vmx.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "segment_descriptor.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. static int bypass_guest_pf = 1;
  33. module_param(bypass_guest_pf, bool, 0);
  34. static int enable_vpid = 1;
  35. module_param(enable_vpid, bool, 0);
  36. struct vmcs {
  37. u32 revision_id;
  38. u32 abort;
  39. char data[0];
  40. };
  41. struct vcpu_vmx {
  42. struct kvm_vcpu vcpu;
  43. int launched;
  44. u8 fail;
  45. u32 idt_vectoring_info;
  46. struct kvm_msr_entry *guest_msrs;
  47. struct kvm_msr_entry *host_msrs;
  48. int nmsrs;
  49. int save_nmsrs;
  50. int msr_offset_efer;
  51. #ifdef CONFIG_X86_64
  52. int msr_offset_kernel_gs_base;
  53. #endif
  54. struct vmcs *vmcs;
  55. struct {
  56. int loaded;
  57. u16 fs_sel, gs_sel, ldt_sel;
  58. int gs_ldt_reload_needed;
  59. int fs_reload_needed;
  60. int guest_efer_loaded;
  61. } host_state;
  62. struct {
  63. struct {
  64. bool pending;
  65. u8 vector;
  66. unsigned rip;
  67. } irq;
  68. } rmode;
  69. int vpid;
  70. };
  71. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  72. {
  73. return container_of(vcpu, struct vcpu_vmx, vcpu);
  74. }
  75. static int init_rmode_tss(struct kvm *kvm);
  76. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  77. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  78. static struct page *vmx_io_bitmap_a;
  79. static struct page *vmx_io_bitmap_b;
  80. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  81. static DEFINE_SPINLOCK(vmx_vpid_lock);
  82. static struct vmcs_config {
  83. int size;
  84. int order;
  85. u32 revision_id;
  86. u32 pin_based_exec_ctrl;
  87. u32 cpu_based_exec_ctrl;
  88. u32 cpu_based_2nd_exec_ctrl;
  89. u32 vmexit_ctrl;
  90. u32 vmentry_ctrl;
  91. } vmcs_config;
  92. #define VMX_SEGMENT_FIELD(seg) \
  93. [VCPU_SREG_##seg] = { \
  94. .selector = GUEST_##seg##_SELECTOR, \
  95. .base = GUEST_##seg##_BASE, \
  96. .limit = GUEST_##seg##_LIMIT, \
  97. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  98. }
  99. static struct kvm_vmx_segment_field {
  100. unsigned selector;
  101. unsigned base;
  102. unsigned limit;
  103. unsigned ar_bytes;
  104. } kvm_vmx_segment_fields[] = {
  105. VMX_SEGMENT_FIELD(CS),
  106. VMX_SEGMENT_FIELD(DS),
  107. VMX_SEGMENT_FIELD(ES),
  108. VMX_SEGMENT_FIELD(FS),
  109. VMX_SEGMENT_FIELD(GS),
  110. VMX_SEGMENT_FIELD(SS),
  111. VMX_SEGMENT_FIELD(TR),
  112. VMX_SEGMENT_FIELD(LDTR),
  113. };
  114. /*
  115. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  116. * away by decrementing the array size.
  117. */
  118. static const u32 vmx_msr_index[] = {
  119. #ifdef CONFIG_X86_64
  120. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  121. #endif
  122. MSR_EFER, MSR_K6_STAR,
  123. };
  124. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  125. static void load_msrs(struct kvm_msr_entry *e, int n)
  126. {
  127. int i;
  128. for (i = 0; i < n; ++i)
  129. wrmsrl(e[i].index, e[i].data);
  130. }
  131. static void save_msrs(struct kvm_msr_entry *e, int n)
  132. {
  133. int i;
  134. for (i = 0; i < n; ++i)
  135. rdmsrl(e[i].index, e[i].data);
  136. }
  137. static inline int is_page_fault(u32 intr_info)
  138. {
  139. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  140. INTR_INFO_VALID_MASK)) ==
  141. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  142. }
  143. static inline int is_no_device(u32 intr_info)
  144. {
  145. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  146. INTR_INFO_VALID_MASK)) ==
  147. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  148. }
  149. static inline int is_invalid_opcode(u32 intr_info)
  150. {
  151. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  152. INTR_INFO_VALID_MASK)) ==
  153. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  154. }
  155. static inline int is_external_interrupt(u32 intr_info)
  156. {
  157. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  158. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  159. }
  160. static inline int cpu_has_vmx_tpr_shadow(void)
  161. {
  162. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  163. }
  164. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  165. {
  166. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  167. }
  168. static inline int cpu_has_secondary_exec_ctrls(void)
  169. {
  170. return (vmcs_config.cpu_based_exec_ctrl &
  171. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  172. }
  173. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  174. {
  175. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  176. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  177. }
  178. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  179. {
  180. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  181. (irqchip_in_kernel(kvm)));
  182. }
  183. static inline int cpu_has_vmx_vpid(void)
  184. {
  185. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  186. SECONDARY_EXEC_ENABLE_VPID);
  187. }
  188. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  189. {
  190. int i;
  191. for (i = 0; i < vmx->nmsrs; ++i)
  192. if (vmx->guest_msrs[i].index == msr)
  193. return i;
  194. return -1;
  195. }
  196. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  197. {
  198. struct {
  199. u64 vpid : 16;
  200. u64 rsvd : 48;
  201. u64 gva;
  202. } operand = { vpid, 0, gva };
  203. asm volatile (ASM_VMX_INVVPID
  204. /* CF==1 or ZF==1 --> rc = -1 */
  205. "; ja 1f ; ud2 ; 1:"
  206. : : "a"(&operand), "c"(ext) : "cc", "memory");
  207. }
  208. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  209. {
  210. int i;
  211. i = __find_msr_index(vmx, msr);
  212. if (i >= 0)
  213. return &vmx->guest_msrs[i];
  214. return NULL;
  215. }
  216. static void vmcs_clear(struct vmcs *vmcs)
  217. {
  218. u64 phys_addr = __pa(vmcs);
  219. u8 error;
  220. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  221. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  222. : "cc", "memory");
  223. if (error)
  224. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  225. vmcs, phys_addr);
  226. }
  227. static void __vcpu_clear(void *arg)
  228. {
  229. struct vcpu_vmx *vmx = arg;
  230. int cpu = raw_smp_processor_id();
  231. if (vmx->vcpu.cpu == cpu)
  232. vmcs_clear(vmx->vmcs);
  233. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  234. per_cpu(current_vmcs, cpu) = NULL;
  235. rdtscll(vmx->vcpu.arch.host_tsc);
  236. }
  237. static void vcpu_clear(struct vcpu_vmx *vmx)
  238. {
  239. if (vmx->vcpu.cpu == -1)
  240. return;
  241. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  242. vmx->launched = 0;
  243. }
  244. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  245. {
  246. if (vmx->vpid == 0)
  247. return;
  248. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  249. }
  250. static unsigned long vmcs_readl(unsigned long field)
  251. {
  252. unsigned long value;
  253. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  254. : "=a"(value) : "d"(field) : "cc");
  255. return value;
  256. }
  257. static u16 vmcs_read16(unsigned long field)
  258. {
  259. return vmcs_readl(field);
  260. }
  261. static u32 vmcs_read32(unsigned long field)
  262. {
  263. return vmcs_readl(field);
  264. }
  265. static u64 vmcs_read64(unsigned long field)
  266. {
  267. #ifdef CONFIG_X86_64
  268. return vmcs_readl(field);
  269. #else
  270. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  271. #endif
  272. }
  273. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  274. {
  275. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  276. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  277. dump_stack();
  278. }
  279. static void vmcs_writel(unsigned long field, unsigned long value)
  280. {
  281. u8 error;
  282. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  283. : "=q"(error) : "a"(value), "d"(field) : "cc");
  284. if (unlikely(error))
  285. vmwrite_error(field, value);
  286. }
  287. static void vmcs_write16(unsigned long field, u16 value)
  288. {
  289. vmcs_writel(field, value);
  290. }
  291. static void vmcs_write32(unsigned long field, u32 value)
  292. {
  293. vmcs_writel(field, value);
  294. }
  295. static void vmcs_write64(unsigned long field, u64 value)
  296. {
  297. #ifdef CONFIG_X86_64
  298. vmcs_writel(field, value);
  299. #else
  300. vmcs_writel(field, value);
  301. asm volatile ("");
  302. vmcs_writel(field+1, value >> 32);
  303. #endif
  304. }
  305. static void vmcs_clear_bits(unsigned long field, u32 mask)
  306. {
  307. vmcs_writel(field, vmcs_readl(field) & ~mask);
  308. }
  309. static void vmcs_set_bits(unsigned long field, u32 mask)
  310. {
  311. vmcs_writel(field, vmcs_readl(field) | mask);
  312. }
  313. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  314. {
  315. u32 eb;
  316. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  317. if (!vcpu->fpu_active)
  318. eb |= 1u << NM_VECTOR;
  319. if (vcpu->guest_debug.enabled)
  320. eb |= 1u << 1;
  321. if (vcpu->arch.rmode.active)
  322. eb = ~0;
  323. vmcs_write32(EXCEPTION_BITMAP, eb);
  324. }
  325. static void reload_tss(void)
  326. {
  327. /*
  328. * VT restores TR but not its size. Useless.
