cfq-iosched.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/rbtree.h>
  13. #include <linux/ioprio.h>
  14. /*
  15. * tunables
  16. */
  17. static const int cfq_quantum = 4; /* max queue in one round of service */
  18. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  19. static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
  20. static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
  21. static const int cfq_slice_sync = HZ / 10;
  22. static int cfq_slice_async = HZ / 25;
  23. static const int cfq_slice_async_rq = 2;
  24. static int cfq_slice_idle = HZ / 125;
  25. /*
  26. * grace period before allowing idle class to get disk access
  27. */
  28. #define CFQ_IDLE_GRACE (HZ / 10)
  29. /*
  30. * below this threshold, we consider thinktime immediate
  31. */
  32. #define CFQ_MIN_TT (2)
  33. #define CFQ_SLICE_SCALE (5)
  34. #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
  35. #define RQ_CFQQ(rq) ((rq)->elevator_private2)
  36. static struct kmem_cache *cfq_pool;
  37. static struct kmem_cache *cfq_ioc_pool;
  38. static DEFINE_PER_CPU(unsigned long, ioc_count);
  39. static struct completion *ioc_gone;
  40. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  41. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  42. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  43. #define ASYNC (0)
  44. #define SYNC (1)
  45. #define sample_valid(samples) ((samples) > 80)
  46. /*
  47. * Most of our rbtree usage is for sorting with min extraction, so
  48. * if we cache the leftmost node we don't have to walk down the tree
  49. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  50. * move this into the elevator for the rq sorting as well.
  51. */
  52. struct cfq_rb_root {
  53. struct rb_root rb;
  54. struct rb_node *left;
  55. };
  56. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
  57. /*
  58. * Per block device queue structure
  59. */
  60. struct cfq_data {
  61. struct request_queue *queue;
  62. /*
  63. * rr list of queues with requests and the count of them
  64. */
  65. struct cfq_rb_root service_tree;
  66. unsigned int busy_queues;
  67. int rq_in_driver;
  68. int sync_flight;
  69. int hw_tag;
  70. /*
  71. * idle window management
  72. */
  73. struct timer_list idle_slice_timer;
  74. struct work_struct unplug_work;
  75. struct cfq_queue *active_queue;
  76. struct cfq_io_context *active_cic;
  77. /*
  78. * async queue for each priority case
  79. */
  80. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  81. struct cfq_queue *async_idle_cfqq;
  82. struct timer_list idle_class_timer;
  83. sector_t last_position;
  84. unsigned long last_end_request;
  85. /*
  86. * tunables, see top of file
  87. */
  88. unsigned int cfq_quantum;
  89. unsigned int cfq_fifo_expire[2];
  90. unsigned int cfq_back_penalty;
  91. unsigned int cfq_back_max;
  92. unsigned int cfq_slice[2];
  93. unsigned int cfq_slice_async_rq;
  94. unsigned int cfq_slice_idle;
  95. struct list_head cic_list;
  96. };
  97. /*
  98. * Per process-grouping structure
  99. */
  100. struct cfq_queue {
  101. /* reference count */
  102. atomic_t ref;
  103. /* parent cfq_data */
  104. struct cfq_data *cfqd;
  105. /* service_tree member */
  106. struct rb_node rb_node;
  107. /* service_tree key */
  108. unsigned long rb_key;
  109. /* sorted list of pending requests */
  110. struct rb_root sort_list;
  111. /* if fifo isn't expired, next request to serve */
  112. struct request *next_rq;
  113. /* requests queued in sort_list */
  114. int queued[2];
  115. /* currently allocated requests */
  116. int allocated[2];
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* fifo list of requests in sort_list */
  120. struct list_head fifo;
  121. unsigned long slice_end;
  122. long slice_resid;
  123. /* number of requests that are on the dispatch list or inside driver */
  124. int dispatched;
  125. /* io prio of this group */
  126. unsigned short ioprio, org_ioprio;
  127. unsigned short ioprio_class, org_ioprio_class;
  128. /* various state flags, see below */
  129. unsigned int flags;
  130. };
  131. enum cfqq_state_flags {
  132. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  133. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  134. CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
  135. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  136. CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
  137. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  138. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  139. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  140. CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
  141. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  142. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  143. };
  144. #define CFQ_CFQQ_FNS(name) \
  145. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  146. { \
  147. cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  148. } \
  149. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  150. { \
  151. cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  152. } \
  153. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  154. { \
  155. return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  156. }
  157. CFQ_CFQQ_FNS(on_rr);
  158. CFQ_CFQQ_FNS(wait_request);
  159. CFQ_CFQQ_FNS(must_alloc);
  160. CFQ_CFQQ_FNS(must_alloc_slice);
  161. CFQ_CFQQ_FNS(must_dispatch);
  162. CFQ_CFQQ_FNS(fifo_expire);
  163. CFQ_CFQQ_FNS(idle_window);
  164. CFQ_CFQQ_FNS(prio_changed);
  165. CFQ_CFQQ_FNS(queue_new);
  166. CFQ_CFQQ_FNS(slice_new);
  167. CFQ_CFQQ_FNS(sync);
  168. #undef CFQ_CFQQ_FNS
  169. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  170. static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
  171. struct task_struct *, gfp_t);
  172. static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
  173. struct io_context *);
  174. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  175. int is_sync)
  176. {
  177. return cic->cfqq[!!is_sync];
  178. }
  179. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  180. struct cfq_queue *cfqq, int is_sync)
  181. {
  182. cic->cfqq[!!is_sync] = cfqq;
  183. }
  184. /*
  185. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  186. * set (in which case it could also be direct WRITE).
  187. */
  188. static inline int cfq_bio_sync(struct bio *bio)
  189. {
  190. if (bio_data_dir(bio) == READ || bio_sync(bio))
  191. return 1;
  192. return 0;
  193. }
  194. /*
  195. * scheduler run of queue, if there are requests pending and no one in the
  196. * driver that will restart queueing
  197. */
  198. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  199. {
  200. if (cfqd->busy_queues)
  201. kblockd_schedule_work(&cfqd->unplug_work);
  202. }
  203. static int cfq_queue_empty(struct request_queue *q)
  204. {
  205. struct cfq_data *cfqd = q->elevator->elevator_data;
  206. return !cfqd->busy_queues;
  207. }
  208. /*
  209. * Scale schedule slice based on io priority. Use the sync time slice only
  210. * if a queue is marked sync and has sync io queued. A sync queue with async
  211. * io only, should not get full sync slice length.
  212. */
  213. static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
  214. unsigned short prio)
  215. {
  216. const int base_slice = cfqd->cfq_slice[sync];
  217. WARN_ON(prio >= IOPRIO_BE_NR);
  218. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  219. }
  220. static inline int
  221. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  222. {
  223. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  224. }
  225. static inline void
  226. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  227. {
  228. cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
  229. }
  230. /*
  231. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  232. * isn't valid until the first request from the dispatch is activated
  233. * and the slice time set.
  234. */
  235. static inline int cfq_slice_used(struct cfq_queue *cfqq)
  236. {
  237. if (cfq_cfqq_slice_new(cfqq))
  238. return 0;
  239. if (time_before(jiffies, cfqq->slice_end))
  240. return 0;
  241. return 1;
  242. }
  243. /*
  244. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  245. * We choose the request that is closest to the head right now. Distance
  246. * behind the head is penalized and only allowed to a certain extent.
  247. */
  248. static struct request *
  249. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
  250. {
  251. sector_t last, s1, s2, d1 = 0, d2 = 0;
  252. unsigned long back_max;
  253. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  254. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  255. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  256. if (rq1 == NULL || rq1 == rq2)
  257. return rq2;
  258. if (rq2 == NULL)
  259. return rq1;
  260. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  261. return rq1;
  262. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  263. return rq2;
  264. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  265. return rq1;
  266. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  267. return rq2;
  268. s1 = rq1->sector;
  269. s2 = rq2->sector;
  270. last = cfqd->last_position;
  271. /*
  272. * by definition, 1KiB is 2 sectors
  273. */
  274. back_max = cfqd->cfq_back_max * 2;
  275. /*
  276. * Strict one way elevator _except_ in the case where we allow
  277. * short backward seeks which are biased as twice the cost of a
  278. * similar forward seek.
