bnx2.c 137 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004, 2005, 2006 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include "bnx2.h"
  12. #include "bnx2_fw.h"
  13. #define DRV_MODULE_NAME "bnx2"
  14. #define PFX DRV_MODULE_NAME ": "
  15. #define DRV_MODULE_VERSION "1.4.31"
  16. #define DRV_MODULE_RELDATE "January 19, 2006"
  17. #define RUN_AT(x) (jiffies + (x))
  18. /* Time in jiffies before concluding the transmitter is hung. */
  19. #define TX_TIMEOUT (5*HZ)
  20. static char version[] __devinitdata =
  21. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  22. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  23. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
  24. MODULE_LICENSE("GPL");
  25. MODULE_VERSION(DRV_MODULE_VERSION);
  26. static int disable_msi = 0;
  27. module_param(disable_msi, int, 0);
  28. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  29. typedef enum {
  30. BCM5706 = 0,
  31. NC370T,
  32. NC370I,
  33. BCM5706S,
  34. NC370F,
  35. BCM5708,
  36. BCM5708S,
  37. } board_t;
  38. /* indexed by board_t, above */
  39. static const struct {
  40. char *name;
  41. } board_info[] __devinitdata = {
  42. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  43. { "HP NC370T Multifunction Gigabit Server Adapter" },
  44. { "HP NC370i Multifunction Gigabit Server Adapter" },
  45. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  46. { "HP NC370F Multifunction Gigabit Server Adapter" },
  47. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  48. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  49. };
  50. static struct pci_device_id bnx2_pci_tbl[] = {
  51. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  52. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  53. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  54. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  55. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  56. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  57. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  58. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  59. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  60. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  61. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  62. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  63. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  64. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  65. { 0, }
  66. };
  67. static struct flash_spec flash_table[] =
  68. {
  69. /* Slow EEPROM */
  70. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  71. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  72. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  73. "EEPROM - slow"},
  74. /* Expansion entry 0001 */
  75. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  76. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  77. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  78. "Entry 0001"},
  79. /* Saifun SA25F010 (non-buffered flash) */
  80. /* strap, cfg1, & write1 need updates */
  81. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  82. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  83. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  84. "Non-buffered flash (128kB)"},
  85. /* Saifun SA25F020 (non-buffered flash) */
  86. /* strap, cfg1, & write1 need updates */
  87. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  88. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  89. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  90. "Non-buffered flash (256kB)"},
  91. /* Expansion entry 0100 */
  92. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  93. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  94. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  95. "Entry 0100"},
  96. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  97. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  98. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  99. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  100. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  101. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  102. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  103. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  104. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  105. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  106. /* Saifun SA25F005 (non-buffered flash) */
  107. /* strap, cfg1, & write1 need updates */
  108. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  109. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  110. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  111. "Non-buffered flash (64kB)"},
  112. /* Fast EEPROM */
  113. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  114. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  115. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  116. "EEPROM - fast"},
  117. /* Expansion entry 1001 */
  118. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  119. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  120. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  121. "Entry 1001"},
  122. /* Expansion entry 1010 */
  123. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  124. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  125. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  126. "Entry 1010"},
  127. /* ATMEL AT45DB011B (buffered flash) */
  128. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  129. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  130. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  131. "Buffered flash (128kB)"},
  132. /* Expansion entry 1100 */
  133. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  134. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  135. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  136. "Entry 1100"},
  137. /* Expansion entry 1101 */
  138. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  139. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  140. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  141. "Entry 1101"},
  142. /* Ateml Expansion entry 1110 */
  143. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  144. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  145. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 1110 (Atmel)"},
  147. /* ATMEL AT45DB021B (buffered flash) */
  148. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  149. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  150. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  151. "Buffered flash (256kB)"},
  152. };
  153. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  154. static inline u32 bnx2_tx_avail(struct bnx2 *bp)
  155. {
  156. u32 diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons);
  157. if (diff > MAX_TX_DESC_CNT)
  158. diff = (diff & MAX_TX_DESC_CNT) - 1;
  159. return (bp->tx_ring_size - diff);
  160. }
  161. static u32
  162. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  163. {
  164. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  165. return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
  166. }
  167. static void
  168. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  169. {
  170. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  171. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  172. }
  173. static void
  174. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  175. {
  176. offset += cid_addr;
  177. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  178. REG_WR(bp, BNX2_CTX_DATA, val);
  179. }
  180. static int
  181. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  182. {
  183. u32 val1;
  184. int i, ret;
  185. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  186. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  187. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  188. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  189. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  190. udelay(40);
  191. }
  192. val1 = (bp->phy_addr << 21) | (reg << 16) |
  193. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  194. BNX2_EMAC_MDIO_COMM_START_BUSY;
  195. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  196. for (i = 0; i < 50; i++) {
  197. udelay(10);
  198. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  199. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  200. udelay(5);
  201. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  202. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  203. break;
  204. }
  205. }
  206. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  207. *val = 0x0;
  208. ret = -EBUSY;
  209. }
  210. else {
  211. *val = val1;
  212. ret = 0;
  213. }
  214. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  215. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  216. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  217. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  218. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  219. udelay(40);
  220. }
  221. return ret;
  222. }
  223. static int
  224. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  225. {
  226. u32 val1;
  227. int i, ret;
  228. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  229. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  230. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  231. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  232. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  233. udelay(40);
  234. }
  235. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  236. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  237. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  238. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  239. for (i = 0; i < 50; i++) {
  240. udelay(10);
  241. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  242. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  243. udelay(5);
  244. break;
  245. }
  246. }
  247. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  248. ret = -EBUSY;
  249. else
  250. ret = 0;
