pch_dma.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959
  1. /*
  2. * Topcliff PCH DMA controller driver
  3. * Copyright (c) 2010 Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/dmaengine.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/init.h>
  21. #include <linux/pci.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/module.h>
  24. #include <linux/pch_dma.h>
  25. #define DRV_NAME "pch-dma"
  26. #define DMA_CTL0_DISABLE 0x0
  27. #define DMA_CTL0_SG 0x1
  28. #define DMA_CTL0_ONESHOT 0x2
  29. #define DMA_CTL0_MODE_MASK_BITS 0x3
  30. #define DMA_CTL0_DIR_SHIFT_BITS 2
  31. #define DMA_CTL0_BITS_PER_CH 4
  32. #define DMA_CTL2_START_SHIFT_BITS 8
  33. #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
  34. #define DMA_STATUS_IDLE 0x0
  35. #define DMA_STATUS_DESC_READ 0x1
  36. #define DMA_STATUS_WAIT 0x2
  37. #define DMA_STATUS_ACCESS 0x3
  38. #define DMA_STATUS_BITS_PER_CH 2
  39. #define DMA_STATUS_MASK_BITS 0x3
  40. #define DMA_STATUS_SHIFT_BITS 16
  41. #define DMA_STATUS_IRQ(x) (0x1 << (x))
  42. #define DMA_STATUS_ERR(x) (0x1 << ((x) + 8))
  43. #define DMA_DESC_WIDTH_SHIFT_BITS 12
  44. #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
  45. #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
  46. #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
  47. #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
  48. #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
  49. #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
  50. #define DMA_DESC_END_WITHOUT_IRQ 0x0
  51. #define DMA_DESC_END_WITH_IRQ 0x1
  52. #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
  53. #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
  54. #define MAX_CHAN_NR 8
  55. static unsigned int init_nr_desc_per_channel = 64;
  56. module_param(init_nr_desc_per_channel, uint, 0644);
  57. MODULE_PARM_DESC(init_nr_desc_per_channel,
  58. "initial descriptors per channel (default: 64)");
  59. struct pch_dma_desc_regs {
  60. u32 dev_addr;
  61. u32 mem_addr;
  62. u32 size;
  63. u32 next;
  64. };
  65. struct pch_dma_regs {
  66. u32 dma_ctl0;
  67. u32 dma_ctl1;
  68. u32 dma_ctl2;
  69. u32 reserved1;
  70. u32 dma_sts0;
  71. u32 dma_sts1;
  72. u32 reserved2;
  73. u32 reserved3;
  74. struct pch_dma_desc_regs desc[0];
  75. };
  76. struct pch_dma_desc {
  77. struct pch_dma_desc_regs regs;
  78. struct dma_async_tx_descriptor txd;
  79. struct list_head desc_node;
  80. struct list_head tx_list;
  81. };
  82. struct pch_dma_chan {
  83. struct dma_chan chan;
  84. void __iomem *membase;
  85. enum dma_data_direction dir;
  86. struct tasklet_struct tasklet;
  87. unsigned long err_status;
  88. spinlock_t lock;
  89. dma_cookie_t completed_cookie;
  90. struct list_head active_list;
  91. struct list_head queue;
  92. struct list_head free_list;
  93. unsigned int descs_allocated;
  94. };
  95. #define PDC_DEV_ADDR 0x00
  96. #define PDC_MEM_ADDR 0x04
  97. #define PDC_SIZE 0x08
  98. #define PDC_NEXT 0x0C
  99. #define channel_readl(pdc, name) \
  100. readl((pdc)->membase + PDC_##name)
  101. #define channel_writel(pdc, name, val) \
  102. writel((val), (pdc)->membase + PDC_##name)
  103. struct pch_dma {
  104. struct dma_device dma;
  105. void __iomem *membase;
  106. struct pci_pool *pool;
  107. struct pch_dma_regs regs;
  108. struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
  109. struct pch_dma_chan channels[0];
  110. };
  111. #define PCH_DMA_CTL0 0x00
  112. #define PCH_DMA_CTL1 0x04
  113. #define PCH_DMA_CTL2 0x08
  114. #define PCH_DMA_STS0 0x10
  115. #define PCH_DMA_STS1 0x14
  116. #define dma_readl(pd, name) \
  117. readl((pd)->membase + PCH_DMA_##name)
  118. #define dma_writel(pd, name, val) \
  119. writel((val), (pd)->membase + PCH_DMA_##name)
  120. static inline struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
  121. {
