i915_gem.c 134 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  41. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  42. int write);
  43. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  44. uint64_t offset,
  45. uint64_t size);
  46. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  47. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  48. bool interruptible);
  49. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  50. unsigned alignment);
  51. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  52. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file_priv);
  55. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  56. static int
  57. i915_gem_object_get_pages(struct drm_gem_object *obj,
  58. gfp_t gfpmask);
  59. static void
  60. i915_gem_object_put_pages(struct drm_gem_object *obj);
  61. static LIST_HEAD(shrink_list);
  62. static DEFINE_SPINLOCK(shrink_list_lock);
  63. /* some bookkeeping */
  64. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  65. size_t size)
  66. {
  67. dev_priv->mm.object_count++;
  68. dev_priv->mm.object_memory += size;
  69. }
  70. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  71. size_t size)
  72. {
  73. dev_priv->mm.object_count--;
  74. dev_priv->mm.object_memory -= size;
  75. }
  76. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  77. size_t size)
  78. {
  79. dev_priv->mm.gtt_count++;
  80. dev_priv->mm.gtt_memory += size;
  81. }
  82. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  83. size_t size)
  84. {
  85. dev_priv->mm.gtt_count--;
  86. dev_priv->mm.gtt_memory -= size;
  87. }
  88. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  89. size_t size)
  90. {
  91. dev_priv->mm.pin_count++;
  92. dev_priv->mm.pin_memory += size;
  93. }
  94. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  95. size_t size)
  96. {
  97. dev_priv->mm.pin_count--;
  98. dev_priv->mm.pin_memory -= size;
  99. }
  100. int
  101. i915_gem_check_is_wedged(struct drm_device *dev)
  102. {
  103. struct drm_i915_private *dev_priv = dev->dev_private;
  104. struct completion *x = &dev_priv->error_completion;
  105. unsigned long flags;
  106. int ret;
  107. if (!atomic_read(&dev_priv->mm.wedged))
  108. return 0;
  109. ret = wait_for_completion_interruptible(x);
  110. if (ret)
  111. return ret;
  112. /* Success, we reset the GPU! */
  113. if (!atomic_read(&dev_priv->mm.wedged))
  114. return 0;
  115. /* GPU is hung, bump the completion count to account for
  116. * the token we just consumed so that we never hit zero and
  117. * end up waiting upon a subsequent completion event that
  118. * will never happen.
  119. */
  120. spin_lock_irqsave(&x->wait.lock, flags);
  121. x->done++;
  122. spin_unlock_irqrestore(&x->wait.lock, flags);
  123. return -EIO;
  124. }
  125. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  126. {
  127. struct drm_i915_private *dev_priv = dev->dev_private;
  128. int ret;
  129. ret = i915_gem_check_is_wedged(dev);
  130. if (ret)
  131. return ret;
  132. ret = mutex_lock_interruptible(&dev->struct_mutex);
  133. if (ret)
  134. return ret;
  135. if (atomic_read(&dev_priv->mm.wedged)) {
  136. mutex_unlock(&dev->struct_mutex);
  137. return -EAGAIN;
  138. }
  139. WARN_ON(i915_verify_lists(dev));
  140. return 0;
  141. }
  142. static inline bool
  143. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  144. {
  145. return obj_priv->gtt_space &&
  146. !obj_priv->active &&
  147. obj_priv->pin_count == 0;
  148. }
  149. int i915_gem_do_init(struct drm_device *dev,
  150. unsigned long start,
  151. unsigned long end)
  152. {
  153. drm_i915_private_t *dev_priv = dev->dev_private;
  154. if (start >= end ||
  155. (start & (PAGE_SIZE - 1)) != 0 ||
  156. (end & (PAGE_SIZE - 1)) != 0) {
  157. return -EINVAL;
  158. }
  159. drm_mm_init(&dev_priv->mm.gtt_space, start,
  160. end - start);
  161. dev_priv->mm.gtt_total = end - start;
  162. return 0;
  163. }
  164. int
  165. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  166. struct drm_file *file_priv)
  167. {
  168. struct drm_i915_gem_init *args = data;
  169. int ret;
  170. mutex_lock(&dev->struct_mutex);
  171. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  172. mutex_unlock(&dev->struct_mutex);
  173. return ret;
  174. }
  175. int
  176. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  177. struct drm_file *file_priv)
  178. {
  179. struct drm_i915_private *dev_priv = dev->dev_private;
  180. struct drm_i915_gem_get_aperture *args = data;
  181. if (!(dev->driver->driver_features & DRIVER_GEM))
  182. return -ENODEV;
  183. mutex_lock(&dev->struct_mutex);
  184. args->aper_size = dev_priv->mm.gtt_total;
  185. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  186. mutex_unlock(&dev->struct_mutex);
  187. return 0;
  188. }
  189. /**
  190. * Creates a new mm object and returns a handle to it.
  191. */
  192. int
  193. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  194. struct drm_file *file_priv)
  195. {
  196. struct drm_i915_gem_create *args = data;
  197. struct drm_gem_object *obj;
  198. int ret;
  199. u32 handle;
  200. args->size = roundup(args->size, PAGE_SIZE);
  201. /* Allocate the new object */
  202. obj = i915_gem_alloc_object(dev, args->size);
  203. if (obj == NULL)
  204. return -ENOMEM;
  205. ret = drm_gem_handle_create(file_priv, obj, &handle);
  206. if (ret) {
  207. drm_gem_object_release(obj);
  208. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  209. kfree(obj);
  210. return ret;
  211. }
  212. /* drop reference from allocate - handle holds it now */
  213. drm_gem_object_unreference(obj);
  214. trace_i915_gem_object_create(obj);
  215. args->handle = handle;
  216. return 0;
  217. }
  218. static inline int
  219. fast_shmem_read(struct page **pages,
  220. loff_t page_base, int page_offset,
  221. char __user *data,
  222. int length)
  223. {
  224. char *vaddr;
  225. int ret;
  226. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  227. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  228. kunmap_atomic(vaddr);
  229. return ret;
  230. }
  231. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  232. {
  233. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  234. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  235. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  236. obj_priv->tiling_mode != I915_TILING_NONE;
  237. }
  238. static inline void
  239. slow_shmem_copy(struct page *dst_page,
  240. int dst_offset,
  241. struct page *src_page,
  242. int src_offset,
  243. int length)
  244. {
  245. char *dst_vaddr, *src_vaddr;
  246. dst_vaddr = kmap(dst_page);
  247. src_vaddr = kmap(src_page);
  248. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  249. kunmap(src_page);
  250. kunmap(dst_page);
  251. }
  252. static inline void
  253. slow_shmem_bit17_copy(struct page *gpu_page,
  254. int gpu_offset,
  255. struct page *cpu_page,
  256. int cpu_offset,
  257. int length,
  258. int is_read)
  259. {
  260. char *gpu_vaddr, *cpu_vaddr;
  261. /* Use the unswizzled path if this page isn't affected. */
  262. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  263. if (is_read)
  264. return slow_shmem_copy(cpu_page, cpu_offset,
  265. gpu_page, gpu_offset, length);
  266. else
  267. return slow_shmem_copy(gpu_page, gpu_offset,
  268. cpu_page, cpu_offset, length);
  269. }
  270. gpu_vaddr = kmap(gpu_page);
  271. cpu_vaddr = kmap(cpu_page);
  272. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  273. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  274. */
  275. while (length > 0) {
  276. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  277. int this_length = min(cacheline_end - gpu_offset, length);
  278. int swizzled_gpu_offset = gpu_offset ^ 64;
  279. if (is_read) {
  280. memcpy(cpu_vaddr + cpu_offset,
  281. gpu_vaddr + swizzled_gpu_offset,
  282. this_length);
  283. } else {
  284. memcpy(gpu_vaddr + swizzled_gpu_offset,
  285. cpu_vaddr + cpu_offset,
  286. this_length);
  287. }
  288. cpu_offset += this_length;
  289. gpu_offset += this_length;
  290. length -= this_length;
  291. }
  292. kunmap(cpu_page);
  293. kunmap(gpu_page);
  294. }
  295. /**
  296. * This is the fast shmem pread path, which attempts to copy_from_user directly
  297. * from the backing pages of the object to the user's address space. On a
  298. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  299. */
  300. static int
  301. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  302. struct drm_i915_gem_pread *args,
  303. struct drm_file *file_priv)
  304. {
  305. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  306. ssize_t remain;
  307. loff_t offset, page_base;
  308. char __user *user_data;
  309. int page_offset, page_length;
  310. user_data = (char __user *) (uintptr_t) args->data_ptr;
  311. remain = args->size;
  312. obj_priv = to_intel_bo(obj);
  313. offset = args->offset;
  314. while (remain > 0) {
  315. /* Operation in this page
  316. *
  317. * page_base = page offset within aperture
  318. * page_offset = offset within page
  319. * page_length = bytes to copy for this page
  320. */
  321. page_base = (offset & ~(PAGE_SIZE-1));
  322. page_offset = offset & (PAGE_SIZE-1);
  323. page_length = remain;
  324. if ((page_offset + remain) > PAGE_SIZE)
  325. page_length = PAGE_SIZE - page_offset;
  326. if (fast_shmem_read(obj_priv->pages,
  327. page_base, page_offset,
  328. user_data, page_length))
  329. return -EFAULT;
  330. remain -= page_length;
  331. user_data += page_length;
  332. offset += page_length;
  333. }
  334. return 0;
  335. }
  336. static int
  337. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  338. {
  339. int ret;
  340. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  341. /* If we've insufficient memory to map in the pages, attempt
  342. * to make some space by throwing out some old buffers.
  343. */
  344. if (ret == -ENOMEM) {
  345. struct drm_device *dev = obj->dev;
  346. ret = i915_gem_evict_something(dev, obj->size,
  347. i915_gem_get_gtt_alignment(obj));
  348. if (ret)
  349. return ret;
  350. ret = i915_gem_object_get_pages(obj, 0);
  351. }
  352. return ret;
  353. }
  354. /**
  355. * This is the fallback shmem pread path, which allocates temporary storage
  356. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  357. * can copy out of the object's backing pages while holding the struct mutex
  358. * and not take page faults.
  359. */
  360. static int
  361. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  362. struct drm_i915_gem_pread *args,
  363. struct drm_file *file_priv)
  364. {
  365. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  366. struct mm_struct *mm = current->mm;
  367. struct page **user_pages;
  368. ssize_t remain;
  369. loff_t offset, pinned_pages, i;
  370. loff_t first_data_page, last_data_page, num_pages;
  371. int shmem_page_index, shmem_page_offset;
  372. int data_page_index, data_page_offset;
  373. int page_length;
  374. int ret;
  375. uint64_t data_ptr = args->data_ptr;
  376. int do_bit17_swizzling;
  377. remain = args->size;
  378. /* Pin the user pages containing the data. We can't fault while
  379. * holding the struct mutex, yet we want to hold it while
  380. * dereferencing the user data.
  381. */
  382. first_data_page = data_ptr / PAGE_SIZE;
  383. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  384. num_pages = last_data_page - first_data_page + 1;
  385. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  386. if (user_pages == NULL)
  387. return -ENOMEM;
  388. mutex_unlock(&dev->struct_mutex);
  389. down_read(&mm->mmap_sem);
  390. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  391. num_pages, 1, 0, user_pages, NULL);
  392. up_read(&mm->mmap_sem);
  393. mutex_lock(&dev->struct_mutex);
  394. if (pinned_pages < num_pages) {
  395. ret = -EFAULT;
  396. goto out;
  397. }
  398. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  399. args->offset,
  400. args->size);
  401. if (ret)
  402. goto out;
  403. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  404. obj_priv = to_intel_bo(obj);
  405. offset = args->offset;
  406. while (remain > 0) {
  407. /* Operation in this page
  408. *
  409. * shmem_page_index = page number within shmem file
  410. * shmem_page_offset = offset within page in shmem file
  411. * data_page_index = page number in get_user_pages return
  412. * data_page_offset = offset with data_page_index page.
  413. * page_length = bytes to copy for this page
  414. */
  415. shmem_page_index = offset / PAGE_SIZE;
  416. shmem_page_offset = offset & ~PAGE_MASK;
  417. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  418. data_page_offset = data_ptr & ~PAGE_MASK;
  419. page_length = remain;
  420. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  421. page_length = PAGE_SIZE - shmem_page_offset;
  422. if ((data_page_offset + page_length) > PAGE_SIZE)
  423. page_length = PAGE_SIZE - data_page_offset;
  424. if (do_bit17_swizzling) {
  425. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  426. shmem_page_offset,
  427. user_pages[data_page_index],
  428. data_page_offset,
  429. page_length,
  430. 1);
  431. } else {
  432. slow_shmem_copy(user_pages[data_page_index],
  433. data_page_offset,
  434. obj_priv->pages[shmem_page_index],
  435. shmem_page_offset,
  436. page_length);
  437. }
  438. remain -= page_length;
  439. data_ptr += page_length;
  440. offset += page_length;
  441. }
  442. out:
  443. for (i = 0; i < pinned_pages; i++) {
  444. SetPageDirty(user_pages[i]);
  445. page_cache_release(user_pages[i]);
  446. }
  447. drm_free_large(user_pages);
  448. return ret;
  449. }
  450. /**
  451. * Reads data from the object referenced by handle.
  452. *
  453. * On error, the contents of *data are undefined.
  454. */
  455. int
  456. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  457. struct drm_file *file_priv)
  458. {
  459. struct drm_i915_gem_pread *args = data;
  460. struct drm_gem_object *obj;
  461. struct drm_i915_gem_object *obj_priv;
  462. int ret = 0;
  463. if (args->size == 0)
  464. return 0;
  465. if (!access_ok(VERIFY_WRITE,
  466. (char __user *)(uintptr_t)args->data_ptr,
  467. args->size))
  468. return -EFAULT;
  469. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  470. args->size);
  471. if (ret)
  472. return -EFAULT;
  473. ret = i915_mutex_lock_interruptible(dev);
  474. if (ret)
  475. return ret;
  476. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  477. if (obj == NULL) {
  478. ret = -ENOENT;
  479. goto unlock;
  480. }
  481. obj_priv = to_intel_bo(obj);
  482. /* Bounds check source. */
  483. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  484. ret = -EINVAL;
  485. goto out;
  486. }
  487. ret = i915_gem_object_get_pages_or_evict(obj);
  488. if (ret)
  489. goto out;
  490. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  491. args->offset,
  492. args->size);
  493. if (ret)
  494. goto out_put;
  495. ret = -EFAULT;
  496. if (!i915_gem_object_needs_bit17_swizzle(obj))
  497. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  498. if (ret == -EFAULT)
  499. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  500. out_put:
  501. i915_gem_object_put_pages(obj);
  502. out:
  503. drm_gem_object_unreference(obj);
  504. unlock:
  505. mutex_unlock(&dev->struct_mutex);
  506. return ret;
  507. }
  508. /* This is the fast write path which cannot handle
  509. * page faults in the source data
  510. */
  511. static inline int
  512. fast_user_write(struct io_mapping *mapping,
  513. loff_t page_base, int page_offset,
  514. char __user *user_data,
  515. int length)
  516. {
  517. char *vaddr_atomic;
  518. unsigned long unwritten;
  519. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  520. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  521. user_data, length);
  522. io_mapping_unmap_atomic(vaddr_atomic);
  523. return unwritten;
  524. }
  525. /* Here's the write path which can sleep for
  526. * page faults
  527. */
  528. static inline void
  529. slow_kernel_write(struct io_mapping *mapping,
  530. loff_t gtt_base, int gtt_offset,
  531. struct page *user_page, int user_offset,
  532. int length)
  533. {
  534. char __iomem *dst_vaddr;
  535. char *src_vaddr;
  536. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  537. src_vaddr = kmap(user_page);
  538. memcpy_toio(dst_vaddr + gtt_offset,
  539. src_vaddr + user_offset,
  540. length);
  541. kunmap(user_page);
  542. io_mapping_unmap(dst_vaddr);
  543. }
  544. static inline int
  545. fast_shmem_write(struct page **pages,
  546. loff_t page_base, int page_offset,
  547. char __user *data,
  548. int length)
  549. {
  550. char *vaddr;
  551. int ret;
  552. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  553. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  554. kunmap_atomic(vaddr);
  555. return ret;
  556. }
  557. /**
  558. * This is the fast pwrite path, where we copy the data directly from the
  559. * user into the GTT, uncached.
  560. */
  561. static int
  562. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  563. struct drm_i915_gem_pwrite *args,
  564. struct drm_file *file_priv)
  565. {
  566. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  567. drm_i915_private_t *dev_priv = dev->dev_private;
  568. ssize_t remain;
  569. loff_t offset, page_base;
  570. char __user *user_data;
  571. int page_offset, page_length;
  572. user_data = (char __user *) (uintptr_t) args->data_ptr;
  573. remain = args->size;
  574. obj_priv = to_intel_bo(obj);
  575. offset = obj_priv->gtt_offset + args->offset;
  576. while (remain > 0) {
  577. /* Operation in this page
  578. *
  579. * page_base = page offset within aperture
  580. * page_offset = offset within page
  581. * page_length = bytes to copy for this page
  582. */
  583. page_base = (offset & ~(PAGE_SIZE-1));
  584. page_offset = offset & (PAGE_SIZE-1);
  585. page_length = remain;
  586. if ((page_offset + remain) > PAGE_SIZE)
  587. page_length = PAGE_SIZE - page_offset;
  588. /* If we get a fault while copying data, then (presumably) our
  589. * source page isn't available. Return the error and we'll
  590. * retry in the slow path.
  591. */
  592. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  593. page_offset, user_data, page_length))
  594. return -EFAULT;
  595. remain -= page_length;
  596. user_data += page_length;
  597. offset += page_length;
  598. }
  599. return 0;
  600. }
  601. /**
  602. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  603. * the memory and maps it using kmap_atomic for copying.
  604. *
  605. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  606. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  607. */
  608. static int
  609. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  610. struct drm_i915_gem_pwrite *args,
  611. struct drm_file *file_priv)
  612. {
  613. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  614. drm_i915_private_t *dev_priv = dev->dev_private;
  615. ssize_t remain;
  616. loff_t gtt_page_base, offset;
  617. loff_t first_data_page, last_data_page, num_pages;
  618. loff_t pinned_pages, i;
  619. struct page **user_pages;
  620. struct mm_struct *mm = current->mm;
  621. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  622. int ret;
  623. uint64_t data_ptr = args->data_ptr;
  624. remain = args->size;
  625. /* Pin the user pages containing the data. We can't fault while
  626. * holding the struct mutex, and all of the pwrite implementations
  627. * want to hold it while dereferencing the user data.
