sched.c 234 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. #ifdef CONFIG_USER_SCHED
  282. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  283. #else /* !CONFIG_USER_SCHED */
  284. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  285. #endif /* CONFIG_USER_SCHED */
  286. /*
  287. * A weight of 0 or 1 can cause arithmetics problems.
  288. * A weight of a cfs_rq is the sum of weights of which entities
  289. * are queued on this cfs_rq, so a weight of a entity should not be
  290. * too large, so as the shares value of a task group.
  291. * (The default weight is 1024 - so there's no practical
  292. * limitation from this.)
  293. */
  294. #define MIN_SHARES 2
  295. #define MAX_SHARES (1UL << 18)
  296. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  297. #endif
  298. /* Default task group.
  299. * Every task in system belong to this group at bootup.
  300. */
  301. struct task_group init_task_group;
  302. /* return group to which a task belongs */
  303. static inline struct task_group *task_group(struct task_struct *p)
  304. {
  305. struct task_group *tg;
  306. #ifdef CONFIG_USER_SCHED
  307. rcu_read_lock();
  308. tg = __task_cred(p)->user->tg;
  309. rcu_read_unlock();
  310. #elif defined(CONFIG_CGROUP_SCHED)
  311. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  312. struct task_group, css);
  313. #else
  314. tg = &init_task_group;
  315. #endif
  316. return tg;
  317. }
  318. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  319. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  320. {
  321. #ifdef CONFIG_FAIR_GROUP_SCHED
  322. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  323. p->se.parent = task_group(p)->se[cpu];
  324. #endif
  325. #ifdef CONFIG_RT_GROUP_SCHED
  326. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  327. p->rt.parent = task_group(p)->rt_se[cpu];
  328. #endif
  329. }
  330. #else
  331. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  332. static inline struct task_group *task_group(struct task_struct *p)
  333. {
  334. return NULL;
  335. }
  336. #endif /* CONFIG_GROUP_SCHED */
  337. /* CFS-related fields in a runqueue */
  338. struct cfs_rq {
  339. struct load_weight load;
  340. unsigned long nr_running;
  341. u64 exec_clock;
  342. u64 min_vruntime;
  343. struct rb_root tasks_timeline;
  344. struct rb_node *rb_leftmost;
  345. struct list_head tasks;
  346. struct list_head *balance_iterator;
  347. /*
  348. * 'curr' points to currently running entity on this cfs_rq.
  349. * It is set to NULL otherwise (i.e when none are currently running).
  350. */
  351. struct sched_entity *curr, *next, *last;
  352. unsigned int nr_spread_over;
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  355. /*
  356. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  357. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  358. * (like users, containers etc.)
  359. *
  360. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  361. * list is used during load balance.
  362. */
  363. struct list_head leaf_cfs_rq_list;
  364. struct task_group *tg; /* group that "owns" this runqueue */
  365. #ifdef CONFIG_SMP
  366. /*
  367. * the part of load.weight contributed by tasks
  368. */
  369. unsigned long task_weight;
  370. /*
  371. * h_load = weight * f(tg)
  372. *
  373. * Where f(tg) is the recursive weight fraction assigned to
  374. * this group.
  375. */
  376. unsigned long h_load;
  377. /*
  378. * this cpu's part of tg->shares
  379. */
  380. unsigned long shares;
  381. /*
  382. * load.weight at the time we set shares
  383. */
  384. unsigned long rq_weight;
  385. #endif
  386. #endif
  387. };
  388. /* Real-Time classes' related field in a runqueue: */
  389. struct rt_rq {
  390. struct rt_prio_array active;
  391. unsigned long rt_nr_running;
  392. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  393. int highest_prio; /* highest queued rt task prio */
  394. #endif
  395. #ifdef CONFIG_SMP
  396. unsigned long rt_nr_migratory;
  397. int overloaded;
  398. #endif
  399. int rt_throttled;
  400. u64 rt_time;
  401. u64 rt_runtime;
  402. /* Nests inside the rq lock: */
  403. spinlock_t rt_runtime_lock;
  404. #ifdef CONFIG_RT_GROUP_SCHED
  405. unsigned long rt_nr_boosted;
  406. struct rq *rq;
  407. struct list_head leaf_rt_rq_list;
  408. struct task_group *tg;
  409. struct sched_rt_entity *rt_se;
  410. #endif
  411. };
  412. #ifdef CONFIG_SMP
  413. /*
  414. * We add the notion of a root-domain which will be used to define per-domain
  415. * variables. Each exclusive cpuset essentially defines an island domain by
  416. * fully partitioning the member cpus from any other cpuset. Whenever a new
  417. * exclusive cpuset is created, we also create and attach a new root-domain
  418. * object.
  419. *
  420. */
  421. struct root_domain {
  422. atomic_t refcount;
  423. cpumask_var_t span;
  424. cpumask_var_t online;
  425. /*
  426. * The "RT overload" flag: it gets set if a CPU has more than
  427. * one runnable RT task.
  428. */
  429. cpumask_var_t rto_mask;
  430. atomic_t rto_count;
  431. #ifdef CONFIG_SMP
  432. struct cpupri cpupri;
  433. #endif
  434. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  435. /*
  436. * Preferred wake up cpu nominated by sched_mc balance that will be
  437. * used when most cpus are idle in the system indicating overall very
  438. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  439. */
  440. unsigned int sched_mc_preferred_wakeup_cpu;
  441. #endif
  442. };
  443. /*
  444. * By default the system creates a single root-domain with all cpus as
  445. * members (mimicking the global state we have today).
  446. */
  447. static struct root_domain def_root_domain;
  448. #endif
  449. /*
  450. * This is the main, per-CPU runqueue data structure.
  451. *
  452. * Locking rule: those places that want to lock multiple runqueues
  453. * (such as the load balancing or the thread migration code), lock
  454. * acquire operations must be ordered by ascending &runqueue.
  455. */
  456. struct rq {
  457. /* runqueue lock: */
  458. spinlock_t lock;
  459. /*
  460. * nr_running and cpu_load should be in the same cacheline because
  461. * remote CPUs use both these fields when doing load calculation.
  462. */
  463. unsigned long nr_running;
  464. #define CPU_LOAD_IDX_MAX 5
  465. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  466. unsigned char idle_at_tick;
  467. #ifdef CONFIG_NO_HZ
  468. unsigned long last_tick_seen;
  469. unsigned char in_nohz_recently;
  470. #endif
  471. /* capture load from *all* tasks on this cpu: */
  472. struct load_weight load;
  473. unsigned long nr_load_updates;
  474. u64 nr_switches;
  475. u64 nr_migrations_in;
  476. struct cfs_rq cfs;
  477. struct rt_rq rt;
  478. #ifdef CONFIG_FAIR_GROUP_SCHED
  479. /* list of leaf cfs_rq on this cpu: */
  480. struct list_head leaf_cfs_rq_list;
  481. #endif
  482. #ifdef CONFIG_RT_GROUP_SCHED
  483. struct list_head leaf_rt_rq_list;
  484. #endif
  485. /*
  486. * This is part of a global counter where only the total sum
  487. * over all CPUs matters. A task can increase this counter on
  488. * one CPU and if it got migrated afterwards it may decrease
  489. * it on another CPU. Always updated under the runqueue lock:
  490. */
  491. unsigned long nr_uninterruptible;
  492. struct task_struct *curr, *idle;
  493. unsigned long next_balance;
  494. struct mm_struct *prev_mm;
  495. u64 clock;
  496. atomic_t nr_iowait;
  497. #ifdef CONFIG_SMP
  498. struct root_domain *rd;
  499. struct sched_domain *sd;
  500. /* For active balancing */
  501. int active_balance;
  502. int push_cpu;
  503. /* cpu of this runqueue: */
  504. int cpu;
  505. int online;
  506. unsigned long avg_load_per_task;
  507. struct task_struct *migration_thread;
  508. struct list_head migration_queue;
  509. #endif
  510. #ifdef CONFIG_SCHED_HRTICK
  511. #ifdef CONFIG_SMP
  512. int hrtick_csd_pending;
  513. struct call_single_data hrtick_csd;
  514. #endif
  515. struct hrtimer hrtick_timer;
  516. #endif
  517. #ifdef CONFIG_SCHEDSTATS
  518. /* latency stats */
  519. struct sched_info rq_sched_info;
  520. unsigned long long rq_cpu_time;
  521. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  522. /* sys_sched_yield() stats */
  523. unsigned int yld_exp_empty;
  524. unsigned int yld_act_empty;
  525. unsigned int yld_both_empty;
  526. unsigned int yld_count;
  527. /* schedule() stats */
  528. unsigned int sched_switch;
  529. unsigned int sched_count;
  530. unsigned int sched_goidle;
  531. /* try_to_wake_up() stats */
  532. unsigned int ttwu_count;
  533. unsigned int ttwu_local;
  534. /* BKL stats */
  535. unsigned int bkl_count;
  536. #endif
  537. };
  538. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  539. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  540. {
  541. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  542. }
  543. static inline int cpu_of(struct rq *rq)
  544. {
  545. #ifdef CONFIG_SMP
  546. return rq->cpu;
  547. #else
  548. return 0;
  549. #endif
  550. }
  551. /*
  552. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  553. * See detach_destroy_domains: synchronize_sched for details.
  554. *
  555. * The domain tree of any CPU may only be accessed from within
  556. * preempt-disabled sections.
  557. */
  558. #define for_each_domain(cpu, __sd) \
  559. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  560. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  561. #define this_rq() (&__get_cpu_var(runqueues))
  562. #define task_rq(p) cpu_rq(task_cpu(p))
  563. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  564. inline void update_rq_clock(struct rq *rq)
  565. {
  566. rq->clock = sched_clock_cpu(cpu_of(rq));
  567. }
  568. /*
  569. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  570. */
  571. #ifdef CONFIG_SCHED_DEBUG
  572. # define const_debug __read_mostly
  573. #else
  574. # define const_debug static const
  575. #endif
  576. /**
  577. * runqueue_is_locked
  578. *
  579. * Returns true if the current cpu runqueue is locked.
  580. * This interface allows printk to be called with the runqueue lock
  581. * held and know whether or not it is OK to wake up the klogd.
  582. */
  583. int runqueue_is_locked(void)
  584. {
  585. int cpu = get_cpu();
  586. struct rq *rq = cpu_rq(cpu);
  587. int ret;
  588. ret = spin_is_locked(&rq->lock);
  589. put_cpu();
  590. return ret;
  591. }
  592. /*
  593. * Debugging: various feature bits
  594. */
  595. #define SCHED_FEAT(name, enabled) \
  596. __SCHED_FEAT_##name ,
  597. enum {
  598. #include "sched_features.h"
  599. };
  600. #undef SCHED_FEAT
  601. #define SCHED_FEAT(name, enabled) \
  602. (1UL << __SCHED_FEAT_##name) * enabled |
  603. const_debug unsigned int sysctl_sched_features =
  604. #include "sched_features.h"
  605. 0;
  606. #undef SCHED_FEAT
  607. #ifdef CONFIG_SCHED_DEBUG
  608. #define SCHED_FEAT(name, enabled) \
  609. #name ,
  610. static __read_mostly char *sched_feat_names[] = {
  611. #include "sched_features.h"
  612. NULL
  613. };
  614. #undef SCHED_FEAT
  615. static int sched_feat_show(struct seq_file *m, void *v)
  616. {
  617. int i;
  618. for (i = 0; sched_feat_names[i]; i++) {
  619. if (!(sysctl_sched_features & (1UL << i)))
  620. seq_puts(m, "NO_");
  621. seq_printf(m, "%s ", sched_feat_names[i]);
  622. }
  623. seq_puts(m, "\n");
  624. return 0;
  625. }
  626. static ssize_t
  627. sched_feat_write(struct file *filp, const char __user *ubuf,
  628. size_t cnt, loff_t *ppos)
  629. {
  630. char buf[64];
  631. char *cmp = buf;
  632. int neg = 0;
  633. int i;
  634. if (cnt > 63)
  635. cnt = 63;
  636. if (copy_from_user(&buf, ubuf, cnt))
  637. return -EFAULT;
  638. buf[cnt] = 0;
  639. if (strncmp(buf, "NO_", 3) == 0) {
  640. neg = 1;
  641. cmp += 3;
  642. }
  643. for (i = 0; sched_feat_names[i]; i++) {
  644. int len = strlen(sched_feat_names[i]);
  645. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  646. if (neg)
  647. sysctl_sched_features &= ~(1UL << i);
  648. else
  649. sysctl_sched_features |= (1UL << i);
  650. break;
  651. }
  652. }
  653. if (!sched_feat_names[i])
  654. return -EINVAL;
  655. filp->f_pos += cnt;
  656. return cnt;
  657. }
  658. static int sched_feat_open(struct inode *inode, struct file *filp)
  659. {
  660. return single_open(filp, sched_feat_show, NULL);
  661. }
  662. static struct file_operations sched_feat_fops = {
  663. .open = sched_feat_open,
  664. .write = sched_feat_write,
  665. .read = seq_read,
  666. .llseek = seq_lseek,
  667. .release = single_release,
  668. };
  669. static __init int sched_init_debug(void)
  670. {
  671. debugfs_create_file("sched_features", 0644, NULL, NULL,
  672. &sched_feat_fops);
  673. return 0;
  674. }
  675. late_initcall(sched_init_debug);
  676. #endif
  677. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  678. /*
  679. * Number of tasks to iterate in a single balance run.
  680. * Limited because this is done with IRQs disabled.
  681. */
  682. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  683. /*
  684. * ratelimit for updating the group shares.
  685. * default: 0.25ms
  686. */
  687. unsigned int sysctl_sched_shares_ratelimit = 250000;
  688. /*
  689. * Inject some fuzzyness into changing the per-cpu group shares
  690. * this avoids remote rq-locks at the expense of fairness.
  691. * default: 4
  692. */
  693. unsigned int sysctl_sched_shares_thresh = 4;
  694. /*
  695. * period over which we measure -rt task cpu usage in us.
  696. * default: 1s
  697. */
  698. unsigned int sysctl_sched_rt_period = 1000000;
  699. static __read_mostly int scheduler_running;
  700. /*
  701. * part of the period that we allow rt tasks to run in us.
  702. * default: 0.95s
  703. */
  704. int sysctl_sched_rt_runtime = 950000;
  705. static inline u64 global_rt_period(void)
  706. {
  707. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  708. }
  709. static inline u64 global_rt_runtime(void)
  710. {
  711. if (sysctl_sched_rt_runtime < 0)
  712. return RUNTIME_INF;
  713. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  714. }
  715. #ifndef prepare_arch_switch
  716. # define prepare_arch_switch(next) do { } while (0)
  717. #endif
  718. #ifndef finish_arch_switch
  719. # define finish_arch_switch(prev) do { } while (0)
  720. #endif
  721. static inline int task_current(struct rq *rq, struct task_struct *p)
  722. {
  723. return rq->curr == p;
  724. }
  725. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  726. static inline int task_running(struct rq *rq, struct task_struct *p)
  727. {
  728. return task_current(rq, p);
  729. }
  730. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  731. {
  732. }
  733. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  734. {
  735. #ifdef CONFIG_DEBUG_SPINLOCK
  736. /* this is a valid case when another task releases the spinlock */
  737. rq->lock.owner = current;
  738. #endif
  739. /*
  740. * If we are tracking spinlock dependencies then we have to
  741. * fix up the runqueue lock - which gets 'carried over' from
  742. * prev into current:
  743. */
  744. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  745. spin_unlock_irq(&rq->lock);
  746. }
  747. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  748. static inline int task_running(struct rq *rq, struct task_struct *p)
  749. {
  750. #ifdef CONFIG_SMP
  751. return p->oncpu;
  752. #else
  753. return task_current(rq, p);
  754. #endif
  755. }
  756. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  757. {
  758. #ifdef CONFIG_SMP
  759. /*
  760. * We can optimise this out completely for !SMP, because the
  761. * SMP rebalancing from interrupt is the only thing that cares
  762. * here.
  763. */
  764. next->oncpu = 1;
  765. #endif
  766. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  767. spin_unlock_irq(&rq->lock);
  768. #else
  769. spin_unlock(&rq->lock);
  770. #endif
  771. }
  772. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  773. {
  774. #ifdef CONFIG_SMP
  775. /*
  776. * After ->oncpu is cleared, the task can be moved to a different CPU.
  777. * We must ensure this doesn't happen until the switch is completely
  778. * finished.
  779. */
  780. smp_wmb();
  781. prev->oncpu = 0;
  782. #endif
  783. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  784. local_irq_enable();
  785. #endif
  786. }
  787. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  788. /*
  789. * __task_rq_lock - lock the runqueue a given task resides on.
  790. * Must be called interrupts disabled.
  791. */
  792. static inline struct rq *__task_rq_lock(struct task_struct *p)
  793. __acquires(rq->lock)
  794. {
  795. for (;;) {
  796. struct rq *rq = task_rq(p);
  797. spin_lock(&rq->lock);
  798. if (likely(rq == task_rq(p)))
  799. return rq;
  800. spin_unlock(&rq->lock);
  801. }
  802. }
  803. /*
  804. * task_rq_lock - lock the runqueue a given task resides on and disable
  805. * interrupts. Note the ordering: we can safely lookup the task_rq without
  806. * explicitly disabling preemption.
  807. */
  808. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  809. __acquires(rq->lock)
  810. {
  811. struct rq *rq;
  812. for (;;) {
  813. local_irq_save(*flags);
  814. rq = task_rq(p);
  815. spin_lock(&rq->lock);
  816. if (likely(rq == task_rq(p)))
  817. return rq;
  818. spin_unlock_irqrestore(&rq->lock, *flags);
  819. }
  820. }
  821. void curr_rq_lock_irq_save(unsigned long *flags)
  822. __acquires(rq->lock)
  823. {
  824. struct rq *rq;
  825. local_irq_save(*flags);
  826. rq = cpu_rq(smp_processor_id());
  827. spin_lock(&rq->lock);
  828. }
  829. void curr_rq_unlock_irq_restore(unsigned long *flags)
  830. __releases(rq->lock)
  831. {
  832. struct rq *rq;
  833. rq = cpu_rq(smp_processor_id());
  834. spin_unlock(&rq->lock);
  835. local_irq_restore(*flags);
  836. }
  837. void task_rq_unlock_wait(struct task_struct *p)
  838. {
  839. struct rq *rq = task_rq(p);
  840. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  841. spin_unlock_wait(&rq->lock);
  842. }
  843. static void __task_rq_unlock(struct rq *rq)
  844. __releases(rq->lock)
  845. {
  846. spin_unlock(&rq->lock);
  847. }
  848. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  849. __releases(rq->lock)
  850. {
  851. spin_unlock_irqrestore(&rq->lock, *flags);
  852. }
  853. /*
  854. * this_rq_lock - lock this runqueue and disable interrupts.
  855. */
  856. static struct rq *this_rq_lock(void)
  857. __acquires(rq->lock)
  858. {
  859. struct rq *rq;
  860. local_irq_disable();
  861. rq = this_rq();
  862. spin_lock(&rq->lock);
  863. return rq;
  864. }
  865. #ifdef CONFIG_SCHED_HRTICK
  866. /*
  867. * Use HR-timers to deliver accurate preemption points.
  868. *
  869. * Its all a bit involved since we cannot program an hrt while holding the
  870. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  871. * reschedule event.
  872. *
  873. * When we get rescheduled we reprogram the hrtick_timer outside of the
  874. * rq->lock.
  875. */
  876. /*
  877. * Use hrtick when:
  878. * - enabled by features
  879. * - hrtimer is actually high res
  880. */
  881. static inline int hrtick_enabled(struct rq *rq)
  882. {
  883. if (!sched_feat(HRTICK))
  884. return 0;
  885. if (!cpu_active(cpu_of(rq)))
  886. return 0;
  887. return hrtimer_is_hres_active(&rq->hrtick_timer);
  888. }
  889. static void hrtick_clear(struct rq *rq)
  890. {
  891. if (hrtimer_active(&rq->hrtick_timer))
  892. hrtimer_cancel(&rq->hrtick_timer);
  893. }
  894. /*
  895. * High-resolution timer tick.
  896. * Runs from hardirq context with interrupts disabled.
  897. */
  898. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  899. {
  900. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  901. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  902. spin_lock(&rq->lock);
  903. update_rq_clock(rq);
  904. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  905. spin_unlock(&rq->lock);
  906. return HRTIMER_NORESTART;
  907. }
  908. #ifdef CONFIG_SMP
  909. /*
  910. * called from hardirq (IPI) context
  911. */
  912. static void __hrtick_start(void *arg)
  913. {
  914. struct rq *rq = arg;
  915. spin_lock(&rq->lock);
  916. hrtimer_restart(&rq->hrtick_timer);
  917. rq->hrtick_csd_pending = 0;
  918. spin_unlock(&rq->lock);
  919. }
  920. /*
  921. * Called to set the hrtick timer state.
  922. *
  923. * called with rq->lock held and irqs disabled
  924. */
  925. static void hrtick_start(struct rq *rq, u64 delay)
  926. {
  927. struct hrtimer *timer = &rq->hrtick_timer;
  928. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  929. hrtimer_set_expires(timer, time);
  930. if (rq == this_rq()) {
  931. hrtimer_restart(timer);
  932. } else if (!rq->hrtick_csd_pending) {
  933. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  934. rq->hrtick_csd_pending = 1;
  935. }
  936. }
  937. static int
  938. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  939. {
  940. int cpu = (int)(long)hcpu;
  941. switch (action) {
  942. case CPU_UP_CANCELED:
  943. case CPU_UP_CANCELED_FROZEN:
  944. case CPU_DOWN_PREPARE:
  945. case CPU_DOWN_PREPARE_FROZEN:
  946. case CPU_DEAD:
  947. case CPU_DEAD_FROZEN:
  948. hrtick_clear(cpu_rq(cpu));
  949. return NOTIFY_OK;
  950. }
  951. return NOTIFY_DONE;
  952. }
  953. static __init void init_hrtick(void)
  954. {
  955. hotcpu_notifier(hotplug_hrtick, 0);
  956. }
  957. #else
  958. /*
  959. * Called to set the hrtick timer state.
  960. *
  961. * called with rq->lock held and irqs disabled
  962. */
  963. static void hrtick_start(struct rq *rq, u64 delay)
  964. {
  965. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  966. }
  967. static inline void init_hrtick(void)
  968. {
  969. }
  970. #endif /* CONFIG_SMP */
  971. static void init_rq_hrtick(struct rq *rq)
  972. {
  973. #ifdef CONFIG_SMP
  974. rq->hrtick_csd_pending = 0;
  975. rq->hrtick_csd.flags = 0;
  976. rq->hrtick_csd.func = __hrtick_start;
  977. rq->hrtick_csd.info = rq;
  978. #endif
  979. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  980. rq->hrtick_timer.function = hrtick;
  981. }
  982. #else /* CONFIG_SCHED_HRTICK */
  983. static inline void hrtick_clear(struct rq *rq)
  984. {
  985. }
  986. static inline void init_rq_hrtick(struct rq *rq)
  987. {
  988. }
  989. static inline void init_hrtick(void)
  990. {
  991. }
  992. #endif /* CONFIG_SCHED_HRTICK */
  993. /*
  994. * resched_task - mark a task 'to be rescheduled now'.
  995. *
  996. * On UP this means the setting of the need_resched flag, on SMP it
  997. * might also involve a cross-CPU call to trigger the scheduler on
  998. * the target CPU.
  999. */
  1000. #ifdef CONFIG_SMP
  1001. #ifndef tsk_is_polling
  1002. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1003. #endif
  1004. static void resched_task(struct task_struct *p)
  1005. {
  1006. int cpu;
  1007. assert_spin_locked(&task_rq(p)->lock);
  1008. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  1009. return;
  1010. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  1011. cpu = task_cpu(p);
  1012. if (cpu == smp_processor_id())
  1013. return;
  1014. /* NEED_RESCHED must be visible before we test polling */
  1015. smp_mb();
  1016. if (!tsk_is_polling(p))
  1017. smp_send_reschedule(cpu);
  1018. }
  1019. static void resched_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. unsigned long flags;
  1023. if (!spin_trylock_irqsave(&rq->lock, flags))
  1024. return;
  1025. resched_task(cpu_curr(cpu));
  1026. spin_unlock_irqrestore(&rq->lock, flags);
  1027. }
  1028. #ifdef CONFIG_NO_HZ
  1029. /*
  1030. * When add_timer_on() enqueues a timer into the timer wheel of an
  1031. * idle CPU then this timer might expire before the next timer event
  1032. * which is scheduled to wake up that CPU. In case of a completely
  1033. * idle system the next event might even be infinite time into the
  1034. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1035. * leaves the inner idle loop so the newly added timer is taken into
  1036. * account when the CPU goes back to idle and evaluates the timer
  1037. * wheel for the next timer event.
  1038. */
  1039. void wake_up_idle_cpu(int cpu)
  1040. {
  1041. struct rq *rq = cpu_rq(cpu);
  1042. if (cpu == smp_processor_id())
  1043. return;
  1044. /*
  1045. * This is safe, as this function is called with the timer
  1046. * wheel base lock of (cpu) held. When the CPU is on the way
  1047. * to idle and has not yet set rq->curr to idle then it will
  1048. * be serialized on the timer wheel base lock and take the new
  1049. * timer into account automatically.
  1050. */
  1051. if (rq->curr != rq->idle)
  1052. return;
  1053. /*
  1054. * We can set TIF_RESCHED on the idle task of the other CPU
  1055. * lockless. The worst case is that the other CPU runs the
  1056. * idle task through an additional NOOP schedule()
  1057. */
  1058. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1059. /* NEED_RESCHED must be visible before we test polling */
  1060. smp_mb();
  1061. if (!tsk_is_polling(rq->idle))
  1062. smp_send_reschedule(cpu);
  1063. }
  1064. #endif /* CONFIG_NO_HZ */
  1065. #else /* !CONFIG_SMP */
  1066. static void resched_task(struct task_struct *p)
  1067. {
  1068. assert_spin_locked(&task_rq(p)->lock);
  1069. set_tsk_need_resched(p);
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. #ifdef CONFIG_CGROUP_CPUACCT
  1190. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1191. #else
  1192. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1193. #endif
  1194. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1195. {
  1196. update_load_add(&rq->load, load);
  1197. }
  1198. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1199. {
  1200. update_load_sub(&rq->load, load);
  1201. }
  1202. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1203. typedef int (*tg_visitor)(struct task_group *, void *);
  1204. /*
  1205. * Iterate the full tree, calling @down when first entering a node and @up when
  1206. * leaving it for the final time.
  1207. */
  1208. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1209. {
  1210. struct task_group *parent, *child;
  1211. int ret;
  1212. rcu_read_lock();
  1213. parent = &root_task_group;
  1214. down:
  1215. ret = (*down)(parent, data);
  1216. if (ret)
  1217. goto out_unlock;
  1218. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1219. parent = child;
  1220. goto down;
  1221. up:
  1222. continue;
  1223. }
  1224. ret = (*up)(parent, data);
  1225. if (ret)
  1226. goto out_unlock;
  1227. child = parent;
  1228. parent = parent->parent;
  1229. if (parent)
  1230. goto up;
  1231. out_unlock:
  1232. rcu_read_unlock();
  1233. return ret;
  1234. }
  1235. static int tg_nop(struct task_group *tg, void *data)
  1236. {
  1237. return 0;
  1238. }
  1239. #endif
  1240. #ifdef CONFIG_SMP
  1241. static unsigned long source_load(int cpu, int type);
  1242. static unsigned long target_load(int cpu, int type);
  1243. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1244. static unsigned long cpu_avg_load_per_task(int cpu)
  1245. {
  1246. struct rq *rq = cpu_rq(cpu);
  1247. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1248. if (nr_running)
  1249. rq->avg_load_per_task = rq->load.weight / nr_running;
  1250. else
  1251. rq->avg_load_per_task = 0;
  1252. return rq->avg_load_per_task;
  1253. }
  1254. #ifdef CONFIG_FAIR_GROUP_SCHED
  1255. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1256. /*
  1257. * Calculate and set the cpu's group shares.
  1258. */
  1259. static void
  1260. update_group_shares_cpu(struct task_group *tg, int cpu,
  1261. unsigned long sd_shares, unsigned long sd_rq_weight)
  1262. {
  1263. unsigned long shares;
  1264. unsigned long rq_weight;
  1265. if (!tg->se[cpu])
  1266. return;
  1267. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1268. /*
  1269. * \Sum shares * rq_weight
  1270. * shares = -----------------------
  1271. * \Sum rq_weight
  1272. *
  1273. */
  1274. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1275. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1276. if (abs(shares - tg->se[cpu]->load.weight) >
  1277. sysctl_sched_shares_thresh) {
  1278. struct rq *rq = cpu_rq(cpu);
  1279. unsigned long flags;
  1280. spin_lock_irqsave(&rq->lock, flags);
  1281. tg->cfs_rq[cpu]->shares = shares;
  1282. __set_se_shares(tg->se[cpu], shares);
  1283. spin_unlock_irqrestore(&rq->lock, flags);
  1284. }
  1285. }
  1286. /*
  1287. * Re-compute the task group their per cpu shares over the given domain.
  1288. * This needs to be done in a bottom-up fashion because the rq weight of a
  1289. * parent group depends on the shares of its child groups.
  1290. */
  1291. static int tg_shares_up(struct task_group *tg, void *data)
  1292. {
  1293. unsigned long weight, rq_weight = 0;
  1294. unsigned long shares = 0;
  1295. struct sched_domain *sd = data;
  1296. int i;
  1297. for_each_cpu(i, sched_domain_span(sd)) {
  1298. /*
  1299. * If there are currently no tasks on the cpu pretend there
  1300. * is one of average load so that when a new task gets to
  1301. * run here it will not get delayed by group starvation.
  1302. */
  1303. weight = tg->cfs_rq[i]->load.weight;
  1304. if (!weight)
  1305. weight = NICE_0_LOAD;
  1306. tg->cfs_rq[i]->rq_weight = weight;
  1307. rq_weight += weight;
  1308. shares += tg->cfs_rq[i]->shares;
  1309. }
  1310. if ((!shares && rq_weight) || shares > tg->shares)
  1311. shares = tg->shares;
  1312. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1313. shares = tg->shares;
  1314. for_each_cpu(i, sched_domain_span(sd))
  1315. update_group_shares_cpu(tg, i, shares, rq_weight);
  1316. return 0;
  1317. }
  1318. /*
  1319. * Compute the cpu's hierarchical load factor for each task group.
  1320. * This needs to be done in a top-down fashion because the load of a child
  1321. * group is a fraction of its parents load.
  1322. */
  1323. static int tg_load_down(struct task_group *tg, void *data)
  1324. {
  1325. unsigned long load;
  1326. long cpu = (long)data;
  1327. if (!tg->parent) {
  1328. load = cpu_rq(cpu)->load.weight;
  1329. } else {
  1330. load = tg->parent->cfs_rq[cpu]->h_load;
  1331. load *= tg->cfs_rq[cpu]->shares;
  1332. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1333. }
  1334. tg->cfs_rq[cpu]->h_load = load;
  1335. return 0;
  1336. }
  1337. static void update_shares(struct sched_domain *sd)
  1338. {
  1339. u64 now = cpu_clock(raw_smp_processor_id());
  1340. s64 elapsed = now - sd->last_update;
  1341. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1342. sd->last_update = now;
  1343. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1344. }
  1345. }
  1346. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1347. {
  1348. spin_unlock(&rq->lock);
  1349. update_shares(sd);
  1350. spin_lock(&rq->lock);
  1351. }
  1352. static void update_h_load(long cpu)
  1353. {
  1354. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1355. }
  1356. #else
  1357. static inline void update_shares(struct sched_domain *sd)
  1358. {
  1359. }
  1360. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1361. {
  1362. }
  1363. #endif
  1364. /*
  1365. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1366. */
  1367. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1368. __releases(this_rq->lock)
  1369. __acquires(busiest->lock)
  1370. __acquires(this_rq->lock)
  1371. {
  1372. int ret = 0;
  1373. if (unlikely(!irqs_disabled())) {
  1374. /* printk() doesn't work good under rq->lock */
  1375. spin_unlock(&this_rq->lock);
  1376. BUG_ON(1);
  1377. }
  1378. if (unlikely(!spin_trylock(&busiest->lock))) {
  1379. if (busiest < this_rq) {
  1380. spin_unlock(&this_rq->lock);
  1381. spin_lock(&busiest->lock);
  1382. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1383. ret = 1;
  1384. } else
  1385. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1386. }
  1387. return ret;
  1388. }
  1389. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1390. __releases(busiest->lock)
  1391. {
  1392. spin_unlock(&busiest->lock);
  1393. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1394. }
  1395. #endif
  1396. #ifdef CONFIG_FAIR_GROUP_SCHED
  1397. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1398. {
  1399. #ifdef CONFIG_SMP
  1400. cfs_rq->shares = shares;
  1401. #endif
  1402. }
  1403. #endif
  1404. #include "sched_stats.h"
  1405. #include "sched_idletask.c"
  1406. #include "sched_fair.c"
  1407. #include "sched_rt.c"
  1408. #ifdef CONFIG_SCHED_DEBUG
  1409. # include "sched_debug.c"
  1410. #endif
  1411. #define sched_class_highest (&rt_sched_class)
  1412. #define for_each_class(class) \
  1413. for (class = sched_class_highest; class; class = class->next)
  1414. static void inc_nr_running(struct rq *rq)
  1415. {
  1416. rq->nr_running++;
  1417. }
  1418. static void dec_nr_running(struct rq *rq)
  1419. {
  1420. rq->nr_running--;
  1421. }
  1422. static void set_load_weight(struct task_struct *p)
  1423. {
  1424. if (task_has_rt_policy(p)) {
  1425. p->se.load.weight = prio_to_weight[0] * 2;
  1426. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1427. return;
  1428. }
  1429. /*
  1430. * SCHED_IDLE tasks get minimal weight:
  1431. */
  1432. if (p->policy == SCHED_IDLE) {
  1433. p->se.load.weight = WEIGHT_IDLEPRIO;
  1434. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1435. return;
  1436. }
  1437. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1438. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1439. }
  1440. static void update_avg(u64 *avg, u64 sample)
  1441. {
  1442. s64 diff = sample - *avg;
  1443. *avg += diff >> 3;
  1444. }
  1445. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1446. {
  1447. sched_info_queued(p);
  1448. p->sched_class->enqueue_task(rq, p, wakeup);
  1449. p->se.on_rq = 1;
  1450. }
  1451. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1452. {
  1453. if (sleep && p->se.last_wakeup) {
  1454. update_avg(&p->se.avg_overlap,
  1455. p->se.sum_exec_runtime - p->se.last_wakeup);
  1456. p->se.last_wakeup = 0;
  1457. }
  1458. sched_info_dequeued(p);
  1459. p->sched_class->dequeue_task(rq, p, sleep);
  1460. p->se.on_rq = 0;
  1461. }
  1462. /*
  1463. * __normal_prio - return the priority that is based on the static prio
  1464. */
  1465. static inline int __normal_prio(struct task_struct *p)
  1466. {
  1467. return p->static_prio;
  1468. }
  1469. /*
  1470. * Calculate the expected normal priority: i.e. priority
  1471. * without taking RT-inheritance into account. Might be
  1472. * boosted by interactivity modifiers. Changes upon fork,
  1473. * setprio syscalls, and whenever the interactivity
  1474. * estimator recalculates.