  279. */
  280. if (s1 >= last)
  281. d1 = s1 - last;
  282. else if (s1 + back_max >= last)
  283. d1 = (last - s1) * cfqd->cfq_back_penalty;
  284. else
  285. wrap |= CFQ_RQ1_WRAP;
  286. if (s2 >= last)
  287. d2 = s2 - last;
  288. else if (s2 + back_max >= last)
  289. d2 = (last - s2) * cfqd->cfq_back_penalty;
  290. else
  291. wrap |= CFQ_RQ2_WRAP;
  292. /* Found required data */
  293. /*
  294. * By doing switch() on the bit mask "wrap" we avoid having to
  295. * check two variables for all permutations: --> faster!
  296. */
  297. switch (wrap) {
  298. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  299. if (d1 < d2)
  300. return rq1;
  301. else if (d2 < d1)
  302. return rq2;
  303. else {
  304. if (s1 >= s2)
  305. return rq1;
  306. else
  307. return rq2;
  308. }
  309. case CFQ_RQ2_WRAP:
  310. return rq1;
  311. case CFQ_RQ1_WRAP:
  312. return rq2;
  313. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  314. default:
  315. /*
  316. * Since both rqs are wrapped,
  317. * start with the one that's further behind head
  318. * (--> only *one* back seek required),
  319. * since back seek takes more time than forward.
  320. */
  321. if (s1 <= s2)
  322. return rq1;
  323. else
  324. return rq2;
  325. }
  326. }
  327. /*
  328. * The below is leftmost cache rbtree addon
  329. */
  330. static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
  331. {
  332. if (!root->left)
  333. root->left = rb_first(&root->rb);
  334. return root->left;
  335. }
  336. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  337. {
  338. if (root->left == n)
  339. root->left = NULL;
  340. rb_erase(n, &root->rb);
  341. RB_CLEAR_NODE(n);
  342. }
  343. /*
  344. * would be nice to take fifo expire time into account as well
  345. */
  346. static struct request *
  347. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  348. struct request *last)
  349. {
  350. struct rb_node *rbnext = rb_next(&last->rb_node);
  351. struct rb_node *rbprev = rb_prev(&last->rb_node);
  352. struct request *next = NULL, *prev = NULL;
  353. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  354. if (rbprev)
  355. prev = rb_entry_rq(rbprev);
  356. if (rbnext)
  357. next = rb_entry_rq(rbnext);
  358. else {
  359. rbnext = rb_first(&cfqq->sort_list);
  360. if (rbnext && rbnext != &last->rb_node)
  361. next = rb_entry_rq(rbnext);
  362. }
  363. return cfq_choose_req(cfqd, next, prev);
  364. }
  365. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  366. struct cfq_queue *cfqq)
  367. {
  368. /*
  369. * just an approximation, should be ok.
  370. */
  371. return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  372. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  373. }
  374. /*
  375. * The cfqd->service_tree holds all pending cfq_queue's that have
  376. * requests waiting to be processed. It is sorted in the order that
  377. * we will service the queues.
  378. */
  379. static void cfq_service_tree_add(struct cfq_data *cfqd,
  380. struct cfq_queue *cfqq, int add_front)
  381. {
  382. struct rb_node **p = &cfqd->service_tree.rb.rb_node;
  383. struct rb_node *parent = NULL;
  384. unsigned long rb_key;
  385. int left;
  386. if (!add_front) {
  387. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  388. rb_key += cfqq->slice_resid;
  389. cfqq->slice_resid = 0;
  390. } else
  391. rb_key = 0;
  392. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  393. /*
  394. * same position, nothing more to do
  395. */
  396. if (rb_key == cfqq->rb_key)
  397. return;
  398. cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
  399. }
  400. left = 1;
  401. while (*p) {
  402. struct cfq_queue *__cfqq;
  403. struct rb_node **n;
  404. parent = *p;
  405. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  406. /*
  407. * sort RT queues first, we always want to give
  408. * preference to them. IDLE queues goes to the back.
  409. * after that, sort on the next service time.
  410. */
  411. if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
  412. n = &(*p)->rb_left;
  413. else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
  414. n = &(*p)->rb_right;
  415. else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
  416. n = &(*p)->rb_left;
  417. else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
  418. n = &(*p)->rb_right;
  419. else if (rb_key < __cfqq->rb_key)
  420. n = &(*p)->rb_left;
  421. else
  422. n = &(*p)->rb_right;
  423. if (n == &(*p)->rb_right)
  424. left = 0;
  425. p = n;
  426. }
  427. if (left)
  428. cfqd->service_tree.left = &cfqq->rb_node;
  429. cfqq->rb_key = rb_key;
  430. rb_link_node(&cfqq->rb_node, parent, p);
  431. rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
  432. }
  433. /*
  434. * Update cfqq's position in the service tree.
  435. */
  436. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  437. {
  438. /*
  439. * Resorting requires the cfqq to be on the RR list already.
  440. */
  441. if (cfq_cfqq_on_rr(cfqq))
  442. cfq_service_tree_add(cfqd, cfqq, 0);
  443. }
  444. /*
  445. * add to busy list of queues for service, trying to be fair in ordering
  446. * the pending list according to last request service
  447. */
  448. static inline void
  449. cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  450. {
  451. BUG_ON(cfq_cfqq_on_rr(cfqq));
  452. cfq_mark_cfqq_on_rr(cfqq);
  453. cfqd->busy_queues++;
  454. cfq_resort_rr_list(cfqd, cfqq);
  455. }
  456. /*
  457. * Called when the cfqq no longer has requests pending, remove it from
  458. * the service tree.
  459. */
  460. static inline void
  461. cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  462. {
  463. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  464. cfq_clear_cfqq_on_rr(cfqq);
  465. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  466. cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
  467. BUG_ON(!cfqd->busy_queues);
  468. cfqd->busy_queues--;
  469. }
  470. /*
  471. * rb tree support functions
  472. */
  473. static inline void cfq_del_rq_rb(struct request *rq)
  474. {
  475. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  476. struct cfq_data *cfqd = cfqq->cfqd;
  477. const int sync = rq_is_sync(rq);
  478. BUG_ON(!cfqq->queued[sync]);
  479. cfqq->queued[sync]--;
  480. elv_rb_del(&cfqq->sort_list, rq);
  481. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  482. cfq_del_cfqq_rr(cfqd, cfqq);
  483. }
  484. static void cfq_add_rq_rb(struct request *rq)
  485. {
  486. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  487. struct cfq_data *cfqd = cfqq->cfqd;
  488. struct request *__alias;
  489. cfqq->queued[rq_is_sync(rq)]++;
  490. /*
  491. * looks a little odd, but the first insert might return an alias.
  492. * if that happens, put the alias on the dispatch list
  493. */
  494. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  495. cfq_dispatch_insert(cfqd->queue, __alias);
  496. if (!cfq_cfqq_on_rr(cfqq))
  497. cfq_add_cfqq_rr(cfqd, cfqq);
  498. /*
  499. * check if this request is a better next-serve candidate
  500. */
  501. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
  502. BUG_ON(!cfqq->next_rq);
  503. }
  504. static inline void
  505. cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  506. {
  507. elv_rb_del(&cfqq->sort_list, rq);
  508. cfqq->queued[rq_is_sync(rq)]--;
  509. cfq_add_rq_rb(rq);
  510. }
  511. static struct request *
  512. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  513. {
  514. struct task_struct *tsk = current;
  515. struct cfq_io_context *cic;
  516. struct cfq_queue *cfqq;
  517. cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
  518. if (!cic)
  519. return NULL;
  520. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  521. if (cfqq) {
  522. sector_t sector = bio->bi_sector + bio_sectors(bio);
  523. return elv_rb_find(&cfqq->sort_list, sector);
  524. }
  525. return NULL;
  526. }
  527. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  528. {
  529. struct cfq_data *cfqd = q->elevator->elevator_data;
  530. cfqd->rq_in_driver++;
  531. /*
  532. * If the depth is larger 1, it really could be queueing. But lets
  533. * make the mark a little higher - idling could still be good for
  534. * low queueing, and a low queueing number could also just indicate
  535. * a SCSI mid layer like behaviour where limit+1 is often seen.
