xfs_log_recover.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_bit.h"
  25. #include "xfs_inum.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_da_format.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_btree.h"
  35. #include "xfs_dinode.h"
  36. #include "xfs_inode.h"
  37. #include "xfs_trans.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_log.h"
  42. #include "xfs_log_priv.h"
  43. #include "xfs_log_recover.h"
  44. #include "xfs_extfree_item.h"
  45. #include "xfs_trans_priv.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_cksum.h"
  48. #include "xfs_trace.h"
  49. #include "xfs_icache.h"
  50. /* Need all the magic numbers and buffer ops structures from these headers */
  51. #include "xfs_da_btree.h"
  52. #include "xfs_dir2.h"
  53. #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
  54. STATIC int
  55. xlog_find_zeroed(
  56. struct xlog *,
  57. xfs_daddr_t *);
  58. STATIC int
  59. xlog_clear_stale_blocks(
  60. struct xlog *,
  61. xfs_lsn_t);
  62. #if defined(DEBUG)
  63. STATIC void
  64. xlog_recover_check_summary(
  65. struct xlog *);
  66. #else
  67. #define xlog_recover_check_summary(log)
  68. #endif
  69. /*
  70. * This structure is used during recovery to record the buf log items which
  71. * have been canceled and should not be replayed.
  72. */
  73. struct xfs_buf_cancel {
  74. xfs_daddr_t bc_blkno;
  75. uint bc_len;
  76. int bc_refcount;
  77. struct list_head bc_list;
  78. };
  79. /*
  80. * Sector aligned buffer routines for buffer create/read/write/access
  81. */
  82. /*
  83. * Verify the given count of basic blocks is valid number of blocks
  84. * to specify for an operation involving the given XFS log buffer.
  85. * Returns nonzero if the count is valid, 0 otherwise.
  86. */
  87. static inline int
  88. xlog_buf_bbcount_valid(
  89. struct xlog *log,
  90. int bbcount)
  91. {
  92. return bbcount > 0 && bbcount <= log->l_logBBsize;
  93. }
  94. /*
  95. * Allocate a buffer to hold log data. The buffer needs to be able
  96. * to map to a range of nbblks basic blocks at any valid (basic
  97. * block) offset within the log.
  98. */
  99. STATIC xfs_buf_t *
  100. xlog_get_bp(
  101. struct xlog *log,
  102. int nbblks)
  103. {
  104. struct xfs_buf *bp;
  105. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  106. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  107. nbblks);
  108. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  109. return NULL;
  110. }
  111. /*
  112. * We do log I/O in units of log sectors (a power-of-2
  113. * multiple of the basic block size), so we round up the
  114. * requested size to accommodate the basic blocks required
  115. * for complete log sectors.
  116. *
  117. * In addition, the buffer may be used for a non-sector-
  118. * aligned block offset, in which case an I/O of the
  119. * requested size could extend beyond the end of the
  120. * buffer. If the requested size is only 1 basic block it
  121. * will never straddle a sector boundary, so this won't be
  122. * an issue. Nor will this be a problem if the log I/O is
  123. * done in basic blocks (sector size 1). But otherwise we
  124. * extend the buffer by one extra log sector to ensure
  125. * there's space to accommodate this possibility.
  126. */
  127. if (nbblks > 1 && log->l_sectBBsize > 1)
  128. nbblks += log->l_sectBBsize;
  129. nbblks = round_up(nbblks, log->l_sectBBsize);
  130. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
  131. if (bp)
  132. xfs_buf_unlock(bp);
  133. return bp;
  134. }
  135. STATIC void
  136. xlog_put_bp(
  137. xfs_buf_t *bp)
  138. {
  139. xfs_buf_free(bp);
  140. }
  141. /*
  142. * Return the address of the start of the given block number's data
  143. * in a log buffer. The buffer covers a log sector-aligned region.
  144. */
  145. STATIC xfs_caddr_t
  146. xlog_align(
  147. struct xlog *log,
  148. xfs_daddr_t blk_no,
  149. int nbblks,
  150. struct xfs_buf *bp)
  151. {
  152. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  153. ASSERT(offset + nbblks <= bp->b_length);
  154. return bp->b_addr + BBTOB(offset);
  155. }
  156. /*
  157. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  158. */
  159. STATIC int
  160. xlog_bread_noalign(
  161. struct xlog *log,
  162. xfs_daddr_t blk_no,
  163. int nbblks,
  164. struct xfs_buf *bp)
  165. {
  166. int error;
  167. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  168. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  169. nbblks);
  170. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  171. return EFSCORRUPTED;
  172. }
  173. blk_no = round_down(blk_no, log->l_sectBBsize);
  174. nbblks = round_up(nbblks, log->l_sectBBsize);
  175. ASSERT(nbblks > 0);
  176. ASSERT(nbblks <= bp->b_length);
  177. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  178. XFS_BUF_READ(bp);
  179. bp->b_io_length = nbblks;
  180. bp->b_error = 0;
  181. xfsbdstrat(log->l_mp, bp);
  182. error = xfs_buf_iowait(bp);
  183. if (error)
  184. xfs_buf_ioerror_alert(bp, __func__);
  185. return error;
  186. }
  187. STATIC int
  188. xlog_bread(
  189. struct xlog *log,
  190. xfs_daddr_t blk_no,
  191. int nbblks,
  192. struct xfs_buf *bp,
  193. xfs_caddr_t *offset)
  194. {
  195. int error;
  196. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  197. if (error)
  198. return error;
  199. *offset = xlog_align(log, blk_no, nbblks, bp);
  200. return 0;
  201. }
  202. /*
  203. * Read at an offset into the buffer. Returns with the buffer in it's original
  204. * state regardless of the result of the read.
  205. */
  206. STATIC int
  207. xlog_bread_offset(
  208. struct xlog *log,
  209. xfs_daddr_t blk_no, /* block to read from */
  210. int nbblks, /* blocks to read */
  211. struct xfs_buf *bp,
  212. xfs_caddr_t offset)
  213. {
  214. xfs_caddr_t orig_offset = bp->b_addr;
  215. int orig_len = BBTOB(bp->b_length);
  216. int error, error2;
  217. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  218. if (error)
  219. return error;
  220. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  221. /* must reset buffer pointer even on error */
  222. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  223. if (error)
  224. return error;
  225. return error2;
  226. }
  227. /*
  228. * Write out the buffer at the given block for the given number of blocks.
  229. * The buffer is kept locked across the write and is returned locked.
  230. * This can only be used for synchronous log writes.
  231. */
  232. STATIC int
  233. xlog_bwrite(
  234. struct xlog *log,
  235. xfs_daddr_t blk_no,
  236. int nbblks,
  237. struct xfs_buf *bp)
  238. {
  239. int error;
  240. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  241. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  242. nbblks);
  243. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  244. return EFSCORRUPTED;
  245. }
  246. blk_no = round_down(blk_no, log->l_sectBBsize);
  247. nbblks = round_up(nbblks, log->l_sectBBsize);
  248. ASSERT(nbblks > 0);
  249. ASSERT(nbblks <= bp->b_length);
  250. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  251. XFS_BUF_ZEROFLAGS(bp);
  252. xfs_buf_hold(bp);
  253. xfs_buf_lock(bp);
  254. bp->b_io_length = nbblks;
  255. bp->b_error = 0;
  256. error = xfs_bwrite(bp);
  257. if (error)
  258. xfs_buf_ioerror_alert(bp, __func__);
  259. xfs_buf_relse(bp);
  260. return error;
  261. }
  262. #ifdef DEBUG
  263. /*
  264. * dump debug superblock and log record information
  265. */
  266. STATIC void
  267. xlog_header_check_dump(
  268. xfs_mount_t *mp,
  269. xlog_rec_header_t *head)
  270. {
  271. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
  272. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  273. xfs_debug(mp, " log : uuid = %pU, fmt = %d",
  274. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  275. }
  276. #else
  277. #define xlog_header_check_dump(mp, head)
  278. #endif
  279. /*
  280. * check log record header for recovery
  281. */
  282. STATIC int
  283. xlog_header_check_recover(
  284. xfs_mount_t *mp,
  285. xlog_rec_header_t *head)
  286. {
  287. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  288. /*
  289. * IRIX doesn't write the h_fmt field and leaves it zeroed
  290. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  291. * a dirty log created in IRIX.
  292. */
  293. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  294. xfs_warn(mp,
  295. "dirty log written in incompatible format - can't recover");
  296. xlog_header_check_dump(mp, head);
  297. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  298. XFS_ERRLEVEL_HIGH, mp);
  299. return XFS_ERROR(EFSCORRUPTED);
  300. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  301. xfs_warn(mp,
  302. "dirty log entry has mismatched uuid - can't recover");
  303. xlog_header_check_dump(mp, head);
  304. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  305. XFS_ERRLEVEL_HIGH, mp);
  306. return XFS_ERROR(EFSCORRUPTED);
  307. }
  308. return 0;
  309. }
  310. /*
  311. * read the head block of the log and check the header
  312. */
  313. STATIC int
  314. xlog_header_check_mount(
  315. xfs_mount_t *mp,
  316. xlog_rec_header_t *head)
  317. {
  318. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  319. if (uuid_is_nil(&head->h_fs_uuid)) {
  320. /*
  321. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  322. * h_fs_uuid is nil, we assume this log was last mounted
  323. * by IRIX and continue.
  324. */
  325. xfs_warn(mp, "nil uuid in log - IRIX style log");
  326. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  327. xfs_warn(mp, "log has mismatched uuid - can't recover");
  328. xlog_header_check_dump(mp, head);
  329. XFS_ERROR_REPORT("xlog_header_check_mount",
  330. XFS_ERRLEVEL_HIGH, mp);
  331. return XFS_ERROR(EFSCORRUPTED);
  332. }
  333. return 0;
  334. }
  335. STATIC void
  336. xlog_recover_iodone(
  337. struct xfs_buf *bp)
  338. {
  339. if (bp->b_error) {
  340. /*
  341. * We're not going to bother about retrying
  342. * this during recovery. One strike!
  343. */
  344. xfs_buf_ioerror_alert(bp, __func__);
  345. xfs_force_shutdown(bp->b_target->bt_mount,
  346. SHUTDOWN_META_IO_ERROR);
  347. }
  348. bp->b_iodone = NULL;
  349. xfs_buf_ioend(bp, 0);
  350. }
  351. /*
  352. * This routine finds (to an approximation) the first block in the physical
  353. * log which contains the given cycle. It uses a binary search algorithm.
  354. * Note that the algorithm can not be perfect because the disk will not
  355. * necessarily be perfect.
  356. */
  357. STATIC int
  358. xlog_find_cycle_start(
  359. struct xlog *log,
  360. struct xfs_buf *bp,
  361. xfs_daddr_t first_blk,
  362. xfs_daddr_t *last_blk,
  363. uint cycle)
  364. {
  365. xfs_caddr_t offset;
  366. xfs_daddr_t mid_blk;
  367. xfs_daddr_t end_blk;
  368. uint mid_cycle;
  369. int error;
  370. end_blk = *last_blk;
  371. mid_blk = BLK_AVG(first_blk, end_blk);
  372. while (mid_blk != first_blk && mid_blk != end_blk) {
  373. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  374. if (error)
  375. return error;
  376. mid_cycle = xlog_get_cycle(offset);
  377. if (mid_cycle == cycle)
  378. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  379. else
  380. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  381. mid_blk = BLK_AVG(first_blk, end_blk);
  382. }
  383. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  384. (mid_blk == end_blk && mid_blk-1 == first_blk));
  385. *last_blk = end_blk;
  386. return 0;
  387. }
  388. /*
  389. * Check that a range of blocks does not contain stop_on_cycle_no.
  390. * Fill in *new_blk with the block offset where such a block is
  391. * found, or with -1 (an invalid block number) if there is no such
  392. * block in the range. The scan needs to occur from front to back
  393. * and the pointer into the region must be updated since a later
  394. * routine will need to perform another test.
  395. */
  396. STATIC int
  397. xlog_find_verify_cycle(
  398. struct xlog *log,
  399. xfs_daddr_t start_blk,
  400. int nbblks,
  401. uint stop_on_cycle_no,
  402. xfs_daddr_t *new_blk)
  403. {
  404. xfs_daddr_t i, j;
  405. uint cycle;
  406. xfs_buf_t *bp;
  407. xfs_daddr_t bufblks;
  408. xfs_caddr_t buf = NULL;
  409. int error = 0;
  410. /*
  411. * Greedily allocate a buffer big enough to handle the full
  412. * range of basic blocks we'll be examining. If that fails,
  413. * try a smaller size. We need to be able to read at least
  414. * a log sector, or we're out of luck.
  415. */
  416. bufblks = 1 << ffs(nbblks);
  417. while (bufblks > log->l_logBBsize)
  418. bufblks >>= 1;
  419. while (!(bp = xlog_get_bp(log, bufblks))) {
  420. bufblks >>= 1;
  421. if (bufblks < log->l_sectBBsize)
  422. return ENOMEM;
  423. }
  424. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  425. int bcount;
  426. bcount = min(bufblks, (start_blk + nbblks - i));
  427. error = xlog_bread(log, i, bcount, bp, &buf);
  428. if (error)
  429. goto out;
  430. for (j = 0; j < bcount; j++) {
  431. cycle = xlog_get_cycle(buf);
  432. if (cycle == stop_on_cycle_no) {
  433. *new_blk = i+j;
  434. goto out;
  435. }
  436. buf += BBSIZE;
  437. }
  438. }
  439. *new_blk = -1;
  440. out:
  441. xlog_put_bp(bp);
  442. return error;
  443. }
  444. /*
  445. * Potentially backup over partial log record write.
  446. *
  447. * In the typical case, last_blk is the number of the block directly after
  448. * a good log record. Therefore, we subtract one to get the block number
  449. * of the last block in the given buffer. extra_bblks contains the number
  450. * of blocks we would have read on a previous read. This happens when the
  451. * last log record is split over the end of the physical log.
  452. *
  453. * extra_bblks is the number of blocks potentially verified on a previous
  454. * call to this routine.
  455. */
  456. STATIC int
  457. xlog_find_verify_log_record(
  458. struct xlog *log,
  459. xfs_daddr_t start_blk,
  460. xfs_daddr_t *last_blk,
  461. int extra_bblks)
  462. {
  463. xfs_daddr_t i;
  464. xfs_buf_t *bp;
  465. xfs_caddr_t offset = NULL;
  466. xlog_rec_header_t *head = NULL;
  467. int error = 0;
  468. int smallmem = 0;
  469. int num_blks = *last_blk - start_blk;
  470. int xhdrs;
  471. ASSERT(start_blk != 0 || *last_blk != start_blk);
  472. if (!(bp = xlog_get_bp(log, num_blks))) {
  473. if (!(bp = xlog_get_bp(log, 1)))
  474. return ENOMEM;
  475. smallmem = 1;
  476. } else {
  477. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  478. if (error)
  479. goto out;
  480. offset += ((num_blks - 1) << BBSHIFT);
  481. }
  482. for (i = (*last_blk) - 1; i >= 0; i--) {
  483. if (i < start_blk) {
  484. /* valid log record not found */
  485. xfs_warn(log->l_mp,
  486. "Log inconsistent (didn't find previous header)");
  487. ASSERT(0);
  488. error = XFS_ERROR(EIO);
  489. goto out;
  490. }
  491. if (smallmem) {
  492. error = xlog_bread(log, i, 1, bp, &offset);
  493. if (error)
  494. goto out;
  495. }
  496. head = (xlog_rec_header_t *)offset;
  497. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  498. break;
  499. if (!smallmem)
  500. offset -= BBSIZE;
  501. }
  502. /*
  503. * We hit the beginning of the physical log & still no header. Return
  504. * to caller. If caller can handle a return of -1, then this routine
  505. * will be called again for the end of the physical log.
  506. */
  507. if (i == -1) {
  508. error = -1;
  509. goto out;
  510. }
  511. /*
  512. * We have the final block of the good log (the first block
  513. * of the log record _before_ the head. So we check the uuid.
  514. */
  515. if ((error = xlog_header_check_mount(log->l_mp, head)))
  516. goto out;
  517. /*
  518. * We may have found a log record header before we expected one.
  519. * last_blk will be the 1st block # with a given cycle #. We may end
  520. * up reading an entire log record. In this case, we don't want to
  521. * reset last_blk. Only when last_blk points in the middle of a log
  522. * record do we update last_blk.
  523. */
  524. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  525. uint h_size = be32_to_cpu(head->h_size);
  526. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  527. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  528. xhdrs++;
  529. } else {
  530. xhdrs = 1;
  531. }
  532. if (*last_blk - i + extra_bblks !=
  533. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  534. *last_blk = i;
  535. out:
  536. xlog_put_bp(bp);
  537. return error;
  538. }
  539. /*
  540. * Head is defined to be the point of the log where the next log write
  541. * could go. This means that incomplete LR writes at the end are
  542. * eliminated when calculating the head. We aren't guaranteed that previous
  543. * LR have complete transactions. We only know that a cycle number of
  544. * current cycle number -1 won't be present in the log if we start writing
  545. * from our current block number.
  546. *
  547. * last_blk contains the block number of the first block with a given
  548. * cycle number.
  549. *
  550. * Return: zero if normal, non-zero if error.
  551. */
  552. STATIC int
  553. xlog_find_head(
  554. struct xlog *log,
  555. xfs_daddr_t *return_head_blk)
  556. {
  557. xfs_buf_t *bp;
  558. xfs_caddr_t offset;
  559. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  560. int num_scan_bblks;
  561. uint first_half_cycle, last_half_cycle;
  562. uint stop_on_cycle;
  563. int error, log_bbnum = log->l_logBBsize;
  564. /* Is the end of the log device zeroed? */
  565. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  566. *return_head_blk = first_blk;
  567. /* Is the whole lot zeroed? */
  568. if (!first_blk) {
  569. /* Linux XFS shouldn't generate totally zeroed logs -
  570. * mkfs etc write a dummy unmount record to a fresh
  571. * log so we can store the uuid in there
  572. */
  573. xfs_warn(log->l_mp, "totally zeroed log");
  574. }
  575. return 0;
  576. } else if (error) {
  577. xfs_warn(log->l_mp, "empty log check failed");
  578. return error;
  579. }
  580. first_blk = 0; /* get cycle # of 1st block */
  581. bp = xlog_get_bp(log, 1);
  582. if (!bp)
  583. return ENOMEM;
  584. error = xlog_bread(log, 0, 1, bp, &offset);
  585. if (error)
  586. goto bp_err;
  587. first_half_cycle = xlog_get_cycle(offset);
  588. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  589. error = xlog_bread(log, last_blk, 1, bp, &offset);
  590. if (error)
  591. goto bp_err;
  592. last_half_cycle = xlog_get_cycle(offset);
  593. ASSERT(last_half_cycle != 0);
  594. /*
  595. * If the 1st half cycle number is equal to the last half cycle number,
  596. * then the entire log is stamped with the same cycle number. In this
  597. * case, head_blk can't be set to zero (which makes sense). The below
  598. * math doesn't work out properly with head_blk equal to zero. Instead,
  599. * we set it to log_bbnum which is an invalid block number, but this
  600. * value makes the math correct. If head_blk doesn't changed through
  601. * all the tests below, *head_blk is set to zero at the very end rather
  602. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  603. * in a circular file.
