x86.c 150 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #include <asm/pvclock.h>
  55. #include <asm/div64.h>
  56. #define MAX_IO_MSRS 256
  57. #define CR0_RESERVED_BITS \
  58. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  59. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  60. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  61. #define CR4_RESERVED_BITS \
  62. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  63. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  64. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  65. | X86_CR4_OSXSAVE \
  66. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  67. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  68. #define KVM_MAX_MCE_BANKS 32
  69. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  70. /* EFER defaults:
  71. * - enable syscall per default because its emulated by KVM
  72. * - enable LME and LMA per default on 64 bit KVM
  73. */
  74. #ifdef CONFIG_X86_64
  75. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  76. #else
  77. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  78. #endif
  79. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  80. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  81. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  82. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  83. struct kvm_cpuid_entry2 __user *entries);
  84. struct kvm_x86_ops *kvm_x86_ops;
  85. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  86. int ignore_msrs = 0;
  87. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  88. #define KVM_NR_SHARED_MSRS 16
  89. struct kvm_shared_msrs_global {
  90. int nr;
  91. u32 msrs[KVM_NR_SHARED_MSRS];
  92. };
  93. struct kvm_shared_msrs {
  94. struct user_return_notifier urn;
  95. bool registered;
  96. struct kvm_shared_msr_values {
  97. u64 host;
  98. u64 curr;
  99. } values[KVM_NR_SHARED_MSRS];
  100. };
  101. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  102. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  103. struct kvm_stats_debugfs_item debugfs_entries[] = {
  104. { "pf_fixed", VCPU_STAT(pf_fixed) },
  105. { "pf_guest", VCPU_STAT(pf_guest) },
  106. { "tlb_flush", VCPU_STAT(tlb_flush) },
  107. { "invlpg", VCPU_STAT(invlpg) },
  108. { "exits", VCPU_STAT(exits) },
  109. { "io_exits", VCPU_STAT(io_exits) },
  110. { "mmio_exits", VCPU_STAT(mmio_exits) },
  111. { "signal_exits", VCPU_STAT(signal_exits) },
  112. { "irq_window", VCPU_STAT(irq_window_exits) },
  113. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  114. { "halt_exits", VCPU_STAT(halt_exits) },
  115. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  116. { "hypercalls", VCPU_STAT(hypercalls) },
  117. { "request_irq", VCPU_STAT(request_irq_exits) },
  118. { "irq_exits", VCPU_STAT(irq_exits) },
  119. { "host_state_reload", VCPU_STAT(host_state_reload) },
  120. { "efer_reload", VCPU_STAT(efer_reload) },
  121. { "fpu_reload", VCPU_STAT(fpu_reload) },
  122. { "insn_emulation", VCPU_STAT(insn_emulation) },
  123. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  124. { "irq_injections", VCPU_STAT(irq_injections) },
  125. { "nmi_injections", VCPU_STAT(nmi_injections) },
  126. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  127. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  128. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  129. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  130. { "mmu_flooded", VM_STAT(mmu_flooded) },
  131. { "mmu_recycled", VM_STAT(mmu_recycled) },
  132. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  133. { "mmu_unsync", VM_STAT(mmu_unsync) },
  134. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  135. { "largepages", VM_STAT(lpages) },
  136. { NULL }
  137. };
  138. u64 __read_mostly host_xcr0;
  139. static void kvm_on_user_return(struct user_return_notifier *urn)
  140. {
  141. unsigned slot;
  142. struct kvm_shared_msrs *locals
  143. = container_of(urn, struct kvm_shared_msrs, urn);
  144. struct kvm_shared_msr_values *values;
  145. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  146. values = &locals->values[slot];
  147. if (values->host != values->curr) {
  148. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  149. values->curr = values->host;
  150. }
  151. }
  152. locals->registered = false;
  153. user_return_notifier_unregister(urn);
  154. }
  155. static void shared_msr_update(unsigned slot, u32 msr)
  156. {
  157. struct kvm_shared_msrs *smsr;
  158. u64 value;
  159. smsr = &__get_cpu_var(shared_msrs);
  160. /* only read, and nobody should modify it at this time,
  161. * so don't need lock */
  162. if (slot >= shared_msrs_global.nr) {
  163. printk(KERN_ERR "kvm: invalid MSR slot!");
  164. return;
  165. }
  166. rdmsrl_safe(msr, &value);
  167. smsr->values[slot].host = value;
  168. smsr->values[slot].curr = value;
  169. }
  170. void kvm_define_shared_msr(unsigned slot, u32 msr)
  171. {
  172. if (slot >= shared_msrs_global.nr)
  173. shared_msrs_global.nr = slot + 1;
  174. shared_msrs_global.msrs[slot] = msr;
  175. /* we need ensured the shared_msr_global have been updated */
  176. smp_wmb();
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  179. static void kvm_shared_msr_cpu_online(void)
  180. {
  181. unsigned i;
  182. for (i = 0; i < shared_msrs_global.nr; ++i)
  183. shared_msr_update(i, shared_msrs_global.msrs[i]);
  184. }
  185. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  186. {
  187. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  188. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  189. return;
  190. smsr->values[slot].curr = value;
  191. wrmsrl(shared_msrs_global.msrs[slot], value);
  192. if (!smsr->registered) {
  193. smsr->urn.on_user_return = kvm_on_user_return;
  194. user_return_notifier_register(&smsr->urn);
  195. smsr->registered = true;
  196. }
  197. }
  198. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  199. static void drop_user_return_notifiers(void *ignore)
  200. {
  201. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  202. if (smsr->registered)
  203. kvm_on_user_return(&smsr->urn);
  204. }
  205. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  206. {
  207. if (irqchip_in_kernel(vcpu->kvm))
  208. return vcpu->arch.apic_base;
  209. else
  210. return vcpu->arch.apic_base;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  213. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  214. {
  215. /* TODO: reserve bits check */
  216. if (irqchip_in_kernel(vcpu->kvm))
  217. kvm_lapic_set_base(vcpu, data);
  218. else
  219. vcpu->arch.apic_base = data;
  220. }
  221. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  222. #define EXCPT_BENIGN 0
  223. #define EXCPT_CONTRIBUTORY 1
  224. #define EXCPT_PF 2
  225. static int exception_class(int vector)
  226. {
  227. switch (vector) {
  228. case PF_VECTOR:
  229. return EXCPT_PF;
  230. case DE_VECTOR:
  231. case TS_VECTOR:
  232. case NP_VECTOR:
  233. case SS_VECTOR:
  234. case GP_VECTOR:
  235. return EXCPT_CONTRIBUTORY;
  236. default:
  237. break;
  238. }
  239. return EXCPT_BENIGN;
  240. }
  241. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  242. unsigned nr, bool has_error, u32 error_code,
  243. bool reinject)
  244. {
  245. u32 prev_nr;
  246. int class1, class2;
  247. kvm_make_request(KVM_REQ_EVENT, vcpu);
  248. if (!vcpu->arch.exception.pending) {
  249. queue:
  250. vcpu->arch.exception.pending = true;
  251. vcpu->arch.exception.has_error_code = has_error;
  252. vcpu->arch.exception.nr = nr;
  253. vcpu->arch.exception.error_code = error_code;
  254. vcpu->arch.exception.reinject = reinject;
  255. return;
  256. }
  257. /* to check exception */
  258. prev_nr = vcpu->arch.exception.nr;
  259. if (prev_nr == DF_VECTOR) {
  260. /* triple fault -> shutdown */
  261. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  262. return;
  263. }
  264. class1 = exception_class(prev_nr);
  265. class2 = exception_class(nr);
  266. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  267. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  268. /* generate double fault per SDM Table 5-5 */
  269. vcpu->arch.exception.pending = true;
  270. vcpu->arch.exception.has_error_code = true;
  271. vcpu->arch.exception.nr = DF_VECTOR;
  272. vcpu->arch.exception.error_code = 0;
  273. } else
  274. /* replace previous exception with a new one in a hope
  275. that instruction re-execution will regenerate lost
  276. exception */
  277. goto queue;
  278. }
  279. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  280. {
  281. kvm_multiple_exception(vcpu, nr, false, 0, false);
  282. }
  283. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  284. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  285. {
  286. kvm_multiple_exception(vcpu, nr, false, 0, true);
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  289. void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
  290. {
  291. unsigned error_code = vcpu->arch.fault.error_code;
  292. ++vcpu->stat.pf_guest;
  293. vcpu->arch.cr2 = vcpu->arch.fault.address;
  294. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  295. }
  296. void kvm_propagate_fault(struct kvm_vcpu *vcpu)
  297. {
  298. if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
  299. vcpu->arch.nested_mmu.inject_page_fault(vcpu);
  300. else
  301. vcpu->arch.mmu.inject_page_fault(vcpu);
  302. vcpu->arch.fault.nested = false;
  303. }
  304. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  305. {
  306. kvm_make_request(KVM_REQ_EVENT, vcpu);
  307. vcpu->arch.nmi_pending = 1;
  308. }
  309. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  310. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  311. {
  312. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  313. }
  314. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  315. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  316. {
  317. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  318. }
  319. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  320. /*
  321. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  322. * a #GP and return false.
  323. */
  324. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  325. {
  326. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  327. return true;
  328. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  329. return false;
  330. }
  331. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  332. /*
  333. * This function will be used to read from the physical memory of the currently
  334. * running guest. The difference to kvm_read_guest_page is that this function
  335. * can read from guest physical or from the guest's guest physical memory.
  336. */
  337. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  338. gfn_t ngfn, void *data, int offset, int len,
  339. u32 access)
  340. {
  341. gfn_t real_gfn;
  342. gpa_t ngpa;
  343. ngpa = gfn_to_gpa(ngfn);
  344. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  345. if (real_gfn == UNMAPPED_GVA)
  346. return -EFAULT;
  347. real_gfn = gpa_to_gfn(real_gfn);
  348. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  349. }
  350. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  351. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  352. void *data, int offset, int len, u32 access)
  353. {
  354. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  355. data, offset, len, access);
  356. }
  357. /*
  358. * Load the pae pdptrs. Return true is they are all valid.
  359. */
  360. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  361. {
  362. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  363. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  364. int i;
  365. int ret;
  366. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  367. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  368. offset * sizeof(u64), sizeof(pdpte),
  369. PFERR_USER_MASK|PFERR_WRITE_MASK);
  370. if (ret < 0) {
  371. ret = 0;
  372. goto out;
  373. }
  374. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  375. if (is_present_gpte(pdpte[i]) &&
  376. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  377. ret = 0;
  378. goto out;
  379. }
  380. }
  381. ret = 1;
  382. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  383. __set_bit(VCPU_EXREG_PDPTR,
  384. (unsigned long *)&vcpu->arch.regs_avail);
  385. __set_bit(VCPU_EXREG_PDPTR,
  386. (unsigned long *)&vcpu->arch.regs_dirty);
  387. out:
  388. return ret;
  389. }
  390. EXPORT_SYMBOL_GPL(load_pdptrs);
  391. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  392. {
  393. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  394. bool changed = true;
  395. int offset;
  396. gfn_t gfn;
  397. int r;
  398. if (is_long_mode(vcpu) || !is_pae(vcpu))
  399. return false;
  400. if (!test_bit(VCPU_EXREG_PDPTR,
  401. (unsigned long *)&vcpu->arch.regs_avail))
  402. return true;
  403. gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
  404. offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
  405. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  406. PFERR_USER_MASK | PFERR_WRITE_MASK);
  407. if (r < 0)
  408. goto out;
  409. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  410. out:
  411. return changed;
  412. }
  413. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  414. {
  415. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  416. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  417. X86_CR0_CD | X86_CR0_NW;
  418. cr0 |= X86_CR0_ET;
  419. #ifdef CONFIG_X86_64
  420. if (cr0 & 0xffffffff00000000UL)
  421. return 1;
  422. #endif
  423. cr0 &= ~CR0_RESERVED_BITS;
  424. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  425. return 1;
  426. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  427. return 1;
  428. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  429. #ifdef CONFIG_X86_64
  430. if ((vcpu->arch.efer & EFER_LME)) {
  431. int cs_db, cs_l;
  432. if (!is_pae(vcpu))
  433. return 1;
  434. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  435. if (cs_l)
  436. return 1;
  437. } else
  438. #endif
  439. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  440. vcpu->arch.cr3))
  441. return 1;
  442. }
  443. kvm_x86_ops->set_cr0(vcpu, cr0);
  444. if ((cr0 ^ old_cr0) & update_bits)
  445. kvm_mmu_reset_context(vcpu);
  446. return 0;
  447. }
  448. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  449. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  450. {
  451. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  452. }
  453. EXPORT_SYMBOL_GPL(kvm_lmsw);
  454. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  455. {
  456. u64 xcr0;
  457. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  458. if (index != XCR_XFEATURE_ENABLED_MASK)
  459. return 1;
  460. xcr0 = xcr;
  461. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  462. return 1;
  463. if (!(xcr0 & XSTATE_FP))
  464. return 1;
  465. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  466. return 1;
  467. if (xcr0 & ~host_xcr0)
  468. return 1;
  469. vcpu->arch.xcr0 = xcr0;
  470. vcpu->guest_xcr0_loaded = 0;
  471. return 0;
  472. }
  473. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  474. {
  475. if (__kvm_set_xcr(vcpu, index, xcr)) {
  476. kvm_inject_gp(vcpu, 0);
  477. return 1;
  478. }
  479. return 0;
  480. }
  481. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  482. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  483. {
  484. struct kvm_cpuid_entry2 *best;
  485. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  486. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  487. }
  488. static void update_cpuid(struct kvm_vcpu *vcpu)
  489. {
  490. struct kvm_cpuid_entry2 *best;
  491. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  492. if (!best)
  493. return;
  494. /* Update OSXSAVE bit */
  495. if (cpu_has_xsave && best->function == 0x1) {
  496. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  497. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  498. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  499. }
  500. }
  501. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  502. {
  503. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  504. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  505. if (cr4 & CR4_RESERVED_BITS)
  506. return 1;
  507. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  508. return 1;
  509. if (is_long_mode(vcpu)) {
  510. if (!(cr4 & X86_CR4_PAE))
  511. return 1;
  512. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  513. && ((cr4 ^ old_cr4) & pdptr_bits)
  514. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
  515. return 1;
  516. if (cr4 & X86_CR4_VMXE)
  517. return 1;
  518. kvm_x86_ops->set_cr4(vcpu, cr4);
  519. if ((cr4 ^ old_cr4) & pdptr_bits)
  520. kvm_mmu_reset_context(vcpu);
  521. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  522. update_cpuid(vcpu);
  523. return 0;
  524. }
  525. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  526. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  527. {
  528. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  529. kvm_mmu_sync_roots(vcpu);
  530. kvm_mmu_flush_tlb(vcpu);
  531. return 0;
  532. }
  533. if (is_long_mode(vcpu)) {
  534. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  535. return 1;
  536. } else {
  537. if (is_pae(vcpu)) {
  538. if (cr3 & CR3_PAE_RESERVED_BITS)
  539. return 1;
  540. if (is_paging(vcpu) &&
  541. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  542. return 1;
  543. }
  544. /*
  545. * We don't check reserved bits in nonpae mode, because
  546. * this isn't enforced, and VMware depends on this.
  547. */
  548. }
  549. /*
  550. * Does the new cr3 value map to physical memory? (Note, we
  551. * catch an invalid cr3 even in real-mode, because it would
  552. * cause trouble later on when we turn on paging anyway.)
  553. *
  554. * A real CPU would silently accept an invalid cr3 and would
  555. * attempt to use it - with largely undefined (and often hard
  556. * to debug) behavior on the guest side.
  557. */
  558. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  559. return 1;
  560. vcpu->arch.cr3 = cr3;
  561. vcpu->arch.mmu.new_cr3(vcpu);
  562. return 0;
  563. }
  564. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  565. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  566. {
  567. if (cr8 & CR8_RESERVED_BITS)
  568. return 1;
  569. if (irqchip_in_kernel(vcpu->kvm))
  570. kvm_lapic_set_tpr(vcpu, cr8);
  571. else
  572. vcpu->arch.cr8 = cr8;
  573. return 0;
  574. }
  575. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  576. {
  577. if (__kvm_set_cr8(vcpu, cr8))
  578. kvm_inject_gp(vcpu, 0);
  579. }
  580. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  581. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  582. {
  583. if (irqchip_in_kernel(vcpu->kvm))
  584. return kvm_lapic_get_cr8(vcpu);
  585. else
  586. return vcpu->arch.cr8;
  587. }
  588. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  589. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  590. {
  591. switch (dr) {
  592. case 0 ... 3:
  593. vcpu->arch.db[dr] = val;
  594. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  595. vcpu->arch.eff_db[dr] = val;
  596. break;
  597. case 4:
  598. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  599. return 1; /* #UD */
  600. /* fall through */
  601. case 6:
  602. if (val & 0xffffffff00000000ULL)
  603. return -1; /* #GP */
  604. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  605. break;
  606. case 5:
  607. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  608. return 1; /* #UD */
  609. /* fall through */
  610. default: /* 7 */
  611. if (val & 0xffffffff00000000ULL)
  612. return -1; /* #GP */
  613. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  614. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  615. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  616. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  617. }
  618. break;
  619. }
  620. return 0;
  621. }
  622. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  623. {
  624. int res;
  625. res = __kvm_set_dr(vcpu, dr, val);
  626. if (res > 0)
  627. kvm_queue_exception(vcpu, UD_VECTOR);
  628. else if (res < 0)
  629. kvm_inject_gp(vcpu, 0);
  630. return res;
  631. }
  632. EXPORT_SYMBOL_GPL(kvm_set_dr);
  633. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  634. {
  635. switch (dr) {
  636. case 0 ... 3:
  637. *val = vcpu->arch.db[dr];
  638. break;
  639. case 4:
  640. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  641. return 1;
  642. /* fall through */
  643. case 6:
  644. *val = vcpu->arch.dr6;
  645. break;
  646. case 5:
  647. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  648. return 1;
  649. /* fall through */
  650. default: /* 7 */
  651. *val = vcpu->arch.dr7;
  652. break;
  653. }
  654. return 0;
  655. }
  656. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  657. {
  658. if (_kvm_get_dr(vcpu, dr, val)) {
  659. kvm_queue_exception(vcpu, UD_VECTOR);
  660. return 1;
  661. }
  662. return 0;
  663. }
  664. EXPORT_SYMBOL_GPL(kvm_get_dr);
  665. /*
  666. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  667. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  668. *
  669. * This list is modified at module load time to reflect the
  670. * capabilities of the host cpu. This capabilities test skips MSRs that are
  671. * kvm-specific. Those are put in the beginning of the list.
  672. */
  673. #define KVM_SAVE_MSRS_BEGIN 7
  674. static u32 msrs_to_save[] = {
  675. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  676. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  677. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  678. HV_X64_MSR_APIC_ASSIST_PAGE,
  679. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  680. MSR_STAR,
  681. #ifdef CONFIG_X86_64
  682. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  683. #endif
  684. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  685. };
  686. static unsigned num_msrs_to_save;
  687. static u32 emulated_msrs[] = {
  688. MSR_IA32_MISC_ENABLE,
  689. MSR_IA32_MCG_STATUS,
  690. MSR_IA32_MCG_CTL,
  691. };
  692. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  693. {
  694. u64 old_efer = vcpu->arch.efer;
  695. if (efer & efer_reserved_bits)
  696. return 1;
  697. if (is_paging(vcpu)
  698. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  699. return 1;
  700. if (efer & EFER_FFXSR) {
  701. struct kvm_cpuid_entry2 *feat;
  702. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  703. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  704. return 1;
  705. }
  706. if (efer & EFER_SVME) {
  707. struct kvm_cpuid_entry2 *feat;
  708. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  709. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  710. return 1;
  711. }
  712. efer &= ~EFER_LMA;
  713. efer |= vcpu->arch.efer & EFER_LMA;
  714. kvm_x86_ops->set_efer(vcpu, efer);
  715. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  716. kvm_mmu_reset_context(vcpu);
  717. /* Update reserved bits */
  718. if ((efer ^ old_efer) & EFER_NX)
  719. kvm_mmu_reset_context(vcpu);
  720. return 0;
  721. }
  722. void kvm_enable_efer_bits(u64 mask)
  723. {
  724. efer_reserved_bits &= ~mask;
  725. }
  726. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  727. /*
  728. * Writes msr value into into the appropriate "register".
  729. * Returns 0 on success, non-0 otherwise.
  730. * Assumes vcpu_load() was already called.
