time.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. /*
  2. * linux/arch/cris/arch-v32/kernel/time.c
  3. *
  4. * Copyright (C) 2003-2007 Axis Communications AB
  5. *
  6. */
  7. #include <linux/timex.h>
  8. #include <linux/time.h>
  9. #include <linux/jiffies.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/swap.h>
  12. #include <linux/sched.h>
  13. #include <linux/init.h>
  14. #include <linux/threads.h>
  15. #include <linux/cpufreq.h>
  16. #include <asm/types.h>
  17. #include <asm/signal.h>
  18. #include <asm/io.h>
  19. #include <asm/delay.h>
  20. #include <asm/rtc.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <hwregs/reg_map.h>
  24. #include <hwregs/reg_rdwr.h>
  25. #include <hwregs/timer_defs.h>
  26. #include <hwregs/intr_vect_defs.h>
  27. #ifdef CONFIG_CRIS_MACH_ARTPEC3
  28. #include <hwregs/clkgen_defs.h>
  29. #endif
  30. /* Watchdog defines */
  31. #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
  32. #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
  33. /* Number of 763 counts before watchdog bites */
  34. #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
  35. unsigned long timer_regs[NR_CPUS] =
  36. {
  37. regi_timer0,
  38. #ifdef CONFIG_SMP
  39. regi_timer2
  40. #endif
  41. };
  42. extern int set_rtc_mmss(unsigned long nowtime);
  43. extern int have_rtc;
  44. #ifdef CONFIG_CPU_FREQ
  45. static int
  46. cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
  47. void *data);
  48. static struct notifier_block cris_time_freq_notifier_block = {
  49. .notifier_call = cris_time_freq_notifier,
  50. };
  51. #endif
  52. unsigned long get_ns_in_jiffie(void)
  53. {
  54. reg_timer_r_tmr0_data data;
  55. unsigned long ns;
  56. data = REG_RD(timer, regi_timer0, r_tmr0_data);
  57. ns = (TIMER0_DIV - data) * 10;
  58. return ns;
  59. }
  60. unsigned long do_slow_gettimeoffset(void)
  61. {
  62. unsigned long count;
  63. unsigned long usec_count = 0;
  64. /* For the first call after boot */
  65. static unsigned long count_p = TIMER0_DIV;
  66. static unsigned long jiffies_p = 0;
  67. /* Cache volatile jiffies temporarily; we have IRQs turned off. */
  68. unsigned long jiffies_t;
  69. /* The timer interrupt comes from Etrax timer 0. In order to get
  70. * better precision, we check the current value. It might have
  71. * underflowed already though. */
  72. count = REG_RD(timer, regi_timer0, r_tmr0_data);
  73. jiffies_t = jiffies;
  74. /* Avoiding timer inconsistencies (they are rare, but they happen)
  75. * There is one problem that must be avoided here:
  76. * 1. the timer counter underflows
  77. */
  78. if( jiffies_t == jiffies_p ) {
  79. if( count > count_p ) {
  80. /* Timer wrapped, use new count and prescale.
  81. * Increase the time corresponding to one jiffy.
  82. */
  83. usec_count = 1000000/HZ;
  84. }
  85. } else
  86. jiffies_p = jiffies_t;
  87. count_p = count;
  88. /* Convert timer value to usec */
  89. /* 100 MHz timer, divide by 100 to get usec */
  90. usec_count += (TIMER0_DIV - count) / 100;
  91. return usec_count;
  92. }
  93. /* From timer MDS describing the hardware watchdog:
  94. * 4.3.1 Watchdog Operation
  95. * The watchdog timer is an 8-bit timer with a configurable start value.
  96. * Once started the watchdog counts downwards with a frequency of 763 Hz
  97. * (100/131072 MHz). When the watchdog counts down to 1, it generates an
  98. * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
  99. * chip.
  100. */
  101. /* This gives us 1.3 ms to do something useful when the NMI comes */
  102. /* Right now, starting the watchdog is the same as resetting it */
  103. #define start_watchdog reset_watchdog
  104. #if defined(CONFIG_ETRAX_WATCHDOG)
  105. static short int watchdog_key = 42; /* arbitrary 7 bit number */
  106. #endif
  107. /* Number of pages to consider "out of memory". It is normal that the memory
  108. * is used though, so set this really low. */
  109. #define WATCHDOG_MIN_FREE_PAGES 8
  110. void
  111. reset_watchdog(void)
  112. {
  113. #if defined(CONFIG_ETRAX_WATCHDOG)
  114. reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
  115. /* Only keep watchdog happy as long as we have memory left! */
  116. if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
  117. /* Reset the watchdog with the inverse of the old key */
  118. /* Invert key, which is 7 bits */
  119. watchdog_key ^= ETRAX_WD_KEY_MASK;
  120. wd_ctrl.cnt = ETRAX_WD_CNT;
  121. wd_ctrl.cmd = regk_timer_start;
  122. wd_ctrl.key = watchdog_key;
  123. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  124. }
  125. #endif
  126. }
  127. /* stop the watchdog - we still need the correct key */
  128. void
  129. stop_watchdog(void)
  130. {
  131. #if defined(CONFIG_ETRAX_WATCHDOG)
  132. reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
  133. watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
  134. wd_ctrl.cnt = ETRAX_WD_CNT;
  135. wd_ctrl.cmd = regk_timer_stop;
  136. wd_ctrl.key = watchdog_key;
  137. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  138. #endif
  139. }
  140. extern void show_registers(struct pt_regs *regs);
  141. void
  142. handle_watchdog_bite(struct pt_regs* regs)
  143. {
  144. #if defined(CONFIG_ETRAX_WATCHDOG)
  145. extern int cause_of_death;
  146. oops_in_progress = 1;
  147. printk(KERN_WARNING "Watchdog bite\n");
  148. /* Check if forced restart or unexpected watchdog */
  149. if (cause_of_death == 0xbedead) {
  150. #ifdef CONFIG_CRIS_MACH_ARTPEC3
  151. /* There is a bug in Artpec-3 (voodoo TR 78) that requires
  152. * us to go to lower frequency for the reset to be reliable
  153. */
  154. reg_clkgen_rw_clk_ctrl ctrl =
  155. REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
  156. ctrl.pll = 0;
  157. REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
  158. #endif
  159. while(1);
  160. }
  161. /* Unexpected watchdog, stop the watchdog and dump registers. */
  162. stop_watchdog();
  163. printk(KERN_WARNING "Oops: bitten by watchdog\n");
  164. show_registers(regs);
  165. oops_in_progress = 0;
  166. #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
  167. reset_watchdog();
  168. #endif
  169. while(1) /* nothing */;
  170. #endif
  171. }
  172. /*
  173. * timer_interrupt() needs to keep up the real-time clock,
  174. * as well as call the "do_timer()" routine every clocktick.