  604. */
  605. if (first_half_cycle == last_half_cycle) {
  606. /*
  607. * In this case we believe that the entire log should have
  608. * cycle number last_half_cycle. We need to scan backwards
  609. * from the end verifying that there are no holes still
  610. * containing last_half_cycle - 1. If we find such a hole,
  611. * then the start of that hole will be the new head. The
  612. * simple case looks like
  613. * x | x ... | x - 1 | x
  614. * Another case that fits this picture would be
  615. * x | x + 1 | x ... | x
  616. * In this case the head really is somewhere at the end of the
  617. * log, as one of the latest writes at the beginning was
  618. * incomplete.
  619. * One more case is
  620. * x | x + 1 | x ... | x - 1 | x
  621. * This is really the combination of the above two cases, and
  622. * the head has to end up at the start of the x-1 hole at the
  623. * end of the log.
  624. *
  625. * In the 256k log case, we will read from the beginning to the
  626. * end of the log and search for cycle numbers equal to x-1.
  627. * We don't worry about the x+1 blocks that we encounter,
  628. * because we know that they cannot be the head since the log
  629. * started with x.
  630. */
  631. head_blk = log_bbnum;
  632. stop_on_cycle = last_half_cycle - 1;
  633. } else {
  634. /*
  635. * In this case we want to find the first block with cycle
  636. * number matching last_half_cycle. We expect the log to be
  637. * some variation on
  638. * x + 1 ... | x ... | x
  639. * The first block with cycle number x (last_half_cycle) will
  640. * be where the new head belongs. First we do a binary search
  641. * for the first occurrence of last_half_cycle. The binary
  642. * search may not be totally accurate, so then we scan back
  643. * from there looking for occurrences of last_half_cycle before
  644. * us. If that backwards scan wraps around the beginning of
  645. * the log, then we look for occurrences of last_half_cycle - 1
  646. * at the end of the log. The cases we're looking for look
  647. * like
  648. * v binary search stopped here
  649. * x + 1 ... | x | x + 1 | x ... | x
  650. * ^ but we want to locate this spot
  651. * or
  652. * <---------> less than scan distance
  653. * x + 1 ... | x ... | x - 1 | x
  654. * ^ we want to locate this spot
  655. */
  656. stop_on_cycle = last_half_cycle;
  657. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  658. &head_blk, last_half_cycle)))
  659. goto bp_err;
  660. }
  661. /*
  662. * Now validate the answer. Scan back some number of maximum possible
  663. * blocks and make sure each one has the expected cycle number. The
  664. * maximum is determined by the total possible amount of buffering
  665. * in the in-core log. The following number can be made tighter if
  666. * we actually look at the block size of the filesystem.
  667. */
  668. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  669. if (head_blk >= num_scan_bblks) {
  670. /*
  671. * We are guaranteed that the entire check can be performed
  672. * in one buffer.
  673. */
  674. start_blk = head_blk - num_scan_bblks;
  675. if ((error = xlog_find_verify_cycle(log,
  676. start_blk, num_scan_bblks,
  677. stop_on_cycle, &new_blk)))
  678. goto bp_err;
  679. if (new_blk != -1)
  680. head_blk = new_blk;
  681. } else { /* need to read 2 parts of log */
  682. /*
  683. * We are going to scan backwards in the log in two parts.
  684. * First we scan the physical end of the log. In this part
  685. * of the log, we are looking for blocks with cycle number
  686. * last_half_cycle - 1.
  687. * If we find one, then we know that the log starts there, as
  688. * we've found a hole that didn't get written in going around
  689. * the end of the physical log. The simple case for this is
  690. * x + 1 ... | x ... | x - 1 | x
  691. * <---------> less than scan distance
  692. * If all of the blocks at the end of the log have cycle number
  693. * last_half_cycle, then we check the blocks at the start of
  694. * the log looking for occurrences of last_half_cycle. If we
  695. * find one, then our current estimate for the location of the
  696. * first occurrence of last_half_cycle is wrong and we move
  697. * back to the hole we've found. This case looks like
  698. * x + 1 ... | x | x + 1 | x ...
  699. * ^ binary search stopped here
  700. * Another case we need to handle that only occurs in 256k
  701. * logs is
  702. * x + 1 ... | x ... | x+1 | x ...
  703. * ^ binary search stops here
  704. * In a 256k log, the scan at the end of the log will see the
  705. * x + 1 blocks. We need to skip past those since that is
  706. * certainly not the head of the log. By searching for
  707. * last_half_cycle-1 we accomplish that.
  708. */
  709. ASSERT(head_blk <= INT_MAX &&
  710. (xfs_daddr_t) num_scan_bblks >= head_blk);
  711. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  712. if ((error = xlog_find_verify_cycle(log, start_blk,
  713. num_scan_bblks - (int)head_blk,
  714. (stop_on_cycle - 1), &new_blk)))
  715. goto bp_err;
  716. if (new_blk != -1) {
  717. head_blk = new_blk;
  718. goto validate_head;
  719. }
  720. /*
  721. * Scan beginning of log now. The last part of the physical
  722. * log is good. This scan needs to verify that it doesn't find
  723. * the last_half_cycle.
  724. */
  725. start_blk = 0;
  726. ASSERT(head_blk <= INT_MAX);
  727. if ((error = xlog_find_verify_cycle(log,
  728. start_blk, (int)head_blk,
  729. stop_on_cycle, &new_blk)))
  730. goto bp_err;
  731. if (new_blk != -1)
  732. head_blk = new_blk;
  733. }
  734. validate_head:
  735. /*
  736. * Now we need to make sure head_blk is not pointing to a block in
  737. * the middle of a log record.
  738. */
  739. num_scan_bblks = XLOG_REC_SHIFT(log);
  740. if (head_blk >= num_scan_bblks) {
  741. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  742. /* start ptr at last block ptr before head_blk */
  743. if ((error = xlog_find_verify_log_record(log, start_blk,
  744. &head_blk, 0)) == -1) {
  745. error = XFS_ERROR(EIO);
  746. goto bp_err;
  747. } else if (error)
  748. goto bp_err;
  749. } else {
  750. start_blk = 0;
  751. ASSERT(head_blk <= INT_MAX);
  752. if ((error = xlog_find_verify_log_record(log, start_blk,
  753. &head_blk, 0)) == -1) {
  754. /* We hit the beginning of the log during our search */
  755. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  756. new_blk = log_bbnum;
  757. ASSERT(start_blk <= INT_MAX &&
  758. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  759. ASSERT(head_blk <= INT_MAX);
  760. if ((error = xlog_find_verify_log_record(log,
  761. start_blk, &new_blk,
  762. (int)head_blk)) == -1) {
  763. error = XFS_ERROR(EIO);
  764. goto bp_err;
  765. } else if (error)
  766. goto bp_err;
  767. if (new_blk != log_bbnum)
  768. head_blk = new_blk;
  769. } else if (error)
  770. goto bp_err;
  771. }
  772. xlog_put_bp(bp);
  773. if (head_blk == log_bbnum)
  774. *return_head_blk = 0;
  775. else
  776. *return_head_blk = head_blk;
  777. /*
  778. * When returning here, we have a good block number. Bad block
  779. * means that during a previous crash, we didn't have a clean break
  780. * from cycle number N to cycle number N-1. In this case, we need
  781. * to find the first block with cycle number N-1.
  782. */
  783. return 0;
  784. bp_err:
  785. xlog_put_bp(bp);
  786. if (error)
  787. xfs_warn(log->l_mp, "failed to find log head");
  788. return error;
  789. }
  790. /*
  791. * Find the sync block number or the tail of the log.
  792. *
  793. * This will be the block number of the last record to have its
  794. * associated buffers synced to disk. Every log record header has
  795. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  796. * to get a sync block number. The only concern is to figure out which
  797. * log record header to believe.
  798. *
  799. * The following algorithm uses the log record header with the largest
  800. * lsn. The entire log record does not need to be valid. We only care
  801. * that the header is valid.
  802. *
  803. * We could speed up search by using current head_blk buffer, but it is not
  804. * available.
  805. */
  806. STATIC int
  807. xlog_find_tail(
  808. struct xlog *log,
  809. xfs_daddr_t *head_blk,
  810. xfs_daddr_t *tail_blk)
  811. {
  812. xlog_rec_header_t *rhead;
  813. xlog_op_header_t *op_head;
  814. xfs_caddr_t offset = NULL;
  815. xfs_buf_t *bp;
  816. int error, i, found;
  817. xfs_daddr_t umount_data_blk;
  818. xfs_daddr_t after_umount_blk;
  819. xfs_lsn_t tail_lsn;
  820. int hblks;
  821. found = 0;
  822. /*
  823. * Find previous log record
  824. */
  825. if ((error = xlog_find_head(log, head_blk)))
  826. return error;
  827. bp = xlog_get_bp(log, 1);
  828. if (!bp)
  829. return ENOMEM;
  830. if (*head_blk == 0) { /* special case */
  831. error = xlog_bread(log, 0, 1, bp, &offset);
  832. if (error)
  833. goto done;
  834. if (xlog_get_cycle(offset) == 0) {
  835. *tail_blk = 0;
  836. /* leave all other log inited values alone */
  837. goto done;
  838. }
  839. }
  840. /*
  841. * Search backwards looking for log record header block
  842. */
  843. ASSERT(*head_blk < INT_MAX);
  844. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  845. error = xlog_bread(log, i, 1, bp, &offset);
  846. if (error)
  847. goto done;
  848. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  849. found = 1;
  850. break;
  851. }
  852. }
  853. /*
  854. * If we haven't found the log record header block, start looking
  855. * again from the end of the physical log. XXXmiken: There should be
  856. * a check here to make sure we didn't search more than N blocks in
  857. * the previous code.
  858. */
  859. if (!found) {
  860. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  861. error = xlog_bread(log, i, 1, bp, &offset);
  862. if (error)
  863. goto done;
  864. if (*(__be32 *)offset ==
  865. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  866. found = 2;
  867. break;
  868. }
  869. }
  870. }
  871. if (!found) {
  872. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  873. xlog_put_bp(bp);
  874. ASSERT(0);
  875. return XFS_ERROR(EIO);
  876. }
  877. /* find blk_no of tail of log */
  878. rhead = (xlog_rec_header_t *)offset;
  879. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  880. /*
  881. * Reset log values according to the state of the log when we
  882. * crashed. In the case where head_blk == 0, we bump curr_cycle
  883. * one because the next write starts a new cycle rather than
  884. * continuing the cycle of the last good log record. At this
  885. * point we have guaranteed that all partial log records have been
  886. * accounted for. Therefore, we know that the last good log record
  887. * written was complete and ended exactly on the end boundary
  888. * of the physical log.
  889. */
  890. log->l_prev_block = i;
  891. log->l_curr_block = (int)*head_blk;
  892. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  893. if (found == 2)
  894. log->l_curr_cycle++;
  895. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  896. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  897. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  898. BBTOB(log->l_curr_block));
  899. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  900. BBTOB(log->l_curr_block));
  901. /*
  902. * Look for unmount record. If we find it, then we know there
  903. * was a clean unmount. Since 'i' could be the last block in
  904. * the physical log, we convert to a log block before comparing
  905. * to the head_blk.
  906. *
  907. * Save the current tail lsn to use to pass to
  908. * xlog_clear_stale_blocks() below. We won't want to clear the
  909. * unmount record if there is one, so we pass the lsn of the
  910. * unmount record rather than the block after it.
  911. */
  912. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  913. int h_size = be32_to_cpu(rhead->h_size);
  914. int h_version = be32_to_cpu(rhead->h_version);
  915. if ((h_version & XLOG_VERSION_2) &&
  916. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  917. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  918. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  919. hblks++;
  920. } else {
  921. hblks = 1;
  922. }
  923. } else {
  924. hblks = 1;
  925. }
  926. after_umount_blk = (i + hblks + (int)
  927. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  928. tail_lsn = atomic64_read(&log->l_tail_lsn);
  929. if (*head_blk == after_umount_blk &&
  930. be32_to_cpu(rhead->h_num_logops) == 1) {
  931. umount_data_blk = (i + hblks) % log->l_logBBsize;
  932. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  933. if (error)
  934. goto done;
  935. op_head = (xlog_op_header_t *)offset;
  936. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  937. /*
  938. * Set tail and last sync so that newly written
  939. * log records will point recovery to after the
  940. * current unmount record.
  941. */
  942. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  943. log->l_curr_cycle, after_umount_blk);
  944. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  945. log->l_curr_cycle, after_umount_blk);
  946. *tail_blk = after_umount_blk;
  947. /*
  948. * Note that the unmount was clean. If the unmount
  949. * was not clean, we need to know this to rebuild the
  950. * superblock counters from the perag headers if we
  951. * have a filesystem using non-persistent counters.
  952. */
  953. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  954. }
  955. }
  956. /*
  957. * Make sure that there are no blocks in front of the head
  958. * with the same cycle number as the head. This can happen
  959. * because we allow multiple outstanding log writes concurrently,
  960. * and the later writes might make it out before earlier ones.
  961. *
  962. * We use the lsn from before modifying it so that we'll never
  963. * overwrite the unmount record after a clean unmount.
  964. *
  965. * Do this only if we are going to recover the filesystem
  966. *
  967. * NOTE: This used to say "if (!readonly)"
  968. * However on Linux, we can & do recover a read-only filesystem.
  969. * We only skip recovery if NORECOVERY is specified on mount,
  970. * in which case we would not be here.
  971. *
  972. * But... if the -device- itself is readonly, just skip this.
  973. * We can't recover this device anyway, so it won't matter.
  974. */
  975. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  976. error = xlog_clear_stale_blocks(log, tail_lsn);
  977. done:
  978. xlog_put_bp(bp);
  979. if (error)
  980. xfs_warn(log->l_mp, "failed to locate log tail");
  981. return error;
  982. }
  983. /*
  984. * Is the log zeroed at all?
  985. *
  986. * The last binary search should be changed to perform an X block read
  987. * once X becomes small enough. You can then search linearly through
  988. * the X blocks. This will cut down on the number of reads we need to do.
  989. *
  990. * If the log is partially zeroed, this routine will pass back the blkno
  991. * of the first block with cycle number 0. It won't have a complete LR
  992. * preceding it.
  993. *
  994. * Return:
  995. * 0 => the log is completely written to
  996. * -1 => use *blk_no as the first block of the log
  997. * >0 => error has occurred
  998. */
  999. STATIC int
  1000. xlog_find_zeroed(
  1001. struct xlog *log,
  1002. xfs_daddr_t *blk_no)
  1003. {
  1004. xfs_buf_t *bp;
  1005. xfs_caddr_t offset;
  1006. uint first_cycle, last_cycle;
  1007. xfs_daddr_t new_blk, last_blk, start_blk;
  1008. xfs_daddr_t num_scan_bblks;
  1009. int error, log_bbnum = log->l_logBBsize;
  1010. *blk_no = 0;
  1011. /* check totally zeroed log */
  1012. bp = xlog_get_bp(log, 1);
  1013. if (!bp)
  1014. return ENOMEM;
  1015. error = xlog_bread(log, 0, 1, bp, &offset);
  1016. if (error)
  1017. goto bp_err;
  1018. first_cycle = xlog_get_cycle(offset);
  1019. if (first_cycle == 0) { /* completely zeroed log */
  1020. *blk_no = 0;
  1021. xlog_put_bp(bp);
  1022. return -1;
  1023. }
  1024. /* check partially zeroed log */
  1025. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1026. if (error)
  1027. goto bp_err;
  1028. last_cycle = xlog_get_cycle(offset);
  1029. if (last_cycle != 0) { /* log completely written to */
  1030. xlog_put_bp(bp);
  1031. return 0;
  1032. } else if (first_cycle != 1) {
  1033. /*
  1034. * If the cycle of the last block is zero, the cycle of
  1035. * the first block must be 1. If it's not, maybe we're
  1036. * not looking at a log... Bail out.
  1037. */
  1038. xfs_warn(log->l_mp,
  1039. "Log inconsistent or not a log (last==0, first!=1)");
  1040. error = XFS_ERROR(EINVAL);
  1041. goto bp_err;
  1042. }
  1043. /* we have a partially zeroed log */
  1044. last_blk = log_bbnum-1;
  1045. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1046. goto bp_err;
  1047. /*
  1048. * Validate the answer. Because there is no way to guarantee that
  1049. * the entire log is made up of log records which are the same size,
  1050. * we scan over the defined maximum blocks. At this point, the maximum
  1051. * is not chosen to mean anything special. XXXmiken
  1052. */
  1053. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1054. ASSERT(num_scan_bblks <= INT_MAX);
  1055. if (last_blk < num_scan_bblks)
  1056. num_scan_bblks = last_blk;
  1057. start_blk = last_blk - num_scan_bblks;
  1058. /*
  1059. * We search for any instances of cycle number 0 that occur before
  1060. * our current estimate of the head. What we're trying to detect is
  1061. * 1 ... | 0 | 1 | 0...
  1062. * ^ binary search ends here
  1063. */
  1064. if ((error = xlog_find_verify_cycle(log, start_blk,
  1065. (int)num_scan_bblks, 0, &new_blk)))
  1066. goto bp_err;
  1067. if (new_blk != -1)
  1068. last_blk = new_blk;
  1069. /*
  1070. * Potentially backup over partial log record write. We don't need
  1071. * to search the end of the log because we know it is zero.
  1072. */
  1073. if ((error = xlog_find_verify_log_record(log, start_blk,
  1074. &last_blk, 0)) == -1) {
  1075. error = XFS_ERROR(EIO);
  1076. goto bp_err;
  1077. } else if (error)
  1078. goto bp_err;
  1079. *blk_no = last_blk;
  1080. bp_err:
  1081. xlog_put_bp(bp);
  1082. if (error)
  1083. return error;
  1084. return -1;
  1085. }
  1086. /*
  1087. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1088. * to initialize a buffer full of empty log record headers and write
  1089. * them into the log.
