810. if (ret && ret != -ERESTARTSYS)
  1811. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1812. __func__, ret, seqno, ring->get_seqno(ring),
  1813. dev_priv->next_seqno);
  1814. /* Directly dispatch request retiring. While we have the work queue
  1815. * to handle this, the waiter on a request often wants an associated
  1816. * buffer to have made it to the inactive list, and we would need
  1817. * a separate wait queue to handle that.
  1818. */
  1819. if (ret == 0)
  1820. i915_gem_retire_requests_ring(dev, ring);
  1821. return ret;
  1822. }
  1823. /**
  1824. * Waits for a sequence number to be signaled, and cleans up the
  1825. * request and object lists appropriately for that event.
  1826. */
  1827. static int
  1828. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1829. struct intel_ring_buffer *ring)
  1830. {
  1831. return i915_do_wait_request(dev, seqno, 1, ring);
  1832. }
  1833. static void
  1834. i915_gem_flush_ring(struct drm_device *dev,
  1835. struct drm_file *file_priv,
  1836. struct intel_ring_buffer *ring,
  1837. uint32_t invalidate_domains,
  1838. uint32_t flush_domains)
  1839. {
  1840. ring->flush(ring, invalidate_domains, flush_domains);
  1841. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1842. }
  1843. static void
  1844. i915_gem_flush(struct drm_device *dev,
  1845. struct drm_file *file_priv,
  1846. uint32_t invalidate_domains,
  1847. uint32_t flush_domains,
  1848. uint32_t flush_rings)
  1849. {
  1850. drm_i915_private_t *dev_priv = dev->dev_private;
  1851. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1852. drm_agp_chipset_flush(dev);
  1853. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1854. if (flush_rings & RING_RENDER)
  1855. i915_gem_flush_ring(dev, file_priv,
  1856. &dev_priv->render_ring,
  1857. invalidate_domains, flush_domains);
  1858. if (flush_rings & RING_BSD)
  1859. i915_gem_flush_ring(dev, file_priv,
  1860. &dev_priv->bsd_ring,
  1861. invalidate_domains, flush_domains);
  1862. if (flush_rings & RING_BLT)
  1863. i915_gem_flush_ring(dev, file_priv,
  1864. &dev_priv->blt_ring,
  1865. invalidate_domains, flush_domains);
  1866. }
  1867. }
  1868. /**
  1869. * Ensures that all rendering to the object has completed and the object is
  1870. * safe to unbind from the GTT or access from the CPU.
  1871. */
  1872. static int
  1873. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1874. bool interruptible)
  1875. {
  1876. struct drm_device *dev = obj->dev;
  1877. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1878. int ret;
  1879. /* This function only exists to support waiting for existing rendering,
  1880. * not for emitting required flushes.
  1881. */
  1882. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1883. /* If there is rendering queued on the buffer being evicted, wait for
  1884. * it.
  1885. */
  1886. if (obj_priv->active) {
  1887. ret = i915_do_wait_request(dev,
  1888. obj_priv->last_rendering_seqno,
  1889. interruptible,
  1890. obj_priv->ring);
  1891. if (ret)
  1892. return ret;
  1893. }
  1894. return 0;
  1895. }
  1896. /**
  1897. * Unbinds an object from the GTT aperture.
  1898. */
  1899. int
  1900. i915_gem_object_unbind(struct drm_gem_object *obj)
  1901. {
  1902. struct drm_device *dev = obj->dev;
  1903. struct drm_i915_private *dev_priv = dev->dev_private;
  1904. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1905. int ret = 0;
  1906. if (obj_priv->gtt_space == NULL)
  1907. return 0;
  1908. if (obj_priv->pin_count != 0) {
  1909. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1910. return -EINVAL;
  1911. }
  1912. /* blow away mappings if mapped through GTT */
  1913. i915_gem_release_mmap(obj);
  1914. /* Move the object to the CPU domain to ensure that
  1915. * any possible CPU writes while it's not in the GTT
  1916. * are flushed when we go to remap it. This will
  1917. * also ensure that all pending GPU writes are finished
  1918. * before we unbind.
  1919. */
  1920. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1921. if (ret == -ERESTARTSYS)
  1922. return ret;
  1923. /* Continue on if we fail due to EIO, the GPU is hung so we
  1924. * should be safe and we need to cleanup or else we might
  1925. * cause memory corruption through use-after-free.
  1926. */
  1927. if (ret) {
  1928. i915_gem_clflush_object(obj);
  1929. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1930. }
  1931. /* release the fence reg _after_ flushing */
  1932. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1933. i915_gem_clear_fence_reg(obj);
  1934. drm_unbind_agp(obj_priv->agp_mem);
  1935. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1936. i915_gem_object_put_pages_gtt(obj);
  1937. i915_gem_info_remove_gtt(dev_priv, obj_priv);
  1938. list_del_init(&obj_priv->mm_list);
  1939. /* Avoid an unnecessary call to unbind on rebind. */
  1940. obj_priv->map_and_fenceable = true;
  1941. drm_mm_put_block(obj_priv->gtt_space);
  1942. obj_priv->gtt_space = NULL;
  1943. obj_priv->gtt_offset = 0;
  1944. if (i915_gem_object_is_purgeable(obj_priv))
  1945. i915_gem_object_truncate(obj);
  1946. trace_i915_gem_object_unbind(obj);
  1947. return ret;
  1948. }
  1949. static int i915_ring_idle(struct drm_device *dev,
  1950. struct intel_ring_buffer *ring)
  1951. {
  1952. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1953. return 0;
  1954. i915_gem_flush_ring(dev, NULL, ring,
  1955. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1956. return i915_wait_request(dev,
  1957. i915_gem_next_request_seqno(dev, ring),
  1958. ring);
  1959. }
  1960. int
  1961. i915_gpu_idle(struct drm_device *dev)
  1962. {
  1963. drm_i915_private_t *dev_priv = dev->dev_private;
  1964. bool lists_empty;
  1965. int ret;
  1966. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1967. list_empty(&dev_priv->mm.active_list));
  1968. if (lists_empty)
  1969. return 0;
  1970. /* Flush everything onto the inactive list. */
  1971. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1972. if (ret)
  1973. return ret;
  1974. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1975. if (ret)
  1976. return ret;
  1977. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1978. if (ret)
  1979. return ret;
  1980. return 0;
  1981. }
  1982. static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
  1983. {
  1984. struct drm_device *dev = obj->dev;
  1985. drm_i915_private_t *dev_priv = dev->dev_private;
  1986. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1987. u32 size = i915_gem_get_gtt_size(obj_priv);
  1988. int regnum = obj_priv->fence_reg;
  1989. uint64_t val;
  1990. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1991. 0xfffff000) << 32;
  1992. val |= obj_priv->gtt_offset & 0xfffff000;
  1993. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1994. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1995. if (obj_priv->tiling_mode == I915_TILING_Y)
  1996. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1997. val |= I965_FENCE_REG_VALID;
  1998. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1999. }
  2000. static void i965_write_fence_reg(struct drm_gem_object *obj)
  2001. {
  2002. struct drm_device *dev = obj->dev;
  2003. drm_i915_private_t *dev_priv = dev->dev_private;
  2004. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2005. u32 size = i915_gem_get_gtt_size(obj_priv);
  2006. int regnum = obj_priv->fence_reg;
  2007. uint64_t val;
  2008. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  2009. 0xfffff000) << 32;
  2010. val |= obj_priv->gtt_offset & 0xfffff000;
  2011. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2012. if (obj_priv->tiling_mode == I915_TILING_Y)
  2013. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2014. val |= I965_FENCE_REG_VALID;
  2015. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  2016. }
  2017. static void i915_write_fence_reg(struct drm_gem_object *obj)
  2018. {
  2019. struct drm_device *dev = obj->dev;
  2020. drm_i915_private_t *dev_priv = dev->dev_private;
  2021. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2022. u32 size = i915_gem_get_gtt_size(obj_priv);
  2023. uint32_t fence_reg, val, pitch_val;
  2024. int tile_width;
  2025. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2026. (obj_priv->gtt_offset & (size - 1))) {
  2027. WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
  2028. __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
  2029. obj_priv->gtt_space->start, obj_priv->gtt_space->size);
  2030. return;
  2031. }
  2032. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2033. HAS_128_BYTE_Y_TILING(dev))
  2034. tile_width = 128;
  2035. else
  2036. tile_width = 512;
  2037. /* Note: pitch better be a power of two tile widths */
  2038. pitch_val = obj_priv->stride / tile_width;
  2039. pitch_val = ffs(pitch_val) - 1;
  2040. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2041. HAS_128_BYTE_Y_TILING(dev))
  2042. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2043. else
  2044. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2045. val = obj_priv->gtt_offset;
  2046. if (obj_priv->tiling_mode == I915_TILING_Y)
  2047. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2048. val |= I915_FENCE_SIZE_BITS(size);
  2049. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2050. val |= I830_FENCE_REG_VALID;
  2051. fence_reg = obj_priv->fence_reg;
  2052. if (fence_reg < 8)
  2053. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2054. else
  2055. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2056. I915_WRITE(fence_reg, val);
  2057. }
  2058. static void i830_write_fence_reg(struct drm_gem_object *obj)
  2059. {
  2060. struct drm_device *dev = obj->dev;
  2061. drm_i915_private_t *dev_priv = dev->dev_private;
  2062. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2063. u32 size = i915_gem_get_gtt_size(obj_priv);
  2064. int regnum = obj_priv->fence_reg;
  2065. uint32_t val;
  2066. uint32_t pitch_val;
  2067. uint32_t fence_size_bits;
  2068. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2069. (obj_priv->gtt_offset & (obj->size - 1))) {
  2070. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2071. __func__, obj_priv->gtt_offset);
  2072. return;
  2073. }
  2074. pitch_val = obj_priv->stride / 128;
  2075. pitch_val = ffs(pitch_val) - 1;
  2076. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2077. val = obj_priv->gtt_offset;
  2078. if (obj_priv->tiling_mode == I915_TILING_Y)
  2079. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2080. fence_size_bits = I830_FENCE_SIZE_BITS(size);
  2081. WARN_ON(fence_size_bits & ~0x00000f00);
  2082. val |= fence_size_bits;
  2083. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2084. val |= I830_FENCE_REG_VALID;
  2085. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2086. }
  2087. static int i915_find_fence_reg(struct drm_device *dev,
  2088. bool interruptible)
  2089. {
  2090. struct drm_i915_private *dev_priv = dev->dev_private;
  2091. struct drm_i915_fence_reg *reg;
  2092. struct drm_i915_gem_object *obj_priv = NULL;
  2093. int i, avail, ret;
  2094. /* First try to find a free reg */
  2095. avail = 0;
  2096. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2097. reg = &dev_priv->fence_regs[i];
  2098. if (!reg->obj)
  2099. return i;
  2100. obj_priv = to_intel_bo(reg->obj);
  2101. if (!obj_priv->pin_count)
  2102. avail++;
  2103. }
  2104. if (avail == 0)
  2105. return -ENOSPC;
  2106. /* None available, try to steal one or wait for a user to finish */
  2107. avail = I915_FENCE_REG_NONE;
  2108. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2109. lru_list) {
  2110. obj_priv = to_intel_bo(reg->obj);
  2111. if (obj_priv->pin_count)
  2112. continue;
  2113. /* found one! */
  2114. avail = obj_priv->fence_reg;
  2115. break;
  2116. }
  2117. BUG_ON(avail == I915_FENCE_REG_NONE);
  2118. /* We only have a reference on obj from the active list. put_fence_reg
  2119. * might drop that one, causing a use-after-free in it. So hold a
  2120. * private reference to obj like the other callers of put_fence_reg
  2121. * (set_tiling ioctl) do. */
  2122. drm_gem_object_reference(&obj_priv->base);
  2123. ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
  2124. drm_gem_object_unreference(&obj_priv->base);
  2125. if (ret != 0)
  2126. return ret;
  2127. return avail;
  2128. }
  2129. /**
  2130. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2131. * @obj: object to map through a fence reg
  2132. *
  2133. * When mapping objects through the GTT, userspace wants to be able to write
  2134. * to them without having to worry about swizzling if the object is tiled.