  122. return container_of(txd, struct pch_dma_desc, txd);
  123. }
  124. static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
  125. {
  126. return container_of(chan, struct pch_dma_chan, chan);
  127. }
  128. static inline struct pch_dma *to_pd(struct dma_device *ddev)
  129. {
  130. return container_of(ddev, struct pch_dma, dma);
  131. }
  132. static inline struct device *chan2dev(struct dma_chan *chan)
  133. {
  134. return &chan->dev->device;
  135. }
  136. static inline struct device *chan2parent(struct dma_chan *chan)
  137. {
  138. return chan->dev->device.parent;
  139. }
  140. static inline struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
  141. {
  142. return list_first_entry(&pd_chan->active_list,
  143. struct pch_dma_desc, desc_node);
  144. }
  145. static inline struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
  146. {
  147. return list_first_entry(&pd_chan->queue,
  148. struct pch_dma_desc, desc_node);
  149. }
  150. static void pdc_enable_irq(struct dma_chan *chan, int enable)
  151. {
  152. struct pch_dma *pd = to_pd(chan->device);
  153. u32 val;
  154. val = dma_readl(pd, CTL2);
  155. if (enable)
  156. val |= 0x1 << chan->chan_id;
  157. else
  158. val &= ~(0x1 << chan->chan_id);
  159. dma_writel(pd, CTL2, val);
  160. dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
  161. chan->chan_id, val);
  162. }
  163. static void pdc_set_dir(struct dma_chan *chan)
  164. {
  165. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  166. struct pch_dma *pd = to_pd(chan->device);
  167. u32 val;
  168. val = dma_readl(pd, CTL0);
  169. if (pd_chan->dir == DMA_TO_DEVICE)
  170. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  171. DMA_CTL0_DIR_SHIFT_BITS);
  172. else
  173. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  174. DMA_CTL0_DIR_SHIFT_BITS));
  175. dma_writel(pd, CTL0, val);
  176. dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
  177. chan->chan_id, val);
  178. }
  179. static void pdc_set_mode(struct dma_chan *chan, u32 mode)
  180. {
  181. struct pch_dma *pd = to_pd(chan->device);
  182. u32 val;
  183. val = dma_readl(pd, CTL0);
  184. val &= ~(DMA_CTL0_MODE_MASK_BITS <<
  185. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  186. val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  187. dma_writel(pd, CTL0, val);
  188. dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
  189. chan->chan_id, val);
  190. }
  191. static u32 pdc_get_status(struct pch_dma_chan *pd_chan)
  192. {
  193. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  194. u32 val;
  195. val = dma_readl(pd, STS0);
  196. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  197. DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
  198. }
  199. static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
  200. {
  201. if (pdc_get_status(pd_chan) == DMA_STATUS_IDLE)
  202. return true;
  203. else
  204. return false;
  205. }
  206. static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
  207. {
  208. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  209. u32 val;
  210. if (!pdc_is_idle(pd_chan)) {
  211. dev_err(chan2dev(&pd_chan->chan),
  212. "BUG: Attempt to start non-idle channel\n");
  213. return;
  214. }
  215. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
  216. pd_chan->chan.chan_id, desc->regs.dev_addr);
  217. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
  218. pd_chan->chan.chan_id, desc->regs.mem_addr);
  219. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
  220. pd_chan->chan.chan_id, desc->regs.size);
  221. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
  222. pd_chan->chan.chan_id, desc->regs.next);
  223. if (list_empty(&desc->tx_list)) {
  224. channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
  225. channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