  1090. */
  1091. STATIC void
  1092. xlog_add_record(
  1093. struct xlog *log,
  1094. xfs_caddr_t buf,
  1095. int cycle,
  1096. int block,
  1097. int tail_cycle,
  1098. int tail_block)
  1099. {
  1100. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1101. memset(buf, 0, BBSIZE);
  1102. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1103. recp->h_cycle = cpu_to_be32(cycle);
  1104. recp->h_version = cpu_to_be32(
  1105. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1106. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1107. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1108. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1109. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1110. }
  1111. STATIC int
  1112. xlog_write_log_records(
  1113. struct xlog *log,
  1114. int cycle,
  1115. int start_block,
  1116. int blocks,
  1117. int tail_cycle,
  1118. int tail_block)
  1119. {
  1120. xfs_caddr_t offset;
  1121. xfs_buf_t *bp;
  1122. int balign, ealign;
  1123. int sectbb = log->l_sectBBsize;
  1124. int end_block = start_block + blocks;
  1125. int bufblks;
  1126. int error = 0;
  1127. int i, j = 0;
  1128. /*
  1129. * Greedily allocate a buffer big enough to handle the full
  1130. * range of basic blocks to be written. If that fails, try
  1131. * a smaller size. We need to be able to write at least a
  1132. * log sector, or we're out of luck.
  1133. */
  1134. bufblks = 1 << ffs(blocks);
  1135. while (bufblks > log->l_logBBsize)
  1136. bufblks >>= 1;
  1137. while (!(bp = xlog_get_bp(log, bufblks))) {
  1138. bufblks >>= 1;
  1139. if (bufblks < sectbb)
  1140. return ENOMEM;
  1141. }
  1142. /* We may need to do a read at the start to fill in part of
  1143. * the buffer in the starting sector not covered by the first
  1144. * write below.
  1145. */
  1146. balign = round_down(start_block, sectbb);
  1147. if (balign != start_block) {
  1148. error = xlog_bread_noalign(log, start_block, 1, bp);
  1149. if (error)
  1150. goto out_put_bp;
  1151. j = start_block - balign;
  1152. }
  1153. for (i = start_block; i < end_block; i += bufblks) {
  1154. int bcount, endcount;
  1155. bcount = min(bufblks, end_block - start_block);
  1156. endcount = bcount - j;
  1157. /* We may need to do a read at the end to fill in part of
  1158. * the buffer in the final sector not covered by the write.
  1159. * If this is the same sector as the above read, skip it.
  1160. */
  1161. ealign = round_down(end_block, sectbb);
  1162. if (j == 0 && (start_block + endcount > ealign)) {
  1163. offset = bp->b_addr + BBTOB(ealign - start_block);
  1164. error = xlog_bread_offset(log, ealign, sectbb,
  1165. bp, offset);
  1166. if (error)
  1167. break;
  1168. }
  1169. offset = xlog_align(log, start_block, endcount, bp);
  1170. for (; j < endcount; j++) {
  1171. xlog_add_record(log, offset, cycle, i+j,
  1172. tail_cycle, tail_block);
  1173. offset += BBSIZE;
  1174. }
  1175. error = xlog_bwrite(log, start_block, endcount, bp);
  1176. if (error)
  1177. break;
  1178. start_block += endcount;
  1179. j = 0;
  1180. }
  1181. out_put_bp:
  1182. xlog_put_bp(bp);
  1183. return error;
  1184. }
  1185. /*
  1186. * This routine is called to blow away any incomplete log writes out
  1187. * in front of the log head. We do this so that we won't become confused
  1188. * if we come up, write only a little bit more, and then crash again.
  1189. * If we leave the partial log records out there, this situation could
  1190. * cause us to think those partial writes are valid blocks since they
  1191. * have the current cycle number. We get rid of them by overwriting them
  1192. * with empty log records with the old cycle number rather than the
  1193. * current one.
  1194. *
  1195. * The tail lsn is passed in rather than taken from
  1196. * the log so that we will not write over the unmount record after a
  1197. * clean unmount in a 512 block log. Doing so would leave the log without
  1198. * any valid log records in it until a new one was written. If we crashed
  1199. * during that time we would not be able to recover.
  1200. */
  1201. STATIC int
  1202. xlog_clear_stale_blocks(
  1203. struct xlog *log,
  1204. xfs_lsn_t tail_lsn)
  1205. {
  1206. int tail_cycle, head_cycle;
  1207. int tail_block, head_block;
  1208. int tail_distance, max_distance;
  1209. int distance;
  1210. int error;
  1211. tail_cycle = CYCLE_LSN(tail_lsn);
  1212. tail_block = BLOCK_LSN(tail_lsn);
  1213. head_cycle = log->l_curr_cycle;
  1214. head_block = log->l_curr_block;
  1215. /*
  1216. * Figure out the distance between the new head of the log
  1217. * and the tail. We want to write over any blocks beyond the
  1218. * head that we may have written just before the crash, but
  1219. * we don't want to overwrite the tail of the log.
  1220. */
  1221. if (head_cycle == tail_cycle) {
  1222. /*
  1223. * The tail is behind the head in the physical log,
  1224. * so the distance from the head to the tail is the
  1225. * distance from the head to the end of the log plus
  1226. * the distance from the beginning of the log to the
  1227. * tail.
  1228. */
  1229. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1230. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1231. XFS_ERRLEVEL_LOW, log->l_mp);
  1232. return XFS_ERROR(EFSCORRUPTED);
  1233. }
  1234. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1235. } else {
  1236. /*
  1237. * The head is behind the tail in the physical log,
  1238. * so the distance from the head to the tail is just
  1239. * the tail block minus the head block.
  1240. */
  1241. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1242. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1243. XFS_ERRLEVEL_LOW, log->l_mp);
  1244. return XFS_ERROR(EFSCORRUPTED);
  1245. }
  1246. tail_distance = tail_block - head_block;
  1247. }
  1248. /*
  1249. * If the head is right up against the tail, we can't clear
  1250. * anything.
  1251. */
  1252. if (tail_distance <= 0) {
  1253. ASSERT(tail_distance == 0);
  1254. return 0;
  1255. }
  1256. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1257. /*
  1258. * Take the smaller of the maximum amount of outstanding I/O
  1259. * we could have and the distance to the tail to clear out.
  1260. * We take the smaller so that we don't overwrite the tail and
  1261. * we don't waste all day writing from the head to the tail
  1262. * for no reason.
  1263. */
  1264. max_distance = MIN(max_distance, tail_distance);
  1265. if ((head_block + max_distance) <= log->l_logBBsize) {
  1266. /*
  1267. * We can stomp all the blocks we need to without
  1268. * wrapping around the end of the log. Just do it
  1269. * in a single write. Use the cycle number of the
  1270. * current cycle minus one so that the log will look like:
  1271. * n ... | n - 1 ...
  1272. */
  1273. error = xlog_write_log_records(log, (head_cycle - 1),
  1274. head_block, max_distance, tail_cycle,
  1275. tail_block);
  1276. if (error)
  1277. return error;
  1278. } else {
  1279. /*
  1280. * We need to wrap around the end of the physical log in
  1281. * order to clear all the blocks. Do it in two separate
  1282. * I/Os. The first write should be from the head to the
  1283. * end of the physical log, and it should use the current
  1284. * cycle number minus one just like above.
  1285. */
  1286. distance = log->l_logBBsize - head_block;
  1287. error = xlog_write_log_records(log, (head_cycle - 1),
  1288. head_block, distance, tail_cycle,
  1289. tail_block);
  1290. if (error)
  1291. return error;
  1292. /*
  1293. * Now write the blocks at the start of the physical log.
  1294. * This writes the remainder of the blocks we want to clear.
  1295. * It uses the current cycle number since we're now on the
  1296. * same cycle as the head so that we get:
  1297. * n ... n ... | n - 1 ...
  1298. * ^^^^^ blocks we're writing
  1299. */
  1300. distance = max_distance - (log->l_logBBsize - head_block);
  1301. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1302. tail_cycle, tail_block);
  1303. if (error)
  1304. return error;
  1305. }
  1306. return 0;
  1307. }
  1308. /******************************************************************************
  1309. *
  1310. * Log recover routines
  1311. *
  1312. ******************************************************************************
  1313. */
  1314. STATIC xlog_recover_t *
  1315. xlog_recover_find_tid(
  1316. struct hlist_head *head,
  1317. xlog_tid_t tid)
  1318. {
  1319. xlog_recover_t *trans;
  1320. hlist_for_each_entry(trans, head, r_list) {
  1321. if (trans->r_log_tid == tid)
  1322. return trans;
  1323. }
  1324. return NULL;
  1325. }
  1326. STATIC void
  1327. xlog_recover_new_tid(
  1328. struct hlist_head *head,
  1329. xlog_tid_t tid,
  1330. xfs_lsn_t lsn)
  1331. {
  1332. xlog_recover_t *trans;
  1333. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1334. trans->r_log_tid = tid;
  1335. trans->r_lsn = lsn;
  1336. INIT_LIST_HEAD(&trans->r_itemq);
  1337. INIT_HLIST_NODE(&trans->r_list);
  1338. hlist_add_head(&trans->r_list, head);
  1339. }
  1340. STATIC void
  1341. xlog_recover_add_item(
  1342. struct list_head *head)
  1343. {
  1344. xlog_recover_item_t *item;
  1345. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1346. INIT_LIST_HEAD(&item->ri_list);
  1347. list_add_tail(&item->ri_list, head);
  1348. }
  1349. STATIC int
  1350. xlog_recover_add_to_cont_trans(
  1351. struct xlog *log,
  1352. struct xlog_recover *trans,
  1353. xfs_caddr_t dp,
  1354. int len)
  1355. {
  1356. xlog_recover_item_t *item;
  1357. xfs_caddr_t ptr, old_ptr;
  1358. int old_len;
  1359. if (list_empty(&trans->r_itemq)) {
  1360. /* finish copying rest of trans header */
  1361. xlog_recover_add_item(&trans->r_itemq);
  1362. ptr = (xfs_caddr_t) &trans->r_theader +
  1363. sizeof(xfs_trans_header_t) - len;
  1364. memcpy(ptr, dp, len); /* d, s, l */
  1365. return 0;
  1366. }
  1367. /* take the tail entry */
  1368. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1369. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1370. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1371. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  1372. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1373. item->ri_buf[item->ri_cnt-1].i_len += len;
  1374. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1375. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1376. return 0;
  1377. }
  1378. /*
  1379. * The next region to add is the start of a new region. It could be
  1380. * a whole region or it could be the first part of a new region. Because
  1381. * of this, the assumption here is that the type and size fields of all
  1382. * format structures fit into the first 32 bits of the structure.
  1383. *
  1384. * This works because all regions must be 32 bit aligned. Therefore, we
  1385. * either have both fields or we have neither field. In the case we have
  1386. * neither field, the data part of the region is zero length. We only have
  1387. * a log_op_header and can throw away the header since a new one will appear
  1388. * later. If we have at least 4 bytes, then we can determine how many regions
  1389. * will appear in the current log item.
  1390. */
  1391. STATIC int
  1392. xlog_recover_add_to_trans(
  1393. struct xlog *log,
  1394. struct xlog_recover *trans,
  1395. xfs_caddr_t dp,
  1396. int len)
  1397. {
  1398. xfs_inode_log_format_t *in_f; /* any will do */
  1399. xlog_recover_item_t *item;
  1400. xfs_caddr_t ptr;
  1401. if (!len)
  1402. return 0;
  1403. if (list_empty(&trans->r_itemq)) {
  1404. /* we need to catch log corruptions here */
  1405. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1406. xfs_warn(log->l_mp, "%s: bad header magic number",
  1407. __func__);
  1408. ASSERT(0);
  1409. return XFS_ERROR(EIO);
  1410. }
  1411. if (len == sizeof(xfs_trans_header_t))
  1412. xlog_recover_add_item(&trans->r_itemq);
  1413. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1414. return 0;
  1415. }
  1416. ptr = kmem_alloc(len, KM_SLEEP);
  1417. memcpy(ptr, dp, len);
  1418. in_f = (xfs_inode_log_format_t *)ptr;
  1419. /* take the tail entry */
  1420. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1421. if (item->ri_total != 0 &&
  1422. item->ri_total == item->ri_cnt) {
  1423. /* tail item is in use, get a new one */
  1424. xlog_recover_add_item(&trans->r_itemq);
  1425. item = list_entry(trans->r_itemq.prev,
  1426. xlog_recover_item_t, ri_list);
  1427. }
  1428. if (item->ri_total == 0) { /* first region to be added */
  1429. if (in_f->ilf_size == 0 ||
  1430. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1431. xfs_warn(log->l_mp,
  1432. "bad number of regions (%d) in inode log format",
  1433. in_f->ilf_size);
  1434. ASSERT(0);
  1435. kmem_free(ptr);
  1436. return XFS_ERROR(EIO);
  1437. }
  1438. item->ri_total = in_f->ilf_size;
  1439. item->ri_buf =
  1440. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1441. KM_SLEEP);
  1442. }
  1443. ASSERT(item->ri_total > item->ri_cnt);
  1444. /* Description region is ri_buf[0] */
  1445. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1446. item->ri_buf[item->ri_cnt].i_len = len;
  1447. item->ri_cnt++;
  1448. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1449. return 0;
  1450. }
  1451. /*
  1452. * Sort the log items in the transaction.
  1453. *
  1454. * The ordering constraints are defined by the inode allocation and unlink
  1455. * behaviour. The rules are:
  1456. *
  1457. * 1. Every item is only logged once in a given transaction. Hence it
  1458. * represents the last logged state of the item. Hence ordering is
  1459. * dependent on the order in which operations need to be performed so
  1460. * required initial conditions are always met.
  1461. *
  1462. * 2. Cancelled buffers are recorded in pass 1 in a separate table and
  1463. * there's nothing to replay from them so we can simply cull them
  1464. * from the transaction. However, we can't do that until after we've
  1465. * replayed all the other items because they may be dependent on the
  1466. * cancelled buffer and replaying the cancelled buffer can remove it
  1467. * form the cancelled buffer table. Hence they have tobe done last.
  1468. *
  1469. * 3. Inode allocation buffers must be replayed before inode items that
  1470. * read the buffer and replay changes into it. For filesystems using the
  1471. * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
  1472. * treated the same as inode allocation buffers as they create and
  1473. * initialise the buffers directly.
  1474. *
  1475. * 4. Inode unlink buffers must be replayed after inode items are replayed.
  1476. * This ensures that inodes are completely flushed to the inode buffer
  1477. * in a "free" state before we remove the unlinked inode list pointer.
  1478. *
  1479. * Hence the ordering needs to be inode allocation buffers first, inode items
  1480. * second, inode unlink buffers third and cancelled buffers last.
  1481. *
  1482. * But there's a problem with that - we can't tell an inode allocation buffer
  1483. * apart from a regular buffer, so we can't separate them. We can, however,
  1484. * tell an inode unlink buffer from the others, and so we can separate them out
  1485. * from all the other buffers and move them to last.
  1486. *
  1487. * Hence, 4 lists, in order from head to tail:
  1488. * - buffer_list for all buffers except cancelled/inode unlink buffers
  1489. * - item_list for all non-buffer items
  1490. * - inode_buffer_list for inode unlink buffers
  1491. * - cancel_list for the cancelled buffers
  1492. *
  1493. * Note that we add objects to the tail of the lists so that first-to-last
  1494. * ordering is preserved within the lists. Adding objects to the head of the
  1495. * list means when we traverse from the head we walk them in last-to-first
  1496. * order. For cancelled buffers and inode unlink buffers this doesn't matter,
  1497. * but for all other items there may be specific ordering that we need to
  1498. * preserve.
  1499. */
  1500. STATIC int
  1501. xlog_recover_reorder_trans(
  1502. struct xlog *log,
  1503. struct xlog_recover *trans,
  1504. int pass)
  1505. {
  1506. xlog_recover_item_t *item, *n;
  1507. LIST_HEAD(sort_list);
  1508. LIST_HEAD(cancel_list);
  1509. LIST_HEAD(buffer_list);
  1510. LIST_HEAD(inode_buffer_list);
  1511. LIST_HEAD(inode_list);
  1512. list_splice_init(&trans->r_itemq, &sort_list);
  1513. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1514. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1515. switch (ITEM_TYPE(item)) {
  1516. case XFS_LI_ICREATE:
  1517. list_move_tail(&item->ri_list, &buffer_list);
  1518. break;
  1519. case XFS_LI_BUF:
  1520. if (buf_f->blf_flags & XFS_BLF_CANCEL) {
  1521. trace_xfs_log_recover_item_reorder_head(log,
  1522. trans, item, pass);
  1523. list_move(&item->ri_list, &cancel_list);
  1524. break;
  1525. }
  1526. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1527. list_move(&item->ri_list, &inode_buffer_list);
  1528. break;
  1529. }
  1530. list_move_tail(&item->ri_list, &buffer_list);
  1531. break;
  1532. case XFS_LI_INODE:
  1533. case XFS_LI_DQUOT:
  1534. case XFS_LI_QUOTAOFF:
  1535. case XFS_LI_EFD:
  1536. case XFS_LI_EFI:
  1537. trace_xfs_log_recover_item_reorder_tail(log,
  1538. trans, item, pass);
  1539. list_move_tail(&item->ri_list, &inode_list);
  1540. break;
  1541. default:
  1542. xfs_warn(log->l_mp,
  1543. "%s: unrecognized type of log operation",
  1544. __func__);
  1545. ASSERT(0);
  1546. return XFS_ERROR(EIO);
  1547. }
  1548. }
  1549. ASSERT(list_empty(&sort_list));
  1550. if (!list_empty(&buffer_list))
  1551. list_splice(&buffer_list, &trans->r_itemq);
  1552. if (!list_empty(&inode_list))
  1553. list_splice_tail(&inode_list, &trans->r_itemq);
  1554. if (!list_empty(&inode_buffer_list))
  1555. list_splice_tail(&inode_buffer_list, &trans->r_itemq);
  1556. if (!list_empty(&cancel_list))
  1557. list_splice_tail(&cancel_list, &trans->r_itemq);
  1558. return 0;
  1559. }
  1560. /*
  1561. * Build up the table of buf cancel records so that we don't replay
  1562. * cancelled data in the second pass. For buffer records that are
  1563. * not cancel records, there is nothing to do here so we just return.
  1564. *
  1565. * If we get a cancel record which is already in the table, this indicates
  1566. * that the buffer was cancelled multiple times. In order to ensure
  1567. * that during pass 2 we keep the record in the table until we reach its
  1568. * last occurrence in the log, we keep a reference count in the cancel
  1569. * record in the table to tell us how many times we expect to see this
  1570. * record during the second pass.
  1571. */
  1572. STATIC int
  1573. xlog_recover_buffer_pass1(
  1574. struct xlog *log,
  1575. struct xlog_recover_item *item)
  1576. {
  1577. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1578. struct list_head *bucket;
  1579. struct xfs_buf_cancel *bcp;
  1580. /*
  1581. * If this isn't a cancel buffer item, then just return.