  628. */
  629. first_data_page = data_ptr / PAGE_SIZE;
  630. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  631. num_pages = last_data_page - first_data_page + 1;
  632. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  633. if (user_pages == NULL)
  634. return -ENOMEM;
  635. mutex_unlock(&dev->struct_mutex);
  636. down_read(&mm->mmap_sem);
  637. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  638. num_pages, 0, 0, user_pages, NULL);
  639. up_read(&mm->mmap_sem);
  640. mutex_lock(&dev->struct_mutex);
  641. if (pinned_pages < num_pages) {
  642. ret = -EFAULT;
  643. goto out_unpin_pages;
  644. }
  645. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  646. if (ret)
  647. goto out_unpin_pages;
  648. obj_priv = to_intel_bo(obj);
  649. offset = obj_priv->gtt_offset + args->offset;
  650. while (remain > 0) {
  651. /* Operation in this page
  652. *
  653. * gtt_page_base = page offset within aperture
  654. * gtt_page_offset = offset within page in aperture
  655. * data_page_index = page number in get_user_pages return
  656. * data_page_offset = offset with data_page_index page.
  657. * page_length = bytes to copy for this page
  658. */
  659. gtt_page_base = offset & PAGE_MASK;
  660. gtt_page_offset = offset & ~PAGE_MASK;
  661. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  662. data_page_offset = data_ptr & ~PAGE_MASK;
  663. page_length = remain;
  664. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  665. page_length = PAGE_SIZE - gtt_page_offset;
  666. if ((data_page_offset + page_length) > PAGE_SIZE)
  667. page_length = PAGE_SIZE - data_page_offset;
  668. slow_kernel_write(dev_priv->mm.gtt_mapping,
  669. gtt_page_base, gtt_page_offset,
  670. user_pages[data_page_index],
  671. data_page_offset,
  672. page_length);
  673. remain -= page_length;
  674. offset += page_length;
  675. data_ptr += page_length;
  676. }
  677. out_unpin_pages:
  678. for (i = 0; i < pinned_pages; i++)
  679. page_cache_release(user_pages[i]);
  680. drm_free_large(user_pages);
  681. return ret;
  682. }
  683. /**
  684. * This is the fast shmem pwrite path, which attempts to directly
  685. * copy_from_user into the kmapped pages backing the object.
  686. */
  687. static int
  688. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  689. struct drm_i915_gem_pwrite *args,
  690. struct drm_file *file_priv)
  691. {
  692. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  693. ssize_t remain;
  694. loff_t offset, page_base;
  695. char __user *user_data;
  696. int page_offset, page_length;
  697. user_data = (char __user *) (uintptr_t) args->data_ptr;
  698. remain = args->size;
  699. obj_priv = to_intel_bo(obj);
  700. offset = args->offset;
  701. obj_priv->dirty = 1;
  702. while (remain > 0) {
  703. /* Operation in this page
  704. *
  705. * page_base = page offset within aperture
  706. * page_offset = offset within page
  707. * page_length = bytes to copy for this page
  708. */
  709. page_base = (offset & ~(PAGE_SIZE-1));
  710. page_offset = offset & (PAGE_SIZE-1);
  711. page_length = remain;
  712. if ((page_offset + remain) > PAGE_SIZE)
  713. page_length = PAGE_SIZE - page_offset;
  714. if (fast_shmem_write(obj_priv->pages,
  715. page_base, page_offset,
  716. user_data, page_length))
  717. return -EFAULT;
  718. remain -= page_length;
  719. user_data += page_length;
  720. offset += page_length;
  721. }
  722. return 0;
  723. }
  724. /**
  725. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  726. * the memory and maps it using kmap_atomic for copying.
  727. *
  728. * This avoids taking mmap_sem for faulting on the user's address while the
  729. * struct_mutex is held.
  730. */
  731. static int
  732. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  733. struct drm_i915_gem_pwrite *args,
  734. struct drm_file *file_priv)
  735. {
  736. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  737. struct mm_struct *mm = current->mm;
  738. struct page **user_pages;
  739. ssize_t remain;
  740. loff_t offset, pinned_pages, i;
  741. loff_t first_data_page, last_data_page, num_pages;
  742. int shmem_page_index, shmem_page_offset;
  743. int data_page_index, data_page_offset;
  744. int page_length;
  745. int ret;
  746. uint64_t data_ptr = args->data_ptr;
  747. int do_bit17_swizzling;
  748. remain = args->size;
  749. /* Pin the user pages containing the data. We can't fault while
  750. * holding the struct mutex, and all of the pwrite implementations
  751. * want to hold it while dereferencing the user data.
  752. */
  753. first_data_page = data_ptr / PAGE_SIZE;
  754. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  755. num_pages = last_data_page - first_data_page + 1;
  756. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  757. if (user_pages == NULL)
  758. return -ENOMEM;
  759. mutex_unlock(&dev->struct_mutex);
  760. down_read(&mm->mmap_sem);
  761. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  762. num_pages, 0, 0, user_pages, NULL);
  763. up_read(&mm->mmap_sem);
  764. mutex_lock(&dev->struct_mutex);
  765. if (pinned_pages < num_pages) {
  766. ret = -EFAULT;
  767. goto out;
  768. }
  769. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  770. if (ret)
  771. goto out;
  772. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  773. obj_priv = to_intel_bo(obj);
  774. offset = args->offset;
  775. obj_priv->dirty = 1;
  776. while (remain > 0) {
  777. /* Operation in this page
  778. *
  779. * shmem_page_index = page number within shmem file
  780. * shmem_page_offset = offset within page in shmem file
  781. * data_page_index = page number in get_user_pages return
  782. * data_page_offset = offset with data_page_index page.
  783. * page_length = bytes to copy for this page
  784. */
  785. shmem_page_index = offset / PAGE_SIZE;
  786. shmem_page_offset = offset & ~PAGE_MASK;
  787. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  788. data_page_offset = data_ptr & ~PAGE_MASK;
  789. page_length = remain;
  790. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  791. page_length = PAGE_SIZE - shmem_page_offset;
  792. if ((data_page_offset + page_length) > PAGE_SIZE)
  793. page_length = PAGE_SIZE - data_page_offset;
  794. if (do_bit17_swizzling) {
  795. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  796. shmem_page_offset,
  797. user_pages[data_page_index],
  798. data_page_offset,
  799. page_length,
  800. 0);
  801. } else {
  802. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  803. shmem_page_offset,
  804. user_pages[data_page_index],
  805. data_page_offset,
  806. page_length);
  807. }
  808. remain -= page_length;
  809. data_ptr += page_length;
  810. offset += page_length;
  811. }
  812. out:
  813. for (i = 0; i < pinned_pages; i++)
  814. page_cache_release(user_pages[i]);
  815. drm_free_large(user_pages);
  816. return ret;
  817. }
  818. /**
  819. * Writes data to the object referenced by handle.
  820. *
  821. * On error, the contents of the buffer that were to be modified are undefined.
  822. */
  823. int
  824. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  825. struct drm_file *file)
  826. {
  827. struct drm_i915_gem_pwrite *args = data;
  828. struct drm_gem_object *obj;
  829. struct drm_i915_gem_object *obj_priv;
  830. int ret;
  831. if (args->size == 0)
  832. return 0;
  833. if (!access_ok(VERIFY_READ,
  834. (char __user *)(uintptr_t)args->data_ptr,
  835. args->size))
  836. return -EFAULT;
  837. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  838. args->size);
  839. if (ret)
  840. return -EFAULT;
  841. ret = i915_mutex_lock_interruptible(dev);
  842. if (ret)
  843. return ret;
  844. obj = drm_gem_object_lookup(dev, file, args->handle);
  845. if (obj == NULL) {
  846. ret = -ENOENT;
  847. goto unlock;
  848. }
  849. obj_priv = to_intel_bo(obj);
  850. /* Bounds check destination. */
  851. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  852. ret = -EINVAL;
  853. goto out;
  854. }
  855. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  856. * it would end up going through the fenced access, and we'll get
  857. * different detiling behavior between reading and writing.
  858. * pread/pwrite currently are reading and writing from the CPU
  859. * perspective, requiring manual detiling by the client.
  860. */
  861. if (obj_priv->phys_obj)
  862. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  863. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  864. obj_priv->gtt_space &&
  865. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  866. ret = i915_gem_object_pin(obj, 0);
  867. if (ret)
  868. goto out;
  869. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  870. if (ret)
  871. goto out_unpin;
  872. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  873. if (ret == -EFAULT)
  874. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  875. out_unpin:
  876. i915_gem_object_unpin(obj);
  877. } else {
  878. ret = i915_gem_object_get_pages_or_evict(obj);
  879. if (ret)
  880. goto out;
  881. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  882. if (ret)
  883. goto out_put;
  884. ret = -EFAULT;
  885. if (!i915_gem_object_needs_bit17_swizzle(obj))
  886. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  887. if (ret == -EFAULT)
  888. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  889. out_put:
  890. i915_gem_object_put_pages(obj);
  891. }
  892. out:
  893. drm_gem_object_unreference(obj);
  894. unlock:
  895. mutex_unlock(&dev->struct_mutex);
  896. return ret;
  897. }
  898. /**
  899. * Called when user space prepares to use an object with the CPU, either
  900. * through the mmap ioctl's mapping or a GTT mapping.
  901. */
  902. int
  903. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  904. struct drm_file *file_priv)
  905. {
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. struct drm_i915_gem_set_domain *args = data;
  908. struct drm_gem_object *obj;
  909. struct drm_i915_gem_object *obj_priv;
  910. uint32_t read_domains = args->read_domains;
  911. uint32_t write_domain = args->write_domain;
  912. int ret;
  913. if (!(dev->driver->driver_features & DRIVER_GEM))
  914. return -ENODEV;
  915. /* Only handle setting domains to types used by the CPU. */
  916. if (write_domain & I915_GEM_GPU_DOMAINS)
  917. return -EINVAL;
  918. if (read_domains & I915_GEM_GPU_DOMAINS)
  919. return -EINVAL;
  920. /* Having something in the write domain implies it's in the read
  921. * domain, and only that read domain. Enforce that in the request.
  922. */
  923. if (write_domain != 0 && read_domains != write_domain)
  924. return -EINVAL;
  925. ret = i915_mutex_lock_interruptible(dev);
  926. if (ret)
  927. return ret;
  928. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  929. if (obj == NULL) {
  930. ret = -ENOENT;
  931. goto unlock;
  932. }
  933. obj_priv = to_intel_bo(obj);
  934. intel_mark_busy(dev, obj);
  935. if (read_domains & I915_GEM_DOMAIN_GTT) {
  936. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  937. /* Update the LRU on the fence for the CPU access that's
  938. * about to occur.
  939. */
  940. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  941. struct drm_i915_fence_reg *reg =
  942. &dev_priv->fence_regs[obj_priv->fence_reg];
  943. list_move_tail(&reg->lru_list,
  944. &dev_priv->mm.fence_list);
  945. }
  946. /* Silently promote "you're not bound, there was nothing to do"
  947. * to success, since the client was just asking us to
  948. * make sure everything was done.
  949. */
  950. if (ret == -EINVAL)
  951. ret = 0;
  952. } else {
  953. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  954. }
  955. /* Maintain LRU order of "inactive" objects */
  956. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  957. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  958. drm_gem_object_unreference(obj);
  959. unlock:
  960. mutex_unlock(&dev->struct_mutex);
  961. return ret;
  962. }
  963. /**
  964. * Called when user space has done writes to this buffer
  965. */
  966. int
  967. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  968. struct drm_file *file_priv)
  969. {
  970. struct drm_i915_gem_sw_finish *args = data;
  971. struct drm_gem_object *obj;
  972. int ret = 0;
  973. if (!(dev->driver->driver_features & DRIVER_GEM))
  974. return -ENODEV;
  975. ret = i915_mutex_lock_interruptible(dev);
  976. if (ret)
  977. return ret;
  978. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  979. if (obj == NULL) {
  980. ret = -ENOENT;
  981. goto unlock;
  982. }
  983. /* Pinned buffers may be scanout, so flush the cache */
  984. if (to_intel_bo(obj)->pin_count)
  985. i915_gem_object_flush_cpu_write_domain(obj);
  986. drm_gem_object_unreference(obj);
  987. unlock:
  988. mutex_unlock(&dev->struct_mutex);
  989. return ret;
  990. }
  991. /**
  992. * Maps the contents of an object, returning the address it is mapped
  993. * into.
  994. *
  995. * While the mapping holds a reference on the contents of the object, it doesn't
  996. * imply a ref on the object itself.
  997. */
  998. int
  999. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1000. struct drm_file *file_priv)
  1001. {
  1002. struct drm_i915_gem_mmap *args = data;
  1003. struct drm_gem_object *obj;
  1004. loff_t offset;
  1005. unsigned long addr;
  1006. if (!(dev->driver->driver_features & DRIVER_GEM))
  1007. return -ENODEV;
  1008. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1009. if (obj == NULL)
  1010. return -ENOENT;
  1011. offset = args->offset;
  1012. down_write(&current->mm->mmap_sem);
  1013. addr = do_mmap(obj->filp, 0, args->size,
  1014. PROT_READ | PROT_WRITE, MAP_SHARED,
  1015. args->offset);
  1016. up_write(&current->mm->mmap_sem);
  1017. drm_gem_object_unreference_unlocked(obj);
  1018. if (IS_ERR((void *)addr))
  1019. return addr;
  1020. args->addr_ptr = (uint64_t) addr;
  1021. return 0;
  1022. }
  1023. /**
  1024. * i915_gem_fault - fault a page into the GTT
  1025. * vma: VMA in question
  1026. * vmf: fault info
  1027. *
  1028. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1029. * from userspace. The fault handler takes care of binding the object to
  1030. * the GTT (if needed), allocating and programming a fence register (again,
  1031. * only if needed based on whether the old reg is still valid or the object
  1032. * is tiled) and inserting a new PTE into the faulting process.
  1033. *
  1034. * Note that the faulting process may involve evicting existing objects
  1035. * from the GTT and/or fence registers to make room. So performance may
  1036. * suffer if the GTT working set is large or there are few fence registers
  1037. * left.
  1038. */
  1039. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1040. {
  1041. struct drm_gem_object *obj = vma->vm_private_data;
  1042. struct drm_device *dev = obj->dev;
  1043. drm_i915_private_t *dev_priv = dev->dev_private;
  1044. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1045. pgoff_t page_offset;
  1046. unsigned long pfn;
  1047. int ret = 0;
  1048. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1049. /* We don't use vmf->pgoff since that has the fake offset */
  1050. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1051. PAGE_SHIFT;
  1052. /* Now bind it into the GTT if needed */
  1053. mutex_lock(&dev->struct_mutex);
  1054. if (!obj_priv->gtt_space) {
  1055. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1056. if (ret)
  1057. goto unlock;
  1058. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1059. if (ret)
  1060. goto unlock;
  1061. }
  1062. /* Need a new fence register? */
  1063. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1064. ret = i915_gem_object_get_fence_reg(obj, true);
  1065. if (ret)
  1066. goto unlock;
  1067. }
  1068. if (i915_gem_object_is_inactive(obj_priv))
  1069. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1070. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1071. page_offset;
  1072. /* Finally, remap it using the new GTT offset */
  1073. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1074. unlock:
  1075. mutex_unlock(&dev->struct_mutex);
  1076. switch (ret) {
  1077. case 0:
  1078. case -ERESTARTSYS:
  1079. return VM_FAULT_NOPAGE;
  1080. case -ENOMEM:
  1081. case -EAGAIN:
  1082. return VM_FAULT_OOM;
  1083. default:
  1084. return VM_FAULT_SIGBUS;
  1085. }
  1086. }
  1087. /**
  1088. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1089. * @obj: obj in question
  1090. *
  1091. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1092. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1093. * up the object based on the offset and sets up the various memory mapping
  1094. * structures.
  1095. *
  1096. * This routine allocates and attaches a fake offset for @obj.
  1097. */
  1098. static int
  1099. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1100. {
  1101. struct drm_device *dev = obj->dev;
  1102. struct drm_gem_mm *mm = dev->mm_private;
  1103. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1104. struct drm_map_list *list;
  1105. struct drm_local_map *map;
  1106. int ret = 0;
  1107. /* Set the object up for mmap'ing */
  1108. list = &obj->map_list;
  1109. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1110. if (!list->map)
  1111. return -ENOMEM;
  1112. map = list->map;
  1113. map->type = _DRM_GEM;
  1114. map->size = obj->size;
  1115. map->handle = obj;
  1116. /* Get a DRM GEM mmap offset allocated... */
  1117. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1118. obj->size / PAGE_SIZE, 0, 0);
  1119. if (!list->file_offset_node) {
  1120. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1121. ret = -ENOSPC;
  1122. goto out_free_list;
  1123. }
  1124. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1125. obj->size / PAGE_SIZE, 0);
  1126. if (!list->file_offset_node) {
  1127. ret = -ENOMEM;
  1128. goto out_free_list;
  1129. }
  1130. list->hash.key = list->file_offset_node->start;
  1131. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1132. if (ret) {
  1133. DRM_ERROR("failed to add to map hash\n");
  1134. goto out_free_mm;
  1135. }
  1136. /* By now we should be all set, any drm_mmap request on the offset
  1137. * below will get to our mmap & fault handler */
  1138. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1139. return 0;
  1140. out_free_mm:
  1141. drm_mm_put_block(list->file_offset_node);
  1142. out_free_list:
  1143. kfree(list->map);
  1144. return ret;
  1145. }
  1146. /**
  1147. * i915_gem_release_mmap - remove physical page mappings
  1148. * @obj: obj in question
  1149. *
  1150. * Preserve the reservation of the mmapping with the DRM core code, but
  1151. * relinquish ownership of the pages back to the system.
  1152. *
  1153. * It is vital that we remove the page mapping if we have mapped a tiled
  1154. * object through the GTT and then lose the fence register due to
  1155. * resource pressure. Similarly if the object has been moved out of the
  1156. * aperture, than pages mapped into userspace must be revoked. Removing the
  1157. * mapping will then trigger a page fault on the next user access, allowing
  1158. * fixup by i915_gem_fault().
  1159. */
  1160. void
  1161. i915_gem_release_mmap(struct drm_gem_object *obj)
  1162. {
  1163. struct drm_device *dev = obj->dev;
  1164. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1165. if (dev->dev_mapping)
  1166. unmap_mapping_range(dev->dev_mapping,
  1167. obj_priv->mmap_offset, obj->size, 1);
  1168. }
  1169. static void
  1170. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1171. {
  1172. struct drm_device *dev = obj->dev;
  1173. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1174. struct drm_gem_mm *mm = dev->mm_private;
  1175. struct drm_map_list *list;
  1176. list = &obj->map_list;
  1177. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1178. if (list->file_offset_node) {
  1179. drm_mm_put_block(list->file_offset_node);
  1180. list->file_offset_node = NULL;
  1181. }
  1182. if (list->map) {
  1183. kfree(list->map);
  1184. list->map = NULL;
  1185. }
  1186. obj_priv->mmap_offset = 0;
  1187. }
  1188. /**
  1189. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1190. * @obj: object to check
  1191. *
  1192. * Return the required GTT alignment for an object, taking into account
  1193. * potential fence register mapping if needed.
  1194. */
  1195. static uint32_t
  1196. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1197. {
  1198. struct drm_device *dev = obj->dev;
  1199. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1200. int start, i;
  1201. /*
  1202. * Minimum alignment is 4k (GTT page size), but might be greater
  1203. * if a fence register is needed for the object.
