Kconfig 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846
  1. #
  2. # Generic algorithms support
  3. #
  4. config XOR_BLOCKS
  5. tristate
  6. #
  7. # async_tx api: hardware offloaded memory transfer/transform support
  8. #
  9. source "crypto/async_tx/Kconfig"
  10. #
  11. # Cryptographic API Configuration
  12. #
  13. menuconfig CRYPTO
  14. tristate "Cryptographic API"
  15. help
  16. This option provides the core Cryptographic API.
  17. if CRYPTO
  18. comment "Crypto core or helper"
  19. config CRYPTO_FIPS
  20. bool "FIPS 200 compliance"
  21. depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
  22. help
  23. This options enables the fips boot option which is
  24. required if you want to system to operate in a FIPS 200
  25. certification. You should say no unless you know what
  26. this is.
  27. config CRYPTO_ALGAPI
  28. tristate
  29. select CRYPTO_ALGAPI2
  30. help
  31. This option provides the API for cryptographic algorithms.
  32. config CRYPTO_ALGAPI2
  33. tristate
  34. config CRYPTO_AEAD
  35. tristate
  36. select CRYPTO_AEAD2
  37. select CRYPTO_ALGAPI
  38. config CRYPTO_AEAD2
  39. tristate
  40. select CRYPTO_ALGAPI2
  41. config CRYPTO_BLKCIPHER
  42. tristate
  43. select CRYPTO_BLKCIPHER2
  44. select CRYPTO_ALGAPI
  45. config CRYPTO_BLKCIPHER2
  46. tristate
  47. select CRYPTO_ALGAPI2
  48. select CRYPTO_RNG2
  49. select CRYPTO_WORKQUEUE
  50. config CRYPTO_HASH
  51. tristate
  52. select CRYPTO_HASH2
  53. select CRYPTO_ALGAPI
  54. config CRYPTO_HASH2
  55. tristate
  56. select CRYPTO_ALGAPI2
  57. config CRYPTO_RNG
  58. tristate
  59. select CRYPTO_RNG2
  60. select CRYPTO_ALGAPI
  61. config CRYPTO_RNG2
  62. tristate
  63. select CRYPTO_ALGAPI2
  64. config CRYPTO_PCOMP
  65. tristate
  66. select CRYPTO_PCOMP2
  67. select CRYPTO_ALGAPI
  68. config CRYPTO_PCOMP2
  69. tristate
  70. select CRYPTO_ALGAPI2
  71. config CRYPTO_MANAGER
  72. tristate "Cryptographic algorithm manager"
  73. select CRYPTO_MANAGER2
  74. help
  75. Create default cryptographic template instantiations such as
  76. cbc(aes).
  77. config CRYPTO_MANAGER2
  78. def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
  79. select CRYPTO_AEAD2
  80. select CRYPTO_HASH2
  81. select CRYPTO_BLKCIPHER2
  82. select CRYPTO_PCOMP2
  83. config CRYPTO_MANAGER_DISABLE_TESTS
  84. bool "Disable run-time self tests"
  85. default y
  86. depends on CRYPTO_MANAGER2
  87. help
  88. Disable run-time self tests that normally take place at
  89. algorithm registration.
  90. config CRYPTO_GF128MUL
  91. tristate "GF(2^128) multiplication functions (EXPERIMENTAL)"
  92. depends on EXPERIMENTAL
  93. help
  94. Efficient table driven implementation of multiplications in the
  95. field GF(2^128). This is needed by some cypher modes. This
  96. option will be selected automatically if you select such a
  97. cipher mode. Only select this option by hand if you expect to load
  98. an external module that requires these functions.
  99. config CRYPTO_NULL
  100. tristate "Null algorithms"
  101. select CRYPTO_ALGAPI
  102. select CRYPTO_BLKCIPHER
  103. select CRYPTO_HASH
  104. help
  105. These are 'Null' algorithms, used by IPsec, which do nothing.
  106. config CRYPTO_PCRYPT
  107. tristate "Parallel crypto engine (EXPERIMENTAL)"
  108. depends on SMP && EXPERIMENTAL
  109. select PADATA
  110. select CRYPTO_MANAGER
  111. select CRYPTO_AEAD
  112. help
  113. This converts an arbitrary crypto algorithm into a parallel
  114. algorithm that executes in kernel threads.
