common.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_counter.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/hypervisor.h>
  18. #include <asm/processor.h>
  19. #include <asm/sections.h>
  20. #include <asm/topology.h>
  21. #include <asm/cpumask.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/atomic.h>
  24. #include <asm/proto.h>
  25. #include <asm/setup.h>
  26. #include <asm/apic.h>
  27. #include <asm/desc.h>
  28. #include <asm/i387.h>
  29. #include <asm/mtrr.h>
  30. #include <asm/numa.h>
  31. #include <asm/asm.h>
  32. #include <asm/cpu.h>
  33. #include <asm/mce.h>
  34. #include <asm/msr.h>
  35. #include <asm/pat.h>
  36. #include <asm/smp.h>
  37. #ifdef CONFIG_X86_LOCAL_APIC
  38. #include <asm/uv/uv.h>
  39. #endif
  40. #include "cpu.h"
  41. /* all of these masks are initialized in setup_cpu_local_masks() */
  42. cpumask_var_t cpu_initialized_mask;
  43. cpumask_var_t cpu_callout_mask;
  44. cpumask_var_t cpu_callin_mask;
  45. /* representing cpus for which sibling maps can be computed */
  46. cpumask_var_t cpu_sibling_setup_mask;
  47. /* correctly size the local cpu masks */
  48. void __init setup_cpu_local_masks(void)
  49. {
  50. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  51. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  52. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  53. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  54. }
  55. static const struct cpu_dev *this_cpu __cpuinitdata;
  56. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  57. #ifdef CONFIG_X86_64
  58. /*
  59. * We need valid kernel segments for data and code in long mode too
  60. * IRET will check the segment types kkeil 2000/10/28
  61. * Also sysret mandates a special GDT layout
  62. *
  63. * TLS descriptors are currently at a different place compared to i386.
  64. * Hopefully nobody expects them at a fixed place (Wine?)
  65. */
  66. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  67. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  68. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  69. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  70. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  71. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  72. #else
  73. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  74. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  75. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  76. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  77. /*
  78. * Segments used for calling PnP BIOS have byte granularity.
  79. * They code segments and data segments have fixed 64k limits,
  80. * the transfer segment sizes are set at run time.
  81. */
  82. /* 32-bit code */
  83. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  84. /* 16-bit code */
  85. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  86. /* 16-bit data */
  87. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  88. /* 16-bit data */
  89. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  90. /* 16-bit data */
  91. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  92. /*
  93. * The APM segments have byte granularity and their bases
  94. * are set at run time. All have 64k limits.
  95. */
  96. /* 32-bit code */
  97. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  98. /* 16-bit code */
  99. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  100. /* data */
  101. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  102. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  103. [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
  104. GDT_STACK_CANARY_INIT
  105. #endif
  106. } };
  107. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  108. static int __init x86_xsave_setup(char *s)
  109. {
  110. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  111. return 1;
  112. }
  113. __setup("noxsave", x86_xsave_setup);
  114. #ifdef CONFIG_X86_32
  115. static int cachesize_override __cpuinitdata = -1;
  116. static int disable_x86_serial_nr __cpuinitdata = 1;
  117. static int __init cachesize_setup(char *str)
  118. {
  119. get_option(&str, &cachesize_override);
  120. return 1;
  121. }
  122. __setup("cachesize=", cachesize_setup);
  123. static int __init x86_fxsr_setup(char *s)
  124. {
  125. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  126. setup_clear_cpu_cap(X86_FEATURE_XMM);
  127. return 1;
  128. }
  129. __setup("nofxsr", x86_fxsr_setup);
  130. static int __init x86_sep_setup(char *s)
  131. {
  132. setup_clear_cpu_cap(X86_FEATURE_SEP);
  133. return 1;
  134. }
  135. __setup("nosep", x86_sep_setup);
  136. /* Standard macro to see if a specific flag is changeable */
  137. static inline int flag_is_changeable_p(u32 flag)
  138. {
  139. u32 f1, f2;
  140. /*
  141. * Cyrix and IDT cpus allow disabling of CPUID
  142. * so the code below may return different results
  143. * when it is executed before and after enabling
  144. * the CPUID. Add "volatile" to not allow gcc to
  145. * optimize the subsequent calls to this function.
