hw.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
  48. {
  49. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  50. return priv_ops->macversion_supported(ah->hw_version.macVersion);
  51. }
  52. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  53. struct ath9k_channel *chan)
  54. {
  55. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  56. }
  57. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  58. {
  59. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  60. return;
  61. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  62. }
  63. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  64. {
  65. /* You will not have this callback if using the old ANI */
  66. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  67. return;
  68. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  69. }
  70. /********************/
  71. /* Helper Functions */
  72. /********************/
  73. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  74. {
  75. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  76. struct ath_common *common = ath9k_hw_common(ah);
  77. unsigned int clockrate;
  78. if (!ah->curchan) /* should really check for CCK instead */
  79. clockrate = ATH9K_CLOCK_RATE_CCK;
  80. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  81. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  82. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  83. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  84. else
  85. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  86. if (conf_is_ht40(conf))
  87. clockrate *= 2;
  88. common->clockrate = clockrate;
  89. }
  90. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  91. {
  92. struct ath_common *common = ath9k_hw_common(ah);
  93. return usecs * common->clockrate;
  94. }
  95. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  96. {
  97. int i;
  98. BUG_ON(timeout < AH_TIME_QUANTUM);
  99. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  100. if ((REG_READ(ah, reg) & mask) == val)
  101. return true;
  102. udelay(AH_TIME_QUANTUM);
  103. }
  104. ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
  105. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  106. timeout, reg, REG_READ(ah, reg), mask, val);
  107. return false;
  108. }
  109. EXPORT_SYMBOL(ath9k_hw_wait);
  110. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  111. {
  112. u32 retval;
  113. int i;
  114. for (i = 0, retval = 0; i < n; i++) {
  115. retval = (retval << 1) | (val & 1);
  116. val >>= 1;
  117. }
  118. return retval;
  119. }
  120. bool ath9k_get_channel_edges(struct ath_hw *ah,
  121. u16 flags, u16 *low,
  122. u16 *high)
  123. {
  124. struct ath9k_hw_capabilities *pCap = &ah->caps;
  125. if (flags & CHANNEL_5GHZ) {
  126. *low = pCap->low_5ghz_chan;
  127. *high = pCap->high_5ghz_chan;
  128. return true;
  129. }
  130. if ((flags & CHANNEL_2GHZ)) {
  131. *low = pCap->low_2ghz_chan;
  132. *high = pCap->high_2ghz_chan;
  133. return true;
  134. }
  135. return false;
  136. }
  137. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  138. u8 phy, int kbps,
  139. u32 frameLen, u16 rateix,
  140. bool shortPreamble)
  141. {
  142. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  143. if (kbps == 0)
  144. return 0;
  145. switch (phy) {
  146. case WLAN_RC_PHY_CCK:
  147. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  148. if (shortPreamble)
  149. phyTime >>= 1;
  150. numBits = frameLen << 3;
  151. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  152. break;
  153. case WLAN_RC_PHY_OFDM:
  154. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  155. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  156. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  157. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  158. txTime = OFDM_SIFS_TIME_QUARTER
  159. + OFDM_PREAMBLE_TIME_QUARTER
  160. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  161. } else if (ah->curchan &&
  162. IS_CHAN_HALF_RATE(ah->curchan)) {
  163. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  164. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  165. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  166. txTime = OFDM_SIFS_TIME_HALF +
  167. OFDM_PREAMBLE_TIME_HALF
  168. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  169. } else {
  170. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  171. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  172. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  173. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  174. + (numSymbols * OFDM_SYMBOL_TIME);
  175. }
  176. break;
  177. default:
  178. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  179. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  180. txTime = 0;
  181. break;
  182. }
  183. return txTime;
  184. }
  185. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  186. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  187. struct ath9k_channel *chan,
  188. struct chan_centers *centers)
  189. {
  190. int8_t extoff;
  191. if (!IS_CHAN_HT40(chan)) {
  192. centers->ctl_center = centers->ext_center =
  193. centers->synth_center = chan->channel;
  194. return;
  195. }
  196. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  197. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  198. centers->synth_center =
  199. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  200. extoff = 1;
  201. } else {
  202. centers->synth_center =
  203. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  204. extoff = -1;
  205. }
  206. centers->ctl_center =
  207. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  208. /* 25 MHz spacing is supported by hw but not on upper layers */
  209. centers->ext_center =
  210. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  211. }
  212. /******************/
  213. /* Chip Revisions */
  214. /******************/
  215. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  216. {
  217. u32 val;
  218. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  219. if (val == 0xFF) {
  220. val = REG_READ(ah, AR_SREV);
  221. ah->hw_version.macVersion =
  222. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  223. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  224. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  225. } else {
  226. if (!AR_SREV_9100(ah))
  227. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  228. ah->hw_version.macRev = val & AR_SREV_REVISION;
  229. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  230. ah->is_pciexpress = true;
  231. }
  232. }
  233. /************************************/
  234. /* HW Attach, Detach, Init Routines */
  235. /************************************/
  236. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  237. {
  238. if (AR_SREV_9100(ah))
  239. return;
  240. ENABLE_REGWRITE_BUFFER(ah);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  244. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  245. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  246. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  247. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  248. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  249. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  250. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  251. REGWRITE_BUFFER_FLUSH(ah);
  252. }
  253. /* This should work for all families including legacy */
  254. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  255. {
  256. struct ath_common *common = ath9k_hw_common(ah);
  257. u32 regAddr[2] = { AR_STA_ID0 };
  258. u32 regHold[2];
  259. u32 patternData[4] = { 0x55555555,
  260. 0xaaaaaaaa,
  261. 0x66666666,
  262. 0x99999999 };
  263. int i, j, loop_max;
  264. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  265. loop_max = 2;
  266. regAddr[1] = AR_PHY_BASE + (8 << 2);
  267. } else
  268. loop_max = 1;
  269. for (i = 0; i < loop_max; i++) {
  270. u32 addr = regAddr[i];
  271. u32 wrData, rdData;
  272. regHold[i] = REG_READ(ah, addr);
  273. for (j = 0; j < 0x100; j++) {
  274. wrData = (j << 16) | j;
  275. REG_WRITE(ah, addr, wrData);
  276. rdData = REG_READ(ah, addr);
  277. if (rdData != wrData) {
  278. ath_print(common, ATH_DBG_FATAL,
  279. "address test failed "
  280. "addr: 0x%08x - wr:0x%08x != "
  281. "rd:0x%08x\n",
  282. addr, wrData, rdData);
  283. return false;
  284. }
  285. }
  286. for (j = 0; j < 4; j++) {
  287. wrData = patternData[j];
  288. REG_WRITE(ah, addr, wrData);
  289. rdData = REG_READ(ah, addr);
  290. if (wrData != rdData) {
  291. ath_print(common, ATH_DBG_FATAL,
  292. "address test failed "
  293. "addr: 0x%08x - wr:0x%08x != "
  294. "rd:0x%08x\n",
  295. addr, wrData, rdData);
  296. return false;
  297. }
  298. }
  299. REG_WRITE(ah, regAddr[i], regHold[i]);
  300. }
  301. udelay(100);
  302. return true;
  303. }
  304. static void ath9k_hw_init_config(struct ath_hw *ah)
  305. {
  306. int i;
  307. ah->config.dma_beacon_response_time = 2;
  308. ah->config.sw_beacon_response_time = 10;
  309. ah->config.additional_swba_backoff = 0;
  310. ah->config.ack_6mb = 0x0;
  311. ah->config.cwm_ignore_extcca = 0;
  312. ah->config.pcie_powersave_enable = 0;
  313. ah->config.pcie_clock_req = 0;
  314. ah->config.pcie_waen = 0;
  315. ah->config.analog_shiftreg = 1;
  316. ah->config.enable_ani = true;
  317. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  318. ah->config.spurchans[i][0] = AR_NO_SPUR;
  319. ah->config.spurchans[i][1] = AR_NO_SPUR;
  320. }
  321. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  322. ah->config.ht_enable = 1;
  323. else
  324. ah->config.ht_enable = 0;
  325. ah->config.rx_intr_mitigation = true;
  326. ah->config.pcieSerDesWrite = true;
  327. /*
  328. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  329. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  330. * This means we use it for all AR5416 devices, and the few
  331. * minor PCI AR9280 devices out there.