  226. channel_writel(pd_chan, SIZE, desc->regs.size);
  227. channel_writel(pd_chan, NEXT, desc->regs.next);
  228. pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
  229. } else {
  230. channel_writel(pd_chan, NEXT, desc->txd.phys);
  231. pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
  232. }
  233. val = dma_readl(pd, CTL2);
  234. val |= 1 << (DMA_CTL2_START_SHIFT_BITS + pd_chan->chan.chan_id);
  235. dma_writel(pd, CTL2, val);
  236. }
  237. static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
  238. struct pch_dma_desc *desc)
  239. {
  240. struct dma_async_tx_descriptor *txd = &desc->txd;
  241. dma_async_tx_callback callback = txd->callback;
  242. void *param = txd->callback_param;
  243. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  244. list_move(&desc->desc_node, &pd_chan->free_list);
  245. if (callback)
  246. callback(param);
  247. }
  248. static void pdc_complete_all(struct pch_dma_chan *pd_chan)
  249. {
  250. struct pch_dma_desc *desc, *_d;
  251. LIST_HEAD(list);
  252. BUG_ON(!pdc_is_idle(pd_chan));
  253. if (!list_empty(&pd_chan->queue))
  254. pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
  255. list_splice_init(&pd_chan->active_list, &list);
  256. list_splice_init(&pd_chan->queue, &pd_chan->active_list);
  257. list_for_each_entry_safe(desc, _d, &list, desc_node)
  258. pdc_chain_complete(pd_chan, desc);
  259. }
  260. static void pdc_handle_error(struct pch_dma_chan *pd_chan)
  261. {
  262. struct pch_dma_desc *bad_desc;
  263. bad_desc = pdc_first_active(pd_chan);
  264. list_del(&bad_desc->desc_node);
  265. list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
  266. if (!list_empty(&pd_chan->active_list))
  267. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  268. dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
  269. dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
  270. bad_desc->txd.cookie);
  271. pdc_chain_complete(pd_chan, bad_desc);
  272. }
  273. static void pdc_advance_work(struct pch_dma_chan *pd_chan)
  274. {
  275. if (list_empty(&pd_chan->active_list) ||
  276. list_is_singular(&pd_chan->active_list)) {
  277. pdc_complete_all(pd_chan);
  278. } else {
  279. pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
  280. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  281. }
  282. }
  283. static dma_cookie_t pdc_assign_cookie(struct pch_dma_chan *pd_chan,
  284. struct pch_dma_desc *desc)
  285. {
  286. dma_cookie_t cookie = pd_chan->chan.cookie;
  287. if (++cookie < 0)
  288. cookie = 1;
  289. pd_chan->chan.cookie = cookie;
  290. desc->txd.cookie = cookie;
  291. return cookie;
  292. }
  293. static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
  294. {
  295. struct pch_dma_desc *desc = to_pd_desc(txd);
  296. struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
  297. dma_cookie_t cookie;
  298. spin_lock_bh(&pd_chan->lock);
  299. cookie = pdc_assign_cookie(pd_chan, desc);
  300. if (list_empty(&pd_chan->active_list)) {
  301. list_add_tail(&desc->desc_node, &pd_chan->active_list);
  302. pdc_dostart(pd_chan, desc);
  303. } else {
  304. list_add_tail(&desc->desc_node, &pd_chan->queue);
  305. }
  306. spin_unlock_bh(&pd_chan->lock);
  307. return 0;
  308. }
  309. static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
  310. {
  311. struct pch_dma_desc *desc = NULL;
  312. struct pch_dma *pd = to_pd(chan->device);
  313. dma_addr_t addr;
  314. desc = pci_pool_alloc(pd->pool, GFP_KERNEL, &addr);
  315. if (desc) {
  316. memset(desc, 0, sizeof(struct pch_dma_desc));
  317. INIT_LIST_HEAD(&desc->tx_list);
  318. dma_async_tx_descriptor_init(&desc->txd, chan);
  319. desc->txd.tx_submit = pd_tx_submit;
  320. desc->txd.flags = DMA_CTRL_ACK;
  321. desc->txd.phys = addr;
  322. }
  323. return desc;
  324. }
  325. static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
  326. {