  731. */
  732. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  733. {
  734. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  735. }
  736. /*
  737. * Adapt set_msr() to msr_io()'s calling convention
  738. */
  739. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  740. {
  741. return kvm_set_msr(vcpu, index, *data);
  742. }
  743. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  744. {
  745. int version;
  746. int r;
  747. struct pvclock_wall_clock wc;
  748. struct timespec boot;
  749. if (!wall_clock)
  750. return;
  751. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  752. if (r)
  753. return;
  754. if (version & 1)
  755. ++version; /* first time write, random junk */
  756. ++version;
  757. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  758. /*
  759. * The guest calculates current wall clock time by adding
  760. * system time (updated by kvm_guest_time_update below) to the
  761. * wall clock specified here. guest system time equals host
  762. * system time for us, thus we must fill in host boot time here.
  763. */
  764. getboottime(&boot);
  765. wc.sec = boot.tv_sec;
  766. wc.nsec = boot.tv_nsec;
  767. wc.version = version;
  768. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  769. version++;
  770. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  771. }
  772. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  773. {
  774. uint32_t quotient, remainder;
  775. /* Don't try to replace with do_div(), this one calculates
  776. * "(dividend << 32) / divisor" */
  777. __asm__ ( "divl %4"
  778. : "=a" (quotient), "=d" (remainder)
  779. : "0" (0), "1" (dividend), "r" (divisor) );
  780. return quotient;
  781. }
  782. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  783. s8 *pshift, u32 *pmultiplier)
  784. {
  785. uint64_t scaled64;
  786. int32_t shift = 0;
  787. uint64_t tps64;
  788. uint32_t tps32;
  789. tps64 = base_khz * 1000LL;
  790. scaled64 = scaled_khz * 1000LL;
  791. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  792. tps64 >>= 1;
  793. shift--;
  794. }
  795. tps32 = (uint32_t)tps64;
  796. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  797. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  798. scaled64 >>= 1;
  799. else
  800. tps32 <<= 1;
  801. shift++;
  802. }
  803. *pshift = shift;
  804. *pmultiplier = div_frac(scaled64, tps32);
  805. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  806. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  807. }
  808. static inline u64 get_kernel_ns(void)
  809. {
  810. struct timespec ts;
  811. WARN_ON(preemptible());
  812. ktime_get_ts(&ts);
  813. monotonic_to_bootbased(&ts);
  814. return timespec_to_ns(&ts);
  815. }
  816. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  817. unsigned long max_tsc_khz;
  818. static inline int kvm_tsc_changes_freq(void)
  819. {
  820. int cpu = get_cpu();
  821. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  822. cpufreq_quick_get(cpu) != 0;
  823. put_cpu();
  824. return ret;
  825. }
  826. static inline u64 nsec_to_cycles(u64 nsec)
  827. {
  828. u64 ret;
  829. WARN_ON(preemptible());
  830. if (kvm_tsc_changes_freq())
  831. printk_once(KERN_WARNING
  832. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  833. ret = nsec * __get_cpu_var(cpu_tsc_khz);
  834. do_div(ret, USEC_PER_SEC);
  835. return ret;
  836. }
  837. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  838. {
  839. /* Compute a scale to convert nanoseconds in TSC cycles */
  840. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  841. &kvm->arch.virtual_tsc_shift,
  842. &kvm->arch.virtual_tsc_mult);
  843. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  844. }
  845. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  846. {
  847. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  848. vcpu->kvm->arch.virtual_tsc_mult,
  849. vcpu->kvm->arch.virtual_tsc_shift);
  850. tsc += vcpu->arch.last_tsc_write;
  851. return tsc;
  852. }
  853. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  854. {
  855. struct kvm *kvm = vcpu->kvm;
  856. u64 offset, ns, elapsed;
  857. unsigned long flags;
  858. s64 sdiff;
  859. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  860. offset = data - native_read_tsc();
  861. ns = get_kernel_ns();
  862. elapsed = ns - kvm->arch.last_tsc_nsec;
  863. sdiff = data - kvm->arch.last_tsc_write;
  864. if (sdiff < 0)
  865. sdiff = -sdiff;
  866. /*
  867. * Special case: close write to TSC within 5 seconds of
  868. * another CPU is interpreted as an attempt to synchronize
  869. * The 5 seconds is to accomodate host load / swapping as
  870. * well as any reset of TSC during the boot process.
  871. *
  872. * In that case, for a reliable TSC, we can match TSC offsets,
  873. * or make a best guest using elapsed value.
  874. */
  875. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  876. elapsed < 5ULL * NSEC_PER_SEC) {
  877. if (!check_tsc_unstable()) {
  878. offset = kvm->arch.last_tsc_offset;
  879. pr_debug("kvm: matched tsc offset for %llu\n", data);
  880. } else {
  881. u64 delta = nsec_to_cycles(elapsed);
  882. offset += delta;
  883. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  884. }
  885. ns = kvm->arch.last_tsc_nsec;
  886. }
  887. kvm->arch.last_tsc_nsec = ns;
  888. kvm->arch.last_tsc_write = data;
  889. kvm->arch.last_tsc_offset = offset;
  890. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  891. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  892. /* Reset of TSC must disable overshoot protection below */
  893. vcpu->arch.hv_clock.tsc_timestamp = 0;
  894. vcpu->arch.last_tsc_write = data;
  895. vcpu->arch.last_tsc_nsec = ns;
  896. }
  897. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  898. static int kvm_guest_time_update(struct kvm_vcpu *v)
  899. {
  900. unsigned long flags;
  901. struct kvm_vcpu_arch *vcpu = &v->arch;
  902. void *shared_kaddr;
  903. unsigned long this_tsc_khz;
  904. s64 kernel_ns, max_kernel_ns;
  905. u64 tsc_timestamp;
  906. /* Keep irq disabled to prevent changes to the clock */
  907. local_irq_save(flags);
  908. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  909. kernel_ns = get_kernel_ns();
  910. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  911. if (unlikely(this_tsc_khz == 0)) {
  912. local_irq_restore(flags);
  913. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  914. return 1;
  915. }
  916. /*
  917. * We may have to catch up the TSC to match elapsed wall clock
  918. * time for two reasons, even if kvmclock is used.
  919. * 1) CPU could have been running below the maximum TSC rate
  920. * 2) Broken TSC compensation resets the base at each VCPU
  921. * entry to avoid unknown leaps of TSC even when running
  922. * again on the same CPU. This may cause apparent elapsed
  923. * time to disappear, and the guest to stand still or run
  924. * very slowly.
  925. */
  926. if (vcpu->tsc_catchup) {
  927. u64 tsc = compute_guest_tsc(v, kernel_ns);
  928. if (tsc > tsc_timestamp) {
  929. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  930. tsc_timestamp = tsc;
  931. }
  932. }
  933. local_irq_restore(flags);
  934. if (!vcpu->time_page)
  935. return 0;
  936. /*
  937. * Time as measured by the TSC may go backwards when resetting the base
  938. * tsc_timestamp. The reason for this is that the TSC resolution is
  939. * higher than the resolution of the other clock scales. Thus, many
  940. * possible measurments of the TSC correspond to one measurement of any
  941. * other clock, and so a spread of values is possible. This is not a
  942. * problem for the computation of the nanosecond clock; with TSC rates
  943. * around 1GHZ, there can only be a few cycles which correspond to one
  944. * nanosecond value, and any path through this code will inevitably
  945. * take longer than that. However, with the kernel_ns value itself,
  946. * the precision may be much lower, down to HZ granularity. If the
  947. * first sampling of TSC against kernel_ns ends in the low part of the
  948. * range, and the second in the high end of the range, we can get:
  949. *
  950. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  951. *
  952. * As the sampling errors potentially range in the thousands of cycles,
  953. * it is possible such a time value has already been observed by the
  954. * guest. To protect against this, we must compute the system time as
  955. * observed by the guest and ensure the new system time is greater.
  956. */
  957. max_kernel_ns = 0;
  958. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  959. max_kernel_ns = vcpu->last_guest_tsc -
  960. vcpu->hv_clock.tsc_timestamp;
  961. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  962. vcpu->hv_clock.tsc_to_system_mul,
  963. vcpu->hv_clock.tsc_shift);
  964. max_kernel_ns += vcpu->last_kernel_ns;
  965. }
  966. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  967. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  968. &vcpu->hv_clock.tsc_shift,
  969. &vcpu->hv_clock.tsc_to_system_mul);
  970. vcpu->hw_tsc_khz = this_tsc_khz;
  971. }
  972. if (max_kernel_ns > kernel_ns)
  973. kernel_ns = max_kernel_ns;
  974. /* With all the info we got, fill in the values */
  975. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  976. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  977. vcpu->last_kernel_ns = kernel_ns;
  978. vcpu->last_guest_tsc = tsc_timestamp;
  979. vcpu->hv_clock.flags = 0;
  980. /*
  981. * The interface expects us to write an even number signaling that the
  982. * update is finished. Since the guest won't see the intermediate
  983. * state, we just increase by 2 at the end.
  984. */
  985. vcpu->hv_clock.version += 2;
  986. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  987. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  988. sizeof(vcpu->hv_clock));
  989. kunmap_atomic(shared_kaddr, KM_USER0);
  990. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  991. return 0;
  992. }
  993. static bool msr_mtrr_valid(unsigned msr)
  994. {
  995. switch (msr) {
  996. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  997. case MSR_MTRRfix64K_00000:
  998. case MSR_MTRRfix16K_80000:
  999. case MSR_MTRRfix16K_A0000:
  1000. case MSR_MTRRfix4K_C0000:
  1001. case MSR_MTRRfix4K_C8000:
  1002. case MSR_MTRRfix4K_D0000:
  1003. case MSR_MTRRfix4K_D8000:
  1004. case MSR_MTRRfix4K_E0000:
  1005. case MSR_MTRRfix4K_E8000:
  1006. case MSR_MTRRfix4K_F0000:
  1007. case MSR_MTRRfix4K_F8000:
  1008. case MSR_MTRRdefType:
  1009. case MSR_IA32_CR_PAT:
  1010. return true;
  1011. case 0x2f8:
  1012. return true;
  1013. }
  1014. return false;
  1015. }
  1016. static bool valid_pat_type(unsigned t)
  1017. {
  1018. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1019. }
  1020. static bool valid_mtrr_type(unsigned t)
  1021. {
  1022. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1023. }
  1024. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1025. {
  1026. int i;
  1027. if (!msr_mtrr_valid(msr))
  1028. return false;
  1029. if (msr == MSR_IA32_CR_PAT) {
  1030. for (i = 0; i < 8; i++)
  1031. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1032. return false;
  1033. return true;
  1034. } else if (msr == MSR_MTRRdefType) {
  1035. if (data & ~0xcff)
  1036. return false;
  1037. return valid_mtrr_type(data & 0xff);
  1038. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1039. for (i = 0; i < 8 ; i++)
  1040. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1041. return false;
  1042. return true;
  1043. }
  1044. /* variable MTRRs */
  1045. return valid_mtrr_type(data & 0xff);
  1046. }
  1047. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1048. {
  1049. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1050. if (!mtrr_valid(vcpu, msr, data))
  1051. return 1;
  1052. if (msr == MSR_MTRRdefType) {
  1053. vcpu->arch.mtrr_state.def_type = data;
  1054. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1055. } else if (msr == MSR_MTRRfix64K_00000)
  1056. p[0] = data;
  1057. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1058. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1059. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1060. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1061. else if (msr == MSR_IA32_CR_PAT)
  1062. vcpu->arch.pat = data;
  1063. else { /* Variable MTRRs */
  1064. int idx, is_mtrr_mask;
  1065. u64 *pt;
  1066. idx = (msr - 0x200) / 2;
  1067. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1068. if (!is_mtrr_mask)
  1069. pt =
  1070. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1071. else
  1072. pt =
  1073. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1074. *pt = data;
  1075. }
  1076. kvm_mmu_reset_context(vcpu);
  1077. return 0;
  1078. }
  1079. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1080. {
  1081. u64 mcg_cap = vcpu->arch.mcg_cap;
  1082. unsigned bank_num = mcg_cap & 0xff;
  1083. switch (msr) {
  1084. case MSR_IA32_MCG_STATUS:
  1085. vcpu->arch.mcg_status = data;
  1086. break;
  1087. case MSR_IA32_MCG_CTL:
  1088. if (!(mcg_cap & MCG_CTL_P))
  1089. return 1;
  1090. if (data != 0 && data != ~(u64)0)
  1091. return -1;
  1092. vcpu->arch.mcg_ctl = data;
  1093. break;
  1094. default:
  1095. if (msr >= MSR_IA32_MC0_CTL &&
  1096. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1097. u32 offset = msr - MSR_IA32_MC0_CTL;
  1098. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1099. * some Linux kernels though clear bit 10 in bank 4 to
  1100. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1101. * this to avoid an uncatched #GP in the guest
  1102. */
  1103. if ((offset & 0x3) == 0 &&
  1104. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1105. return -1;
  1106. vcpu->arch.mce_banks[offset] = data;
  1107. break;
  1108. }
  1109. return 1;
  1110. }
  1111. return 0;
  1112. }
  1113. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1114. {
  1115. struct kvm *kvm = vcpu->kvm;
  1116. int lm = is_long_mode(vcpu);
  1117. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1118. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1119. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1120. : kvm->arch.xen_hvm_config.blob_size_32;
  1121. u32 page_num = data & ~PAGE_MASK;
  1122. u64 page_addr = data & PAGE_MASK;
  1123. u8 *page;
  1124. int r;
  1125. r = -E2BIG;
  1126. if (page_num >= blob_size)
  1127. goto out;
  1128. r = -ENOMEM;
  1129. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1130. if (!page)
  1131. goto out;
  1132. r = -EFAULT;
  1133. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1134. goto out_free;
  1135. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1136. goto out_free;
  1137. r = 0;
  1138. out_free:
  1139. kfree(page);
  1140. out:
  1141. return r;
  1142. }
  1143. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1144. {
  1145. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1146. }
  1147. static bool kvm_hv_msr_partition_wide(u32 msr)
  1148. {
  1149. bool r = false;
  1150. switch (msr) {
  1151. case HV_X64_MSR_GUEST_OS_ID:
  1152. case HV_X64_MSR_HYPERCALL:
  1153. r = true;
  1154. break;
  1155. }
  1156. return r;
  1157. }
  1158. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1159. {
  1160. struct kvm *kvm = vcpu->kvm;
  1161. switch (msr) {
  1162. case HV_X64_MSR_GUEST_OS_ID:
  1163. kvm->arch.hv_guest_os_id = data;
  1164. /* setting guest os id to zero disables hypercall page */
  1165. if (!kvm->arch.hv_guest_os_id)
  1166. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1167. break;
  1168. case HV_X64_MSR_HYPERCALL: {
  1169. u64 gfn;
  1170. unsigned long addr;
  1171. u8 instructions[4];
  1172. /* if guest os id is not set hypercall should remain disabled */
  1173. if (!kvm->arch.hv_guest_os_id)
  1174. break;
  1175. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1176. kvm->arch.hv_hypercall = data;
  1177. break;
  1178. }
  1179. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1180. addr = gfn_to_hva(kvm, gfn);
  1181. if (kvm_is_error_hva(addr))
  1182. return 1;
  1183. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1184. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1185. if (copy_to_user((void __user *)addr, instructions, 4))
  1186. return 1;
  1187. kvm->arch.hv_hypercall = data;
  1188. break;
  1189. }
  1190. default:
  1191. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1192. "data 0x%llx\n", msr, data);
  1193. return 1;
  1194. }
  1195. return 0;
  1196. }
  1197. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1198. {
  1199. switch (msr) {
  1200. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1201. unsigned long addr;
  1202. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1203. vcpu->arch.hv_vapic = data;
  1204. break;
  1205. }
  1206. addr = gfn_to_hva(vcpu->kvm, data >>
  1207. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1208. if (kvm_is_error_hva(addr))
  1209. return 1;
  1210. if (clear_user((void __user *)addr, PAGE_SIZE))
  1211. return 1;
  1212. vcpu->arch.hv_vapic = data;
  1213. break;
  1214. }
  1215. case HV_X64_MSR_EOI:
  1216. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1217. case HV_X64_MSR_ICR:
  1218. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1219. case HV_X64_MSR_TPR:
  1220. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1221. default:
  1222. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1223. "data 0x%llx\n", msr, data);
  1224. return 1;
  1225. }
  1226. return 0;
  1227. }
  1228. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1229. {
  1230. switch (msr) {
  1231. case MSR_EFER:
  1232. return set_efer(vcpu, data);
  1233. case MSR_K7_HWCR:
  1234. data &= ~(u64)0x40; /* ignore flush filter disable */
  1235. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1236. if (data != 0) {
  1237. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1238. data);
  1239. return 1;
  1240. }
  1241. break;
  1242. case MSR_FAM10H_MMIO_CONF_BASE:
  1243. if (data != 0) {
  1244. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1245. "0x%llx\n", data);
  1246. return 1;
  1247. }
  1248. break;
  1249. case MSR_AMD64_NB_CFG:
  1250. break;
  1251. case MSR_IA32_DEBUGCTLMSR:
  1252. if (!data) {
  1253. /* We support the non-activated case already */
  1254. break;
  1255. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1256. /* Values other than LBR and BTF are vendor-specific,
  1257. thus reserved and should throw a #GP */
  1258. return 1;
  1259. }
  1260. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1261. __func__, data);
  1262. break;
  1263. case MSR_IA32_UCODE_REV:
  1264. case MSR_IA32_UCODE_WRITE:
  1265. case MSR_VM_HSAVE_PA:
  1266. case MSR_AMD64_PATCH_LOADER:
  1267. break;
  1268. case 0x200 ... 0x2ff:
  1269. return set_msr_mtrr(vcpu, msr, data);
  1270. case MSR_IA32_APICBASE:
  1271. kvm_set_apic_base(vcpu, data);
  1272. break;
  1273. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1274. return kvm_x2apic_msr_write(vcpu, msr, data);
  1275. case MSR_IA32_MISC_ENABLE:
  1276. vcpu->arch.ia32_misc_enable_msr = data;
  1277. break;
  1278. case MSR_KVM_WALL_CLOCK_NEW:
  1279. case MSR_KVM_WALL_CLOCK:
  1280. vcpu->kvm->arch.wall_clock = data;
  1281. kvm_write_wall_clock(vcpu->kvm, data);
  1282. break;
  1283. case MSR_KVM_SYSTEM_TIME_NEW:
  1284. case MSR_KVM_SYSTEM_TIME: {
  1285. if (vcpu->arch.time_page) {
  1286. kvm_release_page_dirty(vcpu->arch.time_page);
  1287. vcpu->arch.time_page = NULL;
  1288. }
  1289. vcpu->arch.time = data;
  1290. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1291. /* we verify if the enable bit is set... */
  1292. if (!(data & 1))
  1293. break;
  1294. /* ...but clean it before doing the actual write */
  1295. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1296. vcpu->arch.time_page =
  1297. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1298. if (is_error_page(vcpu->arch.time_page)) {
  1299. kvm_release_page_clean(vcpu->arch.time_page);
  1300. vcpu->arch.time_page = NULL;
  1301. }
  1302. break;
  1303. }
  1304. case MSR_IA32_MCG_CTL:
  1305. case MSR_IA32_MCG_STATUS:
  1306. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1307. return set_msr_mce(vcpu, msr, data);
  1308. /* Performance counters are not protected by a CPUID bit,
  1309. * so we should check all of them in the generic path for the sake of
  1310. * cross vendor migration.
  1311. * Writing a zero into the event select MSRs disables them,
  1312. * which we perfectly emulate ;-). Any other value should be at least
  1313. * reported, some guests depend on them.
  1314. */
  1315. case MSR_P6_EVNTSEL0:
  1316. case MSR_P6_EVNTSEL1:
  1317. case MSR_K7_EVNTSEL0:
  1318. case MSR_K7_EVNTSEL1:
  1319. case MSR_K7_EVNTSEL2:
  1320. case MSR_K7_EVNTSEL3:
  1321. if (data != 0)
  1322. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1323. "0x%x data 0x%llx\n", msr, data);
  1324. break;
  1325. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1326. * so we ignore writes to make it happy.
  1327. */
  1328. case MSR_P6_PERFCTR0:
  1329. case MSR_P6_PERFCTR1:
  1330. case MSR_K7_PERFCTR0:
  1331. case MSR_K7_PERFCTR1:
  1332. case MSR_K7_PERFCTR2:
  1333. case MSR_K7_PERFCTR3:
  1334. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1335. "0x%x data 0x%llx\n", msr, data);
  1336. break;
  1337. case MSR_K7_CLK_CTL:
  1338. /*
  1339. * Ignore all writes to this no longer documented MSR.