  1204. */
  1205. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1206. return 4096;
  1207. /*
  1208. * Previous chips need to be aligned to the size of the smallest
  1209. * fence register that can contain the object.
  1210. */
  1211. if (INTEL_INFO(dev)->gen == 3)
  1212. start = 1024*1024;
  1213. else
  1214. start = 512*1024;
  1215. for (i = start; i < obj->size; i <<= 1)
  1216. ;
  1217. return i;
  1218. }
  1219. /**
  1220. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1221. * @dev: DRM device
  1222. * @data: GTT mapping ioctl data
  1223. * @file_priv: GEM object info
  1224. *
  1225. * Simply returns the fake offset to userspace so it can mmap it.
  1226. * The mmap call will end up in drm_gem_mmap(), which will set things
  1227. * up so we can get faults in the handler above.
  1228. *
  1229. * The fault handler will take care of binding the object into the GTT
  1230. * (since it may have been evicted to make room for something), allocating
  1231. * a fence register, and mapping the appropriate aperture address into
  1232. * userspace.
  1233. */
  1234. int
  1235. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1236. struct drm_file *file_priv)
  1237. {
  1238. struct drm_i915_gem_mmap_gtt *args = data;
  1239. struct drm_gem_object *obj;
  1240. struct drm_i915_gem_object *obj_priv;
  1241. int ret;
  1242. if (!(dev->driver->driver_features & DRIVER_GEM))
  1243. return -ENODEV;
  1244. ret = i915_mutex_lock_interruptible(dev);
  1245. if (ret)
  1246. return ret;
  1247. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1248. if (obj == NULL) {
  1249. ret = -ENOENT;
  1250. goto unlock;
  1251. }
  1252. obj_priv = to_intel_bo(obj);
  1253. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1254. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1255. ret = -EINVAL;
  1256. goto out;
  1257. }
  1258. if (!obj_priv->mmap_offset) {
  1259. ret = i915_gem_create_mmap_offset(obj);
  1260. if (ret)
  1261. goto out;
  1262. }
  1263. args->offset = obj_priv->mmap_offset;
  1264. /*
  1265. * Pull it into the GTT so that we have a page list (makes the
  1266. * initial fault faster and any subsequent flushing possible).
  1267. */
  1268. if (!obj_priv->agp_mem) {
  1269. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1270. if (ret)
  1271. goto out;
  1272. }
  1273. out:
  1274. drm_gem_object_unreference(obj);
  1275. unlock:
  1276. mutex_unlock(&dev->struct_mutex);
  1277. return ret;
  1278. }
  1279. static void
  1280. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1281. {
  1282. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1283. int page_count = obj->size / PAGE_SIZE;
  1284. int i;
  1285. BUG_ON(obj_priv->pages_refcount == 0);
  1286. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1287. if (--obj_priv->pages_refcount != 0)
  1288. return;
  1289. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1290. i915_gem_object_save_bit_17_swizzle(obj);
  1291. if (obj_priv->madv == I915_MADV_DONTNEED)
  1292. obj_priv->dirty = 0;
  1293. for (i = 0; i < page_count; i++) {
  1294. if (obj_priv->dirty)
  1295. set_page_dirty(obj_priv->pages[i]);
  1296. if (obj_priv->madv == I915_MADV_WILLNEED)
  1297. mark_page_accessed(obj_priv->pages[i]);
  1298. page_cache_release(obj_priv->pages[i]);
  1299. }
  1300. obj_priv->dirty = 0;
  1301. drm_free_large(obj_priv->pages);
  1302. obj_priv->pages = NULL;
  1303. }
  1304. static uint32_t
  1305. i915_gem_next_request_seqno(struct drm_device *dev,
  1306. struct intel_ring_buffer *ring)
  1307. {
  1308. drm_i915_private_t *dev_priv = dev->dev_private;
  1309. ring->outstanding_lazy_request = true;
  1310. return dev_priv->next_seqno;
  1311. }
  1312. static void
  1313. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1314. struct intel_ring_buffer *ring)
  1315. {
  1316. struct drm_device *dev = obj->dev;
  1317. struct drm_i915_private *dev_priv = dev->dev_private;
  1318. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1319. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1320. BUG_ON(ring == NULL);
  1321. obj_priv->ring = ring;
  1322. /* Add a reference if we're newly entering the active list. */
  1323. if (!obj_priv->active) {
  1324. drm_gem_object_reference(obj);
  1325. obj_priv->active = 1;
  1326. }
  1327. /* Move from whatever list we were on to the tail of execution. */
  1328. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1329. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1330. obj_priv->last_rendering_seqno = seqno;
  1331. }
  1332. static void
  1333. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1334. {
  1335. struct drm_device *dev = obj->dev;
  1336. drm_i915_private_t *dev_priv = dev->dev_private;
  1337. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1338. BUG_ON(!obj_priv->active);
  1339. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1340. list_del_init(&obj_priv->ring_list);
  1341. obj_priv->last_rendering_seqno = 0;
  1342. }
  1343. /* Immediately discard the backing storage */
  1344. static void
  1345. i915_gem_object_truncate(struct drm_gem_object *obj)
  1346. {
  1347. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1348. struct inode *inode;
  1349. /* Our goal here is to return as much of the memory as
  1350. * is possible back to the system as we are called from OOM.
  1351. * To do this we must instruct the shmfs to drop all of its
  1352. * backing pages, *now*. Here we mirror the actions taken
  1353. * when by shmem_delete_inode() to release the backing store.
  1354. */
  1355. inode = obj->filp->f_path.dentry->d_inode;
  1356. truncate_inode_pages(inode->i_mapping, 0);
  1357. if (inode->i_op->truncate_range)
  1358. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1359. obj_priv->madv = __I915_MADV_PURGED;
  1360. }
  1361. static inline int
  1362. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1363. {
  1364. return obj_priv->madv == I915_MADV_DONTNEED;
  1365. }
  1366. static void
  1367. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1368. {
  1369. struct drm_device *dev = obj->dev;
  1370. drm_i915_private_t *dev_priv = dev->dev_private;
  1371. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1372. if (obj_priv->pin_count != 0)
  1373. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1374. else
  1375. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1376. list_del_init(&obj_priv->ring_list);
  1377. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1378. obj_priv->last_rendering_seqno = 0;
  1379. obj_priv->ring = NULL;
  1380. if (obj_priv->active) {
  1381. obj_priv->active = 0;
  1382. drm_gem_object_unreference(obj);
  1383. }
  1384. WARN_ON(i915_verify_lists(dev));
  1385. }
  1386. static void
  1387. i915_gem_process_flushing_list(struct drm_device *dev,
  1388. uint32_t flush_domains,
  1389. struct intel_ring_buffer *ring)
  1390. {
  1391. drm_i915_private_t *dev_priv = dev->dev_private;
  1392. struct drm_i915_gem_object *obj_priv, *next;
  1393. list_for_each_entry_safe(obj_priv, next,
  1394. &ring->gpu_write_list,
  1395. gpu_write_list) {
  1396. struct drm_gem_object *obj = &obj_priv->base;
  1397. if (obj->write_domain & flush_domains) {
  1398. uint32_t old_write_domain = obj->write_domain;
  1399. obj->write_domain = 0;
  1400. list_del_init(&obj_priv->gpu_write_list);
  1401. i915_gem_object_move_to_active(obj, ring);
  1402. /* update the fence lru list */
  1403. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1404. struct drm_i915_fence_reg *reg =
  1405. &dev_priv->fence_regs[obj_priv->fence_reg];
  1406. list_move_tail(&reg->lru_list,
  1407. &dev_priv->mm.fence_list);
  1408. }
  1409. trace_i915_gem_object_change_domain(obj,
  1410. obj->read_domains,
  1411. old_write_domain);
  1412. }
  1413. }
  1414. }
  1415. uint32_t
  1416. i915_add_request(struct drm_device *dev,
  1417. struct drm_file *file,
  1418. struct drm_i915_gem_request *request,
  1419. struct intel_ring_buffer *ring)
  1420. {
  1421. drm_i915_private_t *dev_priv = dev->dev_private;
  1422. struct drm_i915_file_private *file_priv = NULL;
  1423. uint32_t seqno;
  1424. int was_empty;
  1425. if (file != NULL)
  1426. file_priv = file->driver_priv;
  1427. if (request == NULL) {
  1428. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1429. if (request == NULL)
  1430. return 0;
  1431. }
  1432. seqno = ring->add_request(dev, ring, 0);
  1433. ring->outstanding_lazy_request = false;
  1434. request->seqno = seqno;
  1435. request->ring = ring;
  1436. request->emitted_jiffies = jiffies;
  1437. was_empty = list_empty(&ring->request_list);
  1438. list_add_tail(&request->list, &ring->request_list);
  1439. if (file_priv) {
  1440. spin_lock(&file_priv->mm.lock);
  1441. request->file_priv = file_priv;
  1442. list_add_tail(&request->client_list,
  1443. &file_priv->mm.request_list);
  1444. spin_unlock(&file_priv->mm.lock);
  1445. }
  1446. if (!dev_priv->mm.suspended) {
  1447. mod_timer(&dev_priv->hangcheck_timer,
  1448. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1449. if (was_empty)
  1450. queue_delayed_work(dev_priv->wq,
  1451. &dev_priv->mm.retire_work, HZ);
  1452. }
  1453. return seqno;
  1454. }
  1455. /**
  1456. * Command execution barrier
  1457. *
  1458. * Ensures that all commands in the ring are finished
  1459. * before signalling the CPU
  1460. */
  1461. static void
  1462. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1463. {
  1464. uint32_t flush_domains = 0;
  1465. /* The sampler always gets flushed on i965 (sigh) */
  1466. if (INTEL_INFO(dev)->gen >= 4)
  1467. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1468. ring->flush(dev, ring,
  1469. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1470. }
  1471. static inline void
  1472. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1473. {
  1474. struct drm_i915_file_private *file_priv = request->file_priv;
  1475. if (!file_priv)
  1476. return;
  1477. spin_lock(&file_priv->mm.lock);
  1478. list_del(&request->client_list);
  1479. request->file_priv = NULL;
  1480. spin_unlock(&file_priv->mm.lock);
  1481. }
  1482. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1483. struct intel_ring_buffer *ring)
  1484. {
  1485. while (!list_empty(&ring->request_list)) {
  1486. struct drm_i915_gem_request *request;
  1487. request = list_first_entry(&ring->request_list,
  1488. struct drm_i915_gem_request,
  1489. list);
  1490. list_del(&request->list);
  1491. i915_gem_request_remove_from_client(request);
  1492. kfree(request);
  1493. }
  1494. while (!list_empty(&ring->active_list)) {
  1495. struct drm_i915_gem_object *obj_priv;
  1496. obj_priv = list_first_entry(&ring->active_list,
  1497. struct drm_i915_gem_object,
  1498. ring_list);
  1499. obj_priv->base.write_domain = 0;
  1500. list_del_init(&obj_priv->gpu_write_list);
  1501. i915_gem_object_move_to_inactive(&obj_priv->base);
  1502. }
  1503. }
  1504. void i915_gem_reset(struct drm_device *dev)
  1505. {
  1506. struct drm_i915_private *dev_priv = dev->dev_private;
  1507. struct drm_i915_gem_object *obj_priv;
  1508. int i;
  1509. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1510. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1511. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1512. /* Remove anything from the flushing lists. The GPU cache is likely
  1513. * to be lost on reset along with the data, so simply move the
  1514. * lost bo to the inactive list.
  1515. */
  1516. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1517. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1518. struct drm_i915_gem_object,
  1519. mm_list);
  1520. obj_priv->base.write_domain = 0;
  1521. list_del_init(&obj_priv->gpu_write_list);
  1522. i915_gem_object_move_to_inactive(&obj_priv->base);
  1523. }
  1524. /* Move everything out of the GPU domains to ensure we do any
  1525. * necessary invalidation upon reuse.
  1526. */
  1527. list_for_each_entry(obj_priv,
  1528. &dev_priv->mm.inactive_list,
  1529. mm_list)
  1530. {
  1531. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1532. }
  1533. /* The fence registers are invalidated so clear them out */
  1534. for (i = 0; i < 16; i++) {
  1535. struct drm_i915_fence_reg *reg;
  1536. reg = &dev_priv->fence_regs[i];
  1537. if (!reg->obj)
  1538. continue;
  1539. i915_gem_clear_fence_reg(reg->obj);
  1540. }
  1541. }
  1542. /**
  1543. * This function clears the request list as sequence numbers are passed.
  1544. */
  1545. static void
  1546. i915_gem_retire_requests_ring(struct drm_device *dev,
  1547. struct intel_ring_buffer *ring)
  1548. {
  1549. drm_i915_private_t *dev_priv = dev->dev_private;
  1550. uint32_t seqno;
  1551. if (!ring->status_page.page_addr ||
  1552. list_empty(&ring->request_list))
  1553. return;
  1554. WARN_ON(i915_verify_lists(dev));
  1555. seqno = ring->get_seqno(dev, ring);
  1556. while (!list_empty(&ring->request_list)) {
  1557. struct drm_i915_gem_request *request;
  1558. request = list_first_entry(&ring->request_list,
  1559. struct drm_i915_gem_request,
  1560. list);
  1561. if (!i915_seqno_passed(seqno, request->seqno))
  1562. break;
  1563. trace_i915_gem_request_retire(dev, request->seqno);
  1564. list_del(&request->list);
  1565. i915_gem_request_remove_from_client(request);
  1566. kfree(request);
  1567. }
  1568. /* Move any buffers on the active list that are no longer referenced
  1569. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1570. */
  1571. while (!list_empty(&ring->active_list)) {
  1572. struct drm_gem_object *obj;
  1573. struct drm_i915_gem_object *obj_priv;
  1574. obj_priv = list_first_entry(&ring->active_list,
  1575. struct drm_i915_gem_object,
  1576. ring_list);
  1577. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1578. break;
  1579. obj = &obj_priv->base;
  1580. if (obj->write_domain != 0)
  1581. i915_gem_object_move_to_flushing(obj);
  1582. else
  1583. i915_gem_object_move_to_inactive(obj);
  1584. }
  1585. if (unlikely (dev_priv->trace_irq_seqno &&
  1586. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1587. ring->user_irq_put(dev, ring);
  1588. dev_priv->trace_irq_seqno = 0;
  1589. }
  1590. WARN_ON(i915_verify_lists(dev));
  1591. }
  1592. void
  1593. i915_gem_retire_requests(struct drm_device *dev)
  1594. {
  1595. drm_i915_private_t *dev_priv = dev->dev_private;
  1596. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1597. struct drm_i915_gem_object *obj_priv, *tmp;
  1598. /* We must be careful that during unbind() we do not
  1599. * accidentally infinitely recurse into retire requests.
  1600. * Currently:
  1601. * retire -> free -> unbind -> wait -> retire_ring
  1602. */
  1603. list_for_each_entry_safe(obj_priv, tmp,
  1604. &dev_priv->mm.deferred_free_list,
  1605. mm_list)
  1606. i915_gem_free_object_tail(&obj_priv->base);
  1607. }
  1608. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1609. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1610. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1611. }
  1612. static void
  1613. i915_gem_retire_work_handler(struct work_struct *work)
  1614. {
  1615. drm_i915_private_t *dev_priv;
  1616. struct drm_device *dev;
  1617. dev_priv = container_of(work, drm_i915_private_t,
  1618. mm.retire_work.work);
  1619. dev = dev_priv->dev;
  1620. /* Come back later if the device is busy... */
  1621. if (!mutex_trylock(&dev->struct_mutex)) {
  1622. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1623. return;
  1624. }
  1625. i915_gem_retire_requests(dev);
  1626. if (!dev_priv->mm.suspended &&
  1627. (!list_empty(&dev_priv->render_ring.request_list) ||
  1628. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1629. !list_empty(&dev_priv->blt_ring.request_list)))
  1630. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1631. mutex_unlock(&dev->struct_mutex);
  1632. }
  1633. int
  1634. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1635. bool interruptible, struct intel_ring_buffer *ring)
  1636. {
  1637. drm_i915_private_t *dev_priv = dev->dev_private;
  1638. u32 ier;
  1639. int ret = 0;
  1640. BUG_ON(seqno == 0);
  1641. if (atomic_read(&dev_priv->mm.wedged))
  1642. return -EAGAIN;
  1643. if (ring->outstanding_lazy_request) {
  1644. seqno = i915_add_request(dev, NULL, NULL, ring);
  1645. if (seqno == 0)
  1646. return -ENOMEM;
  1647. }
  1648. BUG_ON(seqno == dev_priv->next_seqno);
  1649. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1650. if (HAS_PCH_SPLIT(dev))
  1651. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1652. else
  1653. ier = I915_READ(IER);
  1654. if (!ier) {
  1655. DRM_ERROR("something (likely vbetool) disabled "
  1656. "interrupts, re-enabling\n");
  1657. i915_driver_irq_preinstall(dev);
  1658. i915_driver_irq_postinstall(dev);
  1659. }
  1660. trace_i915_gem_request_wait_begin(dev, seqno);
  1661. ring->waiting_gem_seqno = seqno;
  1662. ring->user_irq_get(dev, ring);
  1663. if (interruptible)
  1664. ret = wait_event_interruptible(ring->irq_queue,
  1665. i915_seqno_passed(
  1666. ring->get_seqno(dev, ring), seqno)
  1667. || atomic_read(&dev_priv->mm.wedged));
  1668. else
  1669. wait_event(ring->irq_queue,
  1670. i915_seqno_passed(
  1671. ring->get_seqno(dev, ring), seqno)
  1672. || atomic_read(&dev_priv->mm.wedged));
  1673. ring->user_irq_put(dev, ring);
  1674. ring->waiting_gem_seqno = 0;
  1675. trace_i915_gem_request_wait_end(dev, seqno);
  1676. }
  1677. if (atomic_read(&dev_priv->mm.wedged))
  1678. ret = -EAGAIN;
  1679. if (ret && ret != -ERESTARTSYS)
  1680. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1681. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1682. dev_priv->next_seqno);
  1683. /* Directly dispatch request retiring. While we have the work queue
  1684. * to handle this, the waiter on a request often wants an associated
  1685. * buffer to have made it to the inactive list, and we would need
  1686. * a separate wait queue to handle that.
  1687. */
  1688. if (ret == 0)
  1689. i915_gem_retire_requests_ring(dev, ring);
  1690. return ret;
  1691. }
  1692. /**
  1693. * Waits for a sequence number to be signaled, and cleans up the
  1694. * request and object lists appropriately for that event.