  146. */
  147. asm volatile ("pushfl \n\t"
  148. "pushfl \n\t"
  149. "popl %0 \n\t"
  150. "movl %0, %1 \n\t"
  151. "xorl %2, %0 \n\t"
  152. "pushl %0 \n\t"
  153. "popfl \n\t"
  154. "pushfl \n\t"
  155. "popl %0 \n\t"
  156. "popfl \n\t"
  157. : "=&r" (f1), "=&r" (f2)
  158. : "ir" (flag));
  159. return ((f1^f2) & flag) != 0;
  160. }
  161. /* Probe for the CPUID instruction */
  162. static int __cpuinit have_cpuid_p(void)
  163. {
  164. return flag_is_changeable_p(X86_EFLAGS_ID);
  165. }
  166. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  167. {
  168. unsigned long lo, hi;
  169. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  170. return;
  171. /* Disable processor serial number: */
  172. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  173. lo |= 0x200000;
  174. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  175. printk(KERN_NOTICE "CPU serial number disabled.\n");
  176. clear_cpu_cap(c, X86_FEATURE_PN);
  177. /* Disabling the serial number may affect the cpuid level */
  178. c->cpuid_level = cpuid_eax(0);
  179. }
  180. static int __init x86_serial_nr_setup(char *s)
  181. {
  182. disable_x86_serial_nr = 0;
  183. return 1;
  184. }
  185. __setup("serialnumber", x86_serial_nr_setup);
  186. #else
  187. static inline int flag_is_changeable_p(u32 flag)
  188. {
  189. return 1;
  190. }
  191. /* Probe for the CPUID instruction */
  192. static inline int have_cpuid_p(void)
  193. {
  194. return 1;
  195. }
  196. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  197. {
  198. }
  199. #endif
  200. /*
  201. * Some CPU features depend on higher CPUID levels, which may not always
  202. * be available due to CPUID level capping or broken virtualization
  203. * software. Add those features to this table to auto-disable them.
  204. */
  205. struct cpuid_dependent_feature {
  206. u32 feature;
  207. u32 level;
  208. };
  209. static const struct cpuid_dependent_feature __cpuinitconst
  210. cpuid_dependent_features[] = {
  211. { X86_FEATURE_MWAIT, 0x00000005 },
  212. { X86_FEATURE_DCA, 0x00000009 },
  213. { X86_FEATURE_XSAVE, 0x0000000d },
  214. { 0, 0 }
  215. };
  216. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  217. {
  218. const struct cpuid_dependent_feature *df;
  219. for (df = cpuid_dependent_features; df->feature; df++) {
  220. if (!cpu_has(c, df->feature))
  221. continue;
  222. /*
  223. * Note: cpuid_level is set to -1 if unavailable, but
  224. * extended_extended_level is set to 0 if unavailable
  225. * and the legitimate extended levels are all negative
  226. * when signed; hence the weird messing around with
  227. * signs here...
  228. */
  229. if (!((s32)df->level < 0 ?
  230. (u32)df->level > (u32)c->extended_cpuid_level :
  231. (s32)df->level > (s32)c->cpuid_level))
  232. continue;
  233. clear_cpu_cap(c, df->feature);
  234. if (!warn)
  235. continue;
  236. printk(KERN_WARNING
  237. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  238. x86_cap_flags[df->feature], df->level);
  239. }
  240. }
  241. /*
  242. * Naming convention should be: <Name> [(<Codename>)]
  243. * This table only is used unless init_<vendor>() below doesn't set it;
  244. * in particular, if CPUID levels 0x80000002..4 are supported, this
  245. * isn't used
  246. */
  247. /* Look up CPU names by table lookup. */
  248. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  249. {
  250. const struct cpu_model_info *info;
  251. if (c->x86_model >= 16)
  252. return NULL; /* Range check */
  253. if (!this_cpu)
  254. return NULL;
  255. info = this_cpu->c_models;
  256. while (info && info->family) {
  257. if (info->family == c->x86)
  258. return info->model_names[c->x86_model];
  259. info++;
  260. }
  261. return NULL; /* Not found */
  262. }
  263. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  264. void load_percpu_segment(int cpu)
  265. {
  266. #ifdef CONFIG_X86_32
  267. loadsegment(fs, __KERNEL_PERCPU);
  268. #else
  269. loadsegment(gs, 0);
  270. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  271. #endif
  272. load_stack_canary_segment();
  273. }
  274. /*
  275. * Current gdt points %fs at the "master" per-cpu area: after this,
  276. * it's on the real one.