  115. config CRYPTO_WORKQUEUE
  116. tristate
  117. config CRYPTO_CRYPTD
  118. tristate "Software async crypto daemon"
  119. select CRYPTO_BLKCIPHER
  120. select CRYPTO_HASH
  121. select CRYPTO_MANAGER
  122. select CRYPTO_WORKQUEUE
  123. help
  124. This is a generic software asynchronous crypto daemon that
  125. converts an arbitrary synchronous software crypto algorithm
  126. into an asynchronous algorithm that executes in a kernel thread.
  127. config CRYPTO_AUTHENC
  128. tristate "Authenc support"
  129. select CRYPTO_AEAD
  130. select CRYPTO_BLKCIPHER
  131. select CRYPTO_MANAGER
  132. select CRYPTO_HASH
  133. help
  134. Authenc: Combined mode wrapper for IPsec.
  135. This is required for IPSec.
  136. config CRYPTO_TEST
  137. tristate "Testing module"
  138. depends on m
  139. select CRYPTO_MANAGER
  140. help
  141. Quick & dirty crypto test module.
  142. comment "Authenticated Encryption with Associated Data"
  143. config CRYPTO_CCM
  144. tristate "CCM support"
  145. select CRYPTO_CTR
  146. select CRYPTO_AEAD
  147. help
  148. Support for Counter with CBC MAC. Required for IPsec.
  149. config CRYPTO_GCM
  150. tristate "GCM/GMAC support"
  151. select CRYPTO_CTR
  152. select CRYPTO_AEAD
  153. select CRYPTO_GHASH
  154. help
  155. Support for Galois/Counter Mode (GCM) and Galois Message
  156. Authentication Code (GMAC). Required for IPSec.
  157. config CRYPTO_SEQIV
  158. tristate "Sequence Number IV Generator"
  159. select CRYPTO_AEAD
  160. select CRYPTO_BLKCIPHER
  161. select CRYPTO_RNG
  162. help
  163. This IV generator generates an IV based on a sequence number by
  164. xoring it with a salt. This algorithm is mainly useful for CTR
  165. comment "Block modes"
  166. config CRYPTO_CBC
  167. tristate "CBC support"
  168. select CRYPTO_BLKCIPHER
  169. select CRYPTO_MANAGER
  170. help
  171. CBC: Cipher Block Chaining mode
  172. This block cipher algorithm is required for IPSec.
  173. config CRYPTO_CTR
  174. tristate "CTR support"
  175. select CRYPTO_BLKCIPHER
  176. select CRYPTO_SEQIV
  177. select CRYPTO_MANAGER
  178. help
  179. CTR: Counter mode
  180. This block cipher algorithm is required for IPSec.
  181. config CRYPTO_CTS
  182. tristate "CTS support"
  183. select CRYPTO_BLKCIPHER
  184. help
  185. CTS: Cipher Text Stealing
  186. This is the Cipher Text Stealing mode as described by
  187. Section 8 of rfc2040 and referenced by rfc3962.
  188. (rfc3962 includes errata information in its Appendix A)
  189. This mode is required for Kerberos gss mechanism support
  190. for AES encryption.
  191. config CRYPTO_ECB
  192. tristate "ECB support"
  193. select CRYPTO_BLKCIPHER
  194. select CRYPTO_MANAGER
  195. help
  196. ECB: Electronic CodeBook mode
  197. This is the simplest block cipher algorithm. It simply encrypts
  198. the input block by block.
  199. config CRYPTO_LRW
  200. tristate "LRW support (EXPERIMENTAL)"
  201. depends on EXPERIMENTAL
  202. select CRYPTO_BLKCIPHER
  203. select CRYPTO_MANAGER
  204. select CRYPTO_GF128MUL
  205. help
  206. LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
  207. narrow block cipher mode for dm-crypt. Use it with cipher
  208. specification string aes-lrw-benbi, the key must be 256, 320 or 384.
  209. The first 128, 192 or 256 bits in the key are used for AES and the
  210. rest is used to tie each cipher block to its logical position.