  332. *
  333. * Serialization is required because these devices do not handle
  334. * well the case of two concurrent reads/writes due to the latency
  335. * involved. During one read/write another read/write can be issued
  336. * on another CPU while the previous read/write may still be working
  337. * on our hardware, if we hit this case the hardware poops in a loop.
  338. * We prevent this by serializing reads and writes.
  339. *
  340. * This issue is not present on PCI-Express devices or pre-AR5416
  341. * devices (legacy, 802.11abg).
  342. */
  343. if (num_possible_cpus() > 1)
  344. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  345. }
  346. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  347. {
  348. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  349. regulatory->country_code = CTRY_DEFAULT;
  350. regulatory->power_limit = MAX_RATE_POWER;
  351. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  352. ah->hw_version.magic = AR5416_MAGIC;
  353. ah->hw_version.subvendorid = 0;
  354. ah->ah_flags = 0;
  355. if (!AR_SREV_9100(ah))
  356. ah->ah_flags = AH_USE_EEPROM;
  357. ah->atim_window = 0;
  358. ah->sta_id1_defaults =
  359. AR_STA_ID1_CRPT_MIC_ENABLE |
  360. AR_STA_ID1_MCAST_KSRCH;
  361. ah->beacon_interval = 100;
  362. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  363. ah->slottime = (u32) -1;
  364. ah->globaltxtimeout = (u32) -1;
  365. ah->power_mode = ATH9K_PM_UNDEFINED;
  366. }
  367. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  368. {
  369. struct ath_common *common = ath9k_hw_common(ah);
  370. u32 sum;
  371. int i;
  372. u16 eeval;
  373. u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  374. sum = 0;
  375. for (i = 0; i < 3; i++) {
  376. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  377. sum += eeval;
  378. common->macaddr[2 * i] = eeval >> 8;
  379. common->macaddr[2 * i + 1] = eeval & 0xff;
  380. }
  381. if (sum == 0 || sum == 0xffff * 3)
  382. return -EADDRNOTAVAIL;
  383. return 0;
  384. }
  385. static int ath9k_hw_post_init(struct ath_hw *ah)
  386. {
  387. int ecode;
  388. if (!AR_SREV_9271(ah)) {
  389. if (!ath9k_hw_chip_test(ah))
  390. return -ENODEV;
  391. }
  392. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  393. ecode = ar9002_hw_rf_claim(ah);
  394. if (ecode != 0)
  395. return ecode;
  396. }
  397. ecode = ath9k_hw_eeprom_init(ah);
  398. if (ecode != 0)
  399. return ecode;
  400. ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  401. "Eeprom VER: %d, REV: %d\n",
  402. ah->eep_ops->get_eeprom_ver(ah),
  403. ah->eep_ops->get_eeprom_rev(ah));
  404. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  405. if (ecode) {
  406. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  407. "Failed allocating banks for "
  408. "external radio\n");
  409. ath9k_hw_rf_free_ext_banks(ah);
  410. return ecode;
  411. }
  412. if (!AR_SREV_9100(ah)) {
  413. ath9k_hw_ani_setup(ah);
  414. ath9k_hw_ani_init(ah);
  415. }
  416. return 0;
  417. }
  418. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  419. {
  420. if (AR_SREV_9300_20_OR_LATER(ah))
  421. ar9003_hw_attach_ops(ah);
  422. else
  423. ar9002_hw_attach_ops(ah);
  424. }
  425. /* Called for all hardware families */
  426. static int __ath9k_hw_init(struct ath_hw *ah)
  427. {
  428. struct ath_common *common = ath9k_hw_common(ah);
  429. int r = 0;
  430. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  431. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  432. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  433. ath_print(common, ATH_DBG_FATAL,
  434. "Couldn't reset chip\n");
  435. return -EIO;
  436. }
  437. ath9k_hw_init_defaults(ah);
  438. ath9k_hw_init_config(ah);
  439. ath9k_hw_attach_ops(ah);
  440. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  441. ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
  442. return -EIO;
  443. }
  444. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  445. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  446. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  447. !ah->is_pciexpress)) {
  448. ah->config.serialize_regmode =
  449. SER_REG_MODE_ON;
  450. } else {
  451. ah->config.serialize_regmode =
  452. SER_REG_MODE_OFF;
  453. }
  454. }
  455. ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  456. ah->config.serialize_regmode);
  457. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  458. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  459. else
  460. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  461. if (!ath9k_hw_macversion_supported(ah)) {
  462. ath_print(common, ATH_DBG_FATAL,
  463. "Mac Chip Rev 0x%02x.%x is not supported by "
  464. "this driver\n", ah->hw_version.macVersion,
  465. ah->hw_version.macRev);
  466. return -EOPNOTSUPP;
  467. }
  468. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  469. ah->is_pciexpress = false;
  470. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  471. ath9k_hw_init_cal_settings(ah);
  472. ah->ani_function = ATH9K_ANI_ALL;
  473. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  474. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  475. if (!AR_SREV_9300_20_OR_LATER(ah))
  476. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  477. ath9k_hw_init_mode_regs(ah);
  478. /*
  479. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  480. * We need to do this to avoid RMW of this register. We cannot
  481. * read the reg when chip is asleep.
  482. */
  483. ah->WARegVal = REG_READ(ah, AR_WA);
  484. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  485. AR_WA_ASPM_TIMER_BASED_DISABLE);
  486. if (ah->is_pciexpress)
  487. ath9k_hw_configpcipowersave(ah, 0, 0);
  488. else
  489. ath9k_hw_disablepcie(ah);
  490. if (!AR_SREV_9300_20_OR_LATER(ah))
  491. ar9002_hw_cck_chan14_spread(ah);
  492. r = ath9k_hw_post_init(ah);
  493. if (r)
  494. return r;
  495. ath9k_hw_init_mode_gain_regs(ah);
  496. r = ath9k_hw_fill_cap_info(ah);
  497. if (r)
  498. return r;
  499. r = ath9k_hw_init_macaddr(ah);
  500. if (r) {
  501. ath_print(common, ATH_DBG_FATAL,
  502. "Failed to initialize MAC address\n");
  503. return r;
  504. }
  505. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  506. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  507. else
  508. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  509. ah->bb_watchdog_timeout_ms = 25;
  510. common->state = ATH_HW_INITIALIZED;
  511. return 0;
  512. }
  513. int ath9k_hw_init(struct ath_hw *ah)
  514. {
  515. int ret;
  516. struct ath_common *common = ath9k_hw_common(ah);
  517. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  518. switch (ah->hw_version.devid) {
  519. case AR5416_DEVID_PCI:
  520. case AR5416_DEVID_PCIE:
  521. case AR5416_AR9100_DEVID:
  522. case AR9160_DEVID_PCI:
  523. case AR9280_DEVID_PCI:
  524. case AR9280_DEVID_PCIE:
  525. case AR9285_DEVID_PCIE:
  526. case AR9287_DEVID_PCI:
  527. case AR9287_DEVID_PCIE:
  528. case AR2427_DEVID_PCIE:
  529. case AR9300_DEVID_PCIE:
  530. break;
  531. default:
  532. if (common->bus_ops->ath_bus_type == ATH_USB)
  533. break;
  534. ath_print(common, ATH_DBG_FATAL,
  535. "Hardware device ID 0x%04x not supported\n",
  536. ah->hw_version.devid);
  537. return -EOPNOTSUPP;
  538. }
  539. ret = __ath9k_hw_init(ah);
  540. if (ret) {
  541. ath_print(common, ATH_DBG_FATAL,
  542. "Unable to initialize hardware; "
  543. "initialization status: %d\n", ret);
  544. return ret;
  545. }
  546. return 0;
  547. }
  548. EXPORT_SYMBOL(ath9k_hw_init);
  549. static void ath9k_hw_init_qos(struct ath_hw *ah)
  550. {
  551. ENABLE_REGWRITE_BUFFER(ah);
  552. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  553. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  554. REG_WRITE(ah, AR_QOS_NO_ACK,