  277. */
  278. void switch_to_new_gdt(int cpu)
  279. {
  280. struct desc_ptr gdt_descr;
  281. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  282. gdt_descr.size = GDT_SIZE - 1;
  283. load_gdt(&gdt_descr);
  284. /* Reload the per-cpu base */
  285. load_percpu_segment(cpu);
  286. }
  287. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  288. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  289. {
  290. #ifdef CONFIG_X86_64
  291. display_cacheinfo(c);
  292. #else
  293. /* Not much we can do here... */
  294. /* Check if at least it has cpuid */
  295. if (c->cpuid_level == -1) {
  296. /* No cpuid. It must be an ancient CPU */
  297. if (c->x86 == 4)
  298. strcpy(c->x86_model_id, "486");
  299. else if (c->x86 == 3)
  300. strcpy(c->x86_model_id, "386");
  301. }
  302. #endif
  303. }
  304. static const struct cpu_dev __cpuinitconst default_cpu = {
  305. .c_init = default_init,
  306. .c_vendor = "Unknown",
  307. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  308. };
  309. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  310. {
  311. unsigned int *v;
  312. char *p, *q;
  313. if (c->extended_cpuid_level < 0x80000004)
  314. return;
  315. v = (unsigned int *)c->x86_model_id;
  316. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  317. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  318. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  319. c->x86_model_id[48] = 0;
  320. /*
  321. * Intel chips right-justify this string for some dumb reason;
  322. * undo that brain damage:
  323. */
  324. p = q = &c->x86_model_id[0];
  325. while (*p == ' ')
  326. p++;
  327. if (p != q) {
  328. while (*p)
  329. *q++ = *p++;
  330. while (q <= &c->x86_model_id[48])
  331. *q++ = '\0'; /* Zero-pad the rest */
  332. }
  333. }
  334. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  335. {
  336. unsigned int n, dummy, ebx, ecx, edx, l2size;
  337. n = c->extended_cpuid_level;
  338. if (n >= 0x80000005) {
  339. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  340. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  341. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  342. c->x86_cache_size = (ecx>>24) + (edx>>24);
  343. #ifdef CONFIG_X86_64
  344. /* On K8 L1 TLB is inclusive, so don't count it */
  345. c->x86_tlbsize = 0;
  346. #endif
  347. }
  348. if (n < 0x80000006) /* Some chips just has a large L1. */
  349. return;
  350. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  351. l2size = ecx >> 16;
  352. #ifdef CONFIG_X86_64
  353. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  354. #else
  355. /* do processor-specific cache resizing */
  356. if (this_cpu->c_size_cache)
  357. l2size = this_cpu->c_size_cache(c, l2size);
  358. /* Allow user to override all this if necessary. */
  359. if (cachesize_override != -1)
  360. l2size = cachesize_override;
  361. if (l2size == 0)
  362. return; /* Again, no L2 cache is possible */
  363. #endif
  364. c->x86_cache_size = l2size;
  365. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  366. l2size, ecx & 0xFF);
  367. }
  368. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  369. {
  370. #ifdef CONFIG_X86_HT
  371. u32 eax, ebx, ecx, edx;
  372. int index_msb, core_bits;
  373. if (!cpu_has(c, X86_FEATURE_HT))
  374. return;
  375. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  376. goto out;
  377. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  378. return;
  379. cpuid(1, &eax, &ebx, &ecx, &edx);
  380. smp_num_siblings = (ebx & 0xff0000) >> 16;
  381. if (smp_num_siblings == 1) {
  382. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  383. goto out;
  384. }
  385. if (smp_num_siblings <= 1)
  386. goto out;
  387. if (smp_num_siblings > nr_cpu_ids) {
  388. pr_warning("CPU: Unsupported number of siblings %d",
  389. smp_num_siblings);
  390. smp_num_siblings = 1;
  391. return;
  392. }
  393. index_msb = get_count_order(smp_num_siblings);
  394. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  395. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  396. index_msb = get_count_order(smp_num_siblings);
  397. core_bits = get_count_order(c->x86_max_cores);