  536. */
  537. if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
  538. cfqd->hw_tag = 1;
  539. cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
  540. }
  541. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  542. {
  543. struct cfq_data *cfqd = q->elevator->elevator_data;
  544. WARN_ON(!cfqd->rq_in_driver);
  545. cfqd->rq_in_driver--;
  546. }
  547. static void cfq_remove_request(struct request *rq)
  548. {
  549. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  550. if (cfqq->next_rq == rq)
  551. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  552. list_del_init(&rq->queuelist);
  553. cfq_del_rq_rb(rq);
  554. if (rq_is_meta(rq)) {
  555. WARN_ON(!cfqq->meta_pending);
  556. cfqq->meta_pending--;
  557. }
  558. }
  559. static int cfq_merge(struct request_queue *q, struct request **req,
  560. struct bio *bio)
  561. {
  562. struct cfq_data *cfqd = q->elevator->elevator_data;
  563. struct request *__rq;
  564. __rq = cfq_find_rq_fmerge(cfqd, bio);
  565. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  566. *req = __rq;
  567. return ELEVATOR_FRONT_MERGE;
  568. }
  569. return ELEVATOR_NO_MERGE;
  570. }
  571. static void cfq_merged_request(struct request_queue *q, struct request *req,
  572. int type)
  573. {
  574. if (type == ELEVATOR_FRONT_MERGE) {
  575. struct cfq_queue *cfqq = RQ_CFQQ(req);
  576. cfq_reposition_rq_rb(cfqq, req);
  577. }
  578. }
  579. static void
  580. cfq_merged_requests(struct request_queue *q, struct request *rq,
  581. struct request *next)
  582. {
  583. /*
  584. * reposition in fifo if next is older than rq
  585. */
  586. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  587. time_before(next->start_time, rq->start_time))
  588. list_move(&rq->queuelist, &next->queuelist);
  589. cfq_remove_request(next);
  590. }
  591. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  592. struct bio *bio)
  593. {
  594. struct cfq_data *cfqd = q->elevator->elevator_data;
  595. struct cfq_io_context *cic;
  596. struct cfq_queue *cfqq;
  597. /*
  598. * Disallow merge of a sync bio into an async request.
  599. */
  600. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  601. return 0;
  602. /*
  603. * Lookup the cfqq that this bio will be queued with. Allow
  604. * merge only if rq is queued there.
  605. */
  606. cic = cfq_cic_rb_lookup(cfqd, current->io_context);
  607. if (!cic)
  608. return 0;
  609. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  610. if (cfqq == RQ_CFQQ(rq))
  611. return 1;
  612. return 0;
  613. }
  614. static inline void
  615. __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  616. {
  617. if (cfqq) {
  618. /*
  619. * stop potential idle class queues waiting service
  620. */
  621. del_timer(&cfqd->idle_class_timer);
  622. cfqq->slice_end = 0;
  623. cfq_clear_cfqq_must_alloc_slice(cfqq);
  624. cfq_clear_cfqq_fifo_expire(cfqq);
  625. cfq_mark_cfqq_slice_new(cfqq);
  626. cfq_clear_cfqq_queue_new(cfqq);
  627. }
  628. cfqd->active_queue = cfqq;
  629. }
  630. /*
  631. * current cfqq expired its slice (or was too idle), select new one
  632. */
  633. static void
  634. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  635. int timed_out)
  636. {
  637. if (cfq_cfqq_wait_request(cfqq))
  638. del_timer(&cfqd->idle_slice_timer);
  639. cfq_clear_cfqq_must_dispatch(cfqq);
  640. cfq_clear_cfqq_wait_request(cfqq);
  641. /*
  642. * store what was left of this slice, if the queue idled/timed out
  643. */
  644. if (timed_out && !cfq_cfqq_slice_new(cfqq))
  645. cfqq->slice_resid = cfqq->slice_end - jiffies;
  646. cfq_resort_rr_list(cfqd, cfqq);
  647. if (cfqq == cfqd->active_queue)
  648. cfqd->active_queue = NULL;
  649. if (cfqd->active_cic) {
  650. put_io_context(cfqd->active_cic->ioc);
  651. cfqd->active_cic = NULL;
  652. }
  653. }
  654. static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
  655. {
  656. struct cfq_queue *cfqq = cfqd->active_queue;
  657. if (cfqq)
  658. __cfq_slice_expired(cfqd, cfqq, timed_out);
  659. }
  660. /*
  661. * Get next queue for service. Unless we have a queue preemption,
  662. * we'll simply select the first cfqq in the service tree.
  663. */
  664. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  665. {
  666. struct cfq_queue *cfqq;
  667. struct rb_node *n;
  668. if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
  669. return NULL;
  670. n = cfq_rb_first(&cfqd->service_tree);
  671. cfqq = rb_entry(n, struct cfq_queue, rb_node);
  672. if (cfq_class_idle(cfqq)) {
  673. unsigned long end;
  674. /*
  675. * if we have idle queues and no rt or be queues had
  676. * pending requests, either allow immediate service if
  677. * the grace period has passed or arm the idle grace
  678. * timer
  679. */
  680. end = cfqd->last_end_request + CFQ_IDLE_GRACE;
  681. if (time_before(jiffies, end)) {
  682. mod_timer(&cfqd->idle_class_timer, end);
  683. cfqq = NULL;
  684. }
  685. }
  686. return cfqq;
  687. }
  688. /*
  689. * Get and set a new active queue for service.
  690. */
  691. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
  692. {
  693. struct cfq_queue *cfqq;
  694. cfqq = cfq_get_next_queue(cfqd);
  695. __cfq_set_active_queue(cfqd, cfqq);
  696. return cfqq;
  697. }
  698. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  699. struct request *rq)
  700. {
  701. if (rq->sector >= cfqd->last_position)
  702. return rq->sector - cfqd->last_position;
  703. else
  704. return cfqd->last_position - rq->sector;
  705. }
  706. static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
  707. {
  708. struct cfq_io_context *cic = cfqd->active_cic;
  709. if (!sample_valid(cic->seek_samples))
  710. return 0;
  711. return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
  712. }
  713. static int cfq_close_cooperator(struct cfq_data *cfq_data,
  714. struct cfq_queue *cfqq)
  715. {
  716. /*
  717. * We should notice if some of the queues are cooperating, eg
  718. * working closely on the same area of the disk. In that case,
  719. * we can group them together and don't waste time idling.
  720. */
  721. return 0;
  722. }
  723. #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
  724. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  725. {
  726. struct cfq_queue *cfqq = cfqd->active_queue;
  727. struct cfq_io_context *cic;
  728. unsigned long sl;
  729. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  730. WARN_ON(cfq_cfqq_slice_new(cfqq));
  731. /*
  732. * idle is disabled, either manually or by past process history
  733. */
  734. if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
  735. return;
  736. /*
  737. * task has exited, don't wait
  738. */
  739. cic = cfqd->active_cic;
  740. if (!cic || !cic->ioc->task)
  741. return;
  742. /*
  743. * See if this prio level has a good candidate
  744. */
  745. if (cfq_close_cooperator(cfqd, cfqq) &&
  746. (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
  747. return;
  748. cfq_mark_cfqq_must_dispatch(cfqq);
  749. cfq_mark_cfqq_wait_request(cfqq);
  750. /*
  751. * we don't want to idle for seeks, but we do want to allow
  752. * fair distribution of slice time for a process doing back-to-back
  753. * seeks. so allow a little bit of time for him to submit a new rq
  754. */
  755. sl = cfqd->cfq_slice_idle;
  756. if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
  757. sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
  758. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  759. }
  760. /*
  761. * Move request from internal lists to the request queue dispatch list.
  762. */
  763. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  764. {
  765. struct cfq_data *cfqd = q->elevator->elevator_data;
  766. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  767. cfq_remove_request(rq);
  768. cfqq->dispatched++;
  769. elv_dispatch_sort(q, rq);
  770. if (cfq_cfqq_sync(cfqq))
  771. cfqd->sync_flight++;
  772. }
  773. /*
  774. * return expired entry, or NULL to just start from scratch in rbtree
  775. */
  776. static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  777. {
  778. struct cfq_data *cfqd = cfqq->cfqd;
  779. struct request *rq;
  780. int fifo;
  781. if (cfq_cfqq_fifo_expire(cfqq))
  782. return NULL;
  783. cfq_mark_cfqq_fifo_expire(cfqq);
  784. if (list_empty(&cfqq->fifo))
  785. return NULL;
  786. fifo = cfq_cfqq_sync(cfqq);
  787. rq = rq_entry_fifo(cfqq->fifo.next);
  788. if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
  789. return NULL;
  790. return rq;
  791. }
  792. static inline int
  793. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  794. {
  795. const int base_rq = cfqd->cfq_slice_async_rq;
  796. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  797. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  798. }
  799. /*
  800. * Select a queue for service. If we have a current active queue,
  801. * check whether to continue servicing it, or retrieve and set a new one.
