dir.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252
  1. /*
  2. * linux/fs/nfs/dir.c
  3. *
  4. * Copyright (C) 1992 Rick Sladkey
  5. *
  6. * nfs directory handling functions
  7. *
  8. * 10 Apr 1996 Added silly rename for unlink --okir
  9. * 28 Sep 1996 Improved directory cache --okir
  10. * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
  11. * Re-implemented silly rename for unlink, newly implemented
  12. * silly rename for nfs_rename() following the suggestions
  13. * of Olaf Kirch (okir) found in this file.
  14. * Following Linus comments on my original hack, this version
  15. * depends only on the dcache stuff and doesn't touch the inode
  16. * layer (iput() and friends).
  17. * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
  18. */
  19. #include <linux/time.h>
  20. #include <linux/errno.h>
  21. #include <linux/stat.h>
  22. #include <linux/fcntl.h>
  23. #include <linux/string.h>
  24. #include <linux/kernel.h>
  25. #include <linux/slab.h>
  26. #include <linux/mm.h>
  27. #include <linux/sunrpc/clnt.h>
  28. #include <linux/nfs_fs.h>
  29. #include <linux/nfs_mount.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/pagevec.h>
  32. #include <linux/namei.h>
  33. #include <linux/mount.h>
  34. #include <linux/sched.h>
  35. #include <linux/vmalloc.h>
  36. #include <linux/kmemleak.h>
  37. #include "delegation.h"
  38. #include "iostat.h"
  39. #include "internal.h"
  40. #include "fscache.h"
  41. /* #define NFS_DEBUG_VERBOSE 1 */
  42. static int nfs_opendir(struct inode *, struct file *);
  43. static int nfs_readdir(struct file *, void *, filldir_t);
  44. static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
  45. static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
  46. static int nfs_mkdir(struct inode *, struct dentry *, int);
  47. static int nfs_rmdir(struct inode *, struct dentry *);
  48. static int nfs_unlink(struct inode *, struct dentry *);
  49. static int nfs_symlink(struct inode *, struct dentry *, const char *);
  50. static int nfs_link(struct dentry *, struct inode *, struct dentry *);
  51. static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
  52. static int nfs_rename(struct inode *, struct dentry *,
  53. struct inode *, struct dentry *);
  54. static int nfs_fsync_dir(struct file *, int);
  55. static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56. static void nfs_readdir_clear_array(struct page*);
  57. const struct file_operations nfs_dir_operations = {
  58. .llseek = nfs_llseek_dir,
  59. .read = generic_read_dir,
  60. .readdir = nfs_readdir,
  61. .open = nfs_opendir,
  62. .release = nfs_release,
  63. .fsync = nfs_fsync_dir,
  64. };
  65. const struct inode_operations nfs_dir_inode_operations = {
  66. .create = nfs_create,
  67. .lookup = nfs_lookup,
  68. .link = nfs_link,
  69. .unlink = nfs_unlink,
  70. .symlink = nfs_symlink,
  71. .mkdir = nfs_mkdir,
  72. .rmdir = nfs_rmdir,
  73. .mknod = nfs_mknod,
  74. .rename = nfs_rename,
  75. .permission = nfs_permission,
  76. .getattr = nfs_getattr,
  77. .setattr = nfs_setattr,
  78. };
  79. const struct address_space_operations nfs_dir_aops = {
  80. .freepage = nfs_readdir_clear_array,
  81. };
  82. #ifdef CONFIG_NFS_V3
  83. const struct inode_operations nfs3_dir_inode_operations = {
  84. .create = nfs_create,
  85. .lookup = nfs_lookup,
  86. .link = nfs_link,
  87. .unlink = nfs_unlink,
  88. .symlink = nfs_symlink,
  89. .mkdir = nfs_mkdir,
  90. .rmdir = nfs_rmdir,
  91. .mknod = nfs_mknod,
  92. .rename = nfs_rename,
  93. .permission = nfs_permission,
  94. .getattr = nfs_getattr,
  95. .setattr = nfs_setattr,
  96. .listxattr = nfs3_listxattr,
  97. .getxattr = nfs3_getxattr,
  98. .setxattr = nfs3_setxattr,
  99. .removexattr = nfs3_removexattr,
  100. };
  101. #endif /* CONFIG_NFS_V3 */
  102. #ifdef CONFIG_NFS_V4
  103. static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
  104. static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
  105. const struct inode_operations nfs4_dir_inode_operations = {
  106. .create = nfs_open_create,
  107. .lookup = nfs_atomic_lookup,
  108. .link = nfs_link,
  109. .unlink = nfs_unlink,
  110. .symlink = nfs_symlink,
  111. .mkdir = nfs_mkdir,
  112. .rmdir = nfs_rmdir,
  113. .mknod = nfs_mknod,
  114. .rename = nfs_rename,
  115. .permission = nfs_permission,
  116. .getattr = nfs_getattr,
  117. .setattr = nfs_setattr,
  118. .getxattr = nfs4_getxattr,
  119. .setxattr = nfs4_setxattr,
  120. .listxattr = nfs4_listxattr,
  121. };
  122. #endif /* CONFIG_NFS_V4 */
  123. /*
  124. * Open file
  125. */
  126. static int
  127. nfs_opendir(struct inode *inode, struct file *filp)
  128. {
  129. int res;
  130. dfprintk(FILE, "NFS: open dir(%s/%s)\n",
  131. filp->f_path.dentry->d_parent->d_name.name,
  132. filp->f_path.dentry->d_name.name);
  133. nfs_inc_stats(inode, NFSIOS_VFSOPEN);
  134. /* Call generic open code in order to cache credentials */
  135. res = nfs_open(inode, filp);
  136. if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
  137. /* This is a mountpoint, so d_revalidate will never
  138. * have been called, so we need to refresh the
  139. * inode (for close-open consistency) ourselves.
  140. */
  141. __nfs_revalidate_inode(NFS_SERVER(inode), inode);
  142. }
  143. return res;
  144. }
  145. struct nfs_cache_array_entry {
  146. u64 cookie;
  147. u64 ino;
  148. struct qstr string;
  149. unsigned char d_type;
  150. };
  151. struct nfs_cache_array {
  152. unsigned int size;
  153. int eof_index;
  154. u64 last_cookie;
  155. struct nfs_cache_array_entry array[0];
  156. };
  157. typedef __be32 * (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, struct nfs_server *, int);
  158. typedef struct {
  159. struct file *file;
  160. struct page *page;
  161. unsigned long page_index;
  162. u64 *dir_cookie;
  163. u64 last_cookie;
  164. loff_t current_index;
  165. decode_dirent_t decode;
  166. unsigned long timestamp;
  167. unsigned long gencount;
  168. unsigned int cache_entry_index;
  169. unsigned int plus:1;
  170. unsigned int eof:1;
  171. } nfs_readdir_descriptor_t;
  172. /*
  173. * The caller is responsible for calling nfs_readdir_release_array(page)
  174. */
  175. static
  176. struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
  177. {
  178. void *ptr;
  179. if (page == NULL)
  180. return ERR_PTR(-EIO);
  181. ptr = kmap(page);
  182. if (ptr == NULL)
  183. return ERR_PTR(-ENOMEM);
  184. return ptr;
  185. }
  186. static
  187. void nfs_readdir_release_array(struct page *page)
  188. {
  189. kunmap(page);
  190. }
  191. /*
  192. * we are freeing strings created by nfs_add_to_readdir_array()
  193. */
  194. static
  195. void nfs_readdir_clear_array(struct page *page)
  196. {
  197. struct nfs_cache_array *array;
  198. int i;
  199. array = kmap_atomic(page, KM_USER0);
  200. for (i = 0; i < array->size; i++)
  201. kfree(array->array[i].string.name);
  202. kunmap_atomic(array, KM_USER0);
  203. }
  204. /*
  205. * the caller is responsible for freeing qstr.name
  206. * when called by nfs_readdir_add_to_array, the strings will be freed in
  207. * nfs_clear_readdir_array()
  208. */
  209. static
  210. int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
  211. {
  212. string->len = len;
  213. string->name = kmemdup(name, len, GFP_KERNEL);
  214. if (string->name == NULL)
  215. return -ENOMEM;
  216. /*
  217. * Avoid a kmemleak false positive. The pointer to the name is stored
  218. * in a page cache page which kmemleak does not scan.