  1695. */
  1696. static int
  1697. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1698. struct intel_ring_buffer *ring)
  1699. {
  1700. return i915_do_wait_request(dev, seqno, 1, ring);
  1701. }
  1702. static void
  1703. i915_gem_flush_ring(struct drm_device *dev,
  1704. struct drm_file *file_priv,
  1705. struct intel_ring_buffer *ring,
  1706. uint32_t invalidate_domains,
  1707. uint32_t flush_domains)
  1708. {
  1709. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1710. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1711. }
  1712. static void
  1713. i915_gem_flush(struct drm_device *dev,
  1714. struct drm_file *file_priv,
  1715. uint32_t invalidate_domains,
  1716. uint32_t flush_domains,
  1717. uint32_t flush_rings)
  1718. {
  1719. drm_i915_private_t *dev_priv = dev->dev_private;
  1720. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1721. drm_agp_chipset_flush(dev);
  1722. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1723. if (flush_rings & RING_RENDER)
  1724. i915_gem_flush_ring(dev, file_priv,
  1725. &dev_priv->render_ring,
  1726. invalidate_domains, flush_domains);
  1727. if (flush_rings & RING_BSD)
  1728. i915_gem_flush_ring(dev, file_priv,
  1729. &dev_priv->bsd_ring,
  1730. invalidate_domains, flush_domains);
  1731. if (flush_rings & RING_BLT)
  1732. i915_gem_flush_ring(dev, file_priv,
  1733. &dev_priv->blt_ring,
  1734. invalidate_domains, flush_domains);
  1735. }
  1736. }
  1737. /**
  1738. * Ensures that all rendering to the object has completed and the object is
  1739. * safe to unbind from the GTT or access from the CPU.
  1740. */
  1741. static int
  1742. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1743. bool interruptible)
  1744. {
  1745. struct drm_device *dev = obj->dev;
  1746. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1747. int ret;
  1748. /* This function only exists to support waiting for existing rendering,
  1749. * not for emitting required flushes.
  1750. */
  1751. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1752. /* If there is rendering queued on the buffer being evicted, wait for
  1753. * it.
  1754. */
  1755. if (obj_priv->active) {
  1756. ret = i915_do_wait_request(dev,
  1757. obj_priv->last_rendering_seqno,
  1758. interruptible,
  1759. obj_priv->ring);
  1760. if (ret)
  1761. return ret;
  1762. }
  1763. return 0;
  1764. }
  1765. /**
  1766. * Unbinds an object from the GTT aperture.
  1767. */
  1768. int
  1769. i915_gem_object_unbind(struct drm_gem_object *obj)
  1770. {
  1771. struct drm_device *dev = obj->dev;
  1772. struct drm_i915_private *dev_priv = dev->dev_private;
  1773. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1774. int ret = 0;
  1775. if (obj_priv->gtt_space == NULL)
  1776. return 0;
  1777. if (obj_priv->pin_count != 0) {
  1778. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1779. return -EINVAL;
  1780. }
  1781. /* blow away mappings if mapped through GTT */
  1782. i915_gem_release_mmap(obj);
  1783. /* Move the object to the CPU domain to ensure that
  1784. * any possible CPU writes while it's not in the GTT
  1785. * are flushed when we go to remap it. This will
  1786. * also ensure that all pending GPU writes are finished
  1787. * before we unbind.
  1788. */
  1789. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1790. if (ret == -ERESTARTSYS)
  1791. return ret;
  1792. /* Continue on if we fail due to EIO, the GPU is hung so we
  1793. * should be safe and we need to cleanup or else we might
  1794. * cause memory corruption through use-after-free.
  1795. */
  1796. if (ret) {
  1797. i915_gem_clflush_object(obj);
  1798. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1799. }
  1800. /* release the fence reg _after_ flushing */
  1801. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1802. i915_gem_clear_fence_reg(obj);
  1803. drm_unbind_agp(obj_priv->agp_mem);
  1804. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1805. i915_gem_object_put_pages(obj);
  1806. BUG_ON(obj_priv->pages_refcount);
  1807. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1808. list_del_init(&obj_priv->mm_list);
  1809. drm_mm_put_block(obj_priv->gtt_space);
  1810. obj_priv->gtt_space = NULL;
  1811. obj_priv->gtt_offset = 0;
  1812. if (i915_gem_object_is_purgeable(obj_priv))
  1813. i915_gem_object_truncate(obj);
  1814. trace_i915_gem_object_unbind(obj);
  1815. return ret;
  1816. }
  1817. static int i915_ring_idle(struct drm_device *dev,
  1818. struct intel_ring_buffer *ring)
  1819. {
  1820. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1821. return 0;
  1822. i915_gem_flush_ring(dev, NULL, ring,
  1823. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1824. return i915_wait_request(dev,
  1825. i915_gem_next_request_seqno(dev, ring),
  1826. ring);
  1827. }
  1828. int
  1829. i915_gpu_idle(struct drm_device *dev)
  1830. {
  1831. drm_i915_private_t *dev_priv = dev->dev_private;
  1832. bool lists_empty;
  1833. int ret;
  1834. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1835. list_empty(&dev_priv->mm.active_list));
  1836. if (lists_empty)
  1837. return 0;
  1838. /* Flush everything onto the inactive list. */
  1839. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1840. if (ret)
  1841. return ret;
  1842. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1843. if (ret)
  1844. return ret;
  1845. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1846. if (ret)
  1847. return ret;
  1848. return 0;
  1849. }
  1850. static int
  1851. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1852. gfp_t gfpmask)
  1853. {
  1854. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1855. int page_count, i;
  1856. struct address_space *mapping;
  1857. struct inode *inode;
  1858. struct page *page;
  1859. BUG_ON(obj_priv->pages_refcount
  1860. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1861. if (obj_priv->pages_refcount++ != 0)
  1862. return 0;
  1863. /* Get the list of pages out of our struct file. They'll be pinned
  1864. * at this point until we release them.
  1865. */
  1866. page_count = obj->size / PAGE_SIZE;
  1867. BUG_ON(obj_priv->pages != NULL);
  1868. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1869. if (obj_priv->pages == NULL) {
  1870. obj_priv->pages_refcount--;
  1871. return -ENOMEM;
  1872. }
  1873. inode = obj->filp->f_path.dentry->d_inode;
  1874. mapping = inode->i_mapping;
  1875. for (i = 0; i < page_count; i++) {
  1876. page = read_cache_page_gfp(mapping, i,
  1877. GFP_HIGHUSER |
  1878. __GFP_COLD |
  1879. __GFP_RECLAIMABLE |
  1880. gfpmask);
  1881. if (IS_ERR(page))
  1882. goto err_pages;
  1883. obj_priv->pages[i] = page;
  1884. }
  1885. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1886. i915_gem_object_do_bit_17_swizzle(obj);
  1887. return 0;
  1888. err_pages:
  1889. while (i--)
  1890. page_cache_release(obj_priv->pages[i]);
  1891. drm_free_large(obj_priv->pages);
  1892. obj_priv->pages = NULL;
  1893. obj_priv->pages_refcount--;
  1894. return PTR_ERR(page);
  1895. }
  1896. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1897. {
  1898. struct drm_gem_object *obj = reg->obj;
  1899. struct drm_device *dev = obj->dev;
  1900. drm_i915_private_t *dev_priv = dev->dev_private;
  1901. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1902. int regnum = obj_priv->fence_reg;
  1903. uint64_t val;
  1904. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1905. 0xfffff000) << 32;
  1906. val |= obj_priv->gtt_offset & 0xfffff000;
  1907. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1908. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1909. if (obj_priv->tiling_mode == I915_TILING_Y)
  1910. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1911. val |= I965_FENCE_REG_VALID;
  1912. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1913. }
  1914. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1915. {
  1916. struct drm_gem_object *obj = reg->obj;
  1917. struct drm_device *dev = obj->dev;
  1918. drm_i915_private_t *dev_priv = dev->dev_private;
  1919. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1920. int regnum = obj_priv->fence_reg;
  1921. uint64_t val;
  1922. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1923. 0xfffff000) << 32;
  1924. val |= obj_priv->gtt_offset & 0xfffff000;
  1925. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1926. if (obj_priv->tiling_mode == I915_TILING_Y)
  1927. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1928. val |= I965_FENCE_REG_VALID;
  1929. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1930. }
  1931. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1932. {
  1933. struct drm_gem_object *obj = reg->obj;
  1934. struct drm_device *dev = obj->dev;
  1935. drm_i915_private_t *dev_priv = dev->dev_private;
  1936. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1937. int regnum = obj_priv->fence_reg;
  1938. int tile_width;
  1939. uint32_t fence_reg, val;
  1940. uint32_t pitch_val;
  1941. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1942. (obj_priv->gtt_offset & (obj->size - 1))) {
  1943. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1944. __func__, obj_priv->gtt_offset, obj->size);
  1945. return;
  1946. }
  1947. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1948. HAS_128_BYTE_Y_TILING(dev))
  1949. tile_width = 128;
  1950. else
  1951. tile_width = 512;
  1952. /* Note: pitch better be a power of two tile widths */
  1953. pitch_val = obj_priv->stride / tile_width;
  1954. pitch_val = ffs(pitch_val) - 1;
  1955. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1956. HAS_128_BYTE_Y_TILING(dev))
  1957. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1958. else
  1959. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1960. val = obj_priv->gtt_offset;
  1961. if (obj_priv->tiling_mode == I915_TILING_Y)
  1962. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1963. val |= I915_FENCE_SIZE_BITS(obj->size);
  1964. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1965. val |= I830_FENCE_REG_VALID;
  1966. if (regnum < 8)
  1967. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1968. else
  1969. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1970. I915_WRITE(fence_reg, val);
  1971. }
  1972. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1973. {
  1974. struct drm_gem_object *obj = reg->obj;
  1975. struct drm_device *dev = obj->dev;
  1976. drm_i915_private_t *dev_priv = dev->dev_private;
  1977. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1978. int regnum = obj_priv->fence_reg;
  1979. uint32_t val;
  1980. uint32_t pitch_val;
  1981. uint32_t fence_size_bits;
  1982. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1983. (obj_priv->gtt_offset & (obj->size - 1))) {
  1984. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1985. __func__, obj_priv->gtt_offset);
  1986. return;
  1987. }
  1988. pitch_val = obj_priv->stride / 128;
  1989. pitch_val = ffs(pitch_val) - 1;
  1990. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1991. val = obj_priv->gtt_offset;
  1992. if (obj_priv->tiling_mode == I915_TILING_Y)
  1993. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1994. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1995. WARN_ON(fence_size_bits & ~0x00000f00);
  1996. val |= fence_size_bits;
  1997. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1998. val |= I830_FENCE_REG_VALID;
  1999. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2000. }
  2001. static int i915_find_fence_reg(struct drm_device *dev,
  2002. bool interruptible)
  2003. {
  2004. struct drm_i915_fence_reg *reg = NULL;
  2005. struct drm_i915_gem_object *obj_priv = NULL;
  2006. struct drm_i915_private *dev_priv = dev->dev_private;
  2007. struct drm_gem_object *obj = NULL;
  2008. int i, avail, ret;
  2009. /* First try to find a free reg */
  2010. avail = 0;
  2011. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2012. reg = &dev_priv->fence_regs[i];
  2013. if (!reg->obj)
  2014. return i;
  2015. obj_priv = to_intel_bo(reg->obj);
  2016. if (!obj_priv->pin_count)
  2017. avail++;
  2018. }
  2019. if (avail == 0)
  2020. return -ENOSPC;
  2021. /* None available, try to steal one or wait for a user to finish */
  2022. i = I915_FENCE_REG_NONE;
  2023. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2024. lru_list) {
  2025. obj = reg->obj;
  2026. obj_priv = to_intel_bo(obj);
  2027. if (obj_priv->pin_count)
  2028. continue;
  2029. /* found one! */
  2030. i = obj_priv->fence_reg;
  2031. break;
  2032. }
  2033. BUG_ON(i == I915_FENCE_REG_NONE);
  2034. /* We only have a reference on obj from the active list. put_fence_reg
  2035. * might drop that one, causing a use-after-free in it. So hold a
  2036. * private reference to obj like the other callers of put_fence_reg
  2037. * (set_tiling ioctl) do. */
  2038. drm_gem_object_reference(obj);
  2039. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2040. drm_gem_object_unreference(obj);
  2041. if (ret != 0)
  2042. return ret;
  2043. return i;
  2044. }
  2045. /**
  2046. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2047. * @obj: object to map through a fence reg
  2048. *
  2049. * When mapping objects through the GTT, userspace wants to be able to write
  2050. * to them without having to worry about swizzling if the object is tiled.
  2051. *
  2052. * This function walks the fence regs looking for a free one for @obj,
  2053. * stealing one if it can't find any.
  2054. *
  2055. * It then sets up the reg based on the object's properties: address, pitch
  2056. * and tiling format.
  2057. */
  2058. int
  2059. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2060. bool interruptible)
  2061. {
  2062. struct drm_device *dev = obj->dev;
  2063. struct drm_i915_private *dev_priv = dev->dev_private;
  2064. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2065. struct drm_i915_fence_reg *reg = NULL;
  2066. int ret;
  2067. /* Just update our place in the LRU if our fence is getting used. */
  2068. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2069. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2070. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2071. return 0;
  2072. }
  2073. switch (obj_priv->tiling_mode) {
  2074. case I915_TILING_NONE:
  2075. WARN(1, "allocating a fence for non-tiled object?\n");
  2076. break;
  2077. case I915_TILING_X:
  2078. if (!obj_priv->stride)
  2079. return -EINVAL;
  2080. WARN((obj_priv->stride & (512 - 1)),
  2081. "object 0x%08x is X tiled but has non-512B pitch\n",
  2082. obj_priv->gtt_offset);
  2083. break;
  2084. case I915_TILING_Y:
  2085. if (!obj_priv->stride)
  2086. return -EINVAL;
  2087. WARN((obj_priv->stride & (128 - 1)),
  2088. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2089. obj_priv->gtt_offset);
  2090. break;
  2091. }
  2092. ret = i915_find_fence_reg(dev, interruptible);
  2093. if (ret < 0)
  2094. return ret;
  2095. obj_priv->fence_reg = ret;
  2096. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2097. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2098. reg->obj = obj;
  2099. switch (INTEL_INFO(dev)->gen) {
  2100. case 6:
  2101. sandybridge_write_fence_reg(reg);
  2102. break;
  2103. case 5:
  2104. case 4:
  2105. i965_write_fence_reg(reg);
  2106. break;
  2107. case 3:
  2108. i915_write_fence_reg(reg);
  2109. break;
  2110. case 2:
  2111. i830_write_fence_reg(reg);
  2112. break;
  2113. }
  2114. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2115. obj_priv->tiling_mode);
  2116. return 0;
  2117. }
  2118. /**
  2119. * i915_gem_clear_fence_reg - clear out fence register info
  2120. * @obj: object to clear
  2121. *
  2122. * Zeroes out the fence register itself and clears out the associated
  2123. * data structures in dev_priv and obj_priv.
  2124. */
  2125. static void
  2126. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2127. {
  2128. struct drm_device *dev = obj->dev;
  2129. drm_i915_private_t *dev_priv = dev->dev_private;
  2130. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2131. struct drm_i915_fence_reg *reg =
  2132. &dev_priv->fence_regs[obj_priv->fence_reg];
  2133. uint32_t fence_reg;
  2134. switch (INTEL_INFO(dev)->gen) {
  2135. case 6:
  2136. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2137. (obj_priv->fence_reg * 8), 0);
  2138. break;
  2139. case 5:
  2140. case 4:
  2141. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2142. break;
  2143. case 3:
  2144. if (obj_priv->fence_reg >= 8)
  2145. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2146. else
  2147. case 2:
  2148. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2149. I915_WRITE(fence_reg, 0);
  2150. break;
  2151. }
  2152. reg->obj = NULL;
  2153. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2154. list_del_init(&reg->lru_list);
  2155. }
  2156. /**
  2157. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2158. * to the buffer to finish, and then resets the fence register.
  2159. * @obj: tiled object holding a fence register.
  2160. * @bool: whether the wait upon the fence is interruptible
  2161. *
  2162. * Zeroes out the fence register itself and clears out the associated
  2163. * data structures in dev_priv and obj_priv.
  2164. */
  2165. int
  2166. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2167. bool interruptible)
  2168. {
  2169. struct drm_device *dev = obj->dev;
  2170. struct drm_i915_private *dev_priv = dev->dev_private;
  2171. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2172. struct drm_i915_fence_reg *reg;
  2173. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2174. return 0;
  2175. /* If we've changed tiling, GTT-mappings of the object
  2176. * need to re-fault to ensure that the correct fence register
  2177. * setup is in place.
  2178. */
  2179. i915_gem_release_mmap(obj);
  2180. /* On the i915, GPU access to tiled buffers is via a fence,
  2181. * therefore we must wait for any outstanding access to complete
  2182. * before clearing the fence.
  2183. */
  2184. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2185. if (reg->gpu) {
  2186. int ret;
  2187. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2188. if (ret)
  2189. return ret;
  2190. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2191. if (ret)
  2192. return ret;
  2193. reg->gpu = false;
  2194. }
  2195. i915_gem_object_flush_gtt_write_domain(obj);
  2196. i915_gem_clear_fence_reg(obj);
  2197. return 0;
  2198. }
  2199. /**
  2200. * Finds free space in the GTT aperture and binds the object there.
  2201. */
  2202. static int
  2203. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2204. {
  2205. struct drm_device *dev = obj->dev;
  2206. drm_i915_private_t *dev_priv = dev->dev_private;
  2207. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2208. struct drm_mm_node *free_space;
  2209. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2210. int ret;
  2211. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2212. DRM_ERROR("Attempting to bind a purgeable object\n");
  2213. return -EINVAL;
  2214. }
  2215. if (alignment == 0)
  2216. alignment = i915_gem_get_gtt_alignment(obj);
  2217. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2218. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2219. return -EINVAL;
  2220. }
  2221. /* If the object is bigger than the entire aperture, reject it early
  2222. * before evicting everything in a vain attempt to find space.
  2223. */
  2224. if (obj->size > dev_priv->mm.gtt_total) {
  2225. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2226. return -E2BIG;
  2227. }
  2228. search_free:
  2229. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2230. obj->size, alignment, 0);
  2231. if (free_space != NULL)
  2232. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2233. alignment);
  2234. if (obj_priv->gtt_space == NULL) {
  2235. /* If the gtt is empty and we're still having trouble
  2236. * fitting our object in, we're out of memory.
  2237. */
  2238. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2239. if (ret)
  2240. return ret;
  2241. goto search_free;
  2242. }
  2243. ret = i915_gem_object_get_pages(obj, gfpmask);
  2244. if (ret) {
  2245. drm_mm_put_block(obj_priv->gtt_space);
  2246. obj_priv->gtt_space = NULL;
  2247. if (ret == -ENOMEM) {
  2248. /* first try to clear up some space from the GTT */
  2249. ret = i915_gem_evict_something(dev, obj->size,
  2250. alignment);
  2251. if (ret) {
  2252. /* now try to shrink everyone else */
  2253. if (gfpmask) {
  2254. gfpmask = 0;
  2255. goto search_free;
  2256. }
  2257. return ret;
  2258. }
  2259. goto search_free;
  2260. }
  2261. return ret;
  2262. }
  2263. /* Create an AGP memory structure pointing at our pages, and bind it
  2264. * into the GTT.