  1475. */
  1476. static inline int normal_prio(struct task_struct *p)
  1477. {
  1478. int prio;
  1479. if (task_has_rt_policy(p))
  1480. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1481. else
  1482. prio = __normal_prio(p);
  1483. return prio;
  1484. }
  1485. /*
  1486. * Calculate the current priority, i.e. the priority
  1487. * taken into account by the scheduler. This value might
  1488. * be boosted by RT tasks, or might be boosted by
  1489. * interactivity modifiers. Will be RT if the task got
  1490. * RT-boosted. If not then it returns p->normal_prio.
  1491. */
  1492. static int effective_prio(struct task_struct *p)
  1493. {
  1494. p->normal_prio = normal_prio(p);
  1495. /*
  1496. * If we are RT tasks or we were boosted to RT priority,
  1497. * keep the priority unchanged. Otherwise, update priority
  1498. * to the normal priority:
  1499. */
  1500. if (!rt_prio(p->prio))
  1501. return p->normal_prio;
  1502. return p->prio;
  1503. }
  1504. /*
  1505. * activate_task - move a task to the runqueue.
  1506. */
  1507. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1508. {
  1509. if (task_contributes_to_load(p))
  1510. rq->nr_uninterruptible--;
  1511. enqueue_task(rq, p, wakeup);
  1512. inc_nr_running(rq);
  1513. }
  1514. /*
  1515. * deactivate_task - remove a task from the runqueue.
  1516. */
  1517. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1518. {
  1519. if (task_contributes_to_load(p))
  1520. rq->nr_uninterruptible++;
  1521. dequeue_task(rq, p, sleep);
  1522. dec_nr_running(rq);
  1523. }
  1524. /**
  1525. * task_curr - is this task currently executing on a CPU?
  1526. * @p: the task in question.
  1527. */
  1528. inline int task_curr(const struct task_struct *p)
  1529. {
  1530. return cpu_curr(task_cpu(p)) == p;
  1531. }
  1532. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1533. {
  1534. set_task_rq(p, cpu);
  1535. #ifdef CONFIG_SMP
  1536. /*
  1537. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1538. * successfuly executed on another CPU. We must ensure that updates of
  1539. * per-task data have been completed by this moment.
  1540. */
  1541. smp_wmb();
  1542. task_thread_info(p)->cpu = cpu;
  1543. #endif
  1544. }
  1545. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1546. const struct sched_class *prev_class,
  1547. int oldprio, int running)
  1548. {
  1549. if (prev_class != p->sched_class) {
  1550. if (prev_class->switched_from)
  1551. prev_class->switched_from(rq, p, running);
  1552. p->sched_class->switched_to(rq, p, running);
  1553. } else
  1554. p->sched_class->prio_changed(rq, p, oldprio, running);
  1555. }
  1556. #ifdef CONFIG_SMP
  1557. /* Used instead of source_load when we know the type == 0 */
  1558. static unsigned long weighted_cpuload(const int cpu)
  1559. {
  1560. return cpu_rq(cpu)->load.weight;
  1561. }
  1562. /*
  1563. * Is this task likely cache-hot:
  1564. */
  1565. static int
  1566. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1567. {
  1568. s64 delta;
  1569. /*
  1570. * Buddy candidates are cache hot:
  1571. */
  1572. if (sched_feat(CACHE_HOT_BUDDY) &&
  1573. (&p->se == cfs_rq_of(&p->se)->next ||
  1574. &p->se == cfs_rq_of(&p->se)->last))
  1575. return 1;
  1576. if (p->sched_class != &fair_sched_class)
  1577. return 0;
  1578. if (sysctl_sched_migration_cost == -1)
  1579. return 1;
  1580. if (sysctl_sched_migration_cost == 0)
  1581. return 0;
  1582. delta = now - p->se.exec_start;
  1583. return delta < (s64)sysctl_sched_migration_cost;
  1584. }
  1585. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1586. {
  1587. int old_cpu = task_cpu(p);
  1588. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1589. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1590. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1591. u64 clock_offset;
  1592. clock_offset = old_rq->clock - new_rq->clock;
  1593. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1594. #ifdef CONFIG_SCHEDSTATS
  1595. if (p->se.wait_start)
  1596. p->se.wait_start -= clock_offset;
  1597. if (p->se.sleep_start)
  1598. p->se.sleep_start -= clock_offset;
  1599. if (p->se.block_start)
  1600. p->se.block_start -= clock_offset;
  1601. #endif
  1602. if (old_cpu != new_cpu) {
  1603. p->se.nr_migrations++;
  1604. new_rq->nr_migrations_in++;
  1605. #ifdef CONFIG_SCHEDSTATS
  1606. if (task_hot(p, old_rq->clock, NULL))
  1607. schedstat_inc(p, se.nr_forced2_migrations);
  1608. #endif
  1609. }
  1610. p->se.vruntime -= old_cfsrq->min_vruntime -
  1611. new_cfsrq->min_vruntime;
  1612. __set_task_cpu(p, new_cpu);
  1613. }
  1614. struct migration_req {
  1615. struct list_head list;
  1616. struct task_struct *task;
  1617. int dest_cpu;
  1618. struct completion done;
  1619. };
  1620. /*
  1621. * The task's runqueue lock must be held.
  1622. * Returns true if you have to wait for migration thread.
  1623. */
  1624. static int
  1625. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1626. {
  1627. struct rq *rq = task_rq(p);
  1628. /*
  1629. * If the task is not on a runqueue (and not running), then
  1630. * it is sufficient to simply update the task's cpu field.
  1631. */
  1632. if (!p->se.on_rq && !task_running(rq, p)) {
  1633. set_task_cpu(p, dest_cpu);
  1634. return 0;
  1635. }
  1636. init_completion(&req->done);
  1637. req->task = p;
  1638. req->dest_cpu = dest_cpu;
  1639. list_add(&req->list, &rq->migration_queue);
  1640. return 1;
  1641. }
  1642. /*
  1643. * wait_task_inactive - wait for a thread to unschedule.
  1644. *
  1645. * If @match_state is nonzero, it's the @p->state value just checked and
  1646. * not expected to change. If it changes, i.e. @p might have woken up,
  1647. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1648. * we return a positive number (its total switch count). If a second call
  1649. * a short while later returns the same number, the caller can be sure that
  1650. * @p has remained unscheduled the whole time.
  1651. *
  1652. * The caller must ensure that the task *will* unschedule sometime soon,
  1653. * else this function might spin for a *long* time. This function can't
  1654. * be called with interrupts off, or it may introduce deadlock with
  1655. * smp_call_function() if an IPI is sent by the same process we are
  1656. * waiting to become inactive.
  1657. */
  1658. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1659. {
  1660. unsigned long flags;
  1661. int running, on_rq;
  1662. unsigned long ncsw;
  1663. struct rq *rq;
  1664. for (;;) {
  1665. /*
  1666. * We do the initial early heuristics without holding
  1667. * any task-queue locks at all. We'll only try to get
  1668. * the runqueue lock when things look like they will
  1669. * work out!
  1670. */
  1671. rq = task_rq(p);
  1672. /*
  1673. * If the task is actively running on another CPU
  1674. * still, just relax and busy-wait without holding
  1675. * any locks.
  1676. *
  1677. * NOTE! Since we don't hold any locks, it's not
  1678. * even sure that "rq" stays as the right runqueue!
  1679. * But we don't care, since "task_running()" will
  1680. * return false if the runqueue has changed and p
  1681. * is actually now running somewhere else!
  1682. */
  1683. while (task_running(rq, p)) {
  1684. if (match_state && unlikely(p->state != match_state))
  1685. return 0;
  1686. cpu_relax();
  1687. }
  1688. /*
  1689. * Ok, time to look more closely! We need the rq
  1690. * lock now, to be *sure*. If we're wrong, we'll
  1691. * just go back and repeat.
  1692. */
  1693. rq = task_rq_lock(p, &flags);
  1694. trace_sched_wait_task(rq, p);
  1695. running = task_running(rq, p);
  1696. on_rq = p->se.on_rq;
  1697. ncsw = 0;
  1698. if (!match_state || p->state == match_state)
  1699. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1700. task_rq_unlock(rq, &flags);
  1701. /*
  1702. * If it changed from the expected state, bail out now.
  1703. */
  1704. if (unlikely(!ncsw))
  1705. break;
  1706. /*
  1707. * Was it really running after all now that we
  1708. * checked with the proper locks actually held?
  1709. *
  1710. * Oops. Go back and try again..
  1711. */
  1712. if (unlikely(running)) {
  1713. cpu_relax();
  1714. continue;
  1715. }
  1716. /*
  1717. * It's not enough that it's not actively running,
  1718. * it must be off the runqueue _entirely_, and not
  1719. * preempted!
  1720. *
  1721. * So if it wa still runnable (but just not actively
  1722. * running right now), it's preempted, and we should
  1723. * yield - it could be a while.
  1724. */
  1725. if (unlikely(on_rq)) {
  1726. schedule_timeout_uninterruptible(1);
  1727. continue;
  1728. }
  1729. /*
  1730. * Ahh, all good. It wasn't running, and it wasn't
  1731. * runnable, which means that it will never become
  1732. * running in the future either. We're all done!
  1733. */
  1734. break;
  1735. }
  1736. return ncsw;
  1737. }
  1738. /***
  1739. * kick_process - kick a running thread to enter/exit the kernel
  1740. * @p: the to-be-kicked thread
  1741. *
  1742. * Cause a process which is running on another CPU to enter
  1743. * kernel-mode, without any delay. (to get signals handled.)
  1744. *
  1745. * NOTE: this function doesnt have to take the runqueue lock,
  1746. * because all it wants to ensure is that the remote task enters
  1747. * the kernel. If the IPI races and the task has been migrated
  1748. * to another CPU then no harm is done and the purpose has been
  1749. * achieved as well.
  1750. */
  1751. void kick_process(struct task_struct *p)
  1752. {
  1753. int cpu;
  1754. preempt_disable();
  1755. cpu = task_cpu(p);
  1756. if ((cpu != smp_processor_id()) && task_curr(p))
  1757. smp_send_reschedule(cpu);
  1758. preempt_enable();
  1759. }
  1760. /*
  1761. * Return a low guess at the load of a migration-source cpu weighted
  1762. * according to the scheduling class and "nice" value.
  1763. *
  1764. * We want to under-estimate the load of migration sources, to
  1765. * balance conservatively.
  1766. */
  1767. static unsigned long source_load(int cpu, int type)
  1768. {
  1769. struct rq *rq = cpu_rq(cpu);
  1770. unsigned long total = weighted_cpuload(cpu);
  1771. if (type == 0 || !sched_feat(LB_BIAS))
  1772. return total;
  1773. return min(rq->cpu_load[type-1], total);
  1774. }
  1775. /*
  1776. * Return a high guess at the load of a migration-target cpu weighted
  1777. * according to the scheduling class and "nice" value.
  1778. */
  1779. static unsigned long target_load(int cpu, int type)
  1780. {
  1781. struct rq *rq = cpu_rq(cpu);
  1782. unsigned long total = weighted_cpuload(cpu);
  1783. if (type == 0 || !sched_feat(LB_BIAS))
  1784. return total;
  1785. return max(rq->cpu_load[type-1], total);
  1786. }
  1787. /*
  1788. * find_idlest_group finds and returns the least busy CPU group within the
  1789. * domain.
  1790. */
  1791. static struct sched_group *
  1792. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1793. {
  1794. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1795. unsigned long min_load = ULONG_MAX, this_load = 0;
  1796. int load_idx = sd->forkexec_idx;
  1797. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1798. do {
  1799. unsigned long load, avg_load;
  1800. int local_group;
  1801. int i;
  1802. /* Skip over this group if it has no CPUs allowed */
  1803. if (!cpumask_intersects(sched_group_cpus(group),
  1804. &p->cpus_allowed))
  1805. continue;
  1806. local_group = cpumask_test_cpu(this_cpu,
  1807. sched_group_cpus(group));
  1808. /* Tally up the load of all CPUs in the group */
  1809. avg_load = 0;
  1810. for_each_cpu(i, sched_group_cpus(group)) {
  1811. /* Bias balancing toward cpus of our domain */
  1812. if (local_group)
  1813. load = source_load(i, load_idx);
  1814. else
  1815. load = target_load(i, load_idx);
  1816. avg_load += load;
  1817. }
  1818. /* Adjust by relative CPU power of the group */
  1819. avg_load = sg_div_cpu_power(group,
  1820. avg_load * SCHED_LOAD_SCALE);
  1821. if (local_group) {
  1822. this_load = avg_load;
  1823. this = group;
  1824. } else if (avg_load < min_load) {
  1825. min_load = avg_load;
  1826. idlest = group;
  1827. }
  1828. } while (group = group->next, group != sd->groups);
  1829. if (!idlest || 100*this_load < imbalance*min_load)
  1830. return NULL;
  1831. return idlest;
  1832. }
  1833. /*
  1834. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1835. */
  1836. static int
  1837. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1838. {
  1839. unsigned long load, min_load = ULONG_MAX;
  1840. int idlest = -1;
  1841. int i;
  1842. /* Traverse only the allowed CPUs */
  1843. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1844. load = weighted_cpuload(i);
  1845. if (load < min_load || (load == min_load && i == this_cpu)) {
  1846. min_load = load;
  1847. idlest = i;
  1848. }
  1849. }
  1850. return idlest;
  1851. }
  1852. /*
  1853. * sched_balance_self: balance the current task (running on cpu) in domains
  1854. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1855. * SD_BALANCE_EXEC.
  1856. *
  1857. * Balance, ie. select the least loaded group.
  1858. *
  1859. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1860. *
  1861. * preempt must be disabled.
  1862. */
  1863. static int sched_balance_self(int cpu, int flag)
  1864. {
  1865. struct task_struct *t = current;
  1866. struct sched_domain *tmp, *sd = NULL;
  1867. for_each_domain(cpu, tmp) {
  1868. /*
  1869. * If power savings logic is enabled for a domain, stop there.
  1870. */
  1871. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1872. break;
  1873. if (tmp->flags & flag)
  1874. sd = tmp;
  1875. }
  1876. if (sd)
  1877. update_shares(sd);
  1878. while (sd) {
  1879. struct sched_group *group;
  1880. int new_cpu, weight;
  1881. if (!(sd->flags & flag)) {
  1882. sd = sd->child;
  1883. continue;
  1884. }
  1885. group = find_idlest_group(sd, t, cpu);
  1886. if (!group) {
  1887. sd = sd->child;
  1888. continue;
  1889. }
  1890. new_cpu = find_idlest_cpu(group, t, cpu);
  1891. if (new_cpu == -1 || new_cpu == cpu) {
  1892. /* Now try balancing at a lower domain level of cpu */
  1893. sd = sd->child;
  1894. continue;
  1895. }
  1896. /* Now try balancing at a lower domain level of new_cpu */
  1897. cpu = new_cpu;
  1898. weight = cpumask_weight(sched_domain_span(sd));
  1899. sd = NULL;
  1900. for_each_domain(cpu, tmp) {
  1901. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1902. break;
  1903. if (tmp->flags & flag)
  1904. sd = tmp;
  1905. }
  1906. /* while loop will break here if sd == NULL */
  1907. }
  1908. return cpu;
  1909. }
  1910. #endif /* CONFIG_SMP */
  1911. /**
  1912. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1913. * @p: the task to evaluate
  1914. * @func: the function to be called
  1915. * @info: the function call argument
  1916. *
  1917. * Calls the function @func when the task is currently running. This might
  1918. * be on the current CPU, which just calls the function directly
  1919. */
  1920. void task_oncpu_function_call(struct task_struct *p,
  1921. void (*func) (void *info), void *info)
  1922. {
  1923. int cpu;
  1924. preempt_disable();
  1925. cpu = task_cpu(p);
  1926. if (task_curr(p))
  1927. smp_call_function_single(cpu, func, info, 1);
  1928. preempt_enable();
  1929. }
  1930. /***
  1931. * try_to_wake_up - wake up a thread
  1932. * @p: the to-be-woken-up thread
  1933. * @state: the mask of task states that can be woken
  1934. * @sync: do a synchronous wakeup?
  1935. *
  1936. * Put it on the run-queue if it's not already there. The "current"
  1937. * thread is always on the run-queue (except when the actual
  1938. * re-schedule is in progress), and as such you're allowed to do
  1939. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1940. * runnable without the overhead of this.
  1941. *
  1942. * returns failure only if the task is already active.
  1943. */
  1944. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1945. {
  1946. int cpu, orig_cpu, this_cpu, success = 0;
  1947. unsigned long flags;
  1948. long old_state;
  1949. struct rq *rq;
  1950. if (!sched_feat(SYNC_WAKEUPS))
  1951. sync = 0;
  1952. #ifdef CONFIG_SMP
  1953. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1954. struct sched_domain *sd;
  1955. this_cpu = raw_smp_processor_id();
  1956. cpu = task_cpu(p);
  1957. for_each_domain(this_cpu, sd) {
  1958. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1959. update_shares(sd);
  1960. break;
  1961. }
  1962. }
  1963. }
  1964. #endif
  1965. smp_wmb();
  1966. rq = task_rq_lock(p, &flags);
  1967. update_rq_clock(rq);
  1968. old_state = p->state;
  1969. if (!(old_state & state))
  1970. goto out;
  1971. if (p->se.on_rq)
  1972. goto out_running;
  1973. cpu = task_cpu(p);
  1974. orig_cpu = cpu;
  1975. this_cpu = smp_processor_id();
  1976. #ifdef CONFIG_SMP
  1977. if (unlikely(task_running(rq, p)))
  1978. goto out_activate;
  1979. cpu = p->sched_class->select_task_rq(p, sync);
  1980. if (cpu != orig_cpu) {
  1981. set_task_cpu(p, cpu);
  1982. task_rq_unlock(rq, &flags);
  1983. /* might preempt at this point */
  1984. rq = task_rq_lock(p, &flags);
  1985. old_state = p->state;
  1986. if (!(old_state & state))
  1987. goto out;
  1988. if (p->se.on_rq)
  1989. goto out_running;
  1990. this_cpu = smp_processor_id();
  1991. cpu = task_cpu(p);
  1992. }
  1993. #ifdef CONFIG_SCHEDSTATS
  1994. schedstat_inc(rq, ttwu_count);
  1995. if (cpu == this_cpu)
  1996. schedstat_inc(rq, ttwu_local);
  1997. else {
  1998. struct sched_domain *sd;
  1999. for_each_domain(this_cpu, sd) {
  2000. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2001. schedstat_inc(sd, ttwu_wake_remote);
  2002. break;
  2003. }
  2004. }
  2005. }
  2006. #endif /* CONFIG_SCHEDSTATS */
  2007. out_activate:
  2008. #endif /* CONFIG_SMP */
  2009. schedstat_inc(p, se.nr_wakeups);
  2010. if (sync)
  2011. schedstat_inc(p, se.nr_wakeups_sync);
  2012. if (orig_cpu != cpu)
  2013. schedstat_inc(p, se.nr_wakeups_migrate);
  2014. if (cpu == this_cpu)
  2015. schedstat_inc(p, se.nr_wakeups_local);
  2016. else
  2017. schedstat_inc(p, se.nr_wakeups_remote);
  2018. activate_task(rq, p, 1);
  2019. success = 1;
  2020. out_running:
  2021. trace_sched_wakeup(rq, p, success);
  2022. check_preempt_curr(rq, p, sync);
  2023. p->state = TASK_RUNNING;
  2024. #ifdef CONFIG_SMP
  2025. if (p->sched_class->task_wake_up)
  2026. p->sched_class->task_wake_up(rq, p);
  2027. #endif
  2028. out:
  2029. current->se.last_wakeup = current->se.sum_exec_runtime;
  2030. task_rq_unlock(rq, &flags);
  2031. return success;
  2032. }
  2033. int wake_up_process(struct task_struct *p)
  2034. {
  2035. return try_to_wake_up(p, TASK_ALL, 0);
  2036. }
  2037. EXPORT_SYMBOL(wake_up_process);
  2038. int wake_up_state(struct task_struct *p, unsigned int state)
  2039. {
  2040. return try_to_wake_up(p, state, 0);
  2041. }
  2042. /*
  2043. * Perform scheduler related setup for a newly forked process p.
  2044. * p is forked by current.
  2045. *
  2046. * __sched_fork() is basic setup used by init_idle() too:
  2047. */
  2048. static void __sched_fork(struct task_struct *p)
  2049. {
  2050. p->se.exec_start = 0;
  2051. p->se.sum_exec_runtime = 0;
  2052. p->se.prev_sum_exec_runtime = 0;
  2053. p->se.nr_migrations = 0;
  2054. p->se.last_wakeup = 0;
  2055. p->se.avg_overlap = 0;
  2056. #ifdef CONFIG_SCHEDSTATS
  2057. p->se.wait_start = 0;
  2058. p->se.sum_sleep_runtime = 0;
  2059. p->se.sleep_start = 0;
  2060. p->se.block_start = 0;
  2061. p->se.sleep_max = 0;
  2062. p->se.block_max = 0;
  2063. p->se.exec_max = 0;
  2064. p->se.slice_max = 0;
  2065. p->se.wait_max = 0;
  2066. #endif
  2067. INIT_LIST_HEAD(&p->rt.run_list);
  2068. p->se.on_rq = 0;
  2069. INIT_LIST_HEAD(&p->se.group_node);
  2070. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2071. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2072. #endif
  2073. /*
  2074. * We mark the process as running here, but have not actually
  2075. * inserted it onto the runqueue yet. This guarantees that
  2076. * nobody will actually run it, and a signal or other external
  2077. * event cannot wake it up and insert it on the runqueue either.
  2078. */
  2079. p->state = TASK_RUNNING;
  2080. }
  2081. /*
  2082. * fork()/clone()-time setup:
  2083. */
  2084. void sched_fork(struct task_struct *p, int clone_flags)
  2085. {
  2086. int cpu = get_cpu();
  2087. __sched_fork(p);
  2088. #ifdef CONFIG_SMP
  2089. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2090. #endif
  2091. set_task_cpu(p, cpu);
  2092. /*
  2093. * Make sure we do not leak PI boosting priority to the child:
  2094. */
  2095. p->prio = current->normal_prio;
  2096. if (!rt_prio(p->prio))
  2097. p->sched_class = &fair_sched_class;
  2098. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2099. if (likely(sched_info_on()))
  2100. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2101. #endif
  2102. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2103. p->oncpu = 0;
  2104. #endif
  2105. #ifdef CONFIG_PREEMPT
  2106. /* Want to start with kernel preemption disabled. */
  2107. task_thread_info(p)->preempt_count = 1;
  2108. #endif
  2109. put_cpu();
  2110. }
  2111. /*
  2112. * wake_up_new_task - wake up a newly created task for the first time.
  2113. *
  2114. * This function will do some initial scheduler statistics housekeeping
  2115. * that must be done for every newly created context, then puts the task
  2116. * on the runqueue and wakes it.
  2117. */
  2118. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2119. {
  2120. unsigned long flags;
  2121. struct rq *rq;
  2122. rq = task_rq_lock(p, &flags);
  2123. BUG_ON(p->state != TASK_RUNNING);
  2124. update_rq_clock(rq);
  2125. p->prio = effective_prio(p);
  2126. if (!p->sched_class->task_new || !current->se.on_rq) {
  2127. activate_task(rq, p, 0);
  2128. } else {
  2129. /*
  2130. * Let the scheduling class do new task startup
  2131. * management (if any):
  2132. */
  2133. p->sched_class->task_new(rq, p);
  2134. inc_nr_running(rq);
  2135. }
  2136. trace_sched_wakeup_new(rq, p, 1);
  2137. check_preempt_curr(rq, p, 0);
  2138. #ifdef CONFIG_SMP
  2139. if (p->sched_class->task_wake_up)
  2140. p->sched_class->task_wake_up(rq, p);
  2141. #endif
  2142. task_rq_unlock(rq, &flags);
  2143. }
  2144. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2145. /**
  2146. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2147. * @notifier: notifier struct to register
  2148. */
  2149. void preempt_notifier_register(struct preempt_notifier *notifier)
  2150. {
  2151. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2152. }
  2153. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2154. /**
  2155. * preempt_notifier_unregister - no longer interested in preemption notifications
  2156. * @notifier: notifier struct to unregister
  2157. *
  2158. * This is safe to call from within a preemption notifier.
  2159. */
  2160. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2161. {
  2162. hlist_del(&notifier->link);
  2163. }
  2164. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2165. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2166. {
  2167. struct preempt_notifier *notifier;
  2168. struct hlist_node *node;
  2169. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2170. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2171. }
  2172. static void
  2173. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2174. struct task_struct *next)
  2175. {
  2176. struct preempt_notifier *notifier;
  2177. struct hlist_node *node;
  2178. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2179. notifier->ops->sched_out(notifier, next);
  2180. }
  2181. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2182. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2183. {
  2184. }
  2185. static void
  2186. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2187. struct task_struct *next)
  2188. {
  2189. }
  2190. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2191. /**
  2192. * prepare_task_switch - prepare to switch tasks
  2193. * @rq: the runqueue preparing to switch
  2194. * @prev: the current task that is being switched out
  2195. * @next: the task we are going to switch to.
  2196. *
  2197. * This is called with the rq lock held and interrupts off. It must
  2198. * be paired with a subsequent finish_task_switch after the context
  2199. * switch.
  2200. *
  2201. * prepare_task_switch sets up locking and calls architecture specific
  2202. * hooks.
  2203. */
  2204. static inline void
  2205. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2206. struct task_struct *next)
  2207. {
  2208. fire_sched_out_preempt_notifiers(prev, next);
  2209. prepare_lock_switch(rq, next);
  2210. prepare_arch_switch(next);
  2211. }
  2212. /**
  2213. * finish_task_switch - clean up after a task-switch
  2214. * @rq: runqueue associated with task-switch
  2215. * @prev: the thread we just switched away from.
  2216. *
  2217. * finish_task_switch must be called after the context switch, paired
  2218. * with a prepare_task_switch call before the context switch.
  2219. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2220. * and do any other architecture-specific cleanup actions.
  2221. *
  2222. * Note that we may have delayed dropping an mm in context_switch(). If
  2223. * so, we finish that here outside of the runqueue lock. (Doing it
  2224. * with the lock held can cause deadlocks; see schedule() for
  2225. * details.)
  2226. */
  2227. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2228. __releases(rq->lock)
  2229. {
  2230. struct mm_struct *mm = rq->prev_mm;
  2231. long prev_state;
  2232. rq->prev_mm = NULL;
  2233. /*
  2234. * A task struct has one reference for the use as "current".
  2235. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2236. * schedule one last time. The schedule call will never return, and
  2237. * the scheduled task must drop that reference.
  2238. * The test for TASK_DEAD must occur while the runqueue locks are
  2239. * still held, otherwise prev could be scheduled on another cpu, die
  2240. * there before we look at prev->state, and then the reference would
  2241. * be dropped twice.
  2242. * Manfred Spraul <manfred@colorfullife.com>
  2243. */
  2244. prev_state = prev->state;
  2245. finish_arch_switch(prev);
  2246. perf_counter_task_sched_in(current, cpu_of(rq));
  2247. finish_lock_switch(rq, prev);
  2248. #ifdef CONFIG_SMP
  2249. if (current->sched_class->post_schedule)
  2250. current->sched_class->post_schedule(rq);
  2251. #endif
  2252. fire_sched_in_preempt_notifiers(current);
  2253. if (mm)
  2254. mmdrop(mm);
  2255. if (unlikely(prev_state == TASK_DEAD)) {
  2256. /*
  2257. * Remove function-return probe instances associated with this
  2258. * task and put them back on the free list.
  2259. */
  2260. kprobe_flush_task(prev);
  2261. put_task_struct(prev);
  2262. }
  2263. }
  2264. /**
  2265. * schedule_tail - first thing a freshly forked thread must call.
  2266. * @prev: the thread we just switched away from.
  2267. */
  2268. asmlinkage void schedule_tail(struct task_struct *prev)
  2269. __releases(rq->lock)
  2270. {
  2271. struct rq *rq = this_rq();
  2272. finish_task_switch(rq, prev);
  2273. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2274. /* In this case, finish_task_switch does not reenable preemption */
  2275. preempt_enable();
  2276. #endif
  2277. if (current->set_child_tid)
  2278. put_user(task_pid_vnr(current), current->set_child_tid);
  2279. }
  2280. /*
  2281. * context_switch - switch to the new MM and the new
  2282. * thread's register state.
  2283. */
  2284. static inline void
  2285. context_switch(struct rq *rq, struct task_struct *prev,
  2286. struct task_struct *next)
  2287. {
  2288. struct mm_struct *mm, *oldmm;
  2289. prepare_task_switch(rq, prev, next);
  2290. trace_sched_switch(rq, prev, next);
  2291. mm = next->mm;
  2292. oldmm = prev->active_mm;
  2293. /*
  2294. * For paravirt, this is coupled with an exit in switch_to to
  2295. * combine the page table reload and the switch backend into
  2296. * one hypercall.
  2297. */
  2298. arch_enter_lazy_cpu_mode();
  2299. if (unlikely(!mm)) {
  2300. next->active_mm = oldmm;
  2301. atomic_inc(&oldmm->mm_count);
  2302. enter_lazy_tlb(oldmm, next);
  2303. } else
  2304. switch_mm(oldmm, mm, next);
  2305. if (unlikely(!prev->mm)) {
  2306. prev->active_mm = NULL;
  2307. rq->prev_mm = oldmm;
  2308. }
  2309. /*
  2310. * Since the runqueue lock will be released by the next
  2311. * task (which is an invalid locking op but in the case
  2312. * of the scheduler it's an obvious special-case), so we
  2313. * do an early lockdep release here:
  2314. */
  2315. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2316. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2317. #endif
  2318. /* Here we just switch the register state and the stack. */
  2319. switch_to(prev, next, prev);
  2320. barrier();
  2321. /*
  2322. * this_rq must be evaluated again because prev may have moved
  2323. * CPUs since it called schedule(), thus the 'rq' on its stack
  2324. * frame will be invalid.
  2325. */
  2326. finish_task_switch(this_rq(), prev);
  2327. }
  2328. /*
  2329. * nr_running, nr_uninterruptible and nr_context_switches:
  2330. *
  2331. * externally visible scheduler statistics: current number of runnable
  2332. * threads, current number of uninterruptible-sleeping threads, total
  2333. * number of context switches performed since bootup.
  2334. */
  2335. unsigned long nr_running(void)
  2336. {
  2337. unsigned long i, sum = 0;
  2338. for_each_online_cpu(i)
  2339. sum += cpu_rq(i)->nr_running;
  2340. return sum;
  2341. }
  2342. unsigned long nr_uninterruptible(void)
  2343. {
  2344. unsigned long i, sum = 0;
  2345. for_each_possible_cpu(i)
  2346. sum += cpu_rq(i)->nr_uninterruptible;
  2347. /*
  2348. * Since we read the counters lockless, it might be slightly
  2349. * inaccurate. Do not allow it to go below zero though:
  2350. */
  2351. if (unlikely((long)sum < 0))
  2352. sum = 0;
  2353. return sum;
  2354. }
  2355. unsigned long long nr_context_switches(void)
  2356. {
  2357. int i;
  2358. unsigned long long sum = 0;
  2359. for_each_possible_cpu(i)
  2360. sum += cpu_rq(i)->nr_switches;
  2361. return sum;
  2362. }
  2363. unsigned long nr_iowait(void)
  2364. {
  2365. unsigned long i, sum = 0;
  2366. for_each_possible_cpu(i)
  2367. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2368. return sum;
  2369. }
  2370. unsigned long nr_active(void)
  2371. {
  2372. unsigned long i, running = 0, uninterruptible = 0;
  2373. for_each_online_cpu(i) {
  2374. running += cpu_rq(i)->nr_running;
  2375. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2376. }
  2377. if (unlikely((long)uninterruptible < 0))
  2378. uninterruptible = 0;
  2379. return running + uninterruptible;
  2380. }
  2381. /*
  2382. * Externally visible per-cpu scheduler statistics:
  2383. * cpu_nr_switches(cpu) - number of context switches on that cpu
  2384. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2385. */
  2386. u64 cpu_nr_switches(int cpu)
  2387. {
  2388. return cpu_rq(cpu)->nr_switches;
  2389. }
  2390. u64 cpu_nr_migrations(int cpu)
  2391. {
  2392. return cpu_rq(cpu)->nr_migrations_in;
  2393. }
  2394. /*
  2395. * Update rq->cpu_load[] statistics. This function is usually called every
  2396. * scheduler tick (TICK_NSEC).