  1582. */
  1583. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1584. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1585. return 0;
  1586. }
  1587. /*
  1588. * Insert an xfs_buf_cancel record into the hash table of them.
  1589. * If there is already an identical record, bump its reference count.
  1590. */
  1591. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1592. list_for_each_entry(bcp, bucket, bc_list) {
  1593. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1594. bcp->bc_len == buf_f->blf_len) {
  1595. bcp->bc_refcount++;
  1596. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1597. return 0;
  1598. }
  1599. }
  1600. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1601. bcp->bc_blkno = buf_f->blf_blkno;
  1602. bcp->bc_len = buf_f->blf_len;
  1603. bcp->bc_refcount = 1;
  1604. list_add_tail(&bcp->bc_list, bucket);
  1605. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1606. return 0;
  1607. }
  1608. /*
  1609. * Check to see whether the buffer being recovered has a corresponding
  1610. * entry in the buffer cancel record table. If it is, return the cancel
  1611. * buffer structure to the caller.
  1612. */
  1613. STATIC struct xfs_buf_cancel *
  1614. xlog_peek_buffer_cancelled(
  1615. struct xlog *log,
  1616. xfs_daddr_t blkno,
  1617. uint len,
  1618. ushort flags)
  1619. {
  1620. struct list_head *bucket;
  1621. struct xfs_buf_cancel *bcp;
  1622. if (!log->l_buf_cancel_table) {
  1623. /* empty table means no cancelled buffers in the log */
  1624. ASSERT(!(flags & XFS_BLF_CANCEL));
  1625. return NULL;
  1626. }
  1627. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1628. list_for_each_entry(bcp, bucket, bc_list) {
  1629. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1630. return bcp;
  1631. }
  1632. /*
  1633. * We didn't find a corresponding entry in the table, so return 0 so
  1634. * that the buffer is NOT cancelled.
  1635. */
  1636. ASSERT(!(flags & XFS_BLF_CANCEL));
  1637. return NULL;
  1638. }
  1639. /*
  1640. * If the buffer is being cancelled then return 1 so that it will be cancelled,
  1641. * otherwise return 0. If the buffer is actually a buffer cancel item
  1642. * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
  1643. * table and remove it from the table if this is the last reference.
  1644. *
  1645. * We remove the cancel record from the table when we encounter its last
  1646. * occurrence in the log so that if the same buffer is re-used again after its
  1647. * last cancellation we actually replay the changes made at that point.
  1648. */
  1649. STATIC int
  1650. xlog_check_buffer_cancelled(
  1651. struct xlog *log,
  1652. xfs_daddr_t blkno,
  1653. uint len,
  1654. ushort flags)
  1655. {
  1656. struct xfs_buf_cancel *bcp;
  1657. bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
  1658. if (!bcp)
  1659. return 0;
  1660. /*
  1661. * We've go a match, so return 1 so that the recovery of this buffer
  1662. * is cancelled. If this buffer is actually a buffer cancel log
  1663. * item, then decrement the refcount on the one in the table and
  1664. * remove it if this is the last reference.
  1665. */
  1666. if (flags & XFS_BLF_CANCEL) {
  1667. if (--bcp->bc_refcount == 0) {
  1668. list_del(&bcp->bc_list);
  1669. kmem_free(bcp);
  1670. }
  1671. }
  1672. return 1;
  1673. }
  1674. /*
  1675. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1676. * data which should be recovered is that which corresponds to the
  1677. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1678. * data for the inodes is always logged through the inodes themselves rather
  1679. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1680. *
  1681. * The only time when buffers full of inodes are fully recovered is when the
  1682. * buffer is full of newly allocated inodes. In this case the buffer will
  1683. * not be marked as an inode buffer and so will be sent to
  1684. * xlog_recover_do_reg_buffer() below during recovery.
  1685. */
  1686. STATIC int
  1687. xlog_recover_do_inode_buffer(
  1688. struct xfs_mount *mp,
  1689. xlog_recover_item_t *item,
  1690. struct xfs_buf *bp,
  1691. xfs_buf_log_format_t *buf_f)
  1692. {
  1693. int i;
  1694. int item_index = 0;
  1695. int bit = 0;
  1696. int nbits = 0;
  1697. int reg_buf_offset = 0;
  1698. int reg_buf_bytes = 0;
  1699. int next_unlinked_offset;
  1700. int inodes_per_buf;
  1701. xfs_agino_t *logged_nextp;
  1702. xfs_agino_t *buffer_nextp;
  1703. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1704. /*
  1705. * Post recovery validation only works properly on CRC enabled
  1706. * filesystems.
  1707. */
  1708. if (xfs_sb_version_hascrc(&mp->m_sb))
  1709. bp->b_ops = &xfs_inode_buf_ops;
  1710. inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
  1711. for (i = 0; i < inodes_per_buf; i++) {
  1712. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1713. offsetof(xfs_dinode_t, di_next_unlinked);
  1714. while (next_unlinked_offset >=
  1715. (reg_buf_offset + reg_buf_bytes)) {
  1716. /*
  1717. * The next di_next_unlinked field is beyond
  1718. * the current logged region. Find the next
  1719. * logged region that contains or is beyond
  1720. * the current di_next_unlinked field.
  1721. */
  1722. bit += nbits;
  1723. bit = xfs_next_bit(buf_f->blf_data_map,
  1724. buf_f->blf_map_size, bit);
  1725. /*
  1726. * If there are no more logged regions in the
  1727. * buffer, then we're done.
  1728. */
  1729. if (bit == -1)
  1730. return 0;
  1731. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1732. buf_f->blf_map_size, bit);
  1733. ASSERT(nbits > 0);
  1734. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1735. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1736. item_index++;
  1737. }
  1738. /*
  1739. * If the current logged region starts after the current
  1740. * di_next_unlinked field, then move on to the next
  1741. * di_next_unlinked field.
  1742. */
  1743. if (next_unlinked_offset < reg_buf_offset)
  1744. continue;
  1745. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1746. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1747. ASSERT((reg_buf_offset + reg_buf_bytes) <=
  1748. BBTOB(bp->b_io_length));
  1749. /*
  1750. * The current logged region contains a copy of the
  1751. * current di_next_unlinked field. Extract its value
  1752. * and copy it to the buffer copy.
  1753. */
  1754. logged_nextp = item->ri_buf[item_index].i_addr +
  1755. next_unlinked_offset - reg_buf_offset;
  1756. if (unlikely(*logged_nextp == 0)) {
  1757. xfs_alert(mp,
  1758. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1759. "Trying to replay bad (0) inode di_next_unlinked field.",
  1760. item, bp);
  1761. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1762. XFS_ERRLEVEL_LOW, mp);
  1763. return XFS_ERROR(EFSCORRUPTED);
  1764. }
  1765. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1766. next_unlinked_offset);
  1767. *buffer_nextp = *logged_nextp;
  1768. /*
  1769. * If necessary, recalculate the CRC in the on-disk inode. We
  1770. * have to leave the inode in a consistent state for whoever
  1771. * reads it next....
  1772. */
  1773. xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
  1774. xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
  1775. }
  1776. return 0;
  1777. }
  1778. /*
  1779. * V5 filesystems know the age of the buffer on disk being recovered. We can
  1780. * have newer objects on disk than we are replaying, and so for these cases we
  1781. * don't want to replay the current change as that will make the buffer contents
  1782. * temporarily invalid on disk.
  1783. *
  1784. * The magic number might not match the buffer type we are going to recover
  1785. * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
  1786. * extract the LSN of the existing object in the buffer based on it's current
  1787. * magic number. If we don't recognise the magic number in the buffer, then
  1788. * return a LSN of -1 so that the caller knows it was an unrecognised block and
  1789. * so can recover the buffer.
  1790. *
  1791. * Note: we cannot rely solely on magic number matches to determine that the
  1792. * buffer has a valid LSN - we also need to verify that it belongs to this
  1793. * filesystem, so we need to extract the object's LSN and compare it to that
  1794. * which we read from the superblock. If the UUIDs don't match, then we've got a
  1795. * stale metadata block from an old filesystem instance that we need to recover
  1796. * over the top of.
  1797. */
  1798. static xfs_lsn_t
  1799. xlog_recover_get_buf_lsn(
  1800. struct xfs_mount *mp,
  1801. struct xfs_buf *bp)
  1802. {
  1803. __uint32_t magic32;
  1804. __uint16_t magic16;
  1805. __uint16_t magicda;
  1806. void *blk = bp->b_addr;
  1807. uuid_t *uuid;
  1808. xfs_lsn_t lsn = -1;
  1809. /* v4 filesystems always recover immediately */
  1810. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1811. goto recover_immediately;
  1812. magic32 = be32_to_cpu(*(__be32 *)blk);
  1813. switch (magic32) {
  1814. case XFS_ABTB_CRC_MAGIC:
  1815. case XFS_ABTC_CRC_MAGIC:
  1816. case XFS_ABTB_MAGIC:
  1817. case XFS_ABTC_MAGIC:
  1818. case XFS_IBT_CRC_MAGIC:
  1819. case XFS_IBT_MAGIC: {
  1820. struct xfs_btree_block *btb = blk;
  1821. lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
  1822. uuid = &btb->bb_u.s.bb_uuid;
  1823. break;
  1824. }
  1825. case XFS_BMAP_CRC_MAGIC:
  1826. case XFS_BMAP_MAGIC: {
  1827. struct xfs_btree_block *btb = blk;
  1828. lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
  1829. uuid = &btb->bb_u.l.bb_uuid;
  1830. break;
  1831. }
  1832. case XFS_AGF_MAGIC:
  1833. lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
  1834. uuid = &((struct xfs_agf *)blk)->agf_uuid;
  1835. break;
  1836. case XFS_AGFL_MAGIC:
  1837. lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
  1838. uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
  1839. break;
  1840. case XFS_AGI_MAGIC:
  1841. lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
  1842. uuid = &((struct xfs_agi *)blk)->agi_uuid;
  1843. break;
  1844. case XFS_SYMLINK_MAGIC:
  1845. lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
  1846. uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
  1847. break;
  1848. case XFS_DIR3_BLOCK_MAGIC:
  1849. case XFS_DIR3_DATA_MAGIC:
  1850. case XFS_DIR3_FREE_MAGIC:
  1851. lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
  1852. uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
  1853. break;
  1854. case XFS_ATTR3_RMT_MAGIC:
  1855. lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
  1856. uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
  1857. break;
  1858. case XFS_SB_MAGIC:
  1859. lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
  1860. uuid = &((struct xfs_dsb *)blk)->sb_uuid;
  1861. break;
  1862. default:
  1863. break;
  1864. }
  1865. if (lsn != (xfs_lsn_t)-1) {
  1866. if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
  1867. goto recover_immediately;
  1868. return lsn;
  1869. }
  1870. magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
  1871. switch (magicda) {
  1872. case XFS_DIR3_LEAF1_MAGIC:
  1873. case XFS_DIR3_LEAFN_MAGIC:
  1874. case XFS_DA3_NODE_MAGIC:
  1875. lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
  1876. uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
  1877. break;
  1878. default:
  1879. break;
  1880. }
  1881. if (lsn != (xfs_lsn_t)-1) {
  1882. if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
  1883. goto recover_immediately;
  1884. return lsn;
  1885. }
  1886. /*
  1887. * We do individual object checks on dquot and inode buffers as they
  1888. * have their own individual LSN records. Also, we could have a stale
  1889. * buffer here, so we have to at least recognise these buffer types.
  1890. *
  1891. * A notd complexity here is inode unlinked list processing - it logs
  1892. * the inode directly in the buffer, but we don't know which inodes have
  1893. * been modified, and there is no global buffer LSN. Hence we need to
  1894. * recover all inode buffer types immediately. This problem will be
  1895. * fixed by logical logging of the unlinked list modifications.
  1896. */
  1897. magic16 = be16_to_cpu(*(__be16 *)blk);
  1898. switch (magic16) {
  1899. case XFS_DQUOT_MAGIC:
  1900. case XFS_DINODE_MAGIC:
  1901. goto recover_immediately;
  1902. default:
  1903. break;
  1904. }
  1905. /* unknown buffer contents, recover immediately */
  1906. recover_immediately:
  1907. return (xfs_lsn_t)-1;
  1908. }
  1909. /*
  1910. * Validate the recovered buffer is of the correct type and attach the
  1911. * appropriate buffer operations to them for writeback. Magic numbers are in a
  1912. * few places:
  1913. * the first 16 bits of the buffer (inode buffer, dquot buffer),
  1914. * the first 32 bits of the buffer (most blocks),
  1915. * inside a struct xfs_da_blkinfo at the start of the buffer.
  1916. */
  1917. static void
  1918. xlog_recover_validate_buf_type(
  1919. struct xfs_mount *mp,
  1920. struct xfs_buf *bp,
  1921. xfs_buf_log_format_t *buf_f)
  1922. {
  1923. struct xfs_da_blkinfo *info = bp->b_addr;
  1924. __uint32_t magic32;
  1925. __uint16_t magic16;
  1926. __uint16_t magicda;
  1927. magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
  1928. magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
  1929. magicda = be16_to_cpu(info->magic);
  1930. switch (xfs_blft_from_flags(buf_f)) {
  1931. case XFS_BLFT_BTREE_BUF:
  1932. switch (magic32) {
  1933. case XFS_ABTB_CRC_MAGIC:
  1934. case XFS_ABTC_CRC_MAGIC:
  1935. case XFS_ABTB_MAGIC:
  1936. case XFS_ABTC_MAGIC:
  1937. bp->b_ops = &xfs_allocbt_buf_ops;
  1938. break;
  1939. case XFS_IBT_CRC_MAGIC:
  1940. case XFS_IBT_MAGIC:
  1941. bp->b_ops = &xfs_inobt_buf_ops;
  1942. break;
  1943. case XFS_BMAP_CRC_MAGIC:
  1944. case XFS_BMAP_MAGIC:
  1945. bp->b_ops = &xfs_bmbt_buf_ops;
  1946. break;
  1947. default:
  1948. xfs_warn(mp, "Bad btree block magic!");
  1949. ASSERT(0);
  1950. break;
  1951. }
  1952. break;
  1953. case XFS_BLFT_AGF_BUF:
  1954. if (magic32 != XFS_AGF_MAGIC) {
  1955. xfs_warn(mp, "Bad AGF block magic!");
  1956. ASSERT(0);
  1957. break;
  1958. }
  1959. bp->b_ops = &xfs_agf_buf_ops;
  1960. break;
  1961. case XFS_BLFT_AGFL_BUF:
  1962. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1963. break;
  1964. if (magic32 != XFS_AGFL_MAGIC) {
  1965. xfs_warn(mp, "Bad AGFL block magic!");
  1966. ASSERT(0);
  1967. break;
  1968. }
  1969. bp->b_ops = &xfs_agfl_buf_ops;
  1970. break;
  1971. case XFS_BLFT_AGI_BUF:
  1972. if (magic32 != XFS_AGI_MAGIC) {
  1973. xfs_warn(mp, "Bad AGI block magic!");
  1974. ASSERT(0);
  1975. break;
  1976. }
  1977. bp->b_ops = &xfs_agi_buf_ops;
  1978. break;
  1979. case XFS_BLFT_UDQUOT_BUF:
  1980. case XFS_BLFT_PDQUOT_BUF:
  1981. case XFS_BLFT_GDQUOT_BUF:
  1982. #ifdef CONFIG_XFS_QUOTA
  1983. if (magic16 != XFS_DQUOT_MAGIC) {
  1984. xfs_warn(mp, "Bad DQUOT block magic!");
  1985. ASSERT(0);
  1986. break;
  1987. }
  1988. bp->b_ops = &xfs_dquot_buf_ops;
  1989. #else
  1990. xfs_alert(mp,
  1991. "Trying to recover dquots without QUOTA support built in!");
  1992. ASSERT(0);
  1993. #endif
  1994. break;
  1995. case XFS_BLFT_DINO_BUF:
  1996. /*
  1997. * we get here with inode allocation buffers, not buffers that
  1998. * track unlinked list changes.
  1999. */
  2000. if (magic16 != XFS_DINODE_MAGIC) {
  2001. xfs_warn(mp, "Bad INODE block magic!");
  2002. ASSERT(0);
  2003. break;
  2004. }
  2005. bp->b_ops = &xfs_inode_buf_ops;
  2006. break;
  2007. case XFS_BLFT_SYMLINK_BUF:
  2008. if (magic32 != XFS_SYMLINK_MAGIC) {
  2009. xfs_warn(mp, "Bad symlink block magic!");
  2010. ASSERT(0);
  2011. break;
  2012. }
  2013. bp->b_ops = &xfs_symlink_buf_ops;
  2014. break;
  2015. case XFS_BLFT_DIR_BLOCK_BUF:
  2016. if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
  2017. magic32 != XFS_DIR3_BLOCK_MAGIC) {
  2018. xfs_warn(mp, "Bad dir block magic!");
  2019. ASSERT(0);
  2020. break;
  2021. }
  2022. bp->b_ops = &xfs_dir3_block_buf_ops;
  2023. break;
  2024. case XFS_BLFT_DIR_DATA_BUF:
  2025. if (magic32 != XFS_DIR2_DATA_MAGIC &&
  2026. magic32 != XFS_DIR3_DATA_MAGIC) {
  2027. xfs_warn(mp, "Bad dir data magic!");
  2028. ASSERT(0);
  2029. break;
  2030. }
  2031. bp->b_ops = &xfs_dir3_data_buf_ops;
  2032. break;
  2033. case XFS_BLFT_DIR_FREE_BUF:
  2034. if (magic32 != XFS_DIR2_FREE_MAGIC &&
  2035. magic32 != XFS_DIR3_FREE_MAGIC) {
  2036. xfs_warn(mp, "Bad dir3 free magic!");
  2037. ASSERT(0);
  2038. break;
  2039. }
  2040. bp->b_ops = &xfs_dir3_free_buf_ops;
  2041. break;
  2042. case XFS_BLFT_DIR_LEAF1_BUF:
  2043. if (magicda != XFS_DIR2_LEAF1_MAGIC &&
  2044. magicda != XFS_DIR3_LEAF1_MAGIC) {
  2045. xfs_warn(mp, "Bad dir leaf1 magic!");
  2046. ASSERT(0);
  2047. break;
  2048. }
  2049. bp->b_ops = &xfs_dir3_leaf1_buf_ops;
  2050. break;
  2051. case XFS_BLFT_DIR_LEAFN_BUF:
  2052. if (magicda != XFS_DIR2_LEAFN_MAGIC &&
  2053. magicda != XFS_DIR3_LEAFN_MAGIC) {
  2054. xfs_warn(mp, "Bad dir leafn magic!");
  2055. ASSERT(0);
  2056. break;
  2057. }
  2058. bp->b_ops = &xfs_dir3_leafn_buf_ops;
  2059. break;
  2060. case XFS_BLFT_DA_NODE_BUF:
  2061. if (magicda != XFS_DA_NODE_MAGIC &&
  2062. magicda != XFS_DA3_NODE_MAGIC) {
  2063. xfs_warn(mp, "Bad da node magic!");
  2064. ASSERT(0);
  2065. break;
  2066. }
  2067. bp->b_ops = &xfs_da3_node_buf_ops;
  2068. break;
  2069. case XFS_BLFT_ATTR_LEAF_BUF:
  2070. if (magicda != XFS_ATTR_LEAF_MAGIC &&
  2071. magicda != XFS_ATTR3_LEAF_MAGIC) {
  2072. xfs_warn(mp, "Bad attr leaf magic!");
  2073. ASSERT(0);
  2074. break;
  2075. }
  2076. bp->b_ops = &xfs_attr3_leaf_buf_ops;
  2077. break;
  2078. case XFS_BLFT_ATTR_RMT_BUF:
  2079. if (!xfs_sb_version_hascrc(&mp->m_sb))
  2080. break;
  2081. if (magic32 != XFS_ATTR3_RMT_MAGIC) {
  2082. xfs_warn(mp, "Bad attr remote magic!");
  2083. ASSERT(0);
  2084. break;
  2085. }
  2086. bp->b_ops = &xfs_attr3_rmt_buf_ops;
  2087. break;
  2088. case XFS_BLFT_SB_BUF:
  2089. if (magic32 != XFS_SB_MAGIC) {
  2090. xfs_warn(mp, "Bad SB block magic!");
  2091. ASSERT(0);
  2092. break;
  2093. }
  2094. bp->b_ops = &xfs_sb_buf_ops;
  2095. break;
  2096. default:
  2097. xfs_warn(mp, "Unknown buffer type %d!",
  2098. xfs_blft_from_flags(buf_f));
  2099. break;
  2100. }
  2101. }
  2102. /*
  2103. * Perform a 'normal' buffer recovery. Each logged region of the
  2104. * buffer should be copied over the corresponding region in the
  2105. * given buffer. The bitmap in the buf log format structure indicates
  2106. * where to place the logged data.