  2265. */
  2266. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2267. obj_priv->pages,
  2268. obj->size >> PAGE_SHIFT,
  2269. obj_priv->gtt_space->start,
  2270. obj_priv->agp_type);
  2271. if (obj_priv->agp_mem == NULL) {
  2272. i915_gem_object_put_pages(obj);
  2273. drm_mm_put_block(obj_priv->gtt_space);
  2274. obj_priv->gtt_space = NULL;
  2275. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2276. if (ret)
  2277. return ret;
  2278. goto search_free;
  2279. }
  2280. /* keep track of bounds object by adding it to the inactive list */
  2281. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2282. i915_gem_info_add_gtt(dev_priv, obj->size);
  2283. /* Assert that the object is not currently in any GPU domain. As it
  2284. * wasn't in the GTT, there shouldn't be any way it could have been in
  2285. * a GPU cache
  2286. */
  2287. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2288. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2289. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2290. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2291. return 0;
  2292. }
  2293. void
  2294. i915_gem_clflush_object(struct drm_gem_object *obj)
  2295. {
  2296. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2297. /* If we don't have a page list set up, then we're not pinned
  2298. * to GPU, and we can ignore the cache flush because it'll happen
  2299. * again at bind time.
  2300. */
  2301. if (obj_priv->pages == NULL)
  2302. return;
  2303. trace_i915_gem_object_clflush(obj);
  2304. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2305. }
  2306. /** Flushes any GPU write domain for the object if it's dirty. */
  2307. static int
  2308. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2309. {
  2310. struct drm_device *dev = obj->dev;
  2311. uint32_t old_write_domain;
  2312. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2313. return 0;
  2314. /* Queue the GPU write cache flushing we need. */
  2315. old_write_domain = obj->write_domain;
  2316. i915_gem_flush_ring(dev, NULL,
  2317. to_intel_bo(obj)->ring,
  2318. 0, obj->write_domain);
  2319. BUG_ON(obj->write_domain);
  2320. trace_i915_gem_object_change_domain(obj,
  2321. obj->read_domains,
  2322. old_write_domain);
  2323. return 0;
  2324. }
  2325. /** Flushes the GTT write domain for the object if it's dirty. */
  2326. static void
  2327. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2328. {
  2329. uint32_t old_write_domain;
  2330. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2331. return;
  2332. /* No actual flushing is required for the GTT write domain. Writes
  2333. * to it immediately go to main memory as far as we know, so there's
  2334. * no chipset flush. It also doesn't land in render cache.
  2335. */
  2336. old_write_domain = obj->write_domain;
  2337. obj->write_domain = 0;
  2338. trace_i915_gem_object_change_domain(obj,
  2339. obj->read_domains,
  2340. old_write_domain);
  2341. }
  2342. /** Flushes the CPU write domain for the object if it's dirty. */
  2343. static void
  2344. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2345. {
  2346. struct drm_device *dev = obj->dev;
  2347. uint32_t old_write_domain;
  2348. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2349. return;
  2350. i915_gem_clflush_object(obj);
  2351. drm_agp_chipset_flush(dev);
  2352. old_write_domain = obj->write_domain;
  2353. obj->write_domain = 0;
  2354. trace_i915_gem_object_change_domain(obj,
  2355. obj->read_domains,
  2356. old_write_domain);
  2357. }
  2358. /**
  2359. * Moves a single object to the GTT read, and possibly write domain.
  2360. *
  2361. * This function returns when the move is complete, including waiting on
  2362. * flushes to occur.
  2363. */
  2364. int
  2365. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2366. {
  2367. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2368. uint32_t old_write_domain, old_read_domains;
  2369. int ret;
  2370. /* Not valid to be called on unbound objects. */
  2371. if (obj_priv->gtt_space == NULL)
  2372. return -EINVAL;
  2373. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2374. if (ret != 0)
  2375. return ret;
  2376. ret = i915_gem_object_wait_rendering(obj, true);
  2377. if (ret)
  2378. return ret;
  2379. i915_gem_object_flush_cpu_write_domain(obj);
  2380. old_write_domain = obj->write_domain;
  2381. old_read_domains = obj->read_domains;
  2382. /* It should now be out of any other write domains, and we can update
  2383. * the domain values for our changes.
  2384. */
  2385. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2386. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2387. if (write) {
  2388. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2389. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2390. obj_priv->dirty = 1;
  2391. }
  2392. trace_i915_gem_object_change_domain(obj,
  2393. old_read_domains,
  2394. old_write_domain);
  2395. return 0;
  2396. }
  2397. /*
  2398. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2399. * wait, as in modesetting process we're not supposed to be interrupted.
  2400. */
  2401. int
  2402. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2403. bool pipelined)
  2404. {
  2405. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2406. uint32_t old_read_domains;
  2407. int ret;
  2408. /* Not valid to be called on unbound objects. */
  2409. if (obj_priv->gtt_space == NULL)
  2410. return -EINVAL;
  2411. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2412. if (ret)
  2413. return ret;
  2414. /* Currently, we are always called from an non-interruptible context. */
  2415. if (!pipelined) {
  2416. ret = i915_gem_object_wait_rendering(obj, false);
  2417. if (ret)
  2418. return ret;
  2419. }
  2420. i915_gem_object_flush_cpu_write_domain(obj);
  2421. old_read_domains = obj->read_domains;
  2422. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2423. trace_i915_gem_object_change_domain(obj,
  2424. old_read_domains,
  2425. obj->write_domain);
  2426. return 0;
  2427. }
  2428. int
  2429. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2430. bool interruptible)
  2431. {
  2432. if (!obj->active)
  2433. return 0;
  2434. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2435. i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
  2436. 0, obj->base.write_domain);
  2437. return i915_gem_object_wait_rendering(&obj->base, interruptible);
  2438. }
  2439. /**
  2440. * Moves a single object to the CPU read, and possibly write domain.
  2441. *
  2442. * This function returns when the move is complete, including waiting on
  2443. * flushes to occur.
  2444. */
  2445. static int
  2446. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2447. {
  2448. uint32_t old_write_domain, old_read_domains;
  2449. int ret;
  2450. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2451. if (ret != 0)
  2452. return ret;
  2453. ret = i915_gem_object_wait_rendering(obj, true);
  2454. if (ret)
  2455. return ret;
  2456. i915_gem_object_flush_gtt_write_domain(obj);
  2457. /* If we have a partially-valid cache of the object in the CPU,
  2458. * finish invalidating it and free the per-page flags.
  2459. */
  2460. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2461. old_write_domain = obj->write_domain;
  2462. old_read_domains = obj->read_domains;
  2463. /* Flush the CPU cache if it's still invalid. */
  2464. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2465. i915_gem_clflush_object(obj);
  2466. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2467. }
  2468. /* It should now be out of any other write domains, and we can update
  2469. * the domain values for our changes.
  2470. */
  2471. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2472. /* If we're writing through the CPU, then the GPU read domains will
  2473. * need to be invalidated at next use.
  2474. */
  2475. if (write) {
  2476. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2477. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2478. }
  2479. trace_i915_gem_object_change_domain(obj,
  2480. old_read_domains,
  2481. old_write_domain);
  2482. return 0;
  2483. }
  2484. /*
  2485. * Set the next domain for the specified object. This
  2486. * may not actually perform the necessary flushing/invaliding though,
  2487. * as that may want to be batched with other set_domain operations
  2488. *
  2489. * This is (we hope) the only really tricky part of gem. The goal
  2490. * is fairly simple -- track which caches hold bits of the object
  2491. * and make sure they remain coherent. A few concrete examples may
  2492. * help to explain how it works. For shorthand, we use the notation
  2493. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2494. * a pair of read and write domain masks.
  2495. *
  2496. * Case 1: the batch buffer
  2497. *
  2498. * 1. Allocated
  2499. * 2. Written by CPU
  2500. * 3. Mapped to GTT
  2501. * 4. Read by GPU
  2502. * 5. Unmapped from GTT
  2503. * 6. Freed
  2504. *
  2505. * Let's take these a step at a time
  2506. *
  2507. * 1. Allocated
  2508. * Pages allocated from the kernel may still have
  2509. * cache contents, so we set them to (CPU, CPU) always.
  2510. * 2. Written by CPU (using pwrite)
  2511. * The pwrite function calls set_domain (CPU, CPU) and
  2512. * this function does nothing (as nothing changes)
  2513. * 3. Mapped by GTT
  2514. * This function asserts that the object is not
  2515. * currently in any GPU-based read or write domains
  2516. * 4. Read by GPU
  2517. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2518. * As write_domain is zero, this function adds in the
  2519. * current read domains (CPU+COMMAND, 0).
  2520. * flush_domains is set to CPU.
  2521. * invalidate_domains is set to COMMAND
  2522. * clflush is run to get data out of the CPU caches
  2523. * then i915_dev_set_domain calls i915_gem_flush to
  2524. * emit an MI_FLUSH and drm_agp_chipset_flush
  2525. * 5. Unmapped from GTT
  2526. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2527. * flush_domains and invalidate_domains end up both zero
  2528. * so no flushing/invalidating happens
  2529. * 6. Freed
  2530. * yay, done
  2531. *
  2532. * Case 2: The shared render buffer
  2533. *
  2534. * 1. Allocated
  2535. * 2. Mapped to GTT
  2536. * 3. Read/written by GPU
  2537. * 4. set_domain to (CPU,CPU)
  2538. * 5. Read/written by CPU
  2539. * 6. Read/written by GPU
  2540. *
  2541. * 1. Allocated
  2542. * Same as last example, (CPU, CPU)
  2543. * 2. Mapped to GTT
  2544. * Nothing changes (assertions find that it is not in the GPU)
  2545. * 3. Read/written by GPU
  2546. * execbuffer calls set_domain (RENDER, RENDER)
  2547. * flush_domains gets CPU
  2548. * invalidate_domains gets GPU
  2549. * clflush (obj)
  2550. * MI_FLUSH and drm_agp_chipset_flush
  2551. * 4. set_domain (CPU, CPU)
  2552. * flush_domains gets GPU
  2553. * invalidate_domains gets CPU
  2554. * wait_rendering (obj) to make sure all drawing is complete.
  2555. * This will include an MI_FLUSH to get the data from GPU
  2556. * to memory
  2557. * clflush (obj) to invalidate the CPU cache
  2558. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2559. * 5. Read/written by CPU
  2560. * cache lines are loaded and dirtied
  2561. * 6. Read written by GPU
  2562. * Same as last GPU access
  2563. *
  2564. * Case 3: The constant buffer
  2565. *
  2566. * 1. Allocated
  2567. * 2. Written by CPU
  2568. * 3. Read by GPU
  2569. * 4. Updated (written) by CPU again
  2570. * 5. Read by GPU
  2571. *
  2572. * 1. Allocated
  2573. * (CPU, CPU)
  2574. * 2. Written by CPU
  2575. * (CPU, CPU)
  2576. * 3. Read by GPU
  2577. * (CPU+RENDER, 0)
  2578. * flush_domains = CPU
  2579. * invalidate_domains = RENDER
  2580. * clflush (obj)
  2581. * MI_FLUSH
  2582. * drm_agp_chipset_flush
  2583. * 4. Updated (written) by CPU again
  2584. * (CPU, CPU)
  2585. * flush_domains = 0 (no previous write domain)
  2586. * invalidate_domains = 0 (no new read domains)
  2587. * 5. Read by GPU
  2588. * (CPU+RENDER, 0)
  2589. * flush_domains = CPU
  2590. * invalidate_domains = RENDER
  2591. * clflush (obj)
  2592. * MI_FLUSH
  2593. * drm_agp_chipset_flush
  2594. */
  2595. static void
  2596. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2597. struct intel_ring_buffer *ring)
  2598. {
  2599. struct drm_device *dev = obj->dev;
  2600. struct drm_i915_private *dev_priv = dev->dev_private;
  2601. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2602. uint32_t invalidate_domains = 0;
  2603. uint32_t flush_domains = 0;
  2604. uint32_t old_read_domains;
  2605. intel_mark_busy(dev, obj);
  2606. /*
  2607. * If the object isn't moving to a new write domain,
  2608. * let the object stay in multiple read domains
  2609. */
  2610. if (obj->pending_write_domain == 0)
  2611. obj->pending_read_domains |= obj->read_domains;
  2612. else
  2613. obj_priv->dirty = 1;
  2614. /*
  2615. * Flush the current write domain if
  2616. * the new read domains don't match. Invalidate
  2617. * any read domains which differ from the old
  2618. * write domain
  2619. */
  2620. if (obj->write_domain &&
  2621. (obj->write_domain != obj->pending_read_domains ||
  2622. obj_priv->ring != ring)) {
  2623. flush_domains |= obj->write_domain;
  2624. invalidate_domains |=
  2625. obj->pending_read_domains & ~obj->write_domain;
  2626. }
  2627. /*
  2628. * Invalidate any read caches which may have
  2629. * stale data. That is, any new read domains.
  2630. */
  2631. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2632. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2633. i915_gem_clflush_object(obj);
  2634. old_read_domains = obj->read_domains;
  2635. /* The actual obj->write_domain will be updated with
  2636. * pending_write_domain after we emit the accumulated flush for all
  2637. * of our domain changes in execbuffers (which clears objects'
  2638. * write_domains). So if we have a current write domain that we
  2639. * aren't changing, set pending_write_domain to that.
  2640. */
  2641. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2642. obj->pending_write_domain = obj->write_domain;
  2643. obj->read_domains = obj->pending_read_domains;
  2644. dev->invalidate_domains |= invalidate_domains;
  2645. dev->flush_domains |= flush_domains;
  2646. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2647. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2648. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2649. dev_priv->mm.flush_rings |= ring->id;
  2650. trace_i915_gem_object_change_domain(obj,
  2651. old_read_domains,
  2652. obj->write_domain);
  2653. }
  2654. /**
  2655. * Moves the object from a partially CPU read to a full one.
  2656. *
  2657. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2658. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2659. */
  2660. static void
  2661. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2662. {
  2663. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2664. if (!obj_priv->page_cpu_valid)
  2665. return;
  2666. /* If we're partially in the CPU read domain, finish moving it in.
  2667. */
  2668. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2669. int i;
  2670. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2671. if (obj_priv->page_cpu_valid[i])
  2672. continue;
  2673. drm_clflush_pages(obj_priv->pages + i, 1);
  2674. }
  2675. }
  2676. /* Free the page_cpu_valid mappings which are now stale, whether
  2677. * or not we've got I915_GEM_DOMAIN_CPU.
  2678. */
  2679. kfree(obj_priv->page_cpu_valid);
  2680. obj_priv->page_cpu_valid = NULL;
  2681. }
  2682. /**
  2683. * Set the CPU read domain on a range of the object.
  2684. *
  2685. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2686. * not entirely valid. The page_cpu_valid member of the object flags which
  2687. * pages have been flushed, and will be respected by
  2688. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2689. * of the whole object.
  2690. *
  2691. * This function returns when the move is complete, including waiting on
  2692. * flushes to occur.
  2693. */
  2694. static int
  2695. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2696. uint64_t offset, uint64_t size)
  2697. {
  2698. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2699. uint32_t old_read_domains;
  2700. int i, ret;
  2701. if (offset == 0 && size == obj->size)
  2702. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2703. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2704. if (ret != 0)
  2705. return ret;
  2706. ret = i915_gem_object_wait_rendering(obj, true);
  2707. if (ret)
  2708. return ret;
  2709. i915_gem_object_flush_gtt_write_domain(obj);
  2710. /* If we're already fully in the CPU read domain, we're done. */
  2711. if (obj_priv->page_cpu_valid == NULL &&
  2712. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2713. return 0;
  2714. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2715. * newly adding I915_GEM_DOMAIN_CPU
  2716. */
  2717. if (obj_priv->page_cpu_valid == NULL) {
  2718. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2719. GFP_KERNEL);
  2720. if (obj_priv->page_cpu_valid == NULL)
  2721. return -ENOMEM;
  2722. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2723. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2724. /* Flush the cache on any pages that are still invalid from the CPU's
  2725. * perspective.
  2726. */
  2727. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2728. i++) {
  2729. if (obj_priv->page_cpu_valid[i])
  2730. continue;
  2731. drm_clflush_pages(obj_priv->pages + i, 1);
  2732. obj_priv->page_cpu_valid[i] = 1;
  2733. }
  2734. /* It should now be out of any other write domains, and we can update
  2735. * the domain values for our changes.
  2736. */
  2737. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2738. old_read_domains = obj->read_domains;
  2739. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2740. trace_i915_gem_object_change_domain(obj,
  2741. old_read_domains,
  2742. obj->write_domain);
  2743. return 0;
  2744. }
  2745. static int
  2746. i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
  2747. struct drm_file *file_priv,
  2748. struct drm_i915_gem_exec_object2 *entry,
  2749. struct drm_i915_gem_relocation_entry *reloc)
  2750. {
  2751. struct drm_device *dev = obj->base.dev;
  2752. struct drm_gem_object *target_obj;
  2753. uint32_t target_offset;
  2754. int ret = -EINVAL;
  2755. target_obj = drm_gem_object_lookup(dev, file_priv,
  2756. reloc->target_handle);
  2757. if (target_obj == NULL)
  2758. return -ENOENT;
  2759. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2760. #if WATCH_RELOC
  2761. DRM_INFO("%s: obj %p offset %08x target %d "
  2762. "read %08x write %08x gtt %08x "
  2763. "presumed %08x delta %08x\n",
  2764. __func__,
  2765. obj,
  2766. (int) reloc->offset,
  2767. (int) reloc->target_handle,
  2768. (int) reloc->read_domains,
  2769. (int) reloc->write_domain,
  2770. (int) target_offset,
  2771. (int) reloc->presumed_offset,
  2772. reloc->delta);
  2773. #endif
  2774. /* The target buffer should have appeared before us in the
  2775. * exec_object list, so it should have a GTT space bound by now.
  2776. */
  2777. if (target_offset == 0) {
  2778. DRM_ERROR("No GTT space found for object %d\n",
  2779. reloc->target_handle);
  2780. goto err;
  2781. }
  2782. /* Validate that the target is in a valid r/w GPU domain */
  2783. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2784. DRM_ERROR("reloc with multiple write domains: "
  2785. "obj %p target %d offset %d "
  2786. "read %08x write %08x",
  2787. obj, reloc->target_handle,
  2788. (int) reloc->offset,
  2789. reloc->read_domains,
  2790. reloc->write_domain);
  2791. goto err;
  2792. }
  2793. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2794. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2795. DRM_ERROR("reloc with read/write CPU domains: "
  2796. "obj %p target %d offset %d "
  2797. "read %08x write %08x",
  2798. obj, reloc->target_handle,
  2799. (int) reloc->offset,
  2800. reloc->read_domains,
  2801. reloc->write_domain);
  2802. goto err;
  2803. }
  2804. if (reloc->write_domain && target_obj->pending_write_domain &&
  2805. reloc->write_domain != target_obj->pending_write_domain) {
  2806. DRM_ERROR("Write domain conflict: "
  2807. "obj %p target %d offset %d "
  2808. "new %08x old %08x\n",
  2809. obj, reloc->target_handle,
  2810. (int) reloc->offset,
  2811. reloc->write_domain,
  2812. target_obj->pending_write_domain);
  2813. goto err;
  2814. }
  2815. target_obj->pending_read_domains |= reloc->read_domains;
  2816. target_obj->pending_write_domain |= reloc->write_domain;
  2817. /* If the relocation already has the right value in it, no
  2818. * more work needs to be done.