  219. */
  220. kmemleak_not_leak(string->name);
  221. string->hash = full_name_hash(name, len);
  222. return 0;
  223. }
  224. static
  225. int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
  226. {
  227. struct nfs_cache_array *array = nfs_readdir_get_array(page);
  228. struct nfs_cache_array_entry *cache_entry;
  229. int ret;
  230. if (IS_ERR(array))
  231. return PTR_ERR(array);
  232. cache_entry = &array->array[array->size];
  233. /* Check that this entry lies within the page bounds */
  234. ret = -ENOSPC;
  235. if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
  236. goto out;
  237. cache_entry->cookie = entry->prev_cookie;
  238. cache_entry->ino = entry->ino;
  239. cache_entry->d_type = entry->d_type;
  240. ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
  241. if (ret)
  242. goto out;
  243. array->last_cookie = entry->cookie;
  244. array->size++;
  245. if (entry->eof != 0)
  246. array->eof_index = array->size;
  247. out:
  248. nfs_readdir_release_array(page);
  249. return ret;
  250. }
  251. static
  252. int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
  253. {
  254. loff_t diff = desc->file->f_pos - desc->current_index;
  255. unsigned int index;
  256. if (diff < 0)
  257. goto out_eof;
  258. if (diff >= array->size) {
  259. if (array->eof_index >= 0)
  260. goto out_eof;
  261. desc->current_index += array->size;
  262. return -EAGAIN;
  263. }
  264. index = (unsigned int)diff;
  265. *desc->dir_cookie = array->array[index].cookie;
  266. desc->cache_entry_index = index;
  267. return 0;
  268. out_eof:
  269. desc->eof = 1;
  270. return -EBADCOOKIE;
  271. }
  272. static
  273. int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
  274. {
  275. int i;
  276. int status = -EAGAIN;
  277. for (i = 0; i < array->size; i++) {
  278. if (array->array[i].cookie == *desc->dir_cookie) {
  279. desc->cache_entry_index = i;
  280. return 0;
  281. }
  282. }
  283. if (array->eof_index >= 0) {
  284. status = -EBADCOOKIE;
  285. if (*desc->dir_cookie == array->last_cookie)
  286. desc->eof = 1;
  287. }
  288. return status;
  289. }
  290. static
  291. int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
  292. {
  293. struct nfs_cache_array *array;
  294. int status;
  295. array = nfs_readdir_get_array(desc->page);
  296. if (IS_ERR(array)) {
  297. status = PTR_ERR(array);
  298. goto out;
  299. }
  300. if (*desc->dir_cookie == 0)
  301. status = nfs_readdir_search_for_pos(array, desc);
  302. else
  303. status = nfs_readdir_search_for_cookie(array, desc);
  304. if (status == -EAGAIN) {
  305. desc->last_cookie = array->last_cookie;
  306. desc->page_index++;
  307. }
  308. nfs_readdir_release_array(desc->page);
  309. out:
  310. return status;
  311. }
  312. /* Fill a page with xdr information before transferring to the cache page */
  313. static
  314. int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
  315. struct nfs_entry *entry, struct file *file, struct inode *inode)
  316. {
  317. struct rpc_cred *cred = nfs_file_cred(file);
  318. unsigned long timestamp, gencount;
  319. int error;
  320. again:
  321. timestamp = jiffies;
  322. gencount = nfs_inc_attr_generation_counter();
  323. error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
  324. NFS_SERVER(inode)->dtsize, desc->plus);
  325. if (error < 0) {
  326. /* We requested READDIRPLUS, but the server doesn't grok it */
  327. if (error == -ENOTSUPP && desc->plus) {
  328. NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
  329. clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
  330. desc->plus = 0;
  331. goto again;
  332. }
  333. goto error;
  334. }
  335. desc->timestamp = timestamp;
  336. desc->gencount = gencount;
  337. error:
  338. return error;
  339. }
  340. /* Fill in an entry based on the xdr code stored in desc->page */
  341. static
  342. int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, struct xdr_stream *stream)
  343. {
  344. __be32 *p = desc->decode(stream, entry, NFS_SERVER(desc->file->f_path.dentry->d_inode), desc->plus);
  345. if (IS_ERR(p))
  346. return PTR_ERR(p);
  347. entry->fattr->time_start = desc->timestamp;
  348. entry->fattr->gencount = desc->gencount;
  349. return 0;
  350. }
  351. static
  352. int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
  353. {
  354. if (dentry->d_inode == NULL)
  355. goto different;
  356. if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
  357. goto different;
  358. return 1;
  359. different:
  360. return 0;
  361. }
  362. static
  363. void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
  364. {
  365. struct qstr filename = {
  366. .len = entry->len,
  367. .name = entry->name,
  368. };
  369. struct dentry *dentry;
  370. struct dentry *alias;
  371. struct inode *dir = parent->d_inode;
  372. struct inode *inode;
  373. if (filename.name[0] == '.') {
  374. if (filename.len == 1)
  375. return;
  376. if (filename.len == 2 && filename.name[1] == '.')
  377. return;
  378. }
  379. filename.hash = full_name_hash(filename.name, filename.len);
  380. dentry = d_lookup(parent, &filename);
  381. if (dentry != NULL) {
  382. if (nfs_same_file(dentry, entry)) {
  383. nfs_refresh_inode(dentry->d_inode, entry->fattr);
  384. goto out;
  385. } else {
  386. d_drop(dentry);
  387. dput(dentry);
  388. }
  389. }
  390. dentry = d_alloc(parent, &filename);
  391. if (dentry == NULL)
  392. return;
  393. dentry->d_op = NFS_PROTO(dir)->dentry_ops;
  394. inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
  395. if (IS_ERR(inode))
  396. goto out;
  397. alias = d_materialise_unique(dentry, inode);
  398. if (IS_ERR(alias))
  399. goto out;
  400. else if (alias) {
  401. nfs_set_verifier(alias, nfs_save_change_attribute(dir));
  402. dput(alias);
  403. } else
  404. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  405. out:
  406. dput(dentry);
  407. }
  408. /* Perform conversion from xdr to cache array */
  409. static
  410. int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
  411. void *xdr_page, struct page *page, unsigned int buflen)
  412. {
  413. struct xdr_stream stream;
  414. struct xdr_buf buf;
  415. __be32 *ptr = xdr_page;
  416. struct nfs_cache_array *array;
  417. unsigned int count = 0;
  418. int status;
  419. buf.head->iov_base = xdr_page;
  420. buf.head->iov_len = buflen;
  421. buf.tail->iov_len = 0;
  422. buf.page_base = 0;
  423. buf.page_len = 0;
  424. buf.buflen = buf.head->iov_len;
  425. buf.len = buf.head->iov_len;
  426. xdr_init_decode(&stream, &buf, ptr);
  427. do {
  428. status = xdr_decode(desc, entry, &stream);
  429. if (status != 0) {
  430. if (status == -EAGAIN)
  431. status = 0;
  432. break;
  433. }
  434. count++;
  435. if (desc->plus != 0)
  436. nfs_prime_dcache(desc->file->f_path.dentry, entry);
  437. status = nfs_readdir_add_to_array(entry, page);
  438. if (status != 0)
  439. break;
  440. } while (!entry->eof);
  441. if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
  442. array = nfs_readdir_get_array(page);
  443. if (!IS_ERR(array)) {
  444. array->eof_index = array->size;
  445. status = 0;
  446. nfs_readdir_release_array(page);
  447. } else
  448. status = PTR_ERR(array);
  449. }
  450. return status;
  451. }
  452. static
  453. void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
  454. {
  455. unsigned int i;
  456. for (i = 0; i < npages; i++)
  457. put_page(pages[i]);
  458. }
  459. static
  460. void nfs_readdir_free_large_page(void *ptr, struct page **pages,
  461. unsigned int npages)
  462. {
  463. vm_unmap_ram(ptr, npages);
  464. nfs_readdir_free_pagearray(pages, npages);
  465. }
  466. /*
  467. * nfs_readdir_large_page will allocate pages that must be freed with a call
  468. * to nfs_readdir_free_large_page
  469. */
  470. static
  471. void *nfs_readdir_large_page(struct page **pages, unsigned int npages)
  472. {
  473. void *ptr;
  474. unsigned int i;
  475. for (i = 0; i < npages; i++) {
  476. struct page *page = alloc_page(GFP_KERNEL);
  477. if (page == NULL)
  478. goto out_freepages;
  479. pages[i] = page;
  480. }
  481. ptr = vm_map_ram(pages, npages, 0, PAGE_KERNEL);
  482. if (!IS_ERR_OR_NULL(ptr))
  483. return ptr;
  484. out_freepages:
  485. nfs_readdir_free_pagearray(pages, i);
  486. return NULL;
  487. }
  488. static
  489. int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
  490. {
  491. struct page *pages[NFS_MAX_READDIR_PAGES];
  492. void *pages_ptr = NULL;
  493. struct nfs_entry entry;
  494. struct file *file = desc->file;
  495. struct nfs_cache_array *array;
  496. int status = -ENOMEM;
  497. unsigned int array_size = ARRAY_SIZE(pages);
  498. entry.prev_cookie = 0;
  499. entry.cookie = desc->last_cookie;
  500. entry.eof = 0;
  501. entry.fh = nfs_alloc_fhandle();
  502. entry.fattr = nfs_alloc_fattr();
  503. if (entry.fh == NULL || entry.fattr == NULL)
  504. goto out;
  505. array = nfs_readdir_get_array(page);
  506. if (IS_ERR(array)) {
  507. status = PTR_ERR(array);
  508. goto out;
  509. }
  510. memset(array, 0, sizeof(struct nfs_cache_array));
  511. array->eof_index = -1;
  512. pages_ptr = nfs_readdir_large_page(pages, array_size);
  513. if (!pages_ptr)
  514. goto out_release_array;
  515. do {
  516. unsigned int pglen;
  517. status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
  518. if (status < 0)
  519. break;
  520. pglen = status;
  521. status = nfs_readdir_page_filler(desc, &entry, pages_ptr, page, pglen);
  522. if (status < 0) {
  523. if (status == -ENOSPC)
  524. status = 0;
  525. break;
  526. }
  527. } while (array->eof_index < 0);
  528. nfs_readdir_free_large_page(pages_ptr, pages, array_size);
  529. out_release_array:
  530. nfs_readdir_release_array(page);
  531. out:
  532. nfs_free_fattr(entry.fattr);
  533. nfs_free_fhandle(entry.fh);
  534. return status;
  535. }
  536. /*
  537. * Now we cache directories properly, by converting xdr information
  538. * to an array that can be used for lookups later. This results in
  539. * fewer cache pages, since we can store more information on each page.