  329. */
  330. struct descriptor_table gdt;
  331. struct segment_descriptor *descs;
  332. get_gdt(&gdt);
  333. descs = (void *)gdt.base;
  334. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  335. load_TR_desc();
  336. }
  337. static void load_transition_efer(struct vcpu_vmx *vmx)
  338. {
  339. int efer_offset = vmx->msr_offset_efer;
  340. u64 host_efer = vmx->host_msrs[efer_offset].data;
  341. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  342. u64 ignore_bits;
  343. if (efer_offset < 0)
  344. return;
  345. /*
  346. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  347. * outside long mode
  348. */
  349. ignore_bits = EFER_NX | EFER_SCE;
  350. #ifdef CONFIG_X86_64
  351. ignore_bits |= EFER_LMA | EFER_LME;
  352. /* SCE is meaningful only in long mode on Intel */
  353. if (guest_efer & EFER_LMA)
  354. ignore_bits &= ~(u64)EFER_SCE;
  355. #endif
  356. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  357. return;
  358. vmx->host_state.guest_efer_loaded = 1;
  359. guest_efer &= ~ignore_bits;
  360. guest_efer |= host_efer & ignore_bits;
  361. wrmsrl(MSR_EFER, guest_efer);
  362. vmx->vcpu.stat.efer_reload++;
  363. }
  364. static void reload_host_efer(struct vcpu_vmx *vmx)
  365. {
  366. if (vmx->host_state.guest_efer_loaded) {
  367. vmx->host_state.guest_efer_loaded = 0;
  368. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  369. }
  370. }
  371. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  372. {
  373. struct vcpu_vmx *vmx = to_vmx(vcpu);
  374. if (vmx->host_state.loaded)
  375. return;
  376. vmx->host_state.loaded = 1;
  377. /*
  378. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  379. * allow segment selectors with cpl > 0 or ti == 1.
  380. */
  381. vmx->host_state.ldt_sel = read_ldt();
  382. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  383. vmx->host_state.fs_sel = read_fs();
  384. if (!(vmx->host_state.fs_sel & 7)) {
  385. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  386. vmx->host_state.fs_reload_needed = 0;
  387. } else {
  388. vmcs_write16(HOST_FS_SELECTOR, 0);
  389. vmx->host_state.fs_reload_needed = 1;
  390. }
  391. vmx->host_state.gs_sel = read_gs();
  392. if (!(vmx->host_state.gs_sel & 7))
  393. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  394. else {
  395. vmcs_write16(HOST_GS_SELECTOR, 0);
  396. vmx->host_state.gs_ldt_reload_needed = 1;
  397. }
  398. #ifdef CONFIG_X86_64
  399. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  400. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  401. #else
  402. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  403. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  404. #endif
  405. #ifdef CONFIG_X86_64
  406. if (is_long_mode(&vmx->vcpu))
  407. save_msrs(vmx->host_msrs +
  408. vmx->msr_offset_kernel_gs_base, 1);
  409. #endif
  410. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  411. load_transition_efer(vmx);
  412. }
  413. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  414. {
  415. unsigned long flags;
  416. if (!vmx->host_state.loaded)
  417. return;
  418. ++vmx->vcpu.stat.host_state_reload;
  419. vmx->host_state.loaded = 0;
  420. if (vmx->host_state.fs_reload_needed)
  421. load_fs(vmx->host_state.fs_sel);
  422. if (vmx->host_state.gs_ldt_reload_needed) {
  423. load_ldt(vmx->host_state.ldt_sel);
  424. /*
  425. * If we have to reload gs, we must take care to
  426. * preserve our gs base.
  427. */
  428. local_irq_save(flags);
  429. load_gs(vmx->host_state.gs_sel);
  430. #ifdef CONFIG_X86_64
  431. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  432. #endif
  433. local_irq_restore(flags);
  434. }
  435. reload_tss();
  436. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  437. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  438. reload_host_efer(vmx);
  439. }
  440. /*
  441. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  442. * vcpu mutex is already taken.
  443. */
  444. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  445. {
  446. struct vcpu_vmx *vmx = to_vmx(vcpu);
  447. u64 phys_addr = __pa(vmx->vmcs);
  448. u64 tsc_this, delta;
  449. if (vcpu->cpu != cpu) {
  450. vcpu_clear(vmx);
  451. kvm_migrate_apic_timer(vcpu);
  452. vpid_sync_vcpu_all(vmx);
  453. }
  454. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  455. u8 error;
  456. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  457. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  458. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  459. : "cc");
  460. if (error)
  461. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  462. vmx->vmcs, phys_addr);
  463. }
  464. if (vcpu->cpu != cpu) {
  465. struct descriptor_table dt;
  466. unsigned long sysenter_esp;
  467. vcpu->cpu = cpu;
  468. /*
  469. * Linux uses per-cpu TSS and GDT, so set these when switching
  470. * processors.
  471. */
  472. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  473. get_gdt(&dt);
  474. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  475. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  476. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  477. /*
  478. * Make sure the time stamp counter is monotonous.
  479. */
  480. rdtscll(tsc_this);
  481. delta = vcpu->arch.host_tsc - tsc_this;
  482. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  483. }
  484. }
  485. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  486. {
  487. vmx_load_host_state(to_vmx(vcpu));
  488. }
  489. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  490. {
  491. if (vcpu->fpu_active)
  492. return;
  493. vcpu->fpu_active = 1;
  494. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  495. if (vcpu->arch.cr0 & X86_CR0_TS)
  496. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  497. update_exception_bitmap(vcpu);
  498. }
  499. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  500. {
  501. if (!vcpu->fpu_active)
  502. return;
  503. vcpu->fpu_active = 0;
  504. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  505. update_exception_bitmap(vcpu);
  506. }
  507. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  508. {
  509. vcpu_clear(to_vmx(vcpu));
  510. }
  511. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  512. {
  513. return vmcs_readl(GUEST_RFLAGS);
  514. }
  515. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  516. {
  517. if (vcpu->arch.rmode.active)
  518. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  519. vmcs_writel(GUEST_RFLAGS, rflags);
  520. }
  521. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  522. {
  523. unsigned long rip;
  524. u32 interruptibility;
  525. rip = vmcs_readl(GUEST_RIP);
  526. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  527. vmcs_writel(GUEST_RIP, rip);
  528. /*
  529. * We emulated an instruction, so temporary interrupt blocking
  530. * should be removed, if set.
  531. */
  532. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  533. if (interruptibility & 3)
  534. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  535. interruptibility & ~3);
  536. vcpu->arch.interrupt_window_open = 1;
  537. }
  538. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  539. bool has_error_code, u32 error_code)
  540. {
  541. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  542. nr | INTR_TYPE_EXCEPTION
  543. | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
  544. | INTR_INFO_VALID_MASK);
  545. if (has_error_code)
  546. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  547. }
  548. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  549. {
  550. struct vcpu_vmx *vmx = to_vmx(vcpu);
  551. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  552. }
  553. /*
  554. * Swap MSR entry in host/guest MSR entry array.
  555. */
  556. #ifdef CONFIG_X86_64
  557. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  558. {
  559. struct kvm_msr_entry tmp;
  560. tmp = vmx->guest_msrs[to];
  561. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  562. vmx->guest_msrs[from] = tmp;
  563. tmp = vmx->host_msrs[to];
  564. vmx->host_msrs[to] = vmx->host_msrs[from];
  565. vmx->host_msrs[from] = tmp;
  566. }
  567. #endif
  568. /*
  569. * Set up the vmcs to automatically save and restore system
  570. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  571. * mode, as fiddling with msrs is very expensive.
  572. */
  573. static void setup_msrs(struct vcpu_vmx *vmx)
  574. {
  575. int save_nmsrs;
  576. vmx_load_host_state(vmx);
  577. save_nmsrs = 0;
  578. #ifdef CONFIG_X86_64
  579. if (is_long_mode(&vmx->vcpu)) {
  580. int index;
  581. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  582. if (index >= 0)
  583. move_msr_up(vmx, index, save_nmsrs++);
  584. index = __find_msr_index(vmx, MSR_LSTAR);
  585. if (index >= 0)
  586. move_msr_up(vmx, index, save_nmsrs++);
  587. index = __find_msr_index(vmx, MSR_CSTAR);
  588. if (index >= 0)
  589. move_msr_up(vmx, index, save_nmsrs++);
  590. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  591. if (index >= 0)
  592. move_msr_up(vmx, index, save_nmsrs++);
  593. /*
  594. * MSR_K6_STAR is only needed on long mode guests, and only
  595. * if efer.sce is enabled.
  596. */
  597. index = __find_msr_index(vmx, MSR_K6_STAR);
  598. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  599. move_msr_up(vmx, index, save_nmsrs++);
  600. }
  601. #endif
  602. vmx->save_nmsrs = save_nmsrs;
  603. #ifdef CONFIG_X86_64
  604. vmx->msr_offset_kernel_gs_base =
  605. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  606. #endif
  607. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  608. }
  609. /*
  610. * reads and returns guest's timestamp counter "register"
  611. * guest_tsc = host_tsc + tsc_offset -- 21.3
  612. */
  613. static u64 guest_read_tsc(void)
  614. {
  615. u64 host_tsc, tsc_offset;
  616. rdtscll(host_tsc);
  617. tsc_offset = vmcs_read64(TSC_OFFSET);
  618. return host_tsc + tsc_offset;
  619. }
  620. /*
  621. * writes 'guest_tsc' into guest's timestamp counter "register"
  622. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  623. */
  624. static void guest_write_tsc(u64 guest_tsc)
  625. {
  626. u64 host_tsc;
  627. rdtscll(host_tsc);
  628. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  629. }
  630. /*
  631. * Reads an msr value (of 'msr_index') into 'pdata'.