  555. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  556. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  557. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  558. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  559. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  560. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  561. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  562. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  563. REGWRITE_BUFFER_FLUSH(ah);
  564. }
  565. static void ath9k_hw_init_pll(struct ath_hw *ah,
  566. struct ath9k_channel *chan)
  567. {
  568. u32 pll = ath9k_hw_compute_pll_control(ah, chan);
  569. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  570. /* Switch the core clock for ar9271 to 117Mhz */
  571. if (AR_SREV_9271(ah)) {
  572. udelay(500);
  573. REG_WRITE(ah, 0x50040, 0x304);
  574. }
  575. udelay(RTC_PLL_SETTLE_DELAY);
  576. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  577. }
  578. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  579. enum nl80211_iftype opmode)
  580. {
  581. u32 imr_reg = AR_IMR_TXERR |
  582. AR_IMR_TXURN |
  583. AR_IMR_RXERR |
  584. AR_IMR_RXORN |
  585. AR_IMR_BCNMISC;
  586. if (AR_SREV_9300_20_OR_LATER(ah)) {
  587. imr_reg |= AR_IMR_RXOK_HP;
  588. if (ah->config.rx_intr_mitigation)
  589. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  590. else
  591. imr_reg |= AR_IMR_RXOK_LP;
  592. } else {
  593. if (ah->config.rx_intr_mitigation)
  594. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  595. else
  596. imr_reg |= AR_IMR_RXOK;
  597. }
  598. if (ah->config.tx_intr_mitigation)
  599. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  600. else
  601. imr_reg |= AR_IMR_TXOK;
  602. if (opmode == NL80211_IFTYPE_AP)
  603. imr_reg |= AR_IMR_MIB;
  604. ENABLE_REGWRITE_BUFFER(ah);
  605. REG_WRITE(ah, AR_IMR, imr_reg);
  606. ah->imrs2_reg |= AR_IMR_S2_GTT;
  607. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  608. if (!AR_SREV_9100(ah)) {
  609. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  610. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  611. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  612. }
  613. REGWRITE_BUFFER_FLUSH(ah);
  614. if (AR_SREV_9300_20_OR_LATER(ah)) {
  615. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  616. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  617. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  618. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  619. }
  620. }
  621. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  622. {
  623. u32 val = ath9k_hw_mac_to_clks(ah, us);
  624. val = min(val, (u32) 0xFFFF);
  625. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  626. }
  627. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  628. {
  629. u32 val = ath9k_hw_mac_to_clks(ah, us);
  630. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  631. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  632. }
  633. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  634. {
  635. u32 val = ath9k_hw_mac_to_clks(ah, us);
  636. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  637. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  638. }
  639. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  640. {
  641. if (tu > 0xFFFF) {
  642. ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
  643. "bad global tx timeout %u\n", tu);
  644. ah->globaltxtimeout = (u32) -1;
  645. return false;
  646. } else {
  647. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  648. ah->globaltxtimeout = tu;
  649. return true;
  650. }
  651. }
  652. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  653. {
  654. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  655. int acktimeout;
  656. int slottime;
  657. int sifstime;
  658. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  659. ah->misc_mode);
  660. if (ah->misc_mode != 0)
  661. REG_WRITE(ah, AR_PCU_MISC,
  662. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  663. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  664. sifstime = 16;
  665. else
  666. sifstime = 10;
  667. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  668. slottime = ah->slottime + 3 * ah->coverage_class;
  669. acktimeout = slottime + sifstime;
  670. /*
  671. * Workaround for early ACK timeouts, add an offset to match the
  672. * initval's 64us ack timeout value.
  673. * This was initially only meant to work around an issue with delayed
  674. * BA frames in some implementations, but it has been found to fix ACK
  675. * timeout issues in other cases as well.
  676. */
  677. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  678. acktimeout += 64 - sifstime - ah->slottime;
  679. ath9k_hw_setslottime(ah, slottime);
  680. ath9k_hw_set_ack_timeout(ah, acktimeout);
  681. ath9k_hw_set_cts_timeout(ah, acktimeout);
  682. if (ah->globaltxtimeout != (u32) -1)
  683. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  684. }
  685. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  686. void ath9k_hw_deinit(struct ath_hw *ah)
  687. {
  688. struct ath_common *common = ath9k_hw_common(ah);
  689. if (common->state < ATH_HW_INITIALIZED)
  690. goto free_hw;
  691. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  692. free_hw:
  693. ath9k_hw_rf_free_ext_banks(ah);
  694. }
  695. EXPORT_SYMBOL(ath9k_hw_deinit);
  696. /*******/
  697. /* INI */
  698. /*******/
  699. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  700. {
  701. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  702. if (IS_CHAN_B(chan))
  703. ctl |= CTL_11B;
  704. else if (IS_CHAN_G(chan))
  705. ctl |= CTL_11G;
  706. else
  707. ctl |= CTL_11A;
  708. return ctl;
  709. }
  710. /****************************************/
  711. /* Reset and Channel Switching Routines */
  712. /****************************************/
  713. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  714. {
  715. struct ath_common *common = ath9k_hw_common(ah);
  716. u32 regval;
  717. ENABLE_REGWRITE_BUFFER(ah);
  718. /*
  719. * set AHB_MODE not to do cacheline prefetches
  720. */
  721. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  722. regval = REG_READ(ah, AR_AHB_MODE);
  723. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  724. }
  725. /*
  726. * let mac dma reads be in 128 byte chunks
  727. */
  728. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  729. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  730. REGWRITE_BUFFER_FLUSH(ah);
  731. /*
  732. * Restore TX Trigger Level to its pre-reset value.
  733. * The initial value depends on whether aggregation is enabled, and is
  734. * adjusted whenever underruns are detected.
  735. */
  736. if (!AR_SREV_9300_20_OR_LATER(ah))
  737. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  738. ENABLE_REGWRITE_BUFFER(ah);
  739. /*
  740. * let mac dma writes be in 128 byte chunks
  741. */
  742. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  743. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  744. /*
  745. * Setup receive FIFO threshold to hold off TX activities
  746. */
  747. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  748. if (AR_SREV_9300_20_OR_LATER(ah)) {
  749. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  750. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  751. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  752. ah->caps.rx_status_len);
  753. }
  754. /*
  755. * reduce the number of usable entries in PCU TXBUF to avoid
  756. * wrap around issues.
  757. */
  758. if (AR_SREV_9285(ah)) {
  759. /* For AR9285 the number of Fifos are reduced to half.