  540. * We only need to convert from xdr once so future lookups are much simpler
  541. */
  542. static
  543. int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
  544. {
  545. struct inode *inode = desc->file->f_path.dentry->d_inode;
  546. int ret;
  547. ret = nfs_readdir_xdr_to_array(desc, page, inode);
  548. if (ret < 0)
  549. goto error;
  550. SetPageUptodate(page);
  551. if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
  552. /* Should never happen */
  553. nfs_zap_mapping(inode, inode->i_mapping);
  554. }
  555. unlock_page(page);
  556. return 0;
  557. error:
  558. unlock_page(page);
  559. return ret;
  560. }
  561. static
  562. void cache_page_release(nfs_readdir_descriptor_t *desc)
  563. {
  564. if (!desc->page->mapping)
  565. nfs_readdir_clear_array(desc->page);
  566. page_cache_release(desc->page);
  567. desc->page = NULL;
  568. }
  569. static
  570. struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
  571. {
  572. return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
  573. desc->page_index, (filler_t *)nfs_readdir_filler, desc);
  574. }
  575. /*
  576. * Returns 0 if desc->dir_cookie was found on page desc->page_index
  577. */
  578. static
  579. int find_cache_page(nfs_readdir_descriptor_t *desc)
  580. {
  581. int res;
  582. desc->page = get_cache_page(desc);
  583. if (IS_ERR(desc->page))
  584. return PTR_ERR(desc->page);
  585. res = nfs_readdir_search_array(desc);
  586. if (res != 0)
  587. cache_page_release(desc);
  588. return res;
  589. }
  590. /* Search for desc->dir_cookie from the beginning of the page cache */
  591. static inline
  592. int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
  593. {
  594. int res;
  595. if (desc->page_index == 0) {
  596. desc->current_index = 0;
  597. desc->last_cookie = 0;
  598. }
  599. do {
  600. res = find_cache_page(desc);
  601. } while (res == -EAGAIN);
  602. return res;
  603. }
  604. /*
  605. * Once we've found the start of the dirent within a page: fill 'er up...
  606. */
  607. static
  608. int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
  609. filldir_t filldir)
  610. {
  611. struct file *file = desc->file;
  612. int i = 0;
  613. int res = 0;
  614. struct nfs_cache_array *array = NULL;
  615. array = nfs_readdir_get_array(desc->page);
  616. if (IS_ERR(array)) {
  617. res = PTR_ERR(array);
  618. goto out;
  619. }
  620. for (i = desc->cache_entry_index; i < array->size; i++) {
  621. struct nfs_cache_array_entry *ent;
  622. ent = &array->array[i];
  623. if (filldir(dirent, ent->string.name, ent->string.len,
  624. file->f_pos, nfs_compat_user_ino64(ent->ino),
  625. ent->d_type) < 0) {
  626. desc->eof = 1;
  627. break;
  628. }
  629. file->f_pos++;
  630. if (i < (array->size-1))
  631. *desc->dir_cookie = array->array[i+1].cookie;
  632. else
  633. *desc->dir_cookie = array->last_cookie;
  634. }
  635. if (array->eof_index >= 0)
  636. desc->eof = 1;
  637. nfs_readdir_release_array(desc->page);
  638. out:
  639. cache_page_release(desc);
  640. dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
  641. (unsigned long long)*desc->dir_cookie, res);
  642. return res;
  643. }
  644. /*
  645. * If we cannot find a cookie in our cache, we suspect that this is
  646. * because it points to a deleted file, so we ask the server to return
  647. * whatever it thinks is the next entry. We then feed this to filldir.
  648. * If all goes well, we should then be able to find our way round the
  649. * cache on the next call to readdir_search_pagecache();
  650. *
  651. * NOTE: we cannot add the anonymous page to the pagecache because
  652. * the data it contains might not be page aligned. Besides,
  653. * we should already have a complete representation of the
  654. * directory in the page cache by the time we get here.
  655. */
  656. static inline
  657. int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
  658. filldir_t filldir)
  659. {
  660. struct page *page = NULL;
  661. int status;
  662. struct inode *inode = desc->file->f_path.dentry->d_inode;
  663. dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
  664. (unsigned long long)*desc->dir_cookie);
  665. page = alloc_page(GFP_HIGHUSER);
  666. if (!page) {
  667. status = -ENOMEM;
  668. goto out;
  669. }
  670. desc->page_index = 0;
  671. desc->last_cookie = *desc->dir_cookie;
  672. desc->page = page;
  673. status = nfs_readdir_xdr_to_array(desc, page, inode);
  674. if (status < 0)
  675. goto out_release;
  676. status = nfs_do_filldir(desc, dirent, filldir);
  677. out:
  678. dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
  679. __func__, status);
  680. return status;
  681. out_release:
  682. cache_page_release(desc);
  683. goto out;
  684. }
  685. /* The file offset position represents the dirent entry number. A
  686. last cookie cache takes care of the common case of reading the
  687. whole directory.
  688. */
  689. static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
  690. {
  691. struct dentry *dentry = filp->f_path.dentry;
  692. struct inode *inode = dentry->d_inode;
  693. nfs_readdir_descriptor_t my_desc,
  694. *desc = &my_desc;
  695. int res;
  696. dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
  697. dentry->d_parent->d_name.name, dentry->d_name.name,
  698. (long long)filp->f_pos);
  699. nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
  700. /*
  701. * filp->f_pos points to the dirent entry number.
  702. * *desc->dir_cookie has the cookie for the next entry. We have
  703. * to either find the entry with the appropriate number or
  704. * revalidate the cookie.
  705. */
  706. memset(desc, 0, sizeof(*desc));
  707. desc->file = filp;
  708. desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
  709. desc->decode = NFS_PROTO(inode)->decode_dirent;
  710. desc->plus = NFS_USE_READDIRPLUS(inode);
  711. nfs_block_sillyrename(dentry);
  712. res = nfs_revalidate_mapping(inode, filp->f_mapping);
  713. if (res < 0)
  714. goto out;
  715. do {
  716. res = readdir_search_pagecache(desc);
  717. if (res == -EBADCOOKIE) {
  718. res = 0;
  719. /* This means either end of directory */
  720. if (*desc->dir_cookie && desc->eof == 0) {
  721. /* Or that the server has 'lost' a cookie */
  722. res = uncached_readdir(desc, dirent, filldir);
  723. if (res == 0)
  724. continue;
  725. }
  726. break;
  727. }
  728. if (res == -ETOOSMALL && desc->plus) {
  729. clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
  730. nfs_zap_caches(inode);
  731. desc->page_index = 0;
  732. desc->plus = 0;
  733. desc->eof = 0;
  734. continue;
  735. }
  736. if (res < 0)
  737. break;
  738. res = nfs_do_filldir(desc, dirent, filldir);
  739. if (res < 0)
  740. break;
  741. } while (!desc->eof);
  742. out:
  743. nfs_unblock_sillyrename(dentry);
  744. if (res > 0)
  745. res = 0;
  746. dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
  747. dentry->d_parent->d_name.name, dentry->d_name.name,
  748. res);
  749. return res;
  750. }
  751. static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
  752. {
  753. struct dentry *dentry = filp->f_path.dentry;
  754. struct inode *inode = dentry->d_inode;
  755. dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
  756. dentry->d_parent->d_name.name,
  757. dentry->d_name.name,
  758. offset, origin);
  759. mutex_lock(&inode->i_mutex);
  760. switch (origin) {
  761. case 1:
  762. offset += filp->f_pos;
  763. case 0:
  764. if (offset >= 0)
  765. break;
  766. default:
  767. offset = -EINVAL;
  768. goto out;
  769. }
  770. if (offset != filp->f_pos) {
  771. filp->f_pos = offset;
  772. nfs_file_open_context(filp)->dir_cookie = 0;
  773. }
  774. out:
  775. mutex_unlock(&inode->i_mutex);
  776. return offset;
  777. }
  778. /*
  779. * All directory operations under NFS are synchronous, so fsync()
  780. * is a dummy operation.