  2107. */
  2108. STATIC void
  2109. xlog_recover_do_reg_buffer(
  2110. struct xfs_mount *mp,
  2111. xlog_recover_item_t *item,
  2112. struct xfs_buf *bp,
  2113. xfs_buf_log_format_t *buf_f)
  2114. {
  2115. int i;
  2116. int bit;
  2117. int nbits;
  2118. int error;
  2119. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  2120. bit = 0;
  2121. i = 1; /* 0 is the buf format structure */
  2122. while (1) {
  2123. bit = xfs_next_bit(buf_f->blf_data_map,
  2124. buf_f->blf_map_size, bit);
  2125. if (bit == -1)
  2126. break;
  2127. nbits = xfs_contig_bits(buf_f->blf_data_map,
  2128. buf_f->blf_map_size, bit);
  2129. ASSERT(nbits > 0);
  2130. ASSERT(item->ri_buf[i].i_addr != NULL);
  2131. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  2132. ASSERT(BBTOB(bp->b_io_length) >=
  2133. ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
  2134. /*
  2135. * The dirty regions logged in the buffer, even though
  2136. * contiguous, may span multiple chunks. This is because the
  2137. * dirty region may span a physical page boundary in a buffer
  2138. * and hence be split into two separate vectors for writing into
  2139. * the log. Hence we need to trim nbits back to the length of
  2140. * the current region being copied out of the log.
  2141. */
  2142. if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
  2143. nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
  2144. /*
  2145. * Do a sanity check if this is a dquot buffer. Just checking
  2146. * the first dquot in the buffer should do. XXXThis is
  2147. * probably a good thing to do for other buf types also.
  2148. */
  2149. error = 0;
  2150. if (buf_f->blf_flags &
  2151. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2152. if (item->ri_buf[i].i_addr == NULL) {
  2153. xfs_alert(mp,
  2154. "XFS: NULL dquot in %s.", __func__);
  2155. goto next;
  2156. }
  2157. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  2158. xfs_alert(mp,
  2159. "XFS: dquot too small (%d) in %s.",
  2160. item->ri_buf[i].i_len, __func__);
  2161. goto next;
  2162. }
  2163. error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
  2164. -1, 0, XFS_QMOPT_DOWARN,
  2165. "dquot_buf_recover");
  2166. if (error)
  2167. goto next;
  2168. }
  2169. memcpy(xfs_buf_offset(bp,
  2170. (uint)bit << XFS_BLF_SHIFT), /* dest */
  2171. item->ri_buf[i].i_addr, /* source */
  2172. nbits<<XFS_BLF_SHIFT); /* length */
  2173. next:
  2174. i++;
  2175. bit += nbits;
  2176. }
  2177. /* Shouldn't be any more regions */
  2178. ASSERT(i == item->ri_total);
  2179. /*
  2180. * We can only do post recovery validation on items on CRC enabled
  2181. * fielsystems as we need to know when the buffer was written to be able
  2182. * to determine if we should have replayed the item. If we replay old
  2183. * metadata over a newer buffer, then it will enter a temporarily
  2184. * inconsistent state resulting in verification failures. Hence for now
  2185. * just avoid the verification stage for non-crc filesystems
  2186. */
  2187. if (xfs_sb_version_hascrc(&mp->m_sb))
  2188. xlog_recover_validate_buf_type(mp, bp, buf_f);
  2189. }
  2190. /*
  2191. * Perform a dquot buffer recovery.
  2192. * Simple algorithm: if we have found a QUOTAOFF log item of the same type
  2193. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  2194. * Else, treat it as a regular buffer and do recovery.
  2195. */
  2196. STATIC void
  2197. xlog_recover_do_dquot_buffer(
  2198. struct xfs_mount *mp,
  2199. struct xlog *log,
  2200. struct xlog_recover_item *item,
  2201. struct xfs_buf *bp,
  2202. struct xfs_buf_log_format *buf_f)
  2203. {
  2204. uint type;
  2205. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  2206. /*
  2207. * Filesystems are required to send in quota flags at mount time.
  2208. */
  2209. if (mp->m_qflags == 0) {
  2210. return;
  2211. }
  2212. type = 0;
  2213. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  2214. type |= XFS_DQ_USER;
  2215. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  2216. type |= XFS_DQ_PROJ;
  2217. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  2218. type |= XFS_DQ_GROUP;
  2219. /*
  2220. * This type of quotas was turned off, so ignore this buffer
  2221. */
  2222. if (log->l_quotaoffs_flag & type)
  2223. return;
  2224. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2225. }
  2226. /*
  2227. * This routine replays a modification made to a buffer at runtime.
  2228. * There are actually two types of buffer, regular and inode, which
  2229. * are handled differently. Inode buffers are handled differently
  2230. * in that we only recover a specific set of data from them, namely
  2231. * the inode di_next_unlinked fields. This is because all other inode
  2232. * data is actually logged via inode records and any data we replay
  2233. * here which overlaps that may be stale.
  2234. *
  2235. * When meta-data buffers are freed at run time we log a buffer item
  2236. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  2237. * of the buffer in the log should not be replayed at recovery time.
  2238. * This is so that if the blocks covered by the buffer are reused for
  2239. * file data before we crash we don't end up replaying old, freed
  2240. * meta-data into a user's file.
  2241. *
  2242. * To handle the cancellation of buffer log items, we make two passes
  2243. * over the log during recovery. During the first we build a table of
  2244. * those buffers which have been cancelled, and during the second we
  2245. * only replay those buffers which do not have corresponding cancel
  2246. * records in the table. See xlog_recover_buffer_pass[1,2] above
  2247. * for more details on the implementation of the table of cancel records.
  2248. */
  2249. STATIC int
  2250. xlog_recover_buffer_pass2(
  2251. struct xlog *log,
  2252. struct list_head *buffer_list,
  2253. struct xlog_recover_item *item,
  2254. xfs_lsn_t current_lsn)
  2255. {
  2256. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  2257. xfs_mount_t *mp = log->l_mp;
  2258. xfs_buf_t *bp;
  2259. int error;
  2260. uint buf_flags;
  2261. xfs_lsn_t lsn;
  2262. /*
  2263. * In this pass we only want to recover all the buffers which have
  2264. * not been cancelled and are not cancellation buffers themselves.
  2265. */
  2266. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  2267. buf_f->blf_len, buf_f->blf_flags)) {
  2268. trace_xfs_log_recover_buf_cancel(log, buf_f);
  2269. return 0;
  2270. }
  2271. trace_xfs_log_recover_buf_recover(log, buf_f);
  2272. buf_flags = 0;
  2273. if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
  2274. buf_flags |= XBF_UNMAPPED;
  2275. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  2276. buf_flags, NULL);
  2277. if (!bp)
  2278. return XFS_ERROR(ENOMEM);
  2279. error = bp->b_error;
  2280. if (error) {
  2281. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  2282. goto out_release;
  2283. }
  2284. /*
  2285. * recover the buffer only if we get an LSN from it and it's less than
  2286. * the lsn of the transaction we are replaying.
  2287. */
  2288. lsn = xlog_recover_get_buf_lsn(mp, bp);
  2289. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
  2290. goto out_release;
  2291. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  2292. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2293. } else if (buf_f->blf_flags &
  2294. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2295. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2296. } else {
  2297. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2298. }
  2299. if (error)
  2300. goto out_release;
  2301. /*
  2302. * Perform delayed write on the buffer. Asynchronous writes will be
  2303. * slower when taking into account all the buffers to be flushed.
  2304. *
  2305. * Also make sure that only inode buffers with good sizes stay in
  2306. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2307. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2308. * buffers in the log can be a different size if the log was generated
  2309. * by an older kernel using unclustered inode buffers or a newer kernel
  2310. * running with a different inode cluster size. Regardless, if the
  2311. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2312. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2313. * the buffer out of the buffer cache so that the buffer won't
  2314. * overlap with future reads of those inodes.
  2315. */
  2316. if (XFS_DINODE_MAGIC ==
  2317. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2318. (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
  2319. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2320. xfs_buf_stale(bp);
  2321. error = xfs_bwrite(bp);
  2322. } else {
  2323. ASSERT(bp->b_target->bt_mount == mp);
  2324. bp->b_iodone = xlog_recover_iodone;
  2325. xfs_buf_delwri_queue(bp, buffer_list);
  2326. }
  2327. out_release:
  2328. xfs_buf_relse(bp);
  2329. return error;
  2330. }
  2331. /*
  2332. * Inode fork owner changes
  2333. *
  2334. * If we have been told that we have to reparent the inode fork, it's because an
  2335. * extent swap operation on a CRC enabled filesystem has been done and we are
  2336. * replaying it. We need to walk the BMBT of the appropriate fork and change the
  2337. * owners of it.
  2338. *
  2339. * The complexity here is that we don't have an inode context to work with, so
  2340. * after we've replayed the inode we need to instantiate one. This is where the
  2341. * fun begins.
  2342. *
  2343. * We are in the middle of log recovery, so we can't run transactions. That
  2344. * means we cannot use cache coherent inode instantiation via xfs_iget(), as
  2345. * that will result in the corresponding iput() running the inode through
  2346. * xfs_inactive(). If we've just replayed an inode core that changes the link
  2347. * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
  2348. * transactions (bad!).
  2349. *
  2350. * So, to avoid this, we instantiate an inode directly from the inode core we've
  2351. * just recovered. We have the buffer still locked, and all we really need to
  2352. * instantiate is the inode core and the forks being modified. We can do this
  2353. * manually, then run the inode btree owner change, and then tear down the
  2354. * xfs_inode without having to run any transactions at all.
  2355. *
  2356. * Also, because we don't have a transaction context available here but need to
  2357. * gather all the buffers we modify for writeback so we pass the buffer_list
  2358. * instead for the operation to use.
  2359. */
  2360. STATIC int
  2361. xfs_recover_inode_owner_change(
  2362. struct xfs_mount *mp,
  2363. struct xfs_dinode *dip,
  2364. struct xfs_inode_log_format *in_f,
  2365. struct list_head *buffer_list)
  2366. {
  2367. struct xfs_inode *ip;
  2368. int error;
  2369. ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
  2370. ip = xfs_inode_alloc(mp, in_f->ilf_ino);
  2371. if (!ip)
  2372. return ENOMEM;
  2373. /* instantiate the inode */
  2374. xfs_dinode_from_disk(&ip->i_d, dip);
  2375. ASSERT(ip->i_d.di_version >= 3);
  2376. error = xfs_iformat_fork(ip, dip);
  2377. if (error)
  2378. goto out_free_ip;
  2379. if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
  2380. ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
  2381. error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
  2382. ip->i_ino, buffer_list);
  2383. if (error)
  2384. goto out_free_ip;
  2385. }
  2386. if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
  2387. ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
  2388. error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
  2389. ip->i_ino, buffer_list);
  2390. if (error)
  2391. goto out_free_ip;
  2392. }
  2393. out_free_ip:
  2394. xfs_inode_free(ip);
  2395. return error;
  2396. }
  2397. STATIC int
  2398. xlog_recover_inode_pass2(
  2399. struct xlog *log,
  2400. struct list_head *buffer_list,
  2401. struct xlog_recover_item *item,
  2402. xfs_lsn_t current_lsn)
  2403. {
  2404. xfs_inode_log_format_t *in_f;
  2405. xfs_mount_t *mp = log->l_mp;
  2406. xfs_buf_t *bp;
  2407. xfs_dinode_t *dip;
  2408. int len;
  2409. xfs_caddr_t src;
  2410. xfs_caddr_t dest;
  2411. int error;
  2412. int attr_index;
  2413. uint fields;
  2414. xfs_icdinode_t *dicp;
  2415. uint isize;
  2416. int need_free = 0;
  2417. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2418. in_f = item->ri_buf[0].i_addr;
  2419. } else {
  2420. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2421. need_free = 1;
  2422. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2423. if (error)
  2424. goto error;
  2425. }
  2426. /*
  2427. * Inode buffers can be freed, look out for it,
  2428. * and do not replay the inode.
  2429. */
  2430. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2431. in_f->ilf_len, 0)) {
  2432. error = 0;
  2433. trace_xfs_log_recover_inode_cancel(log, in_f);
  2434. goto error;
  2435. }
  2436. trace_xfs_log_recover_inode_recover(log, in_f);
  2437. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
  2438. &xfs_inode_buf_ops);
  2439. if (!bp) {
  2440. error = ENOMEM;
  2441. goto error;
  2442. }
  2443. error = bp->b_error;
  2444. if (error) {
  2445. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2446. goto out_release;
  2447. }
  2448. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2449. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2450. /*
  2451. * Make sure the place we're flushing out to really looks
  2452. * like an inode!
  2453. */
  2454. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2455. xfs_alert(mp,
  2456. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2457. __func__, dip, bp, in_f->ilf_ino);
  2458. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2459. XFS_ERRLEVEL_LOW, mp);
  2460. error = EFSCORRUPTED;
  2461. goto out_release;
  2462. }
  2463. dicp = item->ri_buf[1].i_addr;
  2464. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2465. xfs_alert(mp,
  2466. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2467. __func__, item, in_f->ilf_ino);
  2468. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2469. XFS_ERRLEVEL_LOW, mp);
  2470. error = EFSCORRUPTED;
  2471. goto out_release;
  2472. }
  2473. /*
  2474. * If the inode has an LSN in it, recover the inode only if it's less
  2475. * than the lsn of the transaction we are replaying. Note: we still
  2476. * need to replay an owner change even though the inode is more recent
  2477. * than the transaction as there is no guarantee that all the btree
  2478. * blocks are more recent than this transaction, too.
  2479. */
  2480. if (dip->di_version >= 3) {
  2481. xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
  2482. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2483. trace_xfs_log_recover_inode_skip(log, in_f);
  2484. error = 0;
  2485. goto out_owner_change;
  2486. }
  2487. }
  2488. /*
  2489. * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
  2490. * are transactional and if ordering is necessary we can determine that
  2491. * more accurately by the LSN field in the V3 inode core. Don't trust
  2492. * the inode versions we might be changing them here - use the
  2493. * superblock flag to determine whether we need to look at di_flushiter
  2494. * to skip replay when the on disk inode is newer than the log one
  2495. */
  2496. if (!xfs_sb_version_hascrc(&mp->m_sb) &&
  2497. dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2498. /*
  2499. * Deal with the wrap case, DI_MAX_FLUSH is less
  2500. * than smaller numbers
  2501. */
  2502. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2503. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2504. /* do nothing */
  2505. } else {
  2506. trace_xfs_log_recover_inode_skip(log, in_f);
  2507. error = 0;
  2508. goto out_release;
  2509. }
  2510. }
  2511. /* Take the opportunity to reset the flush iteration count */
  2512. dicp->di_flushiter = 0;
  2513. if (unlikely(S_ISREG(dicp->di_mode))) {
  2514. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2515. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2516. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2517. XFS_ERRLEVEL_LOW, mp, dicp);
  2518. xfs_alert(mp,
  2519. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2520. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2521. __func__, item, dip, bp, in_f->ilf_ino);
  2522. error = EFSCORRUPTED;
  2523. goto out_release;
  2524. }
  2525. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2526. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2527. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2528. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2529. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2530. XFS_ERRLEVEL_LOW, mp, dicp);
  2531. xfs_alert(mp,
  2532. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2533. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2534. __func__, item, dip, bp, in_f->ilf_ino);
  2535. error = EFSCORRUPTED;
  2536. goto out_release;
  2537. }
  2538. }
  2539. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2540. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2541. XFS_ERRLEVEL_LOW, mp, dicp);
  2542. xfs_alert(mp,
  2543. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2544. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2545. __func__, item, dip, bp, in_f->ilf_ino,
  2546. dicp->di_nextents + dicp->di_anextents,
  2547. dicp->di_nblocks);
  2548. error = EFSCORRUPTED;
  2549. goto out_release;
  2550. }
  2551. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2552. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2553. XFS_ERRLEVEL_LOW, mp, dicp);
  2554. xfs_alert(mp,
  2555. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2556. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2557. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2558. error = EFSCORRUPTED;
  2559. goto out_release;
  2560. }
  2561. isize = xfs_icdinode_size(dicp->di_version);
  2562. if (unlikely(item->ri_buf[1].i_len > isize)) {
  2563. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2564. XFS_ERRLEVEL_LOW, mp, dicp);
  2565. xfs_alert(mp,
  2566. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2567. __func__, item->ri_buf[1].i_len, item);
  2568. error = EFSCORRUPTED;
  2569. goto out_release;
  2570. }
  2571. /* The core is in in-core format */
  2572. xfs_dinode_to_disk(dip, dicp);
  2573. /* the rest is in on-disk format */
  2574. if (item->ri_buf[1].i_len > isize) {
  2575. memcpy((char *)dip + isize,
  2576. item->ri_buf[1].i_addr + isize,
  2577. item->ri_buf[1].i_len - isize);
  2578. }
  2579. fields = in_f->ilf_fields;
  2580. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2581. case XFS_ILOG_DEV:
  2582. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2583. break;
  2584. case XFS_ILOG_UUID:
  2585. memcpy(XFS_DFORK_DPTR(dip),
  2586. &in_f->ilf_u.ilfu_uuid,
  2587. sizeof(uuid_t));
  2588. break;
  2589. }
  2590. if (in_f->ilf_size == 2)
  2591. goto out_owner_change;
  2592. len = item->ri_buf[2].i_len;
  2593. src = item->ri_buf[2].i_addr;
  2594. ASSERT(in_f->ilf_size <= 4);
  2595. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2596. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2597. (len == in_f->ilf_dsize));
  2598. switch (fields & XFS_ILOG_DFORK) {
  2599. case XFS_ILOG_DDATA:
  2600. case XFS_ILOG_DEXT:
  2601. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2602. break;
  2603. case XFS_ILOG_DBROOT:
  2604. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2605. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2606. XFS_DFORK_DSIZE(dip, mp));
  2607. break;
  2608. default:
  2609. /*
  2610. * There are no data fork flags set.