  327. struct pch_dma_desc *desc, *_d;
  328. struct pch_dma_desc *ret = NULL;
  329. int i;
  330. spin_lock_bh(&pd_chan->lock);
  331. list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
  332. i++;
  333. if (async_tx_test_ack(&desc->txd)) {
  334. list_del(&desc->desc_node);
  335. ret = desc;
  336. break;
  337. }
  338. dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
  339. }
  340. spin_unlock_bh(&pd_chan->lock);
  341. dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
  342. if (!ret) {
  343. ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
  344. if (ret) {
  345. spin_lock_bh(&pd_chan->lock);
  346. pd_chan->descs_allocated++;
  347. spin_unlock_bh(&pd_chan->lock);
  348. } else {
  349. dev_err(chan2dev(&pd_chan->chan),
  350. "failed to alloc desc\n");
  351. }
  352. }
  353. return ret;
  354. }
  355. static void pdc_desc_put(struct pch_dma_chan *pd_chan,
  356. struct pch_dma_desc *desc)
  357. {
  358. if (desc) {
  359. spin_lock_bh(&pd_chan->lock);
  360. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  361. list_add(&desc->desc_node, &pd_chan->free_list);
  362. spin_unlock_bh(&pd_chan->lock);
  363. }
  364. }
  365. static int pd_alloc_chan_resources(struct dma_chan *chan)
  366. {
  367. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  368. struct pch_dma_desc *desc;
  369. LIST_HEAD(tmp_list);
  370. int i;
  371. if (!pdc_is_idle(pd_chan)) {
  372. dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
  373. return -EIO;
  374. }
  375. if (!list_empty(&pd_chan->free_list))
  376. return pd_chan->descs_allocated;
  377. for (i = 0; i < init_nr_desc_per_channel; i++) {
  378. desc = pdc_alloc_desc(chan, GFP_KERNEL);
  379. if (!desc) {
  380. dev_warn(chan2dev(chan),
  381. "Only allocated %d initial descriptors\n", i);
  382. break;
  383. }
  384. list_add_tail(&desc->desc_node, &tmp_list);
  385. }
  386. spin_lock_bh(&pd_chan->lock);
  387. list_splice(&tmp_list, &pd_chan->free_list);
  388. pd_chan->descs_allocated = i;
  389. pd_chan->completed_cookie = chan->cookie = 1;
  390. spin_unlock_bh(&pd_chan->lock);
  391. pdc_enable_irq(chan, 1);
  392. pdc_set_dir(chan);
  393. return pd_chan->descs_allocated;
  394. }
  395. static void pd_free_chan_resources(struct dma_chan *chan)
  396. {
  397. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  398. struct pch_dma *pd = to_pd(chan->device);
  399. struct pch_dma_desc *desc, *_d;
  400. LIST_HEAD(tmp_list);
  401. BUG_ON(!pdc_is_idle(pd_chan));
  402. BUG_ON(!list_empty(&pd_chan->active_list));
  403. BUG_ON(!list_empty(&pd_chan->queue));
  404. spin_lock_bh(&pd_chan->lock);
  405. list_splice_init(&pd_chan->free_list, &tmp_list);
  406. pd_chan->descs_allocated = 0;
  407. spin_unlock_bh(&pd_chan->lock);
  408. list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
  409. pci_pool_free(pd->pool, desc, desc->txd.phys);
  410. pdc_enable_irq(chan, 0);
  411. }
  412. static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  413. struct dma_tx_state *txstate)
  414. {
  415. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  416. dma_cookie_t last_used;
  417. dma_cookie_t last_completed;
  418. int ret;
  419. spin_lock_bh(&pd_chan->lock);
  420. last_completed = pd_chan->completed_cookie;
  421. last_used = chan->cookie;
  422. spin_unlock_bh(&pd_chan->lock);
  423. ret = dma_async_is_complete(cookie, last_completed, last_used);
  424. dma_set_tx_state(txstate, last_completed, last_used, 0);
  425. return ret;
  426. }
  427. static void pd_issue_pending(struct dma_chan *chan)
  428. {
  429. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  430. if (pdc_is_idle(pd_chan)) {
  431. spin_lock_bh(&pd_chan->lock);
  432. pdc_advance_work(pd_chan);
  433. spin_unlock_bh(&pd_chan->lock);
  434. }
  435. }
  436. static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
  437. struct scatterlist *sgl, unsigned int sg_len,