  2397. */
  2398. static void update_cpu_load(struct rq *this_rq)
  2399. {
  2400. unsigned long this_load = this_rq->load.weight;
  2401. int i, scale;
  2402. this_rq->nr_load_updates++;
  2403. /* Update our load: */
  2404. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2405. unsigned long old_load, new_load;
  2406. /* scale is effectively 1 << i now, and >> i divides by scale */
  2407. old_load = this_rq->cpu_load[i];
  2408. new_load = this_load;
  2409. /*
  2410. * Round up the averaging division if load is increasing. This
  2411. * prevents us from getting stuck on 9 if the load is 10, for
  2412. * example.
  2413. */
  2414. if (new_load > old_load)
  2415. new_load += scale-1;
  2416. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2417. }
  2418. }
  2419. #ifdef CONFIG_SMP
  2420. /*
  2421. * double_rq_lock - safely lock two runqueues
  2422. *
  2423. * Note this does not disable interrupts like task_rq_lock,
  2424. * you need to do so manually before calling.
  2425. */
  2426. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2427. __acquires(rq1->lock)
  2428. __acquires(rq2->lock)
  2429. {
  2430. BUG_ON(!irqs_disabled());
  2431. if (rq1 == rq2) {
  2432. spin_lock(&rq1->lock);
  2433. __acquire(rq2->lock); /* Fake it out ;) */
  2434. } else {
  2435. if (rq1 < rq2) {
  2436. spin_lock(&rq1->lock);
  2437. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2438. } else {
  2439. spin_lock(&rq2->lock);
  2440. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2441. }
  2442. }
  2443. update_rq_clock(rq1);
  2444. update_rq_clock(rq2);
  2445. }
  2446. /*
  2447. * double_rq_unlock - safely unlock two runqueues
  2448. *
  2449. * Note this does not restore interrupts like task_rq_unlock,
  2450. * you need to do so manually after calling.
  2451. */
  2452. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2453. __releases(rq1->lock)
  2454. __releases(rq2->lock)
  2455. {
  2456. spin_unlock(&rq1->lock);
  2457. if (rq1 != rq2)
  2458. spin_unlock(&rq2->lock);
  2459. else
  2460. __release(rq2->lock);
  2461. }
  2462. /*
  2463. * If dest_cpu is allowed for this process, migrate the task to it.
  2464. * This is accomplished by forcing the cpu_allowed mask to only
  2465. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2466. * the cpu_allowed mask is restored.
  2467. */
  2468. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2469. {
  2470. struct migration_req req;
  2471. unsigned long flags;
  2472. struct rq *rq;
  2473. rq = task_rq_lock(p, &flags);
  2474. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2475. || unlikely(!cpu_active(dest_cpu)))
  2476. goto out;
  2477. /* force the process onto the specified CPU */
  2478. if (migrate_task(p, dest_cpu, &req)) {
  2479. /* Need to wait for migration thread (might exit: take ref). */
  2480. struct task_struct *mt = rq->migration_thread;
  2481. get_task_struct(mt);
  2482. task_rq_unlock(rq, &flags);
  2483. wake_up_process(mt);
  2484. put_task_struct(mt);
  2485. wait_for_completion(&req.done);
  2486. return;
  2487. }
  2488. out:
  2489. task_rq_unlock(rq, &flags);
  2490. }
  2491. /*
  2492. * sched_exec - execve() is a valuable balancing opportunity, because at
  2493. * this point the task has the smallest effective memory and cache footprint.
  2494. */
  2495. void sched_exec(void)
  2496. {
  2497. int new_cpu, this_cpu = get_cpu();
  2498. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2499. put_cpu();
  2500. if (new_cpu != this_cpu)
  2501. sched_migrate_task(current, new_cpu);
  2502. }
  2503. /*
  2504. * pull_task - move a task from a remote runqueue to the local runqueue.
  2505. * Both runqueues must be locked.
  2506. */
  2507. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2508. struct rq *this_rq, int this_cpu)
  2509. {
  2510. deactivate_task(src_rq, p, 0);
  2511. set_task_cpu(p, this_cpu);
  2512. activate_task(this_rq, p, 0);
  2513. /*
  2514. * Note that idle threads have a prio of MAX_PRIO, for this test
  2515. * to be always true for them.
  2516. */
  2517. check_preempt_curr(this_rq, p, 0);
  2518. }
  2519. /*
  2520. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2521. */
  2522. static
  2523. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2524. struct sched_domain *sd, enum cpu_idle_type idle,
  2525. int *all_pinned)
  2526. {
  2527. /*
  2528. * We do not migrate tasks that are:
  2529. * 1) running (obviously), or
  2530. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2531. * 3) are cache-hot on their current CPU.
  2532. */
  2533. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2534. schedstat_inc(p, se.nr_failed_migrations_affine);
  2535. return 0;
  2536. }
  2537. *all_pinned = 0;
  2538. if (task_running(rq, p)) {
  2539. schedstat_inc(p, se.nr_failed_migrations_running);
  2540. return 0;
  2541. }
  2542. /*
  2543. * Aggressive migration if:
  2544. * 1) task is cache cold, or
  2545. * 2) too many balance attempts have failed.
  2546. */
  2547. if (!task_hot(p, rq->clock, sd) ||
  2548. sd->nr_balance_failed > sd->cache_nice_tries) {
  2549. #ifdef CONFIG_SCHEDSTATS
  2550. if (task_hot(p, rq->clock, sd)) {
  2551. schedstat_inc(sd, lb_hot_gained[idle]);
  2552. schedstat_inc(p, se.nr_forced_migrations);
  2553. }
  2554. #endif
  2555. return 1;
  2556. }
  2557. if (task_hot(p, rq->clock, sd)) {
  2558. schedstat_inc(p, se.nr_failed_migrations_hot);
  2559. return 0;
  2560. }
  2561. return 1;
  2562. }
  2563. static unsigned long
  2564. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2565. unsigned long max_load_move, struct sched_domain *sd,
  2566. enum cpu_idle_type idle, int *all_pinned,
  2567. int *this_best_prio, struct rq_iterator *iterator)
  2568. {
  2569. int loops = 0, pulled = 0, pinned = 0;
  2570. struct task_struct *p;
  2571. long rem_load_move = max_load_move;
  2572. if (max_load_move == 0)
  2573. goto out;
  2574. pinned = 1;
  2575. /*
  2576. * Start the load-balancing iterator:
  2577. */
  2578. p = iterator->start(iterator->arg);
  2579. next:
  2580. if (!p || loops++ > sysctl_sched_nr_migrate)
  2581. goto out;
  2582. if ((p->se.load.weight >> 1) > rem_load_move ||
  2583. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2584. p = iterator->next(iterator->arg);
  2585. goto next;
  2586. }
  2587. pull_task(busiest, p, this_rq, this_cpu);
  2588. pulled++;
  2589. rem_load_move -= p->se.load.weight;
  2590. /*
  2591. * We only want to steal up to the prescribed amount of weighted load.
  2592. */
  2593. if (rem_load_move > 0) {
  2594. if (p->prio < *this_best_prio)
  2595. *this_best_prio = p->prio;
  2596. p = iterator->next(iterator->arg);
  2597. goto next;
  2598. }
  2599. out:
  2600. /*
  2601. * Right now, this is one of only two places pull_task() is called,
  2602. * so we can safely collect pull_task() stats here rather than
  2603. * inside pull_task().
  2604. */
  2605. schedstat_add(sd, lb_gained[idle], pulled);
  2606. if (all_pinned)
  2607. *all_pinned = pinned;
  2608. return max_load_move - rem_load_move;
  2609. }
  2610. /*
  2611. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2612. * this_rq, as part of a balancing operation within domain "sd".
  2613. * Returns 1 if successful and 0 otherwise.
  2614. *
  2615. * Called with both runqueues locked.
  2616. */
  2617. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2618. unsigned long max_load_move,
  2619. struct sched_domain *sd, enum cpu_idle_type idle,
  2620. int *all_pinned)
  2621. {
  2622. const struct sched_class *class = sched_class_highest;
  2623. unsigned long total_load_moved = 0;
  2624. int this_best_prio = this_rq->curr->prio;
  2625. do {
  2626. total_load_moved +=
  2627. class->load_balance(this_rq, this_cpu, busiest,
  2628. max_load_move - total_load_moved,
  2629. sd, idle, all_pinned, &this_best_prio);
  2630. class = class->next;
  2631. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2632. break;
  2633. } while (class && max_load_move > total_load_moved);
  2634. return total_load_moved > 0;
  2635. }
  2636. static int
  2637. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2638. struct sched_domain *sd, enum cpu_idle_type idle,
  2639. struct rq_iterator *iterator)
  2640. {
  2641. struct task_struct *p = iterator->start(iterator->arg);
  2642. int pinned = 0;
  2643. while (p) {
  2644. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2645. pull_task(busiest, p, this_rq, this_cpu);
  2646. /*
  2647. * Right now, this is only the second place pull_task()
  2648. * is called, so we can safely collect pull_task()
  2649. * stats here rather than inside pull_task().
  2650. */
  2651. schedstat_inc(sd, lb_gained[idle]);
  2652. return 1;
  2653. }
  2654. p = iterator->next(iterator->arg);
  2655. }
  2656. return 0;
  2657. }
  2658. /*
  2659. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2660. * part of active balancing operations within "domain".
  2661. * Returns 1 if successful and 0 otherwise.
  2662. *
  2663. * Called with both runqueues locked.
  2664. */
  2665. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2666. struct sched_domain *sd, enum cpu_idle_type idle)
  2667. {
  2668. const struct sched_class *class;
  2669. for (class = sched_class_highest; class; class = class->next)
  2670. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2671. return 1;
  2672. return 0;
  2673. }
  2674. /*
  2675. * find_busiest_group finds and returns the busiest CPU group within the
  2676. * domain. It calculates and returns the amount of weighted load which
  2677. * should be moved to restore balance via the imbalance parameter.
  2678. */
  2679. static struct sched_group *
  2680. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2681. unsigned long *imbalance, enum cpu_idle_type idle,
  2682. int *sd_idle, const struct cpumask *cpus, int *balance)
  2683. {
  2684. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2685. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2686. unsigned long max_pull;
  2687. unsigned long busiest_load_per_task, busiest_nr_running;
  2688. unsigned long this_load_per_task, this_nr_running;
  2689. int load_idx, group_imb = 0;
  2690. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2691. int power_savings_balance = 1;
  2692. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2693. unsigned long min_nr_running = ULONG_MAX;
  2694. struct sched_group *group_min = NULL, *group_leader = NULL;
  2695. #endif
  2696. max_load = this_load = total_load = total_pwr = 0;
  2697. busiest_load_per_task = busiest_nr_running = 0;
  2698. this_load_per_task = this_nr_running = 0;
  2699. if (idle == CPU_NOT_IDLE)
  2700. load_idx = sd->busy_idx;
  2701. else if (idle == CPU_NEWLY_IDLE)
  2702. load_idx = sd->newidle_idx;
  2703. else
  2704. load_idx = sd->idle_idx;
  2705. do {
  2706. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2707. int local_group;
  2708. int i;
  2709. int __group_imb = 0;
  2710. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2711. unsigned long sum_nr_running, sum_weighted_load;
  2712. unsigned long sum_avg_load_per_task;
  2713. unsigned long avg_load_per_task;
  2714. local_group = cpumask_test_cpu(this_cpu,
  2715. sched_group_cpus(group));
  2716. if (local_group)
  2717. balance_cpu = cpumask_first(sched_group_cpus(group));
  2718. /* Tally up the load of all CPUs in the group */
  2719. sum_weighted_load = sum_nr_running = avg_load = 0;
  2720. sum_avg_load_per_task = avg_load_per_task = 0;
  2721. max_cpu_load = 0;
  2722. min_cpu_load = ~0UL;
  2723. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2724. struct rq *rq = cpu_rq(i);
  2725. if (*sd_idle && rq->nr_running)
  2726. *sd_idle = 0;
  2727. /* Bias balancing toward cpus of our domain */
  2728. if (local_group) {
  2729. if (idle_cpu(i) && !first_idle_cpu) {
  2730. first_idle_cpu = 1;
  2731. balance_cpu = i;
  2732. }
  2733. load = target_load(i, load_idx);
  2734. } else {
  2735. load = source_load(i, load_idx);
  2736. if (load > max_cpu_load)
  2737. max_cpu_load = load;
  2738. if (min_cpu_load > load)
  2739. min_cpu_load = load;
  2740. }
  2741. avg_load += load;
  2742. sum_nr_running += rq->nr_running;
  2743. sum_weighted_load += weighted_cpuload(i);
  2744. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2745. }
  2746. /*
  2747. * First idle cpu or the first cpu(busiest) in this sched group
  2748. * is eligible for doing load balancing at this and above
  2749. * domains. In the newly idle case, we will allow all the cpu's
  2750. * to do the newly idle load balance.
  2751. */
  2752. if (idle != CPU_NEWLY_IDLE && local_group &&
  2753. balance_cpu != this_cpu && balance) {
  2754. *balance = 0;
  2755. goto ret;
  2756. }
  2757. total_load += avg_load;
  2758. total_pwr += group->__cpu_power;
  2759. /* Adjust by relative CPU power of the group */
  2760. avg_load = sg_div_cpu_power(group,
  2761. avg_load * SCHED_LOAD_SCALE);
  2762. /*
  2763. * Consider the group unbalanced when the imbalance is larger
  2764. * than the average weight of two tasks.
  2765. *
  2766. * APZ: with cgroup the avg task weight can vary wildly and
  2767. * might not be a suitable number - should we keep a
  2768. * normalized nr_running number somewhere that negates
  2769. * the hierarchy?
  2770. */
  2771. avg_load_per_task = sg_div_cpu_power(group,
  2772. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2773. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2774. __group_imb = 1;
  2775. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2776. if (local_group) {
  2777. this_load = avg_load;
  2778. this = group;
  2779. this_nr_running = sum_nr_running;
  2780. this_load_per_task = sum_weighted_load;
  2781. } else if (avg_load > max_load &&
  2782. (sum_nr_running > group_capacity || __group_imb)) {
  2783. max_load = avg_load;
  2784. busiest = group;
  2785. busiest_nr_running = sum_nr_running;
  2786. busiest_load_per_task = sum_weighted_load;
  2787. group_imb = __group_imb;
  2788. }
  2789. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2790. /*
  2791. * Busy processors will not participate in power savings
  2792. * balance.
  2793. */
  2794. if (idle == CPU_NOT_IDLE ||
  2795. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2796. goto group_next;
  2797. /*
  2798. * If the local group is idle or completely loaded
  2799. * no need to do power savings balance at this domain
  2800. */
  2801. if (local_group && (this_nr_running >= group_capacity ||
  2802. !this_nr_running))
  2803. power_savings_balance = 0;
  2804. /*
  2805. * If a group is already running at full capacity or idle,
  2806. * don't include that group in power savings calculations
  2807. */
  2808. if (!power_savings_balance || sum_nr_running >= group_capacity
  2809. || !sum_nr_running)
  2810. goto group_next;
  2811. /*
  2812. * Calculate the group which has the least non-idle load.
  2813. * This is the group from where we need to pick up the load
  2814. * for saving power
  2815. */
  2816. if ((sum_nr_running < min_nr_running) ||
  2817. (sum_nr_running == min_nr_running &&
  2818. cpumask_first(sched_group_cpus(group)) >
  2819. cpumask_first(sched_group_cpus(group_min)))) {
  2820. group_min = group;
  2821. min_nr_running = sum_nr_running;
  2822. min_load_per_task = sum_weighted_load /
  2823. sum_nr_running;
  2824. }
  2825. /*
  2826. * Calculate the group which is almost near its
  2827. * capacity but still has some space to pick up some load
  2828. * from other group and save more power
  2829. */
  2830. if (sum_nr_running <= group_capacity - 1) {
  2831. if (sum_nr_running > leader_nr_running ||
  2832. (sum_nr_running == leader_nr_running &&
  2833. cpumask_first(sched_group_cpus(group)) <
  2834. cpumask_first(sched_group_cpus(group_leader)))) {
  2835. group_leader = group;
  2836. leader_nr_running = sum_nr_running;
  2837. }
  2838. }
  2839. group_next:
  2840. #endif
  2841. group = group->next;
  2842. } while (group != sd->groups);
  2843. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2844. goto out_balanced;
  2845. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2846. if (this_load >= avg_load ||
  2847. 100*max_load <= sd->imbalance_pct*this_load)
  2848. goto out_balanced;
  2849. busiest_load_per_task /= busiest_nr_running;
  2850. if (group_imb)
  2851. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2852. /*
  2853. * We're trying to get all the cpus to the average_load, so we don't
  2854. * want to push ourselves above the average load, nor do we wish to
  2855. * reduce the max loaded cpu below the average load, as either of these
  2856. * actions would just result in more rebalancing later, and ping-pong
  2857. * tasks around. Thus we look for the minimum possible imbalance.
  2858. * Negative imbalances (*we* are more loaded than anyone else) will
  2859. * be counted as no imbalance for these purposes -- we can't fix that
  2860. * by pulling tasks to us. Be careful of negative numbers as they'll
  2861. * appear as very large values with unsigned longs.
  2862. */
  2863. if (max_load <= busiest_load_per_task)
  2864. goto out_balanced;
  2865. /*
  2866. * In the presence of smp nice balancing, certain scenarios can have
  2867. * max load less than avg load(as we skip the groups at or below
  2868. * its cpu_power, while calculating max_load..)
  2869. */
  2870. if (max_load < avg_load) {
  2871. *imbalance = 0;
  2872. goto small_imbalance;
  2873. }
  2874. /* Don't want to pull so many tasks that a group would go idle */
  2875. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2876. /* How much load to actually move to equalise the imbalance */
  2877. *imbalance = min(max_pull * busiest->__cpu_power,
  2878. (avg_load - this_load) * this->__cpu_power)
  2879. / SCHED_LOAD_SCALE;
  2880. /*
  2881. * if *imbalance is less than the average load per runnable task
  2882. * there is no gaurantee that any tasks will be moved so we'll have
  2883. * a think about bumping its value to force at least one task to be
  2884. * moved
  2885. */
  2886. if (*imbalance < busiest_load_per_task) {
  2887. unsigned long tmp, pwr_now, pwr_move;
  2888. unsigned int imbn;
  2889. small_imbalance:
  2890. pwr_move = pwr_now = 0;
  2891. imbn = 2;
  2892. if (this_nr_running) {
  2893. this_load_per_task /= this_nr_running;
  2894. if (busiest_load_per_task > this_load_per_task)
  2895. imbn = 1;
  2896. } else
  2897. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2898. if (max_load - this_load + busiest_load_per_task >=
  2899. busiest_load_per_task * imbn) {
  2900. *imbalance = busiest_load_per_task;
  2901. return busiest;
  2902. }
  2903. /*
  2904. * OK, we don't have enough imbalance to justify moving tasks,
  2905. * however we may be able to increase total CPU power used by
  2906. * moving them.
  2907. */
  2908. pwr_now += busiest->__cpu_power *
  2909. min(busiest_load_per_task, max_load);
  2910. pwr_now += this->__cpu_power *
  2911. min(this_load_per_task, this_load);
  2912. pwr_now /= SCHED_LOAD_SCALE;
  2913. /* Amount of load we'd subtract */
  2914. tmp = sg_div_cpu_power(busiest,
  2915. busiest_load_per_task * SCHED_LOAD_SCALE);
  2916. if (max_load > tmp)
  2917. pwr_move += busiest->__cpu_power *
  2918. min(busiest_load_per_task, max_load - tmp);
  2919. /* Amount of load we'd add */
  2920. if (max_load * busiest->__cpu_power <
  2921. busiest_load_per_task * SCHED_LOAD_SCALE)
  2922. tmp = sg_div_cpu_power(this,
  2923. max_load * busiest->__cpu_power);
  2924. else
  2925. tmp = sg_div_cpu_power(this,
  2926. busiest_load_per_task * SCHED_LOAD_SCALE);
  2927. pwr_move += this->__cpu_power *
  2928. min(this_load_per_task, this_load + tmp);
  2929. pwr_move /= SCHED_LOAD_SCALE;
  2930. /* Move if we gain throughput */
  2931. if (pwr_move > pwr_now)
  2932. *imbalance = busiest_load_per_task;
  2933. }
  2934. return busiest;
  2935. out_balanced:
  2936. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2937. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2938. goto ret;
  2939. if (this == group_leader && group_leader != group_min) {
  2940. *imbalance = min_load_per_task;
  2941. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2942. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2943. cpumask_first(sched_group_cpus(group_leader));
  2944. }
  2945. return group_min;
  2946. }
  2947. #endif
  2948. ret:
  2949. *imbalance = 0;
  2950. return NULL;
  2951. }
  2952. /*
  2953. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2954. */
  2955. static struct rq *
  2956. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2957. unsigned long imbalance, const struct cpumask *cpus)
  2958. {
  2959. struct rq *busiest = NULL, *rq;
  2960. unsigned long max_load = 0;
  2961. int i;
  2962. for_each_cpu(i, sched_group_cpus(group)) {
  2963. unsigned long wl;
  2964. if (!cpumask_test_cpu(i, cpus))
  2965. continue;
  2966. rq = cpu_rq(i);
  2967. wl = weighted_cpuload(i);
  2968. if (rq->nr_running == 1 && wl > imbalance)
  2969. continue;
  2970. if (wl > max_load) {
  2971. max_load = wl;
  2972. busiest = rq;
  2973. }
  2974. }
  2975. return busiest;
  2976. }
  2977. /*
  2978. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2979. * so long as it is large enough.
  2980. */
  2981. #define MAX_PINNED_INTERVAL 512
  2982. /*
  2983. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2984. * tasks if there is an imbalance.
  2985. */
  2986. static int load_balance(int this_cpu, struct rq *this_rq,
  2987. struct sched_domain *sd, enum cpu_idle_type idle,
  2988. int *balance, struct cpumask *cpus)
  2989. {
  2990. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2991. struct sched_group *group;
  2992. unsigned long imbalance;
  2993. struct rq *busiest;
  2994. unsigned long flags;
  2995. cpumask_setall(cpus);
  2996. /*
  2997. * When power savings policy is enabled for the parent domain, idle
  2998. * sibling can pick up load irrespective of busy siblings. In this case,
  2999. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3000. * portraying it as CPU_NOT_IDLE.
  3001. */
  3002. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3003. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3004. sd_idle = 1;
  3005. schedstat_inc(sd, lb_count[idle]);
  3006. redo:
  3007. update_shares(sd);
  3008. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3009. cpus, balance);
  3010. if (*balance == 0)
  3011. goto out_balanced;
  3012. if (!group) {
  3013. schedstat_inc(sd, lb_nobusyg[idle]);
  3014. goto out_balanced;
  3015. }
  3016. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3017. if (!busiest) {
  3018. schedstat_inc(sd, lb_nobusyq[idle]);
  3019. goto out_balanced;
  3020. }
  3021. BUG_ON(busiest == this_rq);
  3022. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3023. ld_moved = 0;
  3024. if (busiest->nr_running > 1) {
  3025. /*
  3026. * Attempt to move tasks. If find_busiest_group has found
  3027. * an imbalance but busiest->nr_running <= 1, the group is
  3028. * still unbalanced. ld_moved simply stays zero, so it is
  3029. * correctly treated as an imbalance.
  3030. */
  3031. local_irq_save(flags);
  3032. double_rq_lock(this_rq, busiest);
  3033. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3034. imbalance, sd, idle, &all_pinned);
  3035. double_rq_unlock(this_rq, busiest);
  3036. local_irq_restore(flags);
  3037. /*
  3038. * some other cpu did the load balance for us.
  3039. */
  3040. if (ld_moved && this_cpu != smp_processor_id())
  3041. resched_cpu(this_cpu);
  3042. /* All tasks on this runqueue were pinned by CPU affinity */
  3043. if (unlikely(all_pinned)) {
  3044. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3045. if (!cpumask_empty(cpus))
  3046. goto redo;
  3047. goto out_balanced;
  3048. }
  3049. }
  3050. if (!ld_moved) {
  3051. schedstat_inc(sd, lb_failed[idle]);
  3052. sd->nr_balance_failed++;
  3053. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3054. spin_lock_irqsave(&busiest->lock, flags);
  3055. /* don't kick the migration_thread, if the curr
  3056. * task on busiest cpu can't be moved to this_cpu
  3057. */
  3058. if (!cpumask_test_cpu(this_cpu,
  3059. &busiest->curr->cpus_allowed)) {
  3060. spin_unlock_irqrestore(&busiest->lock, flags);
  3061. all_pinned = 1;
  3062. goto out_one_pinned;
  3063. }
  3064. if (!busiest->active_balance) {
  3065. busiest->active_balance = 1;
  3066. busiest->push_cpu = this_cpu;
  3067. active_balance = 1;
  3068. }
  3069. spin_unlock_irqrestore(&busiest->lock, flags);
  3070. if (active_balance)
  3071. wake_up_process(busiest->migration_thread);
  3072. /*
  3073. * We've kicked active balancing, reset the failure
  3074. * counter.
  3075. */
  3076. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3077. }
  3078. } else
  3079. sd->nr_balance_failed = 0;
  3080. if (likely(!active_balance)) {
  3081. /* We were unbalanced, so reset the balancing interval */
  3082. sd->balance_interval = sd->min_interval;
  3083. } else {
  3084. /*
  3085. * If we've begun active balancing, start to back off. This
  3086. * case may not be covered by the all_pinned logic if there
  3087. * is only 1 task on the busy runqueue (because we don't call
  3088. * move_tasks).
  3089. */
  3090. if (sd->balance_interval < sd->max_interval)
  3091. sd->balance_interval *= 2;
  3092. }
  3093. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3094. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3095. ld_moved = -1;
  3096. goto out;
  3097. out_balanced:
  3098. schedstat_inc(sd, lb_balanced[idle]);
  3099. sd->nr_balance_failed = 0;
  3100. out_one_pinned:
  3101. /* tune up the balancing interval */
  3102. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3103. (sd->balance_interval < sd->max_interval))
  3104. sd->balance_interval *= 2;
  3105. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3106. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3107. ld_moved = -1;
  3108. else
  3109. ld_moved = 0;
  3110. out:
  3111. if (ld_moved)
  3112. update_shares(sd);
  3113. return ld_moved;
  3114. }
  3115. /*
  3116. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3117. * tasks if there is an imbalance.
  3118. *
  3119. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3120. * this_rq is locked.
  3121. */
  3122. static int
  3123. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3124. struct cpumask *cpus)
  3125. {
  3126. struct sched_group *group;
  3127. struct rq *busiest = NULL;
  3128. unsigned long imbalance;
  3129. int ld_moved = 0;
  3130. int sd_idle = 0;
  3131. int all_pinned = 0;
  3132. cpumask_setall(cpus);
  3133. /*
  3134. * When power savings policy is enabled for the parent domain, idle
  3135. * sibling can pick up load irrespective of busy siblings. In this case,
  3136. * let the state of idle sibling percolate up as IDLE, instead of
  3137. * portraying it as CPU_NOT_IDLE.
  3138. */
  3139. if (sd->flags & SD_SHARE_CPUPOWER &&
  3140. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3141. sd_idle = 1;
  3142. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3143. redo:
  3144. update_shares_locked(this_rq, sd);
  3145. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3146. &sd_idle, cpus, NULL);
  3147. if (!group) {
  3148. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3149. goto out_balanced;
  3150. }
  3151. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3152. if (!busiest) {
  3153. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3154. goto out_balanced;
  3155. }
  3156. BUG_ON(busiest == this_rq);
  3157. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3158. ld_moved = 0;
  3159. if (busiest->nr_running > 1) {
  3160. /* Attempt to move tasks */
  3161. double_lock_balance(this_rq, busiest);
  3162. /* this_rq->clock is already updated */
  3163. update_rq_clock(busiest);
  3164. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3165. imbalance, sd, CPU_NEWLY_IDLE,
  3166. &all_pinned);
  3167. double_unlock_balance(this_rq, busiest);
  3168. if (unlikely(all_pinned)) {
  3169. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3170. if (!cpumask_empty(cpus))
  3171. goto redo;
  3172. }
  3173. }
  3174. if (!ld_moved) {
  3175. int active_balance = 0;
  3176. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3177. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3178. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3179. return -1;
  3180. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3181. return -1;
  3182. if (sd->nr_balance_failed++ < 2)
  3183. return -1;
  3184. /*
  3185. * The only task running in a non-idle cpu can be moved to this
  3186. * cpu in an attempt to completely freeup the other CPU
  3187. * package. The same method used to move task in load_balance()
  3188. * have been extended for load_balance_newidle() to speedup
  3189. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3190. *
  3191. * The package power saving logic comes from
  3192. * find_busiest_group(). If there are no imbalance, then
  3193. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3194. * f_b_g() will select a group from which a running task may be
  3195. * pulled to this cpu in order to make the other package idle.
  3196. * If there is no opportunity to make a package idle and if
  3197. * there are no imbalance, then f_b_g() will return NULL and no
  3198. * action will be taken in load_balance_newidle().
  3199. *
  3200. * Under normal task pull operation due to imbalance, there
  3201. * will be more than one task in the source run queue and
  3202. * move_tasks() will succeed. ld_moved will be true and this
  3203. * active balance code will not be triggered.
  3204. */
  3205. /* Lock busiest in correct order while this_rq is held */
  3206. double_lock_balance(this_rq, busiest);
  3207. /*
  3208. * don't kick the migration_thread, if the curr
  3209. * task on busiest cpu can't be moved to this_cpu
  3210. */
  3211. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3212. double_unlock_balance(this_rq, busiest);
  3213. all_pinned = 1;
  3214. return ld_moved;
  3215. }
  3216. if (!busiest->active_balance) {
  3217. busiest->active_balance = 1;
  3218. busiest->push_cpu = this_cpu;
  3219. active_balance = 1;
  3220. }
  3221. double_unlock_balance(this_rq, busiest);
  3222. /*
  3223. * Should not call ttwu while holding a rq->lock
  3224. */
  3225. spin_unlock(&this_rq->lock);
  3226. if (active_balance)
  3227. wake_up_process(busiest->migration_thread);
  3228. spin_lock(&this_rq->lock);
  3229. } else
  3230. sd->nr_balance_failed = 0;
  3231. update_shares_locked(this_rq, sd);
  3232. return ld_moved;
  3233. out_balanced:
  3234. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3235. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3236. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3237. return -1;
  3238. sd->nr_balance_failed = 0;
  3239. return 0;
  3240. }
  3241. /*
  3242. * idle_balance is called by schedule() if this_cpu is about to become
  3243. * idle. Attempts to pull tasks from other CPUs.
  3244. */
  3245. static void idle_balance(int this_cpu, struct rq *this_rq)
  3246. {
  3247. struct sched_domain *sd;
  3248. int pulled_task = 0;
  3249. unsigned long next_balance = jiffies + HZ;
  3250. cpumask_var_t tmpmask;
  3251. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3252. return;
  3253. for_each_domain(this_cpu, sd) {
  3254. unsigned long interval;
  3255. if (!(sd->flags & SD_LOAD_BALANCE))
  3256. continue;
  3257. if (sd->flags & SD_BALANCE_NEWIDLE)
  3258. /* If we've pulled tasks over stop searching: */
  3259. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3260. sd, tmpmask);
  3261. interval = msecs_to_jiffies(sd->balance_interval);
  3262. if (time_after(next_balance, sd->last_balance + interval))
  3263. next_balance = sd->last_balance + interval;
  3264. if (pulled_task)
  3265. break;
  3266. }
  3267. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3268. /*
  3269. * We are going idle. next_balance may be set based on
  3270. * a busy processor. So reset next_balance.
  3271. */
  3272. this_rq->next_balance = next_balance;
  3273. }
  3274. free_cpumask_var(tmpmask);
  3275. }
  3276. /*
  3277. * active_load_balance is run by migration threads. It pushes running tasks
  3278. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3279. * running on each physical CPU where possible, and avoids physical /
  3280. * logical imbalances.
  3281. *
  3282. * Called with busiest_rq locked.
  3283. */
  3284. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3285. {
  3286. int target_cpu = busiest_rq->push_cpu;
  3287. struct sched_domain *sd;
  3288. struct rq *target_rq;
  3289. /* Is there any task to move? */
  3290. if (busiest_rq->nr_running <= 1)
  3291. return;
  3292. target_rq = cpu_rq(target_cpu);
  3293. /*
  3294. * This condition is "impossible", if it occurs
  3295. * we need to fix it. Originally reported by
  3296. * Bjorn Helgaas on a 128-cpu setup.
  3297. */
  3298. BUG_ON(busiest_rq == target_rq);
  3299. /* move a task from busiest_rq to target_rq */
  3300. double_lock_balance(busiest_rq, target_rq);
  3301. update_rq_clock(busiest_rq);
  3302. update_rq_clock(target_rq);
  3303. /* Search for an sd spanning us and the target CPU. */
  3304. for_each_domain(target_cpu, sd) {
  3305. if ((sd->flags & SD_LOAD_BALANCE) &&
  3306. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3307. break;
  3308. }
  3309. if (likely(sd)) {
  3310. schedstat_inc(sd, alb_count);
  3311. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3312. sd, CPU_IDLE))
  3313. schedstat_inc(sd, alb_pushed);
  3314. else
  3315. schedstat_inc(sd, alb_failed);
  3316. }
  3317. double_unlock_balance(busiest_rq, target_rq);
  3318. }
  3319. #ifdef CONFIG_NO_HZ
  3320. static struct {
  3321. atomic_t load_balancer;
  3322. cpumask_var_t cpu_mask;
  3323. } nohz ____cacheline_aligned = {
  3324. .load_balancer = ATOMIC_INIT(-1),
  3325. };
  3326. /*
  3327. * This routine will try to nominate the ilb (idle load balancing)
  3328. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3329. * load balancing on behalf of all those cpus. If all the cpus in the system
  3330. * go into this tickless mode, then there will be no ilb owner (as there is
  3331. * no need for one) and all the cpus will sleep till the next wakeup event
  3332. * arrives...