  2819. */
  2820. if (target_offset == reloc->presumed_offset)
  2821. goto out;
  2822. /* Check that the relocation address is valid... */
  2823. if (reloc->offset > obj->base.size - 4) {
  2824. DRM_ERROR("Relocation beyond object bounds: "
  2825. "obj %p target %d offset %d size %d.\n",
  2826. obj, reloc->target_handle,
  2827. (int) reloc->offset,
  2828. (int) obj->base.size);
  2829. goto err;
  2830. }
  2831. if (reloc->offset & 3) {
  2832. DRM_ERROR("Relocation not 4-byte aligned: "
  2833. "obj %p target %d offset %d.\n",
  2834. obj, reloc->target_handle,
  2835. (int) reloc->offset);
  2836. goto err;
  2837. }
  2838. /* and points to somewhere within the target object. */
  2839. if (reloc->delta >= target_obj->size) {
  2840. DRM_ERROR("Relocation beyond target object bounds: "
  2841. "obj %p target %d delta %d size %d.\n",
  2842. obj, reloc->target_handle,
  2843. (int) reloc->delta,
  2844. (int) target_obj->size);
  2845. goto err;
  2846. }
  2847. reloc->delta += target_offset;
  2848. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2849. uint32_t page_offset = reloc->offset & ~PAGE_MASK;
  2850. char *vaddr;
  2851. vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
  2852. *(uint32_t *)(vaddr + page_offset) = reloc->delta;
  2853. kunmap_atomic(vaddr);
  2854. } else {
  2855. struct drm_i915_private *dev_priv = dev->dev_private;
  2856. uint32_t __iomem *reloc_entry;
  2857. void __iomem *reloc_page;
  2858. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2859. if (ret)
  2860. goto err;
  2861. /* Map the page containing the relocation we're going to perform. */
  2862. reloc->offset += obj->gtt_offset;
  2863. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2864. reloc->offset & PAGE_MASK);
  2865. reloc_entry = (uint32_t __iomem *)
  2866. (reloc_page + (reloc->offset & ~PAGE_MASK));
  2867. iowrite32(reloc->delta, reloc_entry);
  2868. io_mapping_unmap_atomic(reloc_page);
  2869. }
  2870. /* and update the user's relocation entry */
  2871. reloc->presumed_offset = target_offset;
  2872. out:
  2873. ret = 0;
  2874. err:
  2875. drm_gem_object_unreference(target_obj);
  2876. return ret;
  2877. }
  2878. static int
  2879. i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
  2880. struct drm_file *file_priv,
  2881. struct drm_i915_gem_exec_object2 *entry)
  2882. {
  2883. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2884. int i, ret;
  2885. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2886. for (i = 0; i < entry->relocation_count; i++) {
  2887. struct drm_i915_gem_relocation_entry reloc;
  2888. if (__copy_from_user_inatomic(&reloc,
  2889. user_relocs+i,
  2890. sizeof(reloc)))
  2891. return -EFAULT;
  2892. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
  2893. if (ret)
  2894. return ret;
  2895. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2896. &reloc.presumed_offset,
  2897. sizeof(reloc.presumed_offset)))
  2898. return -EFAULT;
  2899. }
  2900. return 0;
  2901. }
  2902. static int
  2903. i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
  2904. struct drm_file *file_priv,
  2905. struct drm_i915_gem_exec_object2 *entry,
  2906. struct drm_i915_gem_relocation_entry *relocs)
  2907. {
  2908. int i, ret;
  2909. for (i = 0; i < entry->relocation_count; i++) {
  2910. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
  2911. if (ret)
  2912. return ret;
  2913. }
  2914. return 0;
  2915. }
  2916. static int
  2917. i915_gem_execbuffer_relocate(struct drm_device *dev,
  2918. struct drm_file *file,
  2919. struct drm_gem_object **object_list,
  2920. struct drm_i915_gem_exec_object2 *exec_list,
  2921. int count)
  2922. {
  2923. int i, ret;
  2924. for (i = 0; i < count; i++) {
  2925. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  2926. obj->base.pending_read_domains = 0;
  2927. obj->base.pending_write_domain = 0;
  2928. ret = i915_gem_execbuffer_relocate_object(obj, file,
  2929. &exec_list[i]);
  2930. if (ret)
  2931. return ret;
  2932. }
  2933. return 0;
  2934. }
  2935. static int
  2936. i915_gem_execbuffer_reserve(struct drm_device *dev,
  2937. struct drm_file *file,
  2938. struct drm_gem_object **object_list,
  2939. struct drm_i915_gem_exec_object2 *exec_list,
  2940. int count)
  2941. {
  2942. struct drm_i915_private *dev_priv = dev->dev_private;
  2943. int ret, i, retry;
  2944. /* attempt to pin all of the buffers into the GTT */
  2945. for (retry = 0; retry < 2; retry++) {
  2946. ret = 0;
  2947. for (i = 0; i < count; i++) {
  2948. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2949. struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
  2950. bool need_fence =
  2951. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2952. obj->tiling_mode != I915_TILING_NONE;
  2953. /* Check fence reg constraints and rebind if necessary */
  2954. if (need_fence &&
  2955. !i915_gem_object_fence_offset_ok(&obj->base,
  2956. obj->tiling_mode)) {
  2957. ret = i915_gem_object_unbind(&obj->base);
  2958. if (ret)
  2959. break;
  2960. }
  2961. ret = i915_gem_object_pin(&obj->base, entry->alignment);
  2962. if (ret)
  2963. break;
  2964. /*
  2965. * Pre-965 chips need a fence register set up in order
  2966. * to properly handle blits to/from tiled surfaces.
  2967. */
  2968. if (need_fence) {
  2969. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  2970. if (ret) {
  2971. i915_gem_object_unpin(&obj->base);
  2972. break;
  2973. }
  2974. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  2975. }
  2976. entry->offset = obj->gtt_offset;
  2977. }
  2978. while (i--)
  2979. i915_gem_object_unpin(object_list[i]);
  2980. if (ret == 0)
  2981. break;
  2982. if (ret != -ENOSPC || retry)
  2983. return ret;
  2984. ret = i915_gem_evict_everything(dev);
  2985. if (ret)
  2986. return ret;
  2987. }
  2988. return 0;
  2989. }
  2990. static int
  2991. i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
  2992. struct drm_file *file,
  2993. struct drm_gem_object **object_list,
  2994. struct drm_i915_gem_exec_object2 *exec_list,
  2995. int count)
  2996. {
  2997. struct drm_i915_gem_relocation_entry *reloc;
  2998. int i, total, ret;
  2999. for (i = 0; i < count; i++) {
  3000. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3001. obj->in_execbuffer = false;
  3002. }
  3003. mutex_unlock(&dev->struct_mutex);
  3004. total = 0;
  3005. for (i = 0; i < count; i++)
  3006. total += exec_list[i].relocation_count;
  3007. reloc = drm_malloc_ab(total, sizeof(*reloc));
  3008. if (reloc == NULL) {
  3009. mutex_lock(&dev->struct_mutex);
  3010. return -ENOMEM;
  3011. }
  3012. total = 0;
  3013. for (i = 0; i < count; i++) {
  3014. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3015. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3016. if (copy_from_user(reloc+total, user_relocs,
  3017. exec_list[i].relocation_count *
  3018. sizeof(*reloc))) {
  3019. ret = -EFAULT;
  3020. mutex_lock(&dev->struct_mutex);
  3021. goto err;
  3022. }
  3023. total += exec_list[i].relocation_count;
  3024. }
  3025. ret = i915_mutex_lock_interruptible(dev);
  3026. if (ret) {
  3027. mutex_lock(&dev->struct_mutex);
  3028. goto err;
  3029. }
  3030. ret = i915_gem_execbuffer_reserve(dev, file,
  3031. object_list, exec_list,
  3032. count);
  3033. if (ret)
  3034. goto err;
  3035. total = 0;
  3036. for (i = 0; i < count; i++) {
  3037. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3038. obj->base.pending_read_domains = 0;
  3039. obj->base.pending_write_domain = 0;
  3040. ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
  3041. &exec_list[i],
  3042. reloc + total);
  3043. if (ret)
  3044. goto err;
  3045. total += exec_list[i].relocation_count;
  3046. }
  3047. /* Leave the user relocations as are, this is the painfully slow path,
  3048. * and we want to avoid the complication of dropping the lock whilst
  3049. * having buffers reserved in the aperture and so causing spurious
  3050. * ENOSPC for random operations.
  3051. */
  3052. err:
  3053. drm_free_large(reloc);
  3054. return ret;
  3055. }
  3056. static int
  3057. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  3058. struct drm_file *file,
  3059. struct intel_ring_buffer *ring,
  3060. struct drm_gem_object **objects,
  3061. int count)
  3062. {
  3063. struct drm_i915_private *dev_priv = dev->dev_private;
  3064. int ret, i;
  3065. /* Zero the global flush/invalidate flags. These
  3066. * will be modified as new domains are computed
  3067. * for each object
  3068. */
  3069. dev->invalidate_domains = 0;
  3070. dev->flush_domains = 0;
  3071. dev_priv->mm.flush_rings = 0;
  3072. for (i = 0; i < count; i++)
  3073. i915_gem_object_set_to_gpu_domain(objects[i], ring);
  3074. if (dev->invalidate_domains | dev->flush_domains) {
  3075. #if WATCH_EXEC
  3076. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3077. __func__,
  3078. dev->invalidate_domains,
  3079. dev->flush_domains);
  3080. #endif
  3081. i915_gem_flush(dev, file,
  3082. dev->invalidate_domains,
  3083. dev->flush_domains,
  3084. dev_priv->mm.flush_rings);
  3085. }
  3086. for (i = 0; i < count; i++) {
  3087. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  3088. /* XXX replace with semaphores */
  3089. if (obj->ring && ring != obj->ring) {
  3090. ret = i915_gem_object_wait_rendering(&obj->base, true);
  3091. if (ret)
  3092. return ret;
  3093. }
  3094. }
  3095. return 0;
  3096. }
  3097. /* Throttle our rendering by waiting until the ring has completed our requests
  3098. * emitted over 20 msec ago.
  3099. *
  3100. * Note that if we were to use the current jiffies each time around the loop,
  3101. * we wouldn't escape the function with any frames outstanding if the time to
  3102. * render a frame was over 20ms.
  3103. *
  3104. * This should get us reasonable parallelism between CPU and GPU but also
  3105. * relatively low latency when blocking on a particular request to finish.
  3106. */
  3107. static int
  3108. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3109. {
  3110. struct drm_i915_private *dev_priv = dev->dev_private;
  3111. struct drm_i915_file_private *file_priv = file->driver_priv;
  3112. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3113. struct drm_i915_gem_request *request;
  3114. struct intel_ring_buffer *ring = NULL;
  3115. u32 seqno = 0;
  3116. int ret;
  3117. spin_lock(&file_priv->mm.lock);
  3118. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3119. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3120. break;
  3121. ring = request->ring;
  3122. seqno = request->seqno;
  3123. }
  3124. spin_unlock(&file_priv->mm.lock);
  3125. if (seqno == 0)
  3126. return 0;
  3127. ret = 0;
  3128. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  3129. /* And wait for the seqno passing without holding any locks and
  3130. * causing extra latency for others. This is safe as the irq
  3131. * generation is designed to be run atomically and so is
  3132. * lockless.
  3133. */
  3134. ring->user_irq_get(dev, ring);
  3135. ret = wait_event_interruptible(ring->irq_queue,
  3136. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  3137. || atomic_read(&dev_priv->mm.wedged));
  3138. ring->user_irq_put(dev, ring);
  3139. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3140. ret = -EIO;
  3141. }
  3142. if (ret == 0)
  3143. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3144. return ret;
  3145. }
  3146. static int
  3147. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3148. uint64_t exec_offset)
  3149. {
  3150. uint32_t exec_start, exec_len;
  3151. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3152. exec_len = (uint32_t) exec->batch_len;
  3153. if ((exec_start | exec_len) & 0x7)
  3154. return -EINVAL;
  3155. if (!exec_start)
  3156. return -EINVAL;
  3157. return 0;
  3158. }
  3159. static int
  3160. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3161. int count)
  3162. {
  3163. int i;
  3164. for (i = 0; i < count; i++) {
  3165. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3166. int length; /* limited by fault_in_pages_readable() */
  3167. /* First check for malicious input causing overflow */
  3168. if (exec[i].relocation_count >
  3169. INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
  3170. return -EINVAL;
  3171. length = exec[i].relocation_count *
  3172. sizeof(struct drm_i915_gem_relocation_entry);
  3173. if (!access_ok(VERIFY_READ, ptr, length))
  3174. return -EFAULT;
  3175. /* we may also need to update the presumed offsets */
  3176. if (!access_ok(VERIFY_WRITE, ptr, length))
  3177. return -EFAULT;
  3178. if (fault_in_pages_readable(ptr, length))
  3179. return -EFAULT;
  3180. }
  3181. return 0;
  3182. }
  3183. static int
  3184. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3185. struct drm_file *file,
  3186. struct drm_i915_gem_execbuffer2 *args,
  3187. struct drm_i915_gem_exec_object2 *exec_list)
  3188. {
  3189. drm_i915_private_t *dev_priv = dev->dev_private;
  3190. struct drm_gem_object **object_list = NULL;
  3191. struct drm_gem_object *batch_obj;
  3192. struct drm_i915_gem_object *obj_priv;
  3193. struct drm_clip_rect *cliprects = NULL;
  3194. struct drm_i915_gem_request *request = NULL;
  3195. int ret, i, flips;
  3196. uint64_t exec_offset;
  3197. struct intel_ring_buffer *ring = NULL;
  3198. ret = i915_gem_check_is_wedged(dev);
  3199. if (ret)
  3200. return ret;
  3201. ret = validate_exec_list(exec_list, args->buffer_count);
  3202. if (ret)
  3203. return ret;
  3204. #if WATCH_EXEC
  3205. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3206. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3207. #endif
  3208. switch (args->flags & I915_EXEC_RING_MASK) {
  3209. case I915_EXEC_DEFAULT:
  3210. case I915_EXEC_RENDER:
  3211. ring = &dev_priv->render_ring;
  3212. break;
  3213. case I915_EXEC_BSD:
  3214. if (!HAS_BSD(dev)) {
  3215. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3216. return -EINVAL;
  3217. }
  3218. ring = &dev_priv->bsd_ring;
  3219. break;
  3220. case I915_EXEC_BLT:
  3221. if (!HAS_BLT(dev)) {
  3222. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3223. return -EINVAL;
  3224. }
  3225. ring = &dev_priv->blt_ring;
  3226. break;
  3227. default:
  3228. DRM_ERROR("execbuf with unknown ring: %d\n",
  3229. (int)(args->flags & I915_EXEC_RING_MASK));
  3230. return -EINVAL;
  3231. }
  3232. if (args->buffer_count < 1) {
  3233. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3234. return -EINVAL;
  3235. }
  3236. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3237. if (object_list == NULL) {
  3238. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3239. args->buffer_count);
  3240. ret = -ENOMEM;
  3241. goto pre_mutex_err;
  3242. }
  3243. if (args->num_cliprects != 0) {
  3244. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3245. GFP_KERNEL);
  3246. if (cliprects == NULL) {
  3247. ret = -ENOMEM;
  3248. goto pre_mutex_err;
  3249. }
  3250. ret = copy_from_user(cliprects,
  3251. (struct drm_clip_rect __user *)
  3252. (uintptr_t) args->cliprects_ptr,
  3253. sizeof(*cliprects) * args->num_cliprects);
  3254. if (ret != 0) {
  3255. DRM_ERROR("copy %d cliprects failed: %d\n",
  3256. args->num_cliprects, ret);
  3257. ret = -EFAULT;
  3258. goto pre_mutex_err;
  3259. }
  3260. }
  3261. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3262. if (request == NULL) {
  3263. ret = -ENOMEM;
  3264. goto pre_mutex_err;
  3265. }
  3266. ret = i915_mutex_lock_interruptible(dev);
  3267. if (ret)
  3268. goto pre_mutex_err;
  3269. if (dev_priv->mm.suspended) {
  3270. mutex_unlock(&dev->struct_mutex);
  3271. ret = -EBUSY;
  3272. goto pre_mutex_err;
  3273. }
  3274. /* Look up object handles */
  3275. for (i = 0; i < args->buffer_count; i++) {
  3276. object_list[i] = drm_gem_object_lookup(dev, file,
  3277. exec_list[i].handle);
  3278. if (object_list[i] == NULL) {
  3279. DRM_ERROR("Invalid object handle %d at index %d\n",
  3280. exec_list[i].handle, i);
  3281. /* prevent error path from reading uninitialized data */
  3282. args->buffer_count = i + 1;
  3283. ret = -ENOENT;
  3284. goto err;
  3285. }
  3286. obj_priv = to_intel_bo(object_list[i]);
  3287. if (obj_priv->in_execbuffer) {
  3288. DRM_ERROR("Object %p appears more than once in object list\n",
  3289. object_list[i]);
  3290. /* prevent error path from reading uninitialized data */
  3291. args->buffer_count = i + 1;
  3292. ret = -EINVAL;
  3293. goto err;
  3294. }
  3295. obj_priv->in_execbuffer = true;
  3296. }
  3297. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3298. ret = i915_gem_execbuffer_reserve(dev, file,
  3299. object_list, exec_list,
  3300. args->buffer_count);
  3301. if (ret)
  3302. goto err;
  3303. /* The objects are in their final locations, apply the relocations. */
  3304. ret = i915_gem_execbuffer_relocate(dev, file,
  3305. object_list, exec_list,
  3306. args->buffer_count);
  3307. if (ret) {
  3308. if (ret == -EFAULT) {
  3309. ret = i915_gem_execbuffer_relocate_slow(dev, file,
  3310. object_list,
  3311. exec_list,
  3312. args->buffer_count);
  3313. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  3314. }
  3315. if (ret)
  3316. goto err;
  3317. }
  3318. /* Set the pending read domains for the batch buffer to COMMAND */
  3319. batch_obj = object_list[args->buffer_count-1];
  3320. if (batch_obj->pending_write_domain) {
  3321. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3322. ret = -EINVAL;
  3323. goto err;
  3324. }
  3325. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3326. /* Sanity check the batch buffer */
  3327. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3328. ret = i915_gem_check_execbuffer(args, exec_offset);
  3329. if (ret != 0) {
  3330. DRM_ERROR("execbuf with invalid offset/length\n");
  3331. goto err;
  3332. }
  3333. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3334. object_list, args->buffer_count);
  3335. if (ret)
  3336. goto err;
  3337. for (i = 0; i < args->buffer_count; i++) {
  3338. struct drm_gem_object *obj = object_list[i];
  3339. uint32_t old_write_domain = obj->write_domain;
  3340. obj->write_domain = obj->pending_write_domain;
  3341. trace_i915_gem_object_change_domain(obj,
  3342. obj->read_domains,
  3343. old_write_domain);
  3344. }
  3345. #if WATCH_COHERENCY
  3346. for (i = 0; i < args->buffer_count; i++) {
  3347. i915_gem_object_check_coherency(object_list[i],
  3348. exec_list[i].handle);
  3349. }
  3350. #endif
  3351. #if WATCH_EXEC
  3352. i915_gem_dump_object(batch_obj,
  3353. args->batch_len,
  3354. __func__,
  3355. ~0);
  3356. #endif
  3357. /* Check for any pending flips. As we only maintain a flip queue depth
  3358. * of 1, we can simply insert a WAIT for the next display flip prior
  3359. * to executing the batch and avoid stalling the CPU.