  760. * So set the usable tx buf size also to half to
  761. * avoid data/delimiter underruns
  762. */
  763. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  764. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  765. } else if (!AR_SREV_9271(ah)) {
  766. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  767. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  768. }
  769. REGWRITE_BUFFER_FLUSH(ah);
  770. if (AR_SREV_9300_20_OR_LATER(ah))
  771. ath9k_hw_reset_txstatus_ring(ah);
  772. }
  773. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  774. {
  775. u32 val;
  776. val = REG_READ(ah, AR_STA_ID1);
  777. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  778. switch (opmode) {
  779. case NL80211_IFTYPE_AP:
  780. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  781. | AR_STA_ID1_KSRCH_MODE);
  782. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  783. break;
  784. case NL80211_IFTYPE_ADHOC:
  785. case NL80211_IFTYPE_MESH_POINT:
  786. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  787. | AR_STA_ID1_KSRCH_MODE);
  788. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  789. break;
  790. case NL80211_IFTYPE_STATION:
  791. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  792. break;
  793. default:
  794. if (ah->is_monitoring)
  795. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  796. break;
  797. }
  798. }
  799. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  800. u32 *coef_mantissa, u32 *coef_exponent)
  801. {
  802. u32 coef_exp, coef_man;
  803. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  804. if ((coef_scaled >> coef_exp) & 0x1)
  805. break;
  806. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  807. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  808. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  809. *coef_exponent = coef_exp - 16;
  810. }
  811. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  812. {
  813. u32 rst_flags;
  814. u32 tmpReg;
  815. if (AR_SREV_9100(ah)) {
  816. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  817. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  818. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  819. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  820. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  821. }
  822. ENABLE_REGWRITE_BUFFER(ah);
  823. if (AR_SREV_9300_20_OR_LATER(ah)) {
  824. REG_WRITE(ah, AR_WA, ah->WARegVal);
  825. udelay(10);
  826. }
  827. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  828. AR_RTC_FORCE_WAKE_ON_INT);
  829. if (AR_SREV_9100(ah)) {
  830. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  831. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  832. } else {
  833. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  834. if (tmpReg &
  835. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  836. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  837. u32 val;
  838. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  839. val = AR_RC_HOSTIF;
  840. if (!AR_SREV_9300_20_OR_LATER(ah))
  841. val |= AR_RC_AHB;
  842. REG_WRITE(ah, AR_RC, val);
  843. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  844. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  845. rst_flags = AR_RTC_RC_MAC_WARM;
  846. if (type == ATH9K_RESET_COLD)
  847. rst_flags |= AR_RTC_RC_MAC_COLD;
  848. }
  849. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  850. REGWRITE_BUFFER_FLUSH(ah);
  851. udelay(50);
  852. REG_WRITE(ah, AR_RTC_RC, 0);
  853. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  854. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  855. "RTC stuck in MAC reset\n");
  856. return false;
  857. }
  858. if (!AR_SREV_9100(ah))
  859. REG_WRITE(ah, AR_RC, 0);
  860. if (AR_SREV_9100(ah))
  861. udelay(50);
  862. return true;
  863. }
  864. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  865. {
  866. ENABLE_REGWRITE_BUFFER(ah);
  867. if (AR_SREV_9300_20_OR_LATER(ah)) {
  868. REG_WRITE(ah, AR_WA, ah->WARegVal);
  869. udelay(10);
  870. }
  871. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  872. AR_RTC_FORCE_WAKE_ON_INT);
  873. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  874. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  875. REG_WRITE(ah, AR_RTC_RESET, 0);
  876. udelay(2);
  877. REGWRITE_BUFFER_FLUSH(ah);
  878. if (!AR_SREV_9300_20_OR_LATER(ah))
  879. udelay(2);
  880. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  881. REG_WRITE(ah, AR_RC, 0);
  882. REG_WRITE(ah, AR_RTC_RESET, 1);
  883. if (!ath9k_hw_wait(ah,
  884. AR_RTC_STATUS,
  885. AR_RTC_STATUS_M,
  886. AR_RTC_STATUS_ON,
  887. AH_WAIT_TIMEOUT)) {
  888. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  889. "RTC not waking up\n");
  890. return false;
  891. }
  892. ath9k_hw_read_revisions(ah);
  893. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  894. }
  895. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  896. {
  897. if (AR_SREV_9300_20_OR_LATER(ah)) {
  898. REG_WRITE(ah, AR_WA, ah->WARegVal);
  899. udelay(10);
  900. }
  901. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  902. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  903. switch (type) {
  904. case ATH9K_RESET_POWER_ON:
  905. return ath9k_hw_set_reset_power_on(ah);
  906. case ATH9K_RESET_WARM:
  907. case ATH9K_RESET_COLD:
  908. return ath9k_hw_set_reset(ah, type);
  909. default:
  910. return false;
  911. }
  912. }
  913. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  914. struct ath9k_channel *chan)
  915. {
  916. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  917. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  918. return false;
  919. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  920. return false;
  921. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  922. return false;
  923. ah->chip_fullsleep = false;
  924. ath9k_hw_init_pll(ah, chan);
  925. ath9k_hw_set_rfmode(ah, chan);
  926. return true;
  927. }
  928. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  929. struct ath9k_channel *chan)
  930. {
  931. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  932. struct ath_common *common = ath9k_hw_common(ah);
  933. struct ieee80211_channel *channel = chan->chan;
  934. u32 qnum;
  935. int r;
  936. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  937. if (ath9k_hw_numtxpending(ah, qnum)) {
  938. ath_print(common, ATH_DBG_QUEUE,
  939. "Transmit frames pending on "
  940. "queue %d\n", qnum);
  941. return false;
  942. }
  943. }
  944. if (!ath9k_hw_rfbus_req(ah)) {
  945. ath_print(common, ATH_DBG_FATAL,
  946. "Could not kill baseband RX\n");
  947. return false;
  948. }
  949. ath9k_hw_set_channel_regs(ah, chan);
  950. r = ath9k_hw_rf_set_freq(ah, chan);
  951. if (r) {
  952. ath_print(common, ATH_DBG_FATAL,
  953. "Failed to set channel\n");
  954. return false;
  955. }
  956. ath9k_hw_set_clockrate(ah);
  957. ah->eep_ops->set_txpower(ah, chan,
  958. ath9k_regd_get_ctl(regulatory, chan),
  959. channel->max_antenna_gain * 2,
  960. channel->max_power * 2,
  961. min((u32) MAX_RATE_POWER,
  962. (u32) regulatory->power_limit));
  963. ath9k_hw_rfbus_done(ah);
  964. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  965. ath9k_hw_set_delta_slope(ah, chan);
  966. ath9k_hw_spur_mitigate_freq(ah, chan);
  967. return true;
  968. }
  969. bool ath9k_hw_check_alive(struct ath_hw *ah)
  970. {
  971. int count = 50;
  972. u32 reg;
  973. if (AR_SREV_9285_12_OR_LATER(ah))
  974. return true;
  975. do {
  976. reg = REG_READ(ah, AR_OBS_BUS_1);
  977. if ((reg & 0x7E7FFFEF) == 0x00702400)
  978. continue;
  979. switch (reg & 0x7E000B00) {
  980. case 0x1E000000:
  981. case 0x52000B00:
  982. case 0x18000B00:
  983. continue;
  984. default:
  985. return true;
  986. }
  987. } while (count-- > 0);
  988. return false;
  989. }
  990. EXPORT_SYMBOL(ath9k_hw_check_alive);
  991. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  992. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  993. {
  994. struct ath_common *common = ath9k_hw_common(ah);
  995. u32 saveLedState;
  996. struct ath9k_channel *curchan = ah->curchan;
  997. u32 saveDefAntenna;
  998. u32 macStaId1;
  999. u64 tsf = 0;
  1000. int i, r;
  1001. ah->txchainmask = common->tx_chainmask;
  1002. ah->rxchainmask = common->rx_chainmask;
  1003. if (!ah->chip_fullsleep) {
  1004. ath9k_hw_abortpcurecv(ah);
  1005. if (!ath9k_hw_stopdmarecv(ah)) {
  1006. ath_print(common, ATH_DBG_XMIT,
  1007. "Failed to stop receive dma\n");
  1008. bChannelChange = false;
  1009. }
  1010. }
  1011. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1012. return -EIO;
  1013. if (curchan && !ah->chip_fullsleep)
  1014. ath9k_hw_getnf(ah, curchan);
  1015. ah->caldata = caldata;
  1016. if (caldata &&
  1017. (chan->channel != caldata->channel ||
  1018. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1019. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1020. /* Operating channel changed, reset channel calibration data */
  1021. memset(caldata, 0, sizeof(*caldata));
  1022. ath9k_init_nfcal_hist_buffer(ah, chan);
  1023. }
  1024. if (bChannelChange &&
  1025. (ah->chip_fullsleep != true) &&
  1026. (ah->curchan != NULL) &&
  1027. (chan->channel != ah->curchan->channel) &&
  1028. ((chan->channelFlags & CHANNEL_ALL) ==
  1029. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1030. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1031. if (ath9k_hw_channel_change(ah, chan)) {
  1032. ath9k_hw_loadnf(ah, ah->curchan);
  1033. ath9k_hw_start_nfcal(ah, true);
  1034. if (AR_SREV_9271(ah))
  1035. ar9002_hw_load_ani_reg(ah, chan);
  1036. return 0;
  1037. }
  1038. }
  1039. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1040. if (saveDefAntenna == 0)
  1041. saveDefAntenna = 1;
  1042. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1043. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1044. if (AR_SREV_9100(ah) ||
  1045. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1046. tsf = ath9k_hw_gettsf64(ah);
  1047. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1048. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1049. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1050. ath9k_hw_mark_phy_inactive(ah);
  1051. /* Only required on the first reset */
  1052. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1053. REG_WRITE(ah,
  1054. AR9271_RESET_POWER_DOWN_CONTROL,
  1055. AR9271_RADIO_RF_RST);
  1056. udelay(50);
  1057. }
  1058. if (!ath9k_hw_chip_reset(ah, chan)) {
  1059. ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
  1060. return -EINVAL;
  1061. }
  1062. /* Only required on the first reset */
  1063. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1064. ah->htc_reset_init = false;
  1065. REG_WRITE(ah,
  1066. AR9271_RESET_POWER_DOWN_CONTROL,
  1067. AR9271_GATE_MAC_CTL);
  1068. udelay(50);
  1069. }
  1070. /* Restore TSF */
  1071. if (tsf)
  1072. ath9k_hw_settsf64(ah, tsf);
  1073. if (AR_SREV_9280_20_OR_LATER(ah))
  1074. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1075. if (!AR_SREV_9300_20_OR_LATER(ah))
  1076. ar9002_hw_enable_async_fifo(ah);
  1077. r = ath9k_hw_process_ini(ah, chan);
  1078. if (r)
  1079. return r;
  1080. /*
  1081. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1082. * right after the chip reset. When that happens, write a new
  1083. * value after the initvals have been applied, with an offset
  1084. * based on measured time difference
  1085. */
  1086. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1087. tsf += 1500;
  1088. ath9k_hw_settsf64(ah, tsf);
  1089. }
  1090. /* Setup MFP options for CCMP */
  1091. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1092. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1093. * frames when constructing CCMP AAD. */
  1094. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1095. 0xc7ff);
  1096. ah->sw_mgmt_crypto = false;
  1097. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1098. /* Disable hardware crypto for management frames */
  1099. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1100. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1101. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1102. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1103. ah->sw_mgmt_crypto = true;
  1104. } else
  1105. ah->sw_mgmt_crypto = true;
  1106. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1107. ath9k_hw_set_delta_slope(ah, chan);
  1108. ath9k_hw_spur_mitigate_freq(ah, chan);
  1109. ah->eep_ops->set_board_values(ah, chan);
  1110. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1111. ENABLE_REGWRITE_BUFFER(ah);
  1112. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1113. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1114. | macStaId1
  1115. | AR_STA_ID1_RTS_USE_DEF
  1116. | (ah->config.