  438. enum dma_data_direction direction, unsigned long flags)
  439. {
  440. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  441. struct pch_dma_slave *pd_slave = chan->private;
  442. struct pch_dma_desc *first = NULL;
  443. struct pch_dma_desc *prev = NULL;
  444. struct pch_dma_desc *desc = NULL;
  445. struct scatterlist *sg;
  446. dma_addr_t reg;
  447. int i;
  448. if (unlikely(!sg_len)) {
  449. dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
  450. return NULL;
  451. }
  452. if (direction == DMA_FROM_DEVICE)
  453. reg = pd_slave->rx_reg;
  454. else if (direction == DMA_TO_DEVICE)
  455. reg = pd_slave->tx_reg;
  456. else
  457. return NULL;
  458. for_each_sg(sgl, sg, sg_len, i) {
  459. desc = pdc_desc_get(pd_chan);
  460. if (!desc)
  461. goto err_desc_get;
  462. desc->regs.dev_addr = reg;
  463. desc->regs.mem_addr = sg_phys(sg);
  464. desc->regs.size = sg_dma_len(sg);
  465. desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
  466. switch (pd_slave->width) {
  467. case PCH_DMA_WIDTH_1_BYTE:
  468. if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
  469. goto err_desc_get;
  470. desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
  471. break;
  472. case PCH_DMA_WIDTH_2_BYTES:
  473. if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
  474. goto err_desc_get;
  475. desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
  476. break;
  477. case PCH_DMA_WIDTH_4_BYTES:
  478. if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
  479. goto err_desc_get;
  480. desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
  481. break;
  482. default:
  483. goto err_desc_get;
  484. }
  485. if (!first) {
  486. first = desc;
  487. } else {
  488. prev->regs.next |= desc->txd.phys;
  489. list_add_tail(&desc->desc_node, &first->tx_list);
  490. }
  491. prev = desc;
  492. }
  493. if (flags & DMA_PREP_INTERRUPT)
  494. desc->regs.next = DMA_DESC_END_WITH_IRQ;
  495. else
  496. desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
  497. first->txd.cookie = -EBUSY;
  498. desc->txd.flags = flags;
  499. return &first->txd;
  500. err_desc_get:
  501. dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
  502. pdc_desc_put(pd_chan, first);
  503. return NULL;
  504. }
  505. static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  506. unsigned long arg)
  507. {
  508. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  509. struct pch_dma_desc *desc, *_d;
  510. LIST_HEAD(list);
  511. if (cmd != DMA_TERMINATE_ALL)
  512. return -ENXIO;
  513. spin_lock_bh(&pd_chan->lock);
  514. pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
  515. list_splice_init(&pd_chan->active_list, &list);
  516. list_splice_init(&pd_chan->queue, &list);
  517. list_for_each_entry_safe(desc, _d, &list, desc_node)
  518. pdc_chain_complete(pd_chan, desc);
  519. spin_unlock_bh(&pd_chan->lock);
  520. return 0;
  521. }
  522. static void pdc_tasklet(unsigned long data)
  523. {
  524. struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
  525. if (!pdc_is_idle(pd_chan)) {
  526. dev_err(chan2dev(&pd_chan->chan),
  527. "BUG: handle non-idle channel in tasklet\n");
  528. return;
  529. }
  530. spin_lock_bh(&pd_chan->lock);
  531. if (test_and_clear_bit(0, &pd_chan->err_status))
  532. pdc_handle_error(pd_chan);
  533. else
  534. pdc_advance_work(pd_chan);
  535. spin_unlock_bh(&pd_chan->lock);
  536. }
  537. static irqreturn_t pd_irq(int irq, void *devid)
  538. {
  539. struct pch_dma *pd = (struct pch_dma *)devid;
  540. struct pch_dma_chan *pd_chan;
  541. u32 sts0;
  542. int i;
  543. int ret = IRQ_NONE;
  544. sts0 = dma_readl(pd, STS0);
  545. dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
  546. for (i = 0; i < pd->dma.chancnt; i++) {
  547. pd_chan = &pd->channels[i];
  548. if (sts0 & DMA_STATUS_IRQ(i)) {