  3333. *
  3334. * For the ilb owner, tick is not stopped. And this tick will be used
  3335. * for idle load balancing. ilb owner will still be part of
  3336. * nohz.cpu_mask..
  3337. *
  3338. * While stopping the tick, this cpu will become the ilb owner if there
  3339. * is no other owner. And will be the owner till that cpu becomes busy
  3340. * or if all cpus in the system stop their ticks at which point
  3341. * there is no need for ilb owner.
  3342. *
  3343. * When the ilb owner becomes busy, it nominates another owner, during the
  3344. * next busy scheduler_tick()
  3345. */
  3346. int select_nohz_load_balancer(int stop_tick)
  3347. {
  3348. int cpu = smp_processor_id();
  3349. if (stop_tick) {
  3350. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3351. cpu_rq(cpu)->in_nohz_recently = 1;
  3352. /*
  3353. * If we are going offline and still the leader, give up!
  3354. */
  3355. if (!cpu_active(cpu) &&
  3356. atomic_read(&nohz.load_balancer) == cpu) {
  3357. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3358. BUG();
  3359. return 0;
  3360. }
  3361. /* time for ilb owner also to sleep */
  3362. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3363. if (atomic_read(&nohz.load_balancer) == cpu)
  3364. atomic_set(&nohz.load_balancer, -1);
  3365. return 0;
  3366. }
  3367. if (atomic_read(&nohz.load_balancer) == -1) {
  3368. /* make me the ilb owner */
  3369. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3370. return 1;
  3371. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3372. return 1;
  3373. } else {
  3374. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3375. return 0;
  3376. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3377. if (atomic_read(&nohz.load_balancer) == cpu)
  3378. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3379. BUG();
  3380. }
  3381. return 0;
  3382. }
  3383. #endif
  3384. static DEFINE_SPINLOCK(balancing);
  3385. /*
  3386. * It checks each scheduling domain to see if it is due to be balanced,
  3387. * and initiates a balancing operation if so.
  3388. *
  3389. * Balancing parameters are set up in arch_init_sched_domains.
  3390. */
  3391. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3392. {
  3393. int balance = 1;
  3394. struct rq *rq = cpu_rq(cpu);
  3395. unsigned long interval;
  3396. struct sched_domain *sd;
  3397. /* Earliest time when we have to do rebalance again */
  3398. unsigned long next_balance = jiffies + 60*HZ;
  3399. int update_next_balance = 0;
  3400. int need_serialize;
  3401. cpumask_var_t tmp;
  3402. /* Fails alloc? Rebalancing probably not a priority right now. */
  3403. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3404. return;
  3405. for_each_domain(cpu, sd) {
  3406. if (!(sd->flags & SD_LOAD_BALANCE))
  3407. continue;
  3408. interval = sd->balance_interval;
  3409. if (idle != CPU_IDLE)
  3410. interval *= sd->busy_factor;
  3411. /* scale ms to jiffies */
  3412. interval = msecs_to_jiffies(interval);
  3413. if (unlikely(!interval))
  3414. interval = 1;
  3415. if (interval > HZ*NR_CPUS/10)
  3416. interval = HZ*NR_CPUS/10;
  3417. need_serialize = sd->flags & SD_SERIALIZE;
  3418. if (need_serialize) {
  3419. if (!spin_trylock(&balancing))
  3420. goto out;
  3421. }
  3422. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3423. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3424. /*
  3425. * We've pulled tasks over so either we're no
  3426. * longer idle, or one of our SMT siblings is
  3427. * not idle.
  3428. */
  3429. idle = CPU_NOT_IDLE;
  3430. }
  3431. sd->last_balance = jiffies;
  3432. }
  3433. if (need_serialize)
  3434. spin_unlock(&balancing);
  3435. out:
  3436. if (time_after(next_balance, sd->last_balance + interval)) {
  3437. next_balance = sd->last_balance + interval;
  3438. update_next_balance = 1;
  3439. }
  3440. /*
  3441. * Stop the load balance at this level. There is another
  3442. * CPU in our sched group which is doing load balancing more
  3443. * actively.
  3444. */
  3445. if (!balance)
  3446. break;
  3447. }
  3448. /*
  3449. * next_balance will be updated only when there is a need.
  3450. * When the cpu is attached to null domain for ex, it will not be
  3451. * updated.
  3452. */
  3453. if (likely(update_next_balance))
  3454. rq->next_balance = next_balance;
  3455. free_cpumask_var(tmp);
  3456. }
  3457. /*
  3458. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3459. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3460. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3461. */
  3462. static void run_rebalance_domains(struct softirq_action *h)
  3463. {
  3464. int this_cpu = smp_processor_id();
  3465. struct rq *this_rq = cpu_rq(this_cpu);
  3466. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3467. CPU_IDLE : CPU_NOT_IDLE;
  3468. rebalance_domains(this_cpu, idle);
  3469. #ifdef CONFIG_NO_HZ
  3470. /*
  3471. * If this cpu is the owner for idle load balancing, then do the
  3472. * balancing on behalf of the other idle cpus whose ticks are
  3473. * stopped.
  3474. */
  3475. if (this_rq->idle_at_tick &&
  3476. atomic_read(&nohz.load_balancer) == this_cpu) {
  3477. struct rq *rq;
  3478. int balance_cpu;
  3479. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3480. if (balance_cpu == this_cpu)
  3481. continue;
  3482. /*
  3483. * If this cpu gets work to do, stop the load balancing
  3484. * work being done for other cpus. Next load
  3485. * balancing owner will pick it up.
  3486. */
  3487. if (need_resched())
  3488. break;
  3489. rebalance_domains(balance_cpu, CPU_IDLE);
  3490. rq = cpu_rq(balance_cpu);
  3491. if (time_after(this_rq->next_balance, rq->next_balance))
  3492. this_rq->next_balance = rq->next_balance;
  3493. }
  3494. }
  3495. #endif
  3496. }
  3497. /*
  3498. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3499. *
  3500. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3501. * idle load balancing owner or decide to stop the periodic load balancing,
  3502. * if the whole system is idle.
  3503. */
  3504. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3505. {
  3506. #ifdef CONFIG_NO_HZ
  3507. /*
  3508. * If we were in the nohz mode recently and busy at the current
  3509. * scheduler tick, then check if we need to nominate new idle
  3510. * load balancer.
  3511. */
  3512. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3513. rq->in_nohz_recently = 0;
  3514. if (atomic_read(&nohz.load_balancer) == cpu) {
  3515. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3516. atomic_set(&nohz.load_balancer, -1);
  3517. }
  3518. if (atomic_read(&nohz.load_balancer) == -1) {
  3519. /*
  3520. * simple selection for now: Nominate the
  3521. * first cpu in the nohz list to be the next
  3522. * ilb owner.
  3523. *
  3524. * TBD: Traverse the sched domains and nominate
  3525. * the nearest cpu in the nohz.cpu_mask.
  3526. */
  3527. int ilb = cpumask_first(nohz.cpu_mask);
  3528. if (ilb < nr_cpu_ids)
  3529. resched_cpu(ilb);
  3530. }
  3531. }
  3532. /*
  3533. * If this cpu is idle and doing idle load balancing for all the
  3534. * cpus with ticks stopped, is it time for that to stop?
  3535. */
  3536. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3537. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3538. resched_cpu(cpu);
  3539. return;
  3540. }
  3541. /*
  3542. * If this cpu is idle and the idle load balancing is done by
  3543. * someone else, then no need raise the SCHED_SOFTIRQ
  3544. */
  3545. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3546. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3547. return;
  3548. #endif
  3549. if (time_after_eq(jiffies, rq->next_balance))
  3550. raise_softirq(SCHED_SOFTIRQ);
  3551. }
  3552. #else /* CONFIG_SMP */
  3553. /*
  3554. * on UP we do not need to balance between CPUs:
  3555. */
  3556. static inline void idle_balance(int cpu, struct rq *rq)
  3557. {
  3558. }
  3559. #endif
  3560. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3561. EXPORT_PER_CPU_SYMBOL(kstat);
  3562. /*
  3563. * Return any ns on the sched_clock that have not yet been banked in
  3564. * @p in case that task is currently running.
  3565. */
  3566. unsigned long long __task_delta_exec(struct task_struct *p, int update)
  3567. {
  3568. s64 delta_exec;
  3569. struct rq *rq;
  3570. rq = task_rq(p);
  3571. WARN_ON_ONCE(!runqueue_is_locked());
  3572. WARN_ON_ONCE(!task_current(rq, p));
  3573. if (update)
  3574. update_rq_clock(rq);
  3575. delta_exec = rq->clock - p->se.exec_start;
  3576. WARN_ON_ONCE(delta_exec < 0);
  3577. return delta_exec;
  3578. }
  3579. /*
  3580. * Return any ns on the sched_clock that have not yet been banked in
  3581. * @p in case that task is currently running.
  3582. */
  3583. unsigned long long task_delta_exec(struct task_struct *p)
  3584. {
  3585. unsigned long flags;
  3586. struct rq *rq;
  3587. u64 ns = 0;
  3588. rq = task_rq_lock(p, &flags);
  3589. if (task_current(rq, p)) {
  3590. u64 delta_exec;
  3591. update_rq_clock(rq);
  3592. delta_exec = rq->clock - p->se.exec_start;
  3593. if ((s64)delta_exec > 0)
  3594. ns = delta_exec;
  3595. }
  3596. task_rq_unlock(rq, &flags);
  3597. return ns;
  3598. }
  3599. /*
  3600. * Account user cpu time to a process.
  3601. * @p: the process that the cpu time gets accounted to
  3602. * @cputime: the cpu time spent in user space since the last update
  3603. * @cputime_scaled: cputime scaled by cpu frequency
  3604. */
  3605. void account_user_time(struct task_struct *p, cputime_t cputime,
  3606. cputime_t cputime_scaled)
  3607. {
  3608. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3609. cputime64_t tmp;
  3610. /* Add user time to process. */
  3611. p->utime = cputime_add(p->utime, cputime);
  3612. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3613. account_group_user_time(p, cputime);
  3614. /* Add user time to cpustat. */
  3615. tmp = cputime_to_cputime64(cputime);
  3616. if (TASK_NICE(p) > 0)
  3617. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3618. else
  3619. cpustat->user = cputime64_add(cpustat->user, tmp);
  3620. /* Account for user time used */
  3621. acct_update_integrals(p);
  3622. }
  3623. /*
  3624. * Account guest cpu time to a process.
  3625. * @p: the process that the cpu time gets accounted to
  3626. * @cputime: the cpu time spent in virtual machine since the last update
  3627. * @cputime_scaled: cputime scaled by cpu frequency
  3628. */
  3629. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3630. cputime_t cputime_scaled)
  3631. {
  3632. cputime64_t tmp;
  3633. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3634. tmp = cputime_to_cputime64(cputime);
  3635. /* Add guest time to process. */
  3636. p->utime = cputime_add(p->utime, cputime);
  3637. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3638. account_group_user_time(p, cputime);
  3639. p->gtime = cputime_add(p->gtime, cputime);
  3640. /* Add guest time to cpustat. */
  3641. cpustat->user = cputime64_add(cpustat->user, tmp);
  3642. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3643. }
  3644. /*
  3645. * Account system cpu time to a process.
  3646. * @p: the process that the cpu time gets accounted to
  3647. * @hardirq_offset: the offset to subtract from hardirq_count()
  3648. * @cputime: the cpu time spent in kernel space since the last update
  3649. * @cputime_scaled: cputime scaled by cpu frequency
  3650. */
  3651. void account_system_time(struct task_struct *p, int hardirq_offset,
  3652. cputime_t cputime, cputime_t cputime_scaled)
  3653. {
  3654. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3655. cputime64_t tmp;
  3656. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3657. account_guest_time(p, cputime, cputime_scaled);
  3658. return;
  3659. }
  3660. /* Add system time to process. */
  3661. p->stime = cputime_add(p->stime, cputime);
  3662. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3663. account_group_system_time(p, cputime);
  3664. /* Add system time to cpustat. */
  3665. tmp = cputime_to_cputime64(cputime);
  3666. if (hardirq_count() - hardirq_offset)
  3667. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3668. else if (softirq_count())
  3669. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3670. else
  3671. cpustat->system = cputime64_add(cpustat->system, tmp);
  3672. /* Account for system time used */
  3673. acct_update_integrals(p);
  3674. }
  3675. /*
  3676. * Account for involuntary wait time.
  3677. * @steal: the cpu time spent in involuntary wait
  3678. */
  3679. void account_steal_time(cputime_t cputime)
  3680. {
  3681. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3682. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3683. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3684. }
  3685. /*
  3686. * Account for idle time.
  3687. * @cputime: the cpu time spent in idle wait
  3688. */
  3689. void account_idle_time(cputime_t cputime)
  3690. {
  3691. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3692. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3693. struct rq *rq = this_rq();
  3694. if (atomic_read(&rq->nr_iowait) > 0)
  3695. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3696. else
  3697. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3698. }
  3699. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3700. /*
  3701. * Account a single tick of cpu time.
  3702. * @p: the process that the cpu time gets accounted to
  3703. * @user_tick: indicates if the tick is a user or a system tick
  3704. */
  3705. void account_process_tick(struct task_struct *p, int user_tick)
  3706. {
  3707. cputime_t one_jiffy = jiffies_to_cputime(1);
  3708. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  3709. struct rq *rq = this_rq();
  3710. if (user_tick)
  3711. account_user_time(p, one_jiffy, one_jiffy_scaled);
  3712. else if (p != rq->idle)
  3713. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  3714. one_jiffy_scaled);
  3715. else
  3716. account_idle_time(one_jiffy);
  3717. }
  3718. /*
  3719. * Account multiple ticks of steal time.
  3720. * @p: the process from which the cpu time has been stolen
  3721. * @ticks: number of stolen ticks
  3722. */
  3723. void account_steal_ticks(unsigned long ticks)
  3724. {
  3725. account_steal_time(jiffies_to_cputime(ticks));
  3726. }
  3727. /*
  3728. * Account multiple ticks of idle time.
  3729. * @ticks: number of stolen ticks
  3730. */
  3731. void account_idle_ticks(unsigned long ticks)
  3732. {
  3733. account_idle_time(jiffies_to_cputime(ticks));
  3734. }
  3735. #endif
  3736. /*
  3737. * Use precise platform statistics if available:
  3738. */
  3739. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3740. cputime_t task_utime(struct task_struct *p)
  3741. {
  3742. return p->utime;
  3743. }
  3744. cputime_t task_stime(struct task_struct *p)
  3745. {
  3746. return p->stime;
  3747. }
  3748. #else
  3749. cputime_t task_utime(struct task_struct *p)
  3750. {
  3751. clock_t utime = cputime_to_clock_t(p->utime),
  3752. total = utime + cputime_to_clock_t(p->stime);
  3753. u64 temp;
  3754. /*
  3755. * Use CFS's precise accounting:
  3756. */
  3757. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3758. if (total) {
  3759. temp *= utime;
  3760. do_div(temp, total);
  3761. }
  3762. utime = (clock_t)temp;
  3763. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3764. return p->prev_utime;
  3765. }
  3766. cputime_t task_stime(struct task_struct *p)
  3767. {
  3768. clock_t stime;
  3769. /*
  3770. * Use CFS's precise accounting. (we subtract utime from
  3771. * the total, to make sure the total observed by userspace
  3772. * grows monotonically - apps rely on that):
  3773. */
  3774. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3775. cputime_to_clock_t(task_utime(p));
  3776. if (stime >= 0)
  3777. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3778. return p->prev_stime;
  3779. }
  3780. #endif
  3781. inline cputime_t task_gtime(struct task_struct *p)
  3782. {
  3783. return p->gtime;
  3784. }
  3785. /*
  3786. * This function gets called by the timer code, with HZ frequency.
  3787. * We call it with interrupts disabled.
  3788. *
  3789. * It also gets called by the fork code, when changing the parent's
  3790. * timeslices.
  3791. */
  3792. void scheduler_tick(void)
  3793. {
  3794. int cpu = smp_processor_id();
  3795. struct rq *rq = cpu_rq(cpu);
  3796. struct task_struct *curr = rq->curr;
  3797. sched_clock_tick();
  3798. spin_lock(&rq->lock);
  3799. update_rq_clock(rq);
  3800. update_cpu_load(rq);
  3801. curr->sched_class->task_tick(rq, curr, 0);
  3802. perf_counter_task_tick(curr, cpu);
  3803. spin_unlock(&rq->lock);
  3804. #ifdef CONFIG_SMP
  3805. rq->idle_at_tick = idle_cpu(cpu);
  3806. trigger_load_balance(rq, cpu);
  3807. #endif
  3808. }
  3809. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3810. defined(CONFIG_PREEMPT_TRACER))
  3811. static inline unsigned long get_parent_ip(unsigned long addr)
  3812. {
  3813. if (in_lock_functions(addr)) {
  3814. addr = CALLER_ADDR2;
  3815. if (in_lock_functions(addr))
  3816. addr = CALLER_ADDR3;
  3817. }
  3818. return addr;
  3819. }
  3820. void __kprobes add_preempt_count(int val)
  3821. {
  3822. #ifdef CONFIG_DEBUG_PREEMPT
  3823. /*
  3824. * Underflow?
  3825. */
  3826. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3827. return;
  3828. #endif
  3829. preempt_count() += val;
  3830. #ifdef CONFIG_DEBUG_PREEMPT
  3831. /*
  3832. * Spinlock count overflowing soon?
  3833. */
  3834. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3835. PREEMPT_MASK - 10);
  3836. #endif
  3837. if (preempt_count() == val)
  3838. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3839. }
  3840. EXPORT_SYMBOL(add_preempt_count);
  3841. void __kprobes sub_preempt_count(int val)
  3842. {
  3843. #ifdef CONFIG_DEBUG_PREEMPT
  3844. /*
  3845. * Underflow?
  3846. */
  3847. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3848. return;
  3849. /*
  3850. * Is the spinlock portion underflowing?
  3851. */
  3852. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3853. !(preempt_count() & PREEMPT_MASK)))
  3854. return;
  3855. #endif
  3856. if (preempt_count() == val)
  3857. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3858. preempt_count() -= val;
  3859. }
  3860. EXPORT_SYMBOL(sub_preempt_count);
  3861. #endif
  3862. /*
  3863. * Print scheduling while atomic bug:
  3864. */
  3865. static noinline void __schedule_bug(struct task_struct *prev)
  3866. {
  3867. struct pt_regs *regs = get_irq_regs();
  3868. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3869. prev->comm, prev->pid, preempt_count());
  3870. debug_show_held_locks(prev);
  3871. print_modules();
  3872. if (irqs_disabled())
  3873. print_irqtrace_events(prev);
  3874. if (regs)
  3875. show_regs(regs);
  3876. else
  3877. dump_stack();
  3878. }
  3879. /*
  3880. * Various schedule()-time debugging checks and statistics:
  3881. */
  3882. static inline void schedule_debug(struct task_struct *prev)
  3883. {
  3884. /*
  3885. * Test if we are atomic. Since do_exit() needs to call into
  3886. * schedule() atomically, we ignore that path for now.
  3887. * Otherwise, whine if we are scheduling when we should not be.
  3888. */
  3889. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3890. __schedule_bug(prev);
  3891. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3892. schedstat_inc(this_rq(), sched_count);
  3893. #ifdef CONFIG_SCHEDSTATS
  3894. if (unlikely(prev->lock_depth >= 0)) {
  3895. schedstat_inc(this_rq(), bkl_count);
  3896. schedstat_inc(prev, sched_info.bkl_count);
  3897. }
  3898. #endif
  3899. }
  3900. /*
  3901. * Pick up the highest-prio task:
  3902. */
  3903. static inline struct task_struct *
  3904. pick_next_task(struct rq *rq, struct task_struct *prev)
  3905. {
  3906. const struct sched_class *class;
  3907. struct task_struct *p;
  3908. /*
  3909. * Optimization: we know that if all tasks are in
  3910. * the fair class we can call that function directly:
  3911. */
  3912. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3913. p = fair_sched_class.pick_next_task(rq);
  3914. if (likely(p))
  3915. return p;
  3916. }
  3917. class = sched_class_highest;
  3918. for ( ; ; ) {
  3919. p = class->pick_next_task(rq);
  3920. if (p)
  3921. return p;
  3922. /*
  3923. * Will never be NULL as the idle class always
  3924. * returns a non-NULL p:
  3925. */
  3926. class = class->next;
  3927. }
  3928. }
  3929. /*
  3930. * schedule() is the main scheduler function.
  3931. */
  3932. asmlinkage void __sched schedule(void)
  3933. {
  3934. struct task_struct *prev, *next;
  3935. unsigned long *switch_count;
  3936. struct rq *rq;
  3937. int cpu;
  3938. need_resched:
  3939. preempt_disable();
  3940. cpu = smp_processor_id();
  3941. rq = cpu_rq(cpu);
  3942. rcu_qsctr_inc(cpu);
  3943. prev = rq->curr;
  3944. switch_count = &prev->nivcsw;
  3945. release_kernel_lock(prev);
  3946. need_resched_nonpreemptible:
  3947. schedule_debug(prev);
  3948. if (sched_feat(HRTICK))
  3949. hrtick_clear(rq);
  3950. spin_lock_irq(&rq->lock);
  3951. update_rq_clock(rq);
  3952. clear_tsk_need_resched(prev);
  3953. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3954. if (unlikely(signal_pending_state(prev->state, prev)))
  3955. prev->state = TASK_RUNNING;
  3956. else
  3957. deactivate_task(rq, prev, 1);
  3958. switch_count = &prev->nvcsw;
  3959. }
  3960. #ifdef CONFIG_SMP
  3961. if (prev->sched_class->pre_schedule)
  3962. prev->sched_class->pre_schedule(rq, prev);
  3963. #endif
  3964. if (unlikely(!rq->nr_running))
  3965. idle_balance(cpu, rq);
  3966. prev->sched_class->put_prev_task(rq, prev);
  3967. next = pick_next_task(rq, prev);
  3968. if (likely(prev != next)) {
  3969. sched_info_switch(prev, next);
  3970. perf_counter_task_sched_out(prev, cpu);
  3971. rq->nr_switches++;
  3972. rq->curr = next;
  3973. ++*switch_count;
  3974. context_switch(rq, prev, next); /* unlocks the rq */
  3975. /*
  3976. * the context switch might have flipped the stack from under
  3977. * us, hence refresh the local variables.
  3978. */
  3979. cpu = smp_processor_id();
  3980. rq = cpu_rq(cpu);
  3981. } else
  3982. spin_unlock_irq(&rq->lock);
  3983. if (unlikely(reacquire_kernel_lock(current) < 0))
  3984. goto need_resched_nonpreemptible;
  3985. preempt_enable_no_resched();
  3986. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3987. goto need_resched;
  3988. }
  3989. EXPORT_SYMBOL(schedule);
  3990. #ifdef CONFIG_PREEMPT
  3991. /*
  3992. * this is the entry point to schedule() from in-kernel preemption
  3993. * off of preempt_enable. Kernel preemptions off return from interrupt
  3994. * occur there and call schedule directly.
  3995. */
  3996. asmlinkage void __sched preempt_schedule(void)
  3997. {
  3998. struct thread_info *ti = current_thread_info();
  3999. /*
  4000. * If there is a non-zero preempt_count or interrupts are disabled,
  4001. * we do not want to preempt the current task. Just return..
  4002. */
  4003. if (likely(ti->preempt_count || irqs_disabled()))
  4004. return;
  4005. do {
  4006. add_preempt_count(PREEMPT_ACTIVE);
  4007. schedule();
  4008. sub_preempt_count(PREEMPT_ACTIVE);
  4009. /*
  4010. * Check again in case we missed a preemption opportunity
  4011. * between schedule and now.
  4012. */
  4013. barrier();
  4014. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4015. }
  4016. EXPORT_SYMBOL(preempt_schedule);
  4017. /*
  4018. * this is the entry point to schedule() from kernel preemption
  4019. * off of irq context.
  4020. * Note, that this is called and return with irqs disabled. This will
  4021. * protect us against recursive calling from irq.
  4022. */
  4023. asmlinkage void __sched preempt_schedule_irq(void)
  4024. {
  4025. struct thread_info *ti = current_thread_info();
  4026. /* Catch callers which need to be fixed */
  4027. BUG_ON(ti->preempt_count || !irqs_disabled());
  4028. do {
  4029. add_preempt_count(PREEMPT_ACTIVE);
  4030. local_irq_enable();
  4031. schedule();
  4032. local_irq_disable();
  4033. sub_preempt_count(PREEMPT_ACTIVE);
  4034. /*
  4035. * Check again in case we missed a preemption opportunity
  4036. * between schedule and now.
  4037. */
  4038. barrier();
  4039. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4040. }
  4041. #endif /* CONFIG_PREEMPT */
  4042. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4043. void *key)
  4044. {
  4045. return try_to_wake_up(curr->private, mode, sync);
  4046. }
  4047. EXPORT_SYMBOL(default_wake_function);
  4048. /*
  4049. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4050. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4051. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4052. *
  4053. * There are circumstances in which we can try to wake a task which has already
  4054. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4055. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4056. */
  4057. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4058. int nr_exclusive, int sync, void *key)
  4059. {
  4060. wait_queue_t *curr, *next;
  4061. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4062. unsigned flags = curr->flags;
  4063. if (curr->func(curr, mode, sync, key) &&
  4064. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4065. break;
  4066. }
  4067. }
  4068. /**
  4069. * __wake_up - wake up threads blocked on a waitqueue.
  4070. * @q: the waitqueue
  4071. * @mode: which threads
  4072. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4073. * @key: is directly passed to the wakeup function
  4074. */
  4075. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4076. int nr_exclusive, void *key)
  4077. {
  4078. unsigned long flags;
  4079. spin_lock_irqsave(&q->lock, flags);
  4080. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4081. spin_unlock_irqrestore(&q->lock, flags);
  4082. }
  4083. EXPORT_SYMBOL(__wake_up);
  4084. /*
  4085. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4086. */
  4087. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4088. {
  4089. __wake_up_common(q, mode, 1, 0, NULL);
  4090. }
  4091. /**
  4092. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4093. * @q: the waitqueue
  4094. * @mode: which threads
  4095. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4096. *
  4097. * The sync wakeup differs that the waker knows that it will schedule
  4098. * away soon, so while the target thread will be woken up, it will not
  4099. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4100. * with each other. This can prevent needless bouncing between CPUs.
  4101. *
  4102. * On UP it can prevent extra preemption.
  4103. */
  4104. void
  4105. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4106. {
  4107. unsigned long flags;
  4108. int sync = 1;
  4109. if (unlikely(!q))
  4110. return;
  4111. if (unlikely(!nr_exclusive))
  4112. sync = 0;
  4113. spin_lock_irqsave(&q->lock, flags);
  4114. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4115. spin_unlock_irqrestore(&q->lock, flags);
  4116. }
  4117. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4118. /**
  4119. * complete: - signals a single thread waiting on this completion
  4120. * @x: holds the state of this particular completion
  4121. *
  4122. * This will wake up a single thread waiting on this completion. Threads will be
  4123. * awakened in the same order in which they were queued.
  4124. *
  4125. * See also complete_all(), wait_for_completion() and related routines.
  4126. */
  4127. void complete(struct completion *x)
  4128. {
  4129. unsigned long flags;
  4130. spin_lock_irqsave(&x->wait.lock, flags);
  4131. x->done++;
  4132. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4133. spin_unlock_irqrestore(&x->wait.lock, flags);
  4134. }
  4135. EXPORT_SYMBOL(complete);
  4136. /**
  4137. * complete_all: - signals all threads waiting on this completion
  4138. * @x: holds the state of this particular completion
  4139. *
  4140. * This will wake up all threads waiting on this particular completion event.
  4141. */
  4142. void complete_all(struct completion *x)
  4143. {
  4144. unsigned long flags;
  4145. spin_lock_irqsave(&x->wait.lock, flags);
  4146. x->done += UINT_MAX/2;
  4147. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4148. spin_unlock_irqrestore(&x->wait.lock, flags);
  4149. }
  4150. EXPORT_SYMBOL(complete_all);
  4151. static inline long __sched
  4152. do_wait_for_common(struct completion *x, long timeout, int state)
  4153. {
  4154. if (!x->done) {
  4155. DECLARE_WAITQUEUE(wait, current);
  4156. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4157. __add_wait_queue_tail(&x->wait, &wait);
  4158. do {
  4159. if (signal_pending_state(state, current)) {
  4160. timeout = -ERESTARTSYS;
  4161. break;
  4162. }
  4163. __set_current_state(state);
  4164. spin_unlock_irq(&x->wait.lock);
  4165. timeout = schedule_timeout(timeout);
  4166. spin_lock_irq(&x->wait.lock);
  4167. } while (!x->done && timeout);
  4168. __remove_wait_queue(&x->wait, &wait);
  4169. if (!x->done)
  4170. return timeout;
  4171. }
  4172. x->done--;
  4173. return timeout ?: 1;
  4174. }
  4175. static long __sched
  4176. wait_for_common(struct completion *x, long timeout, int state)
  4177. {
  4178. might_sleep();
  4179. spin_lock_irq(&x->wait.lock);
  4180. timeout = do_wait_for_common(x, timeout, state);
  4181. spin_unlock_irq(&x->wait.lock);
  4182. return timeout;
  4183. }
  4184. /**
  4185. * wait_for_completion: - waits for completion of a task
  4186. * @x: holds the state of this particular completion
  4187. *
  4188. * This waits to be signaled for completion of a specific task. It is NOT
  4189. * interruptible and there is no timeout.
  4190. *
  4191. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4192. * and interrupt capability. Also see complete().
  4193. */
  4194. void __sched wait_for_completion(struct completion *x)
  4195. {
  4196. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4197. }
  4198. EXPORT_SYMBOL(wait_for_completion);
  4199. /**
  4200. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4201. * @x: holds the state of this particular completion
  4202. * @timeout: timeout value in jiffies
  4203. *
  4204. * This waits for either a completion of a specific task to be signaled or for a
  4205. * specified timeout to expire. The timeout is in jiffies. It is not
  4206. * interruptible.
  4207. */
  4208. unsigned long __sched
  4209. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4210. {
  4211. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4212. }
  4213. EXPORT_SYMBOL(wait_for_completion_timeout);
  4214. /**
  4215. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4216. * @x: holds the state of this particular completion
  4217. *
  4218. * This waits for completion of a specific task to be signaled. It is
  4219. * interruptible.
  4220. */
  4221. int __sched wait_for_completion_interruptible(struct completion *x)
  4222. {
  4223. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4224. if (t == -ERESTARTSYS)
  4225. return t;
  4226. return 0;
  4227. }
  4228. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4229. /**
  4230. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4231. * @x: holds the state of this particular completion
  4232. * @timeout: timeout value in jiffies
  4233. *
  4234. * This waits for either a completion of a specific task to be signaled or for a
  4235. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4236. */
  4237. unsigned long __sched
  4238. wait_for_completion_interruptible_timeout(struct completion *x,
  4239. unsigned long timeout)
  4240. {
  4241. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4242. }
  4243. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4244. /**
  4245. * wait_for_completion_killable: - waits for completion of a task (killable)
  4246. * @x: holds the state of this particular completion
  4247. *
  4248. * This waits to be signaled for completion of a specific task. It can be
  4249. * interrupted by a kill signal.
  4250. */
  4251. int __sched wait_for_completion_killable(struct completion *x)
  4252. {
  4253. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4254. if (t == -ERESTARTSYS)
  4255. return t;
  4256. return 0;
  4257. }
  4258. EXPORT_SYMBOL(wait_for_completion_killable);
  4259. /**
  4260. * try_wait_for_completion - try to decrement a completion without blocking
  4261. * @x: completion structure
  4262. *
  4263. * Returns: 0 if a decrement cannot be done without blocking
  4264. * 1 if a decrement succeeded.
  4265. *
  4266. * If a completion is being used as a counting completion,
  4267. * attempt to decrement the counter without blocking. This
  4268. * enables us to avoid waiting if the resource the completion
  4269. * is protecting is not available.
  4270. */
  4271. bool try_wait_for_completion(struct completion *x)
  4272. {
  4273. int ret = 1;
  4274. spin_lock_irq(&x->wait.lock);
  4275. if (!x->done)
  4276. ret = 0;
  4277. else
  4278. x->done--;
  4279. spin_unlock_irq(&x->wait.lock);
  4280. return ret;
  4281. }
  4282. EXPORT_SYMBOL(try_wait_for_completion);
  4283. /**
  4284. * completion_done - Test to see if a completion has any waiters
  4285. * @x: completion structure
  4286. *
  4287. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4288. * 1 if there are no waiters.