  632. * Returns 0 on success, non-0 otherwise.
  633. * Assumes vcpu_load() was already called.
  634. */
  635. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  636. {
  637. u64 data;
  638. struct kvm_msr_entry *msr;
  639. if (!pdata) {
  640. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  641. return -EINVAL;
  642. }
  643. switch (msr_index) {
  644. #ifdef CONFIG_X86_64
  645. case MSR_FS_BASE:
  646. data = vmcs_readl(GUEST_FS_BASE);
  647. break;
  648. case MSR_GS_BASE:
  649. data = vmcs_readl(GUEST_GS_BASE);
  650. break;
  651. case MSR_EFER:
  652. return kvm_get_msr_common(vcpu, msr_index, pdata);
  653. #endif
  654. case MSR_IA32_TIME_STAMP_COUNTER:
  655. data = guest_read_tsc();
  656. break;
  657. case MSR_IA32_SYSENTER_CS:
  658. data = vmcs_read32(GUEST_SYSENTER_CS);
  659. break;
  660. case MSR_IA32_SYSENTER_EIP:
  661. data = vmcs_readl(GUEST_SYSENTER_EIP);
  662. break;
  663. case MSR_IA32_SYSENTER_ESP:
  664. data = vmcs_readl(GUEST_SYSENTER_ESP);
  665. break;
  666. default:
  667. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  668. if (msr) {
  669. data = msr->data;
  670. break;
  671. }
  672. return kvm_get_msr_common(vcpu, msr_index, pdata);
  673. }
  674. *pdata = data;
  675. return 0;
  676. }
  677. /*
  678. * Writes msr value into into the appropriate "register".
  679. * Returns 0 on success, non-0 otherwise.
  680. * Assumes vcpu_load() was already called.
  681. */
  682. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  683. {
  684. struct vcpu_vmx *vmx = to_vmx(vcpu);
  685. struct kvm_msr_entry *msr;
  686. int ret = 0;
  687. switch (msr_index) {
  688. #ifdef CONFIG_X86_64
  689. case MSR_EFER:
  690. ret = kvm_set_msr_common(vcpu, msr_index, data);
  691. if (vmx->host_state.loaded) {
  692. reload_host_efer(vmx);
  693. load_transition_efer(vmx);
  694. }
  695. break;
  696. case MSR_FS_BASE:
  697. vmcs_writel(GUEST_FS_BASE, data);
  698. break;
  699. case MSR_GS_BASE:
  700. vmcs_writel(GUEST_GS_BASE, data);
  701. break;
  702. #endif
  703. case MSR_IA32_SYSENTER_CS:
  704. vmcs_write32(GUEST_SYSENTER_CS, data);
  705. break;
  706. case MSR_IA32_SYSENTER_EIP:
  707. vmcs_writel(GUEST_SYSENTER_EIP, data);
  708. break;
  709. case MSR_IA32_SYSENTER_ESP:
  710. vmcs_writel(GUEST_SYSENTER_ESP, data);
  711. break;
  712. case MSR_IA32_TIME_STAMP_COUNTER:
  713. guest_write_tsc(data);
  714. break;
  715. default:
  716. msr = find_msr_entry(vmx, msr_index);
  717. if (msr) {
  718. msr->data = data;
  719. if (vmx->host_state.loaded)
  720. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  721. break;
  722. }
  723. ret = kvm_set_msr_common(vcpu, msr_index, data);
  724. }
  725. return ret;
  726. }
  727. /*
  728. * Sync the rsp and rip registers into the vcpu structure. This allows
  729. * registers to be accessed by indexing vcpu->arch.regs.
  730. */
  731. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  732. {
  733. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  734. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  735. }
  736. /*
  737. * Syncs rsp and rip back into the vmcs. Should be called after possible
  738. * modification.
  739. */
  740. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  741. {
  742. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  743. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  744. }
  745. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  746. {
  747. unsigned long dr7 = 0x400;
  748. int old_singlestep;
  749. old_singlestep = vcpu->guest_debug.singlestep;
  750. vcpu->guest_debug.enabled = dbg->enabled;
  751. if (vcpu->guest_debug.enabled) {
  752. int i;
  753. dr7 |= 0x200; /* exact */
  754. for (i = 0; i < 4; ++i) {
  755. if (!dbg->breakpoints[i].enabled)
  756. continue;
  757. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  758. dr7 |= 2 << (i*2); /* global enable */
  759. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  760. }
  761. vcpu->guest_debug.singlestep = dbg->singlestep;
  762. } else
  763. vcpu->guest_debug.singlestep = 0;
  764. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  765. unsigned long flags;
  766. flags = vmcs_readl(GUEST_RFLAGS);
  767. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  768. vmcs_writel(GUEST_RFLAGS, flags);
  769. }
  770. update_exception_bitmap(vcpu);
  771. vmcs_writel(GUEST_DR7, dr7);
  772. return 0;
  773. }
  774. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  775. {
  776. struct vcpu_vmx *vmx = to_vmx(vcpu);
  777. u32 idtv_info_field;
  778. idtv_info_field = vmx->idt_vectoring_info;
  779. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  780. if (is_external_interrupt(idtv_info_field))
  781. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  782. else
  783. printk(KERN_DEBUG "pending exception: not handled yet\n");
  784. }
  785. return -1;
  786. }
  787. static __init int cpu_has_kvm_support(void)
  788. {
  789. unsigned long ecx = cpuid_ecx(1);
  790. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  791. }
  792. static __init int vmx_disabled_by_bios(void)
  793. {
  794. u64 msr;
  795. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  796. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  797. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  798. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  799. /* locked but not enabled */
  800. }
  801. static void hardware_enable(void *garbage)
  802. {
  803. int cpu = raw_smp_processor_id();
  804. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  805. u64 old;
  806. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  807. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  808. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  809. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  810. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  811. /* enable and lock */
  812. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  813. MSR_IA32_FEATURE_CONTROL_LOCKED |
  814. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  815. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  816. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  817. : "memory", "cc");
  818. }
  819. static void hardware_disable(void *garbage)
  820. {
  821. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  822. }
  823. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  824. u32 msr, u32 *result)
  825. {
  826. u32 vmx_msr_low, vmx_msr_high;
  827. u32 ctl = ctl_min | ctl_opt;
  828. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  829. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  830. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  831. /* Ensure minimum (required) set of control bits are supported. */
  832. if (ctl_min & ~ctl)
  833. return -EIO;
  834. *result = ctl;
  835. return 0;
  836. }
  837. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  838. {
  839. u32 vmx_msr_low, vmx_msr_high;
  840. u32 min, opt;
  841. u32 _pin_based_exec_control = 0;
  842. u32 _cpu_based_exec_control = 0;
  843. u32 _cpu_based_2nd_exec_control = 0;
  844. u32 _vmexit_control = 0;
  845. u32 _vmentry_control = 0;
  846. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  847. opt = 0;
  848. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  849. &_pin_based_exec_control) < 0)
  850. return -EIO;
  851. min = CPU_BASED_HLT_EXITING |
  852. #ifdef CONFIG_X86_64
  853. CPU_BASED_CR8_LOAD_EXITING |
  854. CPU_BASED_CR8_STORE_EXITING |
  855. #endif
  856. CPU_BASED_USE_IO_BITMAPS |
  857. CPU_BASED_MOV_DR_EXITING |
  858. CPU_BASED_USE_TSC_OFFSETING;
  859. opt = CPU_BASED_TPR_SHADOW |
  860. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  861. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  862. &_cpu_based_exec_control) < 0)
  863. return -EIO;
  864. #ifdef CONFIG_X86_64
  865. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  866. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  867. ~CPU_BASED_CR8_STORE_EXITING;
  868. #endif
  869. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  870. min = 0;
  871. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  872. SECONDARY_EXEC_WBINVD_EXITING |
  873. SECONDARY_EXEC_ENABLE_VPID;
  874. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  875. &_cpu_based_2nd_exec_control) < 0)
  876. return -EIO;
  877. }
  878. #ifndef CONFIG_X86_64
  879. if (!(_cpu_based_2nd_exec_control &
  880. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  881. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  882. #endif
  883. min = 0;
  884. #ifdef CONFIG_X86_64
  885. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  886. #endif
  887. opt = 0;
  888. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  889. &_vmexit_control) < 0)
  890. return -EIO;
  891. min = opt = 0;
  892. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  893. &_vmentry_control) < 0)
  894. return -EIO;
  895. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  896. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  897. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  898. return -EIO;
  899. #ifdef CONFIG_X86_64
  900. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  901. if (vmx_msr_high & (1u<<16))
  902. return -EIO;
  903. #endif
  904. /* Require Write-Back (WB) memory type for VMCS accesses. */
  905. if (((vmx_msr_high >> 18) & 15) != 6)
  906. return -EIO;
  907. vmcs_conf->size = vmx_msr_high & 0x1fff;
  908. vmcs_conf->order = get_order(vmcs_config.size);
  909. vmcs_conf->revision_id = vmx_msr_low;
  910. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  911. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  912. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  913. vmcs_conf->vmexit_ctrl = _vmexit_control;
  914. vmcs_conf->vmentry_ctrl = _vmentry_control;
  915. return 0;
  916. }
  917. static struct vmcs *alloc_vmcs_cpu(int cpu)
  918. {
  919. int node = cpu_to_node(cpu);
  920. struct page *pages;
  921. struct vmcs *vmcs;
  922. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  923. if (!pages)
  924. return NULL;
  925. vmcs = page_address(pages);
  926. memset(vmcs, 0, vmcs_config.size);
  927. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  928. return vmcs;
  929. }
  930. static struct vmcs *alloc_vmcs(void)