  398. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  399. ((1 << core_bits) - 1);
  400. out:
  401. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  402. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  403. c->phys_proc_id);
  404. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  405. c->cpu_core_id);
  406. }
  407. #endif
  408. }
  409. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  410. {
  411. char *v = c->x86_vendor_id;
  412. static int printed;
  413. int i;
  414. for (i = 0; i < X86_VENDOR_NUM; i++) {
  415. if (!cpu_devs[i])
  416. break;
  417. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  418. (cpu_devs[i]->c_ident[1] &&
  419. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  420. this_cpu = cpu_devs[i];
  421. c->x86_vendor = this_cpu->c_x86_vendor;
  422. return;
  423. }
  424. }
  425. if (!printed) {
  426. printed++;
  427. printk(KERN_ERR
  428. "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  429. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  430. }
  431. c->x86_vendor = X86_VENDOR_UNKNOWN;
  432. this_cpu = &default_cpu;
  433. }
  434. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  435. {
  436. /* Get vendor name */
  437. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  438. (unsigned int *)&c->x86_vendor_id[0],
  439. (unsigned int *)&c->x86_vendor_id[8],
  440. (unsigned int *)&c->x86_vendor_id[4]);
  441. c->x86 = 4;
  442. /* Intel-defined flags: level 0x00000001 */
  443. if (c->cpuid_level >= 0x00000001) {
  444. u32 junk, tfms, cap0, misc;
  445. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  446. c->x86 = (tfms >> 8) & 0xf;
  447. c->x86_model = (tfms >> 4) & 0xf;
  448. c->x86_mask = tfms & 0xf;
  449. if (c->x86 == 0xf)
  450. c->x86 += (tfms >> 20) & 0xff;
  451. if (c->x86 >= 0x6)
  452. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  453. if (cap0 & (1<<19)) {
  454. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  455. c->x86_cache_alignment = c->x86_clflush_size;
  456. }
  457. }
  458. }
  459. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  460. {
  461. u32 tfms, xlvl;
  462. u32 ebx;
  463. /* Intel-defined flags: level 0x00000001 */
  464. if (c->cpuid_level >= 0x00000001) {
  465. u32 capability, excap;
  466. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  467. c->x86_capability[0] = capability;
  468. c->x86_capability[4] = excap;
  469. }
  470. /* AMD-defined flags: level 0x80000001 */
  471. xlvl = cpuid_eax(0x80000000);
  472. c->extended_cpuid_level = xlvl;
  473. if ((xlvl & 0xffff0000) == 0x80000000) {
  474. if (xlvl >= 0x80000001) {
  475. c->x86_capability[1] = cpuid_edx(0x80000001);
  476. c->x86_capability[6] = cpuid_ecx(0x80000001);
  477. }
  478. }
  479. if (c->extended_cpuid_level >= 0x80000008) {
  480. u32 eax = cpuid_eax(0x80000008);
  481. c->x86_virt_bits = (eax >> 8) & 0xff;
  482. c->x86_phys_bits = eax & 0xff;
  483. }
  484. #ifdef CONFIG_X86_32
  485. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  486. c->x86_phys_bits = 36;
  487. #endif
  488. if (c->extended_cpuid_level >= 0x80000007)
  489. c->x86_power = cpuid_edx(0x80000007);
  490. }
  491. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  492. {
  493. #ifdef CONFIG_X86_32
  494. int i;
  495. /*
  496. * First of all, decide if this is a 486 or higher
  497. * It's a 486 if we can modify the AC flag
  498. */
  499. if (flag_is_changeable_p(X86_EFLAGS_AC))
  500. c->x86 = 4;
  501. else
  502. c->x86 = 3;
  503. for (i = 0; i < X86_VENDOR_NUM; i++)
  504. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  505. c->x86_vendor_id[0] = 0;
  506. cpu_devs[i]->c_identify(c);
  507. if (c->x86_vendor_id[0]) {
  508. get_cpu_vendor(c);
  509. break;
  510. }
  511. }
  512. #endif
  513. }
  514. /*
  515. * Do minimum CPU detection early.
  516. * Fields really needed: vendor, cpuid_level, family, model, mask,
  517. * cache alignment.
  518. * The others are not touched to avoid unwanted side effects.
  519. *
  520. * WARNING: this function is only called on the BP. Don't add code here
  521. * that is supposed to run on all CPUs.