  2611. */
  2612. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2613. break;
  2614. }
  2615. /*
  2616. * If we logged any attribute data, recover it. There may or
  2617. * may not have been any other non-core data logged in this
  2618. * transaction.
  2619. */
  2620. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2621. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2622. attr_index = 3;
  2623. } else {
  2624. attr_index = 2;
  2625. }
  2626. len = item->ri_buf[attr_index].i_len;
  2627. src = item->ri_buf[attr_index].i_addr;
  2628. ASSERT(len == in_f->ilf_asize);
  2629. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2630. case XFS_ILOG_ADATA:
  2631. case XFS_ILOG_AEXT:
  2632. dest = XFS_DFORK_APTR(dip);
  2633. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2634. memcpy(dest, src, len);
  2635. break;
  2636. case XFS_ILOG_ABROOT:
  2637. dest = XFS_DFORK_APTR(dip);
  2638. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2639. len, (xfs_bmdr_block_t*)dest,
  2640. XFS_DFORK_ASIZE(dip, mp));
  2641. break;
  2642. default:
  2643. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2644. ASSERT(0);
  2645. error = EIO;
  2646. goto out_release;
  2647. }
  2648. }
  2649. out_owner_change:
  2650. if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
  2651. error = xfs_recover_inode_owner_change(mp, dip, in_f,
  2652. buffer_list);
  2653. /* re-generate the checksum. */
  2654. xfs_dinode_calc_crc(log->l_mp, dip);
  2655. ASSERT(bp->b_target->bt_mount == mp);
  2656. bp->b_iodone = xlog_recover_iodone;
  2657. xfs_buf_delwri_queue(bp, buffer_list);
  2658. out_release:
  2659. xfs_buf_relse(bp);
  2660. error:
  2661. if (need_free)
  2662. kmem_free(in_f);
  2663. return XFS_ERROR(error);
  2664. }
  2665. /*
  2666. * Recover QUOTAOFF records. We simply make a note of it in the xlog
  2667. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2668. * of that type.
  2669. */
  2670. STATIC int
  2671. xlog_recover_quotaoff_pass1(
  2672. struct xlog *log,
  2673. struct xlog_recover_item *item)
  2674. {
  2675. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2676. ASSERT(qoff_f);
  2677. /*
  2678. * The logitem format's flag tells us if this was user quotaoff,
  2679. * group/project quotaoff or both.
  2680. */
  2681. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2682. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2683. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2684. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2685. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2686. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2687. return (0);
  2688. }
  2689. /*
  2690. * Recover a dquot record
  2691. */
  2692. STATIC int
  2693. xlog_recover_dquot_pass2(
  2694. struct xlog *log,
  2695. struct list_head *buffer_list,
  2696. struct xlog_recover_item *item,
  2697. xfs_lsn_t current_lsn)
  2698. {
  2699. xfs_mount_t *mp = log->l_mp;
  2700. xfs_buf_t *bp;
  2701. struct xfs_disk_dquot *ddq, *recddq;
  2702. int error;
  2703. xfs_dq_logformat_t *dq_f;
  2704. uint type;
  2705. /*
  2706. * Filesystems are required to send in quota flags at mount time.
  2707. */
  2708. if (mp->m_qflags == 0)
  2709. return (0);
  2710. recddq = item->ri_buf[1].i_addr;
  2711. if (recddq == NULL) {
  2712. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2713. return XFS_ERROR(EIO);
  2714. }
  2715. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2716. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2717. item->ri_buf[1].i_len, __func__);
  2718. return XFS_ERROR(EIO);
  2719. }
  2720. /*
  2721. * This type of quotas was turned off, so ignore this record.
  2722. */
  2723. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2724. ASSERT(type);
  2725. if (log->l_quotaoffs_flag & type)
  2726. return (0);
  2727. /*
  2728. * At this point we know that quota was _not_ turned off.
  2729. * Since the mount flags are not indicating to us otherwise, this
  2730. * must mean that quota is on, and the dquot needs to be replayed.
  2731. * Remember that we may not have fully recovered the superblock yet,
  2732. * so we can't do the usual trick of looking at the SB quota bits.
  2733. *
  2734. * The other possibility, of course, is that the quota subsystem was
  2735. * removed since the last mount - ENOSYS.
  2736. */
  2737. dq_f = item->ri_buf[0].i_addr;
  2738. ASSERT(dq_f);
  2739. error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2740. "xlog_recover_dquot_pass2 (log copy)");
  2741. if (error)
  2742. return XFS_ERROR(EIO);
  2743. ASSERT(dq_f->qlf_len == 1);
  2744. error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
  2745. XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
  2746. NULL);
  2747. if (error)
  2748. return error;
  2749. ASSERT(bp);
  2750. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2751. /*
  2752. * At least the magic num portion should be on disk because this
  2753. * was among a chunk of dquots created earlier, and we did some
  2754. * minimal initialization then.
  2755. */
  2756. error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2757. "xlog_recover_dquot_pass2");
  2758. if (error) {
  2759. xfs_buf_relse(bp);
  2760. return XFS_ERROR(EIO);
  2761. }
  2762. /*
  2763. * If the dquot has an LSN in it, recover the dquot only if it's less
  2764. * than the lsn of the transaction we are replaying.
  2765. */
  2766. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2767. struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
  2768. xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
  2769. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2770. goto out_release;
  2771. }
  2772. }
  2773. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2774. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2775. xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
  2776. XFS_DQUOT_CRC_OFF);
  2777. }
  2778. ASSERT(dq_f->qlf_size == 2);
  2779. ASSERT(bp->b_target->bt_mount == mp);
  2780. bp->b_iodone = xlog_recover_iodone;
  2781. xfs_buf_delwri_queue(bp, buffer_list);
  2782. out_release:
  2783. xfs_buf_relse(bp);
  2784. return 0;
  2785. }
  2786. /*
  2787. * This routine is called to create an in-core extent free intent
  2788. * item from the efi format structure which was logged on disk.
  2789. * It allocates an in-core efi, copies the extents from the format
  2790. * structure into it, and adds the efi to the AIL with the given
  2791. * LSN.
  2792. */
  2793. STATIC int
  2794. xlog_recover_efi_pass2(
  2795. struct xlog *log,
  2796. struct xlog_recover_item *item,
  2797. xfs_lsn_t lsn)
  2798. {
  2799. int error;
  2800. xfs_mount_t *mp = log->l_mp;
  2801. xfs_efi_log_item_t *efip;
  2802. xfs_efi_log_format_t *efi_formatp;
  2803. efi_formatp = item->ri_buf[0].i_addr;
  2804. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2805. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2806. &(efip->efi_format)))) {
  2807. xfs_efi_item_free(efip);
  2808. return error;
  2809. }
  2810. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2811. spin_lock(&log->l_ailp->xa_lock);
  2812. /*
  2813. * xfs_trans_ail_update() drops the AIL lock.
  2814. */
  2815. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2816. return 0;
  2817. }
  2818. /*
  2819. * This routine is called when an efd format structure is found in
  2820. * a committed transaction in the log. It's purpose is to cancel
  2821. * the corresponding efi if it was still in the log. To do this
  2822. * it searches the AIL for the efi with an id equal to that in the
  2823. * efd format structure. If we find it, we remove the efi from the
  2824. * AIL and free it.
  2825. */
  2826. STATIC int
  2827. xlog_recover_efd_pass2(
  2828. struct xlog *log,
  2829. struct xlog_recover_item *item)
  2830. {
  2831. xfs_efd_log_format_t *efd_formatp;
  2832. xfs_efi_log_item_t *efip = NULL;
  2833. xfs_log_item_t *lip;
  2834. __uint64_t efi_id;
  2835. struct xfs_ail_cursor cur;
  2836. struct xfs_ail *ailp = log->l_ailp;
  2837. efd_formatp = item->ri_buf[0].i_addr;
  2838. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2839. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2840. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2841. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2842. efi_id = efd_formatp->efd_efi_id;
  2843. /*
  2844. * Search for the efi with the id in the efd format structure
  2845. * in the AIL.
  2846. */
  2847. spin_lock(&ailp->xa_lock);
  2848. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2849. while (lip != NULL) {
  2850. if (lip->li_type == XFS_LI_EFI) {
  2851. efip = (xfs_efi_log_item_t *)lip;
  2852. if (efip->efi_format.efi_id == efi_id) {
  2853. /*
  2854. * xfs_trans_ail_delete() drops the
  2855. * AIL lock.
  2856. */
  2857. xfs_trans_ail_delete(ailp, lip,
  2858. SHUTDOWN_CORRUPT_INCORE);
  2859. xfs_efi_item_free(efip);
  2860. spin_lock(&ailp->xa_lock);
  2861. break;
  2862. }
  2863. }
  2864. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2865. }
  2866. xfs_trans_ail_cursor_done(ailp, &cur);
  2867. spin_unlock(&ailp->xa_lock);
  2868. return 0;
  2869. }
  2870. /*
  2871. * This routine is called when an inode create format structure is found in a
  2872. * committed transaction in the log. It's purpose is to initialise the inodes
  2873. * being allocated on disk. This requires us to get inode cluster buffers that
  2874. * match the range to be intialised, stamped with inode templates and written
  2875. * by delayed write so that subsequent modifications will hit the cached buffer
  2876. * and only need writing out at the end of recovery.
  2877. */
  2878. STATIC int
  2879. xlog_recover_do_icreate_pass2(
  2880. struct xlog *log,
  2881. struct list_head *buffer_list,
  2882. xlog_recover_item_t *item)
  2883. {
  2884. struct xfs_mount *mp = log->l_mp;
  2885. struct xfs_icreate_log *icl;
  2886. xfs_agnumber_t agno;
  2887. xfs_agblock_t agbno;
  2888. unsigned int count;
  2889. unsigned int isize;
  2890. xfs_agblock_t length;
  2891. icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
  2892. if (icl->icl_type != XFS_LI_ICREATE) {
  2893. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
  2894. return EINVAL;
  2895. }
  2896. if (icl->icl_size != 1) {
  2897. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
  2898. return EINVAL;
  2899. }
  2900. agno = be32_to_cpu(icl->icl_ag);
  2901. if (agno >= mp->m_sb.sb_agcount) {
  2902. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
  2903. return EINVAL;
  2904. }
  2905. agbno = be32_to_cpu(icl->icl_agbno);
  2906. if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
  2907. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
  2908. return EINVAL;
  2909. }
  2910. isize = be32_to_cpu(icl->icl_isize);
  2911. if (isize != mp->m_sb.sb_inodesize) {
  2912. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
  2913. return EINVAL;
  2914. }
  2915. count = be32_to_cpu(icl->icl_count);
  2916. if (!count) {
  2917. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
  2918. return EINVAL;
  2919. }
  2920. length = be32_to_cpu(icl->icl_length);
  2921. if (!length || length >= mp->m_sb.sb_agblocks) {
  2922. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
  2923. return EINVAL;
  2924. }
  2925. /* existing allocation is fixed value */
  2926. ASSERT(count == XFS_IALLOC_INODES(mp));
  2927. ASSERT(length == XFS_IALLOC_BLOCKS(mp));
  2928. if (count != XFS_IALLOC_INODES(mp) ||
  2929. length != XFS_IALLOC_BLOCKS(mp)) {
  2930. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
  2931. return EINVAL;
  2932. }
  2933. /*
  2934. * Inode buffers can be freed. Do not replay the inode initialisation as
  2935. * we could be overwriting something written after this inode buffer was
  2936. * cancelled.
  2937. *
  2938. * XXX: we need to iterate all buffers and only init those that are not
  2939. * cancelled. I think that a more fine grained factoring of
  2940. * xfs_ialloc_inode_init may be appropriate here to enable this to be
  2941. * done easily.
  2942. */
  2943. if (xlog_check_buffer_cancelled(log,
  2944. XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
  2945. return 0;
  2946. xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
  2947. be32_to_cpu(icl->icl_gen));
  2948. return 0;
  2949. }
  2950. /*
  2951. * Free up any resources allocated by the transaction
  2952. *
  2953. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2954. */
  2955. STATIC void
  2956. xlog_recover_free_trans(
  2957. struct xlog_recover *trans)
  2958. {
  2959. xlog_recover_item_t *item, *n;
  2960. int i;
  2961. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2962. /* Free the regions in the item. */
  2963. list_del(&item->ri_list);
  2964. for (i = 0; i < item->ri_cnt; i++)
  2965. kmem_free(item->ri_buf[i].i_addr);
  2966. /* Free the item itself */
  2967. kmem_free(item->ri_buf);
  2968. kmem_free(item);
  2969. }
  2970. /* Free the transaction recover structure */
  2971. kmem_free(trans);
  2972. }
  2973. STATIC void
  2974. xlog_recover_buffer_ra_pass2(
  2975. struct xlog *log,
  2976. struct xlog_recover_item *item)
  2977. {
  2978. struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
  2979. struct xfs_mount *mp = log->l_mp;
  2980. if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
  2981. buf_f->blf_len, buf_f->blf_flags)) {
  2982. return;
  2983. }
  2984. xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
  2985. buf_f->blf_len, NULL);
  2986. }
  2987. STATIC void
  2988. xlog_recover_inode_ra_pass2(
  2989. struct xlog *log,
  2990. struct xlog_recover_item *item)
  2991. {
  2992. struct xfs_inode_log_format ilf_buf;
  2993. struct xfs_inode_log_format *ilfp;
  2994. struct xfs_mount *mp = log->l_mp;
  2995. int error;
  2996. if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
  2997. ilfp = item->ri_buf[0].i_addr;
  2998. } else {
  2999. ilfp = &ilf_buf;
  3000. memset(ilfp, 0, sizeof(*ilfp));
  3001. error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
  3002. if (error)
  3003. return;
  3004. }
  3005. if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
  3006. return;
  3007. xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
  3008. ilfp->ilf_len, &xfs_inode_buf_ra_ops);
  3009. }
  3010. STATIC void
  3011. xlog_recover_dquot_ra_pass2(
  3012. struct xlog *log,
  3013. struct xlog_recover_item *item)
  3014. {
  3015. struct xfs_mount *mp = log->l_mp;
  3016. struct xfs_disk_dquot *recddq;
  3017. struct xfs_dq_logformat *dq_f;
  3018. uint type;
  3019. if (mp->m_qflags == 0)
  3020. return;
  3021. recddq = item->ri_buf[1].i_addr;
  3022. if (recddq == NULL)
  3023. return;
  3024. if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
  3025. return;
  3026. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  3027. ASSERT(type);
  3028. if (log->l_quotaoffs_flag & type)
  3029. return;
  3030. dq_f = item->ri_buf[0].i_addr;
  3031. ASSERT(dq_f);
  3032. ASSERT(dq_f->qlf_len == 1);
  3033. xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
  3034. XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
  3035. }
  3036. STATIC void
  3037. xlog_recover_ra_pass2(
  3038. struct xlog *log,
  3039. struct xlog_recover_item *item)
  3040. {
  3041. switch (ITEM_TYPE(item)) {
  3042. case XFS_LI_BUF:
  3043. xlog_recover_buffer_ra_pass2(log, item);
  3044. break;
  3045. case XFS_LI_INODE:
  3046. xlog_recover_inode_ra_pass2(log, item);
  3047. break;
  3048. case XFS_LI_DQUOT:
  3049. xlog_recover_dquot_ra_pass2(log, item);
  3050. break;
  3051. case XFS_LI_EFI:
  3052. case XFS_LI_EFD:
  3053. case XFS_LI_QUOTAOFF:
  3054. default:
  3055. break;
  3056. }
  3057. }
  3058. STATIC int
  3059. xlog_recover_commit_pass1(
  3060. struct xlog *log,
  3061. struct xlog_recover *trans,
  3062. struct xlog_recover_item *item)
  3063. {
  3064. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  3065. switch (ITEM_TYPE(item)) {
  3066. case XFS_LI_BUF:
  3067. return xlog_recover_buffer_pass1(log, item);
  3068. case XFS_LI_QUOTAOFF:
  3069. return xlog_recover_quotaoff_pass1(log, item);
  3070. case XFS_LI_INODE:
  3071. case XFS_LI_EFI:
  3072. case XFS_LI_EFD:
  3073. case XFS_LI_DQUOT:
  3074. case XFS_LI_ICREATE:
  3075. /* nothing to do in pass 1 */
  3076. return 0;
  3077. default:
  3078. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  3079. __func__, ITEM_TYPE(item));
  3080. ASSERT(0);
  3081. return XFS_ERROR(EIO);
  3082. }
  3083. }
  3084. STATIC int
  3085. xlog_recover_commit_pass2(
  3086. struct xlog *log,
  3087. struct xlog_recover *trans,
  3088. struct list_head *buffer_list,
  3089. struct xlog_recover_item *item)
  3090. {
  3091. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  3092. switch (ITEM_TYPE(item)) {
  3093. case XFS_LI_BUF:
  3094. return xlog_recover_buffer_pass2(log, buffer_list, item,
  3095. trans->r_lsn);
  3096. case XFS_LI_INODE:
  3097. return xlog_recover_inode_pass2(log, buffer_list, item,
  3098. trans->r_lsn);
  3099. case XFS_LI_EFI:
  3100. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  3101. case XFS_LI_EFD:
  3102. return xlog_recover_efd_pass2(log, item);
  3103. case XFS_LI_DQUOT:
  3104. return xlog_recover_dquot_pass2(log, buffer_list, item,
  3105. trans->r_lsn);
  3106. case XFS_LI_ICREATE:
  3107. return xlog_recover_do_icreate_pass2(log, buffer_list, item);
  3108. case XFS_LI_QUOTAOFF:
  3109. /* nothing to do in pass2 */
  3110. return 0;
  3111. default:
  3112. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  3113. __func__, ITEM_TYPE(item));
  3114. ASSERT(0);
  3115. return XFS_ERROR(EIO);
  3116. }
  3117. }
  3118. STATIC int
  3119. xlog_recover_items_pass2(
  3120. struct xlog *log,
  3121. struct xlog_recover *trans,
  3122. struct list_head *buffer_list,
  3123. struct list_head *item_list)
  3124. {
  3125. struct xlog_recover_item *item;
  3126. int error = 0;
  3127. list_for_each_entry(item, item_list, ri_list) {
  3128. error = xlog_recover_commit_pass2(log, trans,
  3129. buffer_list, item);
  3130. if (error)
  3131. return error;
  3132. }
  3133. return error;
  3134. }
  3135. /*
  3136. * Perform the transaction.