  802. */
  803. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  804. {
  805. struct cfq_queue *cfqq;
  806. cfqq = cfqd->active_queue;
  807. if (!cfqq)
  808. goto new_queue;
  809. /*
  810. * The active queue has run out of time, expire it and select new.
  811. */
  812. if (cfq_slice_used(cfqq))
  813. goto expire;
  814. /*
  815. * The active queue has requests and isn't expired, allow it to
  816. * dispatch.
  817. */
  818. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  819. goto keep_queue;
  820. /*
  821. * No requests pending. If the active queue still has requests in
  822. * flight or is idling for a new request, allow either of these
  823. * conditions to happen (or time out) before selecting a new queue.
  824. */
  825. if (timer_pending(&cfqd->idle_slice_timer) ||
  826. (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
  827. cfqq = NULL;
  828. goto keep_queue;
  829. }
  830. expire:
  831. cfq_slice_expired(cfqd, 0);
  832. new_queue:
  833. cfqq = cfq_set_active_queue(cfqd);
  834. keep_queue:
  835. return cfqq;
  836. }
  837. /*
  838. * Dispatch some requests from cfqq, moving them to the request queue
  839. * dispatch list.
  840. */
  841. static int
  842. __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  843. int max_dispatch)
  844. {
  845. int dispatched = 0;
  846. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  847. do {
  848. struct request *rq;
  849. /*
  850. * follow expired path, else get first next available
  851. */
  852. if ((rq = cfq_check_fifo(cfqq)) == NULL)
  853. rq = cfqq->next_rq;
  854. /*
  855. * finally, insert request into driver dispatch list
  856. */
  857. cfq_dispatch_insert(cfqd->queue, rq);
  858. dispatched++;
  859. if (!cfqd->active_cic) {
  860. atomic_inc(&RQ_CIC(rq)->ioc->refcount);
  861. cfqd->active_cic = RQ_CIC(rq);
  862. }
  863. if (RB_EMPTY_ROOT(&cfqq->sort_list))
  864. break;
  865. } while (dispatched < max_dispatch);
  866. /*
  867. * expire an async queue immediately if it has used up its slice. idle
  868. * queue always expire after 1 dispatch round.
  869. */
  870. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  871. dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  872. cfq_class_idle(cfqq))) {
  873. cfqq->slice_end = jiffies + 1;
  874. cfq_slice_expired(cfqd, 0);
  875. }
  876. return dispatched;
  877. }
  878. static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  879. {
  880. int dispatched = 0;
  881. while (cfqq->next_rq) {
  882. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  883. dispatched++;
  884. }
  885. BUG_ON(!list_empty(&cfqq->fifo));
  886. return dispatched;
  887. }
  888. /*
  889. * Drain our current requests. Used for barriers and when switching
  890. * io schedulers on-the-fly.
  891. */
  892. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  893. {
  894. int dispatched = 0;
  895. struct rb_node *n;
  896. while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
  897. struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
  898. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  899. }
  900. cfq_slice_expired(cfqd, 0);
  901. BUG_ON(cfqd->busy_queues);
  902. return dispatched;
  903. }
  904. static int cfq_dispatch_requests(struct request_queue *q, int force)
  905. {
  906. struct cfq_data *cfqd = q->elevator->elevator_data;
  907. struct cfq_queue *cfqq;
  908. int dispatched;
  909. if (!cfqd->busy_queues)
  910. return 0;
  911. if (unlikely(force))
  912. return cfq_forced_dispatch(cfqd);
  913. dispatched = 0;
  914. while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
  915. int max_dispatch;
  916. max_dispatch = cfqd->cfq_quantum;
  917. if (cfq_class_idle(cfqq))
  918. max_dispatch = 1;
  919. if (cfqq->dispatched >= max_dispatch) {
  920. if (cfqd->busy_queues > 1)
  921. break;
  922. if (cfqq->dispatched >= 4 * max_dispatch)
  923. break;
  924. }
  925. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  926. break;
  927. cfq_clear_cfqq_must_dispatch(cfqq);
  928. cfq_clear_cfqq_wait_request(cfqq);
  929. del_timer(&cfqd->idle_slice_timer);
  930. dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
  931. }
  932. return dispatched;
  933. }
  934. /*
  935. * task holds one reference to the queue, dropped when task exits. each rq
  936. * in-flight on this queue also holds a reference, dropped when rq is freed.
  937. *
  938. * queue lock must be held here.
  939. */
  940. static void cfq_put_queue(struct cfq_queue *cfqq)
  941. {
  942. struct cfq_data *cfqd = cfqq->cfqd;
  943. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  944. if (!atomic_dec_and_test(&cfqq->ref))
  945. return;
  946. BUG_ON(rb_first(&cfqq->sort_list));
  947. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  948. BUG_ON(cfq_cfqq_on_rr(cfqq));
  949. if (unlikely(cfqd->active_queue == cfqq)) {
  950. __cfq_slice_expired(cfqd, cfqq, 0);
  951. cfq_schedule_dispatch(cfqd);
  952. }
  953. kmem_cache_free(cfq_pool, cfqq);
  954. }
  955. static void cfq_free_io_context(struct io_context *ioc)
  956. {
  957. struct cfq_io_context *__cic;
  958. struct rb_node *n;
  959. int freed = 0;
  960. ioc->ioc_data = NULL;
  961. while ((n = rb_first(&ioc->cic_root)) != NULL) {
  962. __cic = rb_entry(n, struct cfq_io_context, rb_node);
  963. rb_erase(&__cic->rb_node, &ioc->cic_root);
  964. kmem_cache_free(cfq_ioc_pool, __cic);
  965. freed++;
  966. }
  967. elv_ioc_count_mod(ioc_count, -freed);
  968. if (ioc_gone && !elv_ioc_count_read(ioc_count))
  969. complete(ioc_gone);
  970. }
  971. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  972. {
  973. if (unlikely(cfqq == cfqd->active_queue)) {
  974. __cfq_slice_expired(cfqd, cfqq, 0);
  975. cfq_schedule_dispatch(cfqd);
  976. }
  977. cfq_put_queue(cfqq);
  978. }
  979. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  980. struct cfq_io_context *cic)
  981. {
  982. list_del_init(&cic->queue_list);
  983. smp_wmb();
  984. cic->key = NULL;
  985. if (cic->cfqq[ASYNC]) {
  986. cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
  987. cic->cfqq[ASYNC] = NULL;
  988. }
  989. if (cic->cfqq[SYNC]) {
  990. cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
  991. cic->cfqq[SYNC] = NULL;
  992. }
  993. }
  994. static void cfq_exit_single_io_context(struct cfq_io_context *cic)
  995. {
  996. struct cfq_data *cfqd = cic->key;
  997. if (cfqd) {
  998. struct request_queue *q = cfqd->queue;
  999. spin_lock_irq(q->queue_lock);
  1000. __cfq_exit_single_io_context(cfqd, cic);
  1001. spin_unlock_irq(q->queue_lock);
  1002. }
  1003. }
  1004. /*
  1005. * The process that ioc belongs to has exited, we need to clean up
  1006. * and put the internal structures we have that belongs to that process.