  251. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  252. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  253. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  254. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  255. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  256. udelay(40);
  257. }
  258. return ret;
  259. }
  260. static void
  261. bnx2_disable_int(struct bnx2 *bp)
  262. {
  263. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  264. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  265. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  266. }
  267. static void
  268. bnx2_enable_int(struct bnx2 *bp)
  269. {
  270. u32 val;
  271. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  272. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  273. BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
  274. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  275. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
  276. val = REG_RD(bp, BNX2_HC_COMMAND);
  277. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW);
  278. }
  279. static void
  280. bnx2_disable_int_sync(struct bnx2 *bp)
  281. {
  282. atomic_inc(&bp->intr_sem);
  283. bnx2_disable_int(bp);
  284. synchronize_irq(bp->pdev->irq);
  285. }
  286. static void
  287. bnx2_netif_stop(struct bnx2 *bp)
  288. {
  289. bnx2_disable_int_sync(bp);
  290. if (netif_running(bp->dev)) {
  291. netif_poll_disable(bp->dev);
  292. netif_tx_disable(bp->dev);
  293. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  294. }
  295. }
  296. static void
  297. bnx2_netif_start(struct bnx2 *bp)
  298. {
  299. if (atomic_dec_and_test(&bp->intr_sem)) {
  300. if (netif_running(bp->dev)) {
  301. netif_wake_queue(bp->dev);
  302. netif_poll_enable(bp->dev);
  303. bnx2_enable_int(bp);
  304. }
  305. }
  306. }
  307. static void
  308. bnx2_free_mem(struct bnx2 *bp)
  309. {
  310. if (bp->stats_blk) {
  311. pci_free_consistent(bp->pdev, sizeof(struct statistics_block),
  312. bp->stats_blk, bp->stats_blk_mapping);
  313. bp->stats_blk = NULL;
  314. }
  315. if (bp->status_blk) {
  316. pci_free_consistent(bp->pdev, sizeof(struct status_block),
  317. bp->status_blk, bp->status_blk_mapping);
  318. bp->status_blk = NULL;
  319. }
  320. if (bp->tx_desc_ring) {
  321. pci_free_consistent(bp->pdev,
  322. sizeof(struct tx_bd) * TX_DESC_CNT,
  323. bp->tx_desc_ring, bp->tx_desc_mapping);
  324. bp->tx_desc_ring = NULL;
  325. }
  326. kfree(bp->tx_buf_ring);
  327. bp->tx_buf_ring = NULL;
  328. if (bp->rx_desc_ring) {
  329. pci_free_consistent(bp->pdev,
  330. sizeof(struct rx_bd) * RX_DESC_CNT,
  331. bp->rx_desc_ring, bp->rx_desc_mapping);
  332. bp->rx_desc_ring = NULL;
  333. }
  334. kfree(bp->rx_buf_ring);
  335. bp->rx_buf_ring = NULL;
  336. }
  337. static int
  338. bnx2_alloc_mem(struct bnx2 *bp)
  339. {
  340. bp->tx_buf_ring = kmalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
  341. GFP_KERNEL);
  342. if (bp->tx_buf_ring == NULL)
  343. return -ENOMEM;
  344. memset(bp->tx_buf_ring, 0, sizeof(struct sw_bd) * TX_DESC_CNT);
  345. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
  346. sizeof(struct tx_bd) *
  347. TX_DESC_CNT,
  348. &bp->tx_desc_mapping);
  349. if (bp->tx_desc_ring == NULL)
  350. goto alloc_mem_err;
  351. bp->rx_buf_ring = kmalloc(sizeof(struct sw_bd) * RX_DESC_CNT,
  352. GFP_KERNEL);
  353. if (bp->rx_buf_ring == NULL)
  354. goto alloc_mem_err;
  355. memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT);
  356. bp->rx_desc_ring = pci_alloc_consistent(bp->pdev,
  357. sizeof(struct rx_bd) *
  358. RX_DESC_CNT,
  359. &bp->rx_desc_mapping);
  360. if (bp->rx_desc_ring == NULL)
  361. goto alloc_mem_err;
  362. bp->status_blk = pci_alloc_consistent(bp->pdev,
  363. sizeof(struct status_block),
  364. &bp->status_blk_mapping);
  365. if (bp->status_blk == NULL)
  366. goto alloc_mem_err;
  367. memset(bp->status_blk, 0, sizeof(struct status_block));
  368. bp->stats_blk = pci_alloc_consistent(bp->pdev,
  369. sizeof(struct statistics_block),
  370. &bp->stats_blk_mapping);
  371. if (bp->stats_blk == NULL)
  372. goto alloc_mem_err;
  373. memset(bp->stats_blk, 0, sizeof(struct statistics_block));
  374. return 0;
  375. alloc_mem_err:
  376. bnx2_free_mem(bp);
  377. return -ENOMEM;
  378. }
  379. static void
  380. bnx2_report_fw_link(struct bnx2 *bp)
  381. {
  382. u32 fw_link_status = 0;
  383. if (bp->link_up) {
  384. u32 bmsr;
  385. switch (bp->line_speed) {
  386. case SPEED_10:
  387. if (bp->duplex == DUPLEX_HALF)
  388. fw_link_status = BNX2_LINK_STATUS_10HALF;
  389. else
  390. fw_link_status = BNX2_LINK_STATUS_10FULL;
  391. break;
  392. case SPEED_100:
  393. if (bp->duplex == DUPLEX_HALF)
  394. fw_link_status = BNX2_LINK_STATUS_100HALF;
  395. else
  396. fw_link_status = BNX2_LINK_STATUS_100FULL;
  397. break;
  398. case SPEED_1000:
  399. if (bp->duplex == DUPLEX_HALF)
  400. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  401. else
  402. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  403. break;
  404. case SPEED_2500:
  405. if (bp->duplex == DUPLEX_HALF)
  406. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  407. else
  408. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  409. break;
  410. }
  411. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  412. if (bp->autoneg) {
  413. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  414. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  415. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  416. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  417. bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
  418. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  419. else
  420. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  421. }
  422. }
  423. else
  424. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  425. REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
  426. }
  427. static void
  428. bnx2_report_link(struct bnx2 *bp)
  429. {
  430. if (bp->link_up) {
  431. netif_carrier_on(bp->dev);
  432. printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
  433. printk("%d Mbps ", bp->line_speed);
  434. if (bp->duplex == DUPLEX_FULL)
  435. printk("full duplex");
  436. else
  437. printk("half duplex");
  438. if (bp->flow_ctrl) {
  439. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  440. printk(", receive ");
  441. if (bp->flow_ctrl & FLOW_CTRL_TX)
  442. printk("& transmit ");
  443. }
  444. else {
  445. printk(", transmit ");
  446. }
  447. printk("flow control ON");
  448. }
  449. printk("\n");
  450. }
  451. else {
  452. netif_carrier_off(bp->dev);
  453. printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
  454. }
  455. bnx2_report_fw_link(bp);
  456. }
  457. static void
  458. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  459. {
  460. u32 local_adv, remote_adv;
  461. bp->flow_ctrl = 0;
  462. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  463. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  464. if (bp->duplex == DUPLEX_FULL) {
  465. bp->flow_ctrl = bp->req_flow_ctrl;
  466. }
  467. return;
  468. }
  469. if (bp->duplex != DUPLEX_FULL) {
  470. return;
  471. }
  472. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  473. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  474. u32 val;
  475. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  476. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  477. bp->flow_ctrl |= FLOW_CTRL_TX;
  478. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  479. bp->flow_ctrl |= FLOW_CTRL_RX;
  480. return;
  481. }
  482. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  483. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  484. if (bp->phy_flags & PHY_SERDES_FLAG) {
  485. u32 new_local_adv = 0;
  486. u32 new_remote_adv = 0;
  487. if (local_adv & ADVERTISE_1000XPAUSE)
  488. new_local_adv |= ADVERTISE_PAUSE_CAP;
  489. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  490. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  491. if (remote_adv & ADVERTISE_1000XPAUSE)
  492. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  493. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  494. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  495. local_adv = new_local_adv;
  496. remote_adv = new_remote_adv;
  497. }
  498. /* See Table 28B-3 of 802.3ab-1999 spec. */
  499. if (local_adv & ADVERTISE_PAUSE_CAP) {
  500. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  501. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  502. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  503. }
  504. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  505. bp->flow_ctrl = FLOW_CTRL_RX;
  506. }
  507. }
  508. else {
  509. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  510. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  511. }
  512. }
  513. }
  514. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  515. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  516. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  517. bp->flow_ctrl = FLOW_CTRL_TX;
  518. }
  519. }
  520. }
  521. static int
  522. bnx2_5708s_linkup(struct bnx2 *bp)
  523. {
  524. u32 val;
  525. bp->link_up = 1;
  526. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  527. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  528. case BCM5708S_1000X_STAT1_SPEED_10:
  529. bp->line_speed = SPEED_10;
  530. break;
  531. case BCM5708S_1000X_STAT1_SPEED_100:
  532. bp->line_speed = SPEED_100;
  533. break;
  534. case BCM5708S_1000X_STAT1_SPEED_1G:
  535. bp->line_speed = SPEED_1000;
  536. break;
  537. case BCM5708S_1000X_STAT1_SPEED_2G5:
  538. bp->line_speed = SPEED_2500;
  539. break;
  540. }
  541. if (val & BCM5708S_1000X_STAT1_FD)
  542. bp->duplex = DUPLEX_FULL;
  543. else
  544. bp->duplex = DUPLEX_HALF;
  545. return 0;
  546. }
  547. static int
  548. bnx2_5706s_linkup(struct bnx2 *bp)
  549. {
  550. u32 bmcr, local_adv, remote_adv, common;
  551. bp->link_up = 1;
  552. bp->line_speed = SPEED_1000;
  553. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  554. if (bmcr & BMCR_FULLDPLX) {