  522. */
  523. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  524. {
  525. #ifdef CONFIG_X86_64
  526. c->x86_clflush_size = 64;
  527. c->x86_phys_bits = 36;
  528. c->x86_virt_bits = 48;
  529. #else
  530. c->x86_clflush_size = 32;
  531. c->x86_phys_bits = 32;
  532. c->x86_virt_bits = 32;
  533. #endif
  534. c->x86_cache_alignment = c->x86_clflush_size;
  535. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  536. c->extended_cpuid_level = 0;
  537. if (!have_cpuid_p())
  538. identify_cpu_without_cpuid(c);
  539. /* cyrix could have cpuid enabled via c_identify()*/
  540. if (!have_cpuid_p())
  541. return;
  542. cpu_detect(c);
  543. get_cpu_vendor(c);
  544. get_cpu_cap(c);
  545. if (this_cpu->c_early_init)
  546. this_cpu->c_early_init(c);
  547. #ifdef CONFIG_SMP
  548. c->cpu_index = boot_cpu_id;
  549. #endif
  550. filter_cpuid_features(c, false);
  551. }
  552. void __init early_cpu_init(void)
  553. {
  554. const struct cpu_dev *const *cdev;
  555. int count = 0;
  556. printk(KERN_INFO "KERNEL supported cpus:\n");
  557. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  558. const struct cpu_dev *cpudev = *cdev;
  559. unsigned int j;
  560. if (count >= X86_VENDOR_NUM)
  561. break;
  562. cpu_devs[count] = cpudev;
  563. count++;
  564. for (j = 0; j < 2; j++) {
  565. if (!cpudev->c_ident[j])
  566. continue;
  567. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  568. cpudev->c_ident[j]);
  569. }
  570. }
  571. early_identify_cpu(&boot_cpu_data);
  572. }
  573. /*
  574. * The NOPL instruction is supposed to exist on all CPUs with
  575. * family >= 6; unfortunately, that's not true in practice because
  576. * of early VIA chips and (more importantly) broken virtualizers that
  577. * are not easy to detect. In the latter case it doesn't even *fail*
  578. * reliably, so probing for it doesn't even work. Disable it completely
  579. * unless we can find a reliable way to detect all the broken cases.
  580. */
  581. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  582. {
  583. clear_cpu_cap(c, X86_FEATURE_NOPL);
  584. }
  585. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  586. {
  587. c->extended_cpuid_level = 0;
  588. if (!have_cpuid_p())
  589. identify_cpu_without_cpuid(c);
  590. /* cyrix could have cpuid enabled via c_identify()*/
  591. if (!have_cpuid_p())
  592. return;
  593. cpu_detect(c);
  594. get_cpu_vendor(c);
  595. get_cpu_cap(c);
  596. if (c->cpuid_level >= 0x00000001) {
  597. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  598. #ifdef CONFIG_X86_32
  599. # ifdef CONFIG_X86_HT
  600. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  601. # else
  602. c->apicid = c->initial_apicid;
  603. # endif
  604. #endif
  605. #ifdef CONFIG_X86_HT
  606. c->phys_proc_id = c->initial_apicid;
  607. #endif
  608. }
  609. get_model_name(c); /* Default name */
  610. init_scattered_cpuid_features(c);
  611. detect_nopl(c);
  612. }
  613. /*
  614. * This does the hard work of actually picking apart the CPU stuff...
  615. */
  616. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  617. {
  618. int i;
  619. c->loops_per_jiffy = loops_per_jiffy;
  620. c->x86_cache_size = -1;
  621. c->x86_vendor = X86_VENDOR_UNKNOWN;
  622. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  623. c->x86_vendor_id[0] = '\0'; /* Unset */
  624. c->x86_model_id[0] = '\0'; /* Unset */
  625. c->x86_max_cores = 1;
  626. c->x86_coreid_bits = 0;
  627. #ifdef CONFIG_X86_64
  628. c->x86_clflush_size = 64;
  629. c->x86_phys_bits = 36;
  630. c->x86_virt_bits = 48;
  631. #else
  632. c->cpuid_level = -1; /* CPUID not detected */
  633. c->x86_clflush_size = 32;
  634. c->x86_phys_bits = 32;
  635. c->x86_virt_bits = 32;
  636. #endif
  637. c->x86_cache_alignment = c->x86_clflush_size;
  638. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  639. generic_identify(c);
  640. if (this_cpu->c_identify)
  641. this_cpu->c_identify(c);
  642. #ifdef CONFIG_X86_64
  643. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  644. #endif
  645. /*
  646. * Vendor-specific initialization. In this section we
  647. * canonicalize the feature flags, meaning if there are
  648. * features a certain CPU supports which CPUID doesn't
  649. * tell us, CPUID claiming incorrect flags, or other bugs,
  650. * we handle them here.