  3360. */
  3361. flips = 0;
  3362. for (i = 0; i < args->buffer_count; i++) {
  3363. if (object_list[i]->write_domain)
  3364. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3365. }
  3366. if (flips) {
  3367. int plane, flip_mask;
  3368. for (plane = 0; flips >> plane; plane++) {
  3369. if (((flips >> plane) & 1) == 0)
  3370. continue;
  3371. if (plane)
  3372. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3373. else
  3374. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3375. intel_ring_begin(dev, ring, 2);
  3376. intel_ring_emit(dev, ring,
  3377. MI_WAIT_FOR_EVENT | flip_mask);
  3378. intel_ring_emit(dev, ring, MI_NOOP);
  3379. intel_ring_advance(dev, ring);
  3380. }
  3381. }
  3382. /* Exec the batchbuffer */
  3383. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3384. cliprects, exec_offset);
  3385. if (ret) {
  3386. DRM_ERROR("dispatch failed %d\n", ret);
  3387. goto err;
  3388. }
  3389. /*
  3390. * Ensure that the commands in the batch buffer are
  3391. * finished before the interrupt fires
  3392. */
  3393. i915_retire_commands(dev, ring);
  3394. for (i = 0; i < args->buffer_count; i++) {
  3395. struct drm_gem_object *obj = object_list[i];
  3396. i915_gem_object_move_to_active(obj, ring);
  3397. if (obj->write_domain)
  3398. list_move_tail(&to_intel_bo(obj)->gpu_write_list,
  3399. &ring->gpu_write_list);
  3400. }
  3401. i915_add_request(dev, file, request, ring);
  3402. request = NULL;
  3403. err:
  3404. for (i = 0; i < args->buffer_count; i++) {
  3405. if (object_list[i]) {
  3406. obj_priv = to_intel_bo(object_list[i]);
  3407. obj_priv->in_execbuffer = false;
  3408. }
  3409. drm_gem_object_unreference(object_list[i]);
  3410. }
  3411. mutex_unlock(&dev->struct_mutex);
  3412. pre_mutex_err:
  3413. drm_free_large(object_list);
  3414. kfree(cliprects);
  3415. kfree(request);
  3416. return ret;
  3417. }
  3418. /*
  3419. * Legacy execbuffer just creates an exec2 list from the original exec object
  3420. * list array and passes it to the real function.
  3421. */
  3422. int
  3423. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3424. struct drm_file *file_priv)
  3425. {
  3426. struct drm_i915_gem_execbuffer *args = data;
  3427. struct drm_i915_gem_execbuffer2 exec2;
  3428. struct drm_i915_gem_exec_object *exec_list = NULL;
  3429. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3430. int ret, i;
  3431. #if WATCH_EXEC
  3432. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3433. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3434. #endif
  3435. if (args->buffer_count < 1) {
  3436. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3437. return -EINVAL;
  3438. }
  3439. /* Copy in the exec list from userland */
  3440. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3441. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3442. if (exec_list == NULL || exec2_list == NULL) {
  3443. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3444. args->buffer_count);
  3445. drm_free_large(exec_list);
  3446. drm_free_large(exec2_list);
  3447. return -ENOMEM;
  3448. }
  3449. ret = copy_from_user(exec_list,
  3450. (struct drm_i915_relocation_entry __user *)
  3451. (uintptr_t) args->buffers_ptr,
  3452. sizeof(*exec_list) * args->buffer_count);
  3453. if (ret != 0) {
  3454. DRM_ERROR("copy %d exec entries failed %d\n",
  3455. args->buffer_count, ret);
  3456. drm_free_large(exec_list);
  3457. drm_free_large(exec2_list);
  3458. return -EFAULT;
  3459. }
  3460. for (i = 0; i < args->buffer_count; i++) {
  3461. exec2_list[i].handle = exec_list[i].handle;
  3462. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3463. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3464. exec2_list[i].alignment = exec_list[i].alignment;
  3465. exec2_list[i].offset = exec_list[i].offset;
  3466. if (INTEL_INFO(dev)->gen < 4)
  3467. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3468. else
  3469. exec2_list[i].flags = 0;
  3470. }
  3471. exec2.buffers_ptr = args->buffers_ptr;
  3472. exec2.buffer_count = args->buffer_count;
  3473. exec2.batch_start_offset = args->batch_start_offset;
  3474. exec2.batch_len = args->batch_len;
  3475. exec2.DR1 = args->DR1;
  3476. exec2.DR4 = args->DR4;
  3477. exec2.num_cliprects = args->num_cliprects;
  3478. exec2.cliprects_ptr = args->cliprects_ptr;
  3479. exec2.flags = I915_EXEC_RENDER;
  3480. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3481. if (!ret) {
  3482. /* Copy the new buffer offsets back to the user's exec list. */
  3483. for (i = 0; i < args->buffer_count; i++)
  3484. exec_list[i].offset = exec2_list[i].offset;
  3485. /* ... and back out to userspace */
  3486. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3487. (uintptr_t) args->buffers_ptr,
  3488. exec_list,
  3489. sizeof(*exec_list) * args->buffer_count);
  3490. if (ret) {
  3491. ret = -EFAULT;
  3492. DRM_ERROR("failed to copy %d exec entries "
  3493. "back to user (%d)\n",
  3494. args->buffer_count, ret);
  3495. }
  3496. }
  3497. drm_free_large(exec_list);
  3498. drm_free_large(exec2_list);
  3499. return ret;
  3500. }
  3501. int
  3502. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3503. struct drm_file *file_priv)
  3504. {
  3505. struct drm_i915_gem_execbuffer2 *args = data;
  3506. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3507. int ret;
  3508. #if WATCH_EXEC
  3509. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3510. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3511. #endif
  3512. if (args->buffer_count < 1) {
  3513. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3514. return -EINVAL;
  3515. }
  3516. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3517. if (exec2_list == NULL) {
  3518. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3519. args->buffer_count);
  3520. return -ENOMEM;
  3521. }
  3522. ret = copy_from_user(exec2_list,
  3523. (struct drm_i915_relocation_entry __user *)
  3524. (uintptr_t) args->buffers_ptr,
  3525. sizeof(*exec2_list) * args->buffer_count);
  3526. if (ret != 0) {
  3527. DRM_ERROR("copy %d exec entries failed %d\n",
  3528. args->buffer_count, ret);
  3529. drm_free_large(exec2_list);
  3530. return -EFAULT;
  3531. }
  3532. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3533. if (!ret) {
  3534. /* Copy the new buffer offsets back to the user's exec list. */
  3535. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3536. (uintptr_t) args->buffers_ptr,
  3537. exec2_list,
  3538. sizeof(*exec2_list) * args->buffer_count);
  3539. if (ret) {
  3540. ret = -EFAULT;
  3541. DRM_ERROR("failed to copy %d exec entries "
  3542. "back to user (%d)\n",
  3543. args->buffer_count, ret);
  3544. }
  3545. }
  3546. drm_free_large(exec2_list);
  3547. return ret;
  3548. }
  3549. int
  3550. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3551. {
  3552. struct drm_device *dev = obj->dev;
  3553. struct drm_i915_private *dev_priv = dev->dev_private;
  3554. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3555. int ret;
  3556. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3557. WARN_ON(i915_verify_lists(dev));
  3558. if (obj_priv->gtt_space != NULL) {
  3559. if (alignment == 0)
  3560. alignment = i915_gem_get_gtt_alignment(obj);
  3561. if (obj_priv->gtt_offset & (alignment - 1)) {
  3562. WARN(obj_priv->pin_count,
  3563. "bo is already pinned with incorrect alignment: offset=%x, req.alignment=%x\n",
  3564. obj_priv->gtt_offset, alignment);
  3565. ret = i915_gem_object_unbind(obj);
  3566. if (ret)
  3567. return ret;
  3568. }
  3569. }
  3570. if (obj_priv->gtt_space == NULL) {
  3571. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3572. if (ret)
  3573. return ret;
  3574. }
  3575. obj_priv->pin_count++;
  3576. /* If the object is not active and not pending a flush,
  3577. * remove it from the inactive list
  3578. */
  3579. if (obj_priv->pin_count == 1) {
  3580. i915_gem_info_add_pin(dev_priv, obj->size);
  3581. if (!obj_priv->active)
  3582. list_move_tail(&obj_priv->mm_list,
  3583. &dev_priv->mm.pinned_list);
  3584. }
  3585. WARN_ON(i915_verify_lists(dev));
  3586. return 0;
  3587. }
  3588. void
  3589. i915_gem_object_unpin(struct drm_gem_object *obj)
  3590. {
  3591. struct drm_device *dev = obj->dev;
  3592. drm_i915_private_t *dev_priv = dev->dev_private;
  3593. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3594. WARN_ON(i915_verify_lists(dev));
  3595. obj_priv->pin_count--;
  3596. BUG_ON(obj_priv->pin_count < 0);
  3597. BUG_ON(obj_priv->gtt_space == NULL);
  3598. /* If the object is no longer pinned, and is
  3599. * neither active nor being flushed, then stick it on
  3600. * the inactive list
  3601. */
  3602. if (obj_priv->pin_count == 0) {
  3603. if (!obj_priv->active)
  3604. list_move_tail(&obj_priv->mm_list,
  3605. &dev_priv->mm.inactive_list);
  3606. i915_gem_info_remove_pin(dev_priv, obj->size);
  3607. }
  3608. WARN_ON(i915_verify_lists(dev));
  3609. }
  3610. int
  3611. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3612. struct drm_file *file_priv)
  3613. {
  3614. struct drm_i915_gem_pin *args = data;
  3615. struct drm_gem_object *obj;
  3616. struct drm_i915_gem_object *obj_priv;
  3617. int ret;
  3618. ret = i915_mutex_lock_interruptible(dev);
  3619. if (ret)
  3620. return ret;
  3621. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3622. if (obj == NULL) {
  3623. ret = -ENOENT;
  3624. goto unlock;
  3625. }
  3626. obj_priv = to_intel_bo(obj);
  3627. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3628. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3629. ret = -EINVAL;
  3630. goto out;
  3631. }
  3632. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3633. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3634. args->handle);
  3635. ret = -EINVAL;
  3636. goto out;
  3637. }
  3638. obj_priv->user_pin_count++;
  3639. obj_priv->pin_filp = file_priv;
  3640. if (obj_priv->user_pin_count == 1) {
  3641. ret = i915_gem_object_pin(obj, args->alignment);
  3642. if (ret)
  3643. goto out;
  3644. }
  3645. /* XXX - flush the CPU caches for pinned objects
  3646. * as the X server doesn't manage domains yet
  3647. */
  3648. i915_gem_object_flush_cpu_write_domain(obj);
  3649. args->offset = obj_priv->gtt_offset;
  3650. out:
  3651. drm_gem_object_unreference(obj);
  3652. unlock:
  3653. mutex_unlock(&dev->struct_mutex);
  3654. return ret;
  3655. }
  3656. int
  3657. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3658. struct drm_file *file_priv)
  3659. {
  3660. struct drm_i915_gem_pin *args = data;
  3661. struct drm_gem_object *obj;
  3662. struct drm_i915_gem_object *obj_priv;
  3663. int ret;
  3664. ret = i915_mutex_lock_interruptible(dev);
  3665. if (ret)
  3666. return ret;
  3667. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3668. if (obj == NULL) {
  3669. ret = -ENOENT;
  3670. goto unlock;
  3671. }
  3672. obj_priv = to_intel_bo(obj);
  3673. if (obj_priv->pin_filp != file_priv) {
  3674. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3675. args->handle);
  3676. ret = -EINVAL;
  3677. goto out;
  3678. }
  3679. obj_priv->user_pin_count--;
  3680. if (obj_priv->user_pin_count == 0) {
  3681. obj_priv->pin_filp = NULL;
  3682. i915_gem_object_unpin(obj);
  3683. }
  3684. out:
  3685. drm_gem_object_unreference(obj);
  3686. unlock:
  3687. mutex_unlock(&dev->struct_mutex);
  3688. return ret;
  3689. }
  3690. int
  3691. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3692. struct drm_file *file_priv)
  3693. {
  3694. struct drm_i915_gem_busy *args = data;
  3695. struct drm_gem_object *obj;
  3696. struct drm_i915_gem_object *obj_priv;
  3697. int ret;
  3698. ret = i915_mutex_lock_interruptible(dev);
  3699. if (ret)
  3700. return ret;
  3701. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3702. if (obj == NULL) {
  3703. ret = -ENOENT;
  3704. goto unlock;
  3705. }
  3706. obj_priv = to_intel_bo(obj);
  3707. /* Count all active objects as busy, even if they are currently not used
  3708. * by the gpu. Users of this interface expect objects to eventually
  3709. * become non-busy without any further actions, therefore emit any
  3710. * necessary flushes here.
  3711. */
  3712. args->busy = obj_priv->active;
  3713. if (args->busy) {
  3714. /* Unconditionally flush objects, even when the gpu still uses this
  3715. * object. Userspace calling this function indicates that it wants to
  3716. * use this buffer rather sooner than later, so issuing the required
  3717. * flush earlier is beneficial.
  3718. */
  3719. if (obj->write_domain & I915_GEM_GPU_DOMAINS) {
  3720. i915_gem_flush_ring(dev, file_priv,
  3721. obj_priv->ring,
  3722. 0, obj->write_domain);
  3723. } else if (obj_priv->ring->outstanding_lazy_request) {
  3724. /* This ring is not being cleared by active usage,
  3725. * so emit a request to do so.
  3726. */
  3727. u32 seqno = i915_add_request(dev,
  3728. NULL, NULL,
  3729. obj_priv->ring);
  3730. if (seqno == 0)
  3731. ret = -ENOMEM;
  3732. }
  3733. /* Update the active list for the hardware's current position.
  3734. * Otherwise this only updates on a delayed timer or when irqs
  3735. * are actually unmasked, and our working set ends up being
  3736. * larger than required.
  3737. */
  3738. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3739. args->busy = obj_priv->active;
  3740. }
  3741. drm_gem_object_unreference(obj);
  3742. unlock:
  3743. mutex_unlock(&dev->struct_mutex);
  3744. return ret;
  3745. }
  3746. int
  3747. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3748. struct drm_file *file_priv)
  3749. {
  3750. return i915_gem_ring_throttle(dev, file_priv);
  3751. }
  3752. int
  3753. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3754. struct drm_file *file_priv)
  3755. {
  3756. struct drm_i915_gem_madvise *args = data;
  3757. struct drm_gem_object *obj;
  3758. struct drm_i915_gem_object *obj_priv;
  3759. int ret;
  3760. switch (args->madv) {
  3761. case I915_MADV_DONTNEED:
  3762. case I915_MADV_WILLNEED:
  3763. break;
  3764. default:
  3765. return -EINVAL;
  3766. }
  3767. ret = i915_mutex_lock_interruptible(dev);
  3768. if (ret)
  3769. return ret;
  3770. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3771. if (obj == NULL) {
  3772. ret = -ENOENT;
  3773. goto unlock;
  3774. }
  3775. obj_priv = to_intel_bo(obj);
  3776. if (obj_priv->pin_count) {
  3777. ret = -EINVAL;
  3778. goto out;
  3779. }
  3780. if (obj_priv->madv != __I915_MADV_PURGED)
  3781. obj_priv->madv = args->madv;
  3782. /* if the object is no longer bound, discard its backing storage */
  3783. if (i915_gem_object_is_purgeable(obj_priv) &&
  3784. obj_priv->gtt_space == NULL)
  3785. i915_gem_object_truncate(obj);
  3786. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3787. out:
  3788. drm_gem_object_unreference(obj);
  3789. unlock:
  3790. mutex_unlock(&dev->struct_mutex);
  3791. return ret;
  3792. }
  3793. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3794. size_t size)
  3795. {
  3796. struct drm_i915_private *dev_priv = dev->dev_private;
  3797. struct drm_i915_gem_object *obj;
  3798. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3799. if (obj == NULL)
  3800. return NULL;
  3801. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3802. kfree(obj);
  3803. return NULL;
  3804. }
  3805. i915_gem_info_add_obj(dev_priv, size);
  3806. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3807. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3808. obj->agp_type = AGP_USER_MEMORY;
  3809. obj->base.driver_private = NULL;
  3810. obj->fence_reg = I915_FENCE_REG_NONE;
  3811. INIT_LIST_HEAD(&obj->mm_list);
  3812. INIT_LIST_HEAD(&obj->ring_list);
  3813. INIT_LIST_HEAD(&obj->gpu_write_list);
  3814. obj->madv = I915_MADV_WILLNEED;
  3815. return &obj->base;
  3816. }
  3817. int i915_gem_init_object(struct drm_gem_object *obj)
  3818. {
  3819. BUG();
  3820. return 0;
  3821. }
  3822. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3823. {
  3824. struct drm_device *dev = obj->dev;
  3825. drm_i915_private_t *dev_priv = dev->dev_private;
  3826. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3827. int ret;
  3828. ret = i915_gem_object_unbind(obj);
  3829. if (ret == -ERESTARTSYS) {
  3830. list_move(&obj_priv->mm_list,
  3831. &dev_priv->mm.deferred_free_list);
  3832. return;
  3833. }
  3834. if (obj_priv->mmap_offset)
  3835. i915_gem_free_mmap_offset(obj);
  3836. drm_gem_object_release(obj);
  3837. i915_gem_info_remove_obj(dev_priv, obj->size);
  3838. kfree(obj_priv->page_cpu_valid);
  3839. kfree(obj_priv->bit_17);
  3840. kfree(obj_priv);
  3841. }
  3842. void i915_gem_free_object(struct drm_gem_object *obj)
  3843. {
  3844. struct drm_device *dev = obj->dev;
  3845. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3846. trace_i915_gem_object_destroy(obj);
  3847. while (obj_priv->pin_count > 0)
  3848. i915_gem_object_unpin(obj);
  3849. if (obj_priv->phys_obj)
  3850. i915_gem_detach_phys_object(dev, obj);
  3851. i915_gem_free_object_tail(obj);
  3852. }
  3853. int
  3854. i915_gem_idle(struct drm_device *dev)
  3855. {
  3856. drm_i915_private_t *dev_priv = dev->dev_private;
  3857. int ret;
  3858. mutex_lock(&dev->struct_mutex);
  3859. if (dev_priv->mm.suspended) {
  3860. mutex_unlock(&dev->struct_mutex);
  3861. return 0;
  3862. }
  3863. ret = i915_gpu_idle(dev);
  3864. if (ret) {
  3865. mutex_unlock(&dev->struct_mutex);
  3866. return ret;
  3867. }
  3868. /* Under UMS, be paranoid and evict. */
  3869. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3870. ret = i915_gem_evict_inactive(dev);
  3871. if (ret) {
  3872. mutex_unlock(&dev->struct_mutex);
  3873. return ret;
  3874. }
  3875. }
  3876. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3877. * We need to replace this with a semaphore, or something.