  2135. *
  2136. * This function walks the fence regs looking for a free one for @obj,
  2137. * stealing one if it can't find any.
  2138. *
  2139. * It then sets up the reg based on the object's properties: address, pitch
  2140. * and tiling format.
  2141. */
  2142. int
  2143. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2144. bool interruptible)
  2145. {
  2146. struct drm_device *dev = obj->dev;
  2147. struct drm_i915_private *dev_priv = dev->dev_private;
  2148. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2149. struct drm_i915_fence_reg *reg = NULL;
  2150. int ret;
  2151. /* Just update our place in the LRU if our fence is getting used. */
  2152. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2153. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2154. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2155. return 0;
  2156. }
  2157. switch (obj_priv->tiling_mode) {
  2158. case I915_TILING_NONE:
  2159. WARN(1, "allocating a fence for non-tiled object?\n");
  2160. break;
  2161. case I915_TILING_X:
  2162. if (!obj_priv->stride)
  2163. return -EINVAL;
  2164. WARN((obj_priv->stride & (512 - 1)),
  2165. "object 0x%08x is X tiled but has non-512B pitch\n",
  2166. obj_priv->gtt_offset);
  2167. break;
  2168. case I915_TILING_Y:
  2169. if (!obj_priv->stride)
  2170. return -EINVAL;
  2171. WARN((obj_priv->stride & (128 - 1)),
  2172. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2173. obj_priv->gtt_offset);
  2174. break;
  2175. }
  2176. ret = i915_find_fence_reg(dev, interruptible);
  2177. if (ret < 0)
  2178. return ret;
  2179. obj_priv->fence_reg = ret;
  2180. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2181. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2182. reg->obj = obj;
  2183. switch (INTEL_INFO(dev)->gen) {
  2184. case 6:
  2185. sandybridge_write_fence_reg(obj);
  2186. break;
  2187. case 5:
  2188. case 4:
  2189. i965_write_fence_reg(obj);
  2190. break;
  2191. case 3:
  2192. i915_write_fence_reg(obj);
  2193. break;
  2194. case 2:
  2195. i830_write_fence_reg(obj);
  2196. break;
  2197. }
  2198. trace_i915_gem_object_get_fence(obj,
  2199. obj_priv->fence_reg,
  2200. obj_priv->tiling_mode);
  2201. return 0;
  2202. }
  2203. /**
  2204. * i915_gem_clear_fence_reg - clear out fence register info
  2205. * @obj: object to clear
  2206. *
  2207. * Zeroes out the fence register itself and clears out the associated
  2208. * data structures in dev_priv and obj_priv.
  2209. */
  2210. static void
  2211. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2212. {
  2213. struct drm_device *dev = obj->dev;
  2214. drm_i915_private_t *dev_priv = dev->dev_private;
  2215. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2216. struct drm_i915_fence_reg *reg =
  2217. &dev_priv->fence_regs[obj_priv->fence_reg];
  2218. uint32_t fence_reg;
  2219. switch (INTEL_INFO(dev)->gen) {
  2220. case 6:
  2221. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2222. (obj_priv->fence_reg * 8), 0);
  2223. break;
  2224. case 5:
  2225. case 4:
  2226. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2227. break;
  2228. case 3:
  2229. if (obj_priv->fence_reg >= 8)
  2230. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2231. else
  2232. case 2:
  2233. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2234. I915_WRITE(fence_reg, 0);
  2235. break;
  2236. }
  2237. reg->obj = NULL;
  2238. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2239. list_del_init(&reg->lru_list);
  2240. }
  2241. /**
  2242. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2243. * to the buffer to finish, and then resets the fence register.
  2244. * @obj: tiled object holding a fence register.
  2245. * @bool: whether the wait upon the fence is interruptible
  2246. *
  2247. * Zeroes out the fence register itself and clears out the associated
  2248. * data structures in dev_priv and obj_priv.
  2249. */
  2250. int
  2251. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2252. bool interruptible)
  2253. {
  2254. struct drm_device *dev = obj->dev;
  2255. struct drm_i915_private *dev_priv = dev->dev_private;
  2256. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2257. struct drm_i915_fence_reg *reg;
  2258. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2259. return 0;
  2260. /* If we've changed tiling, GTT-mappings of the object
  2261. * need to re-fault to ensure that the correct fence register
  2262. * setup is in place.
  2263. */
  2264. i915_gem_release_mmap(obj);
  2265. /* On the i915, GPU access to tiled buffers is via a fence,
  2266. * therefore we must wait for any outstanding access to complete
  2267. * before clearing the fence.
  2268. */
  2269. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2270. if (reg->gpu) {
  2271. int ret;
  2272. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2273. if (ret)
  2274. return ret;
  2275. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2276. if (ret)
  2277. return ret;
  2278. reg->gpu = false;
  2279. }
  2280. i915_gem_object_flush_gtt_write_domain(obj);
  2281. i915_gem_clear_fence_reg(obj);
  2282. return 0;
  2283. }
  2284. /**
  2285. * Finds free space in the GTT aperture and binds the object there.
  2286. */
  2287. static int
  2288. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2289. unsigned alignment,
  2290. bool map_and_fenceable)
  2291. {
  2292. struct drm_device *dev = obj->dev;
  2293. drm_i915_private_t *dev_priv = dev->dev_private;
  2294. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2295. struct drm_mm_node *free_space;
  2296. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2297. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2298. bool mappable, fenceable;
  2299. int ret;
  2300. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2301. DRM_ERROR("Attempting to bind a purgeable object\n");
  2302. return -EINVAL;
  2303. }
  2304. fence_size = i915_gem_get_gtt_size(obj_priv);
  2305. fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
  2306. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
  2307. if (alignment == 0)
  2308. alignment = map_and_fenceable ? fence_alignment :
  2309. unfenced_alignment;
  2310. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2311. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2312. return -EINVAL;
  2313. }
  2314. size = map_and_fenceable ? fence_size : obj->size;
  2315. /* If the object is bigger than the entire aperture, reject it early
  2316. * before evicting everything in a vain attempt to find space.
  2317. */
  2318. if (obj->size >
  2319. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2320. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2321. return -E2BIG;
  2322. }
  2323. search_free:
  2324. if (map_and_fenceable)
  2325. free_space =
  2326. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2327. size, alignment, 0,
  2328. dev_priv->mm.gtt_mappable_end,
  2329. 0);
  2330. else
  2331. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2332. size, alignment, 0);
  2333. if (free_space != NULL) {
  2334. if (map_and_fenceable)
  2335. obj_priv->gtt_space =
  2336. drm_mm_get_block_range_generic(free_space,
  2337. size, alignment, 0,
  2338. dev_priv->mm.gtt_mappable_end,
  2339. 0);
  2340. else
  2341. obj_priv->gtt_space =
  2342. drm_mm_get_block(free_space, size, alignment);
  2343. }
  2344. if (obj_priv->gtt_space == NULL) {
  2345. /* If the gtt is empty and we're still having trouble
  2346. * fitting our object in, we're out of memory.
  2347. */
  2348. ret = i915_gem_evict_something(dev, size, alignment,
  2349. map_and_fenceable);
  2350. if (ret)
  2351. return ret;
  2352. goto search_free;
  2353. }
  2354. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2355. if (ret) {
  2356. drm_mm_put_block(obj_priv->gtt_space);
  2357. obj_priv->gtt_space = NULL;
  2358. if (ret == -ENOMEM) {
  2359. /* first try to clear up some space from the GTT */
  2360. ret = i915_gem_evict_something(dev, size,
  2361. alignment,
  2362. map_and_fenceable);
  2363. if (ret) {
  2364. /* now try to shrink everyone else */
  2365. if (gfpmask) {
  2366. gfpmask = 0;
  2367. goto search_free;
  2368. }
  2369. return ret;
  2370. }
  2371. goto search_free;
  2372. }
  2373. return ret;
  2374. }
  2375. /* Create an AGP memory structure pointing at our pages, and bind it
  2376. * into the GTT.
  2377. */
  2378. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2379. obj_priv->pages,
  2380. obj->size >> PAGE_SHIFT,
  2381. obj_priv->gtt_space->start,
  2382. obj_priv->agp_type);
  2383. if (obj_priv->agp_mem == NULL) {
  2384. i915_gem_object_put_pages_gtt(obj);
  2385. drm_mm_put_block(obj_priv->gtt_space);
  2386. obj_priv->gtt_space = NULL;
  2387. ret = i915_gem_evict_something(dev, size,
  2388. alignment, map_and_fenceable);
  2389. if (ret)
  2390. return ret;
  2391. goto search_free;
  2392. }
  2393. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2394. /* keep track of bounds object by adding it to the inactive list */
  2395. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2396. i915_gem_info_add_gtt(dev_priv, obj_priv);
  2397. /* Assert that the object is not currently in any GPU domain. As it
  2398. * wasn't in the GTT, there shouldn't be any way it could have been in
  2399. * a GPU cache
  2400. */
  2401. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2402. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2403. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
  2404. fenceable =
  2405. obj_priv->gtt_space->size == fence_size &&
  2406. (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
  2407. mappable =
  2408. obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
  2409. obj_priv->map_and_fenceable = mappable && fenceable;
  2410. return 0;
  2411. }
  2412. void
  2413. i915_gem_clflush_object(struct drm_gem_object *obj)
  2414. {
  2415. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2416. /* If we don't have a page list set up, then we're not pinned
  2417. * to GPU, and we can ignore the cache flush because it'll happen
  2418. * again at bind time.
  2419. */
  2420. if (obj_priv->pages == NULL)
  2421. return;
  2422. trace_i915_gem_object_clflush(obj);
  2423. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2424. }
  2425. /** Flushes any GPU write domain for the object if it's dirty. */
  2426. static int
  2427. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2428. bool pipelined)
  2429. {
  2430. struct drm_device *dev = obj->dev;
  2431. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2432. return 0;
  2433. /* Queue the GPU write cache flushing we need. */
  2434. i915_gem_flush_ring(dev, NULL,
  2435. to_intel_bo(obj)->ring,
  2436. 0, obj->write_domain);
  2437. BUG_ON(obj->write_domain);
  2438. if (pipelined)
  2439. return 0;
  2440. return i915_gem_object_wait_rendering(obj, true);
  2441. }
  2442. /** Flushes the GTT write domain for the object if it's dirty. */
  2443. static void
  2444. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2445. {
  2446. uint32_t old_write_domain;
  2447. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2448. return;
  2449. /* No actual flushing is required for the GTT write domain. Writes
  2450. * to it immediately go to main memory as far as we know, so there's
  2451. * no chipset flush. It also doesn't land in render cache.
  2452. */
  2453. i915_gem_release_mmap(obj);
  2454. old_write_domain = obj->write_domain;
  2455. obj->write_domain = 0;
  2456. trace_i915_gem_object_change_domain(obj,
  2457. obj->read_domains,
  2458. old_write_domain);
  2459. }
  2460. /** Flushes the CPU write domain for the object if it's dirty. */
  2461. static void
  2462. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2463. {
  2464. struct drm_device *dev = obj->dev;
  2465. uint32_t old_write_domain;
  2466. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2467. return;
  2468. i915_gem_clflush_object(obj);
  2469. drm_agp_chipset_flush(dev);
  2470. old_write_domain = obj->write_domain;
  2471. obj->write_domain = 0;
  2472. trace_i915_gem_object_change_domain(obj,
  2473. obj->read_domains,
  2474. old_write_domain);
  2475. }
  2476. /**
  2477. * Moves a single object to the GTT read, and possibly write domain.