  211. config CRYPTO_PCBC
  212. tristate "PCBC support"
  213. select CRYPTO_BLKCIPHER
  214. select CRYPTO_MANAGER
  215. help
  216. PCBC: Propagating Cipher Block Chaining mode
  217. This block cipher algorithm is required for RxRPC.
  218. config CRYPTO_XTS
  219. tristate "XTS support (EXPERIMENTAL)"
  220. depends on EXPERIMENTAL
  221. select CRYPTO_BLKCIPHER
  222. select CRYPTO_MANAGER
  223. select CRYPTO_GF128MUL
  224. help
  225. XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
  226. key size 256, 384 or 512 bits. This implementation currently
  227. can't handle a sectorsize which is not a multiple of 16 bytes.
  228. config CRYPTO_FPU
  229. tristate
  230. select CRYPTO_BLKCIPHER
  231. select CRYPTO_MANAGER
  232. comment "Hash modes"
  233. config CRYPTO_HMAC
  234. tristate "HMAC support"
  235. select CRYPTO_HASH
  236. select CRYPTO_MANAGER
  237. help
  238. HMAC: Keyed-Hashing for Message Authentication (RFC2104).
  239. This is required for IPSec.
  240. config CRYPTO_XCBC
  241. tristate "XCBC support"
  242. depends on EXPERIMENTAL
  243. select CRYPTO_HASH
  244. select CRYPTO_MANAGER
  245. help
  246. XCBC: Keyed-Hashing with encryption algorithm
  247. http://www.ietf.org/rfc/rfc3566.txt
  248. http://csrc.nist.gov/encryption/modes/proposedmodes/
  249. xcbc-mac/xcbc-mac-spec.pdf
  250. config CRYPTO_VMAC
  251. tristate "VMAC support"
  252. depends on EXPERIMENTAL
  253. select CRYPTO_HASH
  254. select CRYPTO_MANAGER
  255. help
  256. VMAC is a message authentication algorithm designed for
  257. very high speed on 64-bit architectures.
  258. See also:
  259. <http://fastcrypto.org/vmac>
  260. comment "Digest"
  261. config CRYPTO_CRC32C
  262. tristate "CRC32c CRC algorithm"
  263. select CRYPTO_HASH
  264. help
  265. Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
  266. by iSCSI for header and data digests and by others.
  267. See Castagnoli93. Module will be crc32c.
  268. config CRYPTO_CRC32C_INTEL
  269. tristate "CRC32c INTEL hardware acceleration"
  270. depends on X86
  271. select CRYPTO_HASH
  272. help
  273. In Intel processor with SSE4.2 supported, the processor will
  274. support CRC32C implementation using hardware accelerated CRC32
  275. instruction. This option will create 'crc32c-intel' module,
  276. which will enable any routine to use the CRC32 instruction to
  277. gain performance compared with software implementation.
  278. Module will be crc32c-intel.
  279. config CRYPTO_GHASH
  280. tristate "GHASH digest algorithm"
  281. select CRYPTO_SHASH
  282. select CRYPTO_GF128MUL
  283. help
  284. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  285. config CRYPTO_MD4
  286. tristate "MD4 digest algorithm"
  287. select CRYPTO_HASH
  288. help
  289. MD4 message digest algorithm (RFC1320).
  290. config CRYPTO_MD5
  291. tristate "MD5 digest algorithm"
  292. select CRYPTO_HASH
  293. help
  294. MD5 message digest algorithm (RFC1321).
  295. config CRYPTO_MICHAEL_MIC
  296. tristate "Michael MIC keyed digest algorithm"
  297. select CRYPTO_HASH
  298. help
  299. Michael MIC is used for message integrity protection in TKIP
  300. (IEEE 802.11i). This algorithm is required for TKIP, but it
  301. should not be used for other purposes because of the weakness
  302. of the algorithm.