  1117. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1118. | ah->sta_id1_defaults);
  1119. ath_hw_setbssidmask(common);
  1120. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1121. ath9k_hw_write_associd(ah);
  1122. REG_WRITE(ah, AR_ISR, ~0);
  1123. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1124. REGWRITE_BUFFER_FLUSH(ah);
  1125. r = ath9k_hw_rf_set_freq(ah, chan);
  1126. if (r)
  1127. return r;
  1128. ath9k_hw_set_clockrate(ah);
  1129. ENABLE_REGWRITE_BUFFER(ah);
  1130. for (i = 0; i < AR_NUM_DCU; i++)
  1131. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1132. REGWRITE_BUFFER_FLUSH(ah);
  1133. ah->intr_txqs = 0;
  1134. for (i = 0; i < ah->caps.total_queues; i++)
  1135. ath9k_hw_resettxqueue(ah, i);
  1136. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1137. ath9k_hw_ani_cache_ini_regs(ah);
  1138. ath9k_hw_init_qos(ah);
  1139. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1140. ath9k_enable_rfkill(ah);
  1141. ath9k_hw_init_global_settings(ah);
  1142. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1143. ar9002_hw_update_async_fifo(ah);
  1144. ar9002_hw_enable_wep_aggregation(ah);
  1145. }
  1146. REG_WRITE(ah, AR_STA_ID1,
  1147. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1148. ath9k_hw_set_dma(ah);
  1149. REG_WRITE(ah, AR_OBS, 8);
  1150. if (ah->config.rx_intr_mitigation) {
  1151. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1152. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1153. }
  1154. if (ah->config.tx_intr_mitigation) {
  1155. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1156. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1157. }
  1158. ath9k_hw_init_bb(ah, chan);
  1159. if (!ath9k_hw_init_cal(ah, chan))
  1160. return -EIO;
  1161. ENABLE_REGWRITE_BUFFER(ah);
  1162. ath9k_hw_restore_chainmask(ah);
  1163. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1164. REGWRITE_BUFFER_FLUSH(ah);
  1165. /*
  1166. * For big endian systems turn on swapping for descriptors
  1167. */
  1168. if (AR_SREV_9100(ah)) {
  1169. u32 mask;
  1170. mask = REG_READ(ah, AR_CFG);
  1171. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1172. ath_print(common, ATH_DBG_RESET,
  1173. "CFG Byte Swap Set 0x%x\n", mask);
  1174. } else {
  1175. mask =
  1176. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1177. REG_WRITE(ah, AR_CFG, mask);
  1178. ath_print(common, ATH_DBG_RESET,
  1179. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1180. }
  1181. } else {
  1182. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1183. /* Configure AR9271 target WLAN */
  1184. if (AR_SREV_9271(ah))
  1185. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1186. else
  1187. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1188. }
  1189. #ifdef __BIG_ENDIAN
  1190. else
  1191. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1192. #endif
  1193. }
  1194. if (ah->btcoex_hw.enabled)
  1195. ath9k_hw_btcoex_enable(ah);
  1196. if (AR_SREV_9300_20_OR_LATER(ah))
  1197. ar9003_hw_bb_watchdog_config(ah);
  1198. return 0;
  1199. }
  1200. EXPORT_SYMBOL(ath9k_hw_reset);
  1201. /******************************/
  1202. /* Power Management (Chipset) */
  1203. /******************************/
  1204. /*
  1205. * Notify Power Mgt is disabled in self-generated frames.
  1206. * If requested, force chip to sleep.
  1207. */
  1208. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1209. {
  1210. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1211. if (setChip) {
  1212. /*
  1213. * Clear the RTC force wake bit to allow the
  1214. * mac to go to sleep.
  1215. */
  1216. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1217. AR_RTC_FORCE_WAKE_EN);
  1218. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1219. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1220. /* Shutdown chip. Active low */
  1221. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1222. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1223. AR_RTC_RESET_EN);
  1224. }
  1225. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1226. if (AR_SREV_9300_20_OR_LATER(ah))
  1227. REG_WRITE(ah, AR_WA,
  1228. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1229. }
  1230. /*
  1231. * Notify Power Management is enabled in self-generating
  1232. * frames. If request, set power mode of chip to
  1233. * auto/normal. Duration in units of 128us (1/8 TU).
  1234. */
  1235. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1236. {
  1237. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1238. if (setChip) {
  1239. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1240. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1241. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1242. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1243. AR_RTC_FORCE_WAKE_ON_INT);
  1244. } else {
  1245. /*
  1246. * Clear the RTC force wake bit to allow the
  1247. * mac to go to sleep.