  931. {
  932. return alloc_vmcs_cpu(raw_smp_processor_id());
  933. }
  934. static void free_vmcs(struct vmcs *vmcs)
  935. {
  936. free_pages((unsigned long)vmcs, vmcs_config.order);
  937. }
  938. static void free_kvm_area(void)
  939. {
  940. int cpu;
  941. for_each_online_cpu(cpu)
  942. free_vmcs(per_cpu(vmxarea, cpu));
  943. }
  944. static __init int alloc_kvm_area(void)
  945. {
  946. int cpu;
  947. for_each_online_cpu(cpu) {
  948. struct vmcs *vmcs;
  949. vmcs = alloc_vmcs_cpu(cpu);
  950. if (!vmcs) {
  951. free_kvm_area();
  952. return -ENOMEM;
  953. }
  954. per_cpu(vmxarea, cpu) = vmcs;
  955. }
  956. return 0;
  957. }
  958. static __init int hardware_setup(void)
  959. {
  960. if (setup_vmcs_config(&vmcs_config) < 0)
  961. return -EIO;
  962. return alloc_kvm_area();
  963. }
  964. static __exit void hardware_unsetup(void)
  965. {
  966. free_kvm_area();
  967. }
  968. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  969. {
  970. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  971. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  972. vmcs_write16(sf->selector, save->selector);
  973. vmcs_writel(sf->base, save->base);
  974. vmcs_write32(sf->limit, save->limit);
  975. vmcs_write32(sf->ar_bytes, save->ar);
  976. } else {
  977. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  978. << AR_DPL_SHIFT;
  979. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  980. }
  981. }
  982. static void enter_pmode(struct kvm_vcpu *vcpu)
  983. {
  984. unsigned long flags;
  985. vcpu->arch.rmode.active = 0;
  986. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  987. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  988. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  989. flags = vmcs_readl(GUEST_RFLAGS);
  990. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  991. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  992. vmcs_writel(GUEST_RFLAGS, flags);
  993. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  994. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  995. update_exception_bitmap(vcpu);
  996. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  997. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  998. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  999. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1000. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1001. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1002. vmcs_write16(GUEST_CS_SELECTOR,
  1003. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1004. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1005. }
  1006. static gva_t rmode_tss_base(struct kvm *kvm)
  1007. {
  1008. if (!kvm->arch.tss_addr) {
  1009. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1010. kvm->memslots[0].npages - 3;
  1011. return base_gfn << PAGE_SHIFT;
  1012. }
  1013. return kvm->arch.tss_addr;
  1014. }
  1015. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1016. {
  1017. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1018. save->selector = vmcs_read16(sf->selector);
  1019. save->base = vmcs_readl(sf->base);
  1020. save->limit = vmcs_read32(sf->limit);
  1021. save->ar = vmcs_read32(sf->ar_bytes);
  1022. vmcs_write16(sf->selector, save->base >> 4);
  1023. vmcs_write32(sf->base, save->base & 0xfffff);
  1024. vmcs_write32(sf->limit, 0xffff);
  1025. vmcs_write32(sf->ar_bytes, 0xf3);
  1026. }
  1027. static void enter_rmode(struct kvm_vcpu *vcpu)
  1028. {
  1029. unsigned long flags;
  1030. vcpu->arch.rmode.active = 1;
  1031. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1032. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1033. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1034. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1035. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1036. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1037. flags = vmcs_readl(GUEST_RFLAGS);
  1038. vcpu->arch.rmode.save_iopl
  1039. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1040. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1041. vmcs_writel(GUEST_RFLAGS, flags);
  1042. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1043. update_exception_bitmap(vcpu);
  1044. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1045. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1046. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1047. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1048. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1049. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1050. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1051. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1052. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1053. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1054. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1055. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1056. kvm_mmu_reset_context(vcpu);
  1057. init_rmode_tss(vcpu->kvm);
  1058. }
  1059. #ifdef CONFIG_X86_64
  1060. static void enter_lmode(struct kvm_vcpu *vcpu)
  1061. {
  1062. u32 guest_tr_ar;
  1063. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1064. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1065. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1066. __FUNCTION__);
  1067. vmcs_write32(GUEST_TR_AR_BYTES,
  1068. (guest_tr_ar & ~AR_TYPE_MASK)
  1069. | AR_TYPE_BUSY_64_TSS);
  1070. }
  1071. vcpu->arch.shadow_efer |= EFER_LMA;
  1072. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1073. vmcs_write32(VM_ENTRY_CONTROLS,
  1074. vmcs_read32(VM_ENTRY_CONTROLS)
  1075. | VM_ENTRY_IA32E_MODE);
  1076. }
  1077. static void exit_lmode(struct kvm_vcpu *vcpu)
  1078. {
  1079. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1080. vmcs_write32(VM_ENTRY_CONTROLS,
  1081. vmcs_read32(VM_ENTRY_CONTROLS)
  1082. & ~VM_ENTRY_IA32E_MODE);
  1083. }
  1084. #endif
  1085. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1086. {
  1087. vpid_sync_vcpu_all(to_vmx(vcpu));
  1088. }
  1089. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1090. {
  1091. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1092. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1093. }
  1094. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1095. {
  1096. vmx_fpu_deactivate(vcpu);
  1097. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1098. enter_pmode(vcpu);
  1099. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1100. enter_rmode(vcpu);
  1101. #ifdef CONFIG_X86_64
  1102. if (vcpu->arch.shadow_efer & EFER_LME) {
  1103. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1104. enter_lmode(vcpu);
  1105. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1106. exit_lmode(vcpu);
  1107. }
  1108. #endif
  1109. vmcs_writel(CR0_READ_SHADOW, cr0);
  1110. vmcs_writel(GUEST_CR0,
  1111. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1112. vcpu->arch.cr0 = cr0;
  1113. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1114. vmx_fpu_activate(vcpu);
  1115. }
  1116. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1117. {
  1118. vmx_flush_tlb(vcpu);
  1119. vmcs_writel(GUEST_CR3, cr3);
  1120. if (vcpu->arch.cr0 & X86_CR0_PE)
  1121. vmx_fpu_deactivate(vcpu);
  1122. }
  1123. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1124. {
  1125. vmcs_writel(CR4_READ_SHADOW, cr4);
  1126. vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
  1127. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1128. vcpu->arch.cr4 = cr4;
  1129. }
  1130. #ifdef CONFIG_X86_64
  1131. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1132. {
  1133. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1134. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1135. vcpu->arch.shadow_efer = efer;
  1136. if (efer & EFER_LMA) {
  1137. vmcs_write32(VM_ENTRY_CONTROLS,
  1138. vmcs_read32(VM_ENTRY_CONTROLS) |
  1139. VM_ENTRY_IA32E_MODE);
  1140. msr->data = efer;
  1141. } else {
  1142. vmcs_write32(VM_ENTRY_CONTROLS,
  1143. vmcs_read32(VM_ENTRY_CONTROLS) &
  1144. ~VM_ENTRY_IA32E_MODE);
  1145. msr->data = efer & ~EFER_LME;
  1146. }
  1147. setup_msrs(vmx);
  1148. }
  1149. #endif
  1150. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1151. {
  1152. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1153. return vmcs_readl(sf->base);
  1154. }
  1155. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1156. struct kvm_segment *var, int seg)
  1157. {
  1158. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1159. u32 ar;
  1160. var->base = vmcs_readl(sf->base);
  1161. var->limit = vmcs_read32(sf->limit);
  1162. var->selector = vmcs_read16(sf->selector);
  1163. ar = vmcs_read32(sf->ar_bytes);
  1164. if (ar & AR_UNUSABLE_MASK)
  1165. ar = 0;
  1166. var->type = ar & 15;
  1167. var->s = (ar >> 4) & 1;
  1168. var->dpl = (ar >> 5) & 3;
  1169. var->present = (ar >> 7) & 1;
  1170. var->avl = (ar >> 12) & 1;
  1171. var->l = (ar >> 13) & 1;
  1172. var->db = (ar >> 14) & 1;
  1173. var->g = (ar >> 15) & 1;
  1174. var->unusable = (ar >> 16) & 1;
  1175. }
  1176. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1177. {
  1178. u32 ar;
  1179. if (var->unusable)
  1180. ar = 1 << 16;
  1181. else {
  1182. ar = var->type & 15;
  1183. ar |= (var->s & 1) << 4;
  1184. ar |= (var->dpl & 3) << 5;
  1185. ar |= (var->present & 1) << 7;
  1186. ar |= (var->avl & 1) << 12;
  1187. ar |= (var->l & 1) << 13;
  1188. ar |= (var->db & 1) << 14;
  1189. ar |= (var->g & 1) << 15;
  1190. }
  1191. if (ar == 0) /* a 0 value means unusable */
  1192. ar = AR_UNUSABLE_MASK;
  1193. return ar;
  1194. }
  1195. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1196. struct kvm_segment *var, int seg)
  1197. {
  1198. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1199. u32 ar;
  1200. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1201. vcpu->arch.rmode.tr.selector = var->selector;
  1202. vcpu->arch.rmode.tr.base = var->base;
  1203. vcpu->arch.rmode.tr.limit = var->limit;
  1204. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1205. return;
  1206. }
  1207. vmcs_writel(sf->base, var->base);
  1208. vmcs_write32(sf->limit, var->limit);
  1209. vmcs_write16(sf->selector, var->selector);
  1210. if (vcpu->arch.rmode.active && var->s) {
  1211. /*
  1212. * Hack real-mode segments into vm86 compatibility.