  303. config CRYPTO_RMD128
  304. tristate "RIPEMD-128 digest algorithm"
  305. select CRYPTO_HASH
  306. help
  307. RIPEMD-128 (ISO/IEC 10118-3:2004).
  308. RIPEMD-128 is a 128-bit cryptographic hash function. It should only
  309. to be used as a secure replacement for RIPEMD. For other use cases
  310. RIPEMD-160 should be used.
  311. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  312. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  313. config CRYPTO_RMD160
  314. tristate "RIPEMD-160 digest algorithm"
  315. select CRYPTO_HASH
  316. help
  317. RIPEMD-160 (ISO/IEC 10118-3:2004).
  318. RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
  319. to be used as a secure replacement for the 128-bit hash functions
  320. MD4, MD5 and it's predecessor RIPEMD
  321. (not to be confused with RIPEMD-128).
  322. It's speed is comparable to SHA1 and there are no known attacks
  323. against RIPEMD-160.
  324. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  325. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  326. config CRYPTO_RMD256
  327. tristate "RIPEMD-256 digest algorithm"
  328. select CRYPTO_HASH
  329. help
  330. RIPEMD-256 is an optional extension of RIPEMD-128 with a
  331. 256 bit hash. It is intended for applications that require
  332. longer hash-results, without needing a larger security level
  333. (than RIPEMD-128).
  334. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  335. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  336. config CRYPTO_RMD320
  337. tristate "RIPEMD-320 digest algorithm"
  338. select CRYPTO_HASH
  339. help
  340. RIPEMD-320 is an optional extension of RIPEMD-160 with a
  341. 320 bit hash. It is intended for applications that require
  342. longer hash-results, without needing a larger security level
  343. (than RIPEMD-160).
  344. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  345. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  346. config CRYPTO_SHA1
  347. tristate "SHA1 digest algorithm"
  348. select CRYPTO_HASH
  349. help
  350. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  351. config CRYPTO_SHA256
  352. tristate "SHA224 and SHA256 digest algorithm"
  353. select CRYPTO_HASH
  354. help
  355. SHA256 secure hash standard (DFIPS 180-2).
  356. This version of SHA implements a 256 bit hash with 128 bits of
  357. security against collision attacks.
  358. This code also includes SHA-224, a 224 bit hash with 112 bits
  359. of security against collision attacks.
  360. config CRYPTO_SHA512
  361. tristate "SHA384 and SHA512 digest algorithms"
  362. select CRYPTO_HASH
  363. help
  364. SHA512 secure hash standard (DFIPS 180-2).
  365. This version of SHA implements a 512 bit hash with 256 bits of
  366. security against collision attacks.
  367. This code also includes SHA-384, a 384 bit hash with 192 bits
  368. of security against collision attacks.
  369. config CRYPTO_TGR192
  370. tristate "Tiger digest algorithms"
  371. select CRYPTO_HASH
  372. help
  373. Tiger hash algorithm 192, 160 and 128-bit hashes
  374. Tiger is a hash function optimized for 64-bit processors while
  375. still having decent performance on 32-bit processors.
  376. Tiger was developed by Ross Anderson and Eli Biham.
  377. See also:
  378. <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
  379. config CRYPTO_WP512
  380. tristate "Whirlpool digest algorithms"
  381. select CRYPTO_HASH
  382. help
  383. Whirlpool hash algorithm 512, 384 and 256-bit hashes
  384. Whirlpool-512 is part of the NESSIE cryptographic primitives.
  385. Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
  386. See also:
  387. <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
  388. config CRYPTO_GHASH_CLMUL_NI_INTEL
  389. tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
  390. depends on (X86 || UML_X86) && 64BIT
  391. select CRYPTO_SHASH
  392. select CRYPTO_CRYPTD
  393. help
  394. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  395. The implementation is accelerated by CLMUL-NI of Intel.
  396. comment "Ciphers"
  397. config CRYPTO_AES
  398. tristate "AES cipher algorithms"
  399. select CRYPTO_ALGAPI
  400. help
  401. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  402. algorithm.
  403. Rijndael appears to be consistently a very good performer in
  404. both hardware and software across a wide range of computing
  405. environments regardless of its use in feedback or non-feedback
  406. modes. Its key setup time is excellent, and its key agility is
  407. good. Rijndael's very low memory requirements make it very well
  408. suited for restricted-space environments, in which it also
  409. demonstrates excellent performance. Rijndael's operations are
  410. among the easiest to defend against power and timing attacks.