  2478. *
  2479. * This function returns when the move is complete, including waiting on
  2480. * flushes to occur.
  2481. */
  2482. int
  2483. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2484. {
  2485. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2486. uint32_t old_write_domain, old_read_domains;
  2487. int ret;
  2488. /* Not valid to be called on unbound objects. */
  2489. if (obj_priv->gtt_space == NULL)
  2490. return -EINVAL;
  2491. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2492. if (ret != 0)
  2493. return ret;
  2494. i915_gem_object_flush_cpu_write_domain(obj);
  2495. if (write) {
  2496. ret = i915_gem_object_wait_rendering(obj, true);
  2497. if (ret)
  2498. return ret;
  2499. }
  2500. old_write_domain = obj->write_domain;
  2501. old_read_domains = obj->read_domains;
  2502. /* It should now be out of any other write domains, and we can update
  2503. * the domain values for our changes.
  2504. */
  2505. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2506. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2507. if (write) {
  2508. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2509. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2510. obj_priv->dirty = 1;
  2511. }
  2512. trace_i915_gem_object_change_domain(obj,
  2513. old_read_domains,
  2514. old_write_domain);
  2515. return 0;
  2516. }
  2517. /*
  2518. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2519. * wait, as in modesetting process we're not supposed to be interrupted.
  2520. */
  2521. int
  2522. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2523. bool pipelined)
  2524. {
  2525. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2526. uint32_t old_read_domains;
  2527. int ret;
  2528. /* Not valid to be called on unbound objects. */
  2529. if (obj_priv->gtt_space == NULL)
  2530. return -EINVAL;
  2531. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2532. if (ret)
  2533. return ret;
  2534. /* Currently, we are always called from an non-interruptible context. */
  2535. if (!pipelined) {
  2536. ret = i915_gem_object_wait_rendering(obj, false);
  2537. if (ret)
  2538. return ret;
  2539. }
  2540. i915_gem_object_flush_cpu_write_domain(obj);
  2541. old_read_domains = obj->read_domains;
  2542. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2543. trace_i915_gem_object_change_domain(obj,
  2544. old_read_domains,
  2545. obj->write_domain);
  2546. return 0;
  2547. }
  2548. int
  2549. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2550. bool interruptible)
  2551. {
  2552. if (!obj->active)
  2553. return 0;
  2554. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2555. i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
  2556. 0, obj->base.write_domain);
  2557. return i915_gem_object_wait_rendering(&obj->base, interruptible);
  2558. }
  2559. /**
  2560. * Moves a single object to the CPU read, and possibly write domain.
  2561. *
  2562. * This function returns when the move is complete, including waiting on
  2563. * flushes to occur.
  2564. */
  2565. static int
  2566. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2567. {
  2568. uint32_t old_write_domain, old_read_domains;
  2569. int ret;
  2570. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2571. if (ret != 0)
  2572. return ret;
  2573. i915_gem_object_flush_gtt_write_domain(obj);
  2574. /* If we have a partially-valid cache of the object in the CPU,
  2575. * finish invalidating it and free the per-page flags.
  2576. */
  2577. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2578. if (write) {
  2579. ret = i915_gem_object_wait_rendering(obj, true);
  2580. if (ret)
  2581. return ret;
  2582. }
  2583. old_write_domain = obj->write_domain;
  2584. old_read_domains = obj->read_domains;
  2585. /* Flush the CPU cache if it's still invalid. */
  2586. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2587. i915_gem_clflush_object(obj);
  2588. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2589. }
  2590. /* It should now be out of any other write domains, and we can update
  2591. * the domain values for our changes.
  2592. */
  2593. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2594. /* If we're writing through the CPU, then the GPU read domains will
  2595. * need to be invalidated at next use.
  2596. */
  2597. if (write) {
  2598. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2599. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2600. }
  2601. trace_i915_gem_object_change_domain(obj,
  2602. old_read_domains,
  2603. old_write_domain);
  2604. return 0;
  2605. }
  2606. /*
  2607. * Set the next domain for the specified object. This
  2608. * may not actually perform the necessary flushing/invaliding though,
  2609. * as that may want to be batched with other set_domain operations
  2610. *
  2611. * This is (we hope) the only really tricky part of gem. The goal
  2612. * is fairly simple -- track which caches hold bits of the object
  2613. * and make sure they remain coherent. A few concrete examples may
  2614. * help to explain how it works. For shorthand, we use the notation
  2615. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2616. * a pair of read and write domain masks.
  2617. *
  2618. * Case 1: the batch buffer
  2619. *
  2620. * 1. Allocated
  2621. * 2. Written by CPU
  2622. * 3. Mapped to GTT
  2623. * 4. Read by GPU
  2624. * 5. Unmapped from GTT
  2625. * 6. Freed
  2626. *
  2627. * Let's take these a step at a time
  2628. *
  2629. * 1. Allocated
  2630. * Pages allocated from the kernel may still have
  2631. * cache contents, so we set them to (CPU, CPU) always.
  2632. * 2. Written by CPU (using pwrite)
  2633. * The pwrite function calls set_domain (CPU, CPU) and
  2634. * this function does nothing (as nothing changes)
  2635. * 3. Mapped by GTT
  2636. * This function asserts that the object is not
  2637. * currently in any GPU-based read or write domains
  2638. * 4. Read by GPU
  2639. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2640. * As write_domain is zero, this function adds in the
  2641. * current read domains (CPU+COMMAND, 0).
  2642. * flush_domains is set to CPU.
  2643. * invalidate_domains is set to COMMAND
  2644. * clflush is run to get data out of the CPU caches
  2645. * then i915_dev_set_domain calls i915_gem_flush to
  2646. * emit an MI_FLUSH and drm_agp_chipset_flush
  2647. * 5. Unmapped from GTT
  2648. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2649. * flush_domains and invalidate_domains end up both zero
  2650. * so no flushing/invalidating happens
  2651. * 6. Freed
  2652. * yay, done
  2653. *
  2654. * Case 2: The shared render buffer
  2655. *
  2656. * 1. Allocated
  2657. * 2. Mapped to GTT
  2658. * 3. Read/written by GPU
  2659. * 4. set_domain to (CPU,CPU)
  2660. * 5. Read/written by CPU
  2661. * 6. Read/written by GPU
  2662. *
  2663. * 1. Allocated
  2664. * Same as last example, (CPU, CPU)
  2665. * 2. Mapped to GTT
  2666. * Nothing changes (assertions find that it is not in the GPU)
  2667. * 3. Read/written by GPU
  2668. * execbuffer calls set_domain (RENDER, RENDER)
  2669. * flush_domains gets CPU
  2670. * invalidate_domains gets GPU
  2671. * clflush (obj)
  2672. * MI_FLUSH and drm_agp_chipset_flush
  2673. * 4. set_domain (CPU, CPU)
  2674. * flush_domains gets GPU
  2675. * invalidate_domains gets CPU
  2676. * wait_rendering (obj) to make sure all drawing is complete.
  2677. * This will include an MI_FLUSH to get the data from GPU
  2678. * to memory
  2679. * clflush (obj) to invalidate the CPU cache
  2680. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2681. * 5. Read/written by CPU
  2682. * cache lines are loaded and dirtied
  2683. * 6. Read written by GPU
  2684. * Same as last GPU access
  2685. *
  2686. * Case 3: The constant buffer
  2687. *
  2688. * 1. Allocated
  2689. * 2. Written by CPU
  2690. * 3. Read by GPU
  2691. * 4. Updated (written) by CPU again
  2692. * 5. Read by GPU
  2693. *
  2694. * 1. Allocated
  2695. * (CPU, CPU)
  2696. * 2. Written by CPU
  2697. * (CPU, CPU)
  2698. * 3. Read by GPU
  2699. * (CPU+RENDER, 0)
  2700. * flush_domains = CPU
  2701. * invalidate_domains = RENDER
  2702. * clflush (obj)
  2703. * MI_FLUSH
  2704. * drm_agp_chipset_flush
  2705. * 4. Updated (written) by CPU again
  2706. * (CPU, CPU)
  2707. * flush_domains = 0 (no previous write domain)
  2708. * invalidate_domains = 0 (no new read domains)
  2709. * 5. Read by GPU
  2710. * (CPU+RENDER, 0)
  2711. * flush_domains = CPU
  2712. * invalidate_domains = RENDER
  2713. * clflush (obj)
  2714. * MI_FLUSH
  2715. * drm_agp_chipset_flush
  2716. */
  2717. static void
  2718. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2719. struct intel_ring_buffer *ring,
  2720. struct change_domains *cd)
  2721. {
  2722. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2723. uint32_t invalidate_domains = 0;
  2724. uint32_t flush_domains = 0;
  2725. /*
  2726. * If the object isn't moving to a new write domain,
  2727. * let the object stay in multiple read domains
  2728. */
  2729. if (obj->pending_write_domain == 0)
  2730. obj->pending_read_domains |= obj->read_domains;
  2731. /*
  2732. * Flush the current write domain if
  2733. * the new read domains don't match. Invalidate
  2734. * any read domains which differ from the old
  2735. * write domain
  2736. */
  2737. if (obj->write_domain &&
  2738. (obj->write_domain != obj->pending_read_domains ||
  2739. obj_priv->ring != ring)) {
  2740. flush_domains |= obj->write_domain;
  2741. invalidate_domains |=
  2742. obj->pending_read_domains & ~obj->write_domain;
  2743. }
  2744. /*
  2745. * Invalidate any read caches which may have
  2746. * stale data. That is, any new read domains.
  2747. */
  2748. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2749. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2750. i915_gem_clflush_object(obj);
  2751. /* blow away mappings if mapped through GTT */
  2752. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2753. i915_gem_release_mmap(obj);
  2754. /* The actual obj->write_domain will be updated with
  2755. * pending_write_domain after we emit the accumulated flush for all
  2756. * of our domain changes in execbuffers (which clears objects'
  2757. * write_domains). So if we have a current write domain that we
  2758. * aren't changing, set pending_write_domain to that.
  2759. */
  2760. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2761. obj->pending_write_domain = obj->write_domain;
  2762. cd->invalidate_domains |= invalidate_domains;
  2763. cd->flush_domains |= flush_domains;
  2764. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2765. cd->flush_rings |= obj_priv->ring->id;
  2766. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2767. cd->flush_rings |= ring->id;
  2768. }
  2769. /**
  2770. * Moves the object from a partially CPU read to a full one.
  2771. *
  2772. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2773. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2774. */
  2775. static void
  2776. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2777. {
  2778. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2779. if (!obj_priv->page_cpu_valid)
  2780. return;
  2781. /* If we're partially in the CPU read domain, finish moving it in.
  2782. */
  2783. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2784. int i;
  2785. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2786. if (obj_priv->page_cpu_valid[i])
  2787. continue;
  2788. drm_clflush_pages(obj_priv->pages + i, 1);
  2789. }
  2790. }
  2791. /* Free the page_cpu_valid mappings which are now stale, whether
  2792. * or not we've got I915_GEM_DOMAIN_CPU.
  2793. */
  2794. kfree(obj_priv->page_cpu_valid);
  2795. obj_priv->page_cpu_valid = NULL;
  2796. }
  2797. /**
  2798. * Set the CPU read domain on a range of the object.
  2799. *
  2800. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2801. * not entirely valid. The page_cpu_valid member of the object flags which
  2802. * pages have been flushed, and will be respected by
  2803. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2804. * of the whole object.
  2805. *
  2806. * This function returns when the move is complete, including waiting on
  2807. * flushes to occur.