  1213. */
  1214. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1215. vmcs_writel(sf->base, 0xf0000);
  1216. ar = 0xf3;
  1217. } else
  1218. ar = vmx_segment_access_rights(var);
  1219. vmcs_write32(sf->ar_bytes, ar);
  1220. }
  1221. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1222. {
  1223. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1224. *db = (ar >> 14) & 1;
  1225. *l = (ar >> 13) & 1;
  1226. }
  1227. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1228. {
  1229. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1230. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1231. }
  1232. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1233. {
  1234. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1235. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1236. }
  1237. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1238. {
  1239. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1240. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1241. }
  1242. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1243. {
  1244. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1245. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1246. }
  1247. static int init_rmode_tss(struct kvm *kvm)
  1248. {
  1249. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1250. u16 data = 0;
  1251. int ret = 0;
  1252. int r;
  1253. down_read(&kvm->slots_lock);
  1254. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1255. if (r < 0)
  1256. goto out;
  1257. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1258. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1259. if (r < 0)
  1260. goto out;
  1261. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1262. if (r < 0)
  1263. goto out;
  1264. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1265. if (r < 0)
  1266. goto out;
  1267. data = ~0;
  1268. r = kvm_write_guest_page(kvm, fn, &data,
  1269. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1270. sizeof(u8));
  1271. if (r < 0)
  1272. goto out;
  1273. ret = 1;
  1274. out:
  1275. up_read(&kvm->slots_lock);
  1276. return ret;
  1277. }
  1278. static void seg_setup(int seg)
  1279. {
  1280. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1281. vmcs_write16(sf->selector, 0);
  1282. vmcs_writel(sf->base, 0);
  1283. vmcs_write32(sf->limit, 0xffff);
  1284. vmcs_write32(sf->ar_bytes, 0x93);
  1285. }
  1286. static int alloc_apic_access_page(struct kvm *kvm)
  1287. {
  1288. struct kvm_userspace_memory_region kvm_userspace_mem;
  1289. int r = 0;
  1290. down_write(&kvm->slots_lock);
  1291. if (kvm->arch.apic_access_page)
  1292. goto out;
  1293. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1294. kvm_userspace_mem.flags = 0;
  1295. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1296. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1297. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1298. if (r)
  1299. goto out;
  1300. down_read(&current->mm->mmap_sem);
  1301. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1302. up_read(&current->mm->mmap_sem);
  1303. out:
  1304. up_write(&kvm->slots_lock);
  1305. return r;
  1306. }
  1307. static void allocate_vpid(struct vcpu_vmx *vmx)
  1308. {
  1309. int vpid;
  1310. vmx->vpid = 0;
  1311. if (!enable_vpid || !cpu_has_vmx_vpid())
  1312. return;
  1313. spin_lock(&vmx_vpid_lock);
  1314. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1315. if (vpid < VMX_NR_VPIDS) {
  1316. vmx->vpid = vpid;
  1317. __set_bit(vpid, vmx_vpid_bitmap);
  1318. }
  1319. spin_unlock(&vmx_vpid_lock);
  1320. }
  1321. /*
  1322. * Sets up the vmcs for emulated real mode.
  1323. */
  1324. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1325. {
  1326. u32 host_sysenter_cs;
  1327. u32 junk;
  1328. unsigned long a;
  1329. struct descriptor_table dt;
  1330. int i;
  1331. unsigned long kvm_vmx_return;
  1332. u32 exec_control;
  1333. /* I/O */
  1334. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1335. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1336. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1337. /* Control */
  1338. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1339. vmcs_config.pin_based_exec_ctrl);
  1340. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1341. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1342. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1343. #ifdef CONFIG_X86_64
  1344. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1345. CPU_BASED_CR8_LOAD_EXITING;
  1346. #endif
  1347. }
  1348. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1349. if (cpu_has_secondary_exec_ctrls()) {
  1350. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1351. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1352. exec_control &=
  1353. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1354. if (vmx->vpid == 0)
  1355. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1356. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1357. }
  1358. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1359. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1360. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1361. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1362. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1363. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1364. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1365. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1366. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1367. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1368. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1369. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1370. #ifdef CONFIG_X86_64
  1371. rdmsrl(MSR_FS_BASE, a);
  1372. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1373. rdmsrl(MSR_GS_BASE, a);
  1374. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1375. #else
  1376. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1377. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1378. #endif
  1379. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1380. get_idt(&dt);
  1381. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1382. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1383. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1384. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1385. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1386. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1387. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1388. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1389. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1390. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1391. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1392. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1393. for (i = 0; i < NR_VMX_MSR; ++i) {
  1394. u32 index = vmx_msr_index[i];
  1395. u32 data_low, data_high;
  1396. u64 data;
  1397. int j = vmx->nmsrs;
  1398. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1399. continue;
  1400. if (wrmsr_safe(index, data_low, data_high) < 0)
  1401. continue;
  1402. data = data_low | ((u64)data_high << 32);
  1403. vmx->host_msrs[j].index = index;
  1404. vmx->host_msrs[j].reserved = 0;
  1405. vmx->host_msrs[j].data = data;
  1406. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1407. ++vmx->nmsrs;
  1408. }
  1409. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1410. /* 22.2.1, 20.8.1 */
  1411. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1412. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1413. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1414. return 0;
  1415. }
  1416. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1417. {
  1418. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1419. u64 msr;
  1420. int ret;
  1421. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1422. ret = -ENOMEM;
  1423. goto out;
  1424. }
  1425. vmx->vcpu.arch.rmode.active = 0;
  1426. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1427. set_cr8(&vmx->vcpu, 0);
  1428. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1429. if (vmx->vcpu.vcpu_id == 0)
  1430. msr |= MSR_IA32_APICBASE_BSP;
  1431. kvm_set_apic_base(&vmx->vcpu, msr);
  1432. fx_init(&vmx->vcpu);
  1433. /*
  1434. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1435. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1436. */
  1437. if (vmx->vcpu.vcpu_id == 0) {
  1438. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1439. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1440. } else {
  1441. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1442. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1443. }
  1444. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1445. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1446. seg_setup(VCPU_SREG_DS);
  1447. seg_setup(VCPU_SREG_ES);
  1448. seg_setup(VCPU_SREG_FS);
  1449. seg_setup(VCPU_SREG_GS);
  1450. seg_setup(VCPU_SREG_SS);
  1451. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1452. vmcs_writel(GUEST_TR_BASE, 0);
  1453. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1454. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1455. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1456. vmcs_writel(GUEST_LDTR_BASE, 0);
  1457. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1458. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1459. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1460. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1461. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1462. vmcs_writel(GUEST_RFLAGS, 0x02);
  1463. if (vmx->vcpu.vcpu_id == 0)
  1464. vmcs_writel(GUEST_RIP, 0xfff0);
  1465. else
  1466. vmcs_writel(GUEST_RIP, 0);
  1467. vmcs_writel(GUEST_RSP, 0);
  1468. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1469. vmcs_writel(GUEST_DR7, 0x400);
  1470. vmcs_writel(GUEST_GDTR_BASE, 0);
  1471. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1472. vmcs_writel(GUEST_IDTR_BASE, 0);
  1473. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1474. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1475. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1476. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1477. guest_write_tsc(0);
  1478. /* Special registers */
  1479. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1480. setup_msrs(vmx);
  1481. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1482. if (cpu_has_vmx_tpr_shadow()) {
  1483. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1484. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1485. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1486. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1487. vmcs_write32(TPR_THRESHOLD, 0);
  1488. }
  1489. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1490. vmcs_write64(APIC_ACCESS_ADDR,
  1491. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1492. if (vmx->vpid != 0)
  1493. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1494. vmx->vcpu.arch.cr0 = 0x60000010;
  1495. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1496. vmx_set_cr4(&vmx->vcpu, 0);
  1497. #ifdef CONFIG_X86_64
  1498. vmx_set_efer(&vmx->vcpu, 0);
  1499. #endif
  1500. vmx_fpu_activate(&vmx->vcpu);
  1501. update_exception_bitmap(&vmx->vcpu);
  1502. vpid_sync_vcpu_all(vmx);
  1503. return 0;
  1504. out:
  1505. return ret;
  1506. }
  1507. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1508. {
  1509. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1510. if (vcpu->arch.rmode.active) {
  1511. vmx->rmode.irq.pending = true;
  1512. vmx->rmode.irq.vector = irq;
  1513. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1514. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1515. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1516. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1517. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1518. return;
  1519. }
  1520. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1521. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1522. }
  1523. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1524. {
  1525. int word_index = __ffs(vcpu->arch.irq_summary);
  1526. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1527. int irq = word_index * BITS_PER_LONG + bit_index;
  1528. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1529. if (!vcpu->arch.irq_pending[word_index])
  1530. clear_bit(word_index, &vcpu->arch.irq_summary);
  1531. vmx_inject_irq(vcpu, irq);
  1532. }
  1533. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1534. struct kvm_run *kvm_run)
  1535. {
  1536. u32 cpu_based_vm_exec_control;
  1537. vcpu->arch.interrupt_window_open =
  1538. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1539. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1540. if (vcpu->arch.interrupt_window_open &&
  1541. vcpu->arch.irq_summary &&
  1542. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1543. /*
  1544. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1545. */
  1546. kvm_do_inject_irq(vcpu);
  1547. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1548. if (!vcpu->arch.interrupt_window_open &&
  1549. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1550. /*
  1551. * Interrupts blocked. Wait for unblock.