  411. The AES specifies three key sizes: 128, 192 and 256 bits
  412. See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
  413. config CRYPTO_AES_586
  414. tristate "AES cipher algorithms (i586)"
  415. depends on (X86 || UML_X86) && !64BIT
  416. select CRYPTO_ALGAPI
  417. select CRYPTO_AES
  418. help
  419. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  420. algorithm.
  421. Rijndael appears to be consistently a very good performer in
  422. both hardware and software across a wide range of computing
  423. environments regardless of its use in feedback or non-feedback
  424. modes. Its key setup time is excellent, and its key agility is
  425. good. Rijndael's very low memory requirements make it very well
  426. suited for restricted-space environments, in which it also
  427. demonstrates excellent performance. Rijndael's operations are
  428. among the easiest to defend against power and timing attacks.
  429. The AES specifies three key sizes: 128, 192 and 256 bits
  430. See <http://csrc.nist.gov/encryption/aes/> for more information.
  431. config CRYPTO_AES_X86_64
  432. tristate "AES cipher algorithms (x86_64)"
  433. depends on (X86 || UML_X86) && 64BIT
  434. select CRYPTO_ALGAPI
  435. select CRYPTO_AES
  436. help
  437. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  438. algorithm.
  439. Rijndael appears to be consistently a very good performer in
  440. both hardware and software across a wide range of computing
  441. environments regardless of its use in feedback or non-feedback
  442. modes. Its key setup time is excellent, and its key agility is
  443. good. Rijndael's very low memory requirements make it very well
  444. suited for restricted-space environments, in which it also
  445. demonstrates excellent performance. Rijndael's operations are
  446. among the easiest to defend against power and timing attacks.
  447. The AES specifies three key sizes: 128, 192 and 256 bits
  448. See <http://csrc.nist.gov/encryption/aes/> for more information.
  449. config CRYPTO_AES_NI_INTEL
  450. tristate "AES cipher algorithms (AES-NI)"
  451. depends on (X86 || UML_X86) && 64BIT
  452. select CRYPTO_AES_X86_64
  453. select CRYPTO_CRYPTD
  454. select CRYPTO_ALGAPI
  455. select CRYPTO_FPU
  456. help
  457. Use Intel AES-NI instructions for AES algorithm.
  458. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  459. algorithm.
  460. Rijndael appears to be consistently a very good performer in
  461. both hardware and software across a wide range of computing
  462. environments regardless of its use in feedback or non-feedback
  463. modes. Its key setup time is excellent, and its key agility is
  464. good. Rijndael's very low memory requirements make it very well
  465. suited for restricted-space environments, in which it also
  466. demonstrates excellent performance. Rijndael's operations are
  467. among the easiest to defend against power and timing attacks.
  468. The AES specifies three key sizes: 128, 192 and 256 bits
  469. See <http://csrc.nist.gov/encryption/aes/> for more information.
  470. In addition to AES cipher algorithm support, the
  471. acceleration for some popular block cipher mode is supported
  472. too, including ECB, CBC, CTR, LRW, PCBC, XTS.
  473. config CRYPTO_ANUBIS
  474. tristate "Anubis cipher algorithm"
  475. select CRYPTO_ALGAPI
  476. help
  477. Anubis cipher algorithm.
  478. Anubis is a variable key length cipher which can use keys from
  479. 128 bits to 320 bits in length. It was evaluated as a entrant
  480. in the NESSIE competition.
  481. See also:
  482. <https://www.cosic.esat.kuleuven.be/nessie/reports/>
  483. <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
  484. config CRYPTO_ARC4
  485. tristate "ARC4 cipher algorithm"
  486. select CRYPTO_ALGAPI
  487. help
  488. ARC4 cipher algorithm.
  489. ARC4 is a stream cipher using keys ranging from 8 bits to 2048
  490. bits in length. This algorithm is required for driver-based
  491. WEP, but it should not be for other purposes because of the
  492. weakness of the algorithm.
  493. config CRYPTO_BLOWFISH
  494. tristate "Blowfish cipher algorithm"
  495. select CRYPTO_ALGAPI
  496. help
  497. Blowfish cipher algorithm, by Bruce Schneier.
  498. This is a variable key length cipher which can use keys from 32
  499. bits to 448 bits in length. It's fast, simple and specifically
  500. designed for use on "large microprocessors".