  555. bp->duplex = DUPLEX_FULL;
  556. }
  557. else {
  558. bp->duplex = DUPLEX_HALF;
  559. }
  560. if (!(bmcr & BMCR_ANENABLE)) {
  561. return 0;
  562. }
  563. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  564. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  565. common = local_adv & remote_adv;
  566. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  567. if (common & ADVERTISE_1000XFULL) {
  568. bp->duplex = DUPLEX_FULL;
  569. }
  570. else {
  571. bp->duplex = DUPLEX_HALF;
  572. }
  573. }
  574. return 0;
  575. }
  576. static int
  577. bnx2_copper_linkup(struct bnx2 *bp)
  578. {
  579. u32 bmcr;
  580. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  581. if (bmcr & BMCR_ANENABLE) {
  582. u32 local_adv, remote_adv, common;
  583. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  584. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  585. common = local_adv & (remote_adv >> 2);
  586. if (common & ADVERTISE_1000FULL) {
  587. bp->line_speed = SPEED_1000;
  588. bp->duplex = DUPLEX_FULL;
  589. }
  590. else if (common & ADVERTISE_1000HALF) {
  591. bp->line_speed = SPEED_1000;
  592. bp->duplex = DUPLEX_HALF;
  593. }
  594. else {
  595. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  596. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  597. common = local_adv & remote_adv;
  598. if (common & ADVERTISE_100FULL) {
  599. bp->line_speed = SPEED_100;
  600. bp->duplex = DUPLEX_FULL;
  601. }
  602. else if (common & ADVERTISE_100HALF) {
  603. bp->line_speed = SPEED_100;
  604. bp->duplex = DUPLEX_HALF;
  605. }
  606. else if (common & ADVERTISE_10FULL) {
  607. bp->line_speed = SPEED_10;
  608. bp->duplex = DUPLEX_FULL;
  609. }
  610. else if (common & ADVERTISE_10HALF) {
  611. bp->line_speed = SPEED_10;
  612. bp->duplex = DUPLEX_HALF;
  613. }
  614. else {
  615. bp->line_speed = 0;
  616. bp->link_up = 0;
  617. }
  618. }
  619. }
  620. else {
  621. if (bmcr & BMCR_SPEED100) {
  622. bp->line_speed = SPEED_100;
  623. }
  624. else {
  625. bp->line_speed = SPEED_10;
  626. }
  627. if (bmcr & BMCR_FULLDPLX) {
  628. bp->duplex = DUPLEX_FULL;
  629. }
  630. else {
  631. bp->duplex = DUPLEX_HALF;
  632. }
  633. }
  634. return 0;
  635. }
  636. static int
  637. bnx2_set_mac_link(struct bnx2 *bp)
  638. {
  639. u32 val;
  640. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  641. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  642. (bp->duplex == DUPLEX_HALF)) {
  643. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  644. }
  645. /* Configure the EMAC mode register. */
  646. val = REG_RD(bp, BNX2_EMAC_MODE);
  647. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  648. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  649. BNX2_EMAC_MODE_25G);
  650. if (bp->link_up) {
  651. switch (bp->line_speed) {
  652. case SPEED_10:
  653. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  654. val |= BNX2_EMAC_MODE_PORT_MII_10;
  655. break;
  656. }
  657. /* fall through */
  658. case SPEED_100:
  659. val |= BNX2_EMAC_MODE_PORT_MII;
  660. break;
  661. case SPEED_2500:
  662. val |= BNX2_EMAC_MODE_25G;
  663. /* fall through */
  664. case SPEED_1000:
  665. val |= BNX2_EMAC_MODE_PORT_GMII;
  666. break;
  667. }
  668. }
  669. else {
  670. val |= BNX2_EMAC_MODE_PORT_GMII;
  671. }
  672. /* Set the MAC to operate in the appropriate duplex mode. */
  673. if (bp->duplex == DUPLEX_HALF)
  674. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  675. REG_WR(bp, BNX2_EMAC_MODE, val);
  676. /* Enable/disable rx PAUSE. */
  677. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  678. if (bp->flow_ctrl & FLOW_CTRL_RX)
  679. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  680. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  681. /* Enable/disable tx PAUSE. */
  682. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  683. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  684. if (bp->flow_ctrl & FLOW_CTRL_TX)
  685. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  686. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  687. /* Acknowledge the interrupt. */
  688. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  689. return 0;
  690. }
  691. static int
  692. bnx2_set_link(struct bnx2 *bp)
  693. {
  694. u32 bmsr;
  695. u8 link_up;
  696. if (bp->loopback == MAC_LOOPBACK) {
  697. bp->link_up = 1;
  698. return 0;
  699. }
  700. link_up = bp->link_up;
  701. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  702. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  703. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  704. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  705. u32 val;
  706. val = REG_RD(bp, BNX2_EMAC_STATUS);
  707. if (val & BNX2_EMAC_STATUS_LINK)
  708. bmsr |= BMSR_LSTATUS;
  709. else
  710. bmsr &= ~BMSR_LSTATUS;
  711. }
  712. if (bmsr & BMSR_LSTATUS) {
  713. bp->link_up = 1;
  714. if (bp->phy_flags & PHY_SERDES_FLAG) {
  715. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  716. bnx2_5706s_linkup(bp);
  717. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  718. bnx2_5708s_linkup(bp);
  719. }
  720. else {
  721. bnx2_copper_linkup(bp);
  722. }
  723. bnx2_resolve_flow_ctrl(bp);
  724. }
  725. else {
  726. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  727. (bp->autoneg & AUTONEG_SPEED)) {
  728. u32 bmcr;
  729. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  730. if (!(bmcr & BMCR_ANENABLE)) {
  731. bnx2_write_phy(bp, MII_BMCR, bmcr |
  732. BMCR_ANENABLE);
  733. }
  734. }
  735. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  736. bp->link_up = 0;
  737. }
  738. if (bp->link_up != link_up) {
  739. bnx2_report_link(bp);
  740. }
  741. bnx2_set_mac_link(bp);
  742. return 0;
  743. }
  744. static int
  745. bnx2_reset_phy(struct bnx2 *bp)
  746. {
  747. int i;
  748. u32 reg;
  749. bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
  750. #define PHY_RESET_MAX_WAIT 100
  751. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  752. udelay(10);
  753. bnx2_read_phy(bp, MII_BMCR, &reg);
  754. if (!(reg & BMCR_RESET)) {
  755. udelay(20);
  756. break;
  757. }
  758. }
  759. if (i == PHY_RESET_MAX_WAIT) {
  760. return -EBUSY;
  761. }
  762. return 0;
  763. }
  764. static u32
  765. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  766. {
  767. u32 adv = 0;
  768. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  769. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  770. if (bp->phy_flags & PHY_SERDES_FLAG) {
  771. adv = ADVERTISE_1000XPAUSE;
  772. }
  773. else {
  774. adv = ADVERTISE_PAUSE_CAP;
  775. }
  776. }
  777. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  778. if (bp->phy_flags & PHY_SERDES_FLAG) {
  779. adv = ADVERTISE_1000XPSE_ASYM;
  780. }
  781. else {
  782. adv = ADVERTISE_PAUSE_ASYM;
  783. }
  784. }
  785. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  786. if (bp->phy_flags & PHY_SERDES_FLAG) {
  787. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  788. }
  789. else {
  790. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  791. }
  792. }
  793. return adv;
  794. }
  795. static int
  796. bnx2_setup_serdes_phy(struct bnx2 *bp)
  797. {
  798. u32 adv, bmcr, up1;
  799. u32 new_adv = 0;
  800. if (!(bp->autoneg & AUTONEG_SPEED)) {
  801. u32 new_bmcr;
  802. int force_link_down = 0;
  803. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  804. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  805. if (up1 & BCM5708S_UP1_2G5) {
  806. up1 &= ~BCM5708S_UP1_2G5;
  807. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  808. force_link_down = 1;
  809. }
  810. }
  811. bnx2_read_phy(bp, MII_ADVERTISE, &adv);
  812. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  813. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  814. new_bmcr = bmcr & ~BMCR_ANENABLE;
  815. new_bmcr |= BMCR_SPEED1000;
  816. if (bp->req_duplex == DUPLEX_FULL) {
  817. adv |= ADVERTISE_1000XFULL;
  818. new_bmcr |= BMCR_FULLDPLX;
  819. }
  820. else {
  821. adv |= ADVERTISE_1000XHALF;
  822. new_bmcr &= ~BMCR_FULLDPLX;
  823. }
  824. if ((new_bmcr != bmcr) || (force_link_down)) {
  825. /* Force a link down visible on the other side */
  826. if (bp->link_up) {
  827. bnx2_write_phy(bp, MII_ADVERTISE, adv &
  828. ~(ADVERTISE_1000XFULL |
  829. ADVERTISE_1000XHALF));
  830. bnx2_write_phy(bp, MII_BMCR, bmcr |
  831. BMCR_ANRESTART | BMCR_ANENABLE);
  832. bp->link_up = 0;
  833. netif_carrier_off(bp->dev);
  834. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  835. }
  836. bnx2_write_phy(bp, MII_ADVERTISE, adv);
  837. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  838. }
  839. return 0;
  840. }
  841. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  842. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  843. up1 |= BCM5708S_UP1_2G5;
  844. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  845. }
  846. if (bp->advertising & ADVERTISED_1000baseT_Full)
  847. new_adv |= ADVERTISE_1000XFULL;
  848. new_adv |= bnx2_phy_get_pause_adv(bp);
  849. bnx2_read_phy(bp, MII_ADVERTISE, &adv);
  850. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  851. bp->serdes_an_pending = 0;
  852. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  853. /* Force a link down visible on the other side */
  854. if (bp->link_up) {
  855. int i;
  856. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  857. for (i = 0; i < 110; i++) {
  858. udelay(100);
  859. }
  860. }
  861. bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
  862. bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
  863. BMCR_ANENABLE);
  864. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  865. /* Speed up link-up time when the link partner
  866. * does not autonegotiate which is very common
  867. * in blade servers. Some blade servers use
  868. * IPMI for kerboard input and it's important
  869. * to minimize link disruptions. Autoneg. involves
  870. * exchanging base pages plus 3 next pages and
  871. * normally completes in about 120 msec.