  1552. */
  1553. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1554. else
  1555. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1556. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1557. }
  1558. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1559. {
  1560. int ret;
  1561. struct kvm_userspace_memory_region tss_mem = {
  1562. .slot = 8,
  1563. .guest_phys_addr = addr,
  1564. .memory_size = PAGE_SIZE * 3,
  1565. .flags = 0,
  1566. };
  1567. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1568. if (ret)
  1569. return ret;
  1570. kvm->arch.tss_addr = addr;
  1571. return 0;
  1572. }
  1573. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1574. {
  1575. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1576. set_debugreg(dbg->bp[0], 0);
  1577. set_debugreg(dbg->bp[1], 1);
  1578. set_debugreg(dbg->bp[2], 2);
  1579. set_debugreg(dbg->bp[3], 3);
  1580. if (dbg->singlestep) {
  1581. unsigned long flags;
  1582. flags = vmcs_readl(GUEST_RFLAGS);
  1583. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1584. vmcs_writel(GUEST_RFLAGS, flags);
  1585. }
  1586. }
  1587. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1588. int vec, u32 err_code)
  1589. {
  1590. if (!vcpu->arch.rmode.active)
  1591. return 0;
  1592. /*
  1593. * Instruction with address size override prefix opcode 0x67
  1594. * Cause the #SS fault with 0 error code in VM86 mode.
  1595. */
  1596. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1597. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1598. return 1;
  1599. return 0;
  1600. }
  1601. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1602. {
  1603. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1604. u32 intr_info, error_code;
  1605. unsigned long cr2, rip;
  1606. u32 vect_info;
  1607. enum emulation_result er;
  1608. vect_info = vmx->idt_vectoring_info;
  1609. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1610. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1611. !is_page_fault(intr_info))
  1612. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1613. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1614. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1615. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1616. set_bit(irq, vcpu->arch.irq_pending);
  1617. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1618. }
  1619. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1620. return 1; /* already handled by vmx_vcpu_run() */
  1621. if (is_no_device(intr_info)) {
  1622. vmx_fpu_activate(vcpu);
  1623. return 1;
  1624. }
  1625. if (is_invalid_opcode(intr_info)) {
  1626. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1627. if (er != EMULATE_DONE)
  1628. kvm_queue_exception(vcpu, UD_VECTOR);
  1629. return 1;
  1630. }
  1631. error_code = 0;
  1632. rip = vmcs_readl(GUEST_RIP);
  1633. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1634. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1635. if (is_page_fault(intr_info)) {
  1636. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1637. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1638. }
  1639. if (vcpu->arch.rmode.active &&
  1640. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1641. error_code)) {
  1642. if (vcpu->arch.halt_request) {
  1643. vcpu->arch.halt_request = 0;
  1644. return kvm_emulate_halt(vcpu);
  1645. }
  1646. return 1;
  1647. }
  1648. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1649. (INTR_TYPE_EXCEPTION | 1)) {
  1650. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1651. return 0;
  1652. }
  1653. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1654. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1655. kvm_run->ex.error_code = error_code;
  1656. return 0;
  1657. }
  1658. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1659. struct kvm_run *kvm_run)
  1660. {
  1661. ++vcpu->stat.irq_exits;
  1662. return 1;
  1663. }
  1664. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1665. {
  1666. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1667. return 0;
  1668. }
  1669. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1670. {
  1671. unsigned long exit_qualification;
  1672. int size, down, in, string, rep;
  1673. unsigned port;
  1674. ++vcpu->stat.io_exits;
  1675. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1676. string = (exit_qualification & 16) != 0;
  1677. if (string) {
  1678. if (emulate_instruction(vcpu,
  1679. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1680. return 0;
  1681. return 1;
  1682. }
  1683. size = (exit_qualification & 7) + 1;
  1684. in = (exit_qualification & 8) != 0;
  1685. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1686. rep = (exit_qualification & 32) != 0;
  1687. port = exit_qualification >> 16;
  1688. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1689. }
  1690. static void
  1691. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1692. {
  1693. /*
  1694. * Patch in the VMCALL instruction:
  1695. */
  1696. hypercall[0] = 0x0f;
  1697. hypercall[1] = 0x01;
  1698. hypercall[2] = 0xc1;
  1699. }
  1700. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1701. {
  1702. unsigned long exit_qualification;
  1703. int cr;
  1704. int reg;
  1705. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1706. cr = exit_qualification & 15;
  1707. reg = (exit_qualification >> 8) & 15;
  1708. switch ((exit_qualification >> 4) & 3) {
  1709. case 0: /* mov to cr */
  1710. switch (cr) {
  1711. case 0:
  1712. vcpu_load_rsp_rip(vcpu);
  1713. set_cr0(vcpu, vcpu->arch.regs[reg]);
  1714. skip_emulated_instruction(vcpu);
  1715. return 1;
  1716. case 3:
  1717. vcpu_load_rsp_rip(vcpu);
  1718. set_cr3(vcpu, vcpu->arch.regs[reg]);
  1719. skip_emulated_instruction(vcpu);
  1720. return 1;
  1721. case 4:
  1722. vcpu_load_rsp_rip(vcpu);
  1723. set_cr4(vcpu, vcpu->arch.regs[reg]);
  1724. skip_emulated_instruction(vcpu);
  1725. return 1;
  1726. case 8:
  1727. vcpu_load_rsp_rip(vcpu);
  1728. set_cr8(vcpu, vcpu->arch.regs[reg]);
  1729. skip_emulated_instruction(vcpu);
  1730. if (irqchip_in_kernel(vcpu->kvm))
  1731. return 1;
  1732. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1733. return 0;
  1734. };
  1735. break;
  1736. case 2: /* clts */
  1737. vcpu_load_rsp_rip(vcpu);
  1738. vmx_fpu_deactivate(vcpu);
  1739. vcpu->arch.cr0 &= ~X86_CR0_TS;
  1740. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1741. vmx_fpu_activate(vcpu);
  1742. skip_emulated_instruction(vcpu);
  1743. return 1;
  1744. case 1: /*mov from cr*/
  1745. switch (cr) {
  1746. case 3:
  1747. vcpu_load_rsp_rip(vcpu);
  1748. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  1749. vcpu_put_rsp_rip(vcpu);
  1750. skip_emulated_instruction(vcpu);
  1751. return 1;
  1752. case 8:
  1753. vcpu_load_rsp_rip(vcpu);
  1754. vcpu->arch.regs[reg] = get_cr8(vcpu);
  1755. vcpu_put_rsp_rip(vcpu);
  1756. skip_emulated_instruction(vcpu);
  1757. return 1;
  1758. }
  1759. break;
  1760. case 3: /* lmsw */
  1761. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1762. skip_emulated_instruction(vcpu);
  1763. return 1;
  1764. default:
  1765. break;
  1766. }
  1767. kvm_run->exit_reason = 0;
  1768. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1769. (int)(exit_qualification >> 4) & 3, cr);
  1770. return 0;
  1771. }
  1772. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1773. {
  1774. unsigned long exit_qualification;
  1775. unsigned long val;
  1776. int dr, reg;
  1777. /*
  1778. * FIXME: this code assumes the host is debugging the guest.
  1779. * need to deal with guest debugging itself too.