  781. */
  782. static int nfs_fsync_dir(struct file *filp, int datasync)
  783. {
  784. struct dentry *dentry = filp->f_path.dentry;
  785. dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
  786. dentry->d_parent->d_name.name, dentry->d_name.name,
  787. datasync);
  788. nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
  789. return 0;
  790. }
  791. /**
  792. * nfs_force_lookup_revalidate - Mark the directory as having changed
  793. * @dir - pointer to directory inode
  794. *
  795. * This forces the revalidation code in nfs_lookup_revalidate() to do a
  796. * full lookup on all child dentries of 'dir' whenever a change occurs
  797. * on the server that might have invalidated our dcache.
  798. *
  799. * The caller should be holding dir->i_lock
  800. */
  801. void nfs_force_lookup_revalidate(struct inode *dir)
  802. {
  803. NFS_I(dir)->cache_change_attribute++;
  804. }
  805. /*
  806. * A check for whether or not the parent directory has changed.
  807. * In the case it has, we assume that the dentries are untrustworthy
  808. * and may need to be looked up again.
  809. */
  810. static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
  811. {
  812. if (IS_ROOT(dentry))
  813. return 1;
  814. if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
  815. return 0;
  816. if (!nfs_verify_change_attribute(dir, dentry->d_time))
  817. return 0;
  818. /* Revalidate nfsi->cache_change_attribute before we declare a match */
  819. if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
  820. return 0;
  821. if (!nfs_verify_change_attribute(dir, dentry->d_time))
  822. return 0;
  823. return 1;
  824. }
  825. /*
  826. * Return the intent data that applies to this particular path component
  827. *
  828. * Note that the current set of intents only apply to the very last
  829. * component of the path.
  830. * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
  831. */
  832. static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
  833. {
  834. if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
  835. return 0;
  836. return nd->flags & mask;
  837. }
  838. /*
  839. * Use intent information to check whether or not we're going to do
  840. * an O_EXCL create using this path component.
  841. */
  842. static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
  843. {
  844. if (NFS_PROTO(dir)->version == 2)
  845. return 0;
  846. return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
  847. }
  848. /*
  849. * Inode and filehandle revalidation for lookups.
  850. *
  851. * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
  852. * or if the intent information indicates that we're about to open this
  853. * particular file and the "nocto" mount flag is not set.
  854. *
  855. */
  856. static inline
  857. int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
  858. {
  859. struct nfs_server *server = NFS_SERVER(inode);
  860. if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
  861. return 0;
  862. if (nd != NULL) {
  863. /* VFS wants an on-the-wire revalidation */
  864. if (nd->flags & LOOKUP_REVAL)
  865. goto out_force;
  866. /* This is an open(2) */
  867. if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
  868. !(server->flags & NFS_MOUNT_NOCTO) &&
  869. (S_ISREG(inode->i_mode) ||
  870. S_ISDIR(inode->i_mode)))
  871. goto out_force;
  872. return 0;
  873. }
  874. return nfs_revalidate_inode(server, inode);
  875. out_force:
  876. return __nfs_revalidate_inode(server, inode);
  877. }
  878. /*
  879. * We judge how long we want to trust negative
  880. * dentries by looking at the parent inode mtime.
  881. *
  882. * If parent mtime has changed, we revalidate, else we wait for a
  883. * period corresponding to the parent's attribute cache timeout value.
  884. */
  885. static inline
  886. int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
  887. struct nameidata *nd)
  888. {
  889. /* Don't revalidate a negative dentry if we're creating a new file */
  890. if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
  891. return 0;
  892. if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
  893. return 1;
  894. return !nfs_check_verifier(dir, dentry);
  895. }
  896. /*
  897. * This is called every time the dcache has a lookup hit,
  898. * and we should check whether we can really trust that
  899. * lookup.
  900. *
  901. * NOTE! The hit can be a negative hit too, don't assume
  902. * we have an inode!
  903. *
  904. * If the parent directory is seen to have changed, we throw out the
  905. * cached dentry and do a new lookup.
  906. */
  907. static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
  908. {
  909. struct inode *dir;
  910. struct inode *inode;
  911. struct dentry *parent;
  912. struct nfs_fh *fhandle = NULL;
  913. struct nfs_fattr *fattr = NULL;
  914. int error;
  915. parent = dget_parent(dentry);
  916. dir = parent->d_inode;
  917. nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
  918. inode = dentry->d_inode;
  919. if (!inode) {
  920. if (nfs_neg_need_reval(dir, dentry, nd))
  921. goto out_bad;
  922. goto out_valid;
  923. }
  924. if (is_bad_inode(inode)) {
  925. dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
  926. __func__, dentry->d_parent->d_name.name,
  927. dentry->d_name.name);
  928. goto out_bad;
  929. }
  930. if (nfs_have_delegation(inode, FMODE_READ))
  931. goto out_set_verifier;
  932. /* Force a full look up iff the parent directory has changed */
  933. if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
  934. if (nfs_lookup_verify_inode(inode, nd))
  935. goto out_zap_parent;
  936. goto out_valid;
  937. }
  938. if (NFS_STALE(inode))
  939. goto out_bad;
  940. error = -ENOMEM;
  941. fhandle = nfs_alloc_fhandle();
  942. fattr = nfs_alloc_fattr();
  943. if (fhandle == NULL || fattr == NULL)
  944. goto out_error;
  945. error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
  946. if (error)
  947. goto out_bad;
  948. if (nfs_compare_fh(NFS_FH(inode), fhandle))
  949. goto out_bad;
  950. if ((error = nfs_refresh_inode(inode, fattr)) != 0)
  951. goto out_bad;
  952. nfs_free_fattr(fattr);
  953. nfs_free_fhandle(fhandle);
  954. out_set_verifier:
  955. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  956. out_valid:
  957. dput(parent);
  958. dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
  959. __func__, dentry->d_parent->d_name.name,
  960. dentry->d_name.name);
  961. return 1;
  962. out_zap_parent:
  963. nfs_zap_caches(dir);
  964. out_bad:
  965. nfs_mark_for_revalidate(dir);
  966. if (inode && S_ISDIR(inode->i_mode)) {
  967. /* Purge readdir caches. */
  968. nfs_zap_caches(inode);
  969. /* If we have submounts, don't unhash ! */
  970. if (have_submounts(dentry))
  971. goto out_valid;
  972. if (dentry->d_flags & DCACHE_DISCONNECTED)
  973. goto out_valid;
  974. shrink_dcache_parent(dentry);
  975. }
  976. d_drop(dentry);
  977. nfs_free_fattr(fattr);
  978. nfs_free_fhandle(fhandle);
  979. dput(parent);
  980. dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
  981. __func__, dentry->d_parent->d_name.name,
  982. dentry->d_name.name);
  983. return 0;
  984. out_error:
  985. nfs_free_fattr(fattr);
  986. nfs_free_fhandle(fhandle);
  987. dput(parent);
  988. dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
  989. __func__, dentry->d_parent->d_name.name,
  990. dentry->d_name.name, error);
  991. return error;
  992. }
  993. /*
  994. * This is called from dput() when d_count is going to 0.
  995. */
  996. static int nfs_dentry_delete(struct dentry *dentry)
  997. {
  998. dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
  999. dentry->d_parent->d_name.name, dentry->d_name.name,
  1000. dentry->d_flags);
  1001. /* Unhash any dentry with a stale inode */
  1002. if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
  1003. return 1;
  1004. if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
  1005. /* Unhash it, so that ->d_iput() would be called */
  1006. return 1;
  1007. }
  1008. if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
  1009. /* Unhash it, so that ancestors of killed async unlink
  1010. * files will be cleaned up during umount */
  1011. return 1;
  1012. }
  1013. return 0;
  1014. }
  1015. static void nfs_drop_nlink(struct inode *inode)
  1016. {
  1017. spin_lock(&inode->i_lock);
  1018. if (inode->i_nlink > 0)
  1019. drop_nlink(inode);
  1020. spin_unlock(&inode->i_lock);
  1021. }
  1022. /*
  1023. * Called when the dentry loses inode.
  1024. * We use it to clean up silly-renamed files.