  872. */
  873. bp->current_interval = SERDES_AN_TIMEOUT;
  874. bp->serdes_an_pending = 1;
  875. mod_timer(&bp->timer, jiffies + bp->current_interval);
  876. }
  877. }
  878. return 0;
  879. }
  880. #define ETHTOOL_ALL_FIBRE_SPEED \
  881. (ADVERTISED_1000baseT_Full)
  882. #define ETHTOOL_ALL_COPPER_SPEED \
  883. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  884. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  885. ADVERTISED_1000baseT_Full)
  886. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  887. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  888. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  889. static int
  890. bnx2_setup_copper_phy(struct bnx2 *bp)
  891. {
  892. u32 bmcr;
  893. u32 new_bmcr;
  894. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  895. if (bp->autoneg & AUTONEG_SPEED) {
  896. u32 adv_reg, adv1000_reg;
  897. u32 new_adv_reg = 0;
  898. u32 new_adv1000_reg = 0;
  899. bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
  900. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  901. ADVERTISE_PAUSE_ASYM);
  902. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  903. adv1000_reg &= PHY_ALL_1000_SPEED;
  904. if (bp->advertising & ADVERTISED_10baseT_Half)
  905. new_adv_reg |= ADVERTISE_10HALF;
  906. if (bp->advertising & ADVERTISED_10baseT_Full)
  907. new_adv_reg |= ADVERTISE_10FULL;
  908. if (bp->advertising & ADVERTISED_100baseT_Half)
  909. new_adv_reg |= ADVERTISE_100HALF;
  910. if (bp->advertising & ADVERTISED_100baseT_Full)
  911. new_adv_reg |= ADVERTISE_100FULL;
  912. if (bp->advertising & ADVERTISED_1000baseT_Full)
  913. new_adv1000_reg |= ADVERTISE_1000FULL;
  914. new_adv_reg |= ADVERTISE_CSMA;
  915. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  916. if ((adv1000_reg != new_adv1000_reg) ||
  917. (adv_reg != new_adv_reg) ||
  918. ((bmcr & BMCR_ANENABLE) == 0)) {
  919. bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
  920. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  921. bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
  922. BMCR_ANENABLE);
  923. }
  924. else if (bp->link_up) {
  925. /* Flow ctrl may have changed from auto to forced */
  926. /* or vice-versa. */
  927. bnx2_resolve_flow_ctrl(bp);
  928. bnx2_set_mac_link(bp);
  929. }
  930. return 0;
  931. }
  932. new_bmcr = 0;
  933. if (bp->req_line_speed == SPEED_100) {
  934. new_bmcr |= BMCR_SPEED100;
  935. }
  936. if (bp->req_duplex == DUPLEX_FULL) {
  937. new_bmcr |= BMCR_FULLDPLX;
  938. }
  939. if (new_bmcr != bmcr) {
  940. u32 bmsr;
  941. int i = 0;
  942. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  943. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  944. if (bmsr & BMSR_LSTATUS) {
  945. /* Force link down */
  946. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  947. do {
  948. udelay(100);
  949. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  950. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  951. i++;
  952. } while ((bmsr & BMSR_LSTATUS) && (i < 620));
  953. }
  954. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  955. /* Normally, the new speed is setup after the link has
  956. * gone down and up again. In some cases, link will not go
  957. * down so we need to set up the new speed here.
  958. */
  959. if (bmsr & BMSR_LSTATUS) {
  960. bp->line_speed = bp->req_line_speed;
  961. bp->duplex = bp->req_duplex;
  962. bnx2_resolve_flow_ctrl(bp);
  963. bnx2_set_mac_link(bp);
  964. }
  965. }
  966. return 0;
  967. }
  968. static int
  969. bnx2_setup_phy(struct bnx2 *bp)
  970. {
  971. if (bp->loopback == MAC_LOOPBACK)
  972. return 0;
  973. if (bp->phy_flags & PHY_SERDES_FLAG) {
  974. return (bnx2_setup_serdes_phy(bp));
  975. }
  976. else {
  977. return (bnx2_setup_copper_phy(bp));
  978. }
  979. }
  980. static int
  981. bnx2_init_5708s_phy(struct bnx2 *bp)
  982. {
  983. u32 val;
  984. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  985. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  986. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  987. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  988. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  989. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  990. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  991. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  992. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  993. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  994. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  995. val |= BCM5708S_UP1_2G5;
  996. bnx2_write_phy(bp, BCM5708S_UP1, val);
  997. }
  998. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  999. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1000. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1001. /* increase tx signal amplitude */
  1002. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1003. BCM5708S_BLK_ADDR_TX_MISC);
  1004. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1005. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1006. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1007. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1008. }
  1009. val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
  1010. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1011. if (val) {
  1012. u32 is_backplane;
  1013. is_backplane = REG_RD_IND(bp, bp->shmem_base +
  1014. BNX2_SHARED_HW_CFG_CONFIG);
  1015. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1016. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1017. BCM5708S_BLK_ADDR_TX_MISC);
  1018. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1019. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1020. BCM5708S_BLK_ADDR_DIG);
  1021. }
  1022. }
  1023. return 0;
  1024. }
  1025. static int
  1026. bnx2_init_5706s_phy(struct bnx2 *bp)
  1027. {
  1028. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  1029. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  1030. REG_WR(bp, BNX2_MISC_UNUSED0, 0x300);
  1031. }
  1032. if (bp->dev->mtu > 1500) {
  1033. u32 val;
  1034. /* Set extended packet length bit */
  1035. bnx2_write_phy(bp, 0x18, 0x7);
  1036. bnx2_read_phy(bp, 0x18, &val);
  1037. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1038. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1039. bnx2_read_phy(bp, 0x1c, &val);
  1040. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1041. }
  1042. else {
  1043. u32 val;
  1044. bnx2_write_phy(bp, 0x18, 0x7);
  1045. bnx2_read_phy(bp, 0x18, &val);
  1046. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1047. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1048. bnx2_read_phy(bp, 0x1c, &val);
  1049. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1050. }
  1051. return 0;
  1052. }
  1053. static int
  1054. bnx2_init_copper_phy(struct bnx2 *bp)
  1055. {
  1056. u32 val;
  1057. bp->phy_flags |= PHY_CRC_FIX_FLAG;
  1058. if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
  1059. bnx2_write_phy(bp, 0x18, 0x0c00);
  1060. bnx2_write_phy(bp, 0x17, 0x000a);
  1061. bnx2_write_phy(bp, 0x15, 0x310b);
  1062. bnx2_write_phy(bp, 0x17, 0x201f);
  1063. bnx2_write_phy(bp, 0x15, 0x9506);
  1064. bnx2_write_phy(bp, 0x17, 0x401f);
  1065. bnx2_write_phy(bp, 0x15, 0x14e2);
  1066. bnx2_write_phy(bp, 0x18, 0x0400);
  1067. }
  1068. if (bp->dev->mtu > 1500) {
  1069. /* Set extended packet length bit */
  1070. bnx2_write_phy(bp, 0x18, 0x7);
  1071. bnx2_read_phy(bp, 0x18, &val);
  1072. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1073. bnx2_read_phy(bp, 0x10, &val);
  1074. bnx2_write_phy(bp, 0x10, val | 0x1);
  1075. }
  1076. else {
  1077. bnx2_write_phy(bp, 0x18, 0x7);
  1078. bnx2_read_phy(bp, 0x18, &val);
  1079. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1080. bnx2_read_phy(bp, 0x10, &val);
  1081. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1082. }
  1083. /* ethernet@wirespeed */
  1084. bnx2_write_phy(bp, 0x18, 0x7007);
  1085. bnx2_read_phy(bp, 0x18, &val);
  1086. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1087. return 0;
  1088. }
  1089. static int
  1090. bnx2_init_phy(struct bnx2 *bp)
  1091. {
  1092. u32 val;
  1093. int rc = 0;
  1094. bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
  1095. bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
  1096. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1097. bnx2_reset_phy(bp);
  1098. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1099. bp->phy_id = val << 16;
  1100. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1101. bp->phy_id |= val & 0xffff;
  1102. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1103. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1104. rc = bnx2_init_5706s_phy(bp);
  1105. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1106. rc = bnx2_init_5708s_phy(bp);
  1107. }
  1108. else {
  1109. rc = bnx2_init_copper_phy(bp);
  1110. }
  1111. bnx2_setup_phy(bp);
  1112. return rc;