  2808. */
  2809. static int
  2810. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2811. uint64_t offset, uint64_t size)
  2812. {
  2813. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2814. uint32_t old_read_domains;
  2815. int i, ret;
  2816. if (offset == 0 && size == obj->size)
  2817. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2818. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2819. if (ret != 0)
  2820. return ret;
  2821. i915_gem_object_flush_gtt_write_domain(obj);
  2822. /* If we're already fully in the CPU read domain, we're done. */
  2823. if (obj_priv->page_cpu_valid == NULL &&
  2824. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2825. return 0;
  2826. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2827. * newly adding I915_GEM_DOMAIN_CPU
  2828. */
  2829. if (obj_priv->page_cpu_valid == NULL) {
  2830. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2831. GFP_KERNEL);
  2832. if (obj_priv->page_cpu_valid == NULL)
  2833. return -ENOMEM;
  2834. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2835. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2836. /* Flush the cache on any pages that are still invalid from the CPU's
  2837. * perspective.
  2838. */
  2839. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2840. i++) {
  2841. if (obj_priv->page_cpu_valid[i])
  2842. continue;
  2843. drm_clflush_pages(obj_priv->pages + i, 1);
  2844. obj_priv->page_cpu_valid[i] = 1;
  2845. }
  2846. /* It should now be out of any other write domains, and we can update
  2847. * the domain values for our changes.
  2848. */
  2849. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2850. old_read_domains = obj->read_domains;
  2851. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2852. trace_i915_gem_object_change_domain(obj,
  2853. old_read_domains,
  2854. obj->write_domain);
  2855. return 0;
  2856. }
  2857. static int
  2858. i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
  2859. struct drm_file *file_priv,
  2860. struct drm_i915_gem_exec_object2 *entry,
  2861. struct drm_i915_gem_relocation_entry *reloc)
  2862. {
  2863. struct drm_device *dev = obj->base.dev;
  2864. struct drm_gem_object *target_obj;
  2865. uint32_t target_offset;
  2866. int ret = -EINVAL;
  2867. target_obj = drm_gem_object_lookup(dev, file_priv,
  2868. reloc->target_handle);
  2869. if (target_obj == NULL)
  2870. return -ENOENT;
  2871. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2872. #if WATCH_RELOC
  2873. DRM_INFO("%s: obj %p offset %08x target %d "
  2874. "read %08x write %08x gtt %08x "
  2875. "presumed %08x delta %08x\n",
  2876. __func__,
  2877. obj,
  2878. (int) reloc->offset,
  2879. (int) reloc->target_handle,
  2880. (int) reloc->read_domains,
  2881. (int) reloc->write_domain,
  2882. (int) target_offset,
  2883. (int) reloc->presumed_offset,
  2884. reloc->delta);
  2885. #endif
  2886. /* The target buffer should have appeared before us in the
  2887. * exec_object list, so it should have a GTT space bound by now.
  2888. */
  2889. if (target_offset == 0) {
  2890. DRM_ERROR("No GTT space found for object %d\n",
  2891. reloc->target_handle);
  2892. goto err;
  2893. }
  2894. /* Validate that the target is in a valid r/w GPU domain */
  2895. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2896. DRM_ERROR("reloc with multiple write domains: "
  2897. "obj %p target %d offset %d "
  2898. "read %08x write %08x",
  2899. obj, reloc->target_handle,
  2900. (int) reloc->offset,
  2901. reloc->read_domains,
  2902. reloc->write_domain);
  2903. goto err;
  2904. }
  2905. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2906. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2907. DRM_ERROR("reloc with read/write CPU domains: "
  2908. "obj %p target %d offset %d "
  2909. "read %08x write %08x",
  2910. obj, reloc->target_handle,
  2911. (int) reloc->offset,
  2912. reloc->read_domains,
  2913. reloc->write_domain);
  2914. goto err;
  2915. }
  2916. if (reloc->write_domain && target_obj->pending_write_domain &&
  2917. reloc->write_domain != target_obj->pending_write_domain) {
  2918. DRM_ERROR("Write domain conflict: "
  2919. "obj %p target %d offset %d "
  2920. "new %08x old %08x\n",
  2921. obj, reloc->target_handle,
  2922. (int) reloc->offset,
  2923. reloc->write_domain,
  2924. target_obj->pending_write_domain);
  2925. goto err;
  2926. }
  2927. target_obj->pending_read_domains |= reloc->read_domains;
  2928. target_obj->pending_write_domain |= reloc->write_domain;
  2929. /* If the relocation already has the right value in it, no
  2930. * more work needs to be done.
  2931. */
  2932. if (target_offset == reloc->presumed_offset)
  2933. goto out;
  2934. /* Check that the relocation address is valid... */
  2935. if (reloc->offset > obj->base.size - 4) {
  2936. DRM_ERROR("Relocation beyond object bounds: "
  2937. "obj %p target %d offset %d size %d.\n",
  2938. obj, reloc->target_handle,
  2939. (int) reloc->offset,
  2940. (int) obj->base.size);
  2941. goto err;
  2942. }
  2943. if (reloc->offset & 3) {
  2944. DRM_ERROR("Relocation not 4-byte aligned: "
  2945. "obj %p target %d offset %d.\n",
  2946. obj, reloc->target_handle,
  2947. (int) reloc->offset);
  2948. goto err;
  2949. }
  2950. /* and points to somewhere within the target object. */
  2951. if (reloc->delta >= target_obj->size) {
  2952. DRM_ERROR("Relocation beyond target object bounds: "
  2953. "obj %p target %d delta %d size %d.\n",
  2954. obj, reloc->target_handle,
  2955. (int) reloc->delta,
  2956. (int) target_obj->size);
  2957. goto err;
  2958. }
  2959. reloc->delta += target_offset;
  2960. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2961. uint32_t page_offset = reloc->offset & ~PAGE_MASK;
  2962. char *vaddr;
  2963. vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
  2964. *(uint32_t *)(vaddr + page_offset) = reloc->delta;
  2965. kunmap_atomic(vaddr);
  2966. } else {
  2967. struct drm_i915_private *dev_priv = dev->dev_private;
  2968. uint32_t __iomem *reloc_entry;
  2969. void __iomem *reloc_page;
  2970. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2971. if (ret)
  2972. goto err;
  2973. /* Map the page containing the relocation we're going to perform. */
  2974. reloc->offset += obj->gtt_offset;
  2975. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2976. reloc->offset & PAGE_MASK);
  2977. reloc_entry = (uint32_t __iomem *)
  2978. (reloc_page + (reloc->offset & ~PAGE_MASK));
  2979. iowrite32(reloc->delta, reloc_entry);
  2980. io_mapping_unmap_atomic(reloc_page);
  2981. }
  2982. /* and update the user's relocation entry */
  2983. reloc->presumed_offset = target_offset;
  2984. out:
  2985. ret = 0;
  2986. err:
  2987. drm_gem_object_unreference(target_obj);
  2988. return ret;
  2989. }
  2990. static int
  2991. i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
  2992. struct drm_file *file_priv,
  2993. struct drm_i915_gem_exec_object2 *entry)
  2994. {
  2995. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2996. int i, ret;
  2997. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2998. for (i = 0; i < entry->relocation_count; i++) {
  2999. struct drm_i915_gem_relocation_entry reloc;
  3000. if (__copy_from_user_inatomic(&reloc,
  3001. user_relocs+i,
  3002. sizeof(reloc)))
  3003. return -EFAULT;
  3004. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
  3005. if (ret)
  3006. return ret;
  3007. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  3008. &reloc.presumed_offset,
  3009. sizeof(reloc.presumed_offset)))
  3010. return -EFAULT;
  3011. }
  3012. return 0;
  3013. }
  3014. static int
  3015. i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
  3016. struct drm_file *file_priv,
  3017. struct drm_i915_gem_exec_object2 *entry,
  3018. struct drm_i915_gem_relocation_entry *relocs)
  3019. {
  3020. int i, ret;
  3021. for (i = 0; i < entry->relocation_count; i++) {
  3022. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
  3023. if (ret)
  3024. return ret;
  3025. }
  3026. return 0;
  3027. }
  3028. static int
  3029. i915_gem_execbuffer_relocate(struct drm_device *dev,
  3030. struct drm_file *file,
  3031. struct drm_gem_object **object_list,
  3032. struct drm_i915_gem_exec_object2 *exec_list,
  3033. int count)
  3034. {
  3035. int i, ret;
  3036. for (i = 0; i < count; i++) {
  3037. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3038. obj->base.pending_read_domains = 0;
  3039. obj->base.pending_write_domain = 0;
  3040. ret = i915_gem_execbuffer_relocate_object(obj, file,
  3041. &exec_list[i]);
  3042. if (ret)
  3043. return ret;
  3044. }
  3045. return 0;
  3046. }
  3047. static int
  3048. i915_gem_execbuffer_reserve(struct drm_device *dev,
  3049. struct drm_file *file,
  3050. struct drm_gem_object **object_list,
  3051. struct drm_i915_gem_exec_object2 *exec_list,
  3052. int count)
  3053. {
  3054. struct drm_i915_private *dev_priv = dev->dev_private;
  3055. int ret, i, retry;
  3056. /* attempt to pin all of the buffers into the GTT */
  3057. retry = 0;
  3058. do {
  3059. ret = 0;
  3060. for (i = 0; i < count; i++) {
  3061. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3062. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3063. bool need_fence =
  3064. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3065. obj->tiling_mode != I915_TILING_NONE;
  3066. /* g33/pnv can't fence buffers in the unmappable part */
  3067. bool need_mappable =
  3068. entry->relocation_count ? true : need_fence;
  3069. /* Check fence reg constraints and rebind if necessary */
  3070. if (need_mappable && !obj->map_and_fenceable) {
  3071. ret = i915_gem_object_unbind(&obj->base);
  3072. if (ret)
  3073. break;
  3074. }
  3075. ret = i915_gem_object_pin(&obj->base,
  3076. entry->alignment,
  3077. need_mappable);
  3078. if (ret)
  3079. break;
  3080. /*
  3081. * Pre-965 chips need a fence register set up in order
  3082. * to properly handle blits to/from tiled surfaces.
  3083. */
  3084. if (need_fence) {
  3085. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3086. if (ret) {
  3087. i915_gem_object_unpin(&obj->base);
  3088. break;
  3089. }
  3090. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3091. }
  3092. entry->offset = obj->gtt_offset;
  3093. }
  3094. while (i--)
  3095. i915_gem_object_unpin(object_list[i]);
  3096. if (ret != -ENOSPC || retry > 1)
  3097. return ret;
  3098. /* First attempt, just clear anything that is purgeable.
  3099. * Second attempt, clear the entire GTT.