  1007. */
  1008. static void cfq_exit_io_context(struct io_context *ioc)
  1009. {
  1010. struct cfq_io_context *__cic;
  1011. struct rb_node *n;
  1012. ioc->ioc_data = NULL;
  1013. /*
  1014. * put the reference this task is holding to the various queues
  1015. */
  1016. n = rb_first(&ioc->cic_root);
  1017. while (n != NULL) {
  1018. __cic = rb_entry(n, struct cfq_io_context, rb_node);
  1019. cfq_exit_single_io_context(__cic);
  1020. n = rb_next(n);
  1021. }
  1022. }
  1023. static struct cfq_io_context *
  1024. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  1025. {
  1026. struct cfq_io_context *cic;
  1027. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  1028. cfqd->queue->node);
  1029. if (cic) {
  1030. cic->last_end_request = jiffies;
  1031. INIT_LIST_HEAD(&cic->queue_list);
  1032. cic->dtor = cfq_free_io_context;
  1033. cic->exit = cfq_exit_io_context;
  1034. elv_ioc_count_inc(ioc_count);
  1035. }
  1036. return cic;
  1037. }
  1038. static void cfq_init_prio_data(struct cfq_queue *cfqq)
  1039. {
  1040. struct task_struct *tsk = current;
  1041. int ioprio_class;
  1042. if (!cfq_cfqq_prio_changed(cfqq))
  1043. return;
  1044. ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
  1045. switch (ioprio_class) {
  1046. default:
  1047. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  1048. case IOPRIO_CLASS_NONE:
  1049. /*
  1050. * no prio set, place us in the middle of the BE classes
  1051. */
  1052. cfqq->ioprio = task_nice_ioprio(tsk);
  1053. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1054. break;
  1055. case IOPRIO_CLASS_RT:
  1056. cfqq->ioprio = task_ioprio(tsk);
  1057. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  1058. break;
  1059. case IOPRIO_CLASS_BE:
  1060. cfqq->ioprio = task_ioprio(tsk);
  1061. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1062. break;
  1063. case IOPRIO_CLASS_IDLE:
  1064. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  1065. cfqq->ioprio = 7;
  1066. cfq_clear_cfqq_idle_window(cfqq);
  1067. break;
  1068. }
  1069. /*
  1070. * keep track of original prio settings in case we have to temporarily
  1071. * elevate the priority of this queue
  1072. */
  1073. cfqq->org_ioprio = cfqq->ioprio;
  1074. cfqq->org_ioprio_class = cfqq->ioprio_class;
  1075. cfq_clear_cfqq_prio_changed(cfqq);
  1076. }
  1077. static inline void changed_ioprio(struct cfq_io_context *cic)
  1078. {
  1079. struct cfq_data *cfqd = cic->key;
  1080. struct cfq_queue *cfqq;
  1081. unsigned long flags;
  1082. if (unlikely(!cfqd))
  1083. return;
  1084. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1085. cfqq = cic->cfqq[ASYNC];
  1086. if (cfqq) {
  1087. struct cfq_queue *new_cfqq;
  1088. new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
  1089. GFP_ATOMIC);
  1090. if (new_cfqq) {
  1091. cic->cfqq[ASYNC] = new_cfqq;
  1092. cfq_put_queue(cfqq);
  1093. }
  1094. }
  1095. cfqq = cic->cfqq[SYNC];
  1096. if (cfqq)
  1097. cfq_mark_cfqq_prio_changed(cfqq);
  1098. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1099. }
  1100. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  1101. {
  1102. struct cfq_io_context *cic;
  1103. struct rb_node *n;
  1104. ioc->ioprio_changed = 0;
  1105. n = rb_first(&ioc->cic_root);
  1106. while (n != NULL) {
  1107. cic = rb_entry(n, struct cfq_io_context, rb_node);
  1108. changed_ioprio(cic);
  1109. n = rb_next(n);
  1110. }
  1111. }
  1112. static struct cfq_queue *
  1113. cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
  1114. struct task_struct *tsk, gfp_t gfp_mask)
  1115. {
  1116. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1117. struct cfq_io_context *cic;
  1118. retry:
  1119. cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
  1120. /* cic always exists here */
  1121. cfqq = cic_to_cfqq(cic, is_sync);
  1122. if (!cfqq) {
  1123. if (new_cfqq) {
  1124. cfqq = new_cfqq;
  1125. new_cfqq = NULL;
  1126. } else if (gfp_mask & __GFP_WAIT) {
  1127. /*
  1128. * Inform the allocator of the fact that we will
  1129. * just repeat this allocation if it fails, to allow
  1130. * the allocator to do whatever it needs to attempt to
  1131. * free memory.
  1132. */
  1133. spin_unlock_irq(cfqd->queue->queue_lock);
  1134. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  1135. gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
  1136. cfqd->queue->node);
  1137. spin_lock_irq(cfqd->queue->queue_lock);
  1138. goto retry;
  1139. } else {
  1140. cfqq = kmem_cache_alloc_node(cfq_pool,
  1141. gfp_mask | __GFP_ZERO,
  1142. cfqd->queue->node);
  1143. if (!cfqq)
  1144. goto out;
  1145. }
  1146. RB_CLEAR_NODE(&cfqq->rb_node);
  1147. INIT_LIST_HEAD(&cfqq->fifo);
  1148. atomic_set(&cfqq->ref, 0);
  1149. cfqq->cfqd = cfqd;
  1150. if (is_sync) {
  1151. cfq_mark_cfqq_idle_window(cfqq);
  1152. cfq_mark_cfqq_sync(cfqq);
  1153. }
  1154. cfq_mark_cfqq_prio_changed(cfqq);
  1155. cfq_mark_cfqq_queue_new(cfqq);
  1156. cfq_init_prio_data(cfqq);
  1157. }
  1158. if (new_cfqq)
  1159. kmem_cache_free(cfq_pool, new_cfqq);
  1160. out:
  1161. WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
  1162. return cfqq;
  1163. }
  1164. static struct cfq_queue **
  1165. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  1166. {
  1167. switch(ioprio_class) {
  1168. case IOPRIO_CLASS_RT:
  1169. return &cfqd->async_cfqq[0][ioprio];
  1170. case IOPRIO_CLASS_BE:
  1171. return &cfqd->async_cfqq[1][ioprio];
  1172. case IOPRIO_CLASS_IDLE:
  1173. return &cfqd->async_idle_cfqq;
  1174. default:
  1175. BUG();
  1176. }
  1177. }
  1178. static struct cfq_queue *
  1179. cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
  1180. gfp_t gfp_mask)
  1181. {
  1182. const int ioprio = task_ioprio(tsk);
  1183. const int ioprio_class = task_ioprio_class(tsk);
  1184. struct cfq_queue **async_cfqq = NULL;
  1185. struct cfq_queue *cfqq = NULL;
  1186. if (!is_sync) {
  1187. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  1188. cfqq = *async_cfqq;
  1189. }
  1190. if (!cfqq) {
  1191. cfqq = cfq_find_alloc_queue(cfqd, is_sync, tsk, gfp_mask);
  1192. if (!cfqq)
  1193. return NULL;
  1194. }
  1195. /*
  1196. * pin the queue now that it's allocated, scheduler exit will prune it
  1197. */
  1198. if (!is_sync && !(*async_cfqq)) {
  1199. atomic_inc(&cfqq->ref);
  1200. *async_cfqq = cfqq;
  1201. }
  1202. atomic_inc(&cfqq->ref);
  1203. return cfqq;
  1204. }
  1205. /*
  1206. * We drop cfq io contexts lazily, so we may find a dead one.
  1207. */
  1208. static void
  1209. cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
  1210. {
  1211. WARN_ON(!list_empty(&cic->queue_list));
  1212. if (ioc->ioc_data == cic)
  1213. ioc->ioc_data = NULL;
  1214. rb_erase(&cic->rb_node, &ioc->cic_root);
  1215. kmem_cache_free(cfq_ioc_pool, cic);
  1216. elv_ioc_count_dec(ioc_count);
  1217. }
  1218. static struct cfq_io_context *
  1219. cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  1220. {
  1221. struct rb_node *n;
  1222. struct cfq_io_context *cic;
  1223. void *k, *key = cfqd;
  1224. if (unlikely(!ioc))
  1225. return NULL;
  1226. /*
  1227. * we maintain a last-hit cache, to avoid browsing over the tree
  1228. */
  1229. cic = ioc->ioc_data;
  1230. if (cic && cic->key == cfqd)
  1231. return cic;
  1232. restart:
  1233. n = ioc->cic_root.rb_node;
  1234. while (n) {
  1235. cic = rb_entry(n, struct cfq_io_context, rb_node);
  1236. /* ->key must be copied to avoid race with cfq_exit_queue() */
  1237. k = cic->key;
  1238. if (unlikely(!k)) {
  1239. cfq_drop_dead_cic(ioc, cic);
  1240. goto restart;
  1241. }
  1242. if (key < k)
  1243. n = n->rb_left;
  1244. else if (key > k)
  1245. n = n->rb_right;
  1246. else {
  1247. ioc->ioc_data = cic;
  1248. return cic;
  1249. }
  1250. }
  1251. return NULL;
  1252. }
  1253. static inline void
  1254. cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  1255. struct cfq_io_context *cic)
  1256. {
  1257. struct rb_node **p;
  1258. struct rb_node *parent;
  1259. struct cfq_io_context *__cic;
  1260. unsigned long flags;
  1261. void *k;
  1262. cic->ioc = ioc;
  1263. cic->key = cfqd;
  1264. restart:
  1265. parent = NULL;
  1266. p = &ioc->cic_root.rb_node;
  1267. while (*p) {
  1268. parent = *p;
  1269. __cic = rb_entry(parent, struct cfq_io_context, rb_node);
  1270. /* ->key must be copied to avoid race with cfq_exit_queue() */
  1271. k = __cic->key;
  1272. if (unlikely(!k)) {
  1273. cfq_drop_dead_cic(ioc, __cic);
  1274. goto restart;
  1275. }
  1276. if (cic->key < k)
  1277. p = &(*p)->rb_left;
  1278. else if (cic->key > k)
  1279. p = &(*p)->rb_right;
  1280. else
  1281. BUG();
  1282. }
  1283. rb_link_node(&cic->rb_node, parent, p);
  1284. rb_insert_color(&cic->rb_node, &ioc->cic_root);
  1285. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1286. list_add(&cic->queue_list, &cfqd->cic_list);
  1287. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1288. }
  1289. /*
  1290. * Setup general io context and cfq io context. There can be several cfq
  1291. * io contexts per general io context, if this process is doing io to more
  1292. * than one device managed by cfq.