  1340. * Writes are only relevant for old K7 processors,
  1341. * all pre-dating SVM, but a recommended workaround from
  1342. * AMD for these chips. It is possible to speicify the
  1343. * affected processor models on the command line, hence
  1344. * the need to ignore the workaround.
  1345. */
  1346. break;
  1347. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1348. if (kvm_hv_msr_partition_wide(msr)) {
  1349. int r;
  1350. mutex_lock(&vcpu->kvm->lock);
  1351. r = set_msr_hyperv_pw(vcpu, msr, data);
  1352. mutex_unlock(&vcpu->kvm->lock);
  1353. return r;
  1354. } else
  1355. return set_msr_hyperv(vcpu, msr, data);
  1356. break;
  1357. default:
  1358. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1359. return xen_hvm_config(vcpu, data);
  1360. if (!ignore_msrs) {
  1361. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1362. msr, data);
  1363. return 1;
  1364. } else {
  1365. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1366. msr, data);
  1367. break;
  1368. }
  1369. }
  1370. return 0;
  1371. }
  1372. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1373. /*
  1374. * Reads an msr value (of 'msr_index') into 'pdata'.
  1375. * Returns 0 on success, non-0 otherwise.
  1376. * Assumes vcpu_load() was already called.
  1377. */
  1378. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1379. {
  1380. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1381. }
  1382. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1383. {
  1384. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1385. if (!msr_mtrr_valid(msr))
  1386. return 1;
  1387. if (msr == MSR_MTRRdefType)
  1388. *pdata = vcpu->arch.mtrr_state.def_type +
  1389. (vcpu->arch.mtrr_state.enabled << 10);
  1390. else if (msr == MSR_MTRRfix64K_00000)
  1391. *pdata = p[0];
  1392. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1393. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1394. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1395. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1396. else if (msr == MSR_IA32_CR_PAT)
  1397. *pdata = vcpu->arch.pat;
  1398. else { /* Variable MTRRs */
  1399. int idx, is_mtrr_mask;
  1400. u64 *pt;
  1401. idx = (msr - 0x200) / 2;
  1402. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1403. if (!is_mtrr_mask)
  1404. pt =
  1405. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1406. else
  1407. pt =
  1408. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1409. *pdata = *pt;
  1410. }
  1411. return 0;
  1412. }
  1413. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1414. {
  1415. u64 data;
  1416. u64 mcg_cap = vcpu->arch.mcg_cap;
  1417. unsigned bank_num = mcg_cap & 0xff;
  1418. switch (msr) {
  1419. case MSR_IA32_P5_MC_ADDR:
  1420. case MSR_IA32_P5_MC_TYPE:
  1421. data = 0;
  1422. break;
  1423. case MSR_IA32_MCG_CAP:
  1424. data = vcpu->arch.mcg_cap;
  1425. break;
  1426. case MSR_IA32_MCG_CTL:
  1427. if (!(mcg_cap & MCG_CTL_P))
  1428. return 1;
  1429. data = vcpu->arch.mcg_ctl;
  1430. break;
  1431. case MSR_IA32_MCG_STATUS:
  1432. data = vcpu->arch.mcg_status;
  1433. break;
  1434. default:
  1435. if (msr >= MSR_IA32_MC0_CTL &&
  1436. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1437. u32 offset = msr - MSR_IA32_MC0_CTL;
  1438. data = vcpu->arch.mce_banks[offset];
  1439. break;
  1440. }
  1441. return 1;
  1442. }
  1443. *pdata = data;
  1444. return 0;
  1445. }
  1446. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1447. {
  1448. u64 data = 0;
  1449. struct kvm *kvm = vcpu->kvm;
  1450. switch (msr) {
  1451. case HV_X64_MSR_GUEST_OS_ID:
  1452. data = kvm->arch.hv_guest_os_id;
  1453. break;
  1454. case HV_X64_MSR_HYPERCALL:
  1455. data = kvm->arch.hv_hypercall;
  1456. break;
  1457. default:
  1458. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1459. return 1;
  1460. }
  1461. *pdata = data;
  1462. return 0;
  1463. }
  1464. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1465. {
  1466. u64 data = 0;
  1467. switch (msr) {
  1468. case HV_X64_MSR_VP_INDEX: {
  1469. int r;
  1470. struct kvm_vcpu *v;
  1471. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1472. if (v == vcpu)
  1473. data = r;
  1474. break;
  1475. }
  1476. case HV_X64_MSR_EOI:
  1477. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1478. case HV_X64_MSR_ICR:
  1479. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1480. case HV_X64_MSR_TPR:
  1481. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1482. default:
  1483. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1484. return 1;
  1485. }
  1486. *pdata = data;
  1487. return 0;
  1488. }
  1489. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1490. {
  1491. u64 data;
  1492. switch (msr) {
  1493. case MSR_IA32_PLATFORM_ID:
  1494. case MSR_IA32_UCODE_REV:
  1495. case MSR_IA32_EBL_CR_POWERON:
  1496. case MSR_IA32_DEBUGCTLMSR:
  1497. case MSR_IA32_LASTBRANCHFROMIP:
  1498. case MSR_IA32_LASTBRANCHTOIP:
  1499. case MSR_IA32_LASTINTFROMIP:
  1500. case MSR_IA32_LASTINTTOIP:
  1501. case MSR_K8_SYSCFG:
  1502. case MSR_K7_HWCR:
  1503. case MSR_VM_HSAVE_PA:
  1504. case MSR_P6_PERFCTR0:
  1505. case MSR_P6_PERFCTR1:
  1506. case MSR_P6_EVNTSEL0:
  1507. case MSR_P6_EVNTSEL1:
  1508. case MSR_K7_EVNTSEL0:
  1509. case MSR_K7_PERFCTR0:
  1510. case MSR_K8_INT_PENDING_MSG:
  1511. case MSR_AMD64_NB_CFG:
  1512. case MSR_FAM10H_MMIO_CONF_BASE:
  1513. data = 0;
  1514. break;
  1515. case MSR_MTRRcap:
  1516. data = 0x500 | KVM_NR_VAR_MTRR;
  1517. break;
  1518. case 0x200 ... 0x2ff:
  1519. return get_msr_mtrr(vcpu, msr, pdata);
  1520. case 0xcd: /* fsb frequency */
  1521. data = 3;
  1522. break;
  1523. /*
  1524. * MSR_EBC_FREQUENCY_ID
  1525. * Conservative value valid for even the basic CPU models.
  1526. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1527. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1528. * and 266MHz for model 3, or 4. Set Core Clock
  1529. * Frequency to System Bus Frequency Ratio to 1 (bits
  1530. * 31:24) even though these are only valid for CPU
  1531. * models > 2, however guests may end up dividing or
  1532. * multiplying by zero otherwise.
  1533. */
  1534. case MSR_EBC_FREQUENCY_ID:
  1535. data = 1 << 24;
  1536. break;
  1537. case MSR_IA32_APICBASE:
  1538. data = kvm_get_apic_base(vcpu);
  1539. break;
  1540. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1541. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1542. break;
  1543. case MSR_IA32_MISC_ENABLE:
  1544. data = vcpu->arch.ia32_misc_enable_msr;
  1545. break;
  1546. case MSR_IA32_PERF_STATUS:
  1547. /* TSC increment by tick */
  1548. data = 1000ULL;
  1549. /* CPU multiplier */
  1550. data |= (((uint64_t)4ULL) << 40);
  1551. break;
  1552. case MSR_EFER:
  1553. data = vcpu->arch.efer;
  1554. break;
  1555. case MSR_KVM_WALL_CLOCK:
  1556. case MSR_KVM_WALL_CLOCK_NEW:
  1557. data = vcpu->kvm->arch.wall_clock;
  1558. break;
  1559. case MSR_KVM_SYSTEM_TIME:
  1560. case MSR_KVM_SYSTEM_TIME_NEW:
  1561. data = vcpu->arch.time;
  1562. break;
  1563. case MSR_IA32_P5_MC_ADDR:
  1564. case MSR_IA32_P5_MC_TYPE:
  1565. case MSR_IA32_MCG_CAP:
  1566. case MSR_IA32_MCG_CTL:
  1567. case MSR_IA32_MCG_STATUS:
  1568. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1569. return get_msr_mce(vcpu, msr, pdata);
  1570. case MSR_K7_CLK_CTL:
  1571. /*
  1572. * Provide expected ramp-up count for K7. All other
  1573. * are set to zero, indicating minimum divisors for
  1574. * every field.
  1575. *
  1576. * This prevents guest kernels on AMD host with CPU
  1577. * type 6, model 8 and higher from exploding due to
  1578. * the rdmsr failing.
  1579. */
  1580. data = 0x20000000;
  1581. break;
  1582. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1583. if (kvm_hv_msr_partition_wide(msr)) {
  1584. int r;
  1585. mutex_lock(&vcpu->kvm->lock);
  1586. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1587. mutex_unlock(&vcpu->kvm->lock);
  1588. return r;
  1589. } else
  1590. return get_msr_hyperv(vcpu, msr, pdata);
  1591. break;
  1592. default:
  1593. if (!ignore_msrs) {
  1594. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1595. return 1;
  1596. } else {
  1597. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1598. data = 0;
  1599. }
  1600. break;
  1601. }
  1602. *pdata = data;
  1603. return 0;
  1604. }
  1605. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1606. /*
  1607. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1608. *
  1609. * @return number of msrs set successfully.
  1610. */
  1611. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1612. struct kvm_msr_entry *entries,
  1613. int (*do_msr)(struct kvm_vcpu *vcpu,
  1614. unsigned index, u64 *data))
  1615. {
  1616. int i, idx;
  1617. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1618. for (i = 0; i < msrs->nmsrs; ++i)
  1619. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1620. break;
  1621. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1622. return i;
  1623. }
  1624. /*
  1625. * Read or write a bunch of msrs. Parameters are user addresses.
  1626. *
  1627. * @return number of msrs set successfully.
  1628. */
  1629. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1630. int (*do_msr)(struct kvm_vcpu *vcpu,
  1631. unsigned index, u64 *data),
  1632. int writeback)
  1633. {
  1634. struct kvm_msrs msrs;
  1635. struct kvm_msr_entry *entries;
  1636. int r, n;
  1637. unsigned size;
  1638. r = -EFAULT;
  1639. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1640. goto out;
  1641. r = -E2BIG;
  1642. if (msrs.nmsrs >= MAX_IO_MSRS)
  1643. goto out;
  1644. r = -ENOMEM;
  1645. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1646. entries = kmalloc(size, GFP_KERNEL);
  1647. if (!entries)
  1648. goto out;
  1649. r = -EFAULT;
  1650. if (copy_from_user(entries, user_msrs->entries, size))
  1651. goto out_free;
  1652. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1653. if (r < 0)
  1654. goto out_free;
  1655. r = -EFAULT;
  1656. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1657. goto out_free;
  1658. r = n;
  1659. out_free:
  1660. kfree(entries);
  1661. out:
  1662. return r;
  1663. }
  1664. int kvm_dev_ioctl_check_extension(long ext)
  1665. {
  1666. int r;
  1667. switch (ext) {
  1668. case KVM_CAP_IRQCHIP:
  1669. case KVM_CAP_HLT:
  1670. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1671. case KVM_CAP_SET_TSS_ADDR:
  1672. case KVM_CAP_EXT_CPUID:
  1673. case KVM_CAP_CLOCKSOURCE:
  1674. case KVM_CAP_PIT:
  1675. case KVM_CAP_NOP_IO_DELAY:
  1676. case KVM_CAP_MP_STATE:
  1677. case KVM_CAP_SYNC_MMU:
  1678. case KVM_CAP_REINJECT_CONTROL:
  1679. case KVM_CAP_IRQ_INJECT_STATUS:
  1680. case KVM_CAP_ASSIGN_DEV_IRQ:
  1681. case KVM_CAP_IRQFD:
  1682. case KVM_CAP_IOEVENTFD:
  1683. case KVM_CAP_PIT2:
  1684. case KVM_CAP_PIT_STATE2:
  1685. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1686. case KVM_CAP_XEN_HVM:
  1687. case KVM_CAP_ADJUST_CLOCK:
  1688. case KVM_CAP_VCPU_EVENTS:
  1689. case KVM_CAP_HYPERV:
  1690. case KVM_CAP_HYPERV_VAPIC:
  1691. case KVM_CAP_HYPERV_SPIN:
  1692. case KVM_CAP_PCI_SEGMENT:
  1693. case KVM_CAP_DEBUGREGS:
  1694. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1695. case KVM_CAP_XSAVE:
  1696. r = 1;
  1697. break;
  1698. case KVM_CAP_COALESCED_MMIO:
  1699. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1700. break;
  1701. case KVM_CAP_VAPIC:
  1702. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1703. break;
  1704. case KVM_CAP_NR_VCPUS:
  1705. r = KVM_MAX_VCPUS;
  1706. break;
  1707. case KVM_CAP_NR_MEMSLOTS:
  1708. r = KVM_MEMORY_SLOTS;
  1709. break;
  1710. case KVM_CAP_PV_MMU: /* obsolete */
  1711. r = 0;
  1712. break;
  1713. case KVM_CAP_IOMMU:
  1714. r = iommu_found();
  1715. break;
  1716. case KVM_CAP_MCE:
  1717. r = KVM_MAX_MCE_BANKS;
  1718. break;
  1719. case KVM_CAP_XCRS:
  1720. r = cpu_has_xsave;
  1721. break;
  1722. default:
  1723. r = 0;
  1724. break;
  1725. }
  1726. return r;
  1727. }
  1728. long kvm_arch_dev_ioctl(struct file *filp,
  1729. unsigned int ioctl, unsigned long arg)
  1730. {
  1731. void __user *argp = (void __user *)arg;
  1732. long r;
  1733. switch (ioctl) {
  1734. case KVM_GET_MSR_INDEX_LIST: {
  1735. struct kvm_msr_list __user *user_msr_list = argp;
  1736. struct kvm_msr_list msr_list;
  1737. unsigned n;
  1738. r = -EFAULT;
  1739. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1740. goto out;
  1741. n = msr_list.nmsrs;
  1742. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1743. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1744. goto out;
  1745. r = -E2BIG;
  1746. if (n < msr_list.nmsrs)
  1747. goto out;
  1748. r = -EFAULT;
  1749. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1750. num_msrs_to_save * sizeof(u32)))
  1751. goto out;
  1752. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1753. &emulated_msrs,
  1754. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1755. goto out;
  1756. r = 0;
  1757. break;
  1758. }
  1759. case KVM_GET_SUPPORTED_CPUID: {
  1760. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1761. struct kvm_cpuid2 cpuid;
  1762. r = -EFAULT;
  1763. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1764. goto out;
  1765. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1766. cpuid_arg->entries);
  1767. if (r)
  1768. goto out;
  1769. r = -EFAULT;
  1770. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1771. goto out;
  1772. r = 0;
  1773. break;
  1774. }
  1775. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1776. u64 mce_cap;
  1777. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1778. r = -EFAULT;
  1779. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1780. goto out;
  1781. r = 0;
  1782. break;
  1783. }
  1784. default:
  1785. r = -EINVAL;
  1786. }
  1787. out:
  1788. return r;
  1789. }
  1790. static void wbinvd_ipi(void *garbage)
  1791. {
  1792. wbinvd();
  1793. }
  1794. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1795. {
  1796. return vcpu->kvm->arch.iommu_domain &&
  1797. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1798. }
  1799. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1800. {
  1801. /* Address WBINVD may be executed by guest */
  1802. if (need_emulate_wbinvd(vcpu)) {
  1803. if (kvm_x86_ops->has_wbinvd_exit())
  1804. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1805. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1806. smp_call_function_single(vcpu->cpu,
  1807. wbinvd_ipi, NULL, 1);
  1808. }
  1809. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1810. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1811. /* Make sure TSC doesn't go backwards */
  1812. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1813. native_read_tsc() - vcpu->arch.last_host_tsc;
  1814. if (tsc_delta < 0)
  1815. mark_tsc_unstable("KVM discovered backwards TSC");
  1816. if (check_tsc_unstable()) {
  1817. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1818. vcpu->arch.tsc_catchup = 1;
  1819. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1820. }
  1821. if (vcpu->cpu != cpu)
  1822. kvm_migrate_timers(vcpu);
  1823. vcpu->cpu = cpu;
  1824. }
  1825. }
  1826. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1827. {
  1828. kvm_x86_ops->vcpu_put(vcpu);
  1829. kvm_put_guest_fpu(vcpu);
  1830. vcpu->arch.last_host_tsc = native_read_tsc();
  1831. }
  1832. static int is_efer_nx(void)
  1833. {
  1834. unsigned long long efer = 0;
  1835. rdmsrl_safe(MSR_EFER, &efer);
  1836. return efer & EFER_NX;
  1837. }
  1838. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1839. {
  1840. int i;
  1841. struct kvm_cpuid_entry2 *e, *entry;
  1842. entry = NULL;
  1843. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1844. e = &vcpu->arch.cpuid_entries[i];
  1845. if (e->function == 0x80000001) {
  1846. entry = e;
  1847. break;
  1848. }
  1849. }
  1850. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1851. entry->edx &= ~(1 << 20);
  1852. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1853. }
  1854. }
  1855. /* when an old userspace process fills a new kernel module */
  1856. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1857. struct kvm_cpuid *cpuid,
  1858. struct kvm_cpuid_entry __user *entries)
  1859. {
  1860. int r, i;
  1861. struct kvm_cpuid_entry *cpuid_entries;
  1862. r = -E2BIG;
  1863. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1864. goto out;
  1865. r = -ENOMEM;
  1866. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1867. if (!cpuid_entries)
  1868. goto out;
  1869. r = -EFAULT;
  1870. if (copy_from_user(cpuid_entries, entries,
  1871. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1872. goto out_free;
  1873. for (i = 0; i < cpuid->nent; i++) {
  1874. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1875. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1876. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1877. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1878. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1879. vcpu->arch.cpuid_entries[i].index = 0;
  1880. vcpu->arch.cpuid_entries[i].flags = 0;
  1881. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1882. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1883. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1884. }
  1885. vcpu->arch.cpuid_nent = cpuid->nent;
  1886. cpuid_fix_nx_cap(vcpu);
  1887. r = 0;
  1888. kvm_apic_set_version(vcpu);
  1889. kvm_x86_ops->cpuid_update(vcpu);
  1890. update_cpuid(vcpu);
  1891. out_free:
  1892. vfree(cpuid_entries);
  1893. out:
  1894. return r;
  1895. }
  1896. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1897. struct kvm_cpuid2 *cpuid,
  1898. struct kvm_cpuid_entry2 __user *entries)
  1899. {
  1900. int r;
  1901. r = -E2BIG;
  1902. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1903. goto out;
  1904. r = -EFAULT;
  1905. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1906. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1907. goto out;
  1908. vcpu->arch.cpuid_nent = cpuid->nent;
  1909. kvm_apic_set_version(vcpu);
  1910. kvm_x86_ops->cpuid_update(vcpu);
  1911. update_cpuid(vcpu);
  1912. return 0;
  1913. out:
  1914. return r;
  1915. }
  1916. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1917. struct kvm_cpuid2 *cpuid,
  1918. struct kvm_cpuid_entry2 __user *entries)
  1919. {
  1920. int r;
  1921. r = -E2BIG;
  1922. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1923. goto out;
  1924. r = -EFAULT;
  1925. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1926. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1927. goto out;
  1928. return 0;
  1929. out:
  1930. cpuid->nent = vcpu->arch.cpuid_nent;
  1931. return r;
  1932. }
  1933. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1934. u32 index)
  1935. {
  1936. entry->function = function;
  1937. entry->index = index;
  1938. cpuid_count(entry->function, entry->index,
  1939. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1940. entry->flags = 0;
  1941. }
  1942. #define F(x) bit(X86_FEATURE_##x)
  1943. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1944. u32 index, int *nent, int maxnent)
  1945. {
  1946. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1947. #ifdef CONFIG_X86_64
  1948. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1949. ? F(GBPAGES) : 0;
  1950. unsigned f_lm = F(LM);
  1951. #else
  1952. unsigned f_gbpages = 0;
  1953. unsigned f_lm = 0;
  1954. #endif
  1955. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1956. /* cpuid 1.edx */
  1957. const u32 kvm_supported_word0_x86_features =
  1958. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1959. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1960. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1961. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1962. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1963. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1964. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1965. 0 /* HTT, TM, Reserved, PBE */;
  1966. /* cpuid 0x80000001.edx */
  1967. const u32 kvm_supported_word1_x86_features =
  1968. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1969. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1970. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1971. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1972. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1973. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1974. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1975. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1976. /* cpuid 1.ecx */
  1977. const u32 kvm_supported_word4_x86_features =
  1978. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  1979. 0 /* DS-CPL, VMX, SMX, EST */ |
  1980. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1981. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1982. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1983. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1984. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  1985. F(F16C);
  1986. /* cpuid 0x80000001.ecx */
  1987. const u32 kvm_supported_word6_x86_features =
  1988. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  1989. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1990. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  1991. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  1992. /* all calls to cpuid_count() should be made on the same cpu */
  1993. get_cpu();
  1994. do_cpuid_1_ent(entry, function, index);
  1995. ++*nent;
  1996. switch (function) {
  1997. case 0:
  1998. entry->eax = min(entry->eax, (u32)0xd);
  1999. break;
  2000. case 1:
  2001. entry->edx &= kvm_supported_word0_x86_features;
  2002. entry->ecx &= kvm_supported_word4_x86_features;
  2003. /* we support x2apic emulation even if host does not support
  2004. * it since we emulate x2apic in software */
  2005. entry->ecx |= F(X2APIC);
  2006. break;
  2007. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2008. * may return different values. This forces us to get_cpu() before
  2009. * issuing the first command, and also to emulate this annoying behavior
  2010. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2011. case 2: {
  2012. int t, times = entry->eax & 0xff;
  2013. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2014. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2015. for (t = 1; t < times && *nent < maxnent; ++t) {
  2016. do_cpuid_1_ent(&entry[t], function, 0);
  2017. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2018. ++*nent;
  2019. }
  2020. break;
  2021. }
  2022. /* function 4 and 0xb have additional index. */
  2023. case 4: {
  2024. int i, cache_type;
  2025. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2026. /* read more entries until cache_type is zero */
  2027. for (i = 1; *nent < maxnent; ++i) {
  2028. cache_type = entry[i - 1].eax & 0x1f;
  2029. if (!cache_type)
  2030. break;
  2031. do_cpuid_1_ent(&entry[i], function, i);
  2032. entry[i].flags |=
  2033. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2034. ++*nent;
  2035. }
  2036. break;
  2037. }
  2038. case 0xb: {
  2039. int i, level_type;
  2040. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2041. /* read more entries until level_type is zero */
  2042. for (i = 1; *nent < maxnent; ++i) {
  2043. level_type = entry[i - 1].ecx & 0xff00;
  2044. if (!level_type)
  2045. break;
  2046. do_cpuid_1_ent(&entry[i], function, i);
  2047. entry[i].flags |=