  4289. *
  4290. */
  4291. bool completion_done(struct completion *x)
  4292. {
  4293. int ret = 1;
  4294. spin_lock_irq(&x->wait.lock);
  4295. if (!x->done)
  4296. ret = 0;
  4297. spin_unlock_irq(&x->wait.lock);
  4298. return ret;
  4299. }
  4300. EXPORT_SYMBOL(completion_done);
  4301. static long __sched
  4302. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4303. {
  4304. unsigned long flags;
  4305. wait_queue_t wait;
  4306. init_waitqueue_entry(&wait, current);
  4307. __set_current_state(state);
  4308. spin_lock_irqsave(&q->lock, flags);
  4309. __add_wait_queue(q, &wait);
  4310. spin_unlock(&q->lock);
  4311. timeout = schedule_timeout(timeout);
  4312. spin_lock_irq(&q->lock);
  4313. __remove_wait_queue(q, &wait);
  4314. spin_unlock_irqrestore(&q->lock, flags);
  4315. return timeout;
  4316. }
  4317. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4318. {
  4319. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4320. }
  4321. EXPORT_SYMBOL(interruptible_sleep_on);
  4322. long __sched
  4323. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4324. {
  4325. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4326. }
  4327. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4328. void __sched sleep_on(wait_queue_head_t *q)
  4329. {
  4330. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4331. }
  4332. EXPORT_SYMBOL(sleep_on);
  4333. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4334. {
  4335. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4336. }
  4337. EXPORT_SYMBOL(sleep_on_timeout);
  4338. #ifdef CONFIG_RT_MUTEXES
  4339. /*
  4340. * rt_mutex_setprio - set the current priority of a task
  4341. * @p: task
  4342. * @prio: prio value (kernel-internal form)
  4343. *
  4344. * This function changes the 'effective' priority of a task. It does
  4345. * not touch ->normal_prio like __setscheduler().
  4346. *
  4347. * Used by the rt_mutex code to implement priority inheritance logic.
  4348. */
  4349. void rt_mutex_setprio(struct task_struct *p, int prio)
  4350. {
  4351. unsigned long flags;
  4352. int oldprio, on_rq, running;
  4353. struct rq *rq;
  4354. const struct sched_class *prev_class = p->sched_class;
  4355. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4356. rq = task_rq_lock(p, &flags);
  4357. update_rq_clock(rq);
  4358. oldprio = p->prio;
  4359. on_rq = p->se.on_rq;
  4360. running = task_current(rq, p);
  4361. if (on_rq)
  4362. dequeue_task(rq, p, 0);
  4363. if (running)
  4364. p->sched_class->put_prev_task(rq, p);
  4365. if (rt_prio(prio))
  4366. p->sched_class = &rt_sched_class;
  4367. else
  4368. p->sched_class = &fair_sched_class;
  4369. p->prio = prio;
  4370. if (running)
  4371. p->sched_class->set_curr_task(rq);
  4372. if (on_rq) {
  4373. enqueue_task(rq, p, 0);
  4374. check_class_changed(rq, p, prev_class, oldprio, running);
  4375. }
  4376. task_rq_unlock(rq, &flags);
  4377. }
  4378. #endif
  4379. void set_user_nice(struct task_struct *p, long nice)
  4380. {
  4381. int old_prio, delta, on_rq;
  4382. unsigned long flags;
  4383. struct rq *rq;
  4384. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4385. return;
  4386. /*
  4387. * We have to be careful, if called from sys_setpriority(),
  4388. * the task might be in the middle of scheduling on another CPU.
  4389. */
  4390. rq = task_rq_lock(p, &flags);
  4391. update_rq_clock(rq);
  4392. /*
  4393. * The RT priorities are set via sched_setscheduler(), but we still
  4394. * allow the 'normal' nice value to be set - but as expected
  4395. * it wont have any effect on scheduling until the task is
  4396. * SCHED_FIFO/SCHED_RR:
  4397. */
  4398. if (task_has_rt_policy(p)) {
  4399. p->static_prio = NICE_TO_PRIO(nice);
  4400. goto out_unlock;
  4401. }
  4402. on_rq = p->se.on_rq;
  4403. if (on_rq)
  4404. dequeue_task(rq, p, 0);
  4405. p->static_prio = NICE_TO_PRIO(nice);
  4406. set_load_weight(p);
  4407. old_prio = p->prio;
  4408. p->prio = effective_prio(p);
  4409. delta = p->prio - old_prio;
  4410. if (on_rq) {
  4411. enqueue_task(rq, p, 0);
  4412. /*
  4413. * If the task increased its priority or is running and
  4414. * lowered its priority, then reschedule its CPU:
  4415. */
  4416. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4417. resched_task(rq->curr);
  4418. }
  4419. out_unlock:
  4420. task_rq_unlock(rq, &flags);
  4421. }
  4422. EXPORT_SYMBOL(set_user_nice);
  4423. /*
  4424. * can_nice - check if a task can reduce its nice value
  4425. * @p: task
  4426. * @nice: nice value
  4427. */
  4428. int can_nice(const struct task_struct *p, const int nice)
  4429. {
  4430. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4431. int nice_rlim = 20 - nice;
  4432. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4433. capable(CAP_SYS_NICE));
  4434. }
  4435. #ifdef __ARCH_WANT_SYS_NICE
  4436. /*
  4437. * sys_nice - change the priority of the current process.
  4438. * @increment: priority increment
  4439. *
  4440. * sys_setpriority is a more generic, but much slower function that
  4441. * does similar things.
  4442. */
  4443. SYSCALL_DEFINE1(nice, int, increment)
  4444. {
  4445. long nice, retval;
  4446. /*
  4447. * Setpriority might change our priority at the same moment.
  4448. * We don't have to worry. Conceptually one call occurs first
  4449. * and we have a single winner.
  4450. */
  4451. if (increment < -40)
  4452. increment = -40;
  4453. if (increment > 40)
  4454. increment = 40;
  4455. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4456. if (nice < -20)
  4457. nice = -20;
  4458. if (nice > 19)
  4459. nice = 19;
  4460. if (increment < 0 && !can_nice(current, nice))
  4461. return -EPERM;
  4462. retval = security_task_setnice(current, nice);
  4463. if (retval)
  4464. return retval;
  4465. set_user_nice(current, nice);
  4466. return 0;
  4467. }
  4468. #endif
  4469. /**
  4470. * task_prio - return the priority value of a given task.
  4471. * @p: the task in question.
  4472. *
  4473. * This is the priority value as seen by users in /proc.
  4474. * RT tasks are offset by -200. Normal tasks are centered
  4475. * around 0, value goes from -16 to +15.
  4476. */
  4477. int task_prio(const struct task_struct *p)
  4478. {
  4479. return p->prio - MAX_RT_PRIO;
  4480. }
  4481. /**
  4482. * task_nice - return the nice value of a given task.
  4483. * @p: the task in question.
  4484. */
  4485. int task_nice(const struct task_struct *p)
  4486. {
  4487. return TASK_NICE(p);
  4488. }
  4489. EXPORT_SYMBOL(task_nice);
  4490. /**
  4491. * idle_cpu - is a given cpu idle currently?
  4492. * @cpu: the processor in question.
  4493. */
  4494. int idle_cpu(int cpu)
  4495. {
  4496. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4497. }
  4498. /**
  4499. * idle_task - return the idle task for a given cpu.
  4500. * @cpu: the processor in question.
  4501. */
  4502. struct task_struct *idle_task(int cpu)
  4503. {
  4504. return cpu_rq(cpu)->idle;
  4505. }
  4506. /**
  4507. * find_process_by_pid - find a process with a matching PID value.
  4508. * @pid: the pid in question.
  4509. */
  4510. static struct task_struct *find_process_by_pid(pid_t pid)
  4511. {
  4512. return pid ? find_task_by_vpid(pid) : current;
  4513. }
  4514. /* Actually do priority change: must hold rq lock. */
  4515. static void
  4516. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4517. {
  4518. BUG_ON(p->se.on_rq);
  4519. p->policy = policy;
  4520. switch (p->policy) {
  4521. case SCHED_NORMAL:
  4522. case SCHED_BATCH:
  4523. case SCHED_IDLE:
  4524. p->sched_class = &fair_sched_class;
  4525. break;
  4526. case SCHED_FIFO:
  4527. case SCHED_RR:
  4528. p->sched_class = &rt_sched_class;
  4529. break;
  4530. }
  4531. p->rt_priority = prio;
  4532. p->normal_prio = normal_prio(p);
  4533. /* we are holding p->pi_lock already */
  4534. p->prio = rt_mutex_getprio(p);
  4535. set_load_weight(p);
  4536. }
  4537. /*
  4538. * check the target process has a UID that matches the current process's
  4539. */
  4540. static bool check_same_owner(struct task_struct *p)
  4541. {
  4542. const struct cred *cred = current_cred(), *pcred;
  4543. bool match;
  4544. rcu_read_lock();
  4545. pcred = __task_cred(p);
  4546. match = (cred->euid == pcred->euid ||
  4547. cred->euid == pcred->uid);
  4548. rcu_read_unlock();
  4549. return match;
  4550. }
  4551. static int __sched_setscheduler(struct task_struct *p, int policy,
  4552. struct sched_param *param, bool user)
  4553. {
  4554. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4555. unsigned long flags;
  4556. const struct sched_class *prev_class = p->sched_class;
  4557. struct rq *rq;
  4558. /* may grab non-irq protected spin_locks */
  4559. BUG_ON(in_interrupt());
  4560. recheck:
  4561. /* double check policy once rq lock held */
  4562. if (policy < 0)
  4563. policy = oldpolicy = p->policy;
  4564. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4565. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4566. policy != SCHED_IDLE)
  4567. return -EINVAL;
  4568. /*
  4569. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4570. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4571. * SCHED_BATCH and SCHED_IDLE is 0.
  4572. */
  4573. if (param->sched_priority < 0 ||
  4574. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4575. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4576. return -EINVAL;
  4577. if (rt_policy(policy) != (param->sched_priority != 0))
  4578. return -EINVAL;
  4579. /*
  4580. * Allow unprivileged RT tasks to decrease priority:
  4581. */
  4582. if (user && !capable(CAP_SYS_NICE)) {
  4583. if (rt_policy(policy)) {
  4584. unsigned long rlim_rtprio;
  4585. if (!lock_task_sighand(p, &flags))
  4586. return -ESRCH;
  4587. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4588. unlock_task_sighand(p, &flags);
  4589. /* can't set/change the rt policy */
  4590. if (policy != p->policy && !rlim_rtprio)
  4591. return -EPERM;
  4592. /* can't increase priority */
  4593. if (param->sched_priority > p->rt_priority &&
  4594. param->sched_priority > rlim_rtprio)
  4595. return -EPERM;
  4596. }
  4597. /*
  4598. * Like positive nice levels, dont allow tasks to
  4599. * move out of SCHED_IDLE either:
  4600. */
  4601. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4602. return -EPERM;
  4603. /* can't change other user's priorities */
  4604. if (!check_same_owner(p))
  4605. return -EPERM;
  4606. }
  4607. if (user) {
  4608. #ifdef CONFIG_RT_GROUP_SCHED
  4609. /*
  4610. * Do not allow realtime tasks into groups that have no runtime
  4611. * assigned.
  4612. */
  4613. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4614. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4615. return -EPERM;
  4616. #endif
  4617. retval = security_task_setscheduler(p, policy, param);
  4618. if (retval)
  4619. return retval;
  4620. }
  4621. /*
  4622. * make sure no PI-waiters arrive (or leave) while we are
  4623. * changing the priority of the task:
  4624. */
  4625. spin_lock_irqsave(&p->pi_lock, flags);
  4626. /*
  4627. * To be able to change p->policy safely, the apropriate
  4628. * runqueue lock must be held.
  4629. */
  4630. rq = __task_rq_lock(p);
  4631. /* recheck policy now with rq lock held */
  4632. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4633. policy = oldpolicy = -1;
  4634. __task_rq_unlock(rq);
  4635. spin_unlock_irqrestore(&p->pi_lock, flags);
  4636. goto recheck;
  4637. }
  4638. update_rq_clock(rq);
  4639. on_rq = p->se.on_rq;
  4640. running = task_current(rq, p);
  4641. if (on_rq)
  4642. deactivate_task(rq, p, 0);
  4643. if (running)
  4644. p->sched_class->put_prev_task(rq, p);
  4645. oldprio = p->prio;
  4646. __setscheduler(rq, p, policy, param->sched_priority);
  4647. if (running)
  4648. p->sched_class->set_curr_task(rq);
  4649. if (on_rq) {
  4650. activate_task(rq, p, 0);
  4651. check_class_changed(rq, p, prev_class, oldprio, running);
  4652. }
  4653. __task_rq_unlock(rq);
  4654. spin_unlock_irqrestore(&p->pi_lock, flags);
  4655. rt_mutex_adjust_pi(p);
  4656. return 0;
  4657. }
  4658. /**
  4659. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4660. * @p: the task in question.
  4661. * @policy: new policy.
  4662. * @param: structure containing the new RT priority.
  4663. *
  4664. * NOTE that the task may be already dead.
  4665. */
  4666. int sched_setscheduler(struct task_struct *p, int policy,
  4667. struct sched_param *param)
  4668. {
  4669. return __sched_setscheduler(p, policy, param, true);
  4670. }
  4671. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4672. /**
  4673. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4674. * @p: the task in question.
  4675. * @policy: new policy.
  4676. * @param: structure containing the new RT priority.
  4677. *
  4678. * Just like sched_setscheduler, only don't bother checking if the
  4679. * current context has permission. For example, this is needed in
  4680. * stop_machine(): we create temporary high priority worker threads,
  4681. * but our caller might not have that capability.
  4682. */
  4683. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4684. struct sched_param *param)
  4685. {
  4686. return __sched_setscheduler(p, policy, param, false);
  4687. }
  4688. static int
  4689. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4690. {
  4691. struct sched_param lparam;
  4692. struct task_struct *p;
  4693. int retval;
  4694. if (!param || pid < 0)
  4695. return -EINVAL;
  4696. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4697. return -EFAULT;
  4698. rcu_read_lock();
  4699. retval = -ESRCH;
  4700. p = find_process_by_pid(pid);
  4701. if (p != NULL)
  4702. retval = sched_setscheduler(p, policy, &lparam);
  4703. rcu_read_unlock();
  4704. return retval;
  4705. }
  4706. /**
  4707. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4708. * @pid: the pid in question.
  4709. * @policy: new policy.
  4710. * @param: structure containing the new RT priority.
  4711. */
  4712. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4713. struct sched_param __user *, param)
  4714. {
  4715. /* negative values for policy are not valid */
  4716. if (policy < 0)
  4717. return -EINVAL;
  4718. return do_sched_setscheduler(pid, policy, param);
  4719. }
  4720. /**
  4721. * sys_sched_setparam - set/change the RT priority of a thread
  4722. * @pid: the pid in question.
  4723. * @param: structure containing the new RT priority.
  4724. */
  4725. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4726. {
  4727. return do_sched_setscheduler(pid, -1, param);
  4728. }
  4729. /**
  4730. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4731. * @pid: the pid in question.
  4732. */
  4733. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4734. {
  4735. struct task_struct *p;
  4736. int retval;
  4737. if (pid < 0)
  4738. return -EINVAL;
  4739. retval = -ESRCH;
  4740. read_lock(&tasklist_lock);
  4741. p = find_process_by_pid(pid);
  4742. if (p) {
  4743. retval = security_task_getscheduler(p);
  4744. if (!retval)
  4745. retval = p->policy;
  4746. }
  4747. read_unlock(&tasklist_lock);
  4748. return retval;
  4749. }
  4750. /**
  4751. * sys_sched_getscheduler - get the RT priority of a thread
  4752. * @pid: the pid in question.
  4753. * @param: structure containing the RT priority.
  4754. */
  4755. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4756. {
  4757. struct sched_param lp;
  4758. struct task_struct *p;
  4759. int retval;
  4760. if (!param || pid < 0)
  4761. return -EINVAL;
  4762. read_lock(&tasklist_lock);
  4763. p = find_process_by_pid(pid);
  4764. retval = -ESRCH;
  4765. if (!p)
  4766. goto out_unlock;
  4767. retval = security_task_getscheduler(p);
  4768. if (retval)
  4769. goto out_unlock;
  4770. lp.sched_priority = p->rt_priority;
  4771. read_unlock(&tasklist_lock);
  4772. /*
  4773. * This one might sleep, we cannot do it with a spinlock held ...
  4774. */
  4775. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4776. return retval;
  4777. out_unlock:
  4778. read_unlock(&tasklist_lock);
  4779. return retval;
  4780. }
  4781. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4782. {
  4783. cpumask_var_t cpus_allowed, new_mask;
  4784. struct task_struct *p;
  4785. int retval;
  4786. get_online_cpus();
  4787. read_lock(&tasklist_lock);
  4788. p = find_process_by_pid(pid);
  4789. if (!p) {
  4790. read_unlock(&tasklist_lock);
  4791. put_online_cpus();
  4792. return -ESRCH;
  4793. }
  4794. /*
  4795. * It is not safe to call set_cpus_allowed with the
  4796. * tasklist_lock held. We will bump the task_struct's
  4797. * usage count and then drop tasklist_lock.
  4798. */
  4799. get_task_struct(p);
  4800. read_unlock(&tasklist_lock);
  4801. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4802. retval = -ENOMEM;
  4803. goto out_put_task;
  4804. }
  4805. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4806. retval = -ENOMEM;
  4807. goto out_free_cpus_allowed;
  4808. }
  4809. retval = -EPERM;
  4810. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4811. goto out_unlock;
  4812. retval = security_task_setscheduler(p, 0, NULL);
  4813. if (retval)
  4814. goto out_unlock;
  4815. cpuset_cpus_allowed(p, cpus_allowed);
  4816. cpumask_and(new_mask, in_mask, cpus_allowed);
  4817. again:
  4818. retval = set_cpus_allowed_ptr(p, new_mask);
  4819. if (!retval) {
  4820. cpuset_cpus_allowed(p, cpus_allowed);
  4821. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4822. /*
  4823. * We must have raced with a concurrent cpuset
  4824. * update. Just reset the cpus_allowed to the
  4825. * cpuset's cpus_allowed
  4826. */
  4827. cpumask_copy(new_mask, cpus_allowed);
  4828. goto again;
  4829. }
  4830. }
  4831. out_unlock:
  4832. free_cpumask_var(new_mask);
  4833. out_free_cpus_allowed:
  4834. free_cpumask_var(cpus_allowed);
  4835. out_put_task:
  4836. put_task_struct(p);
  4837. put_online_cpus();
  4838. return retval;
  4839. }
  4840. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4841. struct cpumask *new_mask)
  4842. {
  4843. if (len < cpumask_size())
  4844. cpumask_clear(new_mask);
  4845. else if (len > cpumask_size())
  4846. len = cpumask_size();
  4847. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4848. }
  4849. /**
  4850. * sys_sched_setaffinity - set the cpu affinity of a process
  4851. * @pid: pid of the process
  4852. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4853. * @user_mask_ptr: user-space pointer to the new cpu mask
  4854. */
  4855. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4856. unsigned long __user *, user_mask_ptr)
  4857. {
  4858. cpumask_var_t new_mask;
  4859. int retval;
  4860. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4861. return -ENOMEM;
  4862. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4863. if (retval == 0)
  4864. retval = sched_setaffinity(pid, new_mask);
  4865. free_cpumask_var(new_mask);
  4866. return retval;
  4867. }
  4868. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4869. {
  4870. struct task_struct *p;
  4871. int retval;
  4872. get_online_cpus();
  4873. read_lock(&tasklist_lock);
  4874. retval = -ESRCH;
  4875. p = find_process_by_pid(pid);
  4876. if (!p)
  4877. goto out_unlock;
  4878. retval = security_task_getscheduler(p);
  4879. if (retval)
  4880. goto out_unlock;
  4881. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4882. out_unlock:
  4883. read_unlock(&tasklist_lock);
  4884. put_online_cpus();
  4885. return retval;
  4886. }
  4887. /**
  4888. * sys_sched_getaffinity - get the cpu affinity of a process
  4889. * @pid: pid of the process
  4890. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4891. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4892. */
  4893. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4894. unsigned long __user *, user_mask_ptr)
  4895. {
  4896. int ret;
  4897. cpumask_var_t mask;
  4898. if (len < cpumask_size())
  4899. return -EINVAL;
  4900. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4901. return -ENOMEM;
  4902. ret = sched_getaffinity(pid, mask);
  4903. if (ret == 0) {
  4904. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4905. ret = -EFAULT;
  4906. else
  4907. ret = cpumask_size();
  4908. }
  4909. free_cpumask_var(mask);
  4910. return ret;
  4911. }
  4912. /**
  4913. * sys_sched_yield - yield the current processor to other threads.
  4914. *
  4915. * This function yields the current CPU to other tasks. If there are no
  4916. * other threads running on this CPU then this function will return.
  4917. */
  4918. SYSCALL_DEFINE0(sched_yield)
  4919. {
  4920. struct rq *rq = this_rq_lock();
  4921. schedstat_inc(rq, yld_count);
  4922. current->sched_class->yield_task(rq);
  4923. /*
  4924. * Since we are going to call schedule() anyway, there's
  4925. * no need to preempt or enable interrupts:
  4926. */
  4927. __release(rq->lock);
  4928. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4929. _raw_spin_unlock(&rq->lock);
  4930. preempt_enable_no_resched();
  4931. schedule();
  4932. return 0;
  4933. }
  4934. static void __cond_resched(void)
  4935. {
  4936. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4937. __might_sleep(__FILE__, __LINE__);
  4938. #endif
  4939. /*
  4940. * The BKS might be reacquired before we have dropped
  4941. * PREEMPT_ACTIVE, which could trigger a second
  4942. * cond_resched() call.
  4943. */
  4944. do {
  4945. add_preempt_count(PREEMPT_ACTIVE);
  4946. schedule();
  4947. sub_preempt_count(PREEMPT_ACTIVE);
  4948. } while (need_resched());
  4949. }
  4950. int __sched _cond_resched(void)
  4951. {
  4952. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4953. system_state == SYSTEM_RUNNING) {
  4954. __cond_resched();
  4955. return 1;
  4956. }
  4957. return 0;
  4958. }
  4959. EXPORT_SYMBOL(_cond_resched);
  4960. /*
  4961. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4962. * call schedule, and on return reacquire the lock.
  4963. *
  4964. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4965. * operations here to prevent schedule() from being called twice (once via
  4966. * spin_unlock(), once by hand).
  4967. */
  4968. int cond_resched_lock(spinlock_t *lock)
  4969. {
  4970. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4971. int ret = 0;
  4972. if (spin_needbreak(lock) || resched) {
  4973. spin_unlock(lock);
  4974. if (resched && need_resched())
  4975. __cond_resched();
  4976. else
  4977. cpu_relax();
  4978. ret = 1;
  4979. spin_lock(lock);
  4980. }
  4981. return ret;
  4982. }
  4983. EXPORT_SYMBOL(cond_resched_lock);
  4984. int __sched cond_resched_softirq(void)
  4985. {
  4986. BUG_ON(!in_softirq());
  4987. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4988. local_bh_enable();
  4989. __cond_resched();
  4990. local_bh_disable();
  4991. return 1;
  4992. }
  4993. return 0;
  4994. }
  4995. EXPORT_SYMBOL(cond_resched_softirq);
  4996. /**
  4997. * yield - yield the current processor to other threads.
  4998. *
  4999. * This is a shortcut for kernel-space yielding - it marks the
  5000. * thread runnable and calls sys_sched_yield().
  5001. */
  5002. void __sched yield(void)
  5003. {
  5004. set_current_state(TASK_RUNNING);
  5005. sys_sched_yield();
  5006. }
  5007. EXPORT_SYMBOL(yield);
  5008. /*
  5009. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5010. * that process accounting knows that this is a task in IO wait state.
  5011. *
  5012. * But don't do that if it is a deliberate, throttling IO wait (this task
  5013. * has set its backing_dev_info: the queue against which it should throttle)
  5014. */
  5015. void __sched io_schedule(void)
  5016. {
  5017. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5018. delayacct_blkio_start();
  5019. atomic_inc(&rq->nr_iowait);
  5020. schedule();
  5021. atomic_dec(&rq->nr_iowait);
  5022. delayacct_blkio_end();
  5023. }
  5024. EXPORT_SYMBOL(io_schedule);
  5025. long __sched io_schedule_timeout(long timeout)
  5026. {
  5027. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5028. long ret;
  5029. delayacct_blkio_start();
  5030. atomic_inc(&rq->nr_iowait);
  5031. ret = schedule_timeout(timeout);
  5032. atomic_dec(&rq->nr_iowait);
  5033. delayacct_blkio_end();
  5034. return ret;
  5035. }
  5036. /**
  5037. * sys_sched_get_priority_max - return maximum RT priority.
  5038. * @policy: scheduling class.
  5039. *
  5040. * this syscall returns the maximum rt_priority that can be used
  5041. * by a given scheduling class.
  5042. */
  5043. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5044. {
  5045. int ret = -EINVAL;
  5046. switch (policy) {
  5047. case SCHED_FIFO:
  5048. case SCHED_RR:
  5049. ret = MAX_USER_RT_PRIO-1;
  5050. break;
  5051. case SCHED_NORMAL:
  5052. case SCHED_BATCH:
  5053. case SCHED_IDLE:
  5054. ret = 0;
  5055. break;
  5056. }
  5057. return ret;
  5058. }
  5059. /**
  5060. * sys_sched_get_priority_min - return minimum RT priority.
  5061. * @policy: scheduling class.
  5062. *
  5063. * this syscall returns the minimum rt_priority that can be used
  5064. * by a given scheduling class.
  5065. */
  5066. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5067. {
  5068. int ret = -EINVAL;
  5069. switch (policy) {
  5070. case SCHED_FIFO:
  5071. case SCHED_RR:
  5072. ret = 1;
  5073. break;
  5074. case SCHED_NORMAL:
  5075. case SCHED_BATCH:
  5076. case SCHED_IDLE:
  5077. ret = 0;
  5078. }
  5079. return ret;
  5080. }
  5081. /**
  5082. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5083. * @pid: pid of the process.
  5084. * @interval: userspace pointer to the timeslice value.
  5085. *
  5086. * this syscall writes the default timeslice value of a given process
  5087. * into the user-space timespec buffer. A value of '0' means infinity.
  5088. */
  5089. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5090. struct timespec __user *, interval)
  5091. {
  5092. struct task_struct *p;
  5093. unsigned int time_slice;
  5094. int retval;
  5095. struct timespec t;
  5096. if (pid < 0)
  5097. return -EINVAL;
  5098. retval = -ESRCH;
  5099. read_lock(&tasklist_lock);
  5100. p = find_process_by_pid(pid);
  5101. if (!p)
  5102. goto out_unlock;
  5103. retval = security_task_getscheduler(p);
  5104. if (retval)
  5105. goto out_unlock;
  5106. /*
  5107. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5108. * tasks that are on an otherwise idle runqueue:
  5109. */
  5110. time_slice = 0;
  5111. if (p->policy == SCHED_RR) {
  5112. time_slice = DEF_TIMESLICE;
  5113. } else if (p->policy != SCHED_FIFO) {
  5114. struct sched_entity *se = &p->se;
  5115. unsigned long flags;
  5116. struct rq *rq;
  5117. rq = task_rq_lock(p, &flags);
  5118. if (rq->cfs.load.weight)
  5119. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5120. task_rq_unlock(rq, &flags);
  5121. }
  5122. read_unlock(&tasklist_lock);
  5123. jiffies_to_timespec(time_slice, &t);
  5124. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5125. return retval;
  5126. out_unlock:
  5127. read_unlock(&tasklist_lock);
  5128. return retval;
  5129. }
  5130. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5131. void sched_show_task(struct task_struct *p)
  5132. {
  5133. unsigned long free = 0;
  5134. unsigned state;
  5135. state = p->state ? __ffs(p->state) + 1 : 0;
  5136. printk(KERN_INFO "%-13.13s %c", p->comm,
  5137. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5138. #if BITS_PER_LONG == 32
  5139. if (state == TASK_RUNNING)
  5140. printk(KERN_CONT " running ");
  5141. else
  5142. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5143. #else
  5144. if (state == TASK_RUNNING)
  5145. printk(KERN_CONT " running task ");
  5146. else
  5147. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5148. #endif
  5149. #ifdef CONFIG_DEBUG_STACK_USAGE
  5150. free = stack_not_used(p);
  5151. #endif
  5152. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5153. task_pid_nr(p), task_pid_nr(p->real_parent));
  5154. show_stack(p, NULL);
  5155. }
  5156. void show_state_filter(unsigned long state_filter)
  5157. {
  5158. struct task_struct *g, *p;
  5159. #if BITS_PER_LONG == 32
  5160. printk(KERN_INFO
  5161. " task PC stack pid father\n");
  5162. #else
  5163. printk(KERN_INFO
  5164. " task PC stack pid father\n");
  5165. #endif
  5166. read_lock(&tasklist_lock);
  5167. do_each_thread(g, p) {
  5168. /*
  5169. * reset the NMI-timeout, listing all files on a slow
  5170. * console might take alot of time:
  5171. */
  5172. touch_nmi_watchdog();
  5173. if (!state_filter || (p->state & state_filter))
  5174. sched_show_task(p);
  5175. } while_each_thread(g, p);
  5176. touch_all_softlockup_watchdogs();
  5177. #ifdef CONFIG_SCHED_DEBUG
  5178. sysrq_sched_debug_show();
  5179. #endif
  5180. read_unlock(&tasklist_lock);
  5181. /*
  5182. * Only show locks if all tasks are dumped:
  5183. */
  5184. if (state_filter == -1)
  5185. debug_show_all_locks();
  5186. }
  5187. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5188. {
  5189. idle->sched_class = &idle_sched_class;
  5190. }
  5191. /**
  5192. * init_idle - set up an idle thread for a given CPU
  5193. * @idle: task in question
  5194. * @cpu: cpu the idle task belongs to
  5195. *
  5196. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5197. * flag, to make booting more robust.
  5198. */
  5199. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5200. {
  5201. struct rq *rq = cpu_rq(cpu);
  5202. unsigned long flags;
  5203. spin_lock_irqsave(&rq->lock, flags);
  5204. __sched_fork(idle);
  5205. idle->se.exec_start = sched_clock();
  5206. idle->prio = idle->normal_prio = MAX_PRIO;
  5207. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5208. __set_task_cpu(idle, cpu);
  5209. rq->curr = rq->idle = idle;
  5210. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5211. idle->oncpu = 1;
  5212. #endif
  5213. spin_unlock_irqrestore(&rq->lock, flags);
  5214. /* Set the preempt count _outside_ the spinlocks! */
  5215. #if defined(CONFIG_PREEMPT)
  5216. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5217. #else
  5218. task_thread_info(idle)->preempt_count = 0;
  5219. #endif
  5220. /*
  5221. * The idle tasks have their own, simple scheduling class:
  5222. */
  5223. idle->sched_class = &idle_sched_class;
  5224. ftrace_graph_init_task(idle);
  5225. }
  5226. /*
  5227. * In a system that switches off the HZ timer nohz_cpu_mask
  5228. * indicates which cpus entered this state. This is used
  5229. * in the rcu update to wait only for active cpus. For system
  5230. * which do not switch off the HZ timer nohz_cpu_mask should
  5231. * always be CPU_BITS_NONE.
  5232. */
  5233. cpumask_var_t nohz_cpu_mask;
  5234. /*
  5235. * Increase the granularity value when there are more CPUs,
  5236. * because with more CPUs the 'effective latency' as visible
  5237. * to users decreases. But the relationship is not linear,
  5238. * so pick a second-best guess by going with the log2 of the
  5239. * number of CPUs.
  5240. *
  5241. * This idea comes from the SD scheduler of Con Kolivas:
  5242. */
  5243. static inline void sched_init_granularity(void)
  5244. {
  5245. unsigned int factor = 1 + ilog2(num_online_cpus());
  5246. const unsigned long limit = 200000000;
  5247. sysctl_sched_min_granularity *= factor;
  5248. if (sysctl_sched_min_granularity > limit)
  5249. sysctl_sched_min_granularity = limit;
  5250. sysctl_sched_latency *= factor;
  5251. if (sysctl_sched_latency > limit)
  5252. sysctl_sched_latency = limit;
  5253. sysctl_sched_wakeup_granularity *= factor;
  5254. sysctl_sched_shares_ratelimit *= factor;
  5255. }
  5256. #ifdef CONFIG_SMP
  5257. /*
  5258. * This is how migration works:
  5259. *
  5260. * 1) we queue a struct migration_req structure in the source CPU's
  5261. * runqueue and wake up that CPU's migration thread.
  5262. * 2) we down() the locked semaphore => thread blocks.
  5263. * 3) migration thread wakes up (implicitly it forces the migrated
  5264. * thread off the CPU)
  5265. * 4) it gets the migration request and checks whether the migrated
  5266. * task is still in the wrong runqueue.
  5267. * 5) if it's in the wrong runqueue then the migration thread removes
  5268. * it and puts it into the right queue.
  5269. * 6) migration thread up()s the semaphore.
  5270. * 7) we wake up and the migration is done.
  5271. */
  5272. /*
  5273. * Change a given task's CPU affinity. Migrate the thread to a
  5274. * proper CPU and schedule it away if the CPU it's executing on
  5275. * is removed from the allowed bitmask.
  5276. *
  5277. * NOTE: the caller must have a valid reference to the task, the
  5278. * task must not exit() & deallocate itself prematurely. The
  5279. * call is not atomic; no spinlocks may be held.