  3100. */
  3101. ret = i915_gem_evict_everything(dev, retry == 0);
  3102. if (ret)
  3103. return ret;
  3104. retry++;
  3105. } while (1);
  3106. }
  3107. static int
  3108. i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
  3109. struct drm_file *file,
  3110. struct drm_gem_object **object_list,
  3111. struct drm_i915_gem_exec_object2 *exec_list,
  3112. int count)
  3113. {
  3114. struct drm_i915_gem_relocation_entry *reloc;
  3115. int i, total, ret;
  3116. for (i = 0; i < count; i++) {
  3117. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3118. obj->in_execbuffer = false;
  3119. }
  3120. mutex_unlock(&dev->struct_mutex);
  3121. total = 0;
  3122. for (i = 0; i < count; i++)
  3123. total += exec_list[i].relocation_count;
  3124. reloc = drm_malloc_ab(total, sizeof(*reloc));
  3125. if (reloc == NULL) {
  3126. mutex_lock(&dev->struct_mutex);
  3127. return -ENOMEM;
  3128. }
  3129. total = 0;
  3130. for (i = 0; i < count; i++) {
  3131. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3132. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3133. if (copy_from_user(reloc+total, user_relocs,
  3134. exec_list[i].relocation_count *
  3135. sizeof(*reloc))) {
  3136. ret = -EFAULT;
  3137. mutex_lock(&dev->struct_mutex);
  3138. goto err;
  3139. }
  3140. total += exec_list[i].relocation_count;
  3141. }
  3142. ret = i915_mutex_lock_interruptible(dev);
  3143. if (ret) {
  3144. mutex_lock(&dev->struct_mutex);
  3145. goto err;
  3146. }
  3147. ret = i915_gem_execbuffer_reserve(dev, file,
  3148. object_list, exec_list,
  3149. count);
  3150. if (ret)
  3151. goto err;
  3152. total = 0;
  3153. for (i = 0; i < count; i++) {
  3154. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3155. obj->base.pending_read_domains = 0;
  3156. obj->base.pending_write_domain = 0;
  3157. ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
  3158. &exec_list[i],
  3159. reloc + total);
  3160. if (ret)
  3161. goto err;
  3162. total += exec_list[i].relocation_count;
  3163. }
  3164. /* Leave the user relocations as are, this is the painfully slow path,
  3165. * and we want to avoid the complication of dropping the lock whilst
  3166. * having buffers reserved in the aperture and so causing spurious
  3167. * ENOSPC for random operations.
  3168. */
  3169. err:
  3170. drm_free_large(reloc);
  3171. return ret;
  3172. }
  3173. static int
  3174. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  3175. struct drm_file *file,
  3176. struct intel_ring_buffer *ring,
  3177. struct drm_gem_object **objects,
  3178. int count)
  3179. {
  3180. struct change_domains cd;
  3181. int ret, i;
  3182. cd.invalidate_domains = 0;
  3183. cd.flush_domains = 0;
  3184. cd.flush_rings = 0;
  3185. for (i = 0; i < count; i++)
  3186. i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
  3187. if (cd.invalidate_domains | cd.flush_domains) {
  3188. #if WATCH_EXEC
  3189. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3190. __func__,
  3191. cd.invalidate_domains,
  3192. cd.flush_domains);
  3193. #endif
  3194. i915_gem_flush(dev, file,
  3195. cd.invalidate_domains,
  3196. cd.flush_domains,
  3197. cd.flush_rings);
  3198. }
  3199. for (i = 0; i < count; i++) {
  3200. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  3201. /* XXX replace with semaphores */
  3202. if (obj->ring && ring != obj->ring) {
  3203. ret = i915_gem_object_wait_rendering(&obj->base, true);
  3204. if (ret)
  3205. return ret;
  3206. }
  3207. }
  3208. return 0;
  3209. }
  3210. /* Throttle our rendering by waiting until the ring has completed our requests
  3211. * emitted over 20 msec ago.
  3212. *
  3213. * Note that if we were to use the current jiffies each time around the loop,
  3214. * we wouldn't escape the function with any frames outstanding if the time to
  3215. * render a frame was over 20ms.
  3216. *
  3217. * This should get us reasonable parallelism between CPU and GPU but also
  3218. * relatively low latency when blocking on a particular request to finish.
  3219. */
  3220. static int
  3221. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3222. {
  3223. struct drm_i915_private *dev_priv = dev->dev_private;
  3224. struct drm_i915_file_private *file_priv = file->driver_priv;
  3225. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3226. struct drm_i915_gem_request *request;
  3227. struct intel_ring_buffer *ring = NULL;
  3228. u32 seqno = 0;
  3229. int ret;
  3230. spin_lock(&file_priv->mm.lock);
  3231. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3232. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3233. break;
  3234. ring = request->ring;
  3235. seqno = request->seqno;
  3236. }
  3237. spin_unlock(&file_priv->mm.lock);
  3238. if (seqno == 0)
  3239. return 0;
  3240. ret = 0;
  3241. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3242. /* And wait for the seqno passing without holding any locks and
  3243. * causing extra latency for others. This is safe as the irq
  3244. * generation is designed to be run atomically and so is
  3245. * lockless.
  3246. */
  3247. ring->user_irq_get(ring);
  3248. ret = wait_event_interruptible(ring->irq_queue,
  3249. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3250. || atomic_read(&dev_priv->mm.wedged));
  3251. ring->user_irq_put(ring);
  3252. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3253. ret = -EIO;
  3254. }
  3255. if (ret == 0)
  3256. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3257. return ret;
  3258. }
  3259. static int
  3260. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3261. uint64_t exec_offset)
  3262. {
  3263. uint32_t exec_start, exec_len;
  3264. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3265. exec_len = (uint32_t) exec->batch_len;
  3266. if ((exec_start | exec_len) & 0x7)
  3267. return -EINVAL;
  3268. if (!exec_start)
  3269. return -EINVAL;
  3270. return 0;
  3271. }
  3272. static int
  3273. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3274. int count)
  3275. {
  3276. int i;
  3277. for (i = 0; i < count; i++) {
  3278. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3279. int length; /* limited by fault_in_pages_readable() */
  3280. /* First check for malicious input causing overflow */
  3281. if (exec[i].relocation_count >
  3282. INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
  3283. return -EINVAL;
  3284. length = exec[i].relocation_count *
  3285. sizeof(struct drm_i915_gem_relocation_entry);
  3286. if (!access_ok(VERIFY_READ, ptr, length))
  3287. return -EFAULT;
  3288. /* we may also need to update the presumed offsets */
  3289. if (!access_ok(VERIFY_WRITE, ptr, length))
  3290. return -EFAULT;
  3291. if (fault_in_pages_readable(ptr, length))
  3292. return -EFAULT;
  3293. }
  3294. return 0;
  3295. }
  3296. static int
  3297. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3298. struct drm_file *file,
  3299. struct drm_i915_gem_execbuffer2 *args,
  3300. struct drm_i915_gem_exec_object2 *exec_list)
  3301. {
  3302. drm_i915_private_t *dev_priv = dev->dev_private;
  3303. struct drm_gem_object **object_list = NULL;
  3304. struct drm_gem_object *batch_obj;
  3305. struct drm_clip_rect *cliprects = NULL;
  3306. struct drm_i915_gem_request *request = NULL;
  3307. int ret, i, flips;
  3308. uint64_t exec_offset;
  3309. struct intel_ring_buffer *ring = NULL;
  3310. ret = i915_gem_check_is_wedged(dev);
  3311. if (ret)
  3312. return ret;
  3313. ret = validate_exec_list(exec_list, args->buffer_count);
  3314. if (ret)
  3315. return ret;
  3316. #if WATCH_EXEC
  3317. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3318. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3319. #endif
  3320. switch (args->flags & I915_EXEC_RING_MASK) {
  3321. case I915_EXEC_DEFAULT:
  3322. case I915_EXEC_RENDER:
  3323. ring = &dev_priv->render_ring;
  3324. break;
  3325. case I915_EXEC_BSD:
  3326. if (!HAS_BSD(dev)) {
  3327. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3328. return -EINVAL;
  3329. }
  3330. ring = &dev_priv->bsd_ring;
  3331. break;
  3332. case I915_EXEC_BLT:
  3333. if (!HAS_BLT(dev)) {
  3334. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3335. return -EINVAL;
  3336. }
  3337. ring = &dev_priv->blt_ring;
  3338. break;
  3339. default:
  3340. DRM_ERROR("execbuf with unknown ring: %d\n",
  3341. (int)(args->flags & I915_EXEC_RING_MASK));
  3342. return -EINVAL;
  3343. }
  3344. if (args->buffer_count < 1) {
  3345. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3346. return -EINVAL;
  3347. }
  3348. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3349. if (object_list == NULL) {
  3350. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3351. args->buffer_count);
  3352. ret = -ENOMEM;
  3353. goto pre_mutex_err;
  3354. }
  3355. if (args->num_cliprects != 0) {
  3356. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3357. GFP_KERNEL);
  3358. if (cliprects == NULL) {
  3359. ret = -ENOMEM;
  3360. goto pre_mutex_err;
  3361. }
  3362. ret = copy_from_user(cliprects,
  3363. (struct drm_clip_rect __user *)
  3364. (uintptr_t) args->cliprects_ptr,
  3365. sizeof(*cliprects) * args->num_cliprects);
  3366. if (ret != 0) {
  3367. DRM_ERROR("copy %d cliprects failed: %d\n",
  3368. args->num_cliprects, ret);
  3369. ret = -EFAULT;
  3370. goto pre_mutex_err;
  3371. }
  3372. }
  3373. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3374. if (request == NULL) {
  3375. ret = -ENOMEM;
  3376. goto pre_mutex_err;
  3377. }
  3378. ret = i915_mutex_lock_interruptible(dev);
  3379. if (ret)
  3380. goto pre_mutex_err;
  3381. if (dev_priv->mm.suspended) {
  3382. mutex_unlock(&dev->struct_mutex);
  3383. ret = -EBUSY;
  3384. goto pre_mutex_err;
  3385. }
  3386. /* Look up object handles */
  3387. for (i = 0; i < args->buffer_count; i++) {
  3388. struct drm_i915_gem_object *obj_priv;
  3389. object_list[i] = drm_gem_object_lookup(dev, file,
  3390. exec_list[i].handle);
  3391. if (object_list[i] == NULL) {
  3392. DRM_ERROR("Invalid object handle %d at index %d\n",
  3393. exec_list[i].handle, i);
  3394. /* prevent error path from reading uninitialized data */
  3395. args->buffer_count = i + 1;
  3396. ret = -ENOENT;
  3397. goto err;
  3398. }
  3399. obj_priv = to_intel_bo(object_list[i]);
  3400. if (obj_priv->in_execbuffer) {
  3401. DRM_ERROR("Object %p appears more than once in object list\n",
  3402. object_list[i]);
  3403. /* prevent error path from reading uninitialized data */
  3404. args->buffer_count = i + 1;
  3405. ret = -EINVAL;
  3406. goto err;
  3407. }
  3408. obj_priv->in_execbuffer = true;
  3409. }
  3410. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3411. ret = i915_gem_execbuffer_reserve(dev, file,
  3412. object_list, exec_list,
  3413. args->buffer_count);
  3414. if (ret)
  3415. goto err;
  3416. /* The objects are in their final locations, apply the relocations. */
  3417. ret = i915_gem_execbuffer_relocate(dev, file,
  3418. object_list, exec_list,
  3419. args->buffer_count);
  3420. if (ret) {
  3421. if (ret == -EFAULT) {
  3422. ret = i915_gem_execbuffer_relocate_slow(dev, file,
  3423. object_list,
  3424. exec_list,
  3425. args->buffer_count);
  3426. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  3427. }
  3428. if (ret)
  3429. goto err;
  3430. }
  3431. /* Set the pending read domains for the batch buffer to COMMAND */
  3432. batch_obj = object_list[args->buffer_count-1];
  3433. if (batch_obj->pending_write_domain) {
  3434. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3435. ret = -EINVAL;
  3436. goto err;
  3437. }
  3438. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3439. /* Sanity check the batch buffer */
  3440. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3441. ret = i915_gem_check_execbuffer(args, exec_offset);
  3442. if (ret != 0) {
  3443. DRM_ERROR("execbuf with invalid offset/length\n");
  3444. goto err;
  3445. }
  3446. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3447. object_list, args->buffer_count);
  3448. if (ret)
  3449. goto err;
  3450. #if WATCH_COHERENCY
  3451. for (i = 0; i < args->buffer_count; i++) {
  3452. i915_gem_object_check_coherency(object_list[i],
  3453. exec_list[i].handle);
  3454. }
  3455. #endif
  3456. #if WATCH_EXEC
  3457. i915_gem_dump_object(batch_obj,
  3458. args->batch_len,
  3459. __func__,
  3460. ~0);
  3461. #endif
  3462. /* Check for any pending flips. As we only maintain a flip queue depth
  3463. * of 1, we can simply insert a WAIT for the next display flip prior
  3464. * to executing the batch and avoid stalling the CPU.