  1025. */
  1026. static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
  1027. {
  1028. if (S_ISDIR(inode->i_mode))
  1029. /* drop any readdir cache as it could easily be old */
  1030. NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
  1031. if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
  1032. drop_nlink(inode);
  1033. nfs_complete_unlink(dentry, inode);
  1034. }
  1035. iput(inode);
  1036. }
  1037. const struct dentry_operations nfs_dentry_operations = {
  1038. .d_revalidate = nfs_lookup_revalidate,
  1039. .d_delete = nfs_dentry_delete,
  1040. .d_iput = nfs_dentry_iput,
  1041. };
  1042. static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
  1043. {
  1044. struct dentry *res;
  1045. struct dentry *parent;
  1046. struct inode *inode = NULL;
  1047. struct nfs_fh *fhandle = NULL;
  1048. struct nfs_fattr *fattr = NULL;
  1049. int error;
  1050. dfprintk(VFS, "NFS: lookup(%s/%s)\n",
  1051. dentry->d_parent->d_name.name, dentry->d_name.name);
  1052. nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
  1053. res = ERR_PTR(-ENAMETOOLONG);
  1054. if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
  1055. goto out;
  1056. dentry->d_op = NFS_PROTO(dir)->dentry_ops;
  1057. /*
  1058. * If we're doing an exclusive create, optimize away the lookup
  1059. * but don't hash the dentry.
  1060. */
  1061. if (nfs_is_exclusive_create(dir, nd)) {
  1062. d_instantiate(dentry, NULL);
  1063. res = NULL;
  1064. goto out;
  1065. }
  1066. res = ERR_PTR(-ENOMEM);
  1067. fhandle = nfs_alloc_fhandle();
  1068. fattr = nfs_alloc_fattr();
  1069. if (fhandle == NULL || fattr == NULL)
  1070. goto out;
  1071. parent = dentry->d_parent;
  1072. /* Protect against concurrent sillydeletes */
  1073. nfs_block_sillyrename(parent);
  1074. error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
  1075. if (error == -ENOENT)
  1076. goto no_entry;
  1077. if (error < 0) {
  1078. res = ERR_PTR(error);
  1079. goto out_unblock_sillyrename;
  1080. }
  1081. inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
  1082. res = (struct dentry *)inode;
  1083. if (IS_ERR(res))
  1084. goto out_unblock_sillyrename;
  1085. no_entry:
  1086. res = d_materialise_unique(dentry, inode);
  1087. if (res != NULL) {
  1088. if (IS_ERR(res))
  1089. goto out_unblock_sillyrename;
  1090. dentry = res;
  1091. }
  1092. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  1093. out_unblock_sillyrename:
  1094. nfs_unblock_sillyrename(parent);
  1095. out:
  1096. nfs_free_fattr(fattr);
  1097. nfs_free_fhandle(fhandle);
  1098. return res;
  1099. }
  1100. #ifdef CONFIG_NFS_V4
  1101. static int nfs_open_revalidate(struct dentry *, struct nameidata *);
  1102. const struct dentry_operations nfs4_dentry_operations = {
  1103. .d_revalidate = nfs_open_revalidate,
  1104. .d_delete = nfs_dentry_delete,
  1105. .d_iput = nfs_dentry_iput,
  1106. };
  1107. /*
  1108. * Use intent information to determine whether we need to substitute
  1109. * the NFSv4-style stateful OPEN for the LOOKUP call
  1110. */
  1111. static int is_atomic_open(struct nameidata *nd)
  1112. {
  1113. if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
  1114. return 0;
  1115. /* NFS does not (yet) have a stateful open for directories */
  1116. if (nd->flags & LOOKUP_DIRECTORY)
  1117. return 0;
  1118. /* Are we trying to write to a read only partition? */
  1119. if (__mnt_is_readonly(nd->path.mnt) &&
  1120. (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
  1121. return 0;
  1122. return 1;
  1123. }
  1124. static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
  1125. {
  1126. struct path path = {
  1127. .mnt = nd->path.mnt,
  1128. .dentry = dentry,
  1129. };
  1130. struct nfs_open_context *ctx;
  1131. struct rpc_cred *cred;
  1132. fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
  1133. cred = rpc_lookup_cred();
  1134. if (IS_ERR(cred))
  1135. return ERR_CAST(cred);
  1136. ctx = alloc_nfs_open_context(&path, cred, fmode);
  1137. put_rpccred(cred);
  1138. if (ctx == NULL)
  1139. return ERR_PTR(-ENOMEM);
  1140. return ctx;
  1141. }
  1142. static int do_open(struct inode *inode, struct file *filp)
  1143. {
  1144. nfs_fscache_set_inode_cookie(inode, filp);
  1145. return 0;
  1146. }
  1147. static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
  1148. {
  1149. struct file *filp;
  1150. int ret = 0;
  1151. /* If the open_intent is for execute, we have an extra check to make */
  1152. if (ctx->mode & FMODE_EXEC) {
  1153. ret = nfs_may_open(ctx->path.dentry->d_inode,
  1154. ctx->cred,
  1155. nd->intent.open.flags);
  1156. if (ret < 0)
  1157. goto out;
  1158. }
  1159. filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
  1160. if (IS_ERR(filp))
  1161. ret = PTR_ERR(filp);
  1162. else
  1163. nfs_file_set_open_context(filp, ctx);
  1164. out:
  1165. put_nfs_open_context(ctx);
  1166. return ret;
  1167. }
  1168. static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  1169. {
  1170. struct nfs_open_context *ctx;
  1171. struct iattr attr;
  1172. struct dentry *res = NULL;
  1173. struct inode *inode;
  1174. int open_flags;
  1175. int err;
  1176. dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
  1177. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1178. /* Check that we are indeed trying to open this file */
  1179. if (!is_atomic_open(nd))
  1180. goto no_open;
  1181. if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
  1182. res = ERR_PTR(-ENAMETOOLONG);
  1183. goto out;
  1184. }
  1185. dentry->d_op = NFS_PROTO(dir)->dentry_ops;
  1186. /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
  1187. * the dentry. */
  1188. if (nd->flags & LOOKUP_EXCL) {
  1189. d_instantiate(dentry, NULL);
  1190. goto out;
  1191. }
  1192. ctx = nameidata_to_nfs_open_context(dentry, nd);
  1193. res = ERR_CAST(ctx);
  1194. if (IS_ERR(ctx))
  1195. goto out;
  1196. open_flags = nd->intent.open.flags;
  1197. if (nd->flags & LOOKUP_CREATE) {
  1198. attr.ia_mode = nd->intent.open.create_mode;
  1199. attr.ia_valid = ATTR_MODE;
  1200. if (!IS_POSIXACL(dir))
  1201. attr.ia_mode &= ~current_umask();
  1202. } else {
  1203. open_flags &= ~(O_EXCL | O_CREAT);
  1204. attr.ia_valid = 0;
  1205. }
  1206. /* Open the file on the server */
  1207. nfs_block_sillyrename(dentry->d_parent);
  1208. inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
  1209. if (IS_ERR(inode)) {
  1210. nfs_unblock_sillyrename(dentry->d_parent);
  1211. put_nfs_open_context(ctx);
  1212. switch (PTR_ERR(inode)) {
  1213. /* Make a negative dentry */
  1214. case -ENOENT:
  1215. d_add(dentry, NULL);
  1216. res = NULL;
  1217. goto out;
  1218. /* This turned out not to be a regular file */
  1219. case -ENOTDIR:
  1220. goto no_open;
  1221. case -ELOOP:
  1222. if (!(nd->intent.open.flags & O_NOFOLLOW))
  1223. goto no_open;
  1224. /* case -EISDIR: */
  1225. /* case -EINVAL: */
  1226. default:
  1227. res = ERR_CAST(inode);
  1228. goto out;
  1229. }
  1230. }
  1231. res = d_add_unique(dentry, inode);
  1232. nfs_unblock_sillyrename(dentry->d_parent);
  1233. if (res != NULL) {
  1234. dput(ctx->path.dentry);
  1235. ctx->path.dentry = dget(res);
  1236. dentry = res;
  1237. }
  1238. err = nfs_intent_set_file(nd, ctx);
  1239. if (err < 0) {
  1240. if (res != NULL)
  1241. dput(res);
  1242. return ERR_PTR(err);
  1243. }
  1244. out:
  1245. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  1246. return res;
  1247. no_open:
  1248. return nfs_lookup(dir, dentry, nd);
  1249. }
  1250. static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
  1251. {
  1252. struct dentry *parent = NULL;
  1253. struct inode *inode = dentry->d_inode;
  1254. struct inode *dir;
  1255. struct nfs_open_context *ctx;
  1256. int openflags, ret = 0;
  1257. if (!is_atomic_open(nd) || d_mountpoint(dentry))
  1258. goto no_open;
  1259. parent = dget_parent(dentry);
  1260. dir = parent->d_inode;
  1261. /* We can't create new files in nfs_open_revalidate(), so we
  1262. * optimize away revalidation of negative dentries.