  1780. */
  1781. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1782. dr = exit_qualification & 7;
  1783. reg = (exit_qualification >> 8) & 15;
  1784. vcpu_load_rsp_rip(vcpu);
  1785. if (exit_qualification & 16) {
  1786. /* mov from dr */
  1787. switch (dr) {
  1788. case 6:
  1789. val = 0xffff0ff0;
  1790. break;
  1791. case 7:
  1792. val = 0x400;
  1793. break;
  1794. default:
  1795. val = 0;
  1796. }
  1797. vcpu->arch.regs[reg] = val;
  1798. } else {
  1799. /* mov to dr */
  1800. }
  1801. vcpu_put_rsp_rip(vcpu);
  1802. skip_emulated_instruction(vcpu);
  1803. return 1;
  1804. }
  1805. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1806. {
  1807. kvm_emulate_cpuid(vcpu);
  1808. return 1;
  1809. }
  1810. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1811. {
  1812. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1813. u64 data;
  1814. if (vmx_get_msr(vcpu, ecx, &data)) {
  1815. kvm_inject_gp(vcpu, 0);
  1816. return 1;
  1817. }
  1818. /* FIXME: handling of bits 32:63 of rax, rdx */
  1819. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  1820. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1821. skip_emulated_instruction(vcpu);
  1822. return 1;
  1823. }
  1824. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1825. {
  1826. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1827. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  1828. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1829. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1830. kvm_inject_gp(vcpu, 0);
  1831. return 1;
  1832. }
  1833. skip_emulated_instruction(vcpu);
  1834. return 1;
  1835. }
  1836. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1837. struct kvm_run *kvm_run)
  1838. {
  1839. return 1;
  1840. }
  1841. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1842. struct kvm_run *kvm_run)
  1843. {
  1844. u32 cpu_based_vm_exec_control;
  1845. /* clear pending irq */
  1846. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1847. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1848. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1849. /*
  1850. * If the user space waits to inject interrupts, exit as soon as
  1851. * possible
  1852. */
  1853. if (kvm_run->request_interrupt_window &&
  1854. !vcpu->arch.irq_summary) {
  1855. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1856. ++vcpu->stat.irq_window_exits;
  1857. return 0;
  1858. }
  1859. return 1;
  1860. }
  1861. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1862. {
  1863. skip_emulated_instruction(vcpu);
  1864. return kvm_emulate_halt(vcpu);
  1865. }
  1866. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1867. {
  1868. skip_emulated_instruction(vcpu);
  1869. kvm_emulate_hypercall(vcpu);
  1870. return 1;
  1871. }
  1872. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1873. {
  1874. skip_emulated_instruction(vcpu);
  1875. /* TODO: Add support for VT-d/pass-through device */
  1876. return 1;
  1877. }
  1878. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1879. {
  1880. u64 exit_qualification;
  1881. enum emulation_result er;
  1882. unsigned long offset;
  1883. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1884. offset = exit_qualification & 0xffful;
  1885. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1886. if (er != EMULATE_DONE) {
  1887. printk(KERN_ERR
  1888. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1889. offset);
  1890. return -ENOTSUPP;
  1891. }
  1892. return 1;
  1893. }
  1894. /*
  1895. * The exit handlers return 1 if the exit was handled fully and guest execution
  1896. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1897. * to be done to userspace and return 0.
  1898. */
  1899. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1900. struct kvm_run *kvm_run) = {
  1901. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1902. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1903. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1904. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1905. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1906. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1907. [EXIT_REASON_CPUID] = handle_cpuid,
  1908. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1909. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1910. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1911. [EXIT_REASON_HLT] = handle_halt,
  1912. [EXIT_REASON_VMCALL] = handle_vmcall,
  1913. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1914. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1915. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1916. };
  1917. static const int kvm_vmx_max_exit_handlers =
  1918. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1919. /*
  1920. * The guest has exited. See if we can fix it or if we need userspace
  1921. * assistance.
  1922. */
  1923. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1924. {
  1925. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1926. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1927. u32 vectoring_info = vmx->idt_vectoring_info;
  1928. if (unlikely(vmx->fail)) {
  1929. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1930. kvm_run->fail_entry.hardware_entry_failure_reason
  1931. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1932. return 0;
  1933. }
  1934. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1935. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1936. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1937. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1938. if (exit_reason < kvm_vmx_max_exit_handlers
  1939. && kvm_vmx_exit_handlers[exit_reason])
  1940. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1941. else {
  1942. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1943. kvm_run->hw.hardware_exit_reason = exit_reason;
  1944. }
  1945. return 0;
  1946. }
  1947. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1948. {
  1949. int max_irr, tpr;
  1950. if (!vm_need_tpr_shadow(vcpu->kvm))
  1951. return;
  1952. if (!kvm_lapic_enabled(vcpu) ||
  1953. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1954. vmcs_write32(TPR_THRESHOLD, 0);
  1955. return;
  1956. }
  1957. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1958. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1959. }
  1960. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1961. {
  1962. u32 cpu_based_vm_exec_control;
  1963. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1964. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1965. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1966. }
  1967. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1968. {
  1969. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1970. u32 idtv_info_field, intr_info_field;
  1971. int has_ext_irq, interrupt_window_open;
  1972. int vector;
  1973. update_tpr_threshold(vcpu);
  1974. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1975. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1976. idtv_info_field = vmx->idt_vectoring_info;
  1977. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1978. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1979. /* TODO: fault when IDT_Vectoring */
  1980. if (printk_ratelimit())
  1981. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1982. }
  1983. if (has_ext_irq)
  1984. enable_irq_window(vcpu);
  1985. return;
  1986. }
  1987. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1988. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  1989. == INTR_TYPE_EXT_INTR
  1990. && vcpu->arch.rmode.active) {
  1991. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  1992. vmx_inject_irq(vcpu, vect);
  1993. if (unlikely(has_ext_irq))
  1994. enable_irq_window(vcpu);
  1995. return;
  1996. }
  1997. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1998. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1999. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2000. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  2001. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2002. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2003. if (unlikely(has_ext_irq))
  2004. enable_irq_window(vcpu);
  2005. return;
  2006. }
  2007. if (!has_ext_irq)
  2008. return;
  2009. interrupt_window_open =
  2010. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2011. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2012. if (interrupt_window_open) {
  2013. vector = kvm_cpu_get_interrupt(vcpu);
  2014. vmx_inject_irq(vcpu, vector);
  2015. kvm_timer_intr_post(vcpu, vector);
  2016. } else
  2017. enable_irq_window(vcpu);
  2018. }
  2019. /*
  2020. * Failure to inject an interrupt should give us the information
  2021. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2022. * when fetching the interrupt redirection bitmap in the real-mode
  2023. * tss, this doesn't happen. So we do it ourselves.
  2024. */
  2025. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2026. {
  2027. vmx->rmode.irq.pending = 0;
  2028. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2029. return;
  2030. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2031. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2032. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2033. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2034. return;
  2035. }
  2036. vmx->idt_vectoring_info =
  2037. VECTORING_INFO_VALID_MASK
  2038. | INTR_TYPE_EXT_INTR
  2039. | vmx->rmode.irq.vector;
  2040. }
  2041. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2042. {
  2043. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2044. u32 intr_info;
  2045. /*
  2046. * Loading guest fpu may have cleared host cr0.ts
  2047. */
  2048. vmcs_writel(HOST_CR0, read_cr0());
  2049. asm(
  2050. /* Store host registers */
  2051. #ifdef CONFIG_X86_64
  2052. "push %%rdx; push %%rbp;"
  2053. "push %%rcx \n\t"
  2054. #else
  2055. "push %%edx; push %%ebp;"
  2056. "push %%ecx \n\t"
  2057. #endif
  2058. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2059. /* Check if vmlaunch of vmresume is needed */
  2060. "cmpl $0, %c[launched](%0) \n\t"
  2061. /* Load guest registers. Don't clobber flags. */
  2062. #ifdef CONFIG_X86_64
  2063. "mov %c[cr2](%0), %%rax \n\t"
  2064. "mov %%rax, %%cr2 \n\t"
  2065. "mov %c[rax](%0), %%rax \n\t"