  2048. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2049. ++*nent;
  2050. }
  2051. break;
  2052. }
  2053. case 0xd: {
  2054. int i;
  2055. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2056. for (i = 1; *nent < maxnent; ++i) {
  2057. if (entry[i - 1].eax == 0 && i != 2)
  2058. break;
  2059. do_cpuid_1_ent(&entry[i], function, i);
  2060. entry[i].flags |=
  2061. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2062. ++*nent;
  2063. }
  2064. break;
  2065. }
  2066. case KVM_CPUID_SIGNATURE: {
  2067. char signature[12] = "KVMKVMKVM\0\0";
  2068. u32 *sigptr = (u32 *)signature;
  2069. entry->eax = 0;
  2070. entry->ebx = sigptr[0];
  2071. entry->ecx = sigptr[1];
  2072. entry->edx = sigptr[2];
  2073. break;
  2074. }
  2075. case KVM_CPUID_FEATURES:
  2076. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2077. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2078. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2079. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2080. entry->ebx = 0;
  2081. entry->ecx = 0;
  2082. entry->edx = 0;
  2083. break;
  2084. case 0x80000000:
  2085. entry->eax = min(entry->eax, 0x8000001a);
  2086. break;
  2087. case 0x80000001:
  2088. entry->edx &= kvm_supported_word1_x86_features;
  2089. entry->ecx &= kvm_supported_word6_x86_features;
  2090. break;
  2091. }
  2092. kvm_x86_ops->set_supported_cpuid(function, entry);
  2093. put_cpu();
  2094. }
  2095. #undef F
  2096. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2097. struct kvm_cpuid_entry2 __user *entries)
  2098. {
  2099. struct kvm_cpuid_entry2 *cpuid_entries;
  2100. int limit, nent = 0, r = -E2BIG;
  2101. u32 func;
  2102. if (cpuid->nent < 1)
  2103. goto out;
  2104. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2105. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2106. r = -ENOMEM;
  2107. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2108. if (!cpuid_entries)
  2109. goto out;
  2110. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2111. limit = cpuid_entries[0].eax;
  2112. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2113. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2114. &nent, cpuid->nent);
  2115. r = -E2BIG;
  2116. if (nent >= cpuid->nent)
  2117. goto out_free;
  2118. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2119. limit = cpuid_entries[nent - 1].eax;
  2120. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2121. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2122. &nent, cpuid->nent);
  2123. r = -E2BIG;
  2124. if (nent >= cpuid->nent)
  2125. goto out_free;
  2126. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2127. cpuid->nent);
  2128. r = -E2BIG;
  2129. if (nent >= cpuid->nent)
  2130. goto out_free;
  2131. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2132. cpuid->nent);
  2133. r = -E2BIG;
  2134. if (nent >= cpuid->nent)
  2135. goto out_free;
  2136. r = -EFAULT;
  2137. if (copy_to_user(entries, cpuid_entries,
  2138. nent * sizeof(struct kvm_cpuid_entry2)))
  2139. goto out_free;
  2140. cpuid->nent = nent;
  2141. r = 0;
  2142. out_free:
  2143. vfree(cpuid_entries);
  2144. out:
  2145. return r;
  2146. }
  2147. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2148. struct kvm_lapic_state *s)
  2149. {
  2150. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2151. return 0;
  2152. }
  2153. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2154. struct kvm_lapic_state *s)
  2155. {
  2156. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2157. kvm_apic_post_state_restore(vcpu);
  2158. update_cr8_intercept(vcpu);
  2159. return 0;
  2160. }
  2161. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2162. struct kvm_interrupt *irq)
  2163. {
  2164. if (irq->irq < 0 || irq->irq >= 256)
  2165. return -EINVAL;
  2166. if (irqchip_in_kernel(vcpu->kvm))
  2167. return -ENXIO;
  2168. kvm_queue_interrupt(vcpu, irq->irq, false);
  2169. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2170. return 0;
  2171. }
  2172. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2173. {
  2174. kvm_inject_nmi(vcpu);
  2175. return 0;
  2176. }
  2177. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2178. struct kvm_tpr_access_ctl *tac)
  2179. {
  2180. if (tac->flags)
  2181. return -EINVAL;
  2182. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2183. return 0;
  2184. }
  2185. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2186. u64 mcg_cap)
  2187. {
  2188. int r;
  2189. unsigned bank_num = mcg_cap & 0xff, bank;
  2190. r = -EINVAL;
  2191. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2192. goto out;
  2193. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2194. goto out;
  2195. r = 0;
  2196. vcpu->arch.mcg_cap = mcg_cap;
  2197. /* Init IA32_MCG_CTL to all 1s */
  2198. if (mcg_cap & MCG_CTL_P)
  2199. vcpu->arch.mcg_ctl = ~(u64)0;
  2200. /* Init IA32_MCi_CTL to all 1s */
  2201. for (bank = 0; bank < bank_num; bank++)
  2202. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2203. out:
  2204. return r;
  2205. }
  2206. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2207. struct kvm_x86_mce *mce)
  2208. {
  2209. u64 mcg_cap = vcpu->arch.mcg_cap;
  2210. unsigned bank_num = mcg_cap & 0xff;
  2211. u64 *banks = vcpu->arch.mce_banks;
  2212. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2213. return -EINVAL;
  2214. /*
  2215. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2216. * reporting is disabled
  2217. */
  2218. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2219. vcpu->arch.mcg_ctl != ~(u64)0)
  2220. return 0;
  2221. banks += 4 * mce->bank;
  2222. /*
  2223. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2224. * reporting is disabled for the bank
  2225. */
  2226. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2227. return 0;
  2228. if (mce->status & MCI_STATUS_UC) {
  2229. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2230. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2231. printk(KERN_DEBUG "kvm: set_mce: "
  2232. "injects mce exception while "
  2233. "previous one is in progress!\n");
  2234. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2235. return 0;
  2236. }
  2237. if (banks[1] & MCI_STATUS_VAL)
  2238. mce->status |= MCI_STATUS_OVER;
  2239. banks[2] = mce->addr;
  2240. banks[3] = mce->misc;
  2241. vcpu->arch.mcg_status = mce->mcg_status;
  2242. banks[1] = mce->status;
  2243. kvm_queue_exception(vcpu, MC_VECTOR);
  2244. } else if (!(banks[1] & MCI_STATUS_VAL)
  2245. || !(banks[1] & MCI_STATUS_UC)) {
  2246. if (banks[1] & MCI_STATUS_VAL)
  2247. mce->status |= MCI_STATUS_OVER;
  2248. banks[2] = mce->addr;
  2249. banks[3] = mce->misc;
  2250. banks[1] = mce->status;
  2251. } else
  2252. banks[1] |= MCI_STATUS_OVER;
  2253. return 0;
  2254. }
  2255. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2256. struct kvm_vcpu_events *events)
  2257. {
  2258. events->exception.injected =
  2259. vcpu->arch.exception.pending &&
  2260. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2261. events->exception.nr = vcpu->arch.exception.nr;
  2262. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2263. events->exception.pad = 0;
  2264. events->exception.error_code = vcpu->arch.exception.error_code;
  2265. events->interrupt.injected =
  2266. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2267. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2268. events->interrupt.soft = 0;
  2269. events->interrupt.shadow =
  2270. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2271. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2272. events->nmi.injected = vcpu->arch.nmi_injected;
  2273. events->nmi.pending = vcpu->arch.nmi_pending;
  2274. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2275. events->nmi.pad = 0;
  2276. events->sipi_vector = vcpu->arch.sipi_vector;
  2277. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2278. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2279. | KVM_VCPUEVENT_VALID_SHADOW);
  2280. memset(&events->reserved, 0, sizeof(events->reserved));
  2281. }
  2282. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2283. struct kvm_vcpu_events *events)
  2284. {
  2285. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2286. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2287. | KVM_VCPUEVENT_VALID_SHADOW))
  2288. return -EINVAL;
  2289. vcpu->arch.exception.pending = events->exception.injected;
  2290. vcpu->arch.exception.nr = events->exception.nr;
  2291. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2292. vcpu->arch.exception.error_code = events->exception.error_code;
  2293. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2294. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2295. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2296. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2297. kvm_pic_clear_isr_ack(vcpu->kvm);
  2298. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2299. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2300. events->interrupt.shadow);
  2301. vcpu->arch.nmi_injected = events->nmi.injected;
  2302. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2303. vcpu->arch.nmi_pending = events->nmi.pending;
  2304. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2305. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2306. vcpu->arch.sipi_vector = events->sipi_vector;
  2307. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2308. return 0;
  2309. }
  2310. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2311. struct kvm_debugregs *dbgregs)
  2312. {
  2313. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2314. dbgregs->dr6 = vcpu->arch.dr6;
  2315. dbgregs->dr7 = vcpu->arch.dr7;
  2316. dbgregs->flags = 0;
  2317. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2318. }
  2319. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2320. struct kvm_debugregs *dbgregs)
  2321. {
  2322. if (dbgregs->flags)
  2323. return -EINVAL;
  2324. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2325. vcpu->arch.dr6 = dbgregs->dr6;
  2326. vcpu->arch.dr7 = dbgregs->dr7;
  2327. return 0;
  2328. }
  2329. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2330. struct kvm_xsave *guest_xsave)
  2331. {
  2332. if (cpu_has_xsave)
  2333. memcpy(guest_xsave->region,
  2334. &vcpu->arch.guest_fpu.state->xsave,
  2335. xstate_size);
  2336. else {
  2337. memcpy(guest_xsave->region,
  2338. &vcpu->arch.guest_fpu.state->fxsave,
  2339. sizeof(struct i387_fxsave_struct));
  2340. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2341. XSTATE_FPSSE;
  2342. }
  2343. }
  2344. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2345. struct kvm_xsave *guest_xsave)
  2346. {
  2347. u64 xstate_bv =
  2348. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2349. if (cpu_has_xsave)
  2350. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2351. guest_xsave->region, xstate_size);
  2352. else {
  2353. if (xstate_bv & ~XSTATE_FPSSE)
  2354. return -EINVAL;
  2355. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2356. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2357. }
  2358. return 0;
  2359. }
  2360. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2361. struct kvm_xcrs *guest_xcrs)
  2362. {
  2363. if (!cpu_has_xsave) {
  2364. guest_xcrs->nr_xcrs = 0;
  2365. return;
  2366. }
  2367. guest_xcrs->nr_xcrs = 1;
  2368. guest_xcrs->flags = 0;
  2369. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2370. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2371. }
  2372. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2373. struct kvm_xcrs *guest_xcrs)
  2374. {
  2375. int i, r = 0;
  2376. if (!cpu_has_xsave)
  2377. return -EINVAL;
  2378. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2379. return -EINVAL;
  2380. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2381. /* Only support XCR0 currently */
  2382. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2383. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2384. guest_xcrs->xcrs[0].value);
  2385. break;
  2386. }
  2387. if (r)
  2388. r = -EINVAL;
  2389. return r;
  2390. }
  2391. long kvm_arch_vcpu_ioctl(struct file *filp,
  2392. unsigned int ioctl, unsigned long arg)
  2393. {
  2394. struct kvm_vcpu *vcpu = filp->private_data;
  2395. void __user *argp = (void __user *)arg;
  2396. int r;
  2397. union {
  2398. struct kvm_lapic_state *lapic;
  2399. struct kvm_xsave *xsave;
  2400. struct kvm_xcrs *xcrs;
  2401. void *buffer;
  2402. } u;
  2403. u.buffer = NULL;
  2404. switch (ioctl) {
  2405. case KVM_GET_LAPIC: {
  2406. r = -EINVAL;
  2407. if (!vcpu->arch.apic)
  2408. goto out;
  2409. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2410. r = -ENOMEM;
  2411. if (!u.lapic)
  2412. goto out;
  2413. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2414. if (r)
  2415. goto out;
  2416. r = -EFAULT;
  2417. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2418. goto out;
  2419. r = 0;
  2420. break;
  2421. }
  2422. case KVM_SET_LAPIC: {
  2423. r = -EINVAL;
  2424. if (!vcpu->arch.apic)
  2425. goto out;
  2426. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2427. r = -ENOMEM;
  2428. if (!u.lapic)
  2429. goto out;
  2430. r = -EFAULT;
  2431. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2432. goto out;
  2433. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2434. if (r)
  2435. goto out;
  2436. r = 0;
  2437. break;
  2438. }
  2439. case KVM_INTERRUPT: {
  2440. struct kvm_interrupt irq;
  2441. r = -EFAULT;
  2442. if (copy_from_user(&irq, argp, sizeof irq))
  2443. goto out;
  2444. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2445. if (r)
  2446. goto out;
  2447. r = 0;
  2448. break;
  2449. }
  2450. case KVM_NMI: {
  2451. r = kvm_vcpu_ioctl_nmi(vcpu);
  2452. if (r)
  2453. goto out;
  2454. r = 0;
  2455. break;
  2456. }
  2457. case KVM_SET_CPUID: {
  2458. struct kvm_cpuid __user *cpuid_arg = argp;
  2459. struct kvm_cpuid cpuid;
  2460. r = -EFAULT;
  2461. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2462. goto out;
  2463. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2464. if (r)
  2465. goto out;
  2466. break;
  2467. }
  2468. case KVM_SET_CPUID2: {
  2469. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2470. struct kvm_cpuid2 cpuid;
  2471. r = -EFAULT;
  2472. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2473. goto out;
  2474. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2475. cpuid_arg->entries);
  2476. if (r)
  2477. goto out;
  2478. break;
  2479. }
  2480. case KVM_GET_CPUID2: {
  2481. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2482. struct kvm_cpuid2 cpuid;
  2483. r = -EFAULT;
  2484. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2485. goto out;
  2486. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2487. cpuid_arg->entries);
  2488. if (r)
  2489. goto out;
  2490. r = -EFAULT;
  2491. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2492. goto out;
  2493. r = 0;
  2494. break;
  2495. }
  2496. case KVM_GET_MSRS:
  2497. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2498. break;
  2499. case KVM_SET_MSRS:
  2500. r = msr_io(vcpu, argp, do_set_msr, 0);
  2501. break;
  2502. case KVM_TPR_ACCESS_REPORTING: {
  2503. struct kvm_tpr_access_ctl tac;
  2504. r = -EFAULT;
  2505. if (copy_from_user(&tac, argp, sizeof tac))
  2506. goto out;
  2507. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2508. if (r)
  2509. goto out;
  2510. r = -EFAULT;
  2511. if (copy_to_user(argp, &tac, sizeof tac))
  2512. goto out;
  2513. r = 0;
  2514. break;
  2515. };
  2516. case KVM_SET_VAPIC_ADDR: {
  2517. struct kvm_vapic_addr va;
  2518. r = -EINVAL;
  2519. if (!irqchip_in_kernel(vcpu->kvm))
  2520. goto out;
  2521. r = -EFAULT;
  2522. if (copy_from_user(&va, argp, sizeof va))
  2523. goto out;
  2524. r = 0;
  2525. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2526. break;
  2527. }
  2528. case KVM_X86_SETUP_MCE: {
  2529. u64 mcg_cap;
  2530. r = -EFAULT;
  2531. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2532. goto out;
  2533. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2534. break;
  2535. }
  2536. case KVM_X86_SET_MCE: {
  2537. struct kvm_x86_mce mce;
  2538. r = -EFAULT;
  2539. if (copy_from_user(&mce, argp, sizeof mce))
  2540. goto out;
  2541. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2542. break;
  2543. }
  2544. case KVM_GET_VCPU_EVENTS: {
  2545. struct kvm_vcpu_events events;
  2546. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2547. r = -EFAULT;
  2548. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2549. break;
  2550. r = 0;
  2551. break;
  2552. }
  2553. case KVM_SET_VCPU_EVENTS: {
  2554. struct kvm_vcpu_events events;
  2555. r = -EFAULT;
  2556. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2557. break;
  2558. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2559. break;
  2560. }
  2561. case KVM_GET_DEBUGREGS: {
  2562. struct kvm_debugregs dbgregs;
  2563. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2564. r = -EFAULT;
  2565. if (copy_to_user(argp, &dbgregs,
  2566. sizeof(struct kvm_debugregs)))
  2567. break;
  2568. r = 0;
  2569. break;
  2570. }
  2571. case KVM_SET_DEBUGREGS: {
  2572. struct kvm_debugregs dbgregs;
  2573. r = -EFAULT;
  2574. if (copy_from_user(&dbgregs, argp,
  2575. sizeof(struct kvm_debugregs)))
  2576. break;
  2577. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2578. break;
  2579. }
  2580. case KVM_GET_XSAVE: {
  2581. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2582. r = -ENOMEM;
  2583. if (!u.xsave)
  2584. break;
  2585. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2586. r = -EFAULT;
  2587. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2588. break;
  2589. r = 0;
  2590. break;
  2591. }
  2592. case KVM_SET_XSAVE: {
  2593. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2594. r = -ENOMEM;
  2595. if (!u.xsave)
  2596. break;
  2597. r = -EFAULT;
  2598. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2599. break;
  2600. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2601. break;
  2602. }
  2603. case KVM_GET_XCRS: {
  2604. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2605. r = -ENOMEM;
  2606. if (!u.xcrs)
  2607. break;
  2608. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2609. r = -EFAULT;
  2610. if (copy_to_user(argp, u.xcrs,
  2611. sizeof(struct kvm_xcrs)))
  2612. break;
  2613. r = 0;
  2614. break;
  2615. }
  2616. case KVM_SET_XCRS: {
  2617. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2618. r = -ENOMEM;
  2619. if (!u.xcrs)
  2620. break;
  2621. r = -EFAULT;
  2622. if (copy_from_user(u.xcrs, argp,
  2623. sizeof(struct kvm_xcrs)))
  2624. break;
  2625. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2626. break;
  2627. }
  2628. default:
  2629. r = -EINVAL;
  2630. }
  2631. out:
  2632. kfree(u.buffer);
  2633. return r;
  2634. }
  2635. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2636. {
  2637. int ret;
  2638. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2639. return -1;
  2640. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2641. return ret;
  2642. }
  2643. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2644. u64 ident_addr)
  2645. {
  2646. kvm->arch.ept_identity_map_addr = ident_addr;
  2647. return 0;
  2648. }
  2649. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2650. u32 kvm_nr_mmu_pages)
  2651. {
  2652. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2653. return -EINVAL;
  2654. mutex_lock(&kvm->slots_lock);
  2655. spin_lock(&kvm->mmu_lock);
  2656. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2657. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2658. spin_unlock(&kvm->mmu_lock);
  2659. mutex_unlock(&kvm->slots_lock);
  2660. return 0;
  2661. }
  2662. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2663. {
  2664. return kvm->arch.n_max_mmu_pages;
  2665. }
  2666. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2667. {
  2668. int r;
  2669. r = 0;
  2670. switch (chip->chip_id) {
  2671. case KVM_IRQCHIP_PIC_MASTER:
  2672. memcpy(&chip->chip.pic,
  2673. &pic_irqchip(kvm)->pics[0],
  2674. sizeof(struct kvm_pic_state));
  2675. break;
  2676. case KVM_IRQCHIP_PIC_SLAVE:
  2677. memcpy(&chip->chip.pic,
  2678. &pic_irqchip(kvm)->pics[1],
  2679. sizeof(struct kvm_pic_state));
  2680. break;
  2681. case KVM_IRQCHIP_IOAPIC:
  2682. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2683. break;
  2684. default:
  2685. r = -EINVAL;
  2686. break;
  2687. }
  2688. return r;
  2689. }
  2690. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2691. {
  2692. int r;
  2693. r = 0;
  2694. switch (chip->chip_id) {
  2695. case KVM_IRQCHIP_PIC_MASTER:
  2696. spin_lock(&pic_irqchip(kvm)->lock);
  2697. memcpy(&pic_irqchip(kvm)->pics[0],
  2698. &chip->chip.pic,
  2699. sizeof(struct kvm_pic_state));
  2700. spin_unlock(&pic_irqchip(kvm)->lock);
  2701. break;
  2702. case KVM_IRQCHIP_PIC_SLAVE:
  2703. spin_lock(&pic_irqchip(kvm)->lock);
  2704. memcpy(&pic_irqchip(kvm)->pics[1],
  2705. &chip->chip.pic,
  2706. sizeof(struct kvm_pic_state));
  2707. spin_unlock(&pic_irqchip(kvm)->lock);
  2708. break;
  2709. case KVM_IRQCHIP_IOAPIC:
  2710. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2711. break;
  2712. default:
  2713. r = -EINVAL;
  2714. break;
  2715. }
  2716. kvm_pic_update_irq(pic_irqchip(kvm));
  2717. return r;
  2718. }
  2719. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2720. {
  2721. int r = 0;
  2722. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2723. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2724. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2725. return r;
  2726. }
  2727. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2728. {
  2729. int r = 0;
  2730. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2731. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2732. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2733. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2734. return r;
  2735. }
  2736. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2737. {
  2738. int r = 0;
  2739. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2740. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2741. sizeof(ps->channels));
  2742. ps->flags = kvm->arch.vpit->pit_state.flags;
  2743. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2744. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2745. return r;
  2746. }
  2747. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2748. {
  2749. int r = 0, start = 0;
  2750. u32 prev_legacy, cur_legacy;
  2751. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2752. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2753. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2754. if (!prev_legacy && cur_legacy)
  2755. start = 1;
  2756. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2757. sizeof(kvm->arch.vpit->pit_state.channels));
  2758. kvm->arch.vpit->pit_state.flags = ps->flags;
  2759. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2760. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2761. return r;
  2762. }
  2763. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2764. struct kvm_reinject_control *control)
  2765. {
  2766. if (!kvm->arch.vpit)
  2767. return -ENXIO;
  2768. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2769. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2770. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2771. return 0;
  2772. }
  2773. /*
  2774. * Get (and clear) the dirty memory log for a memory slot.