  1113. }
  1114. static int
  1115. bnx2_set_mac_loopback(struct bnx2 *bp)
  1116. {
  1117. u32 mac_mode;
  1118. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1119. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1120. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1121. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1122. bp->link_up = 1;
  1123. return 0;
  1124. }
  1125. static int bnx2_test_link(struct bnx2 *);
  1126. static int
  1127. bnx2_set_phy_loopback(struct bnx2 *bp)
  1128. {
  1129. u32 mac_mode;
  1130. int rc, i;
  1131. spin_lock_bh(&bp->phy_lock);
  1132. rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
  1133. BMCR_SPEED1000);
  1134. spin_unlock_bh(&bp->phy_lock);
  1135. if (rc)
  1136. return rc;
  1137. for (i = 0; i < 10; i++) {
  1138. if (bnx2_test_link(bp) == 0)
  1139. break;
  1140. udelay(10);
  1141. }
  1142. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1143. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1144. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1145. BNX2_EMAC_MODE_25G);
  1146. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  1147. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1148. bp->link_up = 1;
  1149. return 0;
  1150. }
  1151. static int
  1152. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
  1153. {
  1154. int i;
  1155. u32 val;
  1156. bp->fw_wr_seq++;
  1157. msg_data |= bp->fw_wr_seq;
  1158. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1159. /* wait for an acknowledgement. */
  1160. for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
  1161. msleep(10);
  1162. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
  1163. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1164. break;
  1165. }
  1166. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  1167. return 0;
  1168. /* If we timed out, inform the firmware that this is the case. */
  1169. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  1170. if (!silent)
  1171. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  1172. "%x\n", msg_data);
  1173. msg_data &= ~BNX2_DRV_MSG_CODE;
  1174. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1175. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1176. return -EBUSY;
  1177. }
  1178. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  1179. return -EIO;
  1180. return 0;
  1181. }
  1182. static void
  1183. bnx2_init_context(struct bnx2 *bp)
  1184. {
  1185. u32 vcid;
  1186. vcid = 96;
  1187. while (vcid) {
  1188. u32 vcid_addr, pcid_addr, offset;
  1189. vcid--;
  1190. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1191. u32 new_vcid;
  1192. vcid_addr = GET_PCID_ADDR(vcid);
  1193. if (vcid & 0x8) {
  1194. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1195. }
  1196. else {
  1197. new_vcid = vcid;
  1198. }
  1199. pcid_addr = GET_PCID_ADDR(new_vcid);
  1200. }
  1201. else {
  1202. vcid_addr = GET_CID_ADDR(vcid);
  1203. pcid_addr = vcid_addr;
  1204. }
  1205. REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
  1206. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1207. /* Zero out the context. */
  1208. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
  1209. CTX_WR(bp, 0x00, offset, 0);
  1210. }
  1211. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1212. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1213. }
  1214. }
  1215. static int
  1216. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1217. {
  1218. u16 *good_mbuf;
  1219. u32 good_mbuf_cnt;
  1220. u32 val;
  1221. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1222. if (good_mbuf == NULL) {
  1223. printk(KERN_ERR PFX "Failed to allocate memory in "
  1224. "bnx2_alloc_bad_rbuf\n");
  1225. return -ENOMEM;
  1226. }
  1227. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1228. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1229. good_mbuf_cnt = 0;
  1230. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1231. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1232. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1233. REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
  1234. val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1235. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1236. /* The addresses with Bit 9 set are bad memory blocks. */
  1237. if (!(val & (1 << 9))) {
  1238. good_mbuf[good_mbuf_cnt] = (u16) val;
  1239. good_mbuf_cnt++;
  1240. }
  1241. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1242. }
  1243. /* Free the good ones back to the mbuf pool thus discarding
  1244. * all the bad ones. */
  1245. while (good_mbuf_cnt) {
  1246. good_mbuf_cnt--;
  1247. val = good_mbuf[good_mbuf_cnt];
  1248. val = (val << 9) | val | 1;
  1249. REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1250. }
  1251. kfree(good_mbuf);
  1252. return 0;
  1253. }
  1254. static void
  1255. bnx2_set_mac_addr(struct bnx2 *bp)
  1256. {
  1257. u32 val;
  1258. u8 *mac_addr = bp->dev->dev_addr;
  1259. val = (mac_addr[0] << 8) | mac_addr[1];
  1260. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1261. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1262. (mac_addr[4] << 8) | mac_addr[5];
  1263. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1264. }
  1265. static inline int
  1266. bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
  1267. {
  1268. struct sk_buff *skb;
  1269. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  1270. dma_addr_t mapping;
  1271. struct rx_bd *rxbd = &bp->rx_desc_ring[index];
  1272. unsigned long align;
  1273. skb = dev_alloc_skb(bp->rx_buf_size);
  1274. if (skb == NULL) {
  1275. return -ENOMEM;
  1276. }
  1277. if (unlikely((align = (unsigned long) skb->data & 0x7))) {
  1278. skb_reserve(skb, 8 - align);
  1279. }
  1280. skb->dev = bp->dev;
  1281. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  1282. PCI_DMA_FROMDEVICE);
  1283. rx_buf->skb = skb;
  1284. pci_unmap_addr_set(rx_buf, mapping, mapping);
  1285. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1286. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1287. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1288. return 0;
  1289. }
  1290. static void
  1291. bnx2_phy_int(struct bnx2 *bp)
  1292. {
  1293. u32 new_link_state, old_link_state;
  1294. new_link_state = bp->status_blk->status_attn_bits &
  1295. STATUS_ATTN_BITS_LINK_STATE;
  1296. old_link_state = bp->status_blk->status_attn_bits_ack &
  1297. STATUS_ATTN_BITS_LINK_STATE;
  1298. if (new_link_state != old_link_state) {
  1299. if (new_link_state) {
  1300. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
  1301. STATUS_ATTN_BITS_LINK_STATE);
  1302. }
  1303. else {
  1304. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
  1305. STATUS_ATTN_BITS_LINK_STATE);
  1306. }
  1307. bnx2_set_link(bp);
  1308. }
  1309. }
  1310. static void
  1311. bnx2_tx_int(struct bnx2 *bp)
  1312. {
  1313. struct status_block *sblk = bp->status_blk;
  1314. u16 hw_cons, sw_cons, sw_ring_cons;
  1315. int tx_free_bd = 0;
  1316. hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
  1317. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1318. hw_cons++;
  1319. }
  1320. sw_cons = bp->tx_cons;
  1321. while (sw_cons != hw_cons) {
  1322. struct sw_bd *tx_buf;
  1323. struct sk_buff *skb;
  1324. int i, last;
  1325. sw_ring_cons = TX_RING_IDX(sw_cons);
  1326. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  1327. skb = tx_buf->skb;
  1328. #ifdef BCM_TSO
  1329. /* partial BD completions possible with TSO packets */
  1330. if (skb_shinfo(skb)->tso_size) {
  1331. u16 last_idx, last_ring_idx;
  1332. last_idx = sw_cons +
  1333. skb_shinfo(skb)->nr_frags + 1;
  1334. last_ring_idx = sw_ring_cons +
  1335. skb_shinfo(skb)->nr_frags + 1;
  1336. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  1337. last_idx++;
  1338. }
  1339. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  1340. break;
  1341. }
  1342. }
  1343. #endif
  1344. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  1345. skb_headlen(skb), PCI_DMA_TODEVICE);
  1346. tx_buf->skb = NULL;
  1347. last = skb_shinfo(skb)->nr_frags;
  1348. for (i = 0; i < last; i++) {
  1349. sw_cons = NEXT_TX_BD(sw_cons);
  1350. pci_unmap_page(bp->pdev,
  1351. pci_unmap_addr(
  1352. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  1353. mapping),
  1354. skb_shinfo(skb)->frags[i].size,
  1355. PCI_DMA_TODEVICE);
  1356. }
  1357. sw_cons = NEXT_TX_BD(sw_cons);
  1358. tx_free_bd += last + 1;
  1359. dev_kfree_skb_irq(skb);
  1360. hw_cons = bp->hw_tx_cons =
  1361. sblk->status_tx_quick_consumer_index0;
  1362. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1363. hw_cons++;
  1364. }
  1365. }
  1366. bp->tx_cons = sw_cons;
  1367. if (unlikely(netif_queue_stopped(bp->dev))) {
  1368. spin_lock(&bp->tx_lock);
  1369. if ((netif_queue_stopped(bp->dev)) &&
  1370. (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)) {
  1371. netif_wake_queue(bp->dev);