  3465. */
  3466. flips = 0;
  3467. for (i = 0; i < args->buffer_count; i++) {
  3468. if (object_list[i]->write_domain)
  3469. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3470. }
  3471. if (flips) {
  3472. int plane, flip_mask;
  3473. for (plane = 0; flips >> plane; plane++) {
  3474. if (((flips >> plane) & 1) == 0)
  3475. continue;
  3476. if (plane)
  3477. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3478. else
  3479. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3480. ret = intel_ring_begin(ring, 2);
  3481. if (ret)
  3482. goto err;
  3483. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3484. intel_ring_emit(ring, MI_NOOP);
  3485. intel_ring_advance(ring);
  3486. }
  3487. }
  3488. /* Exec the batchbuffer */
  3489. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3490. if (ret) {
  3491. DRM_ERROR("dispatch failed %d\n", ret);
  3492. goto err;
  3493. }
  3494. for (i = 0; i < args->buffer_count; i++) {
  3495. struct drm_gem_object *obj = object_list[i];
  3496. obj->read_domains = obj->pending_read_domains;
  3497. obj->write_domain = obj->pending_write_domain;
  3498. i915_gem_object_move_to_active(obj, ring);
  3499. if (obj->write_domain) {
  3500. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3501. obj_priv->dirty = 1;
  3502. list_move_tail(&obj_priv->gpu_write_list,
  3503. &ring->gpu_write_list);
  3504. intel_mark_busy(dev, obj);
  3505. }
  3506. trace_i915_gem_object_change_domain(obj,
  3507. obj->read_domains,
  3508. obj->write_domain);
  3509. }
  3510. /*
  3511. * Ensure that the commands in the batch buffer are
  3512. * finished before the interrupt fires
  3513. */
  3514. i915_retire_commands(dev, ring);
  3515. if (i915_add_request(dev, file, request, ring))
  3516. i915_gem_next_request_seqno(dev, ring);
  3517. else
  3518. request = NULL;
  3519. err:
  3520. for (i = 0; i < args->buffer_count; i++) {
  3521. if (object_list[i] == NULL)
  3522. break;
  3523. to_intel_bo(object_list[i])->in_execbuffer = false;
  3524. drm_gem_object_unreference(object_list[i]);
  3525. }
  3526. mutex_unlock(&dev->struct_mutex);
  3527. pre_mutex_err:
  3528. drm_free_large(object_list);
  3529. kfree(cliprects);
  3530. kfree(request);
  3531. return ret;
  3532. }
  3533. /*
  3534. * Legacy execbuffer just creates an exec2 list from the original exec object
  3535. * list array and passes it to the real function.
  3536. */
  3537. int
  3538. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3539. struct drm_file *file_priv)
  3540. {
  3541. struct drm_i915_gem_execbuffer *args = data;
  3542. struct drm_i915_gem_execbuffer2 exec2;
  3543. struct drm_i915_gem_exec_object *exec_list = NULL;
  3544. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3545. int ret, i;
  3546. #if WATCH_EXEC
  3547. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3548. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3549. #endif
  3550. if (args->buffer_count < 1) {
  3551. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3552. return -EINVAL;
  3553. }
  3554. /* Copy in the exec list from userland */
  3555. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3556. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3557. if (exec_list == NULL || exec2_list == NULL) {
  3558. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3559. args->buffer_count);
  3560. drm_free_large(exec_list);
  3561. drm_free_large(exec2_list);
  3562. return -ENOMEM;
  3563. }
  3564. ret = copy_from_user(exec_list,
  3565. (struct drm_i915_relocation_entry __user *)
  3566. (uintptr_t) args->buffers_ptr,
  3567. sizeof(*exec_list) * args->buffer_count);
  3568. if (ret != 0) {
  3569. DRM_ERROR("copy %d exec entries failed %d\n",
  3570. args->buffer_count, ret);
  3571. drm_free_large(exec_list);
  3572. drm_free_large(exec2_list);
  3573. return -EFAULT;
  3574. }
  3575. for (i = 0; i < args->buffer_count; i++) {
  3576. exec2_list[i].handle = exec_list[i].handle;
  3577. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3578. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3579. exec2_list[i].alignment = exec_list[i].alignment;
  3580. exec2_list[i].offset = exec_list[i].offset;
  3581. if (INTEL_INFO(dev)->gen < 4)
  3582. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3583. else
  3584. exec2_list[i].flags = 0;
  3585. }
  3586. exec2.buffers_ptr = args->buffers_ptr;
  3587. exec2.buffer_count = args->buffer_count;
  3588. exec2.batch_start_offset = args->batch_start_offset;
  3589. exec2.batch_len = args->batch_len;
  3590. exec2.DR1 = args->DR1;
  3591. exec2.DR4 = args->DR4;
  3592. exec2.num_cliprects = args->num_cliprects;
  3593. exec2.cliprects_ptr = args->cliprects_ptr;
  3594. exec2.flags = I915_EXEC_RENDER;
  3595. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3596. if (!ret) {
  3597. /* Copy the new buffer offsets back to the user's exec list. */
  3598. for (i = 0; i < args->buffer_count; i++)
  3599. exec_list[i].offset = exec2_list[i].offset;
  3600. /* ... and back out to userspace */
  3601. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3602. (uintptr_t) args->buffers_ptr,
  3603. exec_list,
  3604. sizeof(*exec_list) * args->buffer_count);
  3605. if (ret) {
  3606. ret = -EFAULT;
  3607. DRM_ERROR("failed to copy %d exec entries "
  3608. "back to user (%d)\n",
  3609. args->buffer_count, ret);
  3610. }
  3611. }
  3612. drm_free_large(exec_list);
  3613. drm_free_large(exec2_list);
  3614. return ret;
  3615. }
  3616. int
  3617. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3618. struct drm_file *file_priv)
  3619. {
  3620. struct drm_i915_gem_execbuffer2 *args = data;
  3621. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3622. int ret;
  3623. #if WATCH_EXEC
  3624. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3625. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3626. #endif
  3627. if (args->buffer_count < 1) {
  3628. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3629. return -EINVAL;
  3630. }
  3631. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3632. if (exec2_list == NULL) {
  3633. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3634. args->buffer_count);
  3635. return -ENOMEM;
  3636. }
  3637. ret = copy_from_user(exec2_list,
  3638. (struct drm_i915_relocation_entry __user *)
  3639. (uintptr_t) args->buffers_ptr,
  3640. sizeof(*exec2_list) * args->buffer_count);
  3641. if (ret != 0) {
  3642. DRM_ERROR("copy %d exec entries failed %d\n",
  3643. args->buffer_count, ret);
  3644. drm_free_large(exec2_list);
  3645. return -EFAULT;
  3646. }
  3647. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3648. if (!ret) {
  3649. /* Copy the new buffer offsets back to the user's exec list. */
  3650. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3651. (uintptr_t) args->buffers_ptr,
  3652. exec2_list,
  3653. sizeof(*exec2_list) * args->buffer_count);
  3654. if (ret) {
  3655. ret = -EFAULT;
  3656. DRM_ERROR("failed to copy %d exec entries "
  3657. "back to user (%d)\n",
  3658. args->buffer_count, ret);
  3659. }
  3660. }
  3661. drm_free_large(exec2_list);
  3662. return ret;
  3663. }
  3664. int
  3665. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3666. bool map_and_fenceable)
  3667. {
  3668. struct drm_device *dev = obj->dev;
  3669. struct drm_i915_private *dev_priv = dev->dev_private;
  3670. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3671. int ret;
  3672. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3673. BUG_ON(map_and_fenceable && !map_and_fenceable);
  3674. WARN_ON(i915_verify_lists(dev));
  3675. if (obj_priv->gtt_space != NULL) {
  3676. if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
  3677. (map_and_fenceable && !obj_priv->map_and_fenceable)) {
  3678. WARN(obj_priv->pin_count,
  3679. "bo is already pinned with incorrect alignment:"
  3680. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  3681. " obj->map_and_fenceable=%d\n",
  3682. obj_priv->gtt_offset, alignment,
  3683. map_and_fenceable,
  3684. obj_priv->map_and_fenceable);
  3685. ret = i915_gem_object_unbind(obj);
  3686. if (ret)
  3687. return ret;
  3688. }
  3689. }
  3690. if (obj_priv->gtt_space == NULL) {
  3691. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3692. map_and_fenceable);
  3693. if (ret)
  3694. return ret;
  3695. }
  3696. if (obj_priv->pin_count++ == 0) {
  3697. i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
  3698. if (!obj_priv->active)
  3699. list_move_tail(&obj_priv->mm_list,
  3700. &dev_priv->mm.pinned_list);
  3701. }
  3702. BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
  3703. WARN_ON(i915_verify_lists(dev));
  3704. return 0;
  3705. }
  3706. void
  3707. i915_gem_object_unpin(struct drm_gem_object *obj)
  3708. {
  3709. struct drm_device *dev = obj->dev;
  3710. drm_i915_private_t *dev_priv = dev->dev_private;
  3711. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3712. WARN_ON(i915_verify_lists(dev));
  3713. BUG_ON(obj_priv->pin_count == 0);
  3714. BUG_ON(obj_priv->gtt_space == NULL);
  3715. if (--obj_priv->pin_count == 0) {
  3716. if (!obj_priv->active)
  3717. list_move_tail(&obj_priv->mm_list,
  3718. &dev_priv->mm.inactive_list);
  3719. i915_gem_info_remove_pin(dev_priv, obj_priv);
  3720. }
  3721. WARN_ON(i915_verify_lists(dev));
  3722. }
  3723. int
  3724. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3725. struct drm_file *file_priv)
  3726. {
  3727. struct drm_i915_gem_pin *args = data;
  3728. struct drm_gem_object *obj;
  3729. struct drm_i915_gem_object *obj_priv;
  3730. int ret;
  3731. ret = i915_mutex_lock_interruptible(dev);
  3732. if (ret)
  3733. return ret;
  3734. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3735. if (obj == NULL) {
  3736. ret = -ENOENT;
  3737. goto unlock;
  3738. }
  3739. obj_priv = to_intel_bo(obj);
  3740. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3741. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3742. ret = -EINVAL;
  3743. goto out;
  3744. }
  3745. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3746. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3747. args->handle);
  3748. ret = -EINVAL;
  3749. goto out;
  3750. }
  3751. obj_priv->user_pin_count++;
  3752. obj_priv->pin_filp = file_priv;
  3753. if (obj_priv->user_pin_count == 1) {
  3754. ret = i915_gem_object_pin(obj, args->alignment, true);
  3755. if (ret)
  3756. goto out;
  3757. }
  3758. /* XXX - flush the CPU caches for pinned objects
  3759. * as the X server doesn't manage domains yet
  3760. */
  3761. i915_gem_object_flush_cpu_write_domain(obj);
  3762. args->offset = obj_priv->gtt_offset;
  3763. out:
  3764. drm_gem_object_unreference(obj);
  3765. unlock:
  3766. mutex_unlock(&dev->struct_mutex);
  3767. return ret;
  3768. }
  3769. int
  3770. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3771. struct drm_file *file_priv)
  3772. {
  3773. struct drm_i915_gem_pin *args = data;
  3774. struct drm_gem_object *obj;
  3775. struct drm_i915_gem_object *obj_priv;
  3776. int ret;
  3777. ret = i915_mutex_lock_interruptible(dev);
  3778. if (ret)
  3779. return ret;
  3780. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3781. if (obj == NULL) {
  3782. ret = -ENOENT;
  3783. goto unlock;
  3784. }
  3785. obj_priv = to_intel_bo(obj);
  3786. if (obj_priv->pin_filp != file_priv) {
  3787. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3788. args->handle);
  3789. ret = -EINVAL;
  3790. goto out;
  3791. }
  3792. obj_priv->user_pin_count--;
  3793. if (obj_priv->user_pin_count == 0) {
  3794. obj_priv->pin_filp = NULL;
  3795. i915_gem_object_unpin(obj);
  3796. }
  3797. out:
  3798. drm_gem_object_unreference(obj);
  3799. unlock:
  3800. mutex_unlock(&dev->struct_mutex);
  3801. return ret;
  3802. }
  3803. int
  3804. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3805. struct drm_file *file_priv)
  3806. {
  3807. struct drm_i915_gem_busy *args = data;
  3808. struct drm_gem_object *obj;
  3809. struct drm_i915_gem_object *obj_priv;
  3810. int ret;
  3811. ret = i915_mutex_lock_interruptible(dev);
  3812. if (ret)
  3813. return ret;
  3814. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3815. if (obj == NULL) {
  3816. ret = -ENOENT;
  3817. goto unlock;
  3818. }
  3819. obj_priv = to_intel_bo(obj);
  3820. /* Count all active objects as busy, even if they are currently not used
  3821. * by the gpu. Users of this interface expect objects to eventually
  3822. * become non-busy without any further actions, therefore emit any
  3823. * necessary flushes here.