  5280. */
  5281. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5282. {
  5283. struct migration_req req;
  5284. unsigned long flags;
  5285. struct rq *rq;
  5286. int ret = 0;
  5287. rq = task_rq_lock(p, &flags);
  5288. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5289. ret = -EINVAL;
  5290. goto out;
  5291. }
  5292. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5293. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5294. ret = -EINVAL;
  5295. goto out;
  5296. }
  5297. if (p->sched_class->set_cpus_allowed)
  5298. p->sched_class->set_cpus_allowed(p, new_mask);
  5299. else {
  5300. cpumask_copy(&p->cpus_allowed, new_mask);
  5301. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5302. }
  5303. /* Can the task run on the task's current CPU? If so, we're done */
  5304. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5305. goto out;
  5306. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5307. /* Need help from migration thread: drop lock and wait. */
  5308. task_rq_unlock(rq, &flags);
  5309. wake_up_process(rq->migration_thread);
  5310. wait_for_completion(&req.done);
  5311. tlb_migrate_finish(p->mm);
  5312. return 0;
  5313. }
  5314. out:
  5315. task_rq_unlock(rq, &flags);
  5316. return ret;
  5317. }
  5318. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5319. /*
  5320. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5321. * this because either it can't run here any more (set_cpus_allowed()
  5322. * away from this CPU, or CPU going down), or because we're
  5323. * attempting to rebalance this task on exec (sched_exec).
  5324. *
  5325. * So we race with normal scheduler movements, but that's OK, as long
  5326. * as the task is no longer on this CPU.
  5327. *
  5328. * Returns non-zero if task was successfully migrated.
  5329. */
  5330. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5331. {
  5332. struct rq *rq_dest, *rq_src;
  5333. int ret = 0, on_rq;
  5334. if (unlikely(!cpu_active(dest_cpu)))
  5335. return ret;
  5336. rq_src = cpu_rq(src_cpu);
  5337. rq_dest = cpu_rq(dest_cpu);
  5338. double_rq_lock(rq_src, rq_dest);
  5339. /* Already moved. */
  5340. if (task_cpu(p) != src_cpu)
  5341. goto done;
  5342. /* Affinity changed (again). */
  5343. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5344. goto fail;
  5345. on_rq = p->se.on_rq;
  5346. if (on_rq)
  5347. deactivate_task(rq_src, p, 0);
  5348. set_task_cpu(p, dest_cpu);
  5349. if (on_rq) {
  5350. activate_task(rq_dest, p, 0);
  5351. check_preempt_curr(rq_dest, p, 0);
  5352. }
  5353. done:
  5354. ret = 1;
  5355. fail:
  5356. double_rq_unlock(rq_src, rq_dest);
  5357. return ret;
  5358. }
  5359. /*
  5360. * migration_thread - this is a highprio system thread that performs
  5361. * thread migration by bumping thread off CPU then 'pushing' onto
  5362. * another runqueue.
  5363. */
  5364. static int migration_thread(void *data)
  5365. {
  5366. int cpu = (long)data;
  5367. struct rq *rq;
  5368. rq = cpu_rq(cpu);
  5369. BUG_ON(rq->migration_thread != current);
  5370. set_current_state(TASK_INTERRUPTIBLE);
  5371. while (!kthread_should_stop()) {
  5372. struct migration_req *req;
  5373. struct list_head *head;
  5374. spin_lock_irq(&rq->lock);
  5375. if (cpu_is_offline(cpu)) {
  5376. spin_unlock_irq(&rq->lock);
  5377. goto wait_to_die;
  5378. }
  5379. if (rq->active_balance) {
  5380. active_load_balance(rq, cpu);
  5381. rq->active_balance = 0;
  5382. }
  5383. head = &rq->migration_queue;
  5384. if (list_empty(head)) {
  5385. spin_unlock_irq(&rq->lock);
  5386. schedule();
  5387. set_current_state(TASK_INTERRUPTIBLE);
  5388. continue;
  5389. }
  5390. req = list_entry(head->next, struct migration_req, list);
  5391. list_del_init(head->next);
  5392. spin_unlock(&rq->lock);
  5393. __migrate_task(req->task, cpu, req->dest_cpu);
  5394. local_irq_enable();
  5395. complete(&req->done);
  5396. }
  5397. __set_current_state(TASK_RUNNING);
  5398. return 0;
  5399. wait_to_die:
  5400. /* Wait for kthread_stop */
  5401. set_current_state(TASK_INTERRUPTIBLE);
  5402. while (!kthread_should_stop()) {
  5403. schedule();
  5404. set_current_state(TASK_INTERRUPTIBLE);
  5405. }
  5406. __set_current_state(TASK_RUNNING);
  5407. return 0;
  5408. }
  5409. #ifdef CONFIG_HOTPLUG_CPU
  5410. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5411. {
  5412. int ret;
  5413. local_irq_disable();
  5414. ret = __migrate_task(p, src_cpu, dest_cpu);
  5415. local_irq_enable();
  5416. return ret;
  5417. }
  5418. /*
  5419. * Figure out where task on dead CPU should go, use force if necessary.
  5420. */
  5421. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5422. {
  5423. int dest_cpu;
  5424. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5425. again:
  5426. /* Look for allowed, online CPU in same node. */
  5427. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5428. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5429. goto move;
  5430. /* Any allowed, online CPU? */
  5431. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5432. if (dest_cpu < nr_cpu_ids)
  5433. goto move;
  5434. /* No more Mr. Nice Guy. */
  5435. if (dest_cpu >= nr_cpu_ids) {
  5436. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5437. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5438. /*
  5439. * Don't tell them about moving exiting tasks or
  5440. * kernel threads (both mm NULL), since they never
  5441. * leave kernel.
  5442. */
  5443. if (p->mm && printk_ratelimit()) {
  5444. printk(KERN_INFO "process %d (%s) no "
  5445. "longer affine to cpu%d\n",
  5446. task_pid_nr(p), p->comm, dead_cpu);
  5447. }
  5448. }
  5449. move:
  5450. /* It can have affinity changed while we were choosing. */
  5451. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5452. goto again;
  5453. }
  5454. /*
  5455. * While a dead CPU has no uninterruptible tasks queued at this point,
  5456. * it might still have a nonzero ->nr_uninterruptible counter, because
  5457. * for performance reasons the counter is not stricly tracking tasks to
  5458. * their home CPUs. So we just add the counter to another CPU's counter,
  5459. * to keep the global sum constant after CPU-down:
  5460. */
  5461. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5462. {
  5463. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5464. unsigned long flags;
  5465. local_irq_save(flags);
  5466. double_rq_lock(rq_src, rq_dest);
  5467. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5468. rq_src->nr_uninterruptible = 0;
  5469. double_rq_unlock(rq_src, rq_dest);
  5470. local_irq_restore(flags);
  5471. }
  5472. /* Run through task list and migrate tasks from the dead cpu. */
  5473. static void migrate_live_tasks(int src_cpu)
  5474. {
  5475. struct task_struct *p, *t;
  5476. read_lock(&tasklist_lock);
  5477. do_each_thread(t, p) {
  5478. if (p == current)
  5479. continue;
  5480. if (task_cpu(p) == src_cpu)
  5481. move_task_off_dead_cpu(src_cpu, p);
  5482. } while_each_thread(t, p);
  5483. read_unlock(&tasklist_lock);
  5484. }
  5485. /*
  5486. * Schedules idle task to be the next runnable task on current CPU.
  5487. * It does so by boosting its priority to highest possible.
  5488. * Used by CPU offline code.
  5489. */
  5490. void sched_idle_next(void)
  5491. {
  5492. int this_cpu = smp_processor_id();
  5493. struct rq *rq = cpu_rq(this_cpu);
  5494. struct task_struct *p = rq->idle;
  5495. unsigned long flags;
  5496. /* cpu has to be offline */
  5497. BUG_ON(cpu_online(this_cpu));
  5498. /*
  5499. * Strictly not necessary since rest of the CPUs are stopped by now
  5500. * and interrupts disabled on the current cpu.
  5501. */
  5502. spin_lock_irqsave(&rq->lock, flags);
  5503. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5504. update_rq_clock(rq);
  5505. activate_task(rq, p, 0);
  5506. spin_unlock_irqrestore(&rq->lock, flags);
  5507. }
  5508. /*
  5509. * Ensures that the idle task is using init_mm right before its cpu goes
  5510. * offline.
  5511. */
  5512. void idle_task_exit(void)
  5513. {
  5514. struct mm_struct *mm = current->active_mm;
  5515. BUG_ON(cpu_online(smp_processor_id()));
  5516. if (mm != &init_mm)
  5517. switch_mm(mm, &init_mm, current);
  5518. mmdrop(mm);
  5519. }
  5520. /* called under rq->lock with disabled interrupts */
  5521. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5522. {
  5523. struct rq *rq = cpu_rq(dead_cpu);
  5524. /* Must be exiting, otherwise would be on tasklist. */
  5525. BUG_ON(!p->exit_state);
  5526. /* Cannot have done final schedule yet: would have vanished. */
  5527. BUG_ON(p->state == TASK_DEAD);
  5528. get_task_struct(p);
  5529. /*
  5530. * Drop lock around migration; if someone else moves it,
  5531. * that's OK. No task can be added to this CPU, so iteration is
  5532. * fine.
  5533. */
  5534. spin_unlock_irq(&rq->lock);
  5535. move_task_off_dead_cpu(dead_cpu, p);
  5536. spin_lock_irq(&rq->lock);
  5537. put_task_struct(p);
  5538. }
  5539. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5540. static void migrate_dead_tasks(unsigned int dead_cpu)
  5541. {
  5542. struct rq *rq = cpu_rq(dead_cpu);
  5543. struct task_struct *next;
  5544. for ( ; ; ) {
  5545. if (!rq->nr_running)
  5546. break;
  5547. update_rq_clock(rq);
  5548. next = pick_next_task(rq, rq->curr);
  5549. if (!next)
  5550. break;
  5551. next->sched_class->put_prev_task(rq, next);
  5552. migrate_dead(dead_cpu, next);
  5553. }
  5554. }
  5555. #endif /* CONFIG_HOTPLUG_CPU */
  5556. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5557. static struct ctl_table sd_ctl_dir[] = {
  5558. {
  5559. .procname = "sched_domain",
  5560. .mode = 0555,
  5561. },
  5562. {0, },
  5563. };
  5564. static struct ctl_table sd_ctl_root[] = {
  5565. {
  5566. .ctl_name = CTL_KERN,
  5567. .procname = "kernel",
  5568. .mode = 0555,
  5569. .child = sd_ctl_dir,
  5570. },
  5571. {0, },
  5572. };
  5573. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5574. {
  5575. struct ctl_table *entry =
  5576. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5577. return entry;
  5578. }
  5579. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5580. {
  5581. struct ctl_table *entry;
  5582. /*
  5583. * In the intermediate directories, both the child directory and
  5584. * procname are dynamically allocated and could fail but the mode
  5585. * will always be set. In the lowest directory the names are
  5586. * static strings and all have proc handlers.
  5587. */
  5588. for (entry = *tablep; entry->mode; entry++) {
  5589. if (entry->child)
  5590. sd_free_ctl_entry(&entry->child);
  5591. if (entry->proc_handler == NULL)
  5592. kfree(entry->procname);
  5593. }
  5594. kfree(*tablep);
  5595. *tablep = NULL;
  5596. }
  5597. static void
  5598. set_table_entry(struct ctl_table *entry,
  5599. const char *procname, void *data, int maxlen,
  5600. mode_t mode, proc_handler *proc_handler)
  5601. {
  5602. entry->procname = procname;
  5603. entry->data = data;
  5604. entry->maxlen = maxlen;
  5605. entry->mode = mode;
  5606. entry->proc_handler = proc_handler;
  5607. }
  5608. static struct ctl_table *
  5609. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5610. {
  5611. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5612. if (table == NULL)
  5613. return NULL;
  5614. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5615. sizeof(long), 0644, proc_doulongvec_minmax);
  5616. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5617. sizeof(long), 0644, proc_doulongvec_minmax);
  5618. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5619. sizeof(int), 0644, proc_dointvec_minmax);
  5620. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5621. sizeof(int), 0644, proc_dointvec_minmax);
  5622. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5623. sizeof(int), 0644, proc_dointvec_minmax);
  5624. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5625. sizeof(int), 0644, proc_dointvec_minmax);
  5626. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5627. sizeof(int), 0644, proc_dointvec_minmax);
  5628. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5629. sizeof(int), 0644, proc_dointvec_minmax);
  5630. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5631. sizeof(int), 0644, proc_dointvec_minmax);
  5632. set_table_entry(&table[9], "cache_nice_tries",
  5633. &sd->cache_nice_tries,
  5634. sizeof(int), 0644, proc_dointvec_minmax);
  5635. set_table_entry(&table[10], "flags", &sd->flags,
  5636. sizeof(int), 0644, proc_dointvec_minmax);
  5637. set_table_entry(&table[11], "name", sd->name,
  5638. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5639. /* &table[12] is terminator */
  5640. return table;
  5641. }
  5642. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5643. {
  5644. struct ctl_table *entry, *table;
  5645. struct sched_domain *sd;
  5646. int domain_num = 0, i;
  5647. char buf[32];
  5648. for_each_domain(cpu, sd)
  5649. domain_num++;
  5650. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5651. if (table == NULL)
  5652. return NULL;
  5653. i = 0;
  5654. for_each_domain(cpu, sd) {
  5655. snprintf(buf, 32, "domain%d", i);
  5656. entry->procname = kstrdup(buf, GFP_KERNEL);
  5657. entry->mode = 0555;
  5658. entry->child = sd_alloc_ctl_domain_table(sd);
  5659. entry++;
  5660. i++;
  5661. }
  5662. return table;
  5663. }
  5664. static struct ctl_table_header *sd_sysctl_header;
  5665. static void register_sched_domain_sysctl(void)
  5666. {
  5667. int i, cpu_num = num_online_cpus();
  5668. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5669. char buf[32];
  5670. WARN_ON(sd_ctl_dir[0].child);
  5671. sd_ctl_dir[0].child = entry;
  5672. if (entry == NULL)
  5673. return;
  5674. for_each_online_cpu(i) {
  5675. snprintf(buf, 32, "cpu%d", i);
  5676. entry->procname = kstrdup(buf, GFP_KERNEL);
  5677. entry->mode = 0555;
  5678. entry->child = sd_alloc_ctl_cpu_table(i);
  5679. entry++;
  5680. }
  5681. WARN_ON(sd_sysctl_header);
  5682. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5683. }
  5684. /* may be called multiple times per register */
  5685. static void unregister_sched_domain_sysctl(void)
  5686. {
  5687. if (sd_sysctl_header)
  5688. unregister_sysctl_table(sd_sysctl_header);
  5689. sd_sysctl_header = NULL;
  5690. if (sd_ctl_dir[0].child)
  5691. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5692. }
  5693. #else
  5694. static void register_sched_domain_sysctl(void)
  5695. {
  5696. }
  5697. static void unregister_sched_domain_sysctl(void)
  5698. {
  5699. }
  5700. #endif
  5701. static void set_rq_online(struct rq *rq)
  5702. {
  5703. if (!rq->online) {
  5704. const struct sched_class *class;
  5705. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5706. rq->online = 1;
  5707. for_each_class(class) {
  5708. if (class->rq_online)
  5709. class->rq_online(rq);
  5710. }
  5711. }
  5712. }
  5713. static void set_rq_offline(struct rq *rq)
  5714. {
  5715. if (rq->online) {
  5716. const struct sched_class *class;
  5717. for_each_class(class) {
  5718. if (class->rq_offline)
  5719. class->rq_offline(rq);
  5720. }
  5721. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5722. rq->online = 0;
  5723. }
  5724. }
  5725. /*
  5726. * migration_call - callback that gets triggered when a CPU is added.
  5727. * Here we can start up the necessary migration thread for the new CPU.
  5728. */
  5729. static int __cpuinit
  5730. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5731. {
  5732. struct task_struct *p;
  5733. int cpu = (long)hcpu;
  5734. unsigned long flags;
  5735. struct rq *rq;
  5736. switch (action) {
  5737. case CPU_UP_PREPARE:
  5738. case CPU_UP_PREPARE_FROZEN:
  5739. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5740. if (IS_ERR(p))
  5741. return NOTIFY_BAD;
  5742. kthread_bind(p, cpu);
  5743. /* Must be high prio: stop_machine expects to yield to it. */
  5744. rq = task_rq_lock(p, &flags);
  5745. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5746. task_rq_unlock(rq, &flags);
  5747. cpu_rq(cpu)->migration_thread = p;
  5748. break;
  5749. case CPU_ONLINE:
  5750. case CPU_ONLINE_FROZEN:
  5751. /* Strictly unnecessary, as first user will wake it. */
  5752. wake_up_process(cpu_rq(cpu)->migration_thread);
  5753. /* Update our root-domain */
  5754. rq = cpu_rq(cpu);
  5755. spin_lock_irqsave(&rq->lock, flags);
  5756. if (rq->rd) {
  5757. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5758. set_rq_online(rq);
  5759. }
  5760. spin_unlock_irqrestore(&rq->lock, flags);
  5761. break;
  5762. #ifdef CONFIG_HOTPLUG_CPU
  5763. case CPU_UP_CANCELED:
  5764. case CPU_UP_CANCELED_FROZEN:
  5765. if (!cpu_rq(cpu)->migration_thread)
  5766. break;
  5767. /* Unbind it from offline cpu so it can run. Fall thru. */
  5768. kthread_bind(cpu_rq(cpu)->migration_thread,
  5769. cpumask_any(cpu_online_mask));
  5770. kthread_stop(cpu_rq(cpu)->migration_thread);
  5771. cpu_rq(cpu)->migration_thread = NULL;
  5772. break;
  5773. case CPU_DEAD:
  5774. case CPU_DEAD_FROZEN:
  5775. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5776. migrate_live_tasks(cpu);
  5777. rq = cpu_rq(cpu);
  5778. kthread_stop(rq->migration_thread);
  5779. rq->migration_thread = NULL;
  5780. /* Idle task back to normal (off runqueue, low prio) */
  5781. spin_lock_irq(&rq->lock);
  5782. update_rq_clock(rq);
  5783. deactivate_task(rq, rq->idle, 0);
  5784. rq->idle->static_prio = MAX_PRIO;
  5785. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5786. rq->idle->sched_class = &idle_sched_class;
  5787. migrate_dead_tasks(cpu);
  5788. spin_unlock_irq(&rq->lock);
  5789. cpuset_unlock();
  5790. migrate_nr_uninterruptible(rq);
  5791. BUG_ON(rq->nr_running != 0);
  5792. /*
  5793. * No need to migrate the tasks: it was best-effort if
  5794. * they didn't take sched_hotcpu_mutex. Just wake up
  5795. * the requestors.
  5796. */
  5797. spin_lock_irq(&rq->lock);
  5798. while (!list_empty(&rq->migration_queue)) {
  5799. struct migration_req *req;
  5800. req = list_entry(rq->migration_queue.next,
  5801. struct migration_req, list);
  5802. list_del_init(&req->list);
  5803. spin_unlock_irq(&rq->lock);
  5804. complete(&req->done);
  5805. spin_lock_irq(&rq->lock);
  5806. }
  5807. spin_unlock_irq(&rq->lock);
  5808. break;
  5809. case CPU_DYING:
  5810. case CPU_DYING_FROZEN:
  5811. /* Update our root-domain */
  5812. rq = cpu_rq(cpu);
  5813. spin_lock_irqsave(&rq->lock, flags);
  5814. if (rq->rd) {
  5815. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5816. set_rq_offline(rq);
  5817. }
  5818. spin_unlock_irqrestore(&rq->lock, flags);
  5819. break;
  5820. #endif
  5821. }
  5822. return NOTIFY_OK;
  5823. }
  5824. /* Register at highest priority so that task migration (migrate_all_tasks)
  5825. * happens before everything else.
  5826. */
  5827. static struct notifier_block __cpuinitdata migration_notifier = {
  5828. .notifier_call = migration_call,
  5829. .priority = 10
  5830. };
  5831. static int __init migration_init(void)
  5832. {
  5833. void *cpu = (void *)(long)smp_processor_id();
  5834. int err;
  5835. /* Start one for the boot CPU: */
  5836. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5837. BUG_ON(err == NOTIFY_BAD);
  5838. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5839. register_cpu_notifier(&migration_notifier);
  5840. return err;
  5841. }
  5842. early_initcall(migration_init);
  5843. #endif
  5844. #ifdef CONFIG_SMP
  5845. #ifdef CONFIG_SCHED_DEBUG
  5846. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5847. struct cpumask *groupmask)
  5848. {
  5849. struct sched_group *group = sd->groups;
  5850. char str[256];
  5851. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5852. cpumask_clear(groupmask);
  5853. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5854. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5855. printk("does not load-balance\n");
  5856. if (sd->parent)
  5857. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5858. " has parent");
  5859. return -1;
  5860. }
  5861. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5862. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5863. printk(KERN_ERR "ERROR: domain->span does not contain "
  5864. "CPU%d\n", cpu);
  5865. }
  5866. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5867. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5868. " CPU%d\n", cpu);
  5869. }
  5870. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5871. do {
  5872. if (!group) {
  5873. printk("\n");
  5874. printk(KERN_ERR "ERROR: group is NULL\n");
  5875. break;
  5876. }
  5877. if (!group->__cpu_power) {
  5878. printk(KERN_CONT "\n");
  5879. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5880. "set\n");
  5881. break;
  5882. }
  5883. if (!cpumask_weight(sched_group_cpus(group))) {
  5884. printk(KERN_CONT "\n");
  5885. printk(KERN_ERR "ERROR: empty group\n");
  5886. break;
  5887. }
  5888. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5889. printk(KERN_CONT "\n");
  5890. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5891. break;
  5892. }
  5893. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5894. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5895. printk(KERN_CONT " %s", str);
  5896. group = group->next;
  5897. } while (group != sd->groups);
  5898. printk(KERN_CONT "\n");
  5899. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5900. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5901. if (sd->parent &&
  5902. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5903. printk(KERN_ERR "ERROR: parent span is not a superset "
  5904. "of domain->span\n");
  5905. return 0;
  5906. }
  5907. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5908. {
  5909. cpumask_var_t groupmask;
  5910. int level = 0;
  5911. if (!sd) {
  5912. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5913. return;
  5914. }
  5915. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5916. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5917. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5918. return;
  5919. }
  5920. for (;;) {
  5921. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5922. break;
  5923. level++;
  5924. sd = sd->parent;
  5925. if (!sd)
  5926. break;
  5927. }
  5928. free_cpumask_var(groupmask);
  5929. }
  5930. #else /* !CONFIG_SCHED_DEBUG */
  5931. # define sched_domain_debug(sd, cpu) do { } while (0)
  5932. #endif /* CONFIG_SCHED_DEBUG */
  5933. static int sd_degenerate(struct sched_domain *sd)
  5934. {
  5935. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5936. return 1;
  5937. /* Following flags need at least 2 groups */
  5938. if (sd->flags & (SD_LOAD_BALANCE |
  5939. SD_BALANCE_NEWIDLE |
  5940. SD_BALANCE_FORK |
  5941. SD_BALANCE_EXEC |
  5942. SD_SHARE_CPUPOWER |
  5943. SD_SHARE_PKG_RESOURCES)) {
  5944. if (sd->groups != sd->groups->next)
  5945. return 0;
  5946. }
  5947. /* Following flags don't use groups */
  5948. if (sd->flags & (SD_WAKE_IDLE |
  5949. SD_WAKE_AFFINE |
  5950. SD_WAKE_BALANCE))
  5951. return 0;
  5952. return 1;
  5953. }
  5954. static int
  5955. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5956. {
  5957. unsigned long cflags = sd->flags, pflags = parent->flags;
  5958. if (sd_degenerate(parent))
  5959. return 1;
  5960. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5961. return 0;
  5962. /* Does parent contain flags not in child? */
  5963. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5964. if (cflags & SD_WAKE_AFFINE)
  5965. pflags &= ~SD_WAKE_BALANCE;
  5966. /* Flags needing groups don't count if only 1 group in parent */
  5967. if (parent->groups == parent->groups->next) {
  5968. pflags &= ~(SD_LOAD_BALANCE |
  5969. SD_BALANCE_NEWIDLE |
  5970. SD_BALANCE_FORK |
  5971. SD_BALANCE_EXEC |
  5972. SD_SHARE_CPUPOWER |
  5973. SD_SHARE_PKG_RESOURCES);
  5974. if (nr_node_ids == 1)
  5975. pflags &= ~SD_SERIALIZE;
  5976. }
  5977. if (~cflags & pflags)
  5978. return 0;
  5979. return 1;
  5980. }
  5981. static void free_rootdomain(struct root_domain *rd)
  5982. {
  5983. cpupri_cleanup(&rd->cpupri);
  5984. free_cpumask_var(rd->rto_mask);
  5985. free_cpumask_var(rd->online);
  5986. free_cpumask_var(rd->span);
  5987. kfree(rd);
  5988. }
  5989. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5990. {
  5991. unsigned long flags;
  5992. spin_lock_irqsave(&rq->lock, flags);
  5993. if (rq->rd) {
  5994. struct root_domain *old_rd = rq->rd;
  5995. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5996. set_rq_offline(rq);
  5997. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5998. if (atomic_dec_and_test(&old_rd->refcount))
  5999. free_rootdomain(old_rd);
  6000. }
  6001. atomic_inc(&rd->refcount);
  6002. rq->rd = rd;
  6003. cpumask_set_cpu(rq->cpu, rd->span);
  6004. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6005. set_rq_online(rq);
  6006. spin_unlock_irqrestore(&rq->lock, flags);
  6007. }
  6008. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6009. {
  6010. memset(rd, 0, sizeof(*rd));
  6011. if (bootmem) {
  6012. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6013. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6014. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6015. cpupri_init(&rd->cpupri, true);
  6016. return 0;
  6017. }
  6018. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6019. goto out;
  6020. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6021. goto free_span;
  6022. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6023. goto free_online;
  6024. if (cpupri_init(&rd->cpupri, false) != 0)
  6025. goto free_rto_mask;
  6026. return 0;
  6027. free_rto_mask:
  6028. free_cpumask_var(rd->rto_mask);
  6029. free_online:
  6030. free_cpumask_var(rd->online);
  6031. free_span:
  6032. free_cpumask_var(rd->span);
  6033. out:
  6034. return -ENOMEM;
  6035. }
  6036. static void init_defrootdomain(void)
  6037. {
  6038. init_rootdomain(&def_root_domain, true);
  6039. atomic_set(&def_root_domain.refcount, 1);
  6040. }
  6041. static struct root_domain *alloc_rootdomain(void)
  6042. {
  6043. struct root_domain *rd;
  6044. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6045. if (!rd)
  6046. return NULL;
  6047. if (init_rootdomain(rd, false) != 0) {
  6048. kfree(rd);
  6049. return NULL;
  6050. }
  6051. return rd;
  6052. }
  6053. /*
  6054. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6055. * hold the hotplug lock.
  6056. */
  6057. static void
  6058. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6059. {
  6060. struct rq *rq = cpu_rq(cpu);
  6061. struct sched_domain *tmp;
  6062. /* Remove the sched domains which do not contribute to scheduling. */
  6063. for (tmp = sd; tmp; ) {
  6064. struct sched_domain *parent = tmp->parent;
  6065. if (!parent)
  6066. break;
  6067. if (sd_parent_degenerate(tmp, parent)) {
  6068. tmp->parent = parent->parent;
  6069. if (parent->parent)
  6070. parent->parent->child = tmp;
  6071. } else
  6072. tmp = tmp->parent;
  6073. }
  6074. if (sd && sd_degenerate(sd)) {
  6075. sd = sd->parent;
  6076. if (sd)
  6077. sd->child = NULL;
  6078. }
  6079. sched_domain_debug(sd, cpu);
  6080. rq_attach_root(rq, rd);
  6081. rcu_assign_pointer(rq->sd, sd);
  6082. }
  6083. /* cpus with isolated domains */
  6084. static cpumask_var_t cpu_isolated_map;
  6085. /* Setup the mask of cpus configured for isolated domains */
  6086. static int __init isolated_cpu_setup(char *str)
  6087. {
  6088. cpulist_parse(str, cpu_isolated_map);
  6089. return 1;
  6090. }
  6091. __setup("isolcpus=", isolated_cpu_setup);
  6092. /*
  6093. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6094. * to a function which identifies what group(along with sched group) a CPU
  6095. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6096. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6097. *
  6098. * init_sched_build_groups will build a circular linked list of the groups
  6099. * covered by the given span, and will set each group's ->cpumask correctly,
  6100. * and ->cpu_power to 0.
  6101. */
  6102. static void
  6103. init_sched_build_groups(const struct cpumask *span,
  6104. const struct cpumask *cpu_map,
  6105. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6106. struct sched_group **sg,
  6107. struct cpumask *tmpmask),
  6108. struct cpumask *covered, struct cpumask *tmpmask)
  6109. {
  6110. struct sched_group *first = NULL, *last = NULL;
  6111. int i;
  6112. cpumask_clear(covered);
  6113. for_each_cpu(i, span) {
  6114. struct sched_group *sg;
  6115. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6116. int j;
  6117. if (cpumask_test_cpu(i, covered))
  6118. continue;
  6119. cpumask_clear(sched_group_cpus(sg));
  6120. sg->__cpu_power = 0;
  6121. for_each_cpu(j, span) {
  6122. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6123. continue;
  6124. cpumask_set_cpu(j, covered);
  6125. cpumask_set_cpu(j, sched_group_cpus(sg));
  6126. }
  6127. if (!first)
  6128. first = sg;
  6129. if (last)
  6130. last->next = sg;
  6131. last = sg;
  6132. }
  6133. last->next = first;
  6134. }
  6135. #define SD_NODES_PER_DOMAIN 16
  6136. #ifdef CONFIG_NUMA
  6137. /**
  6138. * find_next_best_node - find the next node to include in a sched_domain
  6139. * @node: node whose sched_domain we're building
  6140. * @used_nodes: nodes already in the sched_domain
  6141. *
  6142. * Find the next node to include in a given scheduling domain. Simply
  6143. * finds the closest node not already in the @used_nodes map.
  6144. *
  6145. * Should use nodemask_t.
  6146. */
  6147. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6148. {
  6149. int i, n, val, min_val, best_node = 0;
  6150. min_val = INT_MAX;
  6151. for (i = 0; i < nr_node_ids; i++) {
  6152. /* Start at @node */
  6153. n = (node + i) % nr_node_ids;
  6154. if (!nr_cpus_node(n))
  6155. continue;
  6156. /* Skip already used nodes */
  6157. if (node_isset(n, *used_nodes))
  6158. continue;
  6159. /* Simple min distance search */
  6160. val = node_distance(node, n);
  6161. if (val < min_val) {
  6162. min_val = val;
  6163. best_node = n;
  6164. }
  6165. }
  6166. node_set(best_node, *used_nodes);
  6167. return best_node;
  6168. }
  6169. /**
  6170. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6171. * @node: node whose cpumask we're constructing
  6172. * @span: resulting cpumask
  6173. *
  6174. * Given a node, construct a good cpumask for its sched_domain to span. It
  6175. * should be one that prevents unnecessary balancing, but also spreads tasks
  6176. * out optimally.
  6177. */
  6178. static void sched_domain_node_span(int node, struct cpumask *span)
  6179. {
  6180. nodemask_t used_nodes;
  6181. int i;
  6182. cpumask_clear(span);
  6183. nodes_clear(used_nodes);
  6184. cpumask_or(span, span, cpumask_of_node(node));
  6185. node_set(node, used_nodes);
  6186. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6187. int next_node = find_next_best_node(node, &used_nodes);
  6188. cpumask_or(span, span, cpumask_of_node(next_node));
  6189. }
  6190. }
  6191. #endif /* CONFIG_NUMA */
  6192. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6193. /*
  6194. * The cpus mask in sched_group and sched_domain hangs off the end.
  6195. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6196. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6197. */
  6198. struct static_sched_group {
  6199. struct sched_group sg;
  6200. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6201. };
  6202. struct static_sched_domain {
  6203. struct sched_domain sd;
  6204. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6205. };
  6206. /*
  6207. * SMT sched-domains:
  6208. */
  6209. #ifdef CONFIG_SCHED_SMT
  6210. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6211. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6212. static int
  6213. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6214. struct sched_group **sg, struct cpumask *unused)
  6215. {
  6216. if (sg)
  6217. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6218. return cpu;
  6219. }
  6220. #endif /* CONFIG_SCHED_SMT */
  6221. /*
  6222. * multi-core sched-domains:
  6223. */
  6224. #ifdef CONFIG_SCHED_MC
  6225. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6226. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6227. #endif /* CONFIG_SCHED_MC */
  6228. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6229. static int
  6230. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6231. struct sched_group **sg, struct cpumask *mask)
  6232. {
  6233. int group;
  6234. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6235. group = cpumask_first(mask);
  6236. if (sg)
  6237. *sg = &per_cpu(sched_group_core, group).sg;
  6238. return group;
  6239. }
  6240. #elif defined(CONFIG_SCHED_MC)
  6241. static int
  6242. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6243. struct sched_group **sg, struct cpumask *unused)
  6244. {
  6245. if (sg)
  6246. *sg = &per_cpu(sched_group_core, cpu).sg;
  6247. return cpu;
  6248. }
  6249. #endif
  6250. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6251. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6252. static int
  6253. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6254. struct sched_group **sg, struct cpumask *mask)
  6255. {
  6256. int group;
  6257. #ifdef CONFIG_SCHED_MC
  6258. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6259. group = cpumask_first(mask);
  6260. #elif defined(CONFIG_SCHED_SMT)
  6261. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6262. group = cpumask_first(mask);
  6263. #else
  6264. group = cpu;
  6265. #endif
  6266. if (sg)
  6267. *sg = &per_cpu(sched_group_phys, group).sg;
  6268. return group;
  6269. }
  6270. #ifdef CONFIG_NUMA
  6271. /*
  6272. * The init_sched_build_groups can't handle what we want to do with node
  6273. * groups, so roll our own. Now each node has its own list of groups which
  6274. * gets dynamically allocated.