  2775. */
  2776. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2777. struct kvm_dirty_log *log)
  2778. {
  2779. int r, i;
  2780. struct kvm_memory_slot *memslot;
  2781. unsigned long n;
  2782. unsigned long is_dirty = 0;
  2783. mutex_lock(&kvm->slots_lock);
  2784. r = -EINVAL;
  2785. if (log->slot >= KVM_MEMORY_SLOTS)
  2786. goto out;
  2787. memslot = &kvm->memslots->memslots[log->slot];
  2788. r = -ENOENT;
  2789. if (!memslot->dirty_bitmap)
  2790. goto out;
  2791. n = kvm_dirty_bitmap_bytes(memslot);
  2792. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2793. is_dirty = memslot->dirty_bitmap[i];
  2794. /* If nothing is dirty, don't bother messing with page tables. */
  2795. if (is_dirty) {
  2796. struct kvm_memslots *slots, *old_slots;
  2797. unsigned long *dirty_bitmap;
  2798. r = -ENOMEM;
  2799. dirty_bitmap = vmalloc(n);
  2800. if (!dirty_bitmap)
  2801. goto out;
  2802. memset(dirty_bitmap, 0, n);
  2803. r = -ENOMEM;
  2804. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2805. if (!slots) {
  2806. vfree(dirty_bitmap);
  2807. goto out;
  2808. }
  2809. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2810. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2811. old_slots = kvm->memslots;
  2812. rcu_assign_pointer(kvm->memslots, slots);
  2813. synchronize_srcu_expedited(&kvm->srcu);
  2814. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2815. kfree(old_slots);
  2816. spin_lock(&kvm->mmu_lock);
  2817. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2818. spin_unlock(&kvm->mmu_lock);
  2819. r = -EFAULT;
  2820. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2821. vfree(dirty_bitmap);
  2822. goto out;
  2823. }
  2824. vfree(dirty_bitmap);
  2825. } else {
  2826. r = -EFAULT;
  2827. if (clear_user(log->dirty_bitmap, n))
  2828. goto out;
  2829. }
  2830. r = 0;
  2831. out:
  2832. mutex_unlock(&kvm->slots_lock);
  2833. return r;
  2834. }
  2835. long kvm_arch_vm_ioctl(struct file *filp,
  2836. unsigned int ioctl, unsigned long arg)
  2837. {
  2838. struct kvm *kvm = filp->private_data;
  2839. void __user *argp = (void __user *)arg;
  2840. int r = -ENOTTY;
  2841. /*
  2842. * This union makes it completely explicit to gcc-3.x
  2843. * that these two variables' stack usage should be
  2844. * combined, not added together.
  2845. */
  2846. union {
  2847. struct kvm_pit_state ps;
  2848. struct kvm_pit_state2 ps2;
  2849. struct kvm_pit_config pit_config;
  2850. } u;
  2851. switch (ioctl) {
  2852. case KVM_SET_TSS_ADDR:
  2853. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2854. if (r < 0)
  2855. goto out;
  2856. break;
  2857. case KVM_SET_IDENTITY_MAP_ADDR: {
  2858. u64 ident_addr;
  2859. r = -EFAULT;
  2860. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2861. goto out;
  2862. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2863. if (r < 0)
  2864. goto out;
  2865. break;
  2866. }
  2867. case KVM_SET_NR_MMU_PAGES:
  2868. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2869. if (r)
  2870. goto out;
  2871. break;
  2872. case KVM_GET_NR_MMU_PAGES:
  2873. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2874. break;
  2875. case KVM_CREATE_IRQCHIP: {
  2876. struct kvm_pic *vpic;
  2877. mutex_lock(&kvm->lock);
  2878. r = -EEXIST;
  2879. if (kvm->arch.vpic)
  2880. goto create_irqchip_unlock;
  2881. r = -ENOMEM;
  2882. vpic = kvm_create_pic(kvm);
  2883. if (vpic) {
  2884. r = kvm_ioapic_init(kvm);
  2885. if (r) {
  2886. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2887. &vpic->dev);
  2888. kfree(vpic);
  2889. goto create_irqchip_unlock;
  2890. }
  2891. } else
  2892. goto create_irqchip_unlock;
  2893. smp_wmb();
  2894. kvm->arch.vpic = vpic;
  2895. smp_wmb();
  2896. r = kvm_setup_default_irq_routing(kvm);
  2897. if (r) {
  2898. mutex_lock(&kvm->irq_lock);
  2899. kvm_ioapic_destroy(kvm);
  2900. kvm_destroy_pic(kvm);
  2901. mutex_unlock(&kvm->irq_lock);
  2902. }
  2903. create_irqchip_unlock:
  2904. mutex_unlock(&kvm->lock);
  2905. break;
  2906. }
  2907. case KVM_CREATE_PIT:
  2908. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2909. goto create_pit;
  2910. case KVM_CREATE_PIT2:
  2911. r = -EFAULT;
  2912. if (copy_from_user(&u.pit_config, argp,
  2913. sizeof(struct kvm_pit_config)))
  2914. goto out;
  2915. create_pit:
  2916. mutex_lock(&kvm->slots_lock);
  2917. r = -EEXIST;
  2918. if (kvm->arch.vpit)
  2919. goto create_pit_unlock;
  2920. r = -ENOMEM;
  2921. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2922. if (kvm->arch.vpit)
  2923. r = 0;
  2924. create_pit_unlock:
  2925. mutex_unlock(&kvm->slots_lock);
  2926. break;
  2927. case KVM_IRQ_LINE_STATUS:
  2928. case KVM_IRQ_LINE: {
  2929. struct kvm_irq_level irq_event;
  2930. r = -EFAULT;
  2931. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2932. goto out;
  2933. r = -ENXIO;
  2934. if (irqchip_in_kernel(kvm)) {
  2935. __s32 status;
  2936. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2937. irq_event.irq, irq_event.level);
  2938. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2939. r = -EFAULT;
  2940. irq_event.status = status;
  2941. if (copy_to_user(argp, &irq_event,
  2942. sizeof irq_event))
  2943. goto out;
  2944. }
  2945. r = 0;
  2946. }
  2947. break;
  2948. }
  2949. case KVM_GET_IRQCHIP: {
  2950. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2951. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2952. r = -ENOMEM;
  2953. if (!chip)
  2954. goto out;
  2955. r = -EFAULT;
  2956. if (copy_from_user(chip, argp, sizeof *chip))
  2957. goto get_irqchip_out;
  2958. r = -ENXIO;
  2959. if (!irqchip_in_kernel(kvm))
  2960. goto get_irqchip_out;
  2961. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2962. if (r)
  2963. goto get_irqchip_out;
  2964. r = -EFAULT;
  2965. if (copy_to_user(argp, chip, sizeof *chip))
  2966. goto get_irqchip_out;
  2967. r = 0;
  2968. get_irqchip_out:
  2969. kfree(chip);
  2970. if (r)
  2971. goto out;
  2972. break;
  2973. }
  2974. case KVM_SET_IRQCHIP: {
  2975. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2976. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2977. r = -ENOMEM;
  2978. if (!chip)
  2979. goto out;
  2980. r = -EFAULT;
  2981. if (copy_from_user(chip, argp, sizeof *chip))
  2982. goto set_irqchip_out;
  2983. r = -ENXIO;
  2984. if (!irqchip_in_kernel(kvm))
  2985. goto set_irqchip_out;
  2986. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2987. if (r)
  2988. goto set_irqchip_out;
  2989. r = 0;
  2990. set_irqchip_out:
  2991. kfree(chip);
  2992. if (r)
  2993. goto out;
  2994. break;
  2995. }
  2996. case KVM_GET_PIT: {
  2997. r = -EFAULT;
  2998. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2999. goto out;
  3000. r = -ENXIO;
  3001. if (!kvm->arch.vpit)
  3002. goto out;
  3003. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3004. if (r)
  3005. goto out;
  3006. r = -EFAULT;
  3007. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3008. goto out;
  3009. r = 0;
  3010. break;
  3011. }
  3012. case KVM_SET_PIT: {
  3013. r = -EFAULT;
  3014. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3015. goto out;
  3016. r = -ENXIO;
  3017. if (!kvm->arch.vpit)
  3018. goto out;
  3019. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3020. if (r)
  3021. goto out;
  3022. r = 0;
  3023. break;
  3024. }
  3025. case KVM_GET_PIT2: {
  3026. r = -ENXIO;
  3027. if (!kvm->arch.vpit)
  3028. goto out;
  3029. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3030. if (r)
  3031. goto out;
  3032. r = -EFAULT;
  3033. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3034. goto out;
  3035. r = 0;
  3036. break;
  3037. }
  3038. case KVM_SET_PIT2: {
  3039. r = -EFAULT;
  3040. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3041. goto out;
  3042. r = -ENXIO;
  3043. if (!kvm->arch.vpit)
  3044. goto out;
  3045. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3046. if (r)
  3047. goto out;
  3048. r = 0;
  3049. break;
  3050. }
  3051. case KVM_REINJECT_CONTROL: {
  3052. struct kvm_reinject_control control;
  3053. r = -EFAULT;
  3054. if (copy_from_user(&control, argp, sizeof(control)))
  3055. goto out;
  3056. r = kvm_vm_ioctl_reinject(kvm, &control);
  3057. if (r)
  3058. goto out;
  3059. r = 0;
  3060. break;
  3061. }
  3062. case KVM_XEN_HVM_CONFIG: {
  3063. r = -EFAULT;
  3064. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3065. sizeof(struct kvm_xen_hvm_config)))
  3066. goto out;
  3067. r = -EINVAL;
  3068. if (kvm->arch.xen_hvm_config.flags)
  3069. goto out;
  3070. r = 0;
  3071. break;
  3072. }
  3073. case KVM_SET_CLOCK: {
  3074. struct kvm_clock_data user_ns;
  3075. u64 now_ns;
  3076. s64 delta;
  3077. r = -EFAULT;
  3078. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3079. goto out;
  3080. r = -EINVAL;
  3081. if (user_ns.flags)
  3082. goto out;
  3083. r = 0;
  3084. local_irq_disable();
  3085. now_ns = get_kernel_ns();
  3086. delta = user_ns.clock - now_ns;
  3087. local_irq_enable();
  3088. kvm->arch.kvmclock_offset = delta;
  3089. break;
  3090. }
  3091. case KVM_GET_CLOCK: {
  3092. struct kvm_clock_data user_ns;
  3093. u64 now_ns;
  3094. local_irq_disable();
  3095. now_ns = get_kernel_ns();
  3096. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3097. local_irq_enable();
  3098. user_ns.flags = 0;
  3099. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3100. r = -EFAULT;
  3101. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3102. goto out;
  3103. r = 0;
  3104. break;
  3105. }
  3106. default:
  3107. ;
  3108. }
  3109. out:
  3110. return r;
  3111. }
  3112. static void kvm_init_msr_list(void)
  3113. {
  3114. u32 dummy[2];
  3115. unsigned i, j;
  3116. /* skip the first msrs in the list. KVM-specific */
  3117. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3118. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3119. continue;
  3120. if (j < i)
  3121. msrs_to_save[j] = msrs_to_save[i];
  3122. j++;
  3123. }
  3124. num_msrs_to_save = j;
  3125. }
  3126. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3127. const void *v)
  3128. {
  3129. if (vcpu->arch.apic &&
  3130. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  3131. return 0;
  3132. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3133. }
  3134. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3135. {
  3136. if (vcpu->arch.apic &&
  3137. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3138. return 0;
  3139. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3140. }
  3141. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3142. struct kvm_segment *var, int seg)
  3143. {
  3144. kvm_x86_ops->set_segment(vcpu, var, seg);
  3145. }
  3146. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3147. struct kvm_segment *var, int seg)
  3148. {
  3149. kvm_x86_ops->get_segment(vcpu, var, seg);
  3150. }
  3151. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3152. {
  3153. return gpa;
  3154. }
  3155. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3156. {
  3157. gpa_t t_gpa;
  3158. u32 error;
  3159. BUG_ON(!mmu_is_nested(vcpu));
  3160. /* NPT walks are always user-walks */
  3161. access |= PFERR_USER_MASK;
  3162. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
  3163. if (t_gpa == UNMAPPED_GVA)
  3164. vcpu->arch.fault.nested = true;
  3165. return t_gpa;
  3166. }
  3167. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3168. {
  3169. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3170. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3171. }
  3172. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3173. {
  3174. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3175. access |= PFERR_FETCH_MASK;
  3176. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3177. }
  3178. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3179. {
  3180. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3181. access |= PFERR_WRITE_MASK;
  3182. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3183. }
  3184. /* uses this to access any guest's mapped memory without checking CPL */
  3185. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3186. {
  3187. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
  3188. }
  3189. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3190. struct kvm_vcpu *vcpu, u32 access,
  3191. u32 *error)
  3192. {
  3193. void *data = val;
  3194. int r = X86EMUL_CONTINUE;
  3195. while (bytes) {
  3196. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3197. error);
  3198. unsigned offset = addr & (PAGE_SIZE-1);
  3199. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3200. int ret;
  3201. if (gpa == UNMAPPED_GVA) {
  3202. r = X86EMUL_PROPAGATE_FAULT;
  3203. goto out;
  3204. }
  3205. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3206. if (ret < 0) {
  3207. r = X86EMUL_IO_NEEDED;
  3208. goto out;
  3209. }
  3210. bytes -= toread;
  3211. data += toread;
  3212. addr += toread;
  3213. }
  3214. out:
  3215. return r;
  3216. }
  3217. /* used for instruction fetching */
  3218. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3219. struct kvm_vcpu *vcpu, u32 *error)
  3220. {
  3221. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3222. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3223. access | PFERR_FETCH_MASK, error);
  3224. }
  3225. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3226. struct kvm_vcpu *vcpu, u32 *error)
  3227. {
  3228. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3229. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3230. error);
  3231. }
  3232. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3233. struct kvm_vcpu *vcpu, u32 *error)
  3234. {
  3235. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3236. }
  3237. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3238. unsigned int bytes,
  3239. struct kvm_vcpu *vcpu,
  3240. u32 *error)
  3241. {
  3242. void *data = val;
  3243. int r = X86EMUL_CONTINUE;
  3244. while (bytes) {
  3245. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3246. PFERR_WRITE_MASK,
  3247. error);
  3248. unsigned offset = addr & (PAGE_SIZE-1);
  3249. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3250. int ret;
  3251. if (gpa == UNMAPPED_GVA) {
  3252. r = X86EMUL_PROPAGATE_FAULT;
  3253. goto out;
  3254. }
  3255. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3256. if (ret < 0) {
  3257. r = X86EMUL_IO_NEEDED;
  3258. goto out;
  3259. }
  3260. bytes -= towrite;
  3261. data += towrite;
  3262. addr += towrite;
  3263. }
  3264. out:
  3265. return r;
  3266. }
  3267. static int emulator_read_emulated(unsigned long addr,
  3268. void *val,
  3269. unsigned int bytes,
  3270. unsigned int *error_code,
  3271. struct kvm_vcpu *vcpu)
  3272. {
  3273. gpa_t gpa;
  3274. if (vcpu->mmio_read_completed) {
  3275. memcpy(val, vcpu->mmio_data, bytes);
  3276. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3277. vcpu->mmio_phys_addr, *(u64 *)val);
  3278. vcpu->mmio_read_completed = 0;
  3279. return X86EMUL_CONTINUE;
  3280. }
  3281. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3282. if (gpa == UNMAPPED_GVA)
  3283. return X86EMUL_PROPAGATE_FAULT;
  3284. /* For APIC access vmexit */
  3285. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3286. goto mmio;
  3287. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3288. == X86EMUL_CONTINUE)
  3289. return X86EMUL_CONTINUE;
  3290. mmio:
  3291. /*
  3292. * Is this MMIO handled locally?
  3293. */
  3294. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3295. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3296. return X86EMUL_CONTINUE;
  3297. }
  3298. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3299. vcpu->mmio_needed = 1;
  3300. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3301. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3302. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3303. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3304. return X86EMUL_IO_NEEDED;
  3305. }
  3306. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3307. const void *val, int bytes)
  3308. {
  3309. int ret;
  3310. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3311. if (ret < 0)
  3312. return 0;
  3313. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3314. return 1;
  3315. }
  3316. static int emulator_write_emulated_onepage(unsigned long addr,
  3317. const void *val,
  3318. unsigned int bytes,
  3319. unsigned int *error_code,
  3320. struct kvm_vcpu *vcpu)
  3321. {
  3322. gpa_t gpa;
  3323. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3324. if (gpa == UNMAPPED_GVA)
  3325. return X86EMUL_PROPAGATE_FAULT;
  3326. /* For APIC access vmexit */
  3327. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3328. goto mmio;
  3329. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3330. return X86EMUL_CONTINUE;
  3331. mmio:
  3332. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3333. /*
  3334. * Is this MMIO handled locally?