  1372. }
  1373. spin_unlock(&bp->tx_lock);
  1374. }
  1375. }
  1376. static inline void
  1377. bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
  1378. u16 cons, u16 prod)
  1379. {
  1380. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  1381. struct rx_bd *cons_bd, *prod_bd;
  1382. cons_rx_buf = &bp->rx_buf_ring[cons];
  1383. prod_rx_buf = &bp->rx_buf_ring[prod];
  1384. pci_dma_sync_single_for_device(bp->pdev,
  1385. pci_unmap_addr(cons_rx_buf, mapping),
  1386. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1387. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1388. prod_rx_buf->skb = skb;
  1389. if (cons == prod)
  1390. return;
  1391. pci_unmap_addr_set(prod_rx_buf, mapping,
  1392. pci_unmap_addr(cons_rx_buf, mapping));
  1393. cons_bd = &bp->rx_desc_ring[cons];
  1394. prod_bd = &bp->rx_desc_ring[prod];
  1395. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  1396. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  1397. }
  1398. static int
  1399. bnx2_rx_int(struct bnx2 *bp, int budget)
  1400. {
  1401. struct status_block *sblk = bp->status_blk;
  1402. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  1403. struct l2_fhdr *rx_hdr;
  1404. int rx_pkt = 0;
  1405. hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
  1406. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
  1407. hw_cons++;
  1408. }
  1409. sw_cons = bp->rx_cons;
  1410. sw_prod = bp->rx_prod;
  1411. /* Memory barrier necessary as speculative reads of the rx
  1412. * buffer can be ahead of the index in the status block
  1413. */
  1414. rmb();
  1415. while (sw_cons != hw_cons) {
  1416. unsigned int len;
  1417. u32 status;
  1418. struct sw_bd *rx_buf;
  1419. struct sk_buff *skb;
  1420. dma_addr_t dma_addr;
  1421. sw_ring_cons = RX_RING_IDX(sw_cons);
  1422. sw_ring_prod = RX_RING_IDX(sw_prod);
  1423. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  1424. skb = rx_buf->skb;
  1425. rx_buf->skb = NULL;
  1426. dma_addr = pci_unmap_addr(rx_buf, mapping);
  1427. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  1428. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1429. rx_hdr = (struct l2_fhdr *) skb->data;
  1430. len = rx_hdr->l2_fhdr_pkt_len - 4;
  1431. if ((status = rx_hdr->l2_fhdr_status) &
  1432. (L2_FHDR_ERRORS_BAD_CRC |
  1433. L2_FHDR_ERRORS_PHY_DECODE |
  1434. L2_FHDR_ERRORS_ALIGNMENT |
  1435. L2_FHDR_ERRORS_TOO_SHORT |
  1436. L2_FHDR_ERRORS_GIANT_FRAME)) {
  1437. goto reuse_rx;
  1438. }
  1439. /* Since we don't have a jumbo ring, copy small packets
  1440. * if mtu > 1500
  1441. */
  1442. if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
  1443. struct sk_buff *new_skb;
  1444. new_skb = dev_alloc_skb(len + 2);
  1445. if (new_skb == NULL)
  1446. goto reuse_rx;
  1447. /* aligned copy */
  1448. memcpy(new_skb->data,
  1449. skb->data + bp->rx_offset - 2,
  1450. len + 2);
  1451. skb_reserve(new_skb, 2);
  1452. skb_put(new_skb, len);
  1453. new_skb->dev = bp->dev;
  1454. bnx2_reuse_rx_skb(bp, skb,
  1455. sw_ring_cons, sw_ring_prod);
  1456. skb = new_skb;
  1457. }
  1458. else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
  1459. pci_unmap_single(bp->pdev, dma_addr,
  1460. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  1461. skb_reserve(skb, bp->rx_offset);
  1462. skb_put(skb, len);
  1463. }
  1464. else {
  1465. reuse_rx:
  1466. bnx2_reuse_rx_skb(bp, skb,
  1467. sw_ring_cons, sw_ring_prod);
  1468. goto next_rx;
  1469. }
  1470. skb->protocol = eth_type_trans(skb, bp->dev);
  1471. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  1472. (htons(skb->protocol) != 0x8100)) {
  1473. dev_kfree_skb_irq(skb);
  1474. goto next_rx;
  1475. }
  1476. skb->ip_summed = CHECKSUM_NONE;
  1477. if (bp->rx_csum &&
  1478. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  1479. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  1480. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  1481. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  1482. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1483. }
  1484. #ifdef BCM_VLAN
  1485. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
  1486. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  1487. rx_hdr->l2_fhdr_vlan_tag);
  1488. }
  1489. else
  1490. #endif
  1491. netif_receive_skb(skb);
  1492. bp->dev->last_rx = jiffies;
  1493. rx_pkt++;
  1494. next_rx:
  1495. sw_cons = NEXT_RX_BD(sw_cons);
  1496. sw_prod = NEXT_RX_BD(sw_prod);
  1497. if ((rx_pkt == budget))
  1498. break;
  1499. /* Refresh hw_cons to see if there is new work */
  1500. if (sw_cons == hw_cons) {
  1501. hw_cons = bp->hw_rx_cons =
  1502. sblk->status_rx_quick_consumer_index0;
  1503. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
  1504. hw_cons++;
  1505. rmb();
  1506. }
  1507. }
  1508. bp->rx_cons = sw_cons;
  1509. bp->rx_prod = sw_prod;
  1510. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  1511. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  1512. mmiowb();
  1513. return rx_pkt;
  1514. }
  1515. /* MSI ISR - The only difference between this and the INTx ISR
  1516. * is that the MSI interrupt is always serviced.
  1517. */
  1518. static irqreturn_t
  1519. bnx2_msi(int irq, void *dev_instance, struct pt_regs *regs)
  1520. {
  1521. struct net_device *dev = dev_instance;
  1522. struct bnx2 *bp = netdev_priv(dev);
  1523. prefetch(bp->status_blk);
  1524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1525. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1526. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1527. /* Return here if interrupt is disabled. */
  1528. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1529. return IRQ_HANDLED;
  1530. netif_rx_schedule(dev);
  1531. return IRQ_HANDLED;
  1532. }
  1533. static irqreturn_t
  1534. bnx2_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
  1535. {
  1536. struct net_device *dev = dev_instance;
  1537. struct bnx2 *bp = netdev_priv(dev);
  1538. /* When using INTx, it is possible for the interrupt to arrive
  1539. * at the CPU before the status block posted prior to the
  1540. * interrupt. Reading a register will flush the status block.
  1541. * When using MSI, the MSI message will always complete after
  1542. * the status block write.
  1543. */
  1544. if ((bp->status_blk->status_idx == bp->last_status_idx) &&
  1545. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  1546. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  1547. return IRQ_NONE;
  1548. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1549. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1550. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1551. /* Return here if interrupt is shared and is disabled. */
  1552. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1553. return IRQ_HANDLED;
  1554. netif_rx_schedule(dev);
  1555. return IRQ_HANDLED;
  1556. }
  1557. static inline int
  1558. bnx2_has_work(struct bnx2 *bp)
  1559. {
  1560. struct status_block *sblk = bp->status_blk;
  1561. if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
  1562. (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
  1563. return 1;
  1564. if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
  1565. bp->link_up)
  1566. return 1;
  1567. return 0;
  1568. }
  1569. static int
  1570. bnx2_poll(struct net_device *dev, int *budget)
  1571. {
  1572. struct bnx2 *bp = netdev_priv(dev);
  1573. if ((bp->status_blk->status_attn_bits &
  1574. STATUS_ATTN_BITS_LINK_STATE) !=
  1575. (bp->status_blk->status_attn_bits_ack &
  1576. STATUS_ATTN_BITS_LINK_STATE)) {
  1577. spin_lock(&bp->phy_lock);
  1578. bnx2_phy_int(bp);
  1579. spin_unlock(&bp->phy_lock);
  1580. }
  1581. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
  1582. bnx2_tx_int(bp);
  1583. if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
  1584. int orig_budget = *budget;
  1585. int work_done;
  1586. if (orig_budget > dev->quota)
  1587. orig_budget = dev->quota;
  1588. work_done = bnx2_rx_int(bp, orig_budget);
  1589. *budget -= work_done;
  1590. dev->quota -= work_done;
  1591. }
  1592. bp->last_status_idx = bp->status_blk->status_idx;
  1593. rmb();
  1594. if (!bnx2_has_work(bp)) {
  1595. netif_rx_complete(dev);
  1596. if (likely(bp->flags & USING_MSI_FLAG)) {
  1597. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1598. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1599. bp->last_status_idx);
  1600. return 0;
  1601. }
  1602. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1603. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1604. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  1605. bp->last_status_idx);
  1606. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1607. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1608. bp->last_status_idx);
  1609. return 0;
  1610. }
  1611. return 1;
  1612. }
  1613. /* Called with rtnl_lock from vlan functions and also dev->xmit_lock
  1614. * from set_multicast.