  3137. *
  3138. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  3139. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  3140. */
  3141. STATIC int
  3142. xlog_recover_commit_trans(
  3143. struct xlog *log,
  3144. struct xlog_recover *trans,
  3145. int pass)
  3146. {
  3147. int error = 0;
  3148. int error2;
  3149. int items_queued = 0;
  3150. struct xlog_recover_item *item;
  3151. struct xlog_recover_item *next;
  3152. LIST_HEAD (buffer_list);
  3153. LIST_HEAD (ra_list);
  3154. LIST_HEAD (done_list);
  3155. #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
  3156. hlist_del(&trans->r_list);
  3157. error = xlog_recover_reorder_trans(log, trans, pass);
  3158. if (error)
  3159. return error;
  3160. list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
  3161. switch (pass) {
  3162. case XLOG_RECOVER_PASS1:
  3163. error = xlog_recover_commit_pass1(log, trans, item);
  3164. break;
  3165. case XLOG_RECOVER_PASS2:
  3166. xlog_recover_ra_pass2(log, item);
  3167. list_move_tail(&item->ri_list, &ra_list);
  3168. items_queued++;
  3169. if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
  3170. error = xlog_recover_items_pass2(log, trans,
  3171. &buffer_list, &ra_list);
  3172. list_splice_tail_init(&ra_list, &done_list);
  3173. items_queued = 0;
  3174. }
  3175. break;
  3176. default:
  3177. ASSERT(0);
  3178. }
  3179. if (error)
  3180. goto out;
  3181. }
  3182. out:
  3183. if (!list_empty(&ra_list)) {
  3184. if (!error)
  3185. error = xlog_recover_items_pass2(log, trans,
  3186. &buffer_list, &ra_list);
  3187. list_splice_tail_init(&ra_list, &done_list);
  3188. }
  3189. if (!list_empty(&done_list))
  3190. list_splice_init(&done_list, &trans->r_itemq);
  3191. xlog_recover_free_trans(trans);
  3192. error2 = xfs_buf_delwri_submit(&buffer_list);
  3193. return error ? error : error2;
  3194. }
  3195. STATIC int
  3196. xlog_recover_unmount_trans(
  3197. struct xlog *log,
  3198. struct xlog_recover *trans)
  3199. {
  3200. /* Do nothing now */
  3201. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  3202. return 0;
  3203. }
  3204. /*
  3205. * There are two valid states of the r_state field. 0 indicates that the
  3206. * transaction structure is in a normal state. We have either seen the
  3207. * start of the transaction or the last operation we added was not a partial
  3208. * operation. If the last operation we added to the transaction was a
  3209. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  3210. *
  3211. * NOTE: skip LRs with 0 data length.
  3212. */
  3213. STATIC int
  3214. xlog_recover_process_data(
  3215. struct xlog *log,
  3216. struct hlist_head rhash[],
  3217. struct xlog_rec_header *rhead,
  3218. xfs_caddr_t dp,
  3219. int pass)
  3220. {
  3221. xfs_caddr_t lp;
  3222. int num_logops;
  3223. xlog_op_header_t *ohead;
  3224. xlog_recover_t *trans;
  3225. xlog_tid_t tid;
  3226. int error;
  3227. unsigned long hash;
  3228. uint flags;
  3229. lp = dp + be32_to_cpu(rhead->h_len);
  3230. num_logops = be32_to_cpu(rhead->h_num_logops);
  3231. /* check the log format matches our own - else we can't recover */
  3232. if (xlog_header_check_recover(log->l_mp, rhead))
  3233. return (XFS_ERROR(EIO));
  3234. while ((dp < lp) && num_logops) {
  3235. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  3236. ohead = (xlog_op_header_t *)dp;
  3237. dp += sizeof(xlog_op_header_t);
  3238. if (ohead->oh_clientid != XFS_TRANSACTION &&
  3239. ohead->oh_clientid != XFS_LOG) {
  3240. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  3241. __func__, ohead->oh_clientid);
  3242. ASSERT(0);
  3243. return (XFS_ERROR(EIO));
  3244. }
  3245. tid = be32_to_cpu(ohead->oh_tid);
  3246. hash = XLOG_RHASH(tid);
  3247. trans = xlog_recover_find_tid(&rhash[hash], tid);
  3248. if (trans == NULL) { /* not found; add new tid */
  3249. if (ohead->oh_flags & XLOG_START_TRANS)
  3250. xlog_recover_new_tid(&rhash[hash], tid,
  3251. be64_to_cpu(rhead->h_lsn));
  3252. } else {
  3253. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  3254. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  3255. __func__, be32_to_cpu(ohead->oh_len));
  3256. WARN_ON(1);
  3257. return (XFS_ERROR(EIO));
  3258. }
  3259. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  3260. if (flags & XLOG_WAS_CONT_TRANS)
  3261. flags &= ~XLOG_CONTINUE_TRANS;
  3262. switch (flags) {
  3263. case XLOG_COMMIT_TRANS:
  3264. error = xlog_recover_commit_trans(log,
  3265. trans, pass);
  3266. break;
  3267. case XLOG_UNMOUNT_TRANS:
  3268. error = xlog_recover_unmount_trans(log, trans);
  3269. break;
  3270. case XLOG_WAS_CONT_TRANS:
  3271. error = xlog_recover_add_to_cont_trans(log,
  3272. trans, dp,
  3273. be32_to_cpu(ohead->oh_len));
  3274. break;
  3275. case XLOG_START_TRANS:
  3276. xfs_warn(log->l_mp, "%s: bad transaction",
  3277. __func__);
  3278. ASSERT(0);
  3279. error = XFS_ERROR(EIO);
  3280. break;
  3281. case 0:
  3282. case XLOG_CONTINUE_TRANS:
  3283. error = xlog_recover_add_to_trans(log, trans,
  3284. dp, be32_to_cpu(ohead->oh_len));
  3285. break;
  3286. default:
  3287. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  3288. __func__, flags);
  3289. ASSERT(0);
  3290. error = XFS_ERROR(EIO);
  3291. break;
  3292. }
  3293. if (error)
  3294. return error;
  3295. }
  3296. dp += be32_to_cpu(ohead->oh_len);
  3297. num_logops--;
  3298. }
  3299. return 0;
  3300. }
  3301. /*
  3302. * Process an extent free intent item that was recovered from
  3303. * the log. We need to free the extents that it describes.
  3304. */
  3305. STATIC int
  3306. xlog_recover_process_efi(
  3307. xfs_mount_t *mp,
  3308. xfs_efi_log_item_t *efip)
  3309. {
  3310. xfs_efd_log_item_t *efdp;
  3311. xfs_trans_t *tp;
  3312. int i;
  3313. int error = 0;
  3314. xfs_extent_t *extp;
  3315. xfs_fsblock_t startblock_fsb;
  3316. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  3317. /*
  3318. * First check the validity of the extents described by the
  3319. * EFI. If any are bad, then assume that all are bad and
  3320. * just toss the EFI.
  3321. */
  3322. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  3323. extp = &(efip->efi_format.efi_extents[i]);
  3324. startblock_fsb = XFS_BB_TO_FSB(mp,
  3325. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  3326. if ((startblock_fsb == 0) ||
  3327. (extp->ext_len == 0) ||
  3328. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  3329. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  3330. /*
  3331. * This will pull the EFI from the AIL and
  3332. * free the memory associated with it.
  3333. */
  3334. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  3335. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  3336. return XFS_ERROR(EIO);
  3337. }
  3338. }
  3339. tp = xfs_trans_alloc(mp, 0);
  3340. error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
  3341. if (error)
  3342. goto abort_error;
  3343. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  3344. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  3345. extp = &(efip->efi_format.efi_extents[i]);
  3346. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  3347. if (error)
  3348. goto abort_error;
  3349. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  3350. extp->ext_len);
  3351. }
  3352. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  3353. error = xfs_trans_commit(tp, 0);
  3354. return error;
  3355. abort_error:
  3356. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  3357. return error;
  3358. }
  3359. /*
  3360. * When this is called, all of the EFIs which did not have
  3361. * corresponding EFDs should be in the AIL. What we do now
  3362. * is free the extents associated with each one.
  3363. *
  3364. * Since we process the EFIs in normal transactions, they
  3365. * will be removed at some point after the commit. This prevents
  3366. * us from just walking down the list processing each one.
  3367. * We'll use a flag in the EFI to skip those that we've already
  3368. * processed and use the AIL iteration mechanism's generation
  3369. * count to try to speed this up at least a bit.
  3370. *
  3371. * When we start, we know that the EFIs are the only things in
  3372. * the AIL. As we process them, however, other items are added
  3373. * to the AIL. Since everything added to the AIL must come after
  3374. * everything already in the AIL, we stop processing as soon as
  3375. * we see something other than an EFI in the AIL.
  3376. */
  3377. STATIC int
  3378. xlog_recover_process_efis(
  3379. struct xlog *log)
  3380. {
  3381. xfs_log_item_t *lip;
  3382. xfs_efi_log_item_t *efip;
  3383. int error = 0;
  3384. struct xfs_ail_cursor cur;
  3385. struct xfs_ail *ailp;
  3386. ailp = log->l_ailp;
  3387. spin_lock(&ailp->xa_lock);
  3388. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  3389. while (lip != NULL) {
  3390. /*
  3391. * We're done when we see something other than an EFI.
  3392. * There should be no EFIs left in the AIL now.
  3393. */
  3394. if (lip->li_type != XFS_LI_EFI) {
  3395. #ifdef DEBUG
  3396. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  3397. ASSERT(lip->li_type != XFS_LI_EFI);
  3398. #endif
  3399. break;
  3400. }
  3401. /*
  3402. * Skip EFIs that we've already processed.
  3403. */
  3404. efip = (xfs_efi_log_item_t *)lip;
  3405. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  3406. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  3407. continue;
  3408. }
  3409. spin_unlock(&ailp->xa_lock);
  3410. error = xlog_recover_process_efi(log->l_mp, efip);
  3411. spin_lock(&ailp->xa_lock);
  3412. if (error)
  3413. goto out;
  3414. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  3415. }
  3416. out:
  3417. xfs_trans_ail_cursor_done(ailp, &cur);
  3418. spin_unlock(&ailp->xa_lock);
  3419. return error;
  3420. }
  3421. /*
  3422. * This routine performs a transaction to null out a bad inode pointer
  3423. * in an agi unlinked inode hash bucket.
  3424. */
  3425. STATIC void
  3426. xlog_recover_clear_agi_bucket(
  3427. xfs_mount_t *mp,
  3428. xfs_agnumber_t agno,
  3429. int bucket)
  3430. {
  3431. xfs_trans_t *tp;
  3432. xfs_agi_t *agi;
  3433. xfs_buf_t *agibp;
  3434. int offset;
  3435. int error;
  3436. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  3437. error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
  3438. if (error)
  3439. goto out_abort;
  3440. error = xfs_read_agi(mp, tp, agno, &agibp);
  3441. if (error)
  3442. goto out_abort;
  3443. agi = XFS_BUF_TO_AGI(agibp);
  3444. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  3445. offset = offsetof(xfs_agi_t, agi_unlinked) +
  3446. (sizeof(xfs_agino_t) * bucket);
  3447. xfs_trans_log_buf(tp, agibp, offset,
  3448. (offset + sizeof(xfs_agino_t) - 1));
  3449. error = xfs_trans_commit(tp, 0);
  3450. if (error)
  3451. goto out_error;
  3452. return;
  3453. out_abort:
  3454. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  3455. out_error:
  3456. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  3457. return;
  3458. }
  3459. STATIC xfs_agino_t
  3460. xlog_recover_process_one_iunlink(
  3461. struct xfs_mount *mp,
  3462. xfs_agnumber_t agno,
  3463. xfs_agino_t agino,
  3464. int bucket)
  3465. {
  3466. struct xfs_buf *ibp;
  3467. struct xfs_dinode *dip;
  3468. struct xfs_inode *ip;
  3469. xfs_ino_t ino;
  3470. int error;
  3471. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  3472. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  3473. if (error)
  3474. goto fail;
  3475. /*
  3476. * Get the on disk inode to find the next inode in the bucket.
  3477. */
  3478. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
  3479. if (error)
  3480. goto fail_iput;
  3481. ASSERT(ip->i_d.di_nlink == 0);
  3482. ASSERT(ip->i_d.di_mode != 0);
  3483. /* setup for the next pass */
  3484. agino = be32_to_cpu(dip->di_next_unlinked);
  3485. xfs_buf_relse(ibp);
  3486. /*
  3487. * Prevent any DMAPI event from being sent when the reference on
  3488. * the inode is dropped.
  3489. */
  3490. ip->i_d.di_dmevmask = 0;
  3491. IRELE(ip);
  3492. return agino;
  3493. fail_iput:
  3494. IRELE(ip);
  3495. fail:
  3496. /*
  3497. * We can't read in the inode this bucket points to, or this inode
  3498. * is messed up. Just ditch this bucket of inodes. We will lose
  3499. * some inodes and space, but at least we won't hang.
  3500. *
  3501. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  3502. * clear the inode pointer in the bucket.
  3503. */
  3504. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  3505. return NULLAGINO;
  3506. }
  3507. /*
  3508. * xlog_iunlink_recover
  3509. *
  3510. * This is called during recovery to process any inodes which
  3511. * we unlinked but not freed when the system crashed. These
  3512. * inodes will be on the lists in the AGI blocks. What we do
  3513. * here is scan all the AGIs and fully truncate and free any
  3514. * inodes found on the lists. Each inode is removed from the
  3515. * lists when it has been fully truncated and is freed. The
  3516. * freeing of the inode and its removal from the list must be
  3517. * atomic.
  3518. */
  3519. STATIC void
  3520. xlog_recover_process_iunlinks(
  3521. struct xlog *log)
  3522. {
  3523. xfs_mount_t *mp;
  3524. xfs_agnumber_t agno;
  3525. xfs_agi_t *agi;
  3526. xfs_buf_t *agibp;
  3527. xfs_agino_t agino;
  3528. int bucket;
  3529. int error;
  3530. uint mp_dmevmask;
  3531. mp = log->l_mp;
  3532. /*
  3533. * Prevent any DMAPI event from being sent while in this function.
  3534. */
  3535. mp_dmevmask = mp->m_dmevmask;
  3536. mp->m_dmevmask = 0;
  3537. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3538. /*
  3539. * Find the agi for this ag.
  3540. */
  3541. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3542. if (error) {
  3543. /*
  3544. * AGI is b0rked. Don't process it.
  3545. *
  3546. * We should probably mark the filesystem as corrupt
  3547. * after we've recovered all the ag's we can....
  3548. */
  3549. continue;
  3550. }
  3551. /*
  3552. * Unlock the buffer so that it can be acquired in the normal
  3553. * course of the transaction to truncate and free each inode.
  3554. * Because we are not racing with anyone else here for the AGI
  3555. * buffer, we don't even need to hold it locked to read the
  3556. * initial unlinked bucket entries out of the buffer. We keep
  3557. * buffer reference though, so that it stays pinned in memory
  3558. * while we need the buffer.
  3559. */
  3560. agi = XFS_BUF_TO_AGI(agibp);
  3561. xfs_buf_unlock(agibp);
  3562. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  3563. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  3564. while (agino != NULLAGINO) {
  3565. agino = xlog_recover_process_one_iunlink(mp,
  3566. agno, agino, bucket);
  3567. }
  3568. }
  3569. xfs_buf_rele(agibp);
  3570. }
  3571. mp->m_dmevmask = mp_dmevmask;
  3572. }
  3573. /*
  3574. * Upack the log buffer data and crc check it. If the check fails, issue a
  3575. * warning if and only if the CRC in the header is non-zero. This makes the
  3576. * check an advisory warning, and the zero CRC check will prevent failure
  3577. * warnings from being emitted when upgrading the kernel from one that does not
  3578. * add CRCs by default.
  3579. *
  3580. * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
  3581. * corruption failure
  3582. */
  3583. STATIC int
  3584. xlog_unpack_data_crc(
  3585. struct xlog_rec_header *rhead,
  3586. xfs_caddr_t dp,
  3587. struct xlog *log)
  3588. {
  3589. __le32 crc;
  3590. crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
  3591. if (crc != rhead->h_crc) {
  3592. if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
  3593. xfs_alert(log->l_mp,
  3594. "log record CRC mismatch: found 0x%x, expected 0x%x.",
  3595. le32_to_cpu(rhead->h_crc),
  3596. le32_to_cpu(crc));
  3597. xfs_hex_dump(dp, 32);
  3598. }
  3599. /*
  3600. * If we've detected a log record corruption, then we can't
  3601. * recover past this point. Abort recovery if we are enforcing
  3602. * CRC protection by punting an error back up the stack.
  3603. */
  3604. if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
  3605. return EFSCORRUPTED;
  3606. }
  3607. return 0;
  3608. }
  3609. STATIC int
  3610. xlog_unpack_data(
  3611. struct xlog_rec_header *rhead,
  3612. xfs_caddr_t dp,
  3613. struct xlog *log)
  3614. {
  3615. int i, j, k;
  3616. int error;
  3617. error = xlog_unpack_data_crc(rhead, dp, log);
  3618. if (error)
  3619. return error;
  3620. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3621. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3622. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3623. dp += BBSIZE;
  3624. }
  3625. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3626. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3627. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3628. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3629. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3630. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3631. dp += BBSIZE;
  3632. }
  3633. }
  3634. return 0;
  3635. }
  3636. STATIC int
  3637. xlog_valid_rec_header(
  3638. struct xlog *log,
  3639. struct xlog_rec_header *rhead,
  3640. xfs_daddr_t blkno)
  3641. {
  3642. int hlen;
  3643. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  3644. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3645. XFS_ERRLEVEL_LOW, log->l_mp);
  3646. return XFS_ERROR(EFSCORRUPTED);
  3647. }
  3648. if (unlikely(
  3649. (!rhead->h_version ||
  3650. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3651. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3652. __func__, be32_to_cpu(rhead->h_version));
  3653. return XFS_ERROR(EIO);
  3654. }
  3655. /* LR body must have data or it wouldn't have been written */
  3656. hlen = be32_to_cpu(rhead->h_len);
  3657. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3658. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3659. XFS_ERRLEVEL_LOW, log->l_mp);
  3660. return XFS_ERROR(EFSCORRUPTED);
  3661. }
  3662. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3663. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3664. XFS_ERRLEVEL_LOW, log->l_mp);
  3665. return XFS_ERROR(EFSCORRUPTED);
  3666. }
  3667. return 0;
  3668. }
  3669. /*
  3670. * Read the log from tail to head and process the log records found.