  501. See also:
  502. <http://www.schneier.com/blowfish.html>
  503. config CRYPTO_CAMELLIA
  504. tristate "Camellia cipher algorithms"
  505. depends on CRYPTO
  506. select CRYPTO_ALGAPI
  507. help
  508. Camellia cipher algorithms module.
  509. Camellia is a symmetric key block cipher developed jointly
  510. at NTT and Mitsubishi Electric Corporation.
  511. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  512. See also:
  513. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  514. config CRYPTO_CAST5
  515. tristate "CAST5 (CAST-128) cipher algorithm"
  516. select CRYPTO_ALGAPI
  517. help
  518. The CAST5 encryption algorithm (synonymous with CAST-128) is
  519. described in RFC2144.
  520. config CRYPTO_CAST6
  521. tristate "CAST6 (CAST-256) cipher algorithm"
  522. select CRYPTO_ALGAPI
  523. help
  524. The CAST6 encryption algorithm (synonymous with CAST-256) is
  525. described in RFC2612.
  526. config CRYPTO_DES
  527. tristate "DES and Triple DES EDE cipher algorithms"
  528. select CRYPTO_ALGAPI
  529. help
  530. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
  531. config CRYPTO_FCRYPT
  532. tristate "FCrypt cipher algorithm"
  533. select CRYPTO_ALGAPI
  534. select CRYPTO_BLKCIPHER
  535. help
  536. FCrypt algorithm used by RxRPC.
  537. config CRYPTO_KHAZAD
  538. tristate "Khazad cipher algorithm"
  539. select CRYPTO_ALGAPI
  540. help
  541. Khazad cipher algorithm.
  542. Khazad was a finalist in the initial NESSIE competition. It is
  543. an algorithm optimized for 64-bit processors with good performance
  544. on 32-bit processors. Khazad uses an 128 bit key size.
  545. See also:
  546. <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
  547. config CRYPTO_SALSA20
  548. tristate "Salsa20 stream cipher algorithm (EXPERIMENTAL)"
  549. depends on EXPERIMENTAL
  550. select CRYPTO_BLKCIPHER
  551. help
  552. Salsa20 stream cipher algorithm.
  553. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  554. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  555. The Salsa20 stream cipher algorithm is designed by Daniel J.
  556. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  557. config CRYPTO_SALSA20_586
  558. tristate "Salsa20 stream cipher algorithm (i586) (EXPERIMENTAL)"
  559. depends on (X86 || UML_X86) && !64BIT
  560. depends on EXPERIMENTAL
  561. select CRYPTO_BLKCIPHER
  562. help
  563. Salsa20 stream cipher algorithm.
  564. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  565. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  566. The Salsa20 stream cipher algorithm is designed by Daniel J.
  567. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  568. config CRYPTO_SALSA20_X86_64
  569. tristate "Salsa20 stream cipher algorithm (x86_64) (EXPERIMENTAL)"
  570. depends on (X86 || UML_X86) && 64BIT
  571. depends on EXPERIMENTAL
  572. select CRYPTO_BLKCIPHER
  573. help
  574. Salsa20 stream cipher algorithm.
  575. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  576. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  577. The Salsa20 stream cipher algorithm is designed by Daniel J.
  578. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  579. config CRYPTO_SEED
  580. tristate "SEED cipher algorithm"
  581. select CRYPTO_ALGAPI
  582. help
  583. SEED cipher algorithm (RFC4269).
  584. SEED is a 128-bit symmetric key block cipher that has been
  585. developed by KISA (Korea Information Security Agency) as a
  586. national standard encryption algorithm of the Republic of Korea.
  587. It is a 16 round block cipher with the key size of 128 bit.
  588. See also:
  589. <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
  590. config CRYPTO_SERPENT
  591. tristate "Serpent cipher algorithm"
  592. select CRYPTO_ALGAPI
  593. help
  594. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  595. Keys are allowed to be from 0 to 256 bits in length, in steps
  596. of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
  597. variant of Serpent for compatibility with old kerneli.org code.