  651. *
  652. * At the end of this section, c->x86_capability better
  653. * indicate the features this CPU genuinely supports!
  654. */
  655. if (this_cpu->c_init)
  656. this_cpu->c_init(c);
  657. /* Disable the PN if appropriate */
  658. squash_the_stupid_serial_number(c);
  659. /*
  660. * The vendor-specific functions might have changed features.
  661. * Now we do "generic changes."
  662. */
  663. /* Filter out anything that depends on CPUID levels we don't have */
  664. filter_cpuid_features(c, true);
  665. /* If the model name is still unset, do table lookup. */
  666. if (!c->x86_model_id[0]) {
  667. const char *p;
  668. p = table_lookup_model(c);
  669. if (p)
  670. strcpy(c->x86_model_id, p);
  671. else
  672. /* Last resort... */
  673. sprintf(c->x86_model_id, "%02x/%02x",
  674. c->x86, c->x86_model);
  675. }
  676. #ifdef CONFIG_X86_64
  677. detect_ht(c);
  678. #endif
  679. init_hypervisor(c);
  680. /*
  681. * On SMP, boot_cpu_data holds the common feature set between
  682. * all CPUs; so make sure that we indicate which features are
  683. * common between the CPUs. The first time this routine gets
  684. * executed, c == &boot_cpu_data.
  685. */
  686. if (c != &boot_cpu_data) {
  687. /* AND the already accumulated flags with these */
  688. for (i = 0; i < NCAPINTS; i++)
  689. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  690. }
  691. /* Clear all flags overriden by options */
  692. for (i = 0; i < NCAPINTS; i++)
  693. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  694. #ifdef CONFIG_X86_MCE
  695. /* Init Machine Check Exception if available. */
  696. mcheck_init(c);
  697. #endif
  698. select_idle_routine(c);
  699. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  700. numa_add_cpu(smp_processor_id());
  701. #endif
  702. }
  703. #ifdef CONFIG_X86_64
  704. static void vgetcpu_set_mode(void)
  705. {
  706. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  707. vgetcpu_mode = VGETCPU_RDTSCP;
  708. else
  709. vgetcpu_mode = VGETCPU_LSL;
  710. }
  711. #endif
  712. void __init identify_boot_cpu(void)
  713. {
  714. identify_cpu(&boot_cpu_data);
  715. init_c1e_mask();
  716. #ifdef CONFIG_X86_32
  717. sysenter_setup();
  718. enable_sep_cpu();
  719. #else
  720. vgetcpu_set_mode();
  721. #endif
  722. init_hw_perf_counters();
  723. }
  724. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  725. {
  726. BUG_ON(c == &boot_cpu_data);
  727. identify_cpu(c);
  728. #ifdef CONFIG_X86_32
  729. enable_sep_cpu();
  730. #endif
  731. mtrr_ap_init();
  732. }
  733. struct msr_range {
  734. unsigned min;
  735. unsigned max;
  736. };
  737. static const struct msr_range msr_range_array[] __cpuinitconst = {
  738. { 0x00000000, 0x00000418},
  739. { 0xc0000000, 0xc000040b},
  740. { 0xc0010000, 0xc0010142},
  741. { 0xc0011000, 0xc001103b},
  742. };
  743. static void __cpuinit print_cpu_msr(void)
  744. {
  745. unsigned index_min, index_max;
  746. unsigned index;
  747. u64 val;
  748. int i;
  749. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  750. index_min = msr_range_array[i].min;
  751. index_max = msr_range_array[i].max;
  752. for (index = index_min; index < index_max; index++) {
  753. if (rdmsrl_amd_safe(index, &val))
  754. continue;
  755. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  756. }
  757. }
  758. }
  759. static int show_msr __cpuinitdata;
  760. static __init int setup_show_msr(char *arg)
  761. {
  762. int num;
  763. get_option(&arg, &num);
  764. if (num > 0)
  765. show_msr = num;
  766. return 1;
  767. }
  768. __setup("show_msr=", setup_show_msr);
  769. static __init int setup_noclflush(char *arg)
  770. {
  771. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  772. return 1;
  773. }
  774. __setup("noclflush", setup_noclflush);
  775. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  776. {
  777. const char *vendor = NULL;
  778. if (c->x86_vendor < X86_VENDOR_NUM) {