  549. if (sts0 & DMA_STATUS_ERR(i))
  550. set_bit(0, &pd_chan->err_status);
  551. tasklet_schedule(&pd_chan->tasklet);
  552. ret = IRQ_HANDLED;
  553. }
  554. }
  555. /* clear interrupt bits in status register */
  556. dma_writel(pd, STS0, sts0);
  557. return ret;
  558. }
  559. static void pch_dma_save_regs(struct pch_dma *pd)
  560. {
  561. struct pch_dma_chan *pd_chan;
  562. struct dma_chan *chan, *_c;
  563. int i = 0;
  564. pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
  565. pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
  566. pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
  567. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  568. pd_chan = to_pd_chan(chan);
  569. pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
  570. pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
  571. pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
  572. pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
  573. i++;
  574. }
  575. }
  576. static void pch_dma_restore_regs(struct pch_dma *pd)
  577. {
  578. struct pch_dma_chan *pd_chan;
  579. struct dma_chan *chan, *_c;
  580. int i = 0;
  581. dma_writel(pd, CTL0, pd->regs.dma_ctl0);
  582. dma_writel(pd, CTL1, pd->regs.dma_ctl1);
  583. dma_writel(pd, CTL2, pd->regs.dma_ctl2);
  584. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  585. pd_chan = to_pd_chan(chan);
  586. channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
  587. channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
  588. channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
  589. channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
  590. i++;
  591. }
  592. }
  593. static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
  594. {
  595. struct pch_dma *pd = pci_get_drvdata(pdev);
  596. if (pd)
  597. pch_dma_save_regs(pd);
  598. pci_save_state(pdev);
  599. pci_disable_device(pdev);
  600. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  601. return 0;
  602. }
  603. static int pch_dma_resume(struct pci_dev *pdev)
  604. {
  605. struct pch_dma *pd = pci_get_drvdata(pdev);
  606. int err;
  607. pci_set_power_state(pdev, PCI_D0);
  608. pci_restore_state(pdev);
  609. err = pci_enable_device(pdev);
  610. if (err) {
  611. dev_dbg(&pdev->dev, "failed to enable device\n");
  612. return err;
  613. }
  614. if (pd)
  615. pch_dma_restore_regs(pd);
  616. return 0;
  617. }
  618. static int __devinit pch_dma_probe(struct pci_dev *pdev,
  619. const struct pci_device_id *id)
  620. {
  621. struct pch_dma *pd;
  622. struct pch_dma_regs *regs;
  623. unsigned int nr_channels;
  624. int err;
  625. int i;
  626. nr_channels = id->driver_data;
  627. pd = kzalloc(sizeof(struct pch_dma)+
  628. sizeof(struct pch_dma_chan) * nr_channels, GFP_KERNEL);
  629. if (!pd)
  630. return -ENOMEM;
  631. pci_set_drvdata(pdev, pd);
  632. err = pci_enable_device(pdev);
  633. if (err) {
  634. dev_err(&pdev->dev, "Cannot enable PCI device\n");
  635. goto err_free_mem;
  636. }
  637. if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
  638. dev_err(&pdev->dev, "Cannot find proper base address\n");
  639. goto err_disable_pdev;
  640. }
  641. err = pci_request_regions(pdev, DRV_NAME);
  642. if (err) {
  643. dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
  644. goto err_disable_pdev;
  645. }
  646. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  647. if (err) {
  648. dev_err(&pdev->dev, "Cannot set proper DMA config\n");
  649. goto err_free_res;
  650. }
  651. regs = pd->membase = pci_iomap(pdev, 1, 0);
  652. if (!pd->membase) {
  653. dev_err(&pdev->dev, "Cannot map MMIO registers\n");
  654. err = -ENOMEM;
  655. goto err_free_res;
  656. }
  657. pci_set_master(pdev);
  658. err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
  659. if (err) {
  660. dev_err(&pdev->dev, "Failed to request IRQ\n");