  3335. */
  3336. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3337. return X86EMUL_CONTINUE;
  3338. vcpu->mmio_needed = 1;
  3339. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3340. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3341. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3342. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3343. memcpy(vcpu->run->mmio.data, val, bytes);
  3344. return X86EMUL_CONTINUE;
  3345. }
  3346. int emulator_write_emulated(unsigned long addr,
  3347. const void *val,
  3348. unsigned int bytes,
  3349. unsigned int *error_code,
  3350. struct kvm_vcpu *vcpu)
  3351. {
  3352. /* Crossing a page boundary? */
  3353. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3354. int rc, now;
  3355. now = -addr & ~PAGE_MASK;
  3356. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3357. vcpu);
  3358. if (rc != X86EMUL_CONTINUE)
  3359. return rc;
  3360. addr += now;
  3361. val += now;
  3362. bytes -= now;
  3363. }
  3364. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3365. vcpu);
  3366. }
  3367. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3368. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3369. #ifdef CONFIG_X86_64
  3370. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3371. #else
  3372. # define CMPXCHG64(ptr, old, new) \
  3373. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3374. #endif
  3375. static int emulator_cmpxchg_emulated(unsigned long addr,
  3376. const void *old,
  3377. const void *new,
  3378. unsigned int bytes,
  3379. unsigned int *error_code,
  3380. struct kvm_vcpu *vcpu)
  3381. {
  3382. gpa_t gpa;
  3383. struct page *page;
  3384. char *kaddr;
  3385. bool exchanged;
  3386. /* guests cmpxchg8b have to be emulated atomically */
  3387. if (bytes > 8 || (bytes & (bytes - 1)))
  3388. goto emul_write;
  3389. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3390. if (gpa == UNMAPPED_GVA ||
  3391. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3392. goto emul_write;
  3393. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3394. goto emul_write;
  3395. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3396. if (is_error_page(page)) {
  3397. kvm_release_page_clean(page);
  3398. goto emul_write;
  3399. }
  3400. kaddr = kmap_atomic(page, KM_USER0);
  3401. kaddr += offset_in_page(gpa);
  3402. switch (bytes) {
  3403. case 1:
  3404. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3405. break;
  3406. case 2:
  3407. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3408. break;
  3409. case 4:
  3410. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3411. break;
  3412. case 8:
  3413. exchanged = CMPXCHG64(kaddr, old, new);
  3414. break;
  3415. default:
  3416. BUG();
  3417. }
  3418. kunmap_atomic(kaddr, KM_USER0);
  3419. kvm_release_page_dirty(page);
  3420. if (!exchanged)
  3421. return X86EMUL_CMPXCHG_FAILED;
  3422. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3423. return X86EMUL_CONTINUE;
  3424. emul_write:
  3425. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3426. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3427. }
  3428. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3429. {
  3430. /* TODO: String I/O for in kernel device */
  3431. int r;
  3432. if (vcpu->arch.pio.in)
  3433. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3434. vcpu->arch.pio.size, pd);
  3435. else
  3436. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3437. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3438. pd);
  3439. return r;
  3440. }
  3441. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3442. unsigned int count, struct kvm_vcpu *vcpu)
  3443. {
  3444. if (vcpu->arch.pio.count)
  3445. goto data_avail;
  3446. trace_kvm_pio(0, port, size, 1);
  3447. vcpu->arch.pio.port = port;
  3448. vcpu->arch.pio.in = 1;
  3449. vcpu->arch.pio.count = count;
  3450. vcpu->arch.pio.size = size;
  3451. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3452. data_avail:
  3453. memcpy(val, vcpu->arch.pio_data, size * count);
  3454. vcpu->arch.pio.count = 0;
  3455. return 1;
  3456. }
  3457. vcpu->run->exit_reason = KVM_EXIT_IO;
  3458. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3459. vcpu->run->io.size = size;
  3460. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3461. vcpu->run->io.count = count;
  3462. vcpu->run->io.port = port;
  3463. return 0;
  3464. }
  3465. static int emulator_pio_out_emulated(int size, unsigned short port,
  3466. const void *val, unsigned int count,
  3467. struct kvm_vcpu *vcpu)
  3468. {
  3469. trace_kvm_pio(1, port, size, 1);
  3470. vcpu->arch.pio.port = port;
  3471. vcpu->arch.pio.in = 0;
  3472. vcpu->arch.pio.count = count;
  3473. vcpu->arch.pio.size = size;
  3474. memcpy(vcpu->arch.pio_data, val, size * count);
  3475. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3476. vcpu->arch.pio.count = 0;
  3477. return 1;
  3478. }
  3479. vcpu->run->exit_reason = KVM_EXIT_IO;
  3480. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3481. vcpu->run->io.size = size;
  3482. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3483. vcpu->run->io.count = count;
  3484. vcpu->run->io.port = port;
  3485. return 0;
  3486. }
  3487. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3488. {
  3489. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3490. }
  3491. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3492. {
  3493. kvm_mmu_invlpg(vcpu, address);
  3494. return X86EMUL_CONTINUE;
  3495. }
  3496. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3497. {
  3498. if (!need_emulate_wbinvd(vcpu))
  3499. return X86EMUL_CONTINUE;
  3500. if (kvm_x86_ops->has_wbinvd_exit()) {
  3501. preempt_disable();
  3502. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3503. wbinvd_ipi, NULL, 1);
  3504. preempt_enable();
  3505. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3506. }
  3507. wbinvd();
  3508. return X86EMUL_CONTINUE;
  3509. }
  3510. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3511. int emulate_clts(struct kvm_vcpu *vcpu)
  3512. {
  3513. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3514. kvm_x86_ops->fpu_activate(vcpu);
  3515. return X86EMUL_CONTINUE;
  3516. }
  3517. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3518. {
  3519. return _kvm_get_dr(vcpu, dr, dest);
  3520. }
  3521. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3522. {
  3523. return __kvm_set_dr(vcpu, dr, value);
  3524. }
  3525. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3526. {
  3527. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3528. }
  3529. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3530. {
  3531. unsigned long value;
  3532. switch (cr) {
  3533. case 0:
  3534. value = kvm_read_cr0(vcpu);
  3535. break;
  3536. case 2:
  3537. value = vcpu->arch.cr2;
  3538. break;
  3539. case 3:
  3540. value = vcpu->arch.cr3;
  3541. break;
  3542. case 4:
  3543. value = kvm_read_cr4(vcpu);
  3544. break;
  3545. case 8:
  3546. value = kvm_get_cr8(vcpu);
  3547. break;
  3548. default:
  3549. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3550. return 0;
  3551. }
  3552. return value;
  3553. }
  3554. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3555. {
  3556. int res = 0;
  3557. switch (cr) {
  3558. case 0:
  3559. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3560. break;
  3561. case 2:
  3562. vcpu->arch.cr2 = val;
  3563. break;
  3564. case 3:
  3565. res = kvm_set_cr3(vcpu, val);
  3566. break;
  3567. case 4:
  3568. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3569. break;
  3570. case 8:
  3571. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3572. break;
  3573. default:
  3574. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3575. res = -1;
  3576. }
  3577. return res;
  3578. }
  3579. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3580. {
  3581. return kvm_x86_ops->get_cpl(vcpu);
  3582. }
  3583. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3584. {
  3585. kvm_x86_ops->get_gdt(vcpu, dt);
  3586. }
  3587. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3588. {
  3589. kvm_x86_ops->get_idt(vcpu, dt);
  3590. }
  3591. static unsigned long emulator_get_cached_segment_base(int seg,
  3592. struct kvm_vcpu *vcpu)
  3593. {
  3594. return get_segment_base(vcpu, seg);
  3595. }
  3596. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3597. struct kvm_vcpu *vcpu)
  3598. {
  3599. struct kvm_segment var;
  3600. kvm_get_segment(vcpu, &var, seg);
  3601. if (var.unusable)
  3602. return false;
  3603. if (var.g)
  3604. var.limit >>= 12;
  3605. set_desc_limit(desc, var.limit);
  3606. set_desc_base(desc, (unsigned long)var.base);
  3607. desc->type = var.type;
  3608. desc->s = var.s;
  3609. desc->dpl = var.dpl;
  3610. desc->p = var.present;
  3611. desc->avl = var.avl;
  3612. desc->l = var.l;
  3613. desc->d = var.db;
  3614. desc->g = var.g;
  3615. return true;
  3616. }
  3617. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3618. struct kvm_vcpu *vcpu)
  3619. {
  3620. struct kvm_segment var;
  3621. /* needed to preserve selector */
  3622. kvm_get_segment(vcpu, &var, seg);
  3623. var.base = get_desc_base(desc);
  3624. var.limit = get_desc_limit(desc);
  3625. if (desc->g)
  3626. var.limit = (var.limit << 12) | 0xfff;
  3627. var.type = desc->type;
  3628. var.present = desc->p;
  3629. var.dpl = desc->dpl;
  3630. var.db = desc->d;
  3631. var.s = desc->s;
  3632. var.l = desc->l;
  3633. var.g = desc->g;
  3634. var.avl = desc->avl;
  3635. var.present = desc->p;
  3636. var.unusable = !var.present;
  3637. var.padding = 0;
  3638. kvm_set_segment(vcpu, &var, seg);
  3639. return;
  3640. }
  3641. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3642. {
  3643. struct kvm_segment kvm_seg;
  3644. kvm_get_segment(vcpu, &kvm_seg, seg);
  3645. return kvm_seg.selector;
  3646. }
  3647. static void emulator_set_segment_selector(u16 sel, int seg,
  3648. struct kvm_vcpu *vcpu)
  3649. {
  3650. struct kvm_segment kvm_seg;
  3651. kvm_get_segment(vcpu, &kvm_seg, seg);
  3652. kvm_seg.selector = sel;
  3653. kvm_set_segment(vcpu, &kvm_seg, seg);
  3654. }
  3655. static struct x86_emulate_ops emulate_ops = {
  3656. .read_std = kvm_read_guest_virt_system,
  3657. .write_std = kvm_write_guest_virt_system,
  3658. .fetch = kvm_fetch_guest_virt,
  3659. .read_emulated = emulator_read_emulated,
  3660. .write_emulated = emulator_write_emulated,
  3661. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3662. .pio_in_emulated = emulator_pio_in_emulated,
  3663. .pio_out_emulated = emulator_pio_out_emulated,
  3664. .get_cached_descriptor = emulator_get_cached_descriptor,
  3665. .set_cached_descriptor = emulator_set_cached_descriptor,
  3666. .get_segment_selector = emulator_get_segment_selector,
  3667. .set_segment_selector = emulator_set_segment_selector,
  3668. .get_cached_segment_base = emulator_get_cached_segment_base,
  3669. .get_gdt = emulator_get_gdt,
  3670. .get_idt = emulator_get_idt,
  3671. .get_cr = emulator_get_cr,
  3672. .set_cr = emulator_set_cr,
  3673. .cpl = emulator_get_cpl,
  3674. .get_dr = emulator_get_dr,
  3675. .set_dr = emulator_set_dr,
  3676. .set_msr = kvm_set_msr,
  3677. .get_msr = kvm_get_msr,
  3678. };
  3679. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3680. {
  3681. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3682. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3683. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3684. vcpu->arch.regs_dirty = ~0;
  3685. }
  3686. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3687. {
  3688. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3689. /*
  3690. * an sti; sti; sequence only disable interrupts for the first
  3691. * instruction. So, if the last instruction, be it emulated or
  3692. * not, left the system with the INT_STI flag enabled, it
  3693. * means that the last instruction is an sti. We should not
  3694. * leave the flag on in this case. The same goes for mov ss
  3695. */
  3696. if (!(int_shadow & mask))
  3697. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3698. }
  3699. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3700. {
  3701. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3702. if (ctxt->exception == PF_VECTOR)
  3703. kvm_propagate_fault(vcpu);
  3704. else if (ctxt->error_code_valid)
  3705. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3706. else
  3707. kvm_queue_exception(vcpu, ctxt->exception);
  3708. }
  3709. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3710. {
  3711. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3712. int cs_db, cs_l;
  3713. cache_all_regs(vcpu);
  3714. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3715. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3716. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3717. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3718. vcpu->arch.emulate_ctxt.mode =
  3719. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3720. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3721. ? X86EMUL_MODE_VM86 : cs_l
  3722. ? X86EMUL_MODE_PROT64 : cs_db
  3723. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3724. memset(c, 0, sizeof(struct decode_cache));
  3725. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3726. }
  3727. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3728. {
  3729. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3730. int ret;
  3731. init_emulate_ctxt(vcpu);
  3732. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3733. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3734. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3735. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3736. if (ret != X86EMUL_CONTINUE)
  3737. return EMULATE_FAIL;
  3738. vcpu->arch.emulate_ctxt.eip = c->eip;
  3739. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3740. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3741. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3742. if (irq == NMI_VECTOR)
  3743. vcpu->arch.nmi_pending = false;
  3744. else
  3745. vcpu->arch.interrupt.pending = false;
  3746. return EMULATE_DONE;
  3747. }
  3748. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3749. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3750. {
  3751. ++vcpu->stat.insn_emulation_fail;
  3752. trace_kvm_emulate_insn_failed(vcpu);
  3753. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3754. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3755. vcpu->run->internal.ndata = 0;
  3756. kvm_queue_exception(vcpu, UD_VECTOR);
  3757. return EMULATE_FAIL;
  3758. }
  3759. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3760. {
  3761. gpa_t gpa;
  3762. if (tdp_enabled)
  3763. return false;
  3764. /*
  3765. * if emulation was due to access to shadowed page table
  3766. * and it failed try to unshadow page and re-entetr the
  3767. * guest to let CPU execute the instruction.
  3768. */
  3769. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3770. return true;
  3771. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3772. if (gpa == UNMAPPED_GVA)
  3773. return true; /* let cpu generate fault */
  3774. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3775. return true;
  3776. return false;
  3777. }
  3778. int emulate_instruction(struct kvm_vcpu *vcpu,
  3779. unsigned long cr2,
  3780. u16 error_code,
  3781. int emulation_type)
  3782. {
  3783. int r;
  3784. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3785. kvm_clear_exception_queue(vcpu);
  3786. vcpu->arch.mmio_fault_cr2 = cr2;
  3787. /*
  3788. * TODO: fix emulate.c to use guest_read/write_register
  3789. * instead of direct ->regs accesses, can save hundred cycles
  3790. * on Intel for instructions that don't read/change RSP, for
  3791. * for example.
  3792. */
  3793. cache_all_regs(vcpu);
  3794. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3795. init_emulate_ctxt(vcpu);
  3796. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3797. vcpu->arch.emulate_ctxt.exception = -1;
  3798. vcpu->arch.emulate_ctxt.perm_ok = false;
  3799. r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
  3800. if (r == X86EMUL_PROPAGATE_FAULT)
  3801. goto done;
  3802. trace_kvm_emulate_insn_start(vcpu);
  3803. /* Only allow emulation of specific instructions on #UD
  3804. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3805. if (emulation_type & EMULTYPE_TRAP_UD) {
  3806. if (!c->twobyte)
  3807. return EMULATE_FAIL;
  3808. switch (c->b) {
  3809. case 0x01: /* VMMCALL */
  3810. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3811. return EMULATE_FAIL;
  3812. break;
  3813. case 0x34: /* sysenter */
  3814. case 0x35: /* sysexit */
  3815. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3816. return EMULATE_FAIL;
  3817. break;
  3818. case 0x05: /* syscall */
  3819. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3820. return EMULATE_FAIL;
  3821. break;
  3822. default:
  3823. return EMULATE_FAIL;
  3824. }
  3825. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3826. return EMULATE_FAIL;
  3827. }
  3828. ++vcpu->stat.insn_emulation;
  3829. if (r) {
  3830. if (reexecute_instruction(vcpu, cr2))
  3831. return EMULATE_DONE;
  3832. if (emulation_type & EMULTYPE_SKIP)
  3833. return EMULATE_FAIL;
  3834. return handle_emulation_failure(vcpu);
  3835. }
  3836. }
  3837. if (emulation_type & EMULTYPE_SKIP) {
  3838. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3839. return EMULATE_DONE;
  3840. }
  3841. /* this is needed for vmware backdor interface to work since it
  3842. changes registers values during IO operation */
  3843. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3844. restart:
  3845. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3846. if (r == EMULATION_FAILED) {
  3847. if (reexecute_instruction(vcpu, cr2))
  3848. return EMULATE_DONE;
  3849. return handle_emulation_failure(vcpu);
  3850. }
  3851. done:
  3852. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3853. inject_emulated_exception(vcpu);
  3854. r = EMULATE_DONE;
  3855. } else if (vcpu->arch.pio.count) {
  3856. if (!vcpu->arch.pio.in)
  3857. vcpu->arch.pio.count = 0;
  3858. r = EMULATE_DO_MMIO;
  3859. } else if (vcpu->mmio_needed) {
  3860. if (vcpu->mmio_is_write)
  3861. vcpu->mmio_needed = 0;
  3862. r = EMULATE_DO_MMIO;
  3863. } else if (r == EMULATION_RESTART)
  3864. goto restart;
  3865. else
  3866. r = EMULATE_DONE;
  3867. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3868. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3869. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3870. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3871. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3872. return r;
  3873. }
  3874. EXPORT_SYMBOL_GPL(emulate_instruction);
  3875. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3876. {
  3877. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3878. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3879. /* do not return to emulator after return from userspace */
  3880. vcpu->arch.pio.count = 0;
  3881. return ret;
  3882. }
  3883. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3884. static void tsc_bad(void *info)
  3885. {
  3886. __get_cpu_var(cpu_tsc_khz) = 0;
  3887. }
  3888. static void tsc_khz_changed(void *data)
  3889. {
  3890. struct cpufreq_freqs *freq = data;
  3891. unsigned long khz = 0;
  3892. if (data)
  3893. khz = freq->new;
  3894. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3895. khz = cpufreq_quick_get(raw_smp_processor_id());
  3896. if (!khz)
  3897. khz = tsc_khz;
  3898. __get_cpu_var(cpu_tsc_khz) = khz;
  3899. }
  3900. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3901. void *data)
  3902. {
  3903. struct cpufreq_freqs *freq = data;
  3904. struct kvm *kvm;
  3905. struct kvm_vcpu *vcpu;
  3906. int i, send_ipi = 0;
  3907. /*
  3908. * We allow guests to temporarily run on slowing clocks,
  3909. * provided we notify them after, or to run on accelerating
  3910. * clocks, provided we notify them before. Thus time never
  3911. * goes backwards.
  3912. *
  3913. * However, we have a problem. We can't atomically update
  3914. * the frequency of a given CPU from this function; it is
  3915. * merely a notifier, which can be called from any CPU.
  3916. * Changing the TSC frequency at arbitrary points in time
  3917. * requires a recomputation of local variables related to
  3918. * the TSC for each VCPU. We must flag these local variables
  3919. * to be updated and be sure the update takes place with the
  3920. * new frequency before any guests proceed.
  3921. *
  3922. * Unfortunately, the combination of hotplug CPU and frequency
  3923. * change creates an intractable locking scenario; the order
  3924. * of when these callouts happen is undefined with respect to
  3925. * CPU hotplug, and they can race with each other. As such,
  3926. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3927. * undefined; you can actually have a CPU frequency change take
  3928. * place in between the computation of X and the setting of the
  3929. * variable. To protect against this problem, all updates of
  3930. * the per_cpu tsc_khz variable are done in an interrupt
  3931. * protected IPI, and all callers wishing to update the value
  3932. * must wait for a synchronous IPI to complete (which is trivial
  3933. * if the caller is on the CPU already). This establishes the
  3934. * necessary total order on variable updates.
  3935. *
  3936. * Note that because a guest time update may take place
  3937. * anytime after the setting of the VCPU's request bit, the
  3938. * correct TSC value must be set before the request. However,
  3939. * to ensure the update actually makes it to any guest which
  3940. * starts running in hardware virtualization between the set
  3941. * and the acquisition of the spinlock, we must also ping the
  3942. * CPU after setting the request bit.
  3943. *
  3944. */
  3945. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3946. return 0;
  3947. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3948. return 0;
  3949. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3950. spin_lock(&kvm_lock);
  3951. list_for_each_entry(kvm, &vm_list, vm_list) {
  3952. kvm_for_each_vcpu(i, vcpu, kvm) {
  3953. if (vcpu->cpu != freq->cpu)
  3954. continue;
  3955. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  3956. if (vcpu->cpu != smp_processor_id())
  3957. send_ipi = 1;
  3958. }
  3959. }
  3960. spin_unlock(&kvm_lock);
  3961. if (freq->old < freq->new && send_ipi) {
  3962. /*
  3963. * We upscale the frequency. Must make the guest
  3964. * doesn't see old kvmclock values while running with
  3965. * the new frequency, otherwise we risk the guest sees
  3966. * time go backwards.
  3967. *
  3968. * In case we update the frequency for another cpu
  3969. * (which might be in guest context) send an interrupt
  3970. * to kick the cpu out of guest context. Next time
  3971. * guest context is entered kvmclock will be updated,
  3972. * so the guest will not see stale values.