  1248. */
  1249. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1250. AR_RTC_FORCE_WAKE_EN);
  1251. }
  1252. }
  1253. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1254. if (AR_SREV_9300_20_OR_LATER(ah))
  1255. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1256. }
  1257. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1258. {
  1259. u32 val;
  1260. int i;
  1261. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1262. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1263. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1264. udelay(10);
  1265. }
  1266. if (setChip) {
  1267. if ((REG_READ(ah, AR_RTC_STATUS) &
  1268. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1269. if (ath9k_hw_set_reset_reg(ah,
  1270. ATH9K_RESET_POWER_ON) != true) {
  1271. return false;
  1272. }
  1273. if (!AR_SREV_9300_20_OR_LATER(ah))
  1274. ath9k_hw_init_pll(ah, NULL);
  1275. }
  1276. if (AR_SREV_9100(ah))
  1277. REG_SET_BIT(ah, AR_RTC_RESET,
  1278. AR_RTC_RESET_EN);
  1279. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1280. AR_RTC_FORCE_WAKE_EN);
  1281. udelay(50);
  1282. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1283. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1284. if (val == AR_RTC_STATUS_ON)
  1285. break;
  1286. udelay(50);
  1287. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1288. AR_RTC_FORCE_WAKE_EN);
  1289. }
  1290. if (i == 0) {
  1291. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1292. "Failed to wakeup in %uus\n",
  1293. POWER_UP_TIME / 20);
  1294. return false;
  1295. }
  1296. }
  1297. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1298. return true;
  1299. }
  1300. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1301. {
  1302. struct ath_common *common = ath9k_hw_common(ah);
  1303. int status = true, setChip = true;
  1304. static const char *modes[] = {
  1305. "AWAKE",
  1306. "FULL-SLEEP",
  1307. "NETWORK SLEEP",
  1308. "UNDEFINED"
  1309. };
  1310. if (ah->power_mode == mode)
  1311. return status;
  1312. ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
  1313. modes[ah->power_mode], modes[mode]);
  1314. switch (mode) {
  1315. case ATH9K_PM_AWAKE:
  1316. status = ath9k_hw_set_power_awake(ah, setChip);
  1317. break;
  1318. case ATH9K_PM_FULL_SLEEP:
  1319. ath9k_set_power_sleep(ah, setChip);
  1320. ah->chip_fullsleep = true;
  1321. break;
  1322. case ATH9K_PM_NETWORK_SLEEP:
  1323. ath9k_set_power_network_sleep(ah, setChip);
  1324. break;
  1325. default:
  1326. ath_print(common, ATH_DBG_FATAL,
  1327. "Unknown power mode %u\n", mode);
  1328. return false;
  1329. }
  1330. ah->power_mode = mode;
  1331. return status;
  1332. }
  1333. EXPORT_SYMBOL(ath9k_hw_setpower);
  1334. /*******************/
  1335. /* Beacon Handling */
  1336. /*******************/
  1337. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1338. {
  1339. int flags = 0;
  1340. ah->beacon_interval = beacon_period;
  1341. ENABLE_REGWRITE_BUFFER(ah);
  1342. switch (ah->opmode) {
  1343. case NL80211_IFTYPE_STATION:
  1344. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1345. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  1346. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  1347. flags |= AR_TBTT_TIMER_EN;
  1348. break;
  1349. case NL80211_IFTYPE_ADHOC:
  1350. case NL80211_IFTYPE_MESH_POINT:
  1351. REG_SET_BIT(ah, AR_TXCFG,
  1352. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1353. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  1354. TU_TO_USEC(next_beacon +
  1355. (ah->atim_window ? ah->
  1356. atim_window : 1)));
  1357. flags |= AR_NDP_TIMER_EN;
  1358. case NL80211_IFTYPE_AP:
  1359. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1360. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  1361. TU_TO_USEC(next_beacon -
  1362. ah->config.
  1363. dma_beacon_response_time));
  1364. REG_WRITE(ah, AR_NEXT_SWBA,
  1365. TU_TO_USEC(next_beacon -
  1366. ah->config.
  1367. sw_beacon_response_time));
  1368. flags |=
  1369. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1370. break;
  1371. default:
  1372. if (ah->is_monitoring) {
  1373. REG_WRITE(ah, AR_NEXT_TBTT_TIMER,
  1374. TU_TO_USEC(next_beacon));
  1375. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  1376. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  1377. flags |= AR_TBTT_TIMER_EN;
  1378. break;
  1379. }
  1380. ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1381. "%s: unsupported opmode: %d\n",
  1382. __func__, ah->opmode);
  1383. return;
  1384. break;
  1385. }
  1386. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1387. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1388. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  1389. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  1390. REGWRITE_BUFFER_FLUSH(ah);
  1391. beacon_period &= ~ATH9K_BEACON_ENA;
  1392. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  1393. ath9k_hw_reset_tsf(ah);
  1394. }
  1395. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1396. }
  1397. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1398. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1399. const struct ath9k_beacon_state *bs)
  1400. {
  1401. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1402. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1403. struct ath_common *common = ath9k_hw_common(ah);
  1404. ENABLE_REGWRITE_BUFFER(ah);
  1405. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1406. REG_WRITE(ah, AR_BEACON_PERIOD,
  1407. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1408. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1409. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1410. REGWRITE_BUFFER_FLUSH(ah);
  1411. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1412. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1413. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1414. if (bs->bs_sleepduration > beaconintval)
  1415. beaconintval = bs->bs_sleepduration;
  1416. dtimperiod = bs->bs_dtimperiod;
  1417. if (bs->bs_sleepduration > dtimperiod)
  1418. dtimperiod = bs->bs_sleepduration;
  1419. if (beaconintval == dtimperiod)
  1420. nextTbtt = bs->bs_nextdtim;
  1421. else
  1422. nextTbtt = bs->bs_nexttbtt;
  1423. ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1424. ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1425. ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1426. ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1427. ENABLE_REGWRITE_BUFFER(ah);
  1428. REG_WRITE(ah, AR_NEXT_DTIM,
  1429. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1430. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1431. REG_WRITE(ah, AR_SLEEP1,
  1432. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1433. | AR_SLEEP1_ASSUME_DTIM);
  1434. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1435. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1436. else
  1437. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1438. REG_WRITE(ah, AR_SLEEP2,
  1439. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1440. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1441. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1442. REGWRITE_BUFFER_FLUSH(ah);
  1443. REG_SET_BIT(ah, AR_TIMER_MODE,
  1444. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1445. AR_DTIM_TIMER_EN);
  1446. /* TSF Out of Range Threshold */
  1447. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1448. }
  1449. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1450. /*******************/
  1451. /* HW Capabilities */
  1452. /*******************/
  1453. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1454. {
  1455. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1456. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1457. struct ath_common *common = ath9k_hw_common(ah);
  1458. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1459. u16 capField = 0, eeval;
  1460. u8 ant_div_ctl1;
  1461. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1462. regulatory->current_rd = eeval;
  1463. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1464. if (AR_SREV_9285_12_OR_LATER(ah))
  1465. eeval |= AR9285_RDEXT_DEFAULT;
  1466. regulatory->current_rd_ext = eeval;
  1467. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1468. if (ah->opmode != NL80211_IFTYPE_AP &&
  1469. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1470. if (regulatory->current_rd == 0x64 ||
  1471. regulatory->current_rd == 0x65)
  1472. regulatory->current_rd += 5;
  1473. else if (regulatory->current_rd == 0x41)
  1474. regulatory->current_rd = 0x43;
  1475. ath_print(common, ATH_DBG_REGULATORY,
  1476. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1477. }
  1478. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1479. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1480. ath_print(common, ATH_DBG_FATAL,
  1481. "no band has been marked as supported in EEPROM.\n");
  1482. return -EINVAL;
  1483. }
  1484. if (eeval & AR5416_OPFLAGS_11A)
  1485. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1486. if (eeval & AR5416_OPFLAGS_11G)
  1487. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1488. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1489. /*
  1490. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1491. * the EEPROM.