  1293. */
  1294. static struct cfq_io_context *
  1295. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  1296. {
  1297. struct io_context *ioc = NULL;
  1298. struct cfq_io_context *cic;
  1299. might_sleep_if(gfp_mask & __GFP_WAIT);
  1300. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  1301. if (!ioc)
  1302. return NULL;
  1303. cic = cfq_cic_rb_lookup(cfqd, ioc);
  1304. if (cic)
  1305. goto out;
  1306. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  1307. if (cic == NULL)
  1308. goto err;
  1309. cfq_cic_link(cfqd, ioc, cic);
  1310. out:
  1311. smp_read_barrier_depends();
  1312. if (unlikely(ioc->ioprio_changed))
  1313. cfq_ioc_set_ioprio(ioc);
  1314. return cic;
  1315. err:
  1316. put_io_context(ioc);
  1317. return NULL;
  1318. }
  1319. static void
  1320. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  1321. {
  1322. unsigned long elapsed = jiffies - cic->last_end_request;
  1323. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  1324. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  1325. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  1326. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  1327. }
  1328. static void
  1329. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
  1330. struct request *rq)
  1331. {
  1332. sector_t sdist;
  1333. u64 total;
  1334. if (cic->last_request_pos < rq->sector)
  1335. sdist = rq->sector - cic->last_request_pos;
  1336. else
  1337. sdist = cic->last_request_pos - rq->sector;
  1338. /*
  1339. * Don't allow the seek distance to get too large from the
  1340. * odd fragment, pagein, etc
  1341. */
  1342. if (cic->seek_samples <= 60) /* second&third seek */
  1343. sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
  1344. else
  1345. sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
  1346. cic->seek_samples = (7*cic->seek_samples + 256) / 8;
  1347. cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
  1348. total = cic->seek_total + (cic->seek_samples/2);
  1349. do_div(total, cic->seek_samples);
  1350. cic->seek_mean = (sector_t)total;
  1351. }
  1352. /*
  1353. * Disable idle window if the process thinks too long or seeks so much that
  1354. * it doesn't matter
  1355. */
  1356. static void
  1357. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1358. struct cfq_io_context *cic)
  1359. {
  1360. int enable_idle;
  1361. if (!cfq_cfqq_sync(cfqq))
  1362. return;
  1363. enable_idle = cfq_cfqq_idle_window(cfqq);
  1364. if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
  1365. (cfqd->hw_tag && CIC_SEEKY(cic)))
  1366. enable_idle = 0;
  1367. else if (sample_valid(cic->ttime_samples)) {
  1368. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  1369. enable_idle = 0;
  1370. else
  1371. enable_idle = 1;
  1372. }
  1373. if (enable_idle)
  1374. cfq_mark_cfqq_idle_window(cfqq);
  1375. else
  1376. cfq_clear_cfqq_idle_window(cfqq);
  1377. }
  1378. /*
  1379. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  1380. * no or if we aren't sure, a 1 will cause a preempt.
  1381. */
  1382. static int
  1383. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  1384. struct request *rq)
  1385. {
  1386. struct cfq_queue *cfqq;
  1387. cfqq = cfqd->active_queue;
  1388. if (!cfqq)
  1389. return 0;
  1390. if (cfq_slice_used(cfqq))
  1391. return 1;
  1392. if (cfq_class_idle(new_cfqq))
  1393. return 0;
  1394. if (cfq_class_idle(cfqq))
  1395. return 1;
  1396. /*
  1397. * if the new request is sync, but the currently running queue is
  1398. * not, let the sync request have priority.
  1399. */
  1400. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  1401. return 1;
  1402. /*
  1403. * So both queues are sync. Let the new request get disk time if
  1404. * it's a metadata request and the current queue is doing regular IO.
  1405. */
  1406. if (rq_is_meta(rq) && !cfqq->meta_pending)
  1407. return 1;
  1408. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  1409. return 0;
  1410. /*
  1411. * if this request is as-good as one we would expect from the
  1412. * current cfqq, let it preempt
  1413. */
  1414. if (cfq_rq_close(cfqd, rq))
  1415. return 1;
  1416. return 0;
  1417. }
  1418. /*
  1419. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  1420. * let it have half of its nominal slice.
  1421. */
  1422. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1423. {
  1424. cfq_slice_expired(cfqd, 1);
  1425. /*
  1426. * Put the new queue at the front of the of the current list,
  1427. * so we know that it will be selected next.
  1428. */
  1429. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1430. cfq_service_tree_add(cfqd, cfqq, 1);
  1431. cfqq->slice_end = 0;
  1432. cfq_mark_cfqq_slice_new(cfqq);
  1433. }
  1434. /*
  1435. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  1436. * something we should do about it
  1437. */
  1438. static void
  1439. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1440. struct request *rq)
  1441. {
  1442. struct cfq_io_context *cic = RQ_CIC(rq);
  1443. if (rq_is_meta(rq))
  1444. cfqq->meta_pending++;
  1445. cfq_update_io_thinktime(cfqd, cic);
  1446. cfq_update_io_seektime(cfqd, cic, rq);
  1447. cfq_update_idle_window(cfqd, cfqq, cic);
  1448. cic->last_request_pos = rq->sector + rq->nr_sectors;
  1449. if (cfqq == cfqd->active_queue) {
  1450. /*
  1451. * if we are waiting for a request for this queue, let it rip
  1452. * immediately and flag that we must not expire this queue
  1453. * just now
  1454. */
  1455. if (cfq_cfqq_wait_request(cfqq)) {
  1456. cfq_mark_cfqq_must_dispatch(cfqq);
  1457. del_timer(&cfqd->idle_slice_timer);
  1458. blk_start_queueing(cfqd->queue);
  1459. }
  1460. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  1461. /*
  1462. * not the active queue - expire current slice if it is
  1463. * idle and has expired it's mean thinktime or this new queue
  1464. * has some old slice time left and is of higher priority
  1465. */
  1466. cfq_preempt_queue(cfqd, cfqq);
  1467. cfq_mark_cfqq_must_dispatch(cfqq);
  1468. blk_start_queueing(cfqd->queue);
  1469. }
  1470. }
  1471. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  1472. {
  1473. struct cfq_data *cfqd = q->elevator->elevator_data;
  1474. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1475. cfq_init_prio_data(cfqq);
  1476. cfq_add_rq_rb(rq);
  1477. list_add_tail(&rq->queuelist, &cfqq->fifo);
  1478. cfq_rq_enqueued(cfqd, cfqq, rq);
  1479. }
  1480. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  1481. {
  1482. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1483. struct cfq_data *cfqd = cfqq->cfqd;
  1484. const int sync = rq_is_sync(rq);
  1485. unsigned long now;
  1486. now = jiffies;
  1487. WARN_ON(!cfqd->rq_in_driver);
  1488. WARN_ON(!cfqq->dispatched);
  1489. cfqd->rq_in_driver--;
  1490. cfqq->dispatched--;
  1491. if (cfq_cfqq_sync(cfqq))
  1492. cfqd->sync_flight--;
  1493. if (!cfq_class_idle(cfqq))
  1494. cfqd->last_end_request = now;
  1495. if (sync)
  1496. RQ_CIC(rq)->last_end_request = now;
  1497. /*
  1498. * If this is the active queue, check if it needs to be expired,
  1499. * or if we want to idle in case it has no pending requests.