  3973. */
  3974. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3975. }
  3976. return 0;
  3977. }
  3978. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3979. .notifier_call = kvmclock_cpufreq_notifier
  3980. };
  3981. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  3982. unsigned long action, void *hcpu)
  3983. {
  3984. unsigned int cpu = (unsigned long)hcpu;
  3985. switch (action) {
  3986. case CPU_ONLINE:
  3987. case CPU_DOWN_FAILED:
  3988. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3989. break;
  3990. case CPU_DOWN_PREPARE:
  3991. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  3992. break;
  3993. }
  3994. return NOTIFY_OK;
  3995. }
  3996. static struct notifier_block kvmclock_cpu_notifier_block = {
  3997. .notifier_call = kvmclock_cpu_notifier,
  3998. .priority = -INT_MAX
  3999. };
  4000. static void kvm_timer_init(void)
  4001. {
  4002. int cpu;
  4003. max_tsc_khz = tsc_khz;
  4004. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4005. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4006. #ifdef CONFIG_CPU_FREQ
  4007. struct cpufreq_policy policy;
  4008. memset(&policy, 0, sizeof(policy));
  4009. cpu = get_cpu();
  4010. cpufreq_get_policy(&policy, cpu);
  4011. if (policy.cpuinfo.max_freq)
  4012. max_tsc_khz = policy.cpuinfo.max_freq;
  4013. put_cpu();
  4014. #endif
  4015. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4016. CPUFREQ_TRANSITION_NOTIFIER);
  4017. }
  4018. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4019. for_each_online_cpu(cpu)
  4020. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4021. }
  4022. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4023. static int kvm_is_in_guest(void)
  4024. {
  4025. return percpu_read(current_vcpu) != NULL;
  4026. }
  4027. static int kvm_is_user_mode(void)
  4028. {
  4029. int user_mode = 3;
  4030. if (percpu_read(current_vcpu))
  4031. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4032. return user_mode != 0;
  4033. }
  4034. static unsigned long kvm_get_guest_ip(void)
  4035. {
  4036. unsigned long ip = 0;
  4037. if (percpu_read(current_vcpu))
  4038. ip = kvm_rip_read(percpu_read(current_vcpu));
  4039. return ip;
  4040. }
  4041. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4042. .is_in_guest = kvm_is_in_guest,
  4043. .is_user_mode = kvm_is_user_mode,
  4044. .get_guest_ip = kvm_get_guest_ip,
  4045. };
  4046. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4047. {
  4048. percpu_write(current_vcpu, vcpu);
  4049. }
  4050. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4051. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4052. {
  4053. percpu_write(current_vcpu, NULL);
  4054. }
  4055. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4056. int kvm_arch_init(void *opaque)
  4057. {
  4058. int r;
  4059. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4060. if (kvm_x86_ops) {
  4061. printk(KERN_ERR "kvm: already loaded the other module\n");
  4062. r = -EEXIST;
  4063. goto out;
  4064. }
  4065. if (!ops->cpu_has_kvm_support()) {
  4066. printk(KERN_ERR "kvm: no hardware support\n");
  4067. r = -EOPNOTSUPP;
  4068. goto out;
  4069. }
  4070. if (ops->disabled_by_bios()) {
  4071. printk(KERN_ERR "kvm: disabled by bios\n");
  4072. r = -EOPNOTSUPP;
  4073. goto out;
  4074. }
  4075. r = kvm_mmu_module_init();
  4076. if (r)
  4077. goto out;
  4078. kvm_init_msr_list();
  4079. kvm_x86_ops = ops;
  4080. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4081. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  4082. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4083. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4084. kvm_timer_init();
  4085. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4086. if (cpu_has_xsave)
  4087. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4088. return 0;
  4089. out:
  4090. return r;
  4091. }
  4092. void kvm_arch_exit(void)
  4093. {
  4094. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4095. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4096. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4097. CPUFREQ_TRANSITION_NOTIFIER);
  4098. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4099. kvm_x86_ops = NULL;
  4100. kvm_mmu_module_exit();
  4101. }
  4102. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4103. {
  4104. ++vcpu->stat.halt_exits;
  4105. if (irqchip_in_kernel(vcpu->kvm)) {
  4106. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4107. return 1;
  4108. } else {
  4109. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4110. return 0;
  4111. }
  4112. }
  4113. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4114. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4115. unsigned long a1)
  4116. {
  4117. if (is_long_mode(vcpu))
  4118. return a0;
  4119. else
  4120. return a0 | ((gpa_t)a1 << 32);
  4121. }
  4122. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4123. {
  4124. u64 param, ingpa, outgpa, ret;
  4125. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4126. bool fast, longmode;
  4127. int cs_db, cs_l;
  4128. /*
  4129. * hypercall generates UD from non zero cpl and real mode
  4130. * per HYPER-V spec
  4131. */
  4132. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4133. kvm_queue_exception(vcpu, UD_VECTOR);
  4134. return 0;
  4135. }
  4136. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4137. longmode = is_long_mode(vcpu) && cs_l == 1;
  4138. if (!longmode) {
  4139. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4140. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4141. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4142. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4143. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4144. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4145. }
  4146. #ifdef CONFIG_X86_64
  4147. else {
  4148. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4149. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4150. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4151. }
  4152. #endif
  4153. code = param & 0xffff;
  4154. fast = (param >> 16) & 0x1;
  4155. rep_cnt = (param >> 32) & 0xfff;
  4156. rep_idx = (param >> 48) & 0xfff;
  4157. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4158. switch (code) {
  4159. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4160. kvm_vcpu_on_spin(vcpu);
  4161. break;
  4162. default:
  4163. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4164. break;
  4165. }
  4166. ret = res | (((u64)rep_done & 0xfff) << 32);
  4167. if (longmode) {
  4168. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4169. } else {
  4170. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4171. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4172. }
  4173. return 1;
  4174. }
  4175. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4176. {
  4177. unsigned long nr, a0, a1, a2, a3, ret;
  4178. int r = 1;
  4179. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4180. return kvm_hv_hypercall(vcpu);
  4181. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4182. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4183. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4184. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4185. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4186. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4187. if (!is_long_mode(vcpu)) {
  4188. nr &= 0xFFFFFFFF;
  4189. a0 &= 0xFFFFFFFF;
  4190. a1 &= 0xFFFFFFFF;
  4191. a2 &= 0xFFFFFFFF;
  4192. a3 &= 0xFFFFFFFF;
  4193. }
  4194. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4195. ret = -KVM_EPERM;
  4196. goto out;
  4197. }
  4198. switch (nr) {
  4199. case KVM_HC_VAPIC_POLL_IRQ:
  4200. ret = 0;
  4201. break;
  4202. case KVM_HC_MMU_OP:
  4203. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4204. break;
  4205. default:
  4206. ret = -KVM_ENOSYS;
  4207. break;
  4208. }
  4209. out:
  4210. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4211. ++vcpu->stat.hypercalls;
  4212. return r;
  4213. }
  4214. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4215. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4216. {
  4217. char instruction[3];
  4218. unsigned long rip = kvm_rip_read(vcpu);
  4219. /*
  4220. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4221. * to ensure that the updated hypercall appears atomically across all
  4222. * VCPUs.
  4223. */
  4224. kvm_mmu_zap_all(vcpu->kvm);
  4225. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4226. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4227. }
  4228. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4229. {
  4230. struct desc_ptr dt = { limit, base };
  4231. kvm_x86_ops->set_gdt(vcpu, &dt);
  4232. }
  4233. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4234. {
  4235. struct desc_ptr dt = { limit, base };
  4236. kvm_x86_ops->set_idt(vcpu, &dt);
  4237. }
  4238. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4239. {
  4240. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4241. int j, nent = vcpu->arch.cpuid_nent;
  4242. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4243. /* when no next entry is found, the current entry[i] is reselected */
  4244. for (j = i + 1; ; j = (j + 1) % nent) {
  4245. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4246. if (ej->function == e->function) {
  4247. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4248. return j;
  4249. }
  4250. }
  4251. return 0; /* silence gcc, even though control never reaches here */
  4252. }
  4253. /* find an entry with matching function, matching index (if needed), and that
  4254. * should be read next (if it's stateful) */
  4255. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4256. u32 function, u32 index)
  4257. {
  4258. if (e->function != function)
  4259. return 0;
  4260. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4261. return 0;
  4262. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4263. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4264. return 0;
  4265. return 1;
  4266. }
  4267. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4268. u32 function, u32 index)
  4269. {
  4270. int i;
  4271. struct kvm_cpuid_entry2 *best = NULL;
  4272. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4273. struct kvm_cpuid_entry2 *e;
  4274. e = &vcpu->arch.cpuid_entries[i];
  4275. if (is_matching_cpuid_entry(e, function, index)) {
  4276. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4277. move_to_next_stateful_cpuid_entry(vcpu, i);
  4278. best = e;
  4279. break;
  4280. }
  4281. /*
  4282. * Both basic or both extended?
  4283. */
  4284. if (((e->function ^ function) & 0x80000000) == 0)
  4285. if (!best || e->function > best->function)
  4286. best = e;
  4287. }
  4288. return best;
  4289. }
  4290. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4291. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4292. {
  4293. struct kvm_cpuid_entry2 *best;
  4294. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4295. if (!best || best->eax < 0x80000008)
  4296. goto not_found;
  4297. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4298. if (best)
  4299. return best->eax & 0xff;
  4300. not_found:
  4301. return 36;
  4302. }
  4303. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4304. {
  4305. u32 function, index;
  4306. struct kvm_cpuid_entry2 *best;
  4307. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4308. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4309. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4310. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4311. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4312. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4313. best = kvm_find_cpuid_entry(vcpu, function, index);
  4314. if (best) {
  4315. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4316. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4317. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4318. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4319. }
  4320. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4321. trace_kvm_cpuid(function,
  4322. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4323. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4324. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4325. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4326. }
  4327. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4328. /*
  4329. * Check if userspace requested an interrupt window, and that the
  4330. * interrupt window is open.
  4331. *
  4332. * No need to exit to userspace if we already have an interrupt queued.
  4333. */
  4334. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4335. {
  4336. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4337. vcpu->run->request_interrupt_window &&
  4338. kvm_arch_interrupt_allowed(vcpu));
  4339. }
  4340. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4341. {
  4342. struct kvm_run *kvm_run = vcpu->run;
  4343. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4344. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4345. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4346. if (irqchip_in_kernel(vcpu->kvm))
  4347. kvm_run->ready_for_interrupt_injection = 1;
  4348. else
  4349. kvm_run->ready_for_interrupt_injection =
  4350. kvm_arch_interrupt_allowed(vcpu) &&
  4351. !kvm_cpu_has_interrupt(vcpu) &&
  4352. !kvm_event_needs_reinjection(vcpu);
  4353. }
  4354. static void vapic_enter(struct kvm_vcpu *vcpu)
  4355. {
  4356. struct kvm_lapic *apic = vcpu->arch.apic;
  4357. struct page *page;
  4358. if (!apic || !apic->vapic_addr)
  4359. return;
  4360. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4361. vcpu->arch.apic->vapic_page = page;
  4362. }
  4363. static void vapic_exit(struct kvm_vcpu *vcpu)
  4364. {
  4365. struct kvm_lapic *apic = vcpu->arch.apic;
  4366. int idx;
  4367. if (!apic || !apic->vapic_addr)
  4368. return;
  4369. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4370. kvm_release_page_dirty(apic->vapic_page);
  4371. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4372. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4373. }
  4374. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4375. {
  4376. int max_irr, tpr;
  4377. if (!kvm_x86_ops->update_cr8_intercept)
  4378. return;
  4379. if (!vcpu->arch.apic)
  4380. return;
  4381. if (!vcpu->arch.apic->vapic_addr)
  4382. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4383. else
  4384. max_irr = -1;
  4385. if (max_irr != -1)
  4386. max_irr >>= 4;
  4387. tpr = kvm_lapic_get_cr8(vcpu);
  4388. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4389. }
  4390. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4391. {
  4392. /* try to reinject previous events if any */
  4393. if (vcpu->arch.exception.pending) {
  4394. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4395. vcpu->arch.exception.has_error_code,
  4396. vcpu->arch.exception.error_code);
  4397. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4398. vcpu->arch.exception.has_error_code,
  4399. vcpu->arch.exception.error_code,
  4400. vcpu->arch.exception.reinject);
  4401. return;
  4402. }
  4403. if (vcpu->arch.nmi_injected) {
  4404. kvm_x86_ops->set_nmi(vcpu);
  4405. return;
  4406. }
  4407. if (vcpu->arch.interrupt.pending) {
  4408. kvm_x86_ops->set_irq(vcpu);
  4409. return;
  4410. }
  4411. /* try to inject new event if pending */
  4412. if (vcpu->arch.nmi_pending) {
  4413. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4414. vcpu->arch.nmi_pending = false;
  4415. vcpu->arch.nmi_injected = true;
  4416. kvm_x86_ops->set_nmi(vcpu);
  4417. }
  4418. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4419. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4420. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4421. false);
  4422. kvm_x86_ops->set_irq(vcpu);
  4423. }
  4424. }
  4425. }
  4426. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4427. {
  4428. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4429. !vcpu->guest_xcr0_loaded) {
  4430. /* kvm_set_xcr() also depends on this */
  4431. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4432. vcpu->guest_xcr0_loaded = 1;
  4433. }
  4434. }
  4435. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4436. {
  4437. if (vcpu->guest_xcr0_loaded) {
  4438. if (vcpu->arch.xcr0 != host_xcr0)
  4439. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4440. vcpu->guest_xcr0_loaded = 0;
  4441. }
  4442. }
  4443. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4444. {
  4445. int r;
  4446. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4447. vcpu->run->request_interrupt_window;
  4448. if (vcpu->requests) {
  4449. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4450. kvm_mmu_unload(vcpu);
  4451. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4452. __kvm_migrate_timers(vcpu);
  4453. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4454. r = kvm_guest_time_update(vcpu);
  4455. if (unlikely(r))
  4456. goto out;
  4457. }
  4458. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4459. kvm_mmu_sync_roots(vcpu);
  4460. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4461. kvm_x86_ops->tlb_flush(vcpu);
  4462. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4463. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4464. r = 0;
  4465. goto out;
  4466. }
  4467. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4468. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4469. r = 0;
  4470. goto out;
  4471. }
  4472. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4473. vcpu->fpu_active = 0;
  4474. kvm_x86_ops->fpu_deactivate(vcpu);
  4475. }
  4476. }
  4477. r = kvm_mmu_reload(vcpu);
  4478. if (unlikely(r))
  4479. goto out;
  4480. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4481. inject_pending_event(vcpu);
  4482. /* enable NMI/IRQ window open exits if needed */
  4483. if (vcpu->arch.nmi_pending)
  4484. kvm_x86_ops->enable_nmi_window(vcpu);
  4485. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4486. kvm_x86_ops->enable_irq_window(vcpu);
  4487. if (kvm_lapic_enabled(vcpu)) {
  4488. update_cr8_intercept(vcpu);
  4489. kvm_lapic_sync_to_vapic(vcpu);
  4490. }
  4491. }
  4492. preempt_disable();
  4493. kvm_x86_ops->prepare_guest_switch(vcpu);
  4494. if (vcpu->fpu_active)
  4495. kvm_load_guest_fpu(vcpu);
  4496. kvm_load_guest_xcr0(vcpu);
  4497. atomic_set(&vcpu->guest_mode, 1);
  4498. smp_wmb();
  4499. local_irq_disable();
  4500. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4501. || need_resched() || signal_pending(current)) {
  4502. atomic_set(&vcpu->guest_mode, 0);
  4503. smp_wmb();
  4504. local_irq_enable();
  4505. preempt_enable();
  4506. kvm_x86_ops->cancel_injection(vcpu);
  4507. r = 1;
  4508. goto out;
  4509. }
  4510. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4511. kvm_guest_enter();
  4512. if (unlikely(vcpu->arch.switch_db_regs)) {
  4513. set_debugreg(0, 7);
  4514. set_debugreg(vcpu->arch.eff_db[0], 0);
  4515. set_debugreg(vcpu->arch.eff_db[1], 1);
  4516. set_debugreg(vcpu->arch.eff_db[2], 2);
  4517. set_debugreg(vcpu->arch.eff_db[3], 3);
  4518. }
  4519. trace_kvm_entry(vcpu->vcpu_id);
  4520. kvm_x86_ops->run(vcpu);
  4521. /*
  4522. * If the guest has used debug registers, at least dr7
  4523. * will be disabled while returning to the host.
  4524. * If we don't have active breakpoints in the host, we don't
  4525. * care about the messed up debug address registers. But if
  4526. * we have some of them active, restore the old state.
  4527. */
  4528. if (hw_breakpoint_active())
  4529. hw_breakpoint_restore();
  4530. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4531. atomic_set(&vcpu->guest_mode, 0);
  4532. smp_wmb();
  4533. local_irq_enable();
  4534. ++vcpu->stat.exits;
  4535. /*
  4536. * We must have an instruction between local_irq_enable() and
  4537. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4538. * the interrupt shadow. The stat.exits increment will do nicely.