  1263. */
  1264. if (inode == NULL) {
  1265. if (!nfs_neg_need_reval(dir, dentry, nd))
  1266. ret = 1;
  1267. goto out;
  1268. }
  1269. /* NFS only supports OPEN on regular files */
  1270. if (!S_ISREG(inode->i_mode))
  1271. goto no_open_dput;
  1272. openflags = nd->intent.open.flags;
  1273. /* We cannot do exclusive creation on a positive dentry */
  1274. if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
  1275. goto no_open_dput;
  1276. /* We can't create new files, or truncate existing ones here */
  1277. openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
  1278. ctx = nameidata_to_nfs_open_context(dentry, nd);
  1279. ret = PTR_ERR(ctx);
  1280. if (IS_ERR(ctx))
  1281. goto out;
  1282. /*
  1283. * Note: we're not holding inode->i_mutex and so may be racing with
  1284. * operations that change the directory. We therefore save the
  1285. * change attribute *before* we do the RPC call.
  1286. */
  1287. inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
  1288. if (IS_ERR(inode)) {
  1289. ret = PTR_ERR(inode);
  1290. switch (ret) {
  1291. case -EPERM:
  1292. case -EACCES:
  1293. case -EDQUOT:
  1294. case -ENOSPC:
  1295. case -EROFS:
  1296. goto out_put_ctx;
  1297. default:
  1298. goto out_drop;
  1299. }
  1300. }
  1301. iput(inode);
  1302. if (inode != dentry->d_inode)
  1303. goto out_drop;
  1304. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  1305. ret = nfs_intent_set_file(nd, ctx);
  1306. if (ret >= 0)
  1307. ret = 1;
  1308. out:
  1309. dput(parent);
  1310. return ret;
  1311. out_drop:
  1312. d_drop(dentry);
  1313. ret = 0;
  1314. out_put_ctx:
  1315. put_nfs_open_context(ctx);
  1316. goto out;
  1317. no_open_dput:
  1318. dput(parent);
  1319. no_open:
  1320. return nfs_lookup_revalidate(dentry, nd);
  1321. }
  1322. static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
  1323. struct nameidata *nd)
  1324. {
  1325. struct nfs_open_context *ctx = NULL;
  1326. struct iattr attr;
  1327. int error;
  1328. int open_flags = 0;
  1329. dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
  1330. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1331. attr.ia_mode = mode;
  1332. attr.ia_valid = ATTR_MODE;
  1333. if ((nd->flags & LOOKUP_CREATE) != 0) {
  1334. open_flags = nd->intent.open.flags;
  1335. ctx = nameidata_to_nfs_open_context(dentry, nd);
  1336. error = PTR_ERR(ctx);
  1337. if (IS_ERR(ctx))
  1338. goto out_err_drop;
  1339. }
  1340. error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
  1341. if (error != 0)
  1342. goto out_put_ctx;
  1343. if (ctx != NULL) {
  1344. error = nfs_intent_set_file(nd, ctx);
  1345. if (error < 0)
  1346. goto out_err;
  1347. }
  1348. return 0;
  1349. out_put_ctx:
  1350. if (ctx != NULL)
  1351. put_nfs_open_context(ctx);
  1352. out_err_drop:
  1353. d_drop(dentry);
  1354. out_err:
  1355. return error;
  1356. }
  1357. #endif /* CONFIG_NFSV4 */
  1358. /*
  1359. * Code common to create, mkdir, and mknod.
  1360. */
  1361. int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
  1362. struct nfs_fattr *fattr)
  1363. {
  1364. struct dentry *parent = dget_parent(dentry);
  1365. struct inode *dir = parent->d_inode;
  1366. struct inode *inode;
  1367. int error = -EACCES;
  1368. d_drop(dentry);
  1369. /* We may have been initialized further down */
  1370. if (dentry->d_inode)
  1371. goto out;
  1372. if (fhandle->size == 0) {
  1373. error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
  1374. if (error)
  1375. goto out_error;
  1376. }
  1377. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  1378. if (!(fattr->valid & NFS_ATTR_FATTR)) {
  1379. struct nfs_server *server = NFS_SB(dentry->d_sb);
  1380. error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
  1381. if (error < 0)
  1382. goto out_error;
  1383. }
  1384. inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
  1385. error = PTR_ERR(inode);
  1386. if (IS_ERR(inode))
  1387. goto out_error;
  1388. d_add(dentry, inode);
  1389. out:
  1390. dput(parent);
  1391. return 0;
  1392. out_error:
  1393. nfs_mark_for_revalidate(dir);
  1394. dput(parent);
  1395. return error;
  1396. }
  1397. /*
  1398. * Following a failed create operation, we drop the dentry rather
  1399. * than retain a negative dentry. This avoids a problem in the event
  1400. * that the operation succeeded on the server, but an error in the
  1401. * reply path made it appear to have failed.
  1402. */
  1403. static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
  1404. struct nameidata *nd)
  1405. {
  1406. struct iattr attr;
  1407. int error;
  1408. dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
  1409. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1410. attr.ia_mode = mode;
  1411. attr.ia_valid = ATTR_MODE;
  1412. error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
  1413. if (error != 0)
  1414. goto out_err;
  1415. return 0;
  1416. out_err:
  1417. d_drop(dentry);
  1418. return error;
  1419. }
  1420. /*
  1421. * See comments for nfs_proc_create regarding failed operations.
  1422. */
  1423. static int
  1424. nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
  1425. {
  1426. struct iattr attr;
  1427. int status;
  1428. dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
  1429. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1430. if (!new_valid_dev(rdev))
  1431. return -EINVAL;
  1432. attr.ia_mode = mode;
  1433. attr.ia_valid = ATTR_MODE;
  1434. status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
  1435. if (status != 0)
  1436. goto out_err;
  1437. return 0;
  1438. out_err:
  1439. d_drop(dentry);
  1440. return status;
  1441. }
  1442. /*
  1443. * See comments for nfs_proc_create regarding failed operations.
  1444. */
  1445. static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  1446. {
  1447. struct iattr attr;
  1448. int error;
  1449. dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
  1450. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1451. attr.ia_valid = ATTR_MODE;
  1452. attr.ia_mode = mode | S_IFDIR;
  1453. error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
  1454. if (error != 0)
  1455. goto out_err;
  1456. return 0;
  1457. out_err:
  1458. d_drop(dentry);
  1459. return error;
  1460. }
  1461. static void nfs_dentry_handle_enoent(struct dentry *dentry)
  1462. {
  1463. if (dentry->d_inode != NULL && !d_unhashed(dentry))
  1464. d_delete(dentry);
  1465. }
  1466. static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
  1467. {
  1468. int error;
  1469. dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
  1470. dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
  1471. error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
  1472. /* Ensure the VFS deletes this inode */
  1473. if (error == 0 && dentry->d_inode != NULL)
  1474. clear_nlink(dentry->d_inode);
  1475. else if (error == -ENOENT)
  1476. nfs_dentry_handle_enoent(dentry);
  1477. return error;
  1478. }
  1479. /*
  1480. * Remove a file after making sure there are no pending writes,
  1481. * and after checking that the file has only one user.
  1482. *
  1483. * We invalidate the attribute cache and free the inode prior to the operation
  1484. * to avoid possible races if the server reuses the inode.
  1485. */
  1486. static int nfs_safe_remove(struct dentry *dentry)
  1487. {
  1488. struct inode *dir = dentry->d_parent->d_inode;
  1489. struct inode *inode = dentry->d_inode;
  1490. int error = -EBUSY;
  1491. dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
  1492. dentry->d_parent->d_name.name, dentry->d_name.name);
  1493. /* If the dentry was sillyrenamed, we simply call d_delete() */
  1494. if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
  1495. error = 0;
  1496. goto out;
  1497. }
  1498. if (inode != NULL) {
  1499. nfs_inode_return_delegation(inode);
  1500. error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
  1501. /* The VFS may want to delete this inode */
  1502. if (error == 0)
  1503. nfs_drop_nlink(inode);
  1504. nfs_mark_for_revalidate(inode);
  1505. } else
  1506. error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
  1507. if (error == -ENOENT)
  1508. nfs_dentry_handle_enoent(dentry);
  1509. out:
  1510. return error;
  1511. }
  1512. /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
  1513. * belongs to an active ".nfs..." file and we return -EBUSY.
  1514. *
  1515. * If sillyrename() returns 0, we do nothing, otherwise we unlink.