  1500. */
  1501. if (cfqd->active_queue == cfqq) {
  1502. if (cfq_cfqq_slice_new(cfqq)) {
  1503. cfq_set_prio_slice(cfqd, cfqq);
  1504. cfq_clear_cfqq_slice_new(cfqq);
  1505. }
  1506. if (cfq_slice_used(cfqq))
  1507. cfq_slice_expired(cfqd, 1);
  1508. else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
  1509. cfq_arm_slice_timer(cfqd);
  1510. }
  1511. if (!cfqd->rq_in_driver)
  1512. cfq_schedule_dispatch(cfqd);
  1513. }
  1514. /*
  1515. * we temporarily boost lower priority queues if they are holding fs exclusive
  1516. * resources. they are boosted to normal prio (CLASS_BE/4)
  1517. */
  1518. static void cfq_prio_boost(struct cfq_queue *cfqq)
  1519. {
  1520. if (has_fs_excl()) {
  1521. /*
  1522. * boost idle prio on transactions that would lock out other
  1523. * users of the filesystem
  1524. */
  1525. if (cfq_class_idle(cfqq))
  1526. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  1527. if (cfqq->ioprio > IOPRIO_NORM)
  1528. cfqq->ioprio = IOPRIO_NORM;
  1529. } else {
  1530. /*
  1531. * check if we need to unboost the queue
  1532. */
  1533. if (cfqq->ioprio_class != cfqq->org_ioprio_class)
  1534. cfqq->ioprio_class = cfqq->org_ioprio_class;
  1535. if (cfqq->ioprio != cfqq->org_ioprio)
  1536. cfqq->ioprio = cfqq->org_ioprio;
  1537. }
  1538. }
  1539. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  1540. {
  1541. if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
  1542. !cfq_cfqq_must_alloc_slice(cfqq)) {
  1543. cfq_mark_cfqq_must_alloc_slice(cfqq);
  1544. return ELV_MQUEUE_MUST;
  1545. }
  1546. return ELV_MQUEUE_MAY;
  1547. }
  1548. static int cfq_may_queue(struct request_queue *q, int rw)
  1549. {
  1550. struct cfq_data *cfqd = q->elevator->elevator_data;
  1551. struct task_struct *tsk = current;
  1552. struct cfq_io_context *cic;
  1553. struct cfq_queue *cfqq;
  1554. /*
  1555. * don't force setup of a queue from here, as a call to may_queue
  1556. * does not necessarily imply that a request actually will be queued.
  1557. * so just lookup a possibly existing queue, or return 'may queue'
  1558. * if that fails
  1559. */
  1560. cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
  1561. if (!cic)
  1562. return ELV_MQUEUE_MAY;
  1563. cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
  1564. if (cfqq) {
  1565. cfq_init_prio_data(cfqq);
  1566. cfq_prio_boost(cfqq);
  1567. return __cfq_may_queue(cfqq);
  1568. }
  1569. return ELV_MQUEUE_MAY;
  1570. }
  1571. /*
  1572. * queue lock held here
  1573. */
  1574. static void cfq_put_request(struct request *rq)
  1575. {
  1576. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1577. if (cfqq) {
  1578. const int rw = rq_data_dir(rq);
  1579. BUG_ON(!cfqq->allocated[rw]);
  1580. cfqq->allocated[rw]--;
  1581. put_io_context(RQ_CIC(rq)->ioc);
  1582. rq->elevator_private = NULL;
  1583. rq->elevator_private2 = NULL;
  1584. cfq_put_queue(cfqq);
  1585. }
  1586. }
  1587. /*
  1588. * Allocate cfq data structures associated with this request.
  1589. */
  1590. static int
  1591. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  1592. {
  1593. struct cfq_data *cfqd = q->elevator->elevator_data;
  1594. struct task_struct *tsk = current;
  1595. struct cfq_io_context *cic;
  1596. const int rw = rq_data_dir(rq);
  1597. const int is_sync = rq_is_sync(rq);
  1598. struct cfq_queue *cfqq;
  1599. unsigned long flags;
  1600. might_sleep_if(gfp_mask & __GFP_WAIT);
  1601. cic = cfq_get_io_context(cfqd, gfp_mask);
  1602. spin_lock_irqsave(q->queue_lock, flags);
  1603. if (!cic)
  1604. goto queue_fail;
  1605. cfqq = cic_to_cfqq(cic, is_sync);
  1606. if (!cfqq) {
  1607. cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
  1608. if (!cfqq)
  1609. goto queue_fail;
  1610. cic_set_cfqq(cic, cfqq, is_sync);
  1611. }
  1612. cfqq->allocated[rw]++;
  1613. cfq_clear_cfqq_must_alloc(cfqq);
  1614. atomic_inc(&cfqq->ref);
  1615. spin_unlock_irqrestore(q->queue_lock, flags);
  1616. rq->elevator_private = cic;
  1617. rq->elevator_private2 = cfqq;
  1618. return 0;
  1619. queue_fail:
  1620. if (cic)
  1621. put_io_context(cic->ioc);
  1622. cfq_schedule_dispatch(cfqd);
  1623. spin_unlock_irqrestore(q->queue_lock, flags);
  1624. return 1;
  1625. }
  1626. static void cfq_kick_queue(struct work_struct *work)
  1627. {
  1628. struct cfq_data *cfqd =
  1629. container_of(work, struct cfq_data, unplug_work);
  1630. struct request_queue *q = cfqd->queue;
  1631. unsigned long flags;
  1632. spin_lock_irqsave(q->queue_lock, flags);
  1633. blk_start_queueing(q);
  1634. spin_unlock_irqrestore(q->queue_lock, flags);
  1635. }
  1636. /*
  1637. * Timer running if the active_queue is currently idling inside its time slice
  1638. */
  1639. static void cfq_idle_slice_timer(unsigned long data)
  1640. {
  1641. struct cfq_data *cfqd = (struct cfq_data *) data;
  1642. struct cfq_queue *cfqq;
  1643. unsigned long flags;
  1644. int timed_out = 1;
  1645. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1646. if ((cfqq = cfqd->active_queue) != NULL) {
  1647. timed_out = 0;
  1648. /*
  1649. * expired
  1650. */
  1651. if (cfq_slice_used(cfqq))
  1652. goto expire;
  1653. /*
  1654. * only expire and reinvoke request handler, if there are
  1655. * other queues with pending requests
  1656. */
  1657. if (!cfqd->busy_queues)
  1658. goto out_cont;
  1659. /*
  1660. * not expired and it has a request pending, let it dispatch
  1661. */
  1662. if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1663. cfq_mark_cfqq_must_dispatch(cfqq);
  1664. goto out_kick;
  1665. }
  1666. }
  1667. expire:
  1668. cfq_slice_expired(cfqd, timed_out);
  1669. out_kick:
  1670. cfq_schedule_dispatch(cfqd);
  1671. out_cont:
  1672. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1673. }
  1674. /*
  1675. * Timer running if an idle class queue is waiting for service
  1676. */
  1677. static void cfq_idle_class_timer(unsigned long data)
  1678. {
  1679. struct cfq_data *cfqd = (struct cfq_data *) data;
  1680. unsigned long flags, end;
  1681. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1682. /*
  1683. * race with a non-idle queue, reset timer
  1684. */
  1685. end = cfqd->last_end_request + CFQ_IDLE_GRACE;
  1686. if (!time_after_eq(jiffies, end))
  1687. mod_timer(&cfqd->idle_class_timer, end);
  1688. else
  1689. cfq_schedule_dispatch(cfqd);
  1690. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1691. }
  1692. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  1693. {
  1694. del_timer_sync(&cfqd->idle_slice_timer);
  1695. del_timer_sync(&cfqd->idle_class_timer);
  1696. kblockd_flush_work(&cfqd->unplug_work);
  1697. }
  1698. static void cfq_put_async_queues(struct cfq_data *cfqd)
  1699. {
  1700. int i;
  1701. for (i = 0; i < IOPRIO_BE_NR; i++) {
  1702. if (cfqd->async_cfqq[0][i])
  1703. cfq_put_queue(cfqd->async_cfqq[0][i]);
  1704. if (cfqd->async_cfqq[1][i])
  1705. cfq_put_queue(cfqd->async_cfqq[1][i]);
  1706. }
  1707. if (cfqd->async_idle_cfqq)
  1708. cfq_put_queue(cfqd->async_idle_cfqq);
  1709. }
  1710. static void cfq_exit_queue(elevator_t *e)
  1711. {
  1712. struct cfq_data *cfqd = e->elevator_data;
  1713. struct request_queue *q = cfqd->queue;