  4539. * But we need to prevent reordering, hence this barrier():
  4540. */
  4541. barrier();
  4542. kvm_guest_exit();
  4543. preempt_enable();
  4544. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4545. /*
  4546. * Profile KVM exit RIPs:
  4547. */
  4548. if (unlikely(prof_on == KVM_PROFILING)) {
  4549. unsigned long rip = kvm_rip_read(vcpu);
  4550. profile_hit(KVM_PROFILING, (void *)rip);
  4551. }
  4552. kvm_lapic_sync_from_vapic(vcpu);
  4553. r = kvm_x86_ops->handle_exit(vcpu);
  4554. out:
  4555. return r;
  4556. }
  4557. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4558. {
  4559. int r;
  4560. struct kvm *kvm = vcpu->kvm;
  4561. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4562. pr_debug("vcpu %d received sipi with vector # %x\n",
  4563. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4564. kvm_lapic_reset(vcpu);
  4565. r = kvm_arch_vcpu_reset(vcpu);
  4566. if (r)
  4567. return r;
  4568. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4569. }
  4570. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4571. vapic_enter(vcpu);
  4572. r = 1;
  4573. while (r > 0) {
  4574. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4575. r = vcpu_enter_guest(vcpu);
  4576. else {
  4577. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4578. kvm_vcpu_block(vcpu);
  4579. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4580. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4581. {
  4582. switch(vcpu->arch.mp_state) {
  4583. case KVM_MP_STATE_HALTED:
  4584. vcpu->arch.mp_state =
  4585. KVM_MP_STATE_RUNNABLE;
  4586. case KVM_MP_STATE_RUNNABLE:
  4587. break;
  4588. case KVM_MP_STATE_SIPI_RECEIVED:
  4589. default:
  4590. r = -EINTR;
  4591. break;
  4592. }
  4593. }
  4594. }
  4595. if (r <= 0)
  4596. break;
  4597. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4598. if (kvm_cpu_has_pending_timer(vcpu))
  4599. kvm_inject_pending_timer_irqs(vcpu);
  4600. if (dm_request_for_irq_injection(vcpu)) {
  4601. r = -EINTR;
  4602. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4603. ++vcpu->stat.request_irq_exits;
  4604. }
  4605. if (signal_pending(current)) {
  4606. r = -EINTR;
  4607. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4608. ++vcpu->stat.signal_exits;
  4609. }
  4610. if (need_resched()) {
  4611. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4612. kvm_resched(vcpu);
  4613. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4614. }
  4615. }
  4616. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4617. vapic_exit(vcpu);
  4618. return r;
  4619. }
  4620. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4621. {
  4622. int r;
  4623. sigset_t sigsaved;
  4624. if (vcpu->sigset_active)
  4625. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4626. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4627. kvm_vcpu_block(vcpu);
  4628. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4629. r = -EAGAIN;
  4630. goto out;
  4631. }
  4632. /* re-sync apic's tpr */
  4633. if (!irqchip_in_kernel(vcpu->kvm))
  4634. kvm_set_cr8(vcpu, kvm_run->cr8);
  4635. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4636. if (vcpu->mmio_needed) {
  4637. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4638. vcpu->mmio_read_completed = 1;
  4639. vcpu->mmio_needed = 0;
  4640. }
  4641. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4642. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4643. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4644. if (r != EMULATE_DONE) {
  4645. r = 0;
  4646. goto out;
  4647. }
  4648. }
  4649. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4650. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4651. kvm_run->hypercall.ret);
  4652. r = __vcpu_run(vcpu);
  4653. out:
  4654. post_kvm_run_save(vcpu);
  4655. if (vcpu->sigset_active)
  4656. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4657. return r;
  4658. }
  4659. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4660. {
  4661. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4662. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4663. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4664. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4665. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4666. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4667. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4668. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4669. #ifdef CONFIG_X86_64
  4670. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4671. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4672. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4673. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4674. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4675. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4676. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4677. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4678. #endif
  4679. regs->rip = kvm_rip_read(vcpu);
  4680. regs->rflags = kvm_get_rflags(vcpu);
  4681. return 0;
  4682. }
  4683. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4684. {
  4685. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4686. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4687. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4688. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4689. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4690. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4691. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4692. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4693. #ifdef CONFIG_X86_64
  4694. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4695. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4696. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4697. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4698. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4699. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4700. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4701. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4702. #endif
  4703. kvm_rip_write(vcpu, regs->rip);
  4704. kvm_set_rflags(vcpu, regs->rflags);
  4705. vcpu->arch.exception.pending = false;
  4706. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4707. return 0;
  4708. }
  4709. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4710. {
  4711. struct kvm_segment cs;
  4712. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4713. *db = cs.db;
  4714. *l = cs.l;
  4715. }
  4716. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4717. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4718. struct kvm_sregs *sregs)
  4719. {
  4720. struct desc_ptr dt;
  4721. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4722. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4723. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4724. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4725. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4726. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4727. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4728. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4729. kvm_x86_ops->get_idt(vcpu, &dt);
  4730. sregs->idt.limit = dt.size;
  4731. sregs->idt.base = dt.address;
  4732. kvm_x86_ops->get_gdt(vcpu, &dt);
  4733. sregs->gdt.limit = dt.size;
  4734. sregs->gdt.base = dt.address;
  4735. sregs->cr0 = kvm_read_cr0(vcpu);
  4736. sregs->cr2 = vcpu->arch.cr2;
  4737. sregs->cr3 = vcpu->arch.cr3;
  4738. sregs->cr4 = kvm_read_cr4(vcpu);
  4739. sregs->cr8 = kvm_get_cr8(vcpu);
  4740. sregs->efer = vcpu->arch.efer;
  4741. sregs->apic_base = kvm_get_apic_base(vcpu);
  4742. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4743. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4744. set_bit(vcpu->arch.interrupt.nr,
  4745. (unsigned long *)sregs->interrupt_bitmap);
  4746. return 0;
  4747. }
  4748. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4749. struct kvm_mp_state *mp_state)
  4750. {
  4751. mp_state->mp_state = vcpu->arch.mp_state;
  4752. return 0;
  4753. }
  4754. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4755. struct kvm_mp_state *mp_state)
  4756. {
  4757. vcpu->arch.mp_state = mp_state->mp_state;
  4758. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4759. return 0;
  4760. }
  4761. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4762. bool has_error_code, u32 error_code)
  4763. {
  4764. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4765. int ret;
  4766. init_emulate_ctxt(vcpu);
  4767. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4768. tss_selector, reason, has_error_code,
  4769. error_code);
  4770. if (ret)
  4771. return EMULATE_FAIL;
  4772. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4773. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4774. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4775. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4776. return EMULATE_DONE;
  4777. }
  4778. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4779. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4780. struct kvm_sregs *sregs)
  4781. {
  4782. int mmu_reset_needed = 0;
  4783. int pending_vec, max_bits;
  4784. struct desc_ptr dt;
  4785. dt.size = sregs->idt.limit;
  4786. dt.address = sregs->idt.base;
  4787. kvm_x86_ops->set_idt(vcpu, &dt);
  4788. dt.size = sregs->gdt.limit;
  4789. dt.address = sregs->gdt.base;
  4790. kvm_x86_ops->set_gdt(vcpu, &dt);
  4791. vcpu->arch.cr2 = sregs->cr2;
  4792. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4793. vcpu->arch.cr3 = sregs->cr3;
  4794. kvm_set_cr8(vcpu, sregs->cr8);
  4795. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4796. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4797. kvm_set_apic_base(vcpu, sregs->apic_base);
  4798. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4799. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4800. vcpu->arch.cr0 = sregs->cr0;
  4801. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4802. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4803. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4804. update_cpuid(vcpu);
  4805. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4806. load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
  4807. mmu_reset_needed = 1;
  4808. }
  4809. if (mmu_reset_needed)
  4810. kvm_mmu_reset_context(vcpu);
  4811. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4812. pending_vec = find_first_bit(
  4813. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4814. if (pending_vec < max_bits) {
  4815. kvm_queue_interrupt(vcpu, pending_vec, false);
  4816. pr_debug("Set back pending irq %d\n", pending_vec);
  4817. if (irqchip_in_kernel(vcpu->kvm))
  4818. kvm_pic_clear_isr_ack(vcpu->kvm);
  4819. }
  4820. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4821. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4822. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4823. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4824. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4825. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4826. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4827. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4828. update_cr8_intercept(vcpu);
  4829. /* Older userspace won't unhalt the vcpu on reset. */
  4830. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4831. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4832. !is_protmode(vcpu))
  4833. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4834. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4835. return 0;
  4836. }
  4837. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4838. struct kvm_guest_debug *dbg)
  4839. {
  4840. unsigned long rflags;
  4841. int i, r;
  4842. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4843. r = -EBUSY;
  4844. if (vcpu->arch.exception.pending)
  4845. goto out;
  4846. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4847. kvm_queue_exception(vcpu, DB_VECTOR);
  4848. else
  4849. kvm_queue_exception(vcpu, BP_VECTOR);
  4850. }
  4851. /*
  4852. * Read rflags as long as potentially injected trace flags are still
  4853. * filtered out.
  4854. */
  4855. rflags = kvm_get_rflags(vcpu);
  4856. vcpu->guest_debug = dbg->control;
  4857. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4858. vcpu->guest_debug = 0;
  4859. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4860. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4861. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4862. vcpu->arch.switch_db_regs =
  4863. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4864. } else {
  4865. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4866. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4867. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4868. }
  4869. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4870. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4871. get_segment_base(vcpu, VCPU_SREG_CS);
  4872. /*
  4873. * Trigger an rflags update that will inject or remove the trace
  4874. * flags.
  4875. */
  4876. kvm_set_rflags(vcpu, rflags);
  4877. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4878. r = 0;
  4879. out:
  4880. return r;
  4881. }
  4882. /*
  4883. * Translate a guest virtual address to a guest physical address.
  4884. */
  4885. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4886. struct kvm_translation *tr)
  4887. {
  4888. unsigned long vaddr = tr->linear_address;
  4889. gpa_t gpa;
  4890. int idx;
  4891. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4892. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4893. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4894. tr->physical_address = gpa;
  4895. tr->valid = gpa != UNMAPPED_GVA;
  4896. tr->writeable = 1;
  4897. tr->usermode = 0;
  4898. return 0;
  4899. }
  4900. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4901. {
  4902. struct i387_fxsave_struct *fxsave =
  4903. &vcpu->arch.guest_fpu.state->fxsave;
  4904. memcpy(fpu->fpr, fxsave->st_space, 128);
  4905. fpu->fcw = fxsave->cwd;
  4906. fpu->fsw = fxsave->swd;
  4907. fpu->ftwx = fxsave->twd;
  4908. fpu->last_opcode = fxsave->fop;
  4909. fpu->last_ip = fxsave->rip;
  4910. fpu->last_dp = fxsave->rdp;
  4911. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4912. return 0;
  4913. }
  4914. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4915. {
  4916. struct i387_fxsave_struct *fxsave =
  4917. &vcpu->arch.guest_fpu.state->fxsave;
  4918. memcpy(fxsave->st_space, fpu->fpr, 128);
  4919. fxsave->cwd = fpu->fcw;
  4920. fxsave->swd = fpu->fsw;
  4921. fxsave->twd = fpu->ftwx;
  4922. fxsave->fop = fpu->last_opcode;
  4923. fxsave->rip = fpu->last_ip;
  4924. fxsave->rdp = fpu->last_dp;
  4925. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4926. return 0;
  4927. }
  4928. int fx_init(struct kvm_vcpu *vcpu)
  4929. {
  4930. int err;
  4931. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4932. if (err)
  4933. return err;
  4934. fpu_finit(&vcpu->arch.guest_fpu);
  4935. /*
  4936. * Ensure guest xcr0 is valid for loading
  4937. */
  4938. vcpu->arch.xcr0 = XSTATE_FP;
  4939. vcpu->arch.cr0 |= X86_CR0_ET;
  4940. return 0;
  4941. }
  4942. EXPORT_SYMBOL_GPL(fx_init);
  4943. static void fx_free(struct kvm_vcpu *vcpu)
  4944. {
  4945. fpu_free(&vcpu->arch.guest_fpu);
  4946. }
  4947. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4948. {
  4949. if (vcpu->guest_fpu_loaded)
  4950. return;
  4951. /*
  4952. * Restore all possible states in the guest,
  4953. * and assume host would use all available bits.
  4954. * Guest xcr0 would be loaded later.
  4955. */
  4956. kvm_put_guest_xcr0(vcpu);
  4957. vcpu->guest_fpu_loaded = 1;
  4958. unlazy_fpu(current);
  4959. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4960. trace_kvm_fpu(1);
  4961. }
  4962. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4963. {
  4964. kvm_put_guest_xcr0(vcpu);
  4965. if (!vcpu->guest_fpu_loaded)
  4966. return;
  4967. vcpu->guest_fpu_loaded = 0;
  4968. fpu_save_init(&vcpu->arch.guest_fpu);
  4969. ++vcpu->stat.fpu_reload;
  4970. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  4971. trace_kvm_fpu(0);
  4972. }
  4973. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4974. {
  4975. if (vcpu->arch.time_page) {
  4976. kvm_release_page_dirty(vcpu->arch.time_page);
  4977. vcpu->arch.time_page = NULL;
  4978. }
  4979. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  4980. fx_free(vcpu);
  4981. kvm_x86_ops->vcpu_free(vcpu);
  4982. }
  4983. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4984. unsigned int id)
  4985. {
  4986. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  4987. printk_once(KERN_WARNING
  4988. "kvm: SMP vm created on host with unstable TSC; "
  4989. "guest TSC will not be reliable\n");
  4990. return kvm_x86_ops->vcpu_create(kvm, id);
  4991. }
  4992. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4993. {
  4994. int r;
  4995. vcpu->arch.mtrr_state.have_fixed = 1;
  4996. vcpu_load(vcpu);
  4997. r = kvm_arch_vcpu_reset(vcpu);
  4998. if (r == 0)
  4999. r = kvm_mmu_setup(vcpu);
  5000. vcpu_put(vcpu);
  5001. if (r < 0)
  5002. goto free_vcpu;
  5003. return 0;
  5004. free_vcpu:
  5005. kvm_x86_ops->vcpu_free(vcpu);
  5006. return r;
  5007. }
  5008. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5009. {
  5010. vcpu_load(vcpu);
  5011. kvm_mmu_unload(vcpu);
  5012. vcpu_put(vcpu);
  5013. fx_free(vcpu);
  5014. kvm_x86_ops->vcpu_free(vcpu);
  5015. }
  5016. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5017. {
  5018. vcpu->arch.nmi_pending = false;
  5019. vcpu->arch.nmi_injected = false;
  5020. vcpu->arch.switch_db_regs = 0;
  5021. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5022. vcpu->arch.dr6 = DR6_FIXED_1;
  5023. vcpu->arch.dr7 = DR7_FIXED_1;
  5024. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5025. return kvm_x86_ops->vcpu_reset(vcpu);
  5026. }
  5027. int kvm_arch_hardware_enable(void *garbage)
  5028. {
  5029. struct kvm *kvm;
  5030. struct kvm_vcpu *vcpu;
  5031. int i;
  5032. kvm_shared_msr_cpu_online();
  5033. list_for_each_entry(kvm, &vm_list, vm_list)
  5034. kvm_for_each_vcpu(i, vcpu, kvm)
  5035. if (vcpu->cpu == smp_processor_id())
  5036. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5037. return kvm_x86_ops->hardware_enable(garbage);
  5038. }
  5039. void kvm_arch_hardware_disable(void *garbage)
  5040. {
  5041. kvm_x86_ops->hardware_disable(garbage);
  5042. drop_user_return_notifiers(garbage);
  5043. }
  5044. int kvm_arch_hardware_setup(void)
  5045. {
  5046. return kvm_x86_ops->hardware_setup();
  5047. }
  5048. void kvm_arch_hardware_unsetup(void)
  5049. {
  5050. kvm_x86_ops->hardware_unsetup();
  5051. }
  5052. void kvm_arch_check_processor_compat(void *rtn)
  5053. {
  5054. kvm_x86_ops->check_processor_compatibility(rtn);
  5055. }
  5056. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5057. {
  5058. struct page *page;
  5059. struct kvm *kvm;
  5060. int r;
  5061. BUG_ON(vcpu->kvm == NULL);
  5062. kvm = vcpu->kvm;
  5063. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5064. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5065. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5066. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5067. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5068. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5069. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5070. else
  5071. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5072. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5073. if (!page) {
  5074. r = -ENOMEM;
  5075. goto fail;
  5076. }
  5077. vcpu->arch.pio_data = page_address(page);
  5078. if (!kvm->arch.virtual_tsc_khz)
  5079. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5080. r = kvm_mmu_create(vcpu);
  5081. if (r < 0)
  5082. goto fail_free_pio_data;
  5083. if (irqchip_in_kernel(kvm)) {
  5084. r = kvm_create_lapic(vcpu);
  5085. if (r < 0)
  5086. goto fail_mmu_destroy;
  5087. }
  5088. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5089. GFP_KERNEL);
  5090. if (!vcpu->arch.mce_banks) {
  5091. r = -ENOMEM;
  5092. goto fail_free_lapic;
  5093. }
  5094. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5095. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5096. goto fail_free_mce_banks;
  5097. return 0;
  5098. fail_free_mce_banks:
  5099. kfree(vcpu->arch.mce_banks);
  5100. fail_free_lapic:
  5101. kvm_free_lapic(vcpu);
  5102. fail_mmu_destroy:
  5103. kvm_mmu_destroy(vcpu);
  5104. fail_free_pio_data:
  5105. free_page((unsigned long)vcpu->arch.pio_data);
  5106. fail:
  5107. return r;
  5108. }
  5109. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5110. {
  5111. int idx;
  5112. kfree(vcpu->arch.mce_banks);
  5113. kvm_free_lapic(vcpu);
  5114. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5115. kvm_mmu_destroy(vcpu);
  5116. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5117. free_page((unsigned long)vcpu->arch.pio_data);
  5118. }
  5119. struct kvm *kvm_arch_create_vm(void)
  5120. {
  5121. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  5122. if (!kvm)
  5123. return ERR_PTR(-ENOMEM);
  5124. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5125. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5126. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5127. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5128. spin_lock_init(&kvm->arch.tsc_write_lock);
  5129. return kvm;
  5130. }
  5131. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5132. {
  5133. vcpu_load(vcpu);
  5134. kvm_mmu_unload(vcpu);
  5135. vcpu_put(vcpu);
  5136. }
  5137. static void kvm_free_vcpus(struct kvm *kvm)
  5138. {
  5139. unsigned int i;
  5140. struct kvm_vcpu *vcpu;
  5141. /*
  5142. * Unpin any mmu pages first.
  5143. */
  5144. kvm_for_each_vcpu(i, vcpu, kvm)
  5145. kvm_unload_vcpu_mmu(vcpu);
  5146. kvm_for_each_vcpu(i, vcpu, kvm)
  5147. kvm_arch_vcpu_free(vcpu);
  5148. mutex_lock(&kvm->lock);
  5149. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5150. kvm->vcpus[i] = NULL;
  5151. atomic_set(&kvm->online_vcpus, 0);
  5152. mutex_unlock(&kvm->lock);
  5153. }
  5154. void kvm_arch_sync_events(struct kvm *kvm)
  5155. {
  5156. kvm_free_all_assigned_devices(kvm);
  5157. kvm_free_pit(kvm);
  5158. }
  5159. void kvm_arch_destroy_vm(struct kvm *kvm)
  5160. {
  5161. kvm_iommu_unmap_guest(kvm);
  5162. kfree(kvm->arch.vpic);
  5163. kfree(kvm->arch.vioapic);
  5164. kvm_free_vcpus(kvm);
  5165. kvm_free_physmem(kvm);
  5166. if (kvm->arch.apic_access_page)
  5167. put_page(kvm->arch.apic_access_page);
  5168. if (kvm->arch.ept_identity_pagetable)
  5169. put_page(kvm->arch.ept_identity_pagetable);
  5170. cleanup_srcu_struct(&kvm->srcu);
  5171. kfree(kvm);
  5172. }
  5173. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5174. struct kvm_memory_slot *memslot,
  5175. struct kvm_memory_slot old,
  5176. struct kvm_userspace_memory_region *mem,
  5177. int user_alloc)
  5178. {
  5179. int npages = memslot->npages;
  5180. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5181. /* Prevent internal slot pages from being moved by fork()/COW. */
  5182. if (memslot->id >= KVM_MEMORY_SLOTS)
  5183. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5184. /*To keep backward compatibility with older userspace,
  5185. *x86 needs to hanlde !user_alloc case.
  5186. */
  5187. if (!user_alloc) {
  5188. if (npages && !old.rmap) {
  5189. unsigned long userspace_addr;
  5190. down_write(&current->mm->mmap_sem);
  5191. userspace_addr = do_mmap(NULL, 0,
  5192. npages * PAGE_SIZE,
  5193. PROT_READ | PROT_WRITE,
  5194. map_flags,
  5195. 0);
  5196. up_write(&current->mm->mmap_sem);
  5197. if (IS_ERR((void *)userspace_addr))
  5198. return PTR_ERR((void *)userspace_addr);
  5199. memslot->userspace_addr = userspace_addr;
  5200. }
  5201. }
  5202. return 0;
  5203. }
  5204. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5205. struct kvm_userspace_memory_region *mem,
  5206. struct kvm_memory_slot old,
  5207. int user_alloc)
  5208. {
  5209. int npages = mem->memory_size >> PAGE_SHIFT;
  5210. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5211. int ret;
  5212. down_write(&current->mm->mmap_sem);
  5213. ret = do_munmap(current->mm, old.userspace_addr,
  5214. old.npages * PAGE_SIZE);
  5215. up_write(&current->mm->mmap_sem);
  5216. if (ret < 0)
  5217. printk(KERN_WARNING
  5218. "kvm_vm_ioctl_set_memory_region: "
  5219. "failed to munmap memory\n");
  5220. }
  5221. spin_lock(&kvm->mmu_lock);
  5222. if (!kvm->arch.n_requested_mmu_pages) {
  5223. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5224. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5225. }
  5226. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5227. spin_unlock(&kvm->mmu_lock);
  5228. }
  5229. void kvm_arch_flush_shadow(struct kvm *kvm)
  5230. {
  5231. kvm_mmu_zap_all(kvm);
  5232. kvm_reload_remote_mmus(kvm);
  5233. }
  5234. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5235. {
  5236. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  5237. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5238. || vcpu->arch.nmi_pending ||
  5239. (kvm_arch_interrupt_allowed(vcpu) &&
  5240. kvm_cpu_has_interrupt(vcpu));
  5241. }
  5242. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5243. {
  5244. int me;
  5245. int cpu = vcpu->cpu;
  5246. if (waitqueue_active(&vcpu->wq)) {
  5247. wake_up_interruptible(&vcpu->wq);
  5248. ++vcpu->stat.halt_wakeup;
  5249. }
  5250. me = get_cpu();
  5251. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5252. if (atomic_xchg(&vcpu->guest_mode, 0))
  5253. smp_send_reschedule(cpu);
  5254. put_cpu();
  5255. }
  5256. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5257. {
  5258. return kvm_x86_ops->interrupt_allowed(vcpu);
  5259. }
  5260. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5261. {
  5262. unsigned long current_rip = kvm_rip_read(vcpu) +
  5263. get_segment_base(vcpu, VCPU_SREG_CS);
  5264. return current_rip == linear_rip;
  5265. }
  5266. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5267. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5268. {
  5269. unsigned long rflags;
  5270. rflags = kvm_x86_ops->get_rflags(vcpu);
  5271. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5272. rflags &= ~X86_EFLAGS_TF;
  5273. return rflags;
  5274. }
  5275. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5276. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5277. {
  5278. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5279. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5280. rflags |= X86_EFLAGS_TF;
  5281. kvm_x86_ops->set_rflags(vcpu, rflags);
  5282. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5283. }
  5284. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5285. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5286. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5287. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5288. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5289. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5290. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5291. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5292. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5293. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5294. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5295. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5296. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);