  2066. "mov %c[rbx](%0), %%rbx \n\t"
  2067. "mov %c[rdx](%0), %%rdx \n\t"
  2068. "mov %c[rsi](%0), %%rsi \n\t"
  2069. "mov %c[rdi](%0), %%rdi \n\t"
  2070. "mov %c[rbp](%0), %%rbp \n\t"
  2071. "mov %c[r8](%0), %%r8 \n\t"
  2072. "mov %c[r9](%0), %%r9 \n\t"
  2073. "mov %c[r10](%0), %%r10 \n\t"
  2074. "mov %c[r11](%0), %%r11 \n\t"
  2075. "mov %c[r12](%0), %%r12 \n\t"
  2076. "mov %c[r13](%0), %%r13 \n\t"
  2077. "mov %c[r14](%0), %%r14 \n\t"
  2078. "mov %c[r15](%0), %%r15 \n\t"
  2079. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2080. #else
  2081. "mov %c[cr2](%0), %%eax \n\t"
  2082. "mov %%eax, %%cr2 \n\t"
  2083. "mov %c[rax](%0), %%eax \n\t"
  2084. "mov %c[rbx](%0), %%ebx \n\t"
  2085. "mov %c[rdx](%0), %%edx \n\t"
  2086. "mov %c[rsi](%0), %%esi \n\t"
  2087. "mov %c[rdi](%0), %%edi \n\t"
  2088. "mov %c[rbp](%0), %%ebp \n\t"
  2089. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2090. #endif
  2091. /* Enter guest mode */
  2092. "jne .Llaunched \n\t"
  2093. ASM_VMX_VMLAUNCH "\n\t"
  2094. "jmp .Lkvm_vmx_return \n\t"
  2095. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2096. ".Lkvm_vmx_return: "
  2097. /* Save guest registers, load host registers, keep flags */
  2098. #ifdef CONFIG_X86_64
  2099. "xchg %0, (%%rsp) \n\t"
  2100. "mov %%rax, %c[rax](%0) \n\t"
  2101. "mov %%rbx, %c[rbx](%0) \n\t"
  2102. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2103. "mov %%rdx, %c[rdx](%0) \n\t"
  2104. "mov %%rsi, %c[rsi](%0) \n\t"
  2105. "mov %%rdi, %c[rdi](%0) \n\t"
  2106. "mov %%rbp, %c[rbp](%0) \n\t"
  2107. "mov %%r8, %c[r8](%0) \n\t"
  2108. "mov %%r9, %c[r9](%0) \n\t"
  2109. "mov %%r10, %c[r10](%0) \n\t"
  2110. "mov %%r11, %c[r11](%0) \n\t"
  2111. "mov %%r12, %c[r12](%0) \n\t"
  2112. "mov %%r13, %c[r13](%0) \n\t"
  2113. "mov %%r14, %c[r14](%0) \n\t"
  2114. "mov %%r15, %c[r15](%0) \n\t"
  2115. "mov %%cr2, %%rax \n\t"
  2116. "mov %%rax, %c[cr2](%0) \n\t"
  2117. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2118. #else
  2119. "xchg %0, (%%esp) \n\t"
  2120. "mov %%eax, %c[rax](%0) \n\t"
  2121. "mov %%ebx, %c[rbx](%0) \n\t"
  2122. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2123. "mov %%edx, %c[rdx](%0) \n\t"
  2124. "mov %%esi, %c[rsi](%0) \n\t"
  2125. "mov %%edi, %c[rdi](%0) \n\t"
  2126. "mov %%ebp, %c[rbp](%0) \n\t"
  2127. "mov %%cr2, %%eax \n\t"
  2128. "mov %%eax, %c[cr2](%0) \n\t"
  2129. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2130. #endif
  2131. "setbe %c[fail](%0) \n\t"
  2132. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2133. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2134. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2135. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2136. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2137. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2138. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2139. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2140. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2141. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2142. #ifdef CONFIG_X86_64
  2143. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2144. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2145. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2146. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2147. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2148. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2149. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2150. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2151. #endif
  2152. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2153. : "cc", "memory"
  2154. #ifdef CONFIG_X86_64
  2155. , "rbx", "rdi", "rsi"
  2156. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2157. #else
  2158. , "ebx", "edi", "rsi"
  2159. #endif
  2160. );
  2161. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2162. if (vmx->rmode.irq.pending)
  2163. fixup_rmode_irq(vmx);
  2164. vcpu->arch.interrupt_window_open =
  2165. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2166. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2167. vmx->launched = 1;
  2168. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2169. /* We need to handle NMIs before interrupts are enabled */
  2170. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2171. asm("int $2");
  2172. }
  2173. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2174. {
  2175. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2176. if (vmx->vmcs) {
  2177. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2178. free_vmcs(vmx->vmcs);
  2179. vmx->vmcs = NULL;
  2180. }
  2181. }
  2182. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2183. {
  2184. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2185. spin_lock(&vmx_vpid_lock);
  2186. if (vmx->vpid != 0)
  2187. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2188. spin_unlock(&vmx_vpid_lock);
  2189. vmx_free_vmcs(vcpu);
  2190. kfree(vmx->host_msrs);
  2191. kfree(vmx->guest_msrs);
  2192. kvm_vcpu_uninit(vcpu);
  2193. kmem_cache_free(kvm_vcpu_cache, vmx);
  2194. }
  2195. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2196. {
  2197. int err;
  2198. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2199. int cpu;
  2200. if (!vmx)
  2201. return ERR_PTR(-ENOMEM);
  2202. allocate_vpid(vmx);
  2203. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2204. if (err)
  2205. goto free_vcpu;
  2206. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2207. if (!vmx->guest_msrs) {
  2208. err = -ENOMEM;
  2209. goto uninit_vcpu;
  2210. }
  2211. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2212. if (!vmx->host_msrs)
  2213. goto free_guest_msrs;
  2214. vmx->vmcs = alloc_vmcs();
  2215. if (!vmx->vmcs)
  2216. goto free_msrs;
  2217. vmcs_clear(vmx->vmcs);
  2218. cpu = get_cpu();
  2219. vmx_vcpu_load(&vmx->vcpu, cpu);
  2220. err = vmx_vcpu_setup(vmx);
  2221. vmx_vcpu_put(&vmx->vcpu);
  2222. put_cpu();
  2223. if (err)
  2224. goto free_vmcs;
  2225. if (vm_need_virtualize_apic_accesses(kvm))
  2226. if (alloc_apic_access_page(kvm) != 0)
  2227. goto free_vmcs;
  2228. return &vmx->vcpu;
  2229. free_vmcs:
  2230. free_vmcs(vmx->vmcs);
  2231. free_msrs:
  2232. kfree(vmx->host_msrs);
  2233. free_guest_msrs:
  2234. kfree(vmx->guest_msrs);
  2235. uninit_vcpu:
  2236. kvm_vcpu_uninit(&vmx->vcpu);
  2237. free_vcpu:
  2238. kmem_cache_free(kvm_vcpu_cache, vmx);
  2239. return ERR_PTR(err);
  2240. }
  2241. static void __init vmx_check_processor_compat(void *rtn)
  2242. {
  2243. struct vmcs_config vmcs_conf;
  2244. *(int *)rtn = 0;
  2245. if (setup_vmcs_config(&vmcs_conf) < 0)
  2246. *(int *)rtn = -EIO;
  2247. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2248. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2249. smp_processor_id());
  2250. *(int *)rtn = -EIO;
  2251. }
  2252. }
  2253. static struct kvm_x86_ops vmx_x86_ops = {
  2254. .cpu_has_kvm_support = cpu_has_kvm_support,
  2255. .disabled_by_bios = vmx_disabled_by_bios,
  2256. .hardware_setup = hardware_setup,
  2257. .hardware_unsetup = hardware_unsetup,
  2258. .check_processor_compatibility = vmx_check_processor_compat,
  2259. .hardware_enable = hardware_enable,
  2260. .hardware_disable = hardware_disable,
  2261. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2262. .vcpu_create = vmx_create_vcpu,
  2263. .vcpu_free = vmx_free_vcpu,
  2264. .vcpu_reset = vmx_vcpu_reset,
  2265. .prepare_guest_switch = vmx_save_host_state,
  2266. .vcpu_load = vmx_vcpu_load,
  2267. .vcpu_put = vmx_vcpu_put,
  2268. .vcpu_decache = vmx_vcpu_decache,
  2269. .set_guest_debug = set_guest_debug,
  2270. .guest_debug_pre = kvm_guest_debug_pre,
  2271. .get_msr = vmx_get_msr,
  2272. .set_msr = vmx_set_msr,
  2273. .get_segment_base = vmx_get_segment_base,
  2274. .get_segment = vmx_get_segment,
  2275. .set_segment = vmx_set_segment,
  2276. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2277. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2278. .set_cr0 = vmx_set_cr0,
  2279. .set_cr3 = vmx_set_cr3,
  2280. .set_cr4 = vmx_set_cr4,
  2281. #ifdef CONFIG_X86_64
  2282. .set_efer = vmx_set_efer,
  2283. #endif
  2284. .get_idt = vmx_get_idt,
  2285. .set_idt = vmx_set_idt,
  2286. .get_gdt = vmx_get_gdt,
  2287. .set_gdt = vmx_set_gdt,
  2288. .cache_regs = vcpu_load_rsp_rip,
  2289. .decache_regs = vcpu_put_rsp_rip,
  2290. .get_rflags = vmx_get_rflags,
  2291. .set_rflags = vmx_set_rflags,
  2292. .tlb_flush = vmx_flush_tlb,
  2293. .run = vmx_vcpu_run,
  2294. .handle_exit = kvm_handle_exit,
  2295. .skip_emulated_instruction = skip_emulated_instruction,
  2296. .patch_hypercall = vmx_patch_hypercall,
  2297. .get_irq = vmx_get_irq,
  2298. .set_irq = vmx_inject_irq,
  2299. .queue_exception = vmx_queue_exception,
  2300. .exception_injected = vmx_exception_injected,
  2301. .inject_pending_irq = vmx_intr_assist,
  2302. .inject_pending_vectors = do_interrupt_requests,
  2303. .set_tss_addr = vmx_set_tss_addr,
  2304. };
  2305. static int __init vmx_init(void)
  2306. {
  2307. void *iova;
  2308. int r;
  2309. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2310. if (!vmx_io_bitmap_a)
  2311. return -ENOMEM;
  2312. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2313. if (!vmx_io_bitmap_b) {
  2314. r = -ENOMEM;
  2315. goto out;
  2316. }
  2317. /*
  2318. * Allow direct access to the PC debug port (it is often used for I/O
  2319. * delays, but the vmexits simply slow things down).
  2320. */
  2321. iova = kmap(vmx_io_bitmap_a);
  2322. memset(iova, 0xff, PAGE_SIZE);
  2323. clear_bit(0x80, iova);
  2324. kunmap(vmx_io_bitmap_a);
  2325. iova = kmap(vmx_io_bitmap_b);
  2326. memset(iova, 0xff, PAGE_SIZE);
  2327. kunmap(vmx_io_bitmap_b);
  2328. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2329. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2330. if (r)
  2331. goto out1;
  2332. if (bypass_guest_pf)
  2333. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2334. return 0;
  2335. out1:
  2336. __free_page(vmx_io_bitmap_b);
  2337. out:
  2338. __free_page(vmx_io_bitmap_a);
  2339. return r;
  2340. }
  2341. static void __exit vmx_exit(void)
  2342. {
  2343. __free_page(vmx_io_bitmap_b);
  2344. __free_page(vmx_io_bitmap_a);
  2345. kvm_exit();
  2346. }
  2347. module_init(vmx_init)
  2348. module_exit(vmx_exit)