  1615. */
  1616. static void
  1617. bnx2_set_rx_mode(struct net_device *dev)
  1618. {
  1619. struct bnx2 *bp = netdev_priv(dev);
  1620. u32 rx_mode, sort_mode;
  1621. int i;
  1622. spin_lock_bh(&bp->phy_lock);
  1623. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  1624. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  1625. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  1626. #ifdef BCM_VLAN
  1627. if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
  1628. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1629. #else
  1630. if (!(bp->flags & ASF_ENABLE_FLAG))
  1631. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1632. #endif
  1633. if (dev->flags & IFF_PROMISC) {
  1634. /* Promiscuous mode. */
  1635. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  1636. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN;
  1637. }
  1638. else if (dev->flags & IFF_ALLMULTI) {
  1639. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1640. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1641. 0xffffffff);
  1642. }
  1643. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  1644. }
  1645. else {
  1646. /* Accept one or more multicast(s). */
  1647. struct dev_mc_list *mclist;
  1648. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  1649. u32 regidx;
  1650. u32 bit;
  1651. u32 crc;
  1652. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  1653. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  1654. i++, mclist = mclist->next) {
  1655. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  1656. bit = crc & 0xff;
  1657. regidx = (bit & 0xe0) >> 5;
  1658. bit &= 0x1f;
  1659. mc_filter[regidx] |= (1 << bit);
  1660. }
  1661. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1662. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1663. mc_filter[i]);
  1664. }
  1665. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  1666. }
  1667. if (rx_mode != bp->rx_mode) {
  1668. bp->rx_mode = rx_mode;
  1669. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  1670. }
  1671. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  1672. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  1673. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  1674. spin_unlock_bh(&bp->phy_lock);
  1675. }
  1676. static void
  1677. load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
  1678. u32 rv2p_proc)
  1679. {
  1680. int i;
  1681. u32 val;
  1682. for (i = 0; i < rv2p_code_len; i += 8) {
  1683. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, *rv2p_code);
  1684. rv2p_code++;
  1685. REG_WR(bp, BNX2_RV2P_INSTR_LOW, *rv2p_code);
  1686. rv2p_code++;
  1687. if (rv2p_proc == RV2P_PROC1) {
  1688. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  1689. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  1690. }
  1691. else {
  1692. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  1693. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  1694. }
  1695. }
  1696. /* Reset the processor, un-stall is done later. */
  1697. if (rv2p_proc == RV2P_PROC1) {
  1698. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  1699. }
  1700. else {
  1701. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  1702. }
  1703. }
  1704. static void
  1705. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  1706. {
  1707. u32 offset;
  1708. u32 val;
  1709. /* Halt the CPU. */
  1710. val = REG_RD_IND(bp, cpu_reg->mode);
  1711. val |= cpu_reg->mode_value_halt;
  1712. REG_WR_IND(bp, cpu_reg->mode, val);
  1713. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  1714. /* Load the Text area. */
  1715. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  1716. if (fw->text) {
  1717. int j;
  1718. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  1719. REG_WR_IND(bp, offset, fw->text[j]);
  1720. }
  1721. }
  1722. /* Load the Data area. */
  1723. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  1724. if (fw->data) {
  1725. int j;
  1726. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  1727. REG_WR_IND(bp, offset, fw->data[j]);
  1728. }
  1729. }
  1730. /* Load the SBSS area. */
  1731. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  1732. if (fw->sbss) {
  1733. int j;
  1734. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  1735. REG_WR_IND(bp, offset, fw->sbss[j]);
  1736. }
  1737. }
  1738. /* Load the BSS area. */
  1739. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  1740. if (fw->bss) {
  1741. int j;
  1742. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  1743. REG_WR_IND(bp, offset, fw->bss[j]);
  1744. }
  1745. }
  1746. /* Load the Read-Only area. */
  1747. offset = cpu_reg->spad_base +
  1748. (fw->rodata_addr - cpu_reg->mips_view_base);
  1749. if (fw->rodata) {
  1750. int j;
  1751. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  1752. REG_WR_IND(bp, offset, fw->rodata[j]);
  1753. }
  1754. }
  1755. /* Clear the pre-fetch instruction. */
  1756. REG_WR_IND(bp, cpu_reg->inst, 0);
  1757. REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
  1758. /* Start the CPU. */
  1759. val = REG_RD_IND(bp, cpu_reg->mode);
  1760. val &= ~cpu_reg->mode_value_halt;
  1761. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  1762. REG_WR_IND(bp, cpu_reg->mode, val);
  1763. }
  1764. static void
  1765. bnx2_init_cpus(struct bnx2 *bp)
  1766. {
  1767. struct cpu_reg cpu_reg;
  1768. struct fw_info fw;
  1769. /* Initialize the RV2P processor. */
  1770. load_rv2p_fw(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), RV2P_PROC1);
  1771. load_rv2p_fw(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), RV2P_PROC2);
  1772. /* Initialize the RX Processor. */
  1773. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  1774. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  1775. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  1776. cpu_reg.state = BNX2_RXP_CPU_STATE;
  1777. cpu_reg.state_value_clear = 0xffffff;
  1778. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  1779. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  1780. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  1781. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  1782. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  1783. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  1784. cpu_reg.mips_view_base = 0x8000000;
  1785. fw.ver_major = bnx2_RXP_b06FwReleaseMajor;
  1786. fw.ver_minor = bnx2_RXP_b06FwReleaseMinor;
  1787. fw.ver_fix = bnx2_RXP_b06FwReleaseFix;
  1788. fw.start_addr = bnx2_RXP_b06FwStartAddr;
  1789. fw.text_addr = bnx2_RXP_b06FwTextAddr;
  1790. fw.text_len = bnx2_RXP_b06FwTextLen;
  1791. fw.text_index = 0;
  1792. fw.text = bnx2_RXP_b06FwText;
  1793. fw.data_addr = bnx2_RXP_b06FwDataAddr;
  1794. fw.data_len = bnx2_RXP_b06FwDataLen;
  1795. fw.data_index = 0;
  1796. fw.data = bnx2_RXP_b06FwData;
  1797. fw.sbss_addr = bnx2_RXP_b06FwSbssAddr;
  1798. fw.sbss_len = bnx2_RXP_b06FwSbssLen;
  1799. fw.sbss_index = 0;
  1800. fw.sbss = bnx2_RXP_b06FwSbss;
  1801. fw.bss_addr = bnx2_RXP_b06FwBssAddr;
  1802. fw.bss_len = bnx2_RXP_b06FwBssLen;
  1803. fw.bss_index = 0;
  1804. fw.bss = bnx2_RXP_b06FwBss;
  1805. fw.rodata_addr = bnx2_RXP_b06FwRodataAddr;
  1806. fw.rodata_len = bnx2_RXP_b06FwRodataLen;
  1807. fw.rodata_index = 0;
  1808. fw.rodata = bnx2_RXP_b06FwRodata;
  1809. load_cpu_fw(bp, &cpu_reg, &fw);
  1810. /* Initialize the TX Processor. */
  1811. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  1812. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  1813. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  1814. cpu_reg.state = BNX2_TXP_CPU_STATE;
  1815. cpu_reg.state_value_clear = 0xffffff;
  1816. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  1817. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  1818. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  1819. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  1820. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  1821. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  1822. cpu_reg.mips_view_base = 0x8000000;
  1823. fw.ver_major = bnx2_TXP_b06FwReleaseMajor;
  1824. fw.ver_minor = bnx2_TXP_b06FwReleaseMinor;
  1825. fw.ver_fix = bnx2_TXP_b06FwReleaseFix;
  1826. fw.start_addr = bnx2_TXP_b06FwStartAddr;
  1827. fw.text_addr = bnx2_TXP_b06FwTextAddr;
  1828. fw.text_len = bnx2_TXP_b06FwTextLen;
  1829. fw.text_index = 0;
  1830. fw.text = bnx2_TXP_b06FwText;
  1831. fw.data_addr = bnx2_TXP_b06FwDataAddr;
  1832. fw.data_len = bnx2_TXP_b06FwDataLen;
  1833. fw.data_index = 0;
  1834. fw.data = bnx2_TXP_b06FwData;
  1835. fw.sbss_addr = bnx2_TXP_b06FwSbssAddr;
  1836. fw.sbss_len = bnx2_TXP_b06FwSbssLen;
  1837. fw.sbss_index = 0;
  1838. fw.sbss = bnx2_TXP_b06FwSbss;
  1839. fw.bss_addr = bnx2_TXP_b06FwBssAddr;
  1840. fw.bss_len = bnx2_TXP_b06FwBssLen;
  1841. fw.bss_index = 0;
  1842. fw.bss = bnx2_TXP_b06FwBss;
  1843. fw.rodata_addr = bnx2_TXP_b06FwRodataAddr;
  1844. fw.rodata_len = bnx2_TXP_b06FwRodataLen;
  1845. fw.rodata_index = 0;
  1846. fw.rodata = bnx2_TXP_b06FwRodata;
  1847. load_cpu_fw(bp, &cpu_reg, &fw);
  1848. /* Initialize the TX Patch-up Processor. */
  1849. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  1850. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  1851. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  1852. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  1853. cpu_reg.state_value_clear = 0xffffff;
  1854. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  1855. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  1856. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  1857. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  1858. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  1859. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  1860. cpu_reg.mips_view_base = 0x8000000;
  1861. fw.ver_major = bnx2_TPAT_b06FwReleaseMajor;
  1862. fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor;
  1863. fw.ver_fix = bnx2_TPAT_b06FwReleaseFix;
  1864. fw.start_addr = bnx2_TPAT_b06FwStartAddr;
  1865. fw.text_addr = bnx2_TPAT_b06FwTextAddr;
  1866. fw.text_len = bnx2_TPAT_b06FwTextLen;
  1867. fw.text_index = 0;
  1868. fw.text = bnx2_TPAT_b06FwText;
  1869. fw.data_addr = bnx2_TPAT_b06FwDataAddr;
  1870. fw.data_len = bnx2_TPAT_b06FwDataLen;
  1871. fw.data_index = 0;
  1872. fw.data = bnx2_TPAT_b06FwData;
  1873. fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr;
  1874. fw.sbss_len = bnx2_TPAT_b06FwSbssLen;
  1875. fw.sbss_index = 0;
  1876. fw.sbss = bnx2_TPAT_b06FwSbss;
  1877. fw.bss_addr = bnx2_TPAT_b06FwBssAddr;