  598. See also:
  599. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  600. config CRYPTO_TEA
  601. tristate "TEA, XTEA and XETA cipher algorithms"
  602. select CRYPTO_ALGAPI
  603. help
  604. TEA cipher algorithm.
  605. Tiny Encryption Algorithm is a simple cipher that uses
  606. many rounds for security. It is very fast and uses
  607. little memory.
  608. Xtendend Tiny Encryption Algorithm is a modification to
  609. the TEA algorithm to address a potential key weakness
  610. in the TEA algorithm.
  611. Xtendend Encryption Tiny Algorithm is a mis-implementation
  612. of the XTEA algorithm for compatibility purposes.
  613. config CRYPTO_TWOFISH
  614. tristate "Twofish cipher algorithm"
  615. select CRYPTO_ALGAPI
  616. select CRYPTO_TWOFISH_COMMON
  617. help
  618. Twofish cipher algorithm.
  619. Twofish was submitted as an AES (Advanced Encryption Standard)
  620. candidate cipher by researchers at CounterPane Systems. It is a
  621. 16 round block cipher supporting key sizes of 128, 192, and 256
  622. bits.
  623. See also:
  624. <http://www.schneier.com/twofish.html>
  625. config CRYPTO_TWOFISH_COMMON
  626. tristate
  627. help
  628. Common parts of the Twofish cipher algorithm shared by the
  629. generic c and the assembler implementations.
  630. config CRYPTO_TWOFISH_586
  631. tristate "Twofish cipher algorithms (i586)"
  632. depends on (X86 || UML_X86) && !64BIT
  633. select CRYPTO_ALGAPI
  634. select CRYPTO_TWOFISH_COMMON
  635. help
  636. Twofish cipher algorithm.
  637. Twofish was submitted as an AES (Advanced Encryption Standard)
  638. candidate cipher by researchers at CounterPane Systems. It is a
  639. 16 round block cipher supporting key sizes of 128, 192, and 256
  640. bits.
  641. See also:
  642. <http://www.schneier.com/twofish.html>
  643. config CRYPTO_TWOFISH_X86_64
  644. tristate "Twofish cipher algorithm (x86_64)"
  645. depends on (X86 || UML_X86) && 64BIT
  646. select CRYPTO_ALGAPI
  647. select CRYPTO_TWOFISH_COMMON
  648. help
  649. Twofish cipher algorithm (x86_64).
  650. Twofish was submitted as an AES (Advanced Encryption Standard)
  651. candidate cipher by researchers at CounterPane Systems. It is a
  652. 16 round block cipher supporting key sizes of 128, 192, and 256
  653. bits.
  654. See also:
  655. <http://www.schneier.com/twofish.html>
  656. comment "Compression"
  657. config CRYPTO_DEFLATE
  658. tristate "Deflate compression algorithm"
  659. select CRYPTO_ALGAPI
  660. select ZLIB_INFLATE
  661. select ZLIB_DEFLATE
  662. help
  663. This is the Deflate algorithm (RFC1951), specified for use in
  664. IPSec with the IPCOMP protocol (RFC3173, RFC2394).
  665. You will most probably want this if using IPSec.
  666. config CRYPTO_ZLIB
  667. tristate "Zlib compression algorithm"
  668. select CRYPTO_PCOMP
  669. select ZLIB_INFLATE
  670. select ZLIB_DEFLATE
  671. select NLATTR
  672. help
  673. This is the zlib algorithm.
  674. config CRYPTO_LZO
  675. tristate "LZO compression algorithm"
  676. select CRYPTO_ALGAPI
  677. select LZO_COMPRESS
  678. select LZO_DECOMPRESS
  679. help
  680. This is the LZO algorithm.
  681. comment "Random Number Generation"
  682. config CRYPTO_ANSI_CPRNG
  683. tristate "Pseudo Random Number Generation for Cryptographic modules"
  684. default m
  685. select CRYPTO_AES
  686. select CRYPTO_RNG
  687. help
  688. This option enables the generic pseudo random number generator
  689. for cryptographic modules. Uses the Algorithm specified in
  690. ANSI X9.31 A.2.4. Note that this option must be enabled if
  691. CRYPTO_FIPS is selected
  692. source "drivers/crypto/Kconfig"
  693. endif # if CRYPTO