  1516. */
  1517. static int nfs_unlink(struct inode *dir, struct dentry *dentry)
  1518. {
  1519. int error;
  1520. int need_rehash = 0;
  1521. dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
  1522. dir->i_ino, dentry->d_name.name);
  1523. spin_lock(&dcache_lock);
  1524. spin_lock(&dentry->d_lock);
  1525. if (atomic_read(&dentry->d_count) > 1) {
  1526. spin_unlock(&dentry->d_lock);
  1527. spin_unlock(&dcache_lock);
  1528. /* Start asynchronous writeout of the inode */
  1529. write_inode_now(dentry->d_inode, 0);
  1530. error = nfs_sillyrename(dir, dentry);
  1531. return error;
  1532. }
  1533. if (!d_unhashed(dentry)) {
  1534. __d_drop(dentry);
  1535. need_rehash = 1;
  1536. }
  1537. spin_unlock(&dentry->d_lock);
  1538. spin_unlock(&dcache_lock);
  1539. error = nfs_safe_remove(dentry);
  1540. if (!error || error == -ENOENT) {
  1541. nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
  1542. } else if (need_rehash)
  1543. d_rehash(dentry);
  1544. return error;
  1545. }
  1546. /*
  1547. * To create a symbolic link, most file systems instantiate a new inode,
  1548. * add a page to it containing the path, then write it out to the disk
  1549. * using prepare_write/commit_write.
  1550. *
  1551. * Unfortunately the NFS client can't create the in-core inode first
  1552. * because it needs a file handle to create an in-core inode (see
  1553. * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
  1554. * symlink request has completed on the server.
  1555. *
  1556. * So instead we allocate a raw page, copy the symname into it, then do
  1557. * the SYMLINK request with the page as the buffer. If it succeeds, we
  1558. * now have a new file handle and can instantiate an in-core NFS inode
  1559. * and move the raw page into its mapping.
  1560. */
  1561. static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
  1562. {
  1563. struct pagevec lru_pvec;
  1564. struct page *page;
  1565. char *kaddr;
  1566. struct iattr attr;
  1567. unsigned int pathlen = strlen(symname);
  1568. int error;
  1569. dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
  1570. dir->i_ino, dentry->d_name.name, symname);
  1571. if (pathlen > PAGE_SIZE)
  1572. return -ENAMETOOLONG;
  1573. attr.ia_mode = S_IFLNK | S_IRWXUGO;
  1574. attr.ia_valid = ATTR_MODE;
  1575. page = alloc_page(GFP_HIGHUSER);
  1576. if (!page)
  1577. return -ENOMEM;
  1578. kaddr = kmap_atomic(page, KM_USER0);
  1579. memcpy(kaddr, symname, pathlen);
  1580. if (pathlen < PAGE_SIZE)
  1581. memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
  1582. kunmap_atomic(kaddr, KM_USER0);
  1583. error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
  1584. if (error != 0) {
  1585. dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
  1586. dir->i_sb->s_id, dir->i_ino,
  1587. dentry->d_name.name, symname, error);
  1588. d_drop(dentry);
  1589. __free_page(page);
  1590. return error;
  1591. }
  1592. /*
  1593. * No big deal if we can't add this page to the page cache here.
  1594. * READLINK will get the missing page from the server if needed.
  1595. */
  1596. pagevec_init(&lru_pvec, 0);
  1597. if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
  1598. GFP_KERNEL)) {
  1599. pagevec_add(&lru_pvec, page);
  1600. pagevec_lru_add_file(&lru_pvec);
  1601. SetPageUptodate(page);
  1602. unlock_page(page);
  1603. } else
  1604. __free_page(page);
  1605. return 0;
  1606. }
  1607. static int
  1608. nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
  1609. {
  1610. struct inode *inode = old_dentry->d_inode;
  1611. int error;
  1612. dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
  1613. old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
  1614. dentry->d_parent->d_name.name, dentry->d_name.name);
  1615. nfs_inode_return_delegation(inode);
  1616. d_drop(dentry);
  1617. error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
  1618. if (error == 0) {
  1619. ihold(inode);
  1620. d_add(dentry, inode);
  1621. }
  1622. return error;
  1623. }
  1624. /*
  1625. * RENAME
  1626. * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
  1627. * different file handle for the same inode after a rename (e.g. when
  1628. * moving to a different directory). A fail-safe method to do so would
  1629. * be to look up old_dir/old_name, create a link to new_dir/new_name and
  1630. * rename the old file using the sillyrename stuff. This way, the original
  1631. * file in old_dir will go away when the last process iput()s the inode.
  1632. *
  1633. * FIXED.
  1634. *
  1635. * It actually works quite well. One needs to have the possibility for
  1636. * at least one ".nfs..." file in each directory the file ever gets
  1637. * moved or linked to which happens automagically with the new
  1638. * implementation that only depends on the dcache stuff instead of
  1639. * using the inode layer
  1640. *
  1641. * Unfortunately, things are a little more complicated than indicated
  1642. * above. For a cross-directory move, we want to make sure we can get
  1643. * rid of the old inode after the operation. This means there must be
  1644. * no pending writes (if it's a file), and the use count must be 1.
  1645. * If these conditions are met, we can drop the dentries before doing
  1646. * the rename.
  1647. */
  1648. static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
  1649. struct inode *new_dir, struct dentry *new_dentry)
  1650. {
  1651. struct inode *old_inode = old_dentry->d_inode;
  1652. struct inode *new_inode = new_dentry->d_inode;
  1653. struct dentry *dentry = NULL, *rehash = NULL;
  1654. int error = -EBUSY;
  1655. dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
  1656. old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
  1657. new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
  1658. atomic_read(&new_dentry->d_count));
  1659. /*
  1660. * For non-directories, check whether the target is busy and if so,
  1661. * make a copy of the dentry and then do a silly-rename. If the
  1662. * silly-rename succeeds, the copied dentry is hashed and becomes
  1663. * the new target.
  1664. */
  1665. if (new_inode && !S_ISDIR(new_inode->i_mode)) {
  1666. /*
  1667. * To prevent any new references to the target during the
  1668. * rename, we unhash the dentry in advance.
  1669. */
  1670. if (!d_unhashed(new_dentry)) {
  1671. d_drop(new_dentry);
  1672. rehash = new_dentry;
  1673. }
  1674. if (atomic_read(&new_dentry->d_count) > 2) {
  1675. int err;
  1676. /* copy the target dentry's name */
  1677. dentry = d_alloc(new_dentry->d_parent,
  1678. &new_dentry->d_name);
  1679. if (!dentry)
  1680. goto out;
  1681. /* silly-rename the existing target ... */
  1682. err = nfs_sillyrename(new_dir, new_dentry);
  1683. if (err)
  1684. goto out;
  1685. new_dentry = dentry;
  1686. rehash = NULL;
  1687. new_inode = NULL;
  1688. }
  1689. }
  1690. nfs_inode_return_delegation(old_inode);
  1691. if (new_inode != NULL)
  1692. nfs_inode_return_delegation(new_inode);
  1693. error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
  1694. new_dir, &new_dentry->d_name);
  1695. nfs_mark_for_revalidate(old_inode);
  1696. out:
  1697. if (rehash)
  1698. d_rehash(rehash);
  1699. if (!error) {
  1700. if (new_inode != NULL)
  1701. nfs_drop_nlink(new_inode);
  1702. d_move(old_dentry, new_dentry);
  1703. nfs_set_verifier(new_dentry,
  1704. nfs_save_change_attribute(new_dir));
  1705. } else if (error == -ENOENT)
  1706. nfs_dentry_handle_enoent(old_dentry);
  1707. /* new dentry created? */
  1708. if (dentry)
  1709. dput(dentry);
  1710. return error;
  1711. }
  1712. static DEFINE_SPINLOCK(nfs_access_lru_lock);
  1713. static LIST_HEAD(nfs_access_lru_list);
  1714. static atomic_long_t nfs_access_nr_entries;
  1715. static void nfs_access_free_entry(struct nfs_access_entry *entry)
  1716. {
  1717. put_rpccred(entry->cred);
  1718. kfree(entry);
  1719. smp_mb__before_atomic_dec();
  1720. atomic_long_dec(&nfs_access_nr_entries);
  1721. smp_mb__after_atomic_dec();
  1722. }
  1723. static void nfs_access_free_list(struct list_head *head)
  1724. {
  1725. struct nfs_access_entry *cache;
  1726. while (!list_empty(head)) {
  1727. cache = list_entry(head->next, struct nfs_access_entry, lru);
  1728. list_del(&cache->lru);
  1729. nfs_access_free_entry(cache);
  1730. }
  1731. }
  1732. int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  1733. {
  1734. LIST_HEAD(head);
  1735. struct nfs_inode *nfsi, *next;
  1736. struct nfs_access_entry *cache;
  1737. if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
  1738. return (nr_to_scan == 0) ? 0 : -1;
  1739. spin_lock(&nfs_access_lru_lock);
  1740. list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
  1741. struct inode *inode;