  1492. */
  1493. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1494. !(eeval & AR5416_OPFLAGS_11A) &&
  1495. !(AR_SREV_9271(ah)))
  1496. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1497. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1498. else
  1499. /* Use rx_chainmask from EEPROM. */
  1500. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1501. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1502. pCap->low_2ghz_chan = 2312;
  1503. pCap->high_2ghz_chan = 2732;
  1504. pCap->low_5ghz_chan = 4920;
  1505. pCap->high_5ghz_chan = 6100;
  1506. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1507. if (ah->config.ht_enable)
  1508. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1509. else
  1510. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1511. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  1512. pCap->total_queues =
  1513. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  1514. else
  1515. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  1516. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  1517. pCap->keycache_size =
  1518. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  1519. else
  1520. pCap->keycache_size = AR_KEYTABLE_SIZE;
  1521. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1522. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1523. else
  1524. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1525. if (AR_SREV_9271(ah))
  1526. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1527. else if (AR_DEVID_7010(ah))
  1528. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1529. else if (AR_SREV_9285_12_OR_LATER(ah))
  1530. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1531. else if (AR_SREV_9280_20_OR_LATER(ah))
  1532. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1533. else
  1534. pCap->num_gpio_pins = AR_NUM_GPIO;
  1535. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1536. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1537. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1538. } else {
  1539. pCap->rts_aggr_limit = (8 * 1024);
  1540. }
  1541. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  1542. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1543. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1544. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1545. ah->rfkill_gpio =
  1546. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1547. ah->rfkill_polarity =
  1548. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1549. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1550. }
  1551. #endif
  1552. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1553. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1554. else
  1555. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1556. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1557. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1558. else
  1559. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1560. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  1561. pCap->reg_cap =
  1562. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1563. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  1564. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  1565. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  1566. } else {
  1567. pCap->reg_cap =
  1568. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1569. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  1570. }
  1571. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  1572. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  1573. AR_SREV_5416(ah))
  1574. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  1575. pCap->num_antcfg_5ghz =
  1576. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  1577. pCap->num_antcfg_2ghz =
  1578. ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  1579. if (AR_SREV_9280_20_OR_LATER(ah) &&
  1580. ath9k_hw_btcoex_supported(ah)) {
  1581. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1582. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1583. if (AR_SREV_9285(ah)) {
  1584. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1585. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1586. } else {
  1587. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1588. }
  1589. } else {
  1590. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1591. }
  1592. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1593. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
  1594. ATH9K_HW_CAP_FASTCLOCK;
  1595. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1596. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1597. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1598. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1599. pCap->txs_len = sizeof(struct ar9003_txs);
  1600. if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1601. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1602. } else {
  1603. pCap->tx_desc_len = sizeof(struct ath_desc);
  1604. if (AR_SREV_9280_20(ah) &&
  1605. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1606. AR5416_EEP_MINOR_VER_16) ||
  1607. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1608. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1609. }
  1610. if (AR_SREV_9300_20_OR_LATER(ah))
  1611. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1612. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1613. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1614. if (AR_SREV_9285(ah))
  1615. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1616. ant_div_ctl1 =
  1617. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1618. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1619. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1620. }
  1621. return 0;
  1622. }
  1623. /****************************/
  1624. /* GPIO / RFKILL / Antennae */
  1625. /****************************/
  1626. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1627. u32 gpio, u32 type)
  1628. {
  1629. int addr;
  1630. u32 gpio_shift, tmp;
  1631. if (gpio > 11)
  1632. addr = AR_GPIO_OUTPUT_MUX3;
  1633. else if (gpio > 5)
  1634. addr = AR_GPIO_OUTPUT_MUX2;
  1635. else
  1636. addr = AR_GPIO_OUTPUT_MUX1;
  1637. gpio_shift = (gpio % 6) * 5;
  1638. if (AR_SREV_9280_20_OR_LATER(ah)
  1639. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1640. REG_RMW(ah, addr, (type << gpio_shift),
  1641. (0x1f << gpio_shift));
  1642. } else {
  1643. tmp = REG_READ(ah, addr);
  1644. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1645. tmp &= ~(0x1f << gpio_shift);
  1646. tmp |= (type << gpio_shift);
  1647. REG_WRITE(ah, addr, tmp);
  1648. }
  1649. }
  1650. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1651. {
  1652. u32 gpio_shift;
  1653. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1654. if (AR_DEVID_7010(ah)) {
  1655. gpio_shift = gpio;
  1656. REG_RMW(ah, AR7010_GPIO_OE,
  1657. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1658. (AR7010_GPIO_OE_MASK << gpio_shift));
  1659. return;
  1660. }
  1661. gpio_shift = gpio << 1;
  1662. REG_RMW(ah,
  1663. AR_GPIO_OE_OUT,
  1664. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1665. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1666. }
  1667. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1668. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1669. {
  1670. #define MS_REG_READ(x, y) \
  1671. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1672. if (gpio >= ah->caps.num_gpio_pins)
  1673. return 0xffffffff;
  1674. if (AR_DEVID_7010(ah)) {
  1675. u32 val;
  1676. val = REG_READ(ah, AR7010_GPIO_IN);
  1677. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1678. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1679. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1680. AR_GPIO_BIT(gpio)) != 0;
  1681. else if (AR_SREV_9271(ah))
  1682. return MS_REG_READ(AR9271, gpio) != 0;
  1683. else if (AR_SREV_9287_11_OR_LATER(ah))
  1684. return MS_REG_READ(AR9287, gpio) != 0;
  1685. else if (AR_SREV_9285_12_OR_LATER(ah))
  1686. return MS_REG_READ(AR9285, gpio) != 0;
  1687. else if (AR_SREV_9280_20_OR_LATER(ah))
  1688. return MS_REG_READ(AR928X, gpio) != 0;
  1689. else
  1690. return MS_REG_READ(AR, gpio) != 0;
  1691. }
  1692. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1693. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1694. u32 ah_signal_type)
  1695. {
  1696. u32 gpio_shift;
  1697. if (AR_DEVID_7010(ah)) {
  1698. gpio_shift = gpio;
  1699. REG_RMW(ah, AR7010_GPIO_OE,
  1700. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1701. (AR7010_GPIO_OE_MASK << gpio_shift));
  1702. return;
  1703. }
  1704. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1705. gpio_shift = 2 * gpio;
  1706. REG_RMW(ah,
  1707. AR_GPIO_OE_OUT,
  1708. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1709. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1710. }
  1711. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1712. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1713. {
  1714. if (AR_DEVID_7010(ah)) {
  1715. val = val ? 0 : 1;
  1716. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1717. AR_GPIO_BIT(gpio));
  1718. return;
  1719. }
  1720. if (AR_SREV_9271(ah))
  1721. val = ~val;
  1722. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1723. AR_GPIO_BIT(gpio));
  1724. }
  1725. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1726. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1727. {
  1728. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1729. }
  1730. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1731. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1732. {
  1733. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1734. }
  1735. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1736. /*********************/
  1737. /* General Operation */
  1738. /*********************/
  1739. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1740. {
  1741. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1742. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1743. if (phybits & AR_PHY_ERR_RADAR)
  1744. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1745. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1746. bits |= ATH9K_RX_FILTER_PHYERR;
  1747. return bits;
  1748. }
  1749. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1750. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1751. {
  1752. u32 phybits;
  1753. ENABLE_REGWRITE_BUFFER(ah);
  1754. REG_WRITE(ah, AR_RX_FILTER, bits);
  1755. phybits = 0;
  1756. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1757. phybits |= AR_PHY_ERR_RADAR;
  1758. if (bits & ATH9K_RX_FILTER_PHYERR)
  1759. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1760. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1761. if (phybits)
  1762. REG_WRITE(ah, AR_RXCFG,
  1763. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  1764. else
  1765. REG_WRITE(ah, AR_RXCFG,
  1766. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  1767. REGWRITE_BUFFER_FLUSH(ah);
  1768. }
  1769. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1770. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1771. {
  1772. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1773. return false;
  1774. ath9k_hw_init_pll(ah, NULL);
  1775. return true;
  1776. }
  1777. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1778. bool ath9k_hw_disable(struct ath_hw *ah)
  1779. {
  1780. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1781. return false;
  1782. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1783. return false;
  1784. ath9k_hw_init_pll(ah, NULL);
  1785. return true;
  1786. }
  1787. EXPORT_SYMBOL(ath9k_hw_disable);
  1788. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
  1789. {
  1790. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1791. struct ath9k_channel *chan = ah->curchan;
  1792. struct ieee80211_channel *channel = chan->chan;
  1793. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1794. ah->eep_ops->set_txpower(ah, chan,
  1795. ath9k_regd_get_ctl(regulatory, chan),