  661. goto err_iounmap;
  662. }
  663. pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
  664. sizeof(struct pch_dma_desc), 4, 0);
  665. if (!pd->pool) {
  666. dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
  667. err = -ENOMEM;
  668. goto err_free_irq;
  669. }
  670. pd->dma.dev = &pdev->dev;
  671. pd->dma.chancnt = nr_channels;
  672. INIT_LIST_HEAD(&pd->dma.channels);
  673. for (i = 0; i < nr_channels; i++) {
  674. struct pch_dma_chan *pd_chan = &pd->channels[i];
  675. pd_chan->chan.device = &pd->dma;
  676. pd_chan->chan.cookie = 1;
  677. pd_chan->chan.chan_id = i;
  678. pd_chan->membase = &regs->desc[i];
  679. pd_chan->dir = (i % 2) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
  680. spin_lock_init(&pd_chan->lock);
  681. INIT_LIST_HEAD(&pd_chan->active_list);
  682. INIT_LIST_HEAD(&pd_chan->queue);
  683. INIT_LIST_HEAD(&pd_chan->free_list);
  684. tasklet_init(&pd_chan->tasklet, pdc_tasklet,
  685. (unsigned long)pd_chan);
  686. list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
  687. }
  688. dma_cap_zero(pd->dma.cap_mask);
  689. dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
  690. dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
  691. pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
  692. pd->dma.device_free_chan_resources = pd_free_chan_resources;
  693. pd->dma.device_tx_status = pd_tx_status;
  694. pd->dma.device_issue_pending = pd_issue_pending;
  695. pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
  696. pd->dma.device_control = pd_device_control;
  697. err = dma_async_device_register(&pd->dma);
  698. if (err) {
  699. dev_err(&pdev->dev, "Failed to register DMA device\n");
  700. goto err_free_pool;
  701. }
  702. return 0;
  703. err_free_pool:
  704. pci_pool_destroy(pd->pool);
  705. err_free_irq:
  706. free_irq(pdev->irq, pd);
  707. err_iounmap:
  708. pci_iounmap(pdev, pd->membase);
  709. err_free_res:
  710. pci_release_regions(pdev);
  711. err_disable_pdev:
  712. pci_disable_device(pdev);
  713. err_free_mem:
  714. return err;
  715. }
  716. static void __devexit pch_dma_remove(struct pci_dev *pdev)
  717. {
  718. struct pch_dma *pd = pci_get_drvdata(pdev);
  719. struct pch_dma_chan *pd_chan;
  720. struct dma_chan *chan, *_c;
  721. if (pd) {
  722. dma_async_device_unregister(&pd->dma);
  723. list_for_each_entry_safe(chan, _c, &pd->dma.channels,
  724. device_node) {
  725. pd_chan = to_pd_chan(chan);
  726. tasklet_disable(&pd_chan->tasklet);
  727. tasklet_kill(&pd_chan->tasklet);
  728. }
  729. pci_pool_destroy(pd->pool);
  730. free_irq(pdev->irq, pd);
  731. pci_iounmap(pdev, pd->membase);
  732. pci_release_regions(pdev);
  733. pci_disable_device(pdev);
  734. kfree(pd);
  735. }
  736. }
  737. /* PCI Device ID of DMA device */
  738. #define PCI_DEVICE_ID_PCH_DMA_8CH 0x8810
  739. #define PCI_DEVICE_ID_PCH_DMA_4CH 0x8815
  740. static const struct pci_device_id pch_dma_id_table[] = {
  741. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_DMA_8CH), 8 },
  742. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_DMA_4CH), 4 },
  743. { 0, },
  744. };
  745. static struct pci_driver pch_dma_driver = {
  746. .name = DRV_NAME,
  747. .id_table = pch_dma_id_table,
  748. .probe = pch_dma_probe,
  749. .remove = __devexit_p(pch_dma_remove),
  750. #ifdef CONFIG_PM
  751. .suspend = pch_dma_suspend,
  752. .resume = pch_dma_resume,
  753. #endif
  754. };
  755. static int __init pch_dma_init(void)
  756. {
  757. return pci_register_driver(&pch_dma_driver);
  758. }
  759. static void __exit pch_dma_exit(void)
  760. {
  761. pci_unregister_driver(&pch_dma_driver);
  762. }
  763. module_init(pch_dma_init);
  764. module_exit(pch_dma_exit);
  765. MODULE_DESCRIPTION("Topcliff PCH DMA controller driver");
  766. MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
  767. MODULE_LICENSE("GPL v2");