  1742. if (nr_to_scan-- == 0)
  1743. break;
  1744. inode = &nfsi->vfs_inode;
  1745. spin_lock(&inode->i_lock);
  1746. if (list_empty(&nfsi->access_cache_entry_lru))
  1747. goto remove_lru_entry;
  1748. cache = list_entry(nfsi->access_cache_entry_lru.next,
  1749. struct nfs_access_entry, lru);
  1750. list_move(&cache->lru, &head);
  1751. rb_erase(&cache->rb_node, &nfsi->access_cache);
  1752. if (!list_empty(&nfsi->access_cache_entry_lru))
  1753. list_move_tail(&nfsi->access_cache_inode_lru,
  1754. &nfs_access_lru_list);
  1755. else {
  1756. remove_lru_entry:
  1757. list_del_init(&nfsi->access_cache_inode_lru);
  1758. smp_mb__before_clear_bit();
  1759. clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
  1760. smp_mb__after_clear_bit();
  1761. }
  1762. spin_unlock(&inode->i_lock);
  1763. }
  1764. spin_unlock(&nfs_access_lru_lock);
  1765. nfs_access_free_list(&head);
  1766. return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
  1767. }
  1768. static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
  1769. {
  1770. struct rb_root *root_node = &nfsi->access_cache;
  1771. struct rb_node *n;
  1772. struct nfs_access_entry *entry;
  1773. /* Unhook entries from the cache */
  1774. while ((n = rb_first(root_node)) != NULL) {
  1775. entry = rb_entry(n, struct nfs_access_entry, rb_node);
  1776. rb_erase(n, root_node);
  1777. list_move(&entry->lru, head);
  1778. }
  1779. nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
  1780. }
  1781. void nfs_access_zap_cache(struct inode *inode)
  1782. {
  1783. LIST_HEAD(head);
  1784. if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
  1785. return;
  1786. /* Remove from global LRU init */
  1787. spin_lock(&nfs_access_lru_lock);
  1788. if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
  1789. list_del_init(&NFS_I(inode)->access_cache_inode_lru);
  1790. spin_lock(&inode->i_lock);
  1791. __nfs_access_zap_cache(NFS_I(inode), &head);
  1792. spin_unlock(&inode->i_lock);
  1793. spin_unlock(&nfs_access_lru_lock);
  1794. nfs_access_free_list(&head);
  1795. }
  1796. static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
  1797. {
  1798. struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
  1799. struct nfs_access_entry *entry;
  1800. while (n != NULL) {
  1801. entry = rb_entry(n, struct nfs_access_entry, rb_node);
  1802. if (cred < entry->cred)
  1803. n = n->rb_left;
  1804. else if (cred > entry->cred)
  1805. n = n->rb_right;
  1806. else
  1807. return entry;
  1808. }
  1809. return NULL;
  1810. }
  1811. static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
  1812. {
  1813. struct nfs_inode *nfsi = NFS_I(inode);
  1814. struct nfs_access_entry *cache;
  1815. int err = -ENOENT;
  1816. spin_lock(&inode->i_lock);
  1817. if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
  1818. goto out_zap;
  1819. cache = nfs_access_search_rbtree(inode, cred);
  1820. if (cache == NULL)
  1821. goto out;
  1822. if (!nfs_have_delegated_attributes(inode) &&
  1823. !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
  1824. goto out_stale;
  1825. res->jiffies = cache->jiffies;
  1826. res->cred = cache->cred;
  1827. res->mask = cache->mask;
  1828. list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
  1829. err = 0;
  1830. out:
  1831. spin_unlock(&inode->i_lock);
  1832. return err;
  1833. out_stale:
  1834. rb_erase(&cache->rb_node, &nfsi->access_cache);
  1835. list_del(&cache->lru);
  1836. spin_unlock(&inode->i_lock);
  1837. nfs_access_free_entry(cache);
  1838. return -ENOENT;
  1839. out_zap:
  1840. spin_unlock(&inode->i_lock);
  1841. nfs_access_zap_cache(inode);
  1842. return -ENOENT;
  1843. }
  1844. static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
  1845. {
  1846. struct nfs_inode *nfsi = NFS_I(inode);
  1847. struct rb_root *root_node = &nfsi->access_cache;
  1848. struct rb_node **p = &root_node->rb_node;
  1849. struct rb_node *parent = NULL;
  1850. struct nfs_access_entry *entry;
  1851. spin_lock(&inode->i_lock);
  1852. while (*p != NULL) {
  1853. parent = *p;
  1854. entry = rb_entry(parent, struct nfs_access_entry, rb_node);
  1855. if (set->cred < entry->cred)
  1856. p = &parent->rb_left;
  1857. else if (set->cred > entry->cred)
  1858. p = &parent->rb_right;
  1859. else
  1860. goto found;
  1861. }
  1862. rb_link_node(&set->rb_node, parent, p);
  1863. rb_insert_color(&set->rb_node, root_node);
  1864. list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
  1865. spin_unlock(&inode->i_lock);
  1866. return;
  1867. found:
  1868. rb_replace_node(parent, &set->rb_node, root_node);
  1869. list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
  1870. list_del(&entry->lru);
  1871. spin_unlock(&inode->i_lock);
  1872. nfs_access_free_entry(entry);
  1873. }
  1874. static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
  1875. {
  1876. struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
  1877. if (cache == NULL)
  1878. return;
  1879. RB_CLEAR_NODE(&cache->rb_node);
  1880. cache->jiffies = set->jiffies;
  1881. cache->cred = get_rpccred(set->cred);
  1882. cache->mask = set->mask;
  1883. nfs_access_add_rbtree(inode, cache);
  1884. /* Update accounting */
  1885. smp_mb__before_atomic_inc();
  1886. atomic_long_inc(&nfs_access_nr_entries);
  1887. smp_mb__after_atomic_inc();
  1888. /* Add inode to global LRU list */
  1889. if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
  1890. spin_lock(&nfs_access_lru_lock);
  1891. if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
  1892. list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
  1893. &nfs_access_lru_list);
  1894. spin_unlock(&nfs_access_lru_lock);
  1895. }
  1896. }
  1897. static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
  1898. {
  1899. struct nfs_access_entry cache;
  1900. int status;
  1901. status = nfs_access_get_cached(inode, cred, &cache);
  1902. if (status == 0)
  1903. goto out;
  1904. /* Be clever: ask server to check for all possible rights */
  1905. cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
  1906. cache.cred = cred;
  1907. cache.jiffies = jiffies;
  1908. status = NFS_PROTO(inode)->access(inode, &cache);
  1909. if (status != 0) {
  1910. if (status == -ESTALE) {
  1911. nfs_zap_caches(inode);
  1912. if (!S_ISDIR(inode->i_mode))
  1913. set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
  1914. }
  1915. return status;
  1916. }
  1917. nfs_access_add_cache(inode, &cache);
  1918. out:
  1919. if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
  1920. return 0;
  1921. return -EACCES;
  1922. }
  1923. static int nfs_open_permission_mask(int openflags)
  1924. {
  1925. int mask = 0;
  1926. if (openflags & FMODE_READ)
  1927. mask |= MAY_READ;
  1928. if (openflags & FMODE_WRITE)
  1929. mask |= MAY_WRITE;
  1930. if (openflags & FMODE_EXEC)
  1931. mask |= MAY_EXEC;
  1932. return mask;
  1933. }
  1934. int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
  1935. {
  1936. return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
  1937. }
  1938. int nfs_permission(struct inode *inode, int mask)
  1939. {
  1940. struct rpc_cred *cred;
  1941. int res = 0;
  1942. nfs_inc_stats(inode, NFSIOS_VFSACCESS);
  1943. if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
  1944. goto out;
  1945. /* Is this sys_access() ? */
  1946. if (mask & (MAY_ACCESS | MAY_CHDIR))
  1947. goto force_lookup;
  1948. switch (inode->i_mode & S_IFMT) {
  1949. case S_IFLNK:
  1950. goto out;
  1951. case S_IFREG:
  1952. /* NFSv4 has atomic_open... */
  1953. if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
  1954. && (mask & MAY_OPEN)
  1955. && !(mask & MAY_EXEC))
  1956. goto out;
  1957. break;
  1958. case S_IFDIR:
  1959. /*
  1960. * Optimize away all write operations, since the server
  1961. * will check permissions when we perform the op.
  1962. */
  1963. if ((mask & MAY_WRITE) && !(mask & MAY_READ))
  1964. goto out;
  1965. }
  1966. force_lookup:
  1967. if (!NFS_PROTO(inode)->access)
  1968. goto out_notsup;
  1969. cred = rpc_lookup_cred();
  1970. if (!IS_ERR(cred)) {
  1971. res = nfs_do_access(inode, cred, mask);
  1972. put_rpccred(cred);
  1973. } else
  1974. res = PTR_ERR(cred);
  1975. out:
  1976. if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
  1977. res = -EACCES;
  1978. dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
  1979. inode->i_sb->s_id, inode->i_ino, mask, res);
  1980. return res;
  1981. out_notsup:
  1982. res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
  1983. if (res == 0)
  1984. res = generic_permission(inode, mask, NULL);
  1985. goto out;
  1986. }
  1987. /*
  1988. * Local variables:
  1989. * version-control: t
  1990. * kept-new-versions: 5
  1991. * End:
  1992. */