  3878. * And not confound mm.suspended!
  3879. */
  3880. dev_priv->mm.suspended = 1;
  3881. del_timer_sync(&dev_priv->hangcheck_timer);
  3882. i915_kernel_lost_context(dev);
  3883. i915_gem_cleanup_ringbuffer(dev);
  3884. mutex_unlock(&dev->struct_mutex);
  3885. /* Cancel the retire work handler, which should be idle now. */
  3886. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3887. return 0;
  3888. }
  3889. /*
  3890. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3891. * over cache flushing.
  3892. */
  3893. static int
  3894. i915_gem_init_pipe_control(struct drm_device *dev)
  3895. {
  3896. drm_i915_private_t *dev_priv = dev->dev_private;
  3897. struct drm_gem_object *obj;
  3898. struct drm_i915_gem_object *obj_priv;
  3899. int ret;
  3900. obj = i915_gem_alloc_object(dev, 4096);
  3901. if (obj == NULL) {
  3902. DRM_ERROR("Failed to allocate seqno page\n");
  3903. ret = -ENOMEM;
  3904. goto err;
  3905. }
  3906. obj_priv = to_intel_bo(obj);
  3907. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3908. ret = i915_gem_object_pin(obj, 4096);
  3909. if (ret)
  3910. goto err_unref;
  3911. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3912. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3913. if (dev_priv->seqno_page == NULL)
  3914. goto err_unpin;
  3915. dev_priv->seqno_obj = obj;
  3916. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3917. return 0;
  3918. err_unpin:
  3919. i915_gem_object_unpin(obj);
  3920. err_unref:
  3921. drm_gem_object_unreference(obj);
  3922. err:
  3923. return ret;
  3924. }
  3925. static void
  3926. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3927. {
  3928. drm_i915_private_t *dev_priv = dev->dev_private;
  3929. struct drm_gem_object *obj;
  3930. struct drm_i915_gem_object *obj_priv;
  3931. obj = dev_priv->seqno_obj;
  3932. obj_priv = to_intel_bo(obj);
  3933. kunmap(obj_priv->pages[0]);
  3934. i915_gem_object_unpin(obj);
  3935. drm_gem_object_unreference(obj);
  3936. dev_priv->seqno_obj = NULL;
  3937. dev_priv->seqno_page = NULL;
  3938. }
  3939. int
  3940. i915_gem_init_ringbuffer(struct drm_device *dev)
  3941. {
  3942. drm_i915_private_t *dev_priv = dev->dev_private;
  3943. int ret;
  3944. if (HAS_PIPE_CONTROL(dev)) {
  3945. ret = i915_gem_init_pipe_control(dev);
  3946. if (ret)
  3947. return ret;
  3948. }
  3949. ret = intel_init_render_ring_buffer(dev);
  3950. if (ret)
  3951. goto cleanup_pipe_control;
  3952. if (HAS_BSD(dev)) {
  3953. ret = intel_init_bsd_ring_buffer(dev);
  3954. if (ret)
  3955. goto cleanup_render_ring;
  3956. }
  3957. if (HAS_BLT(dev)) {
  3958. ret = intel_init_blt_ring_buffer(dev);
  3959. if (ret)
  3960. goto cleanup_bsd_ring;
  3961. }
  3962. dev_priv->next_seqno = 1;
  3963. return 0;
  3964. cleanup_bsd_ring:
  3965. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3966. cleanup_render_ring:
  3967. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3968. cleanup_pipe_control:
  3969. if (HAS_PIPE_CONTROL(dev))
  3970. i915_gem_cleanup_pipe_control(dev);
  3971. return ret;
  3972. }
  3973. void
  3974. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3975. {
  3976. drm_i915_private_t *dev_priv = dev->dev_private;
  3977. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3978. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3979. intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
  3980. if (HAS_PIPE_CONTROL(dev))
  3981. i915_gem_cleanup_pipe_control(dev);
  3982. }
  3983. int
  3984. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3985. struct drm_file *file_priv)
  3986. {
  3987. drm_i915_private_t *dev_priv = dev->dev_private;
  3988. int ret;
  3989. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3990. return 0;
  3991. if (atomic_read(&dev_priv->mm.wedged)) {
  3992. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3993. atomic_set(&dev_priv->mm.wedged, 0);
  3994. }
  3995. mutex_lock(&dev->struct_mutex);
  3996. dev_priv->mm.suspended = 0;
  3997. ret = i915_gem_init_ringbuffer(dev);
  3998. if (ret != 0) {
  3999. mutex_unlock(&dev->struct_mutex);
  4000. return ret;
  4001. }
  4002. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  4003. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  4004. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  4005. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  4006. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  4007. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  4008. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  4009. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  4010. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  4011. mutex_unlock(&dev->struct_mutex);
  4012. ret = drm_irq_install(dev);
  4013. if (ret)
  4014. goto cleanup_ringbuffer;
  4015. return 0;
  4016. cleanup_ringbuffer:
  4017. mutex_lock(&dev->struct_mutex);
  4018. i915_gem_cleanup_ringbuffer(dev);
  4019. dev_priv->mm.suspended = 1;
  4020. mutex_unlock(&dev->struct_mutex);
  4021. return ret;
  4022. }
  4023. int
  4024. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  4025. struct drm_file *file_priv)
  4026. {
  4027. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4028. return 0;
  4029. drm_irq_uninstall(dev);
  4030. return i915_gem_idle(dev);
  4031. }
  4032. void
  4033. i915_gem_lastclose(struct drm_device *dev)
  4034. {
  4035. int ret;
  4036. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4037. return;
  4038. ret = i915_gem_idle(dev);
  4039. if (ret)
  4040. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4041. }
  4042. static void
  4043. init_ring_lists(struct intel_ring_buffer *ring)
  4044. {
  4045. INIT_LIST_HEAD(&ring->active_list);
  4046. INIT_LIST_HEAD(&ring->request_list);
  4047. INIT_LIST_HEAD(&ring->gpu_write_list);
  4048. }
  4049. void
  4050. i915_gem_load(struct drm_device *dev)
  4051. {
  4052. int i;
  4053. drm_i915_private_t *dev_priv = dev->dev_private;
  4054. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4055. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4056. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4057. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4058. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4059. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4060. init_ring_lists(&dev_priv->render_ring);
  4061. init_ring_lists(&dev_priv->bsd_ring);
  4062. init_ring_lists(&dev_priv->blt_ring);
  4063. for (i = 0; i < 16; i++)
  4064. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4065. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4066. i915_gem_retire_work_handler);
  4067. init_completion(&dev_priv->error_completion);
  4068. spin_lock(&shrink_list_lock);
  4069. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  4070. spin_unlock(&shrink_list_lock);
  4071. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4072. if (IS_GEN3(dev)) {
  4073. u32 tmp = I915_READ(MI_ARB_STATE);
  4074. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4075. /* arb state is a masked write, so set bit + bit in mask */
  4076. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4077. I915_WRITE(MI_ARB_STATE, tmp);
  4078. }
  4079. }
  4080. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4081. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4082. dev_priv->fence_reg_start = 3;
  4083. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4084. dev_priv->num_fence_regs = 16;
  4085. else
  4086. dev_priv->num_fence_regs = 8;
  4087. /* Initialize fence registers to zero */
  4088. switch (INTEL_INFO(dev)->gen) {
  4089. case 6:
  4090. for (i = 0; i < 16; i++)
  4091. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4092. break;
  4093. case 5:
  4094. case 4:
  4095. for (i = 0; i < 16; i++)
  4096. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4097. break;
  4098. case 3:
  4099. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4100. for (i = 0; i < 8; i++)
  4101. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4102. case 2:
  4103. for (i = 0; i < 8; i++)
  4104. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4105. break;
  4106. }
  4107. i915_gem_detect_bit_6_swizzle(dev);
  4108. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4109. }
  4110. /*
  4111. * Create a physically contiguous memory object for this object
  4112. * e.g. for cursor + overlay regs
  4113. */
  4114. static int i915_gem_init_phys_object(struct drm_device *dev,
  4115. int id, int size, int align)
  4116. {
  4117. drm_i915_private_t *dev_priv = dev->dev_private;
  4118. struct drm_i915_gem_phys_object *phys_obj;
  4119. int ret;
  4120. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4121. return 0;
  4122. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4123. if (!phys_obj)
  4124. return -ENOMEM;
  4125. phys_obj->id = id;
  4126. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4127. if (!phys_obj->handle) {
  4128. ret = -ENOMEM;
  4129. goto kfree_obj;
  4130. }
  4131. #ifdef CONFIG_X86
  4132. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4133. #endif
  4134. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4135. return 0;
  4136. kfree_obj:
  4137. kfree(phys_obj);
  4138. return ret;
  4139. }
  4140. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4141. {
  4142. drm_i915_private_t *dev_priv = dev->dev_private;
  4143. struct drm_i915_gem_phys_object *phys_obj;
  4144. if (!dev_priv->mm.phys_objs[id - 1])
  4145. return;
  4146. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4147. if (phys_obj->cur_obj) {
  4148. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4149. }
  4150. #ifdef CONFIG_X86
  4151. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4152. #endif
  4153. drm_pci_free(dev, phys_obj->handle);
  4154. kfree(phys_obj);
  4155. dev_priv->mm.phys_objs[id - 1] = NULL;
  4156. }
  4157. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4158. {
  4159. int i;
  4160. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4161. i915_gem_free_phys_object(dev, i);
  4162. }
  4163. void i915_gem_detach_phys_object(struct drm_device *dev,
  4164. struct drm_gem_object *obj)
  4165. {
  4166. struct drm_i915_gem_object *obj_priv;
  4167. int i;
  4168. int ret;
  4169. int page_count;
  4170. obj_priv = to_intel_bo(obj);
  4171. if (!obj_priv->phys_obj)
  4172. return;
  4173. ret = i915_gem_object_get_pages(obj, 0);
  4174. if (ret)
  4175. goto out;
  4176. page_count = obj->size / PAGE_SIZE;
  4177. for (i = 0; i < page_count; i++) {
  4178. char *dst = kmap_atomic(obj_priv->pages[i]);
  4179. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4180. memcpy(dst, src, PAGE_SIZE);
  4181. kunmap_atomic(dst);
  4182. }
  4183. drm_clflush_pages(obj_priv->pages, page_count);
  4184. drm_agp_chipset_flush(dev);
  4185. i915_gem_object_put_pages(obj);
  4186. out:
  4187. obj_priv->phys_obj->cur_obj = NULL;
  4188. obj_priv->phys_obj = NULL;
  4189. }
  4190. int
  4191. i915_gem_attach_phys_object(struct drm_device *dev,
  4192. struct drm_gem_object *obj,
  4193. int id,
  4194. int align)
  4195. {
  4196. drm_i915_private_t *dev_priv = dev->dev_private;
  4197. struct drm_i915_gem_object *obj_priv;
  4198. int ret = 0;
  4199. int page_count;
  4200. int i;
  4201. if (id > I915_MAX_PHYS_OBJECT)
  4202. return -EINVAL;
  4203. obj_priv = to_intel_bo(obj);
  4204. if (obj_priv->phys_obj) {
  4205. if (obj_priv->phys_obj->id == id)
  4206. return 0;
  4207. i915_gem_detach_phys_object(dev, obj);
  4208. }
  4209. /* create a new object */
  4210. if (!dev_priv->mm.phys_objs[id - 1]) {
  4211. ret = i915_gem_init_phys_object(dev, id,
  4212. obj->size, align);
  4213. if (ret) {
  4214. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4215. goto out;
  4216. }
  4217. }
  4218. /* bind to the object */
  4219. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4220. obj_priv->phys_obj->cur_obj = obj;
  4221. ret = i915_gem_object_get_pages(obj, 0);
  4222. if (ret) {
  4223. DRM_ERROR("failed to get page list\n");
  4224. goto out;
  4225. }
  4226. page_count = obj->size / PAGE_SIZE;
  4227. for (i = 0; i < page_count; i++) {
  4228. char *src = kmap_atomic(obj_priv->pages[i]);
  4229. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4230. memcpy(dst, src, PAGE_SIZE);
  4231. kunmap_atomic(src);
  4232. }
  4233. i915_gem_object_put_pages(obj);
  4234. return 0;
  4235. out:
  4236. return ret;
  4237. }
  4238. static int
  4239. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4240. struct drm_i915_gem_pwrite *args,
  4241. struct drm_file *file_priv)
  4242. {
  4243. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4244. void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4245. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4246. DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
  4247. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4248. unsigned long unwritten;
  4249. /* The physical object once assigned is fixed for the lifetime
  4250. * of the obj, so we can safely drop the lock and continue
  4251. * to access vaddr.
  4252. */
  4253. mutex_unlock(&dev->struct_mutex);
  4254. unwritten = copy_from_user(vaddr, user_data, args->size);
  4255. mutex_lock(&dev->struct_mutex);
  4256. if (unwritten)
  4257. return -EFAULT;
  4258. }
  4259. drm_agp_chipset_flush(dev);
  4260. return 0;
  4261. }
  4262. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4263. {
  4264. struct drm_i915_file_private *file_priv = file->driver_priv;
  4265. /* Clean up our request list when the client is going away, so that
  4266. * later retire_requests won't dereference our soon-to-be-gone
  4267. * file_priv.
  4268. */
  4269. spin_lock(&file_priv->mm.lock);
  4270. while (!list_empty(&file_priv->mm.request_list)) {
  4271. struct drm_i915_gem_request *request;
  4272. request = list_first_entry(&file_priv->mm.request_list,
  4273. struct drm_i915_gem_request,
  4274. client_list);
  4275. list_del(&request->client_list);
  4276. request->file_priv = NULL;
  4277. }
  4278. spin_unlock(&file_priv->mm.lock);
  4279. }
  4280. static int
  4281. i915_gpu_is_active(struct drm_device *dev)
  4282. {
  4283. drm_i915_private_t *dev_priv = dev->dev_private;
  4284. int lists_empty;
  4285. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4286. list_empty(&dev_priv->mm.active_list);
  4287. return !lists_empty;
  4288. }
  4289. static int
  4290. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4291. {
  4292. drm_i915_private_t *dev_priv, *next_dev;
  4293. struct drm_i915_gem_object *obj_priv, *next_obj;
  4294. int cnt = 0;
  4295. int would_deadlock = 1;
  4296. /* "fast-path" to count number of available objects */
  4297. if (nr_to_scan == 0) {
  4298. spin_lock(&shrink_list_lock);
  4299. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4300. struct drm_device *dev = dev_priv->dev;
  4301. if (mutex_trylock(&dev->struct_mutex)) {
  4302. list_for_each_entry(obj_priv,
  4303. &dev_priv->mm.inactive_list,
  4304. mm_list)
  4305. cnt++;
  4306. mutex_unlock(&dev->struct_mutex);
  4307. }
  4308. }
  4309. spin_unlock(&shrink_list_lock);
  4310. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4311. }
  4312. spin_lock(&shrink_list_lock);
  4313. rescan:
  4314. /* first scan for clean buffers */
  4315. list_for_each_entry_safe(dev_priv, next_dev,
  4316. &shrink_list, mm.shrink_list) {
  4317. struct drm_device *dev = dev_priv->dev;
  4318. if (! mutex_trylock(&dev->struct_mutex))
  4319. continue;
  4320. spin_unlock(&shrink_list_lock);
  4321. i915_gem_retire_requests(dev);
  4322. list_for_each_entry_safe(obj_priv, next_obj,
  4323. &dev_priv->mm.inactive_list,
  4324. mm_list) {
  4325. if (i915_gem_object_is_purgeable(obj_priv)) {
  4326. i915_gem_object_unbind(&obj_priv->base);
  4327. if (--nr_to_scan <= 0)
  4328. break;
  4329. }
  4330. }
  4331. spin_lock(&shrink_list_lock);
  4332. mutex_unlock(&dev->struct_mutex);
  4333. would_deadlock = 0;
  4334. if (nr_to_scan <= 0)
  4335. break;
  4336. }
  4337. /* second pass, evict/count anything still on the inactive list */
  4338. list_for_each_entry_safe(dev_priv, next_dev,
  4339. &shrink_list, mm.shrink_list) {
  4340. struct drm_device *dev = dev_priv->dev;
  4341. if (! mutex_trylock(&dev->struct_mutex))
  4342. continue;
  4343. spin_unlock(&shrink_list_lock);
  4344. list_for_each_entry_safe(obj_priv, next_obj,
  4345. &dev_priv->mm.inactive_list,
  4346. mm_list) {
  4347. if (nr_to_scan > 0) {
  4348. i915_gem_object_unbind(&obj_priv->base);
  4349. nr_to_scan--;
  4350. } else
  4351. cnt++;
  4352. }
  4353. spin_lock(&shrink_list_lock);
  4354. mutex_unlock(&dev->struct_mutex);
  4355. would_deadlock = 0;
  4356. }
  4357. if (nr_to_scan) {
  4358. int active = 0;
  4359. /*
  4360. * We are desperate for pages, so as a last resort, wait
  4361. * for the GPU to finish and discard whatever we can.
  4362. * This has a dramatic impact to reduce the number of
  4363. * OOM-killer events whilst running the GPU aggressively.
  4364. */
  4365. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4366. struct drm_device *dev = dev_priv->dev;
  4367. if (!mutex_trylock(&dev->struct_mutex))
  4368. continue;
  4369. spin_unlock(&shrink_list_lock);
  4370. if (i915_gpu_is_active(dev)) {
  4371. i915_gpu_idle(dev);
  4372. active++;
  4373. }
  4374. spin_lock(&shrink_list_lock);
  4375. mutex_unlock(&dev->struct_mutex);
  4376. }
  4377. if (active)
  4378. goto rescan;
  4379. }
  4380. spin_unlock(&shrink_list_lock);
  4381. if (would_deadlock)
  4382. return -1;
  4383. else if (cnt > 0)
  4384. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4385. else
  4386. return 0;
  4387. }
  4388. static struct shrinker shrinker = {
  4389. .shrink = i915_gem_shrink,
  4390. .seeks = DEFAULT_SEEKS,
  4391. };
  4392. __init void
  4393. i915_gem_shrinker_init(void)
  4394. {
  4395. register_shrinker(&shrinker);
  4396. }
  4397. __exit void
  4398. i915_gem_shrinker_exit(void)
  4399. {
  4400. unregister_shrinker(&shrinker);
  4401. }