  1796. channel->max_antenna_gain * 2,
  1797. channel->max_power * 2,
  1798. min((u32) MAX_RATE_POWER,
  1799. (u32) regulatory->power_limit));
  1800. }
  1801. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1802. void ath9k_hw_setopmode(struct ath_hw *ah)
  1803. {
  1804. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1805. }
  1806. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1807. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1808. {
  1809. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1810. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1811. }
  1812. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1813. void ath9k_hw_write_associd(struct ath_hw *ah)
  1814. {
  1815. struct ath_common *common = ath9k_hw_common(ah);
  1816. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1817. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1818. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1819. }
  1820. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1821. #define ATH9K_MAX_TSF_READ 10
  1822. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1823. {
  1824. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1825. int i;
  1826. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1827. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1828. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1829. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1830. if (tsf_upper2 == tsf_upper1)
  1831. break;
  1832. tsf_upper1 = tsf_upper2;
  1833. }
  1834. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1835. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1836. }
  1837. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1838. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1839. {
  1840. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1841. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1842. }
  1843. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1844. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1845. {
  1846. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1847. AH_TSF_WRITE_TIMEOUT))
  1848. ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
  1849. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1850. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1851. }
  1852. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1853. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1854. {
  1855. if (setting)
  1856. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1857. else
  1858. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1859. }
  1860. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1861. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1862. {
  1863. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1864. u32 macmode;
  1865. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1866. macmode = AR_2040_JOINED_RX_CLEAR;
  1867. else
  1868. macmode = 0;
  1869. REG_WRITE(ah, AR_2040_MODE, macmode);
  1870. }
  1871. /* HW Generic timers configuration */
  1872. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1873. {
  1874. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1875. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1876. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1877. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1878. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1879. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1880. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1881. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1882. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1883. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1884. AR_NDP2_TIMER_MODE, 0x0002},
  1885. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1886. AR_NDP2_TIMER_MODE, 0x0004},
  1887. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1888. AR_NDP2_TIMER_MODE, 0x0008},
  1889. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1890. AR_NDP2_TIMER_MODE, 0x0010},
  1891. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1892. AR_NDP2_TIMER_MODE, 0x0020},
  1893. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1894. AR_NDP2_TIMER_MODE, 0x0040},
  1895. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1896. AR_NDP2_TIMER_MODE, 0x0080}
  1897. };
  1898. /* HW generic timer primitives */
  1899. /* compute and clear index of rightmost 1 */
  1900. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1901. {
  1902. u32 b;
  1903. b = *mask;
  1904. b &= (0-b);
  1905. *mask &= ~b;
  1906. b *= debruijn32;
  1907. b >>= 27;
  1908. return timer_table->gen_timer_index[b];
  1909. }
  1910. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1911. {
  1912. return REG_READ(ah, AR_TSF_L32);
  1913. }
  1914. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  1915. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1916. void (*trigger)(void *),
  1917. void (*overflow)(void *),
  1918. void *arg,
  1919. u8 timer_index)
  1920. {
  1921. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1922. struct ath_gen_timer *timer;
  1923. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1924. if (timer == NULL) {
  1925. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  1926. "Failed to allocate memory"
  1927. "for hw timer[%d]\n", timer_index);
  1928. return NULL;
  1929. }
  1930. /* allocate a hardware generic timer slot */
  1931. timer_table->timers[timer_index] = timer;
  1932. timer->index = timer_index;
  1933. timer->trigger = trigger;
  1934. timer->overflow = overflow;
  1935. timer->arg = arg;
  1936. return timer;
  1937. }
  1938. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1939. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1940. struct ath_gen_timer *timer,
  1941. u32 timer_next,
  1942. u32 timer_period)
  1943. {
  1944. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1945. u32 tsf;
  1946. BUG_ON(!timer_period);
  1947. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1948. tsf = ath9k_hw_gettsf32(ah);
  1949. ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1950. "curent tsf %x period %x"
  1951. "timer_next %x\n", tsf, timer_period, timer_next);
  1952. /*
  1953. * Pull timer_next forward if the current TSF already passed it
  1954. * because of software latency
  1955. */
  1956. if (timer_next < tsf)
  1957. timer_next = tsf + timer_period;
  1958. /*
  1959. * Program generic timer registers
  1960. */
  1961. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  1962. timer_next);
  1963. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  1964. timer_period);
  1965. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  1966. gen_tmr_configuration[timer->index].mode_mask);
  1967. /* Enable both trigger and thresh interrupt masks */
  1968. REG_SET_BIT(ah, AR_IMR_S5,
  1969. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  1970. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  1971. }
  1972. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  1973. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  1974. {
  1975. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1976. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  1977. (timer->index >= ATH_MAX_GEN_TIMER)) {
  1978. return;
  1979. }
  1980. /* Clear generic timer enable bits. */
  1981. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  1982. gen_tmr_configuration[timer->index].mode_mask);
  1983. /* Disable both trigger and thresh interrupt masks */
  1984. REG_CLR_BIT(ah, AR_IMR_S5,
  1985. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  1986. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  1987. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1988. }
  1989. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  1990. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  1991. {
  1992. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1993. /* free the hardware generic timer slot */
  1994. timer_table->timers[timer->index] = NULL;
  1995. kfree(timer);
  1996. }
  1997. EXPORT_SYMBOL(ath_gen_timer_free);
  1998. /*
  1999. * Generic Timer Interrupts handling
  2000. */
  2001. void ath_gen_timer_isr(struct ath_hw *ah)
  2002. {
  2003. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2004. struct ath_gen_timer *timer;
  2005. struct ath_common *common = ath9k_hw_common(ah);
  2006. u32 trigger_mask, thresh_mask, index;
  2007. /* get hardware generic timer interrupt status */
  2008. trigger_mask = ah->intr_gen_timer_trigger;
  2009. thresh_mask = ah->intr_gen_timer_thresh;
  2010. trigger_mask &= timer_table->timer_mask.val;
  2011. thresh_mask &= timer_table->timer_mask.val;
  2012. trigger_mask &= ~thresh_mask;
  2013. while (thresh_mask) {
  2014. index = rightmost_index(timer_table, &thresh_mask);
  2015. timer = timer_table->timers[index];
  2016. BUG_ON(!timer);
  2017. ath_print(common, ATH_DBG_HWTIMER,
  2018. "TSF overflow for Gen timer %d\n", index);
  2019. timer->overflow(timer->arg);
  2020. }
  2021. while (trigger_mask) {
  2022. index = rightmost_index(timer_table, &trigger_mask);
  2023. timer = timer_table->timers[index];
  2024. BUG_ON(!timer);
  2025. ath_print(common, ATH_DBG_HWTIMER,
  2026. "Gen timer[%d] trigger\n", index);
  2027. timer->trigger(timer->arg);
  2028. }
  2029. }
  2030. EXPORT_SYMBOL(ath_gen_timer_isr);
  2031. /********/
  2032. /* HTC */
  2033. /********/
  2034. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2035. {
  2036. ah->htc_reset_init = true;
  2037. }
  2038. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2039. static struct {
  2040. u32 version;
  2041. const char * name;
  2042. } ath_mac_bb_names[] = {
  2043. /* Devices with external radios */
  2044. { AR_SREV_VERSION_5416_PCI, "5416" },
  2045. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2046. { AR_SREV_VERSION_9100, "9100" },
  2047. { AR_SREV_VERSION_9160, "9160" },
  2048. /* Single-chip solutions */
  2049. { AR_SREV_VERSION_9280, "9280" },
  2050. { AR_SREV_VERSION_9285, "9285" },
  2051. { AR_SREV_VERSION_9287, "9287" },
  2052. { AR_SREV_VERSION_9271, "9271" },
  2053. { AR_SREV_VERSION_9300, "9300" },
  2054. };
  2055. /* For devices with external radios */
  2056. static struct {
  2057. u16 version;
  2058. const char * name;
  2059. } ath_rf_names[] = {
  2060. { 0, "5133" },
  2061. { AR_RAD5133_SREV_MAJOR, "5133" },
  2062. { AR_RAD5122_SREV_MAJOR, "5122" },
  2063. { AR_RAD2133_SREV_MAJOR, "2133" },
  2064. { AR_RAD2122_SREV_MAJOR, "2122" }
  2065. };
  2066. /*
  2067. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2068. */
  2069. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2070. {
  2071. int i;
  2072. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2073. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2074. return ath_mac_bb_names[i].name;
  2075. }
  2076. }
  2077. return "????";
  2078. }
  2079. /*
  2080. * Return the RF name. "????" is returned if the RF is unknown.
  2081. * Used for devices with external radios.
  2082. */
  2083. static const char *ath9k_hw_rf_name(u16 rf_version)
  2084. {
  2085. int i;
  2086. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2087. if (ath_rf_names[i].version == rf_version) {
  2088. return ath_rf_names[i].name;
  2089. }
  2090. }
  2091. return "????";
  2092. }
  2093. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2094. {
  2095. int used;
  2096. /* chipsets >= AR9280 are single-chip */
  2097. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2098. used = snprintf(hw_name, len,
  2099. "Atheros AR%s Rev:%x",
  2100. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2101. ah->hw_version.macRev);
  2102. }
  2103. else {
  2104. used = snprintf(hw_name, len,
  2105. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2106. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2107. ah->hw_version.macRev,
  2108. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2109. AR_RADIO_SREV_MAJOR)),
  2110. ah->hw_version.phyRev);
  2111. }
  2112. hw_name[used] = '\0';
  2113. }
  2114. EXPORT_SYMBOL(ath9k_hw_name);