  1714. cfq_shutdown_timer_wq(cfqd);
  1715. spin_lock_irq(q->queue_lock);
  1716. if (cfqd->active_queue)
  1717. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  1718. while (!list_empty(&cfqd->cic_list)) {
  1719. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  1720. struct cfq_io_context,
  1721. queue_list);
  1722. __cfq_exit_single_io_context(cfqd, cic);
  1723. }
  1724. cfq_put_async_queues(cfqd);
  1725. spin_unlock_irq(q->queue_lock);
  1726. cfq_shutdown_timer_wq(cfqd);
  1727. kfree(cfqd);
  1728. }
  1729. static void *cfq_init_queue(struct request_queue *q)
  1730. {
  1731. struct cfq_data *cfqd;
  1732. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  1733. if (!cfqd)
  1734. return NULL;
  1735. cfqd->service_tree = CFQ_RB_ROOT;
  1736. INIT_LIST_HEAD(&cfqd->cic_list);
  1737. cfqd->queue = q;
  1738. init_timer(&cfqd->idle_slice_timer);
  1739. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  1740. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  1741. init_timer(&cfqd->idle_class_timer);
  1742. cfqd->idle_class_timer.function = cfq_idle_class_timer;
  1743. cfqd->idle_class_timer.data = (unsigned long) cfqd;
  1744. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  1745. cfqd->cfq_quantum = cfq_quantum;
  1746. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  1747. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  1748. cfqd->cfq_back_max = cfq_back_max;
  1749. cfqd->cfq_back_penalty = cfq_back_penalty;
  1750. cfqd->cfq_slice[0] = cfq_slice_async;
  1751. cfqd->cfq_slice[1] = cfq_slice_sync;
  1752. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  1753. cfqd->cfq_slice_idle = cfq_slice_idle;
  1754. return cfqd;
  1755. }
  1756. static void cfq_slab_kill(void)
  1757. {
  1758. if (cfq_pool)
  1759. kmem_cache_destroy(cfq_pool);
  1760. if (cfq_ioc_pool)
  1761. kmem_cache_destroy(cfq_ioc_pool);
  1762. }
  1763. static int __init cfq_slab_setup(void)
  1764. {
  1765. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  1766. if (!cfq_pool)
  1767. goto fail;
  1768. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  1769. if (!cfq_ioc_pool)
  1770. goto fail;
  1771. return 0;
  1772. fail:
  1773. cfq_slab_kill();
  1774. return -ENOMEM;
  1775. }
  1776. /*
  1777. * sysfs parts below -->
  1778. */
  1779. static ssize_t
  1780. cfq_var_show(unsigned int var, char *page)
  1781. {
  1782. return sprintf(page, "%d\n", var);
  1783. }
  1784. static ssize_t
  1785. cfq_var_store(unsigned int *var, const char *page, size_t count)
  1786. {
  1787. char *p = (char *) page;
  1788. *var = simple_strtoul(p, &p, 10);
  1789. return count;
  1790. }
  1791. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  1792. static ssize_t __FUNC(elevator_t *e, char *page) \
  1793. { \
  1794. struct cfq_data *cfqd = e->elevator_data; \
  1795. unsigned int __data = __VAR; \
  1796. if (__CONV) \
  1797. __data = jiffies_to_msecs(__data); \
  1798. return cfq_var_show(__data, (page)); \
  1799. }
  1800. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  1801. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  1802. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  1803. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  1804. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  1805. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  1806. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  1807. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  1808. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  1809. #undef SHOW_FUNCTION
  1810. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  1811. static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
  1812. { \
  1813. struct cfq_data *cfqd = e->elevator_data; \
  1814. unsigned int __data; \
  1815. int ret = cfq_var_store(&__data, (page), count); \
  1816. if (__data < (MIN)) \
  1817. __data = (MIN); \
  1818. else if (__data > (MAX)) \
  1819. __data = (MAX); \
  1820. if (__CONV) \
  1821. *(__PTR) = msecs_to_jiffies(__data); \
  1822. else \
  1823. *(__PTR) = __data; \
  1824. return ret; \
  1825. }
  1826. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  1827. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
  1828. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
  1829. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  1830. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
  1831. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  1832. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  1833. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  1834. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
  1835. #undef STORE_FUNCTION
  1836. #define CFQ_ATTR(name) \
  1837. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  1838. static struct elv_fs_entry cfq_attrs[] = {
  1839. CFQ_ATTR(quantum),
  1840. CFQ_ATTR(fifo_expire_sync),
  1841. CFQ_ATTR(fifo_expire_async),
  1842. CFQ_ATTR(back_seek_max),
  1843. CFQ_ATTR(back_seek_penalty),
  1844. CFQ_ATTR(slice_sync),
  1845. CFQ_ATTR(slice_async),
  1846. CFQ_ATTR(slice_async_rq),
  1847. CFQ_ATTR(slice_idle),
  1848. __ATTR_NULL
  1849. };
  1850. static struct elevator_type iosched_cfq = {
  1851. .ops = {
  1852. .elevator_merge_fn = cfq_merge,
  1853. .elevator_merged_fn = cfq_merged_request,
  1854. .elevator_merge_req_fn = cfq_merged_requests,
  1855. .elevator_allow_merge_fn = cfq_allow_merge,
  1856. .elevator_dispatch_fn = cfq_dispatch_requests,
  1857. .elevator_add_req_fn = cfq_insert_request,
  1858. .elevator_activate_req_fn = cfq_activate_request,
  1859. .elevator_deactivate_req_fn = cfq_deactivate_request,
  1860. .elevator_queue_empty_fn = cfq_queue_empty,
  1861. .elevator_completed_req_fn = cfq_completed_request,
  1862. .elevator_former_req_fn = elv_rb_former_request,
  1863. .elevator_latter_req_fn = elv_rb_latter_request,
  1864. .elevator_set_req_fn = cfq_set_request,
  1865. .elevator_put_req_fn = cfq_put_request,
  1866. .elevator_may_queue_fn = cfq_may_queue,
  1867. .elevator_init_fn = cfq_init_queue,
  1868. .elevator_exit_fn = cfq_exit_queue,
  1869. .trim = cfq_free_io_context,
  1870. },
  1871. .elevator_attrs = cfq_attrs,
  1872. .elevator_name = "cfq",
  1873. .elevator_owner = THIS_MODULE,
  1874. };
  1875. static int __init cfq_init(void)
  1876. {
  1877. int ret;
  1878. /*
  1879. * could be 0 on HZ < 1000 setups
  1880. */
  1881. if (!cfq_slice_async)
  1882. cfq_slice_async = 1;
  1883. if (!cfq_slice_idle)
  1884. cfq_slice_idle = 1;
  1885. if (cfq_slab_setup())
  1886. return -ENOMEM;
  1887. ret = elv_register(&iosched_cfq);
  1888. if (ret)
  1889. cfq_slab_kill();
  1890. return ret;
  1891. }
  1892. static void __exit cfq_exit(void)
  1893. {
  1894. DECLARE_COMPLETION_ONSTACK(all_gone);
  1895. elv_unregister(&iosched_cfq);
  1896. ioc_gone = &all_gone;
  1897. /* ioc_gone's update must be visible before reading ioc_count */
  1898. smp_wmb();
  1899. if (elv_ioc_count_read(ioc_count))
  1900. wait_for_completion(ioc_gone);
  1901. synchronize_rcu();
  1902. cfq_slab_kill();
  1903. }
  1904. module_init(cfq_init);
  1905. module_exit(cfq_exit);
  1906. MODULE_AUTHOR("Jens Axboe");
  1907. MODULE_LICENSE("GPL");
  1908. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");