  175. */
  176. extern void cris_do_profile(struct pt_regs *regs);
  177. static inline irqreturn_t
  178. timer_interrupt(int irq, void *dev_id)
  179. {
  180. struct pt_regs *regs = get_irq_regs();
  181. int cpu = smp_processor_id();
  182. reg_timer_r_masked_intr masked_intr;
  183. reg_timer_rw_ack_intr ack_intr = { 0 };
  184. /* Check if the timer interrupt is for us (a tmr0 int) */
  185. masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
  186. if (!masked_intr.tmr0)
  187. return IRQ_NONE;
  188. /* Acknowledge the timer irq. */
  189. ack_intr.tmr0 = 1;
  190. REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
  191. /* Reset watchdog otherwise it resets us! */
  192. reset_watchdog();
  193. /* Update statistics. */
  194. update_process_times(user_mode(regs));
  195. cris_do_profile(regs); /* Save profiling information */
  196. /* The master CPU is responsible for the time keeping. */
  197. if (cpu != 0)
  198. return IRQ_HANDLED;
  199. /* Call the real timer interrupt handler */
  200. do_timer(1);
  201. return IRQ_HANDLED;
  202. }
  203. /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
  204. * It needs to be IRQF_DISABLED to make the jiffies update work properly.
  205. */
  206. static struct irqaction irq_timer = {
  207. .handler = timer_interrupt,
  208. .flags = IRQF_SHARED | IRQF_DISABLED,
  209. .name = "timer"
  210. };
  211. void __init
  212. cris_timer_init(void)
  213. {
  214. int cpu = smp_processor_id();
  215. reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
  216. reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
  217. reg_timer_rw_intr_mask timer_intr_mask;
  218. /* Setup the etrax timers.
  219. * Base frequency is 100MHz, divider 1000000 -> 100 HZ
  220. * We use timer0, so timer1 is free.
  221. * The trig timer is used by the fasttimer API if enabled.
  222. */
  223. tmr0_ctrl.op = regk_timer_ld;
  224. tmr0_ctrl.freq = regk_timer_f100;
  225. REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
  226. REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
  227. tmr0_ctrl.op = regk_timer_run;
  228. REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
  229. /* Enable the timer irq. */
  230. timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
  231. timer_intr_mask.tmr0 = 1;
  232. REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
  233. }
  234. void __init
  235. time_init(void)
  236. {
  237. reg_intr_vect_rw_mask intr_mask;
  238. /* Probe for the RTC and read it if it exists.
  239. * Before the RTC can be probed the loops_per_usec variable needs
  240. * to be initialized to make usleep work. A better value for
  241. * loops_per_usec is calculated by the kernel later once the
  242. * clock has started.
  243. */
  244. loops_per_usec = 50;
  245. if(RTC_INIT() < 0)
  246. have_rtc = 0;
  247. else
  248. have_rtc = 1;
  249. /* Start CPU local timer. */
  250. cris_timer_init();
  251. /* Enable the timer irq in global config. */
  252. intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
  253. intr_mask.timer0 = 1;
  254. REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
  255. /* Now actually register the timer irq handler that calls
  256. * timer_interrupt(). */
  257. setup_irq(TIMER0_INTR_VECT, &irq_timer);
  258. /* Enable watchdog if we should use one. */
  259. #if defined(CONFIG_ETRAX_WATCHDOG)
  260. printk(KERN_INFO "Enabling watchdog...\n");
  261. start_watchdog();
  262. /* If we use the hardware watchdog, we want to trap it as an NMI
  263. * and dump registers before it resets us. For this to happen, we
  264. * must set the "m" NMI enable flag (which once set, is unset only
  265. * when an NMI is taken). */
  266. {
  267. unsigned long flags;
  268. local_save_flags(flags);
  269. flags |= (1<<30); /* NMI M flag is at bit 30 */
  270. local_irq_restore(flags);
  271. }
  272. #endif
  273. #ifdef CONFIG_CPU_FREQ
  274. cpufreq_register_notifier(&cris_time_freq_notifier_block,
  275. CPUFREQ_TRANSITION_NOTIFIER);
  276. #endif
  277. }
  278. #ifdef CONFIG_CPU_FREQ
  279. static int
  280. cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
  281. void *data)
  282. {
  283. struct cpufreq_freqs *freqs = data;
  284. if (val == CPUFREQ_POSTCHANGE) {
  285. reg_timer_r_tmr0_data data;
  286. reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
  287. do {
  288. data = REG_RD(timer, timer_regs[freqs->cpu],
  289. r_tmr0_data);
  290. } while (data > 20);
  291. REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
  292. }
  293. return 0;
  294. }
  295. #endif