  6275. */
  6276. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6277. static struct sched_group ***sched_group_nodes_bycpu;
  6278. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6279. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6280. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6281. struct sched_group **sg,
  6282. struct cpumask *nodemask)
  6283. {
  6284. int group;
  6285. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6286. group = cpumask_first(nodemask);
  6287. if (sg)
  6288. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6289. return group;
  6290. }
  6291. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6292. {
  6293. struct sched_group *sg = group_head;
  6294. int j;
  6295. if (!sg)
  6296. return;
  6297. do {
  6298. for_each_cpu(j, sched_group_cpus(sg)) {
  6299. struct sched_domain *sd;
  6300. sd = &per_cpu(phys_domains, j).sd;
  6301. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6302. /*
  6303. * Only add "power" once for each
  6304. * physical package.
  6305. */
  6306. continue;
  6307. }
  6308. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6309. }
  6310. sg = sg->next;
  6311. } while (sg != group_head);
  6312. }
  6313. #endif /* CONFIG_NUMA */
  6314. #ifdef CONFIG_NUMA
  6315. /* Free memory allocated for various sched_group structures */
  6316. static void free_sched_groups(const struct cpumask *cpu_map,
  6317. struct cpumask *nodemask)
  6318. {
  6319. int cpu, i;
  6320. for_each_cpu(cpu, cpu_map) {
  6321. struct sched_group **sched_group_nodes
  6322. = sched_group_nodes_bycpu[cpu];
  6323. if (!sched_group_nodes)
  6324. continue;
  6325. for (i = 0; i < nr_node_ids; i++) {
  6326. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6327. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6328. if (cpumask_empty(nodemask))
  6329. continue;
  6330. if (sg == NULL)
  6331. continue;
  6332. sg = sg->next;
  6333. next_sg:
  6334. oldsg = sg;
  6335. sg = sg->next;
  6336. kfree(oldsg);
  6337. if (oldsg != sched_group_nodes[i])
  6338. goto next_sg;
  6339. }
  6340. kfree(sched_group_nodes);
  6341. sched_group_nodes_bycpu[cpu] = NULL;
  6342. }
  6343. }
  6344. #else /* !CONFIG_NUMA */
  6345. static void free_sched_groups(const struct cpumask *cpu_map,
  6346. struct cpumask *nodemask)
  6347. {
  6348. }
  6349. #endif /* CONFIG_NUMA */
  6350. /*
  6351. * Initialize sched groups cpu_power.
  6352. *
  6353. * cpu_power indicates the capacity of sched group, which is used while
  6354. * distributing the load between different sched groups in a sched domain.
  6355. * Typically cpu_power for all the groups in a sched domain will be same unless
  6356. * there are asymmetries in the topology. If there are asymmetries, group
  6357. * having more cpu_power will pickup more load compared to the group having
  6358. * less cpu_power.
  6359. *
  6360. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6361. * the maximum number of tasks a group can handle in the presence of other idle
  6362. * or lightly loaded groups in the same sched domain.
  6363. */
  6364. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6365. {
  6366. struct sched_domain *child;
  6367. struct sched_group *group;
  6368. WARN_ON(!sd || !sd->groups);
  6369. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6370. return;
  6371. child = sd->child;
  6372. sd->groups->__cpu_power = 0;
  6373. /*
  6374. * For perf policy, if the groups in child domain share resources
  6375. * (for example cores sharing some portions of the cache hierarchy
  6376. * or SMT), then set this domain groups cpu_power such that each group
  6377. * can handle only one task, when there are other idle groups in the
  6378. * same sched domain.
  6379. */
  6380. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6381. (child->flags &
  6382. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6383. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6384. return;
  6385. }
  6386. /*
  6387. * add cpu_power of each child group to this groups cpu_power
  6388. */
  6389. group = child->groups;
  6390. do {
  6391. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6392. group = group->next;
  6393. } while (group != child->groups);
  6394. }
  6395. /*
  6396. * Initializers for schedule domains
  6397. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6398. */
  6399. #ifdef CONFIG_SCHED_DEBUG
  6400. # define SD_INIT_NAME(sd, type) sd->name = #type
  6401. #else
  6402. # define SD_INIT_NAME(sd, type) do { } while (0)
  6403. #endif
  6404. #define SD_INIT(sd, type) sd_init_##type(sd)
  6405. #define SD_INIT_FUNC(type) \
  6406. static noinline void sd_init_##type(struct sched_domain *sd) \
  6407. { \
  6408. memset(sd, 0, sizeof(*sd)); \
  6409. *sd = SD_##type##_INIT; \
  6410. sd->level = SD_LV_##type; \
  6411. SD_INIT_NAME(sd, type); \
  6412. }
  6413. SD_INIT_FUNC(CPU)
  6414. #ifdef CONFIG_NUMA
  6415. SD_INIT_FUNC(ALLNODES)
  6416. SD_INIT_FUNC(NODE)
  6417. #endif
  6418. #ifdef CONFIG_SCHED_SMT
  6419. SD_INIT_FUNC(SIBLING)
  6420. #endif
  6421. #ifdef CONFIG_SCHED_MC
  6422. SD_INIT_FUNC(MC)
  6423. #endif
  6424. static int default_relax_domain_level = -1;
  6425. static int __init setup_relax_domain_level(char *str)
  6426. {
  6427. unsigned long val;
  6428. val = simple_strtoul(str, NULL, 0);
  6429. if (val < SD_LV_MAX)
  6430. default_relax_domain_level = val;
  6431. return 1;
  6432. }
  6433. __setup("relax_domain_level=", setup_relax_domain_level);
  6434. static void set_domain_attribute(struct sched_domain *sd,
  6435. struct sched_domain_attr *attr)
  6436. {
  6437. int request;
  6438. if (!attr || attr->relax_domain_level < 0) {
  6439. if (default_relax_domain_level < 0)
  6440. return;
  6441. else
  6442. request = default_relax_domain_level;
  6443. } else
  6444. request = attr->relax_domain_level;
  6445. if (request < sd->level) {
  6446. /* turn off idle balance on this domain */
  6447. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6448. } else {
  6449. /* turn on idle balance on this domain */
  6450. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6451. }
  6452. }
  6453. /*
  6454. * Build sched domains for a given set of cpus and attach the sched domains
  6455. * to the individual cpus
  6456. */
  6457. static int __build_sched_domains(const struct cpumask *cpu_map,
  6458. struct sched_domain_attr *attr)
  6459. {
  6460. int i, err = -ENOMEM;
  6461. struct root_domain *rd;
  6462. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6463. tmpmask;
  6464. #ifdef CONFIG_NUMA
  6465. cpumask_var_t domainspan, covered, notcovered;
  6466. struct sched_group **sched_group_nodes = NULL;
  6467. int sd_allnodes = 0;
  6468. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6469. goto out;
  6470. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6471. goto free_domainspan;
  6472. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6473. goto free_covered;
  6474. #endif
  6475. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6476. goto free_notcovered;
  6477. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6478. goto free_nodemask;
  6479. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6480. goto free_this_sibling_map;
  6481. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6482. goto free_this_core_map;
  6483. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6484. goto free_send_covered;
  6485. #ifdef CONFIG_NUMA
  6486. /*
  6487. * Allocate the per-node list of sched groups
  6488. */
  6489. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6490. GFP_KERNEL);
  6491. if (!sched_group_nodes) {
  6492. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6493. goto free_tmpmask;
  6494. }
  6495. #endif
  6496. rd = alloc_rootdomain();
  6497. if (!rd) {
  6498. printk(KERN_WARNING "Cannot alloc root domain\n");
  6499. goto free_sched_groups;
  6500. }
  6501. #ifdef CONFIG_NUMA
  6502. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6503. #endif
  6504. /*
  6505. * Set up domains for cpus specified by the cpu_map.
  6506. */
  6507. for_each_cpu(i, cpu_map) {
  6508. struct sched_domain *sd = NULL, *p;
  6509. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6510. #ifdef CONFIG_NUMA
  6511. if (cpumask_weight(cpu_map) >
  6512. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6513. sd = &per_cpu(allnodes_domains, i).sd;
  6514. SD_INIT(sd, ALLNODES);
  6515. set_domain_attribute(sd, attr);
  6516. cpumask_copy(sched_domain_span(sd), cpu_map);
  6517. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6518. p = sd;
  6519. sd_allnodes = 1;
  6520. } else
  6521. p = NULL;
  6522. sd = &per_cpu(node_domains, i).sd;
  6523. SD_INIT(sd, NODE);
  6524. set_domain_attribute(sd, attr);
  6525. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6526. sd->parent = p;
  6527. if (p)
  6528. p->child = sd;
  6529. cpumask_and(sched_domain_span(sd),
  6530. sched_domain_span(sd), cpu_map);
  6531. #endif
  6532. p = sd;
  6533. sd = &per_cpu(phys_domains, i).sd;
  6534. SD_INIT(sd, CPU);
  6535. set_domain_attribute(sd, attr);
  6536. cpumask_copy(sched_domain_span(sd), nodemask);
  6537. sd->parent = p;
  6538. if (p)
  6539. p->child = sd;
  6540. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6541. #ifdef CONFIG_SCHED_MC
  6542. p = sd;
  6543. sd = &per_cpu(core_domains, i).sd;
  6544. SD_INIT(sd, MC);
  6545. set_domain_attribute(sd, attr);
  6546. cpumask_and(sched_domain_span(sd), cpu_map,
  6547. cpu_coregroup_mask(i));
  6548. sd->parent = p;
  6549. p->child = sd;
  6550. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6551. #endif
  6552. #ifdef CONFIG_SCHED_SMT
  6553. p = sd;
  6554. sd = &per_cpu(cpu_domains, i).sd;
  6555. SD_INIT(sd, SIBLING);
  6556. set_domain_attribute(sd, attr);
  6557. cpumask_and(sched_domain_span(sd),
  6558. &per_cpu(cpu_sibling_map, i), cpu_map);
  6559. sd->parent = p;
  6560. p->child = sd;
  6561. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6562. #endif
  6563. }
  6564. #ifdef CONFIG_SCHED_SMT
  6565. /* Set up CPU (sibling) groups */
  6566. for_each_cpu(i, cpu_map) {
  6567. cpumask_and(this_sibling_map,
  6568. &per_cpu(cpu_sibling_map, i), cpu_map);
  6569. if (i != cpumask_first(this_sibling_map))
  6570. continue;
  6571. init_sched_build_groups(this_sibling_map, cpu_map,
  6572. &cpu_to_cpu_group,
  6573. send_covered, tmpmask);
  6574. }
  6575. #endif
  6576. #ifdef CONFIG_SCHED_MC
  6577. /* Set up multi-core groups */
  6578. for_each_cpu(i, cpu_map) {
  6579. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6580. if (i != cpumask_first(this_core_map))
  6581. continue;
  6582. init_sched_build_groups(this_core_map, cpu_map,
  6583. &cpu_to_core_group,
  6584. send_covered, tmpmask);
  6585. }
  6586. #endif
  6587. /* Set up physical groups */
  6588. for (i = 0; i < nr_node_ids; i++) {
  6589. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6590. if (cpumask_empty(nodemask))
  6591. continue;
  6592. init_sched_build_groups(nodemask, cpu_map,
  6593. &cpu_to_phys_group,
  6594. send_covered, tmpmask);
  6595. }
  6596. #ifdef CONFIG_NUMA
  6597. /* Set up node groups */
  6598. if (sd_allnodes) {
  6599. init_sched_build_groups(cpu_map, cpu_map,
  6600. &cpu_to_allnodes_group,
  6601. send_covered, tmpmask);
  6602. }
  6603. for (i = 0; i < nr_node_ids; i++) {
  6604. /* Set up node groups */
  6605. struct sched_group *sg, *prev;
  6606. int j;
  6607. cpumask_clear(covered);
  6608. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6609. if (cpumask_empty(nodemask)) {
  6610. sched_group_nodes[i] = NULL;
  6611. continue;
  6612. }
  6613. sched_domain_node_span(i, domainspan);
  6614. cpumask_and(domainspan, domainspan, cpu_map);
  6615. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6616. GFP_KERNEL, i);
  6617. if (!sg) {
  6618. printk(KERN_WARNING "Can not alloc domain group for "
  6619. "node %d\n", i);
  6620. goto error;
  6621. }
  6622. sched_group_nodes[i] = sg;
  6623. for_each_cpu(j, nodemask) {
  6624. struct sched_domain *sd;
  6625. sd = &per_cpu(node_domains, j).sd;
  6626. sd->groups = sg;
  6627. }
  6628. sg->__cpu_power = 0;
  6629. cpumask_copy(sched_group_cpus(sg), nodemask);
  6630. sg->next = sg;
  6631. cpumask_or(covered, covered, nodemask);
  6632. prev = sg;
  6633. for (j = 0; j < nr_node_ids; j++) {
  6634. int n = (i + j) % nr_node_ids;
  6635. cpumask_complement(notcovered, covered);
  6636. cpumask_and(tmpmask, notcovered, cpu_map);
  6637. cpumask_and(tmpmask, tmpmask, domainspan);
  6638. if (cpumask_empty(tmpmask))
  6639. break;
  6640. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  6641. if (cpumask_empty(tmpmask))
  6642. continue;
  6643. sg = kmalloc_node(sizeof(struct sched_group) +
  6644. cpumask_size(),
  6645. GFP_KERNEL, i);
  6646. if (!sg) {
  6647. printk(KERN_WARNING
  6648. "Can not alloc domain group for node %d\n", j);
  6649. goto error;
  6650. }
  6651. sg->__cpu_power = 0;
  6652. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6653. sg->next = prev->next;
  6654. cpumask_or(covered, covered, tmpmask);
  6655. prev->next = sg;
  6656. prev = sg;
  6657. }
  6658. }
  6659. #endif
  6660. /* Calculate CPU power for physical packages and nodes */
  6661. #ifdef CONFIG_SCHED_SMT
  6662. for_each_cpu(i, cpu_map) {
  6663. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6664. init_sched_groups_power(i, sd);
  6665. }
  6666. #endif
  6667. #ifdef CONFIG_SCHED_MC
  6668. for_each_cpu(i, cpu_map) {
  6669. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6670. init_sched_groups_power(i, sd);
  6671. }
  6672. #endif
  6673. for_each_cpu(i, cpu_map) {
  6674. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6675. init_sched_groups_power(i, sd);
  6676. }
  6677. #ifdef CONFIG_NUMA
  6678. for (i = 0; i < nr_node_ids; i++)
  6679. init_numa_sched_groups_power(sched_group_nodes[i]);
  6680. if (sd_allnodes) {
  6681. struct sched_group *sg;
  6682. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6683. tmpmask);
  6684. init_numa_sched_groups_power(sg);
  6685. }
  6686. #endif
  6687. /* Attach the domains */
  6688. for_each_cpu(i, cpu_map) {
  6689. struct sched_domain *sd;
  6690. #ifdef CONFIG_SCHED_SMT
  6691. sd = &per_cpu(cpu_domains, i).sd;
  6692. #elif defined(CONFIG_SCHED_MC)
  6693. sd = &per_cpu(core_domains, i).sd;
  6694. #else
  6695. sd = &per_cpu(phys_domains, i).sd;
  6696. #endif
  6697. cpu_attach_domain(sd, rd, i);
  6698. }
  6699. err = 0;
  6700. free_tmpmask:
  6701. free_cpumask_var(tmpmask);
  6702. free_send_covered:
  6703. free_cpumask_var(send_covered);
  6704. free_this_core_map:
  6705. free_cpumask_var(this_core_map);
  6706. free_this_sibling_map:
  6707. free_cpumask_var(this_sibling_map);
  6708. free_nodemask:
  6709. free_cpumask_var(nodemask);
  6710. free_notcovered:
  6711. #ifdef CONFIG_NUMA
  6712. free_cpumask_var(notcovered);
  6713. free_covered:
  6714. free_cpumask_var(covered);
  6715. free_domainspan:
  6716. free_cpumask_var(domainspan);
  6717. out:
  6718. #endif
  6719. return err;
  6720. free_sched_groups:
  6721. #ifdef CONFIG_NUMA
  6722. kfree(sched_group_nodes);
  6723. #endif
  6724. goto free_tmpmask;
  6725. #ifdef CONFIG_NUMA
  6726. error:
  6727. free_sched_groups(cpu_map, tmpmask);
  6728. free_rootdomain(rd);
  6729. goto free_tmpmask;
  6730. #endif
  6731. }
  6732. static int build_sched_domains(const struct cpumask *cpu_map)
  6733. {
  6734. return __build_sched_domains(cpu_map, NULL);
  6735. }
  6736. static struct cpumask *doms_cur; /* current sched domains */
  6737. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6738. static struct sched_domain_attr *dattr_cur;
  6739. /* attribues of custom domains in 'doms_cur' */
  6740. /*
  6741. * Special case: If a kmalloc of a doms_cur partition (array of
  6742. * cpumask) fails, then fallback to a single sched domain,
  6743. * as determined by the single cpumask fallback_doms.
  6744. */
  6745. static cpumask_var_t fallback_doms;
  6746. /*
  6747. * arch_update_cpu_topology lets virtualized architectures update the
  6748. * cpu core maps. It is supposed to return 1 if the topology changed
  6749. * or 0 if it stayed the same.
  6750. */
  6751. int __attribute__((weak)) arch_update_cpu_topology(void)
  6752. {
  6753. return 0;
  6754. }
  6755. /*
  6756. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6757. * For now this just excludes isolated cpus, but could be used to
  6758. * exclude other special cases in the future.
  6759. */
  6760. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6761. {
  6762. int err;
  6763. arch_update_cpu_topology();
  6764. ndoms_cur = 1;
  6765. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  6766. if (!doms_cur)
  6767. doms_cur = fallback_doms;
  6768. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  6769. dattr_cur = NULL;
  6770. err = build_sched_domains(doms_cur);
  6771. register_sched_domain_sysctl();
  6772. return err;
  6773. }
  6774. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6775. struct cpumask *tmpmask)
  6776. {
  6777. free_sched_groups(cpu_map, tmpmask);
  6778. }
  6779. /*
  6780. * Detach sched domains from a group of cpus specified in cpu_map
  6781. * These cpus will now be attached to the NULL domain
  6782. */
  6783. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6784. {
  6785. /* Save because hotplug lock held. */
  6786. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6787. int i;
  6788. for_each_cpu(i, cpu_map)
  6789. cpu_attach_domain(NULL, &def_root_domain, i);
  6790. synchronize_sched();
  6791. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6792. }
  6793. /* handle null as "default" */
  6794. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6795. struct sched_domain_attr *new, int idx_new)
  6796. {
  6797. struct sched_domain_attr tmp;
  6798. /* fast path */
  6799. if (!new && !cur)
  6800. return 1;
  6801. tmp = SD_ATTR_INIT;
  6802. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6803. new ? (new + idx_new) : &tmp,
  6804. sizeof(struct sched_domain_attr));
  6805. }
  6806. /*
  6807. * Partition sched domains as specified by the 'ndoms_new'
  6808. * cpumasks in the array doms_new[] of cpumasks. This compares
  6809. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6810. * It destroys each deleted domain and builds each new domain.
  6811. *
  6812. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  6813. * The masks don't intersect (don't overlap.) We should setup one
  6814. * sched domain for each mask. CPUs not in any of the cpumasks will
  6815. * not be load balanced. If the same cpumask appears both in the
  6816. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6817. * it as it is.
  6818. *
  6819. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6820. * ownership of it and will kfree it when done with it. If the caller
  6821. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6822. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6823. * the single partition 'fallback_doms', it also forces the domains
  6824. * to be rebuilt.
  6825. *
  6826. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6827. * ndoms_new == 0 is a special case for destroying existing domains,
  6828. * and it will not create the default domain.
  6829. *
  6830. * Call with hotplug lock held
  6831. */
  6832. /* FIXME: Change to struct cpumask *doms_new[] */
  6833. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  6834. struct sched_domain_attr *dattr_new)
  6835. {
  6836. int i, j, n;
  6837. int new_topology;
  6838. mutex_lock(&sched_domains_mutex);
  6839. /* always unregister in case we don't destroy any domains */
  6840. unregister_sched_domain_sysctl();
  6841. /* Let architecture update cpu core mappings. */
  6842. new_topology = arch_update_cpu_topology();
  6843. n = doms_new ? ndoms_new : 0;
  6844. /* Destroy deleted domains */
  6845. for (i = 0; i < ndoms_cur; i++) {
  6846. for (j = 0; j < n && !new_topology; j++) {
  6847. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  6848. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6849. goto match1;
  6850. }
  6851. /* no match - a current sched domain not in new doms_new[] */
  6852. detach_destroy_domains(doms_cur + i);
  6853. match1:
  6854. ;
  6855. }
  6856. if (doms_new == NULL) {
  6857. ndoms_cur = 0;
  6858. doms_new = fallback_doms;
  6859. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  6860. WARN_ON_ONCE(dattr_new);
  6861. }
  6862. /* Build new domains */
  6863. for (i = 0; i < ndoms_new; i++) {
  6864. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6865. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  6866. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6867. goto match2;
  6868. }
  6869. /* no match - add a new doms_new */
  6870. __build_sched_domains(doms_new + i,
  6871. dattr_new ? dattr_new + i : NULL);
  6872. match2:
  6873. ;
  6874. }
  6875. /* Remember the new sched domains */
  6876. if (doms_cur != fallback_doms)
  6877. kfree(doms_cur);
  6878. kfree(dattr_cur); /* kfree(NULL) is safe */
  6879. doms_cur = doms_new;
  6880. dattr_cur = dattr_new;
  6881. ndoms_cur = ndoms_new;
  6882. register_sched_domain_sysctl();
  6883. mutex_unlock(&sched_domains_mutex);
  6884. }
  6885. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6886. static void arch_reinit_sched_domains(void)
  6887. {
  6888. get_online_cpus();
  6889. /* Destroy domains first to force the rebuild */
  6890. partition_sched_domains(0, NULL, NULL);
  6891. rebuild_sched_domains();
  6892. put_online_cpus();
  6893. }
  6894. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6895. {
  6896. unsigned int level = 0;
  6897. if (sscanf(buf, "%u", &level) != 1)
  6898. return -EINVAL;
  6899. /*
  6900. * level is always be positive so don't check for
  6901. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6902. * What happens on 0 or 1 byte write,
  6903. * need to check for count as well?
  6904. */
  6905. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6906. return -EINVAL;
  6907. if (smt)
  6908. sched_smt_power_savings = level;
  6909. else
  6910. sched_mc_power_savings = level;
  6911. arch_reinit_sched_domains();
  6912. return count;
  6913. }
  6914. #ifdef CONFIG_SCHED_MC
  6915. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6916. char *page)
  6917. {
  6918. return sprintf(page, "%u\n", sched_mc_power_savings);
  6919. }
  6920. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6921. const char *buf, size_t count)
  6922. {
  6923. return sched_power_savings_store(buf, count, 0);
  6924. }
  6925. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6926. sched_mc_power_savings_show,
  6927. sched_mc_power_savings_store);
  6928. #endif
  6929. #ifdef CONFIG_SCHED_SMT
  6930. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6931. char *page)
  6932. {
  6933. return sprintf(page, "%u\n", sched_smt_power_savings);
  6934. }
  6935. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6936. const char *buf, size_t count)
  6937. {
  6938. return sched_power_savings_store(buf, count, 1);
  6939. }
  6940. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6941. sched_smt_power_savings_show,
  6942. sched_smt_power_savings_store);
  6943. #endif
  6944. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6945. {
  6946. int err = 0;
  6947. #ifdef CONFIG_SCHED_SMT
  6948. if (smt_capable())
  6949. err = sysfs_create_file(&cls->kset.kobj,
  6950. &attr_sched_smt_power_savings.attr);
  6951. #endif
  6952. #ifdef CONFIG_SCHED_MC
  6953. if (!err && mc_capable())
  6954. err = sysfs_create_file(&cls->kset.kobj,
  6955. &attr_sched_mc_power_savings.attr);
  6956. #endif
  6957. return err;
  6958. }
  6959. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6960. #ifndef CONFIG_CPUSETS
  6961. /*
  6962. * Add online and remove offline CPUs from the scheduler domains.
  6963. * When cpusets are enabled they take over this function.
  6964. */
  6965. static int update_sched_domains(struct notifier_block *nfb,
  6966. unsigned long action, void *hcpu)
  6967. {
  6968. switch (action) {
  6969. case CPU_ONLINE:
  6970. case CPU_ONLINE_FROZEN:
  6971. case CPU_DEAD:
  6972. case CPU_DEAD_FROZEN:
  6973. partition_sched_domains(1, NULL, NULL);
  6974. return NOTIFY_OK;
  6975. default:
  6976. return NOTIFY_DONE;
  6977. }
  6978. }
  6979. #endif
  6980. static int update_runtime(struct notifier_block *nfb,
  6981. unsigned long action, void *hcpu)
  6982. {
  6983. int cpu = (int)(long)hcpu;
  6984. switch (action) {
  6985. case CPU_DOWN_PREPARE:
  6986. case CPU_DOWN_PREPARE_FROZEN:
  6987. disable_runtime(cpu_rq(cpu));
  6988. return NOTIFY_OK;
  6989. case CPU_DOWN_FAILED:
  6990. case CPU_DOWN_FAILED_FROZEN:
  6991. case CPU_ONLINE:
  6992. case CPU_ONLINE_FROZEN:
  6993. enable_runtime(cpu_rq(cpu));
  6994. return NOTIFY_OK;
  6995. default:
  6996. return NOTIFY_DONE;
  6997. }
  6998. }
  6999. void __init sched_init_smp(void)
  7000. {
  7001. cpumask_var_t non_isolated_cpus;
  7002. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7003. #if defined(CONFIG_NUMA)
  7004. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7005. GFP_KERNEL);
  7006. BUG_ON(sched_group_nodes_bycpu == NULL);
  7007. #endif
  7008. get_online_cpus();
  7009. mutex_lock(&sched_domains_mutex);
  7010. arch_init_sched_domains(cpu_online_mask);
  7011. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7012. if (cpumask_empty(non_isolated_cpus))
  7013. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7014. mutex_unlock(&sched_domains_mutex);
  7015. put_online_cpus();
  7016. #ifndef CONFIG_CPUSETS
  7017. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7018. hotcpu_notifier(update_sched_domains, 0);
  7019. #endif
  7020. /* RT runtime code needs to handle some hotplug events */
  7021. hotcpu_notifier(update_runtime, 0);
  7022. init_hrtick();
  7023. /* Move init over to a non-isolated CPU */
  7024. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7025. BUG();
  7026. sched_init_granularity();
  7027. free_cpumask_var(non_isolated_cpus);
  7028. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7029. init_sched_rt_class();
  7030. }
  7031. #else
  7032. void __init sched_init_smp(void)
  7033. {
  7034. sched_init_granularity();
  7035. }
  7036. #endif /* CONFIG_SMP */
  7037. int in_sched_functions(unsigned long addr)
  7038. {
  7039. return in_lock_functions(addr) ||
  7040. (addr >= (unsigned long)__sched_text_start
  7041. && addr < (unsigned long)__sched_text_end);
  7042. }
  7043. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7044. {
  7045. cfs_rq->tasks_timeline = RB_ROOT;
  7046. INIT_LIST_HEAD(&cfs_rq->tasks);
  7047. #ifdef CONFIG_FAIR_GROUP_SCHED
  7048. cfs_rq->rq = rq;
  7049. #endif
  7050. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7051. }
  7052. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7053. {
  7054. struct rt_prio_array *array;
  7055. int i;
  7056. array = &rt_rq->active;
  7057. for (i = 0; i < MAX_RT_PRIO; i++) {
  7058. INIT_LIST_HEAD(array->queue + i);
  7059. __clear_bit(i, array->bitmap);
  7060. }
  7061. /* delimiter for bitsearch: */
  7062. __set_bit(MAX_RT_PRIO, array->bitmap);
  7063. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7064. rt_rq->highest_prio = MAX_RT_PRIO;
  7065. #endif
  7066. #ifdef CONFIG_SMP
  7067. rt_rq->rt_nr_migratory = 0;
  7068. rt_rq->overloaded = 0;
  7069. #endif
  7070. rt_rq->rt_time = 0;
  7071. rt_rq->rt_throttled = 0;
  7072. rt_rq->rt_runtime = 0;
  7073. spin_lock_init(&rt_rq->rt_runtime_lock);
  7074. #ifdef CONFIG_RT_GROUP_SCHED
  7075. rt_rq->rt_nr_boosted = 0;
  7076. rt_rq->rq = rq;
  7077. #endif
  7078. }
  7079. #ifdef CONFIG_FAIR_GROUP_SCHED
  7080. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7081. struct sched_entity *se, int cpu, int add,
  7082. struct sched_entity *parent)
  7083. {
  7084. struct rq *rq = cpu_rq(cpu);
  7085. tg->cfs_rq[cpu] = cfs_rq;
  7086. init_cfs_rq(cfs_rq, rq);
  7087. cfs_rq->tg = tg;
  7088. if (add)
  7089. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7090. tg->se[cpu] = se;
  7091. /* se could be NULL for init_task_group */
  7092. if (!se)
  7093. return;
  7094. if (!parent)
  7095. se->cfs_rq = &rq->cfs;
  7096. else
  7097. se->cfs_rq = parent->my_q;
  7098. se->my_q = cfs_rq;
  7099. se->load.weight = tg->shares;
  7100. se->load.inv_weight = 0;
  7101. se->parent = parent;
  7102. }
  7103. #endif
  7104. #ifdef CONFIG_RT_GROUP_SCHED
  7105. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7106. struct sched_rt_entity *rt_se, int cpu, int add,
  7107. struct sched_rt_entity *parent)
  7108. {
  7109. struct rq *rq = cpu_rq(cpu);
  7110. tg->rt_rq[cpu] = rt_rq;
  7111. init_rt_rq(rt_rq, rq);
  7112. rt_rq->tg = tg;
  7113. rt_rq->rt_se = rt_se;
  7114. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7115. if (add)
  7116. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7117. tg->rt_se[cpu] = rt_se;
  7118. if (!rt_se)
  7119. return;
  7120. if (!parent)
  7121. rt_se->rt_rq = &rq->rt;
  7122. else
  7123. rt_se->rt_rq = parent->my_q;
  7124. rt_se->my_q = rt_rq;
  7125. rt_se->parent = parent;
  7126. INIT_LIST_HEAD(&rt_se->run_list);
  7127. }
  7128. #endif
  7129. void __init sched_init(void)
  7130. {
  7131. int i, j;
  7132. unsigned long alloc_size = 0, ptr;
  7133. #ifdef CONFIG_FAIR_GROUP_SCHED
  7134. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7135. #endif
  7136. #ifdef CONFIG_RT_GROUP_SCHED
  7137. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7138. #endif
  7139. #ifdef CONFIG_USER_SCHED
  7140. alloc_size *= 2;
  7141. #endif
  7142. /*
  7143. * As sched_init() is called before page_alloc is setup,
  7144. * we use alloc_bootmem().
  7145. */
  7146. if (alloc_size) {
  7147. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7148. #ifdef CONFIG_FAIR_GROUP_SCHED
  7149. init_task_group.se = (struct sched_entity **)ptr;
  7150. ptr += nr_cpu_ids * sizeof(void **);
  7151. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7152. ptr += nr_cpu_ids * sizeof(void **);
  7153. #ifdef CONFIG_USER_SCHED
  7154. root_task_group.se = (struct sched_entity **)ptr;
  7155. ptr += nr_cpu_ids * sizeof(void **);
  7156. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7157. ptr += nr_cpu_ids * sizeof(void **);
  7158. #endif /* CONFIG_USER_SCHED */
  7159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7160. #ifdef CONFIG_RT_GROUP_SCHED
  7161. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7162. ptr += nr_cpu_ids * sizeof(void **);
  7163. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7164. ptr += nr_cpu_ids * sizeof(void **);
  7165. #ifdef CONFIG_USER_SCHED
  7166. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7167. ptr += nr_cpu_ids * sizeof(void **);
  7168. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7169. ptr += nr_cpu_ids * sizeof(void **);
  7170. #endif /* CONFIG_USER_SCHED */
  7171. #endif /* CONFIG_RT_GROUP_SCHED */
  7172. }
  7173. #ifdef CONFIG_SMP
  7174. init_defrootdomain();
  7175. #endif
  7176. init_rt_bandwidth(&def_rt_bandwidth,
  7177. global_rt_period(), global_rt_runtime());
  7178. #ifdef CONFIG_RT_GROUP_SCHED
  7179. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7180. global_rt_period(), global_rt_runtime());
  7181. #ifdef CONFIG_USER_SCHED
  7182. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7183. global_rt_period(), RUNTIME_INF);
  7184. #endif /* CONFIG_USER_SCHED */
  7185. #endif /* CONFIG_RT_GROUP_SCHED */
  7186. #ifdef CONFIG_GROUP_SCHED
  7187. list_add(&init_task_group.list, &task_groups);
  7188. INIT_LIST_HEAD(&init_task_group.children);
  7189. #ifdef CONFIG_USER_SCHED
  7190. INIT_LIST_HEAD(&root_task_group.children);
  7191. init_task_group.parent = &root_task_group;
  7192. list_add(&init_task_group.siblings, &root_task_group.children);
  7193. #endif /* CONFIG_USER_SCHED */
  7194. #endif /* CONFIG_GROUP_SCHED */
  7195. for_each_possible_cpu(i) {
  7196. struct rq *rq;
  7197. rq = cpu_rq(i);
  7198. spin_lock_init(&rq->lock);
  7199. rq->nr_running = 0;
  7200. init_cfs_rq(&rq->cfs, rq);
  7201. init_rt_rq(&rq->rt, rq);
  7202. #ifdef CONFIG_FAIR_GROUP_SCHED
  7203. init_task_group.shares = init_task_group_load;
  7204. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7205. #ifdef CONFIG_CGROUP_SCHED
  7206. /*
  7207. * How much cpu bandwidth does init_task_group get?