  3671. * Handle the two cases where the tail and head are in the same cycle
  3672. * and where the active portion of the log wraps around the end of
  3673. * the physical log separately. The pass parameter is passed through
  3674. * to the routines called to process the data and is not looked at
  3675. * here.
  3676. */
  3677. STATIC int
  3678. xlog_do_recovery_pass(
  3679. struct xlog *log,
  3680. xfs_daddr_t head_blk,
  3681. xfs_daddr_t tail_blk,
  3682. int pass)
  3683. {
  3684. xlog_rec_header_t *rhead;
  3685. xfs_daddr_t blk_no;
  3686. xfs_caddr_t offset;
  3687. xfs_buf_t *hbp, *dbp;
  3688. int error = 0, h_size;
  3689. int bblks, split_bblks;
  3690. int hblks, split_hblks, wrapped_hblks;
  3691. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3692. ASSERT(head_blk != tail_blk);
  3693. /*
  3694. * Read the header of the tail block and get the iclog buffer size from
  3695. * h_size. Use this to tell how many sectors make up the log header.
  3696. */
  3697. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3698. /*
  3699. * When using variable length iclogs, read first sector of
  3700. * iclog header and extract the header size from it. Get a
  3701. * new hbp that is the correct size.
  3702. */
  3703. hbp = xlog_get_bp(log, 1);
  3704. if (!hbp)
  3705. return ENOMEM;
  3706. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3707. if (error)
  3708. goto bread_err1;
  3709. rhead = (xlog_rec_header_t *)offset;
  3710. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3711. if (error)
  3712. goto bread_err1;
  3713. h_size = be32_to_cpu(rhead->h_size);
  3714. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3715. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3716. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3717. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3718. hblks++;
  3719. xlog_put_bp(hbp);
  3720. hbp = xlog_get_bp(log, hblks);
  3721. } else {
  3722. hblks = 1;
  3723. }
  3724. } else {
  3725. ASSERT(log->l_sectBBsize == 1);
  3726. hblks = 1;
  3727. hbp = xlog_get_bp(log, 1);
  3728. h_size = XLOG_BIG_RECORD_BSIZE;
  3729. }
  3730. if (!hbp)
  3731. return ENOMEM;
  3732. dbp = xlog_get_bp(log, BTOBB(h_size));
  3733. if (!dbp) {
  3734. xlog_put_bp(hbp);
  3735. return ENOMEM;
  3736. }
  3737. memset(rhash, 0, sizeof(rhash));
  3738. if (tail_blk <= head_blk) {
  3739. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3740. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3741. if (error)
  3742. goto bread_err2;
  3743. rhead = (xlog_rec_header_t *)offset;
  3744. error = xlog_valid_rec_header(log, rhead, blk_no);
  3745. if (error)
  3746. goto bread_err2;
  3747. /* blocks in data section */
  3748. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3749. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3750. &offset);
  3751. if (error)
  3752. goto bread_err2;
  3753. error = xlog_unpack_data(rhead, offset, log);
  3754. if (error)
  3755. goto bread_err2;
  3756. error = xlog_recover_process_data(log,
  3757. rhash, rhead, offset, pass);
  3758. if (error)
  3759. goto bread_err2;
  3760. blk_no += bblks + hblks;
  3761. }
  3762. } else {
  3763. /*
  3764. * Perform recovery around the end of the physical log.
  3765. * When the head is not on the same cycle number as the tail,
  3766. * we can't do a sequential recovery as above.
  3767. */
  3768. blk_no = tail_blk;
  3769. while (blk_no < log->l_logBBsize) {
  3770. /*
  3771. * Check for header wrapping around physical end-of-log
  3772. */
  3773. offset = hbp->b_addr;
  3774. split_hblks = 0;
  3775. wrapped_hblks = 0;
  3776. if (blk_no + hblks <= log->l_logBBsize) {
  3777. /* Read header in one read */
  3778. error = xlog_bread(log, blk_no, hblks, hbp,
  3779. &offset);
  3780. if (error)
  3781. goto bread_err2;
  3782. } else {
  3783. /* This LR is split across physical log end */
  3784. if (blk_no != log->l_logBBsize) {
  3785. /* some data before physical log end */
  3786. ASSERT(blk_no <= INT_MAX);
  3787. split_hblks = log->l_logBBsize - (int)blk_no;
  3788. ASSERT(split_hblks > 0);
  3789. error = xlog_bread(log, blk_no,
  3790. split_hblks, hbp,
  3791. &offset);
  3792. if (error)
  3793. goto bread_err2;
  3794. }
  3795. /*
  3796. * Note: this black magic still works with
  3797. * large sector sizes (non-512) only because:
  3798. * - we increased the buffer size originally
  3799. * by 1 sector giving us enough extra space
  3800. * for the second read;
  3801. * - the log start is guaranteed to be sector
  3802. * aligned;
  3803. * - we read the log end (LR header start)
  3804. * _first_, then the log start (LR header end)
  3805. * - order is important.
  3806. */
  3807. wrapped_hblks = hblks - split_hblks;
  3808. error = xlog_bread_offset(log, 0,
  3809. wrapped_hblks, hbp,
  3810. offset + BBTOB(split_hblks));
  3811. if (error)
  3812. goto bread_err2;
  3813. }
  3814. rhead = (xlog_rec_header_t *)offset;
  3815. error = xlog_valid_rec_header(log, rhead,
  3816. split_hblks ? blk_no : 0);
  3817. if (error)
  3818. goto bread_err2;
  3819. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3820. blk_no += hblks;
  3821. /* Read in data for log record */
  3822. if (blk_no + bblks <= log->l_logBBsize) {
  3823. error = xlog_bread(log, blk_no, bblks, dbp,
  3824. &offset);
  3825. if (error)
  3826. goto bread_err2;
  3827. } else {
  3828. /* This log record is split across the
  3829. * physical end of log */
  3830. offset = dbp->b_addr;
  3831. split_bblks = 0;
  3832. if (blk_no != log->l_logBBsize) {
  3833. /* some data is before the physical
  3834. * end of log */
  3835. ASSERT(!wrapped_hblks);
  3836. ASSERT(blk_no <= INT_MAX);
  3837. split_bblks =
  3838. log->l_logBBsize - (int)blk_no;
  3839. ASSERT(split_bblks > 0);
  3840. error = xlog_bread(log, blk_no,
  3841. split_bblks, dbp,
  3842. &offset);
  3843. if (error)
  3844. goto bread_err2;
  3845. }
  3846. /*
  3847. * Note: this black magic still works with
  3848. * large sector sizes (non-512) only because:
  3849. * - we increased the buffer size originally
  3850. * by 1 sector giving us enough extra space
  3851. * for the second read;
  3852. * - the log start is guaranteed to be sector
  3853. * aligned;
  3854. * - we read the log end (LR header start)
  3855. * _first_, then the log start (LR header end)
  3856. * - order is important.
  3857. */
  3858. error = xlog_bread_offset(log, 0,
  3859. bblks - split_bblks, dbp,
  3860. offset + BBTOB(split_bblks));
  3861. if (error)
  3862. goto bread_err2;
  3863. }
  3864. error = xlog_unpack_data(rhead, offset, log);
  3865. if (error)
  3866. goto bread_err2;
  3867. error = xlog_recover_process_data(log, rhash,
  3868. rhead, offset, pass);
  3869. if (error)
  3870. goto bread_err2;
  3871. blk_no += bblks;
  3872. }
  3873. ASSERT(blk_no >= log->l_logBBsize);
  3874. blk_no -= log->l_logBBsize;
  3875. /* read first part of physical log */
  3876. while (blk_no < head_blk) {
  3877. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3878. if (error)
  3879. goto bread_err2;
  3880. rhead = (xlog_rec_header_t *)offset;
  3881. error = xlog_valid_rec_header(log, rhead, blk_no);
  3882. if (error)
  3883. goto bread_err2;
  3884. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3885. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3886. &offset);
  3887. if (error)
  3888. goto bread_err2;
  3889. error = xlog_unpack_data(rhead, offset, log);
  3890. if (error)
  3891. goto bread_err2;
  3892. error = xlog_recover_process_data(log, rhash,
  3893. rhead, offset, pass);
  3894. if (error)
  3895. goto bread_err2;
  3896. blk_no += bblks + hblks;
  3897. }
  3898. }
  3899. bread_err2:
  3900. xlog_put_bp(dbp);
  3901. bread_err1:
  3902. xlog_put_bp(hbp);
  3903. return error;
  3904. }
  3905. /*
  3906. * Do the recovery of the log. We actually do this in two phases.
  3907. * The two passes are necessary in order to implement the function
  3908. * of cancelling a record written into the log. The first pass
  3909. * determines those things which have been cancelled, and the
  3910. * second pass replays log items normally except for those which
  3911. * have been cancelled. The handling of the replay and cancellations
  3912. * takes place in the log item type specific routines.
  3913. *
  3914. * The table of items which have cancel records in the log is allocated
  3915. * and freed at this level, since only here do we know when all of
  3916. * the log recovery has been completed.
  3917. */
  3918. STATIC int
  3919. xlog_do_log_recovery(
  3920. struct xlog *log,
  3921. xfs_daddr_t head_blk,
  3922. xfs_daddr_t tail_blk)
  3923. {
  3924. int error, i;
  3925. ASSERT(head_blk != tail_blk);
  3926. /*
  3927. * First do a pass to find all of the cancelled buf log items.
  3928. * Store them in the buf_cancel_table for use in the second pass.
  3929. */
  3930. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3931. sizeof(struct list_head),
  3932. KM_SLEEP);
  3933. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3934. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3935. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3936. XLOG_RECOVER_PASS1);
  3937. if (error != 0) {
  3938. kmem_free(log->l_buf_cancel_table);
  3939. log->l_buf_cancel_table = NULL;
  3940. return error;
  3941. }
  3942. /*
  3943. * Then do a second pass to actually recover the items in the log.
  3944. * When it is complete free the table of buf cancel items.
  3945. */
  3946. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3947. XLOG_RECOVER_PASS2);
  3948. #ifdef DEBUG
  3949. if (!error) {
  3950. int i;
  3951. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3952. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3953. }
  3954. #endif /* DEBUG */
  3955. kmem_free(log->l_buf_cancel_table);
  3956. log->l_buf_cancel_table = NULL;
  3957. return error;
  3958. }
  3959. /*
  3960. * Do the actual recovery
  3961. */
  3962. STATIC int
  3963. xlog_do_recover(
  3964. struct xlog *log,
  3965. xfs_daddr_t head_blk,
  3966. xfs_daddr_t tail_blk)
  3967. {
  3968. int error;
  3969. xfs_buf_t *bp;
  3970. xfs_sb_t *sbp;
  3971. /*
  3972. * First replay the images in the log.
  3973. */
  3974. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3975. if (error)
  3976. return error;
  3977. /*
  3978. * If IO errors happened during recovery, bail out.
  3979. */
  3980. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3981. return (EIO);
  3982. }
  3983. /*
  3984. * We now update the tail_lsn since much of the recovery has completed
  3985. * and there may be space available to use. If there were no extent
  3986. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3987. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3988. * lsn of the last known good LR on disk. If there are extent frees
  3989. * or iunlinks they will have some entries in the AIL; so we look at
  3990. * the AIL to determine how to set the tail_lsn.
  3991. */
  3992. xlog_assign_tail_lsn(log->l_mp);
  3993. /*
  3994. * Now that we've finished replaying all buffer and inode
  3995. * updates, re-read in the superblock and reverify it.
  3996. */
  3997. bp = xfs_getsb(log->l_mp, 0);
  3998. XFS_BUF_UNDONE(bp);
  3999. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  4000. XFS_BUF_READ(bp);
  4001. XFS_BUF_UNASYNC(bp);
  4002. bp->b_ops = &xfs_sb_buf_ops;
  4003. xfsbdstrat(log->l_mp, bp);
  4004. error = xfs_buf_iowait(bp);
  4005. if (error) {
  4006. xfs_buf_ioerror_alert(bp, __func__);
  4007. ASSERT(0);
  4008. xfs_buf_relse(bp);
  4009. return error;
  4010. }
  4011. /* Convert superblock from on-disk format */
  4012. sbp = &log->l_mp->m_sb;
  4013. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  4014. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  4015. ASSERT(xfs_sb_good_version(sbp));
  4016. xfs_buf_relse(bp);
  4017. /* We've re-read the superblock so re-initialize per-cpu counters */
  4018. xfs_icsb_reinit_counters(log->l_mp);
  4019. xlog_recover_check_summary(log);
  4020. /* Normal transactions can now occur */
  4021. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  4022. return 0;
  4023. }
  4024. /*
  4025. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  4026. *
  4027. * Return error or zero.
  4028. */
  4029. int
  4030. xlog_recover(
  4031. struct xlog *log)
  4032. {
  4033. xfs_daddr_t head_blk, tail_blk;
  4034. int error;
  4035. /* find the tail of the log */
  4036. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  4037. return error;
  4038. if (tail_blk != head_blk) {
  4039. /* There used to be a comment here:
  4040. *
  4041. * disallow recovery on read-only mounts. note -- mount
  4042. * checks for ENOSPC and turns it into an intelligent
  4043. * error message.
  4044. * ...but this is no longer true. Now, unless you specify
  4045. * NORECOVERY (in which case this function would never be
  4046. * called), we just go ahead and recover. We do this all
  4047. * under the vfs layer, so we can get away with it unless
  4048. * the device itself is read-only, in which case we fail.
  4049. */
  4050. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  4051. return error;
  4052. }
  4053. /*
  4054. * Version 5 superblock log feature mask validation. We know the
  4055. * log is dirty so check if there are any unknown log features
  4056. * in what we need to recover. If there are unknown features
  4057. * (e.g. unsupported transactions, then simply reject the
  4058. * attempt at recovery before touching anything.
  4059. */
  4060. if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
  4061. xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
  4062. XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
  4063. xfs_warn(log->l_mp,
  4064. "Superblock has unknown incompatible log features (0x%x) enabled.\n"
  4065. "The log can not be fully and/or safely recovered by this kernel.\n"
  4066. "Please recover the log on a kernel that supports the unknown features.",
  4067. (log->l_mp->m_sb.sb_features_log_incompat &
  4068. XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
  4069. return EINVAL;
  4070. }
  4071. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  4072. log->l_mp->m_logname ? log->l_mp->m_logname
  4073. : "internal");
  4074. error = xlog_do_recover(log, head_blk, tail_blk);
  4075. log->l_flags |= XLOG_RECOVERY_NEEDED;
  4076. }
  4077. return error;
  4078. }
  4079. /*
  4080. * In the first part of recovery we replay inodes and buffers and build
  4081. * up the list of extent free items which need to be processed. Here
  4082. * we process the extent free items and clean up the on disk unlinked
  4083. * inode lists. This is separated from the first part of recovery so
  4084. * that the root and real-time bitmap inodes can be read in from disk in
  4085. * between the two stages. This is necessary so that we can free space
  4086. * in the real-time portion of the file system.
  4087. */
  4088. int
  4089. xlog_recover_finish(
  4090. struct xlog *log)
  4091. {
  4092. /*
  4093. * Now we're ready to do the transactions needed for the
  4094. * rest of recovery. Start with completing all the extent
  4095. * free intent records and then process the unlinked inode
  4096. * lists. At this point, we essentially run in normal mode
  4097. * except that we're still performing recovery actions
  4098. * rather than accepting new requests.
  4099. */
  4100. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  4101. int error;
  4102. error = xlog_recover_process_efis(log);
  4103. if (error) {
  4104. xfs_alert(log->l_mp, "Failed to recover EFIs");
  4105. return error;
  4106. }
  4107. /*
  4108. * Sync the log to get all the EFIs out of the AIL.
  4109. * This isn't absolutely necessary, but it helps in
  4110. * case the unlink transactions would have problems
  4111. * pushing the EFIs out of the way.
  4112. */
  4113. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  4114. xlog_recover_process_iunlinks(log);
  4115. xlog_recover_check_summary(log);
  4116. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  4117. log->l_mp->m_logname ? log->l_mp->m_logname
  4118. : "internal");
  4119. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  4120. } else {
  4121. xfs_info(log->l_mp, "Ending clean mount");
  4122. }
  4123. return 0;
  4124. }
  4125. #if defined(DEBUG)
  4126. /*
  4127. * Read all of the agf and agi counters and check that they
  4128. * are consistent with the superblock counters.
  4129. */
  4130. void
  4131. xlog_recover_check_summary(
  4132. struct xlog *log)
  4133. {
  4134. xfs_mount_t *mp;
  4135. xfs_agf_t *agfp;
  4136. xfs_buf_t *agfbp;
  4137. xfs_buf_t *agibp;
  4138. xfs_agnumber_t agno;
  4139. __uint64_t freeblks;
  4140. __uint64_t itotal;
  4141. __uint64_t ifree;
  4142. int error;
  4143. mp = log->l_mp;
  4144. freeblks = 0LL;
  4145. itotal = 0LL;
  4146. ifree = 0LL;
  4147. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  4148. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  4149. if (error) {
  4150. xfs_alert(mp, "%s agf read failed agno %d error %d",
  4151. __func__, agno, error);
  4152. } else {
  4153. agfp = XFS_BUF_TO_AGF(agfbp);
  4154. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  4155. be32_to_cpu(agfp->agf_flcount);
  4156. xfs_buf_relse(agfbp);
  4157. }
  4158. error = xfs_read_agi(mp, NULL, agno, &agibp);
  4159. if (error) {
  4160. xfs_alert(mp, "%s agi read failed agno %d error %d",
  4161. __func__, agno, error);
  4162. } else {
  4163. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  4164. itotal += be32_to_cpu(agi->agi_count);
  4165. ifree += be32_to_cpu(agi->agi_freecount);
  4166. xfs_buf_relse(agibp);
  4167. }
  4168. }
  4169. }
  4170. #endif /* DEBUG */