  779. vendor = this_cpu->c_vendor;
  780. } else {
  781. if (c->cpuid_level >= 0)
  782. vendor = c->x86_vendor_id;
  783. }
  784. if (vendor && !strstr(c->x86_model_id, vendor))
  785. printk(KERN_CONT "%s ", vendor);
  786. if (c->x86_model_id[0])
  787. printk(KERN_CONT "%s", c->x86_model_id);
  788. else
  789. printk(KERN_CONT "%d86", c->x86);
  790. if (c->x86_mask || c->cpuid_level >= 0)
  791. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  792. else
  793. printk(KERN_CONT "\n");
  794. #ifdef CONFIG_SMP
  795. if (c->cpu_index < show_msr)
  796. print_cpu_msr();
  797. #else
  798. if (show_msr)
  799. print_cpu_msr();
  800. #endif
  801. }
  802. static __init int setup_disablecpuid(char *arg)
  803. {
  804. int bit;
  805. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  806. setup_clear_cpu_cap(bit);
  807. else
  808. return 0;
  809. return 1;
  810. }
  811. __setup("clearcpuid=", setup_disablecpuid);
  812. #ifdef CONFIG_X86_64
  813. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  814. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  815. irq_stack_union) __aligned(PAGE_SIZE);
  816. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  817. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  818. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  819. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  820. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  821. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  822. /*
  823. * Special IST stacks which the CPU switches to when it calls
  824. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  825. * limit), all of them are 4K, except the debug stack which
  826. * is 8K.
  827. */
  828. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  829. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  830. [DEBUG_STACK - 1] = DEBUG_STKSZ
  831. };
  832. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  833. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
  834. __aligned(PAGE_SIZE);
  835. /* May not be marked __init: used by software suspend */
  836. void syscall_init(void)
  837. {
  838. /*
  839. * LSTAR and STAR live in a bit strange symbiosis.
  840. * They both write to the same internal register. STAR allows to
  841. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  842. */
  843. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  844. wrmsrl(MSR_LSTAR, system_call);
  845. wrmsrl(MSR_CSTAR, ignore_sysret);
  846. #ifdef CONFIG_IA32_EMULATION
  847. syscall32_cpu_init();
  848. #endif
  849. /* Flags to clear on syscall */
  850. wrmsrl(MSR_SYSCALL_MASK,
  851. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  852. }
  853. unsigned long kernel_eflags;
  854. /*
  855. * Copies of the original ist values from the tss are only accessed during
  856. * debugging, no special alignment required.
  857. */
  858. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  859. #else /* CONFIG_X86_64 */
  860. #ifdef CONFIG_CC_STACKPROTECTOR
  861. DEFINE_PER_CPU(unsigned long, stack_canary);
  862. #endif
  863. /* Make sure %fs and %gs are initialized properly in idle threads */
  864. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  865. {
  866. memset(regs, 0, sizeof(struct pt_regs));
  867. regs->fs = __KERNEL_PERCPU;
  868. regs->gs = __KERNEL_STACK_CANARY;
  869. return regs;
  870. }
  871. #endif /* CONFIG_X86_64 */
  872. /*
  873. * Clear all 6 debug registers:
  874. */
  875. static void clear_all_debug_regs(void)
  876. {
  877. int i;
  878. for (i = 0; i < 8; i++) {
  879. /* Ignore db4, db5 */
  880. if ((i == 4) || (i == 5))
  881. continue;
  882. set_debugreg(0, i);
  883. }
  884. }
  885. /*
  886. * cpu_init() initializes state that is per-CPU. Some data is already
  887. * initialized (naturally) in the bootstrap process, such as the GDT
  888. * and IDT. We reload them nevertheless, this function acts as a
  889. * 'CPU state barrier', nothing should get across.