  3824. */
  3825. args->busy = obj_priv->active;
  3826. if (args->busy) {
  3827. /* Unconditionally flush objects, even when the gpu still uses this
  3828. * object. Userspace calling this function indicates that it wants to
  3829. * use this buffer rather sooner than later, so issuing the required
  3830. * flush earlier is beneficial.
  3831. */
  3832. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3833. i915_gem_flush_ring(dev, file_priv,
  3834. obj_priv->ring,
  3835. 0, obj->write_domain);
  3836. /* Update the active list for the hardware's current position.
  3837. * Otherwise this only updates on a delayed timer or when irqs
  3838. * are actually unmasked, and our working set ends up being
  3839. * larger than required.
  3840. */
  3841. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3842. args->busy = obj_priv->active;
  3843. }
  3844. drm_gem_object_unreference(obj);
  3845. unlock:
  3846. mutex_unlock(&dev->struct_mutex);
  3847. return ret;
  3848. }
  3849. int
  3850. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3851. struct drm_file *file_priv)
  3852. {
  3853. return i915_gem_ring_throttle(dev, file_priv);
  3854. }
  3855. int
  3856. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3857. struct drm_file *file_priv)
  3858. {
  3859. struct drm_i915_gem_madvise *args = data;
  3860. struct drm_gem_object *obj;
  3861. struct drm_i915_gem_object *obj_priv;
  3862. int ret;
  3863. switch (args->madv) {
  3864. case I915_MADV_DONTNEED:
  3865. case I915_MADV_WILLNEED:
  3866. break;
  3867. default:
  3868. return -EINVAL;
  3869. }
  3870. ret = i915_mutex_lock_interruptible(dev);
  3871. if (ret)
  3872. return ret;
  3873. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3874. if (obj == NULL) {
  3875. ret = -ENOENT;
  3876. goto unlock;
  3877. }
  3878. obj_priv = to_intel_bo(obj);
  3879. if (obj_priv->pin_count) {
  3880. ret = -EINVAL;
  3881. goto out;
  3882. }
  3883. if (obj_priv->madv != __I915_MADV_PURGED)
  3884. obj_priv->madv = args->madv;
  3885. /* if the object is no longer bound, discard its backing storage */
  3886. if (i915_gem_object_is_purgeable(obj_priv) &&
  3887. obj_priv->gtt_space == NULL)
  3888. i915_gem_object_truncate(obj);
  3889. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3890. out:
  3891. drm_gem_object_unreference(obj);
  3892. unlock:
  3893. mutex_unlock(&dev->struct_mutex);
  3894. return ret;
  3895. }
  3896. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3897. size_t size)
  3898. {
  3899. struct drm_i915_private *dev_priv = dev->dev_private;
  3900. struct drm_i915_gem_object *obj;
  3901. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3902. if (obj == NULL)
  3903. return NULL;
  3904. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3905. kfree(obj);
  3906. return NULL;
  3907. }
  3908. i915_gem_info_add_obj(dev_priv, size);
  3909. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3910. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3911. obj->agp_type = AGP_USER_MEMORY;
  3912. obj->base.driver_private = NULL;
  3913. obj->fence_reg = I915_FENCE_REG_NONE;
  3914. INIT_LIST_HEAD(&obj->mm_list);
  3915. INIT_LIST_HEAD(&obj->ring_list);
  3916. INIT_LIST_HEAD(&obj->gpu_write_list);
  3917. obj->madv = I915_MADV_WILLNEED;
  3918. /* Avoid an unnecessary call to unbind on the first bind. */
  3919. obj->map_and_fenceable = true;
  3920. return &obj->base;
  3921. }
  3922. int i915_gem_init_object(struct drm_gem_object *obj)
  3923. {
  3924. BUG();
  3925. return 0;
  3926. }
  3927. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3928. {
  3929. struct drm_device *dev = obj->dev;
  3930. drm_i915_private_t *dev_priv = dev->dev_private;
  3931. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3932. int ret;
  3933. ret = i915_gem_object_unbind(obj);
  3934. if (ret == -ERESTARTSYS) {
  3935. list_move(&obj_priv->mm_list,
  3936. &dev_priv->mm.deferred_free_list);
  3937. return;
  3938. }
  3939. if (obj->map_list.map)
  3940. i915_gem_free_mmap_offset(obj);
  3941. drm_gem_object_release(obj);
  3942. i915_gem_info_remove_obj(dev_priv, obj->size);
  3943. kfree(obj_priv->page_cpu_valid);
  3944. kfree(obj_priv->bit_17);
  3945. kfree(obj_priv);
  3946. }
  3947. void i915_gem_free_object(struct drm_gem_object *obj)
  3948. {
  3949. struct drm_device *dev = obj->dev;
  3950. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3951. trace_i915_gem_object_destroy(obj);
  3952. while (obj_priv->pin_count > 0)
  3953. i915_gem_object_unpin(obj);
  3954. if (obj_priv->phys_obj)
  3955. i915_gem_detach_phys_object(dev, obj);
  3956. i915_gem_free_object_tail(obj);
  3957. }
  3958. int
  3959. i915_gem_idle(struct drm_device *dev)
  3960. {
  3961. drm_i915_private_t *dev_priv = dev->dev_private;
  3962. int ret;
  3963. mutex_lock(&dev->struct_mutex);
  3964. if (dev_priv->mm.suspended) {
  3965. mutex_unlock(&dev->struct_mutex);
  3966. return 0;
  3967. }
  3968. ret = i915_gpu_idle(dev);
  3969. if (ret) {
  3970. mutex_unlock(&dev->struct_mutex);
  3971. return ret;
  3972. }
  3973. /* Under UMS, be paranoid and evict. */
  3974. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3975. ret = i915_gem_evict_inactive(dev, false);
  3976. if (ret) {
  3977. mutex_unlock(&dev->struct_mutex);
  3978. return ret;
  3979. }
  3980. }
  3981. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3982. * We need to replace this with a semaphore, or something.
  3983. * And not confound mm.suspended!
  3984. */
  3985. dev_priv->mm.suspended = 1;
  3986. del_timer_sync(&dev_priv->hangcheck_timer);
  3987. i915_kernel_lost_context(dev);
  3988. i915_gem_cleanup_ringbuffer(dev);
  3989. mutex_unlock(&dev->struct_mutex);
  3990. /* Cancel the retire work handler, which should be idle now. */
  3991. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3992. return 0;
  3993. }
  3994. /*
  3995. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3996. * over cache flushing.
  3997. */
  3998. static int
  3999. i915_gem_init_pipe_control(struct drm_device *dev)
  4000. {
  4001. drm_i915_private_t *dev_priv = dev->dev_private;
  4002. struct drm_gem_object *obj;
  4003. struct drm_i915_gem_object *obj_priv;
  4004. int ret;
  4005. obj = i915_gem_alloc_object(dev, 4096);
  4006. if (obj == NULL) {
  4007. DRM_ERROR("Failed to allocate seqno page\n");
  4008. ret = -ENOMEM;
  4009. goto err;
  4010. }
  4011. obj_priv = to_intel_bo(obj);
  4012. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  4013. ret = i915_gem_object_pin(obj, 4096, true);
  4014. if (ret)
  4015. goto err_unref;
  4016. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  4017. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  4018. if (dev_priv->seqno_page == NULL)
  4019. goto err_unpin;
  4020. dev_priv->seqno_obj = obj;
  4021. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  4022. return 0;
  4023. err_unpin:
  4024. i915_gem_object_unpin(obj);
  4025. err_unref:
  4026. drm_gem_object_unreference(obj);
  4027. err:
  4028. return ret;
  4029. }
  4030. static void
  4031. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  4032. {
  4033. drm_i915_private_t *dev_priv = dev->dev_private;
  4034. struct drm_gem_object *obj;
  4035. struct drm_i915_gem_object *obj_priv;
  4036. obj = dev_priv->seqno_obj;
  4037. obj_priv = to_intel_bo(obj);
  4038. kunmap(obj_priv->pages[0]);
  4039. i915_gem_object_unpin(obj);
  4040. drm_gem_object_unreference(obj);
  4041. dev_priv->seqno_obj = NULL;
  4042. dev_priv->seqno_page = NULL;
  4043. }
  4044. int
  4045. i915_gem_init_ringbuffer(struct drm_device *dev)
  4046. {
  4047. drm_i915_private_t *dev_priv = dev->dev_private;
  4048. int ret;
  4049. if (HAS_PIPE_CONTROL(dev)) {
  4050. ret = i915_gem_init_pipe_control(dev);
  4051. if (ret)
  4052. return ret;
  4053. }
  4054. ret = intel_init_render_ring_buffer(dev);
  4055. if (ret)
  4056. goto cleanup_pipe_control;
  4057. if (HAS_BSD(dev)) {
  4058. ret = intel_init_bsd_ring_buffer(dev);
  4059. if (ret)
  4060. goto cleanup_render_ring;
  4061. }
  4062. if (HAS_BLT(dev)) {
  4063. ret = intel_init_blt_ring_buffer(dev);
  4064. if (ret)
  4065. goto cleanup_bsd_ring;
  4066. }
  4067. dev_priv->next_seqno = 1;
  4068. return 0;
  4069. cleanup_bsd_ring:
  4070. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  4071. cleanup_render_ring:
  4072. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  4073. cleanup_pipe_control:
  4074. if (HAS_PIPE_CONTROL(dev))
  4075. i915_gem_cleanup_pipe_control(dev);
  4076. return ret;
  4077. }
  4078. void
  4079. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  4080. {
  4081. drm_i915_private_t *dev_priv = dev->dev_private;
  4082. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  4083. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  4084. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  4085. if (HAS_PIPE_CONTROL(dev))
  4086. i915_gem_cleanup_pipe_control(dev);
  4087. }
  4088. int
  4089. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  4090. struct drm_file *file_priv)
  4091. {
  4092. drm_i915_private_t *dev_priv = dev->dev_private;
  4093. int ret;
  4094. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4095. return 0;
  4096. if (atomic_read(&dev_priv->mm.wedged)) {
  4097. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  4098. atomic_set(&dev_priv->mm.wedged, 0);
  4099. }
  4100. mutex_lock(&dev->struct_mutex);
  4101. dev_priv->mm.suspended = 0;
  4102. ret = i915_gem_init_ringbuffer(dev);
  4103. if (ret != 0) {
  4104. mutex_unlock(&dev->struct_mutex);
  4105. return ret;
  4106. }
  4107. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  4108. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  4109. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  4110. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  4111. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  4112. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  4113. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  4114. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  4115. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  4116. mutex_unlock(&dev->struct_mutex);
  4117. ret = drm_irq_install(dev);
  4118. if (ret)
  4119. goto cleanup_ringbuffer;
  4120. return 0;
  4121. cleanup_ringbuffer:
  4122. mutex_lock(&dev->struct_mutex);
  4123. i915_gem_cleanup_ringbuffer(dev);
  4124. dev_priv->mm.suspended = 1;
  4125. mutex_unlock(&dev->struct_mutex);
  4126. return ret;
  4127. }
  4128. int
  4129. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  4130. struct drm_file *file_priv)
  4131. {
  4132. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4133. return 0;
  4134. drm_irq_uninstall(dev);
  4135. return i915_gem_idle(dev);
  4136. }
  4137. void
  4138. i915_gem_lastclose(struct drm_device *dev)
  4139. {
  4140. int ret;
  4141. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4142. return;
  4143. ret = i915_gem_idle(dev);
  4144. if (ret)