  7208. *
  7209. * In case of task-groups formed thr' the cgroup filesystem, it
  7210. * gets 100% of the cpu resources in the system. This overall
  7211. * system cpu resource is divided among the tasks of
  7212. * init_task_group and its child task-groups in a fair manner,
  7213. * based on each entity's (task or task-group's) weight
  7214. * (se->load.weight).
  7215. *
  7216. * In other words, if init_task_group has 10 tasks of weight
  7217. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7218. * then A0's share of the cpu resource is:
  7219. *
  7220. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7221. *
  7222. * We achieve this by letting init_task_group's tasks sit
  7223. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7224. */
  7225. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7226. #elif defined CONFIG_USER_SCHED
  7227. root_task_group.shares = NICE_0_LOAD;
  7228. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7229. /*
  7230. * In case of task-groups formed thr' the user id of tasks,
  7231. * init_task_group represents tasks belonging to root user.
  7232. * Hence it forms a sibling of all subsequent groups formed.
  7233. * In this case, init_task_group gets only a fraction of overall
  7234. * system cpu resource, based on the weight assigned to root
  7235. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7236. * by letting tasks of init_task_group sit in a separate cfs_rq
  7237. * (init_cfs_rq) and having one entity represent this group of
  7238. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7239. */
  7240. init_tg_cfs_entry(&init_task_group,
  7241. &per_cpu(init_cfs_rq, i),
  7242. &per_cpu(init_sched_entity, i), i, 1,
  7243. root_task_group.se[i]);
  7244. #endif
  7245. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7246. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7247. #ifdef CONFIG_RT_GROUP_SCHED
  7248. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7249. #ifdef CONFIG_CGROUP_SCHED
  7250. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7251. #elif defined CONFIG_USER_SCHED
  7252. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7253. init_tg_rt_entry(&init_task_group,
  7254. &per_cpu(init_rt_rq, i),
  7255. &per_cpu(init_sched_rt_entity, i), i, 1,
  7256. root_task_group.rt_se[i]);
  7257. #endif
  7258. #endif
  7259. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7260. rq->cpu_load[j] = 0;
  7261. #ifdef CONFIG_SMP
  7262. rq->sd = NULL;
  7263. rq->rd = NULL;
  7264. rq->active_balance = 0;
  7265. rq->next_balance = jiffies;
  7266. rq->push_cpu = 0;
  7267. rq->cpu = i;
  7268. rq->online = 0;
  7269. rq->migration_thread = NULL;
  7270. INIT_LIST_HEAD(&rq->migration_queue);
  7271. rq_attach_root(rq, &def_root_domain);
  7272. #endif
  7273. init_rq_hrtick(rq);
  7274. atomic_set(&rq->nr_iowait, 0);
  7275. }
  7276. set_load_weight(&init_task);
  7277. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7278. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7279. #endif
  7280. #ifdef CONFIG_SMP
  7281. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7282. #endif
  7283. #ifdef CONFIG_RT_MUTEXES
  7284. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7285. #endif
  7286. /*
  7287. * The boot idle thread does lazy MMU switching as well:
  7288. */
  7289. atomic_inc(&init_mm.mm_count);
  7290. enter_lazy_tlb(&init_mm, current);
  7291. /*
  7292. * Make us the idle thread. Technically, schedule() should not be
  7293. * called from this thread, however somewhere below it might be,
  7294. * but because we are the idle thread, we just pick up running again
  7295. * when this runqueue becomes "idle".
  7296. */
  7297. init_idle(current, smp_processor_id());
  7298. /*
  7299. * During early bootup we pretend to be a normal task:
  7300. */
  7301. current->sched_class = &fair_sched_class;
  7302. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7303. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7304. #ifdef CONFIG_SMP
  7305. #ifdef CONFIG_NO_HZ
  7306. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7307. #endif
  7308. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7309. #endif /* SMP */
  7310. scheduler_running = 1;
  7311. }
  7312. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7313. void __might_sleep(char *file, int line)
  7314. {
  7315. #ifdef in_atomic
  7316. static unsigned long prev_jiffy; /* ratelimiting */
  7317. if ((!in_atomic() && !irqs_disabled()) ||
  7318. system_state != SYSTEM_RUNNING || oops_in_progress)
  7319. return;
  7320. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7321. return;
  7322. prev_jiffy = jiffies;
  7323. printk(KERN_ERR
  7324. "BUG: sleeping function called from invalid context at %s:%d\n",
  7325. file, line);
  7326. printk(KERN_ERR
  7327. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7328. in_atomic(), irqs_disabled(),
  7329. current->pid, current->comm);
  7330. debug_show_held_locks(current);
  7331. if (irqs_disabled())
  7332. print_irqtrace_events(current);
  7333. dump_stack();
  7334. #endif
  7335. }
  7336. EXPORT_SYMBOL(__might_sleep);
  7337. #endif
  7338. #ifdef CONFIG_MAGIC_SYSRQ
  7339. static void normalize_task(struct rq *rq, struct task_struct *p)
  7340. {
  7341. int on_rq;
  7342. update_rq_clock(rq);
  7343. on_rq = p->se.on_rq;
  7344. if (on_rq)
  7345. deactivate_task(rq, p, 0);
  7346. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7347. if (on_rq) {
  7348. activate_task(rq, p, 0);
  7349. resched_task(rq->curr);
  7350. }
  7351. }
  7352. void normalize_rt_tasks(void)
  7353. {
  7354. struct task_struct *g, *p;
  7355. unsigned long flags;
  7356. struct rq *rq;
  7357. read_lock_irqsave(&tasklist_lock, flags);
  7358. do_each_thread(g, p) {
  7359. /*
  7360. * Only normalize user tasks:
  7361. */
  7362. if (!p->mm)
  7363. continue;
  7364. p->se.exec_start = 0;
  7365. #ifdef CONFIG_SCHEDSTATS
  7366. p->se.wait_start = 0;
  7367. p->se.sleep_start = 0;
  7368. p->se.block_start = 0;
  7369. #endif
  7370. if (!rt_task(p)) {
  7371. /*
  7372. * Renice negative nice level userspace
  7373. * tasks back to 0:
  7374. */
  7375. if (TASK_NICE(p) < 0 && p->mm)
  7376. set_user_nice(p, 0);
  7377. continue;
  7378. }
  7379. spin_lock(&p->pi_lock);
  7380. rq = __task_rq_lock(p);
  7381. normalize_task(rq, p);
  7382. __task_rq_unlock(rq);
  7383. spin_unlock(&p->pi_lock);
  7384. } while_each_thread(g, p);
  7385. read_unlock_irqrestore(&tasklist_lock, flags);
  7386. }
  7387. #endif /* CONFIG_MAGIC_SYSRQ */
  7388. #ifdef CONFIG_IA64
  7389. /*
  7390. * These functions are only useful for the IA64 MCA handling.
  7391. *
  7392. * They can only be called when the whole system has been
  7393. * stopped - every CPU needs to be quiescent, and no scheduling
  7394. * activity can take place. Using them for anything else would
  7395. * be a serious bug, and as a result, they aren't even visible
  7396. * under any other configuration.
  7397. */
  7398. /**
  7399. * curr_task - return the current task for a given cpu.
  7400. * @cpu: the processor in question.
  7401. *
  7402. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7403. */
  7404. struct task_struct *curr_task(int cpu)
  7405. {
  7406. return cpu_curr(cpu);
  7407. }
  7408. /**
  7409. * set_curr_task - set the current task for a given cpu.
  7410. * @cpu: the processor in question.
  7411. * @p: the task pointer to set.
  7412. *
  7413. * Description: This function must only be used when non-maskable interrupts
  7414. * are serviced on a separate stack. It allows the architecture to switch the
  7415. * notion of the current task on a cpu in a non-blocking manner. This function
  7416. * must be called with all CPU's synchronized, and interrupts disabled, the
  7417. * and caller must save the original value of the current task (see
  7418. * curr_task() above) and restore that value before reenabling interrupts and
  7419. * re-starting the system.
  7420. *
  7421. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7422. */
  7423. void set_curr_task(int cpu, struct task_struct *p)
  7424. {
  7425. cpu_curr(cpu) = p;
  7426. }
  7427. #endif
  7428. #ifdef CONFIG_FAIR_GROUP_SCHED
  7429. static void free_fair_sched_group(struct task_group *tg)
  7430. {
  7431. int i;
  7432. for_each_possible_cpu(i) {
  7433. if (tg->cfs_rq)
  7434. kfree(tg->cfs_rq[i]);
  7435. if (tg->se)
  7436. kfree(tg->se[i]);
  7437. }
  7438. kfree(tg->cfs_rq);
  7439. kfree(tg->se);
  7440. }
  7441. static
  7442. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7443. {
  7444. struct cfs_rq *cfs_rq;
  7445. struct sched_entity *se;
  7446. struct rq *rq;
  7447. int i;
  7448. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7449. if (!tg->cfs_rq)
  7450. goto err;
  7451. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7452. if (!tg->se)
  7453. goto err;
  7454. tg->shares = NICE_0_LOAD;
  7455. for_each_possible_cpu(i) {
  7456. rq = cpu_rq(i);
  7457. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7458. GFP_KERNEL, cpu_to_node(i));
  7459. if (!cfs_rq)
  7460. goto err;
  7461. se = kzalloc_node(sizeof(struct sched_entity),
  7462. GFP_KERNEL, cpu_to_node(i));
  7463. if (!se)
  7464. goto err;
  7465. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7466. }
  7467. return 1;
  7468. err:
  7469. return 0;
  7470. }
  7471. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7472. {
  7473. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7474. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7475. }
  7476. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7477. {
  7478. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7479. }
  7480. #else /* !CONFG_FAIR_GROUP_SCHED */
  7481. static inline void free_fair_sched_group(struct task_group *tg)
  7482. {
  7483. }
  7484. static inline
  7485. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7486. {
  7487. return 1;
  7488. }
  7489. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7490. {
  7491. }
  7492. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7493. {
  7494. }
  7495. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7496. #ifdef CONFIG_RT_GROUP_SCHED
  7497. static void free_rt_sched_group(struct task_group *tg)
  7498. {
  7499. int i;
  7500. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7501. for_each_possible_cpu(i) {
  7502. if (tg->rt_rq)
  7503. kfree(tg->rt_rq[i]);
  7504. if (tg->rt_se)
  7505. kfree(tg->rt_se[i]);
  7506. }
  7507. kfree(tg->rt_rq);
  7508. kfree(tg->rt_se);
  7509. }
  7510. static
  7511. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7512. {
  7513. struct rt_rq *rt_rq;
  7514. struct sched_rt_entity *rt_se;
  7515. struct rq *rq;
  7516. int i;
  7517. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7518. if (!tg->rt_rq)
  7519. goto err;
  7520. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7521. if (!tg->rt_se)
  7522. goto err;
  7523. init_rt_bandwidth(&tg->rt_bandwidth,
  7524. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7525. for_each_possible_cpu(i) {
  7526. rq = cpu_rq(i);
  7527. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7528. GFP_KERNEL, cpu_to_node(i));
  7529. if (!rt_rq)
  7530. goto err;
  7531. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7532. GFP_KERNEL, cpu_to_node(i));
  7533. if (!rt_se)
  7534. goto err;
  7535. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7536. }
  7537. return 1;
  7538. err:
  7539. return 0;
  7540. }
  7541. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7542. {
  7543. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7544. &cpu_rq(cpu)->leaf_rt_rq_list);
  7545. }
  7546. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7547. {
  7548. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7549. }
  7550. #else /* !CONFIG_RT_GROUP_SCHED */
  7551. static inline void free_rt_sched_group(struct task_group *tg)
  7552. {
  7553. }
  7554. static inline
  7555. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7556. {
  7557. return 1;
  7558. }
  7559. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7560. {
  7561. }
  7562. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7563. {
  7564. }
  7565. #endif /* CONFIG_RT_GROUP_SCHED */
  7566. #ifdef CONFIG_GROUP_SCHED
  7567. static void free_sched_group(struct task_group *tg)
  7568. {
  7569. free_fair_sched_group(tg);
  7570. free_rt_sched_group(tg);
  7571. kfree(tg);
  7572. }
  7573. /* allocate runqueue etc for a new task group */
  7574. struct task_group *sched_create_group(struct task_group *parent)
  7575. {
  7576. struct task_group *tg;
  7577. unsigned long flags;
  7578. int i;
  7579. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7580. if (!tg)
  7581. return ERR_PTR(-ENOMEM);
  7582. if (!alloc_fair_sched_group(tg, parent))
  7583. goto err;
  7584. if (!alloc_rt_sched_group(tg, parent))
  7585. goto err;
  7586. spin_lock_irqsave(&task_group_lock, flags);
  7587. for_each_possible_cpu(i) {
  7588. register_fair_sched_group(tg, i);
  7589. register_rt_sched_group(tg, i);
  7590. }
  7591. list_add_rcu(&tg->list, &task_groups);
  7592. WARN_ON(!parent); /* root should already exist */
  7593. tg->parent = parent;
  7594. INIT_LIST_HEAD(&tg->children);
  7595. list_add_rcu(&tg->siblings, &parent->children);
  7596. spin_unlock_irqrestore(&task_group_lock, flags);
  7597. return tg;
  7598. err:
  7599. free_sched_group(tg);
  7600. return ERR_PTR(-ENOMEM);
  7601. }
  7602. /* rcu callback to free various structures associated with a task group */
  7603. static void free_sched_group_rcu(struct rcu_head *rhp)
  7604. {
  7605. /* now it should be safe to free those cfs_rqs */
  7606. free_sched_group(container_of(rhp, struct task_group, rcu));
  7607. }
  7608. /* Destroy runqueue etc associated with a task group */
  7609. void sched_destroy_group(struct task_group *tg)
  7610. {
  7611. unsigned long flags;
  7612. int i;
  7613. spin_lock_irqsave(&task_group_lock, flags);
  7614. for_each_possible_cpu(i) {
  7615. unregister_fair_sched_group(tg, i);
  7616. unregister_rt_sched_group(tg, i);
  7617. }
  7618. list_del_rcu(&tg->list);
  7619. list_del_rcu(&tg->siblings);
  7620. spin_unlock_irqrestore(&task_group_lock, flags);
  7621. /* wait for possible concurrent references to cfs_rqs complete */
  7622. call_rcu(&tg->rcu, free_sched_group_rcu);
  7623. }
  7624. /* change task's runqueue when it moves between groups.
  7625. * The caller of this function should have put the task in its new group
  7626. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7627. * reflect its new group.
  7628. */
  7629. void sched_move_task(struct task_struct *tsk)
  7630. {
  7631. int on_rq, running;
  7632. unsigned long flags;
  7633. struct rq *rq;
  7634. rq = task_rq_lock(tsk, &flags);
  7635. update_rq_clock(rq);
  7636. running = task_current(rq, tsk);
  7637. on_rq = tsk->se.on_rq;
  7638. if (on_rq)
  7639. dequeue_task(rq, tsk, 0);
  7640. if (unlikely(running))
  7641. tsk->sched_class->put_prev_task(rq, tsk);
  7642. set_task_rq(tsk, task_cpu(tsk));
  7643. #ifdef CONFIG_FAIR_GROUP_SCHED
  7644. if (tsk->sched_class->moved_group)
  7645. tsk->sched_class->moved_group(tsk);
  7646. #endif
  7647. if (unlikely(running))
  7648. tsk->sched_class->set_curr_task(rq);
  7649. if (on_rq)
  7650. enqueue_task(rq, tsk, 0);
  7651. task_rq_unlock(rq, &flags);
  7652. }
  7653. #endif /* CONFIG_GROUP_SCHED */
  7654. #ifdef CONFIG_FAIR_GROUP_SCHED
  7655. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7656. {
  7657. struct cfs_rq *cfs_rq = se->cfs_rq;
  7658. int on_rq;
  7659. on_rq = se->on_rq;
  7660. if (on_rq)
  7661. dequeue_entity(cfs_rq, se, 0);
  7662. se->load.weight = shares;
  7663. se->load.inv_weight = 0;
  7664. if (on_rq)
  7665. enqueue_entity(cfs_rq, se, 0);
  7666. }
  7667. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7668. {
  7669. struct cfs_rq *cfs_rq = se->cfs_rq;
  7670. struct rq *rq = cfs_rq->rq;
  7671. unsigned long flags;
  7672. spin_lock_irqsave(&rq->lock, flags);
  7673. __set_se_shares(se, shares);
  7674. spin_unlock_irqrestore(&rq->lock, flags);
  7675. }
  7676. static DEFINE_MUTEX(shares_mutex);
  7677. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7678. {
  7679. int i;
  7680. unsigned long flags;
  7681. /*
  7682. * We can't change the weight of the root cgroup.
  7683. */
  7684. if (!tg->se[0])
  7685. return -EINVAL;
  7686. if (shares < MIN_SHARES)
  7687. shares = MIN_SHARES;
  7688. else if (shares > MAX_SHARES)
  7689. shares = MAX_SHARES;
  7690. mutex_lock(&shares_mutex);
  7691. if (tg->shares == shares)
  7692. goto done;
  7693. spin_lock_irqsave(&task_group_lock, flags);
  7694. for_each_possible_cpu(i)
  7695. unregister_fair_sched_group(tg, i);
  7696. list_del_rcu(&tg->siblings);
  7697. spin_unlock_irqrestore(&task_group_lock, flags);
  7698. /* wait for any ongoing reference to this group to finish */
  7699. synchronize_sched();
  7700. /*
  7701. * Now we are free to modify the group's share on each cpu
  7702. * w/o tripping rebalance_share or load_balance_fair.
  7703. */
  7704. tg->shares = shares;
  7705. for_each_possible_cpu(i) {
  7706. /*
  7707. * force a rebalance
  7708. */
  7709. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7710. set_se_shares(tg->se[i], shares);
  7711. }
  7712. /*
  7713. * Enable load balance activity on this group, by inserting it back on
  7714. * each cpu's rq->leaf_cfs_rq_list.
  7715. */
  7716. spin_lock_irqsave(&task_group_lock, flags);
  7717. for_each_possible_cpu(i)
  7718. register_fair_sched_group(tg, i);
  7719. list_add_rcu(&tg->siblings, &tg->parent->children);
  7720. spin_unlock_irqrestore(&task_group_lock, flags);
  7721. done:
  7722. mutex_unlock(&shares_mutex);
  7723. return 0;
  7724. }
  7725. unsigned long sched_group_shares(struct task_group *tg)
  7726. {
  7727. return tg->shares;
  7728. }
  7729. #endif
  7730. #ifdef CONFIG_RT_GROUP_SCHED
  7731. /*
  7732. * Ensure that the real time constraints are schedulable.
  7733. */
  7734. static DEFINE_MUTEX(rt_constraints_mutex);
  7735. static unsigned long to_ratio(u64 period, u64 runtime)
  7736. {
  7737. if (runtime == RUNTIME_INF)
  7738. return 1ULL << 20;
  7739. return div64_u64(runtime << 20, period);
  7740. }
  7741. /* Must be called with tasklist_lock held */
  7742. static inline int tg_has_rt_tasks(struct task_group *tg)
  7743. {
  7744. struct task_struct *g, *p;
  7745. do_each_thread(g, p) {
  7746. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7747. return 1;
  7748. } while_each_thread(g, p);
  7749. return 0;
  7750. }
  7751. struct rt_schedulable_data {
  7752. struct task_group *tg;
  7753. u64 rt_period;
  7754. u64 rt_runtime;
  7755. };
  7756. static int tg_schedulable(struct task_group *tg, void *data)
  7757. {
  7758. struct rt_schedulable_data *d = data;
  7759. struct task_group *child;
  7760. unsigned long total, sum = 0;
  7761. u64 period, runtime;
  7762. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7763. runtime = tg->rt_bandwidth.rt_runtime;
  7764. if (tg == d->tg) {
  7765. period = d->rt_period;
  7766. runtime = d->rt_runtime;
  7767. }
  7768. #ifdef CONFIG_USER_SCHED
  7769. if (tg == &root_task_group) {
  7770. period = global_rt_period();
  7771. runtime = global_rt_runtime();
  7772. }
  7773. #endif
  7774. /*
  7775. * Cannot have more runtime than the period.
  7776. */
  7777. if (runtime > period && runtime != RUNTIME_INF)
  7778. return -EINVAL;
  7779. /*
  7780. * Ensure we don't starve existing RT tasks.
  7781. */
  7782. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7783. return -EBUSY;
  7784. total = to_ratio(period, runtime);
  7785. /*
  7786. * Nobody can have more than the global setting allows.
  7787. */
  7788. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7789. return -EINVAL;
  7790. /*
  7791. * The sum of our children's runtime should not exceed our own.
  7792. */
  7793. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7794. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7795. runtime = child->rt_bandwidth.rt_runtime;
  7796. if (child == d->tg) {
  7797. period = d->rt_period;
  7798. runtime = d->rt_runtime;
  7799. }
  7800. sum += to_ratio(period, runtime);
  7801. }
  7802. if (sum > total)
  7803. return -EINVAL;
  7804. return 0;
  7805. }
  7806. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7807. {
  7808. struct rt_schedulable_data data = {
  7809. .tg = tg,
  7810. .rt_period = period,
  7811. .rt_runtime = runtime,
  7812. };
  7813. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7814. }
  7815. static int tg_set_bandwidth(struct task_group *tg,
  7816. u64 rt_period, u64 rt_runtime)
  7817. {
  7818. int i, err = 0;
  7819. mutex_lock(&rt_constraints_mutex);
  7820. read_lock(&tasklist_lock);
  7821. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7822. if (err)
  7823. goto unlock;
  7824. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7825. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7826. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7827. for_each_possible_cpu(i) {
  7828. struct rt_rq *rt_rq = tg->rt_rq[i];
  7829. spin_lock(&rt_rq->rt_runtime_lock);
  7830. rt_rq->rt_runtime = rt_runtime;
  7831. spin_unlock(&rt_rq->rt_runtime_lock);
  7832. }
  7833. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7834. unlock:
  7835. read_unlock(&tasklist_lock);
  7836. mutex_unlock(&rt_constraints_mutex);
  7837. return err;
  7838. }
  7839. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7840. {
  7841. u64 rt_runtime, rt_period;
  7842. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7843. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7844. if (rt_runtime_us < 0)
  7845. rt_runtime = RUNTIME_INF;
  7846. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7847. }
  7848. long sched_group_rt_runtime(struct task_group *tg)
  7849. {
  7850. u64 rt_runtime_us;
  7851. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7852. return -1;
  7853. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7854. do_div(rt_runtime_us, NSEC_PER_USEC);
  7855. return rt_runtime_us;
  7856. }
  7857. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7858. {
  7859. u64 rt_runtime, rt_period;
  7860. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7861. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7862. if (rt_period == 0)
  7863. return -EINVAL;
  7864. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7865. }
  7866. long sched_group_rt_period(struct task_group *tg)
  7867. {
  7868. u64 rt_period_us;
  7869. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7870. do_div(rt_period_us, NSEC_PER_USEC);
  7871. return rt_period_us;
  7872. }
  7873. static int sched_rt_global_constraints(void)
  7874. {
  7875. u64 runtime, period;
  7876. int ret = 0;
  7877. if (sysctl_sched_rt_period <= 0)
  7878. return -EINVAL;
  7879. runtime = global_rt_runtime();
  7880. period = global_rt_period();
  7881. /*
  7882. * Sanity check on the sysctl variables.
  7883. */
  7884. if (runtime > period && runtime != RUNTIME_INF)
  7885. return -EINVAL;
  7886. mutex_lock(&rt_constraints_mutex);
  7887. read_lock(&tasklist_lock);
  7888. ret = __rt_schedulable(NULL, 0, 0);
  7889. read_unlock(&tasklist_lock);
  7890. mutex_unlock(&rt_constraints_mutex);
  7891. return ret;
  7892. }
  7893. #else /* !CONFIG_RT_GROUP_SCHED */
  7894. static int sched_rt_global_constraints(void)
  7895. {
  7896. unsigned long flags;
  7897. int i;
  7898. if (sysctl_sched_rt_period <= 0)
  7899. return -EINVAL;
  7900. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7901. for_each_possible_cpu(i) {
  7902. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7903. spin_lock(&rt_rq->rt_runtime_lock);
  7904. rt_rq->rt_runtime = global_rt_runtime();
  7905. spin_unlock(&rt_rq->rt_runtime_lock);
  7906. }
  7907. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7908. return 0;
  7909. }
  7910. #endif /* CONFIG_RT_GROUP_SCHED */
  7911. int sched_rt_handler(struct ctl_table *table, int write,
  7912. struct file *filp, void __user *buffer, size_t *lenp,
  7913. loff_t *ppos)
  7914. {
  7915. int ret;
  7916. int old_period, old_runtime;
  7917. static DEFINE_MUTEX(mutex);
  7918. mutex_lock(&mutex);
  7919. old_period = sysctl_sched_rt_period;
  7920. old_runtime = sysctl_sched_rt_runtime;
  7921. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7922. if (!ret && write) {
  7923. ret = sched_rt_global_constraints();
  7924. if (ret) {
  7925. sysctl_sched_rt_period = old_period;
  7926. sysctl_sched_rt_runtime = old_runtime;
  7927. } else {
  7928. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7929. def_rt_bandwidth.rt_period =
  7930. ns_to_ktime(global_rt_period());
  7931. }
  7932. }
  7933. mutex_unlock(&mutex);
  7934. return ret;
  7935. }
  7936. #ifdef CONFIG_CGROUP_SCHED
  7937. /* return corresponding task_group object of a cgroup */
  7938. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7939. {
  7940. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7941. struct task_group, css);
  7942. }
  7943. static struct cgroup_subsys_state *
  7944. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7945. {
  7946. struct task_group *tg, *parent;
  7947. if (!cgrp->parent) {
  7948. /* This is early initialization for the top cgroup */
  7949. return &init_task_group.css;
  7950. }
  7951. parent = cgroup_tg(cgrp->parent);
  7952. tg = sched_create_group(parent);
  7953. if (IS_ERR(tg))
  7954. return ERR_PTR(-ENOMEM);
  7955. return &tg->css;
  7956. }
  7957. static void
  7958. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7959. {
  7960. struct task_group *tg = cgroup_tg(cgrp);
  7961. sched_destroy_group(tg);
  7962. }
  7963. static int
  7964. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7965. struct task_struct *tsk)
  7966. {
  7967. #ifdef CONFIG_RT_GROUP_SCHED
  7968. /* Don't accept realtime tasks when there is no way for them to run */
  7969. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7970. return -EINVAL;
  7971. #else
  7972. /* We don't support RT-tasks being in separate groups */
  7973. if (tsk->sched_class != &fair_sched_class)
  7974. return -EINVAL;
  7975. #endif
  7976. return 0;
  7977. }
  7978. static void
  7979. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7980. struct cgroup *old_cont, struct task_struct *tsk)
  7981. {
  7982. sched_move_task(tsk);
  7983. }
  7984. #ifdef CONFIG_FAIR_GROUP_SCHED
  7985. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7986. u64 shareval)
  7987. {
  7988. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7989. }
  7990. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7991. {
  7992. struct task_group *tg = cgroup_tg(cgrp);
  7993. return (u64) tg->shares;
  7994. }
  7995. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7996. #ifdef CONFIG_RT_GROUP_SCHED
  7997. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7998. s64 val)
  7999. {
  8000. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8001. }
  8002. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8003. {
  8004. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8005. }
  8006. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8007. u64 rt_period_us)
  8008. {
  8009. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8010. }
  8011. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8012. {
  8013. return sched_group_rt_period(cgroup_tg(cgrp));
  8014. }
  8015. #endif /* CONFIG_RT_GROUP_SCHED */
  8016. static struct cftype cpu_files[] = {
  8017. #ifdef CONFIG_FAIR_GROUP_SCHED
  8018. {
  8019. .name = "shares",
  8020. .read_u64 = cpu_shares_read_u64,
  8021. .write_u64 = cpu_shares_write_u64,
  8022. },
  8023. #endif
  8024. #ifdef CONFIG_RT_GROUP_SCHED
  8025. {
  8026. .name = "rt_runtime_us",
  8027. .read_s64 = cpu_rt_runtime_read,
  8028. .write_s64 = cpu_rt_runtime_write,
  8029. },
  8030. {
  8031. .name = "rt_period_us",
  8032. .read_u64 = cpu_rt_period_read_uint,
  8033. .write_u64 = cpu_rt_period_write_uint,
  8034. },
  8035. #endif
  8036. };
  8037. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8038. {
  8039. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8040. }
  8041. struct cgroup_subsys cpu_cgroup_subsys = {
  8042. .name = "cpu",
  8043. .create = cpu_cgroup_create,
  8044. .destroy = cpu_cgroup_destroy,
  8045. .can_attach = cpu_cgroup_can_attach,
  8046. .attach = cpu_cgroup_attach,
  8047. .populate = cpu_cgroup_populate,
  8048. .subsys_id = cpu_cgroup_subsys_id,
  8049. .early_init = 1,
  8050. };
  8051. #endif /* CONFIG_CGROUP_SCHED */
  8052. #ifdef CONFIG_CGROUP_CPUACCT
  8053. /*
  8054. * CPU accounting code for task groups.
  8055. *
  8056. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8057. * (balbir@in.ibm.com).
  8058. */
  8059. /* track cpu usage of a group of tasks and its child groups */
  8060. struct cpuacct {
  8061. struct cgroup_subsys_state css;
  8062. /* cpuusage holds pointer to a u64-type object on every cpu */
  8063. u64 *cpuusage;
  8064. struct cpuacct *parent;
  8065. };
  8066. struct cgroup_subsys cpuacct_subsys;
  8067. /* return cpu accounting group corresponding to this container */
  8068. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8069. {
  8070. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8071. struct cpuacct, css);
  8072. }
  8073. /* return cpu accounting group to which this task belongs */
  8074. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8075. {
  8076. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8077. struct cpuacct, css);
  8078. }
  8079. /* create a new cpu accounting group */
  8080. static struct cgroup_subsys_state *cpuacct_create(
  8081. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8082. {
  8083. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8084. if (!ca)
  8085. return ERR_PTR(-ENOMEM);
  8086. ca->cpuusage = alloc_percpu(u64);
  8087. if (!ca->cpuusage) {
  8088. kfree(ca);
  8089. return ERR_PTR(-ENOMEM);
  8090. }
  8091. if (cgrp->parent)
  8092. ca->parent = cgroup_ca(cgrp->parent);
  8093. return &ca->css;
  8094. }
  8095. /* destroy an existing cpu accounting group */
  8096. static void
  8097. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8098. {
  8099. struct cpuacct *ca = cgroup_ca(cgrp);
  8100. free_percpu(ca->cpuusage);
  8101. kfree(ca);
  8102. }
  8103. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8104. {
  8105. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8106. u64 data;
  8107. #ifndef CONFIG_64BIT
  8108. /*
  8109. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8110. */
  8111. spin_lock_irq(&cpu_rq(cpu)->lock);
  8112. data = *cpuusage;
  8113. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8114. #else
  8115. data = *cpuusage;
  8116. #endif
  8117. return data;
  8118. }
  8119. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8120. {
  8121. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8122. #ifndef CONFIG_64BIT
  8123. /*
  8124. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8125. */
  8126. spin_lock_irq(&cpu_rq(cpu)->lock);
  8127. *cpuusage = val;
  8128. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8129. #else
  8130. *cpuusage = val;
  8131. #endif
  8132. }
  8133. /* return total cpu usage (in nanoseconds) of a group */
  8134. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8135. {
  8136. struct cpuacct *ca = cgroup_ca(cgrp);
  8137. u64 totalcpuusage = 0;
  8138. int i;
  8139. for_each_present_cpu(i)
  8140. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8141. return totalcpuusage;
  8142. }
  8143. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8144. u64 reset)
  8145. {
  8146. struct cpuacct *ca = cgroup_ca(cgrp);
  8147. int err = 0;
  8148. int i;
  8149. if (reset) {
  8150. err = -EINVAL;
  8151. goto out;
  8152. }
  8153. for_each_present_cpu(i)
  8154. cpuacct_cpuusage_write(ca, i, 0);
  8155. out:
  8156. return err;
  8157. }
  8158. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8159. struct seq_file *m)
  8160. {
  8161. struct cpuacct *ca = cgroup_ca(cgroup);
  8162. u64 percpu;
  8163. int i;
  8164. for_each_present_cpu(i) {
  8165. percpu = cpuacct_cpuusage_read(ca, i);
  8166. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8167. }
  8168. seq_printf(m, "\n");
  8169. return 0;
  8170. }
  8171. static struct cftype files[] = {
  8172. {
  8173. .name = "usage",
  8174. .read_u64 = cpuusage_read,
  8175. .write_u64 = cpuusage_write,
  8176. },
  8177. {
  8178. .name = "usage_percpu",
  8179. .read_seq_string = cpuacct_percpu_seq_read,
  8180. },
  8181. };
  8182. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8183. {
  8184. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8185. }
  8186. /*
  8187. * charge this task's execution time to its accounting group.
  8188. *
  8189. * called with rq->lock held.
  8190. */
  8191. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8192. {
  8193. struct cpuacct *ca;
  8194. int cpu;
  8195. if (!cpuacct_subsys.active)
  8196. return;
  8197. cpu = task_cpu(tsk);
  8198. ca = task_ca(tsk);
  8199. for (; ca; ca = ca->parent) {
  8200. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8201. *cpuusage += cputime;
  8202. }
  8203. }
  8204. struct cgroup_subsys cpuacct_subsys = {
  8205. .name = "cpuacct",
  8206. .create = cpuacct_create,
  8207. .destroy = cpuacct_destroy,
  8208. .populate = cpuacct_populate,
  8209. .subsys_id = cpuacct_subsys_id,
  8210. };
  8211. #endif /* CONFIG_CGROUP_CPUACCT */