  890. * A lot of state is already set up in PDA init for 64 bit
  891. */
  892. #ifdef CONFIG_X86_64
  893. void __cpuinit cpu_init(void)
  894. {
  895. struct orig_ist *orig_ist;
  896. struct task_struct *me;
  897. struct tss_struct *t;
  898. unsigned long v;
  899. int cpu;
  900. int i;
  901. cpu = stack_smp_processor_id();
  902. t = &per_cpu(init_tss, cpu);
  903. orig_ist = &per_cpu(orig_ist, cpu);
  904. #ifdef CONFIG_NUMA
  905. if (cpu != 0 && percpu_read(node_number) == 0 &&
  906. cpu_to_node(cpu) != NUMA_NO_NODE)
  907. percpu_write(node_number, cpu_to_node(cpu));
  908. #endif
  909. me = current;
  910. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  911. panic("CPU#%d already initialized!\n", cpu);
  912. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  913. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  914. /*
  915. * Initialize the per-CPU GDT with the boot GDT,
  916. * and set up the GDT descriptor:
  917. */
  918. switch_to_new_gdt(cpu);
  919. loadsegment(fs, 0);
  920. load_idt((const struct desc_ptr *)&idt_descr);
  921. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  922. syscall_init();
  923. wrmsrl(MSR_FS_BASE, 0);
  924. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  925. barrier();
  926. check_efer();
  927. if (cpu != 0)
  928. enable_x2apic();
  929. /*
  930. * set up and load the per-CPU TSS
  931. */
  932. if (!orig_ist->ist[0]) {
  933. char *estacks = per_cpu(exception_stacks, cpu);
  934. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  935. estacks += exception_stack_sizes[v];
  936. orig_ist->ist[v] = t->x86_tss.ist[v] =
  937. (unsigned long)estacks;
  938. }
  939. }
  940. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  941. /*
  942. * <= is required because the CPU will access up to
  943. * 8 bits beyond the end of the IO permission bitmap.
  944. */
  945. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  946. t->io_bitmap[i] = ~0UL;
  947. atomic_inc(&init_mm.mm_count);
  948. me->active_mm = &init_mm;
  949. BUG_ON(me->mm);
  950. enter_lazy_tlb(&init_mm, me);
  951. load_sp0(t, &current->thread);
  952. set_tss_desc(cpu, t);
  953. load_TR_desc();
  954. load_LDT(&init_mm.context);
  955. #ifdef CONFIG_KGDB
  956. /*
  957. * If the kgdb is connected no debug regs should be altered. This
  958. * is only applicable when KGDB and a KGDB I/O module are built
  959. * into the kernel and you are using early debugging with
  960. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  961. */
  962. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  963. arch_kgdb_ops.correct_hw_break();
  964. else
  965. #endif
  966. clear_all_debug_regs();
  967. fpu_init();
  968. raw_local_save_flags(kernel_eflags);
  969. if (is_uv_system())
  970. uv_cpu_init();
  971. }
  972. #else
  973. void __cpuinit cpu_init(void)
  974. {
  975. int cpu = smp_processor_id();
  976. struct task_struct *curr = current;
  977. struct tss_struct *t = &per_cpu(init_tss, cpu);
  978. struct thread_struct *thread = &curr->thread;
  979. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  980. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  981. for (;;)
  982. local_irq_enable();
  983. }
  984. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  985. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  986. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  987. load_idt(&idt_descr);
  988. switch_to_new_gdt(cpu);
  989. /*
  990. * Set up and load the per-CPU TSS and LDT
  991. */
  992. atomic_inc(&init_mm.mm_count);
  993. curr->active_mm = &init_mm;
  994. BUG_ON(curr->mm);
  995. enter_lazy_tlb(&init_mm, curr);
  996. load_sp0(t, thread);
  997. set_tss_desc(cpu, t);
  998. load_TR_desc();
  999. load_LDT(&init_mm.context);
  1000. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1001. #ifdef CONFIG_DOUBLEFAULT
  1002. /* Set up doublefault TSS pointer in the GDT */
  1003. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1004. #endif
  1005. clear_all_debug_regs();
  1006. /*
  1007. * Force FPU initialization:
  1008. */
  1009. if (cpu_has_xsave)
  1010. current_thread_info()->status = TS_XSAVE;
  1011. else
  1012. current_thread_info()->status = 0;
  1013. clear_used_math();
  1014. mxcsr_feature_mask_init();
  1015. /*
  1016. * Boot processor to setup the FP and extended state context info.
  1017. */
  1018. if (smp_processor_id() == boot_cpu_id)
  1019. init_thread_xstate();
  1020. xsave_init();
  1021. }
  1022. #endif