  4145. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4146. }
  4147. static void
  4148. init_ring_lists(struct intel_ring_buffer *ring)
  4149. {
  4150. INIT_LIST_HEAD(&ring->active_list);
  4151. INIT_LIST_HEAD(&ring->request_list);
  4152. INIT_LIST_HEAD(&ring->gpu_write_list);
  4153. }
  4154. void
  4155. i915_gem_load(struct drm_device *dev)
  4156. {
  4157. int i;
  4158. drm_i915_private_t *dev_priv = dev->dev_private;
  4159. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4160. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4161. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4162. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4163. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4164. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4165. init_ring_lists(&dev_priv->render_ring);
  4166. init_ring_lists(&dev_priv->bsd_ring);
  4167. init_ring_lists(&dev_priv->blt_ring);
  4168. for (i = 0; i < 16; i++)
  4169. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4170. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4171. i915_gem_retire_work_handler);
  4172. init_completion(&dev_priv->error_completion);
  4173. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4174. if (IS_GEN3(dev)) {
  4175. u32 tmp = I915_READ(MI_ARB_STATE);
  4176. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4177. /* arb state is a masked write, so set bit + bit in mask */
  4178. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4179. I915_WRITE(MI_ARB_STATE, tmp);
  4180. }
  4181. }
  4182. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4183. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4184. dev_priv->fence_reg_start = 3;
  4185. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4186. dev_priv->num_fence_regs = 16;
  4187. else
  4188. dev_priv->num_fence_regs = 8;
  4189. /* Initialize fence registers to zero */
  4190. switch (INTEL_INFO(dev)->gen) {
  4191. case 6:
  4192. for (i = 0; i < 16; i++)
  4193. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4194. break;
  4195. case 5:
  4196. case 4:
  4197. for (i = 0; i < 16; i++)
  4198. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4199. break;
  4200. case 3:
  4201. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4202. for (i = 0; i < 8; i++)
  4203. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4204. case 2:
  4205. for (i = 0; i < 8; i++)
  4206. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4207. break;
  4208. }
  4209. i915_gem_detect_bit_6_swizzle(dev);
  4210. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4211. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4212. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4213. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4214. }
  4215. /*
  4216. * Create a physically contiguous memory object for this object
  4217. * e.g. for cursor + overlay regs
  4218. */
  4219. static int i915_gem_init_phys_object(struct drm_device *dev,
  4220. int id, int size, int align)
  4221. {
  4222. drm_i915_private_t *dev_priv = dev->dev_private;
  4223. struct drm_i915_gem_phys_object *phys_obj;
  4224. int ret;
  4225. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4226. return 0;
  4227. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4228. if (!phys_obj)
  4229. return -ENOMEM;
  4230. phys_obj->id = id;
  4231. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4232. if (!phys_obj->handle) {
  4233. ret = -ENOMEM;
  4234. goto kfree_obj;
  4235. }
  4236. #ifdef CONFIG_X86
  4237. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4238. #endif
  4239. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4240. return 0;
  4241. kfree_obj:
  4242. kfree(phys_obj);
  4243. return ret;
  4244. }
  4245. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4246. {
  4247. drm_i915_private_t *dev_priv = dev->dev_private;
  4248. struct drm_i915_gem_phys_object *phys_obj;
  4249. if (!dev_priv->mm.phys_objs[id - 1])
  4250. return;
  4251. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4252. if (phys_obj->cur_obj) {
  4253. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4254. }
  4255. #ifdef CONFIG_X86
  4256. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4257. #endif
  4258. drm_pci_free(dev, phys_obj->handle);
  4259. kfree(phys_obj);
  4260. dev_priv->mm.phys_objs[id - 1] = NULL;
  4261. }
  4262. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4263. {
  4264. int i;
  4265. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4266. i915_gem_free_phys_object(dev, i);
  4267. }
  4268. void i915_gem_detach_phys_object(struct drm_device *dev,
  4269. struct drm_gem_object *obj)
  4270. {
  4271. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4272. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4273. char *vaddr;
  4274. int i;
  4275. int page_count;
  4276. if (!obj_priv->phys_obj)
  4277. return;
  4278. vaddr = obj_priv->phys_obj->handle->vaddr;
  4279. page_count = obj->size / PAGE_SIZE;
  4280. for (i = 0; i < page_count; i++) {
  4281. struct page *page = read_cache_page_gfp(mapping, i,
  4282. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4283. if (!IS_ERR(page)) {
  4284. char *dst = kmap_atomic(page);
  4285. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4286. kunmap_atomic(dst);
  4287. drm_clflush_pages(&page, 1);
  4288. set_page_dirty(page);
  4289. mark_page_accessed(page);
  4290. page_cache_release(page);
  4291. }
  4292. }
  4293. drm_agp_chipset_flush(dev);
  4294. obj_priv->phys_obj->cur_obj = NULL;
  4295. obj_priv->phys_obj = NULL;
  4296. }
  4297. int
  4298. i915_gem_attach_phys_object(struct drm_device *dev,
  4299. struct drm_gem_object *obj,
  4300. int id,
  4301. int align)
  4302. {
  4303. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4304. drm_i915_private_t *dev_priv = dev->dev_private;
  4305. struct drm_i915_gem_object *obj_priv;
  4306. int ret = 0;
  4307. int page_count;
  4308. int i;
  4309. if (id > I915_MAX_PHYS_OBJECT)
  4310. return -EINVAL;
  4311. obj_priv = to_intel_bo(obj);
  4312. if (obj_priv->phys_obj) {
  4313. if (obj_priv->phys_obj->id == id)
  4314. return 0;
  4315. i915_gem_detach_phys_object(dev, obj);
  4316. }
  4317. /* create a new object */
  4318. if (!dev_priv->mm.phys_objs[id - 1]) {
  4319. ret = i915_gem_init_phys_object(dev, id,
  4320. obj->size, align);
  4321. if (ret) {
  4322. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4323. return ret;
  4324. }
  4325. }
  4326. /* bind to the object */
  4327. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4328. obj_priv->phys_obj->cur_obj = obj;
  4329. page_count = obj->size / PAGE_SIZE;
  4330. for (i = 0; i < page_count; i++) {
  4331. struct page *page;
  4332. char *dst, *src;
  4333. page = read_cache_page_gfp(mapping, i,
  4334. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4335. if (IS_ERR(page))
  4336. return PTR_ERR(page);
  4337. src = kmap_atomic(page);
  4338. dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4339. memcpy(dst, src, PAGE_SIZE);
  4340. kunmap_atomic(src);
  4341. mark_page_accessed(page);
  4342. page_cache_release(page);
  4343. }
  4344. return 0;
  4345. }
  4346. static int
  4347. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4348. struct drm_i915_gem_pwrite *args,
  4349. struct drm_file *file_priv)
  4350. {
  4351. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4352. void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4353. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4354. DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
  4355. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4356. unsigned long unwritten;
  4357. /* The physical object once assigned is fixed for the lifetime
  4358. * of the obj, so we can safely drop the lock and continue
  4359. * to access vaddr.
  4360. */
  4361. mutex_unlock(&dev->struct_mutex);
  4362. unwritten = copy_from_user(vaddr, user_data, args->size);
  4363. mutex_lock(&dev->struct_mutex);
  4364. if (unwritten)
  4365. return -EFAULT;
  4366. }
  4367. drm_agp_chipset_flush(dev);
  4368. return 0;
  4369. }
  4370. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4371. {
  4372. struct drm_i915_file_private *file_priv = file->driver_priv;
  4373. /* Clean up our request list when the client is going away, so that
  4374. * later retire_requests won't dereference our soon-to-be-gone
  4375. * file_priv.
  4376. */
  4377. spin_lock(&file_priv->mm.lock);
  4378. while (!list_empty(&file_priv->mm.request_list)) {
  4379. struct drm_i915_gem_request *request;
  4380. request = list_first_entry(&file_priv->mm.request_list,
  4381. struct drm_i915_gem_request,
  4382. client_list);
  4383. list_del(&request->client_list);
  4384. request->file_priv = NULL;
  4385. }
  4386. spin_unlock(&file_priv->mm.lock);
  4387. }
  4388. static int
  4389. i915_gpu_is_active(struct drm_device *dev)
  4390. {
  4391. drm_i915_private_t *dev_priv = dev->dev_private;
  4392. int lists_empty;
  4393. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4394. list_empty(&dev_priv->mm.active_list);
  4395. return !lists_empty;
  4396. }
  4397. static int
  4398. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4399. int nr_to_scan,
  4400. gfp_t gfp_mask)
  4401. {
  4402. struct drm_i915_private *dev_priv =
  4403. container_of(shrinker,
  4404. struct drm_i915_private,
  4405. mm.inactive_shrinker);
  4406. struct drm_device *dev = dev_priv->dev;
  4407. struct drm_i915_gem_object *obj, *next;
  4408. int cnt;
  4409. if (!mutex_trylock(&dev->struct_mutex))
  4410. return 0;
  4411. /* "fast-path" to count number of available objects */
  4412. if (nr_to_scan == 0) {
  4413. cnt = 0;
  4414. list_for_each_entry(obj,
  4415. &dev_priv->mm.inactive_list,
  4416. mm_list)
  4417. cnt++;
  4418. mutex_unlock(&dev->struct_mutex);
  4419. return cnt / 100 * sysctl_vfs_cache_pressure;
  4420. }
  4421. rescan:
  4422. /* first scan for clean buffers */
  4423. i915_gem_retire_requests(dev);
  4424. list_for_each_entry_safe(obj, next,
  4425. &dev_priv->mm.inactive_list,
  4426. mm_list) {
  4427. if (i915_gem_object_is_purgeable(obj)) {
  4428. i915_gem_object_unbind(&obj->base);
  4429. if (--nr_to_scan == 0)
  4430. break;
  4431. }
  4432. }
  4433. /* second pass, evict/count anything still on the inactive list */
  4434. cnt = 0;
  4435. list_for_each_entry_safe(obj, next,
  4436. &dev_priv->mm.inactive_list,
  4437. mm_list) {
  4438. if (nr_to_scan) {
  4439. i915_gem_object_unbind(&obj->base);
  4440. nr_to_scan--;
  4441. } else
  4442. cnt++;
  4443. }
  4444. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4445. /*
  4446. * We are desperate for pages, so as a last resort, wait
  4447. * for the GPU to finish and discard whatever we can.
  4448. * This has a dramatic impact to reduce the number of
  4449. * OOM-killer events whilst running the GPU aggressively.
  4450. */
  4451. if (i915_gpu_idle(dev) == 0)
  4452. goto rescan;
  4453. }
  4454. mutex_unlock(&dev->struct_mutex);
  4455. return cnt / 100 * sysctl_vfs_cache_pressure;
  4456. }