  1878. fw.bss_len = bnx2_TPAT_b06FwBssLen;
  1879. fw.bss_index = 0;
  1880. fw.bss = bnx2_TPAT_b06FwBss;
  1881. fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr;
  1882. fw.rodata_len = bnx2_TPAT_b06FwRodataLen;
  1883. fw.rodata_index = 0;
  1884. fw.rodata = bnx2_TPAT_b06FwRodata;
  1885. load_cpu_fw(bp, &cpu_reg, &fw);
  1886. /* Initialize the Completion Processor. */
  1887. cpu_reg.mode = BNX2_COM_CPU_MODE;
  1888. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  1889. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  1890. cpu_reg.state = BNX2_COM_CPU_STATE;
  1891. cpu_reg.state_value_clear = 0xffffff;
  1892. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  1893. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  1894. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  1895. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  1896. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  1897. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  1898. cpu_reg.mips_view_base = 0x8000000;
  1899. fw.ver_major = bnx2_COM_b06FwReleaseMajor;
  1900. fw.ver_minor = bnx2_COM_b06FwReleaseMinor;
  1901. fw.ver_fix = bnx2_COM_b06FwReleaseFix;
  1902. fw.start_addr = bnx2_COM_b06FwStartAddr;
  1903. fw.text_addr = bnx2_COM_b06FwTextAddr;
  1904. fw.text_len = bnx2_COM_b06FwTextLen;
  1905. fw.text_index = 0;
  1906. fw.text = bnx2_COM_b06FwText;
  1907. fw.data_addr = bnx2_COM_b06FwDataAddr;
  1908. fw.data_len = bnx2_COM_b06FwDataLen;
  1909. fw.data_index = 0;
  1910. fw.data = bnx2_COM_b06FwData;
  1911. fw.sbss_addr = bnx2_COM_b06FwSbssAddr;
  1912. fw.sbss_len = bnx2_COM_b06FwSbssLen;
  1913. fw.sbss_index = 0;
  1914. fw.sbss = bnx2_COM_b06FwSbss;
  1915. fw.bss_addr = bnx2_COM_b06FwBssAddr;
  1916. fw.bss_len = bnx2_COM_b06FwBssLen;
  1917. fw.bss_index = 0;
  1918. fw.bss = bnx2_COM_b06FwBss;
  1919. fw.rodata_addr = bnx2_COM_b06FwRodataAddr;
  1920. fw.rodata_len = bnx2_COM_b06FwRodataLen;
  1921. fw.rodata_index = 0;
  1922. fw.rodata = bnx2_COM_b06FwRodata;
  1923. load_cpu_fw(bp, &cpu_reg, &fw);
  1924. }
  1925. static int
  1926. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  1927. {
  1928. u16 pmcsr;
  1929. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  1930. switch (state) {
  1931. case PCI_D0: {
  1932. u32 val;
  1933. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  1934. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  1935. PCI_PM_CTRL_PME_STATUS);
  1936. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  1937. /* delay required during transition out of D3hot */
  1938. msleep(20);
  1939. val = REG_RD(bp, BNX2_EMAC_MODE);
  1940. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  1941. val &= ~BNX2_EMAC_MODE_MPKT;
  1942. REG_WR(bp, BNX2_EMAC_MODE, val);
  1943. val = REG_RD(bp, BNX2_RPM_CONFIG);
  1944. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  1945. REG_WR(bp, BNX2_RPM_CONFIG, val);
  1946. break;
  1947. }
  1948. case PCI_D3hot: {
  1949. int i;
  1950. u32 val, wol_msg;
  1951. if (bp->wol) {
  1952. u32 advertising;
  1953. u8 autoneg;
  1954. autoneg = bp->autoneg;
  1955. advertising = bp->advertising;
  1956. bp->autoneg = AUTONEG_SPEED;
  1957. bp->advertising = ADVERTISED_10baseT_Half |
  1958. ADVERTISED_10baseT_Full |
  1959. ADVERTISED_100baseT_Half |
  1960. ADVERTISED_100baseT_Full |
  1961. ADVERTISED_Autoneg;
  1962. bnx2_setup_copper_phy(bp);
  1963. bp->autoneg = autoneg;
  1964. bp->advertising = advertising;
  1965. bnx2_set_mac_addr(bp);
  1966. val = REG_RD(bp, BNX2_EMAC_MODE);
  1967. /* Enable port mode. */
  1968. val &= ~BNX2_EMAC_MODE_PORT;
  1969. val |= BNX2_EMAC_MODE_PORT_MII |
  1970. BNX2_EMAC_MODE_MPKT_RCVD |
  1971. BNX2_EMAC_MODE_ACPI_RCVD |
  1972. BNX2_EMAC_MODE_MPKT;
  1973. REG_WR(bp, BNX2_EMAC_MODE, val);
  1974. /* receive all multicast */
  1975. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1976. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1977. 0xffffffff);
  1978. }
  1979. REG_WR(bp, BNX2_EMAC_RX_MODE,
  1980. BNX2_EMAC_RX_MODE_SORT_MODE);
  1981. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  1982. BNX2_RPM_SORT_USER0_MC_EN;
  1983. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  1984. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  1985. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  1986. BNX2_RPM_SORT_USER0_ENA);
  1987. /* Need to enable EMAC and RPM for WOL. */
  1988. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1989. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  1990. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  1991. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  1992. val = REG_RD(bp, BNX2_RPM_CONFIG);
  1993. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  1994. REG_WR(bp, BNX2_RPM_CONFIG, val);
  1995. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  1996. }
  1997. else {
  1998. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  1999. }
  2000. if (!(bp->flags & NO_WOL_FLAG))
  2001. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
  2002. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2003. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2004. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2005. if (bp->wol)
  2006. pmcsr |= 3;
  2007. }
  2008. else {
  2009. pmcsr |= 3;
  2010. }
  2011. if (bp->wol) {
  2012. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  2013. }
  2014. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2015. pmcsr);
  2016. /* No more memory access after this point until
  2017. * device is brought back to D0.
  2018. */
  2019. udelay(50);
  2020. break;
  2021. }
  2022. default:
  2023. return -EINVAL;
  2024. }
  2025. return 0;
  2026. }
  2027. static int
  2028. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  2029. {
  2030. u32 val;
  2031. int j;
  2032. /* Request access to the flash interface. */
  2033. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  2034. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2035. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2036. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  2037. break;
  2038. udelay(5);
  2039. }
  2040. if (j >= NVRAM_TIMEOUT_COUNT)
  2041. return -EBUSY;
  2042. return 0;
  2043. }
  2044. static int
  2045. bnx2_release_nvram_lock(struct bnx2 *bp)
  2046. {
  2047. int j;
  2048. u32 val;
  2049. /* Relinquish nvram interface. */
  2050. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  2051. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2052. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2053. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  2054. break;
  2055. udelay(5);
  2056. }
  2057. if (j >= NVRAM_TIMEOUT_COUNT)
  2058. return -EBUSY;
  2059. return 0;
  2060. }
  2061. static int
  2062. bnx2_enable_nvram_write(struct bnx2 *bp)
  2063. {
  2064. u32 val;
  2065. val = REG_RD(bp, BNX2_MISC_CFG);
  2066. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  2067. if (!bp->flash_info->buffered) {
  2068. int j;
  2069. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2070. REG_WR(bp, BNX2_NVM_COMMAND,
  2071. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  2072. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2073. udelay(5);
  2074. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2075. if (val & BNX2_NVM_COMMAND_DONE)
  2076. break;
  2077. }
  2078. if (j >= NVRAM_TIMEOUT_COUNT)
  2079. return -EBUSY;
  2080. }
  2081. return 0;
  2082. }
  2083. static void
  2084. bnx2_disable_nvram_write(struct bnx2 *bp)
  2085. {
  2086. u32 val;
  2087. val = REG_RD(bp, BNX2_MISC_CFG);
  2088. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  2089. }
  2090. static void
  2091. bnx2_enable_nvram_access(struct bnx2 *bp)
  2092. {
  2093. u32 val;
  2094. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2095. /* Enable both bits, even on read. */
  2096. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2097. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  2098. }
  2099. static void
  2100. bnx2_disable_nvram_access(struct bnx2 *bp)
  2101. {
  2102. u32 val;
  2103. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2104. /* Disable both bits, even after read. */
  2105. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2106. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  2107. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  2108. }
  2109. static int
  2110. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  2111. {
  2112. u32 cmd;
  2113. int j;
  2114. if (bp->flash_info->buffered)
  2115. /* Buffered flash, no erase needed */
  2116. return 0;
  2117. /* Build an erase command */
  2118. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  2119. BNX2_NVM_COMMAND_DOIT;
  2120. /* Need to clear DONE bit separately. */
  2121. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2122. /* Address of the NVRAM to read from. */
  2123. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2124. /* Issue an erase command. */
  2125. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2126. /* Wait for completion. */
  2127. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2128. u32 val;
  2129. udelay(5);
  2130. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2131. if (val & BNX2_NVM_COMMAND_DONE)
  2132. break;
  2133. }
  2134. if (j >= NVRAM_TIMEOUT_COUNT)
  2135. return -EBUSY;
  2136. return 0;
  2137. }
  2138. static int
  2139. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  2140. {
  2141. u32 cmd;
  2142. int j;
  2143. /* Build the command word. */
  2144. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  2145. /* Calculate an offset of a buffered flash. */
  2146. if (bp->flash_info->buffered) {
  2147. offset = ((offset / bp->flash_info->page_size) <<
  2148. bp->flash_info->page_bits) +
  2149. (offset % bp->flash_info->page_size);
  2150. }
  2151. /* Need to clear DONE bit separately. */
  2152. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2153. /* Address of the NVRAM to read from. */
  2154. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2155. /* Issue a read command. */
  2156. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2157. /* Wait for completion. */
  2158. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2159. u32 val;
  2160. udelay(5);
  2161. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2162. if (val & BNX2_NVM_COMMAND_DONE) {
  2163. val = REG_RD(bp, BNX2_NVM_READ);
  2164. val = be32_to_cpu(val);
  2165. memcpy(ret_val, &val, 4);
  2166. break;
  2167. }
  2168. }
  2169. if (j >= NVRAM_TIMEOUT_COUNT)
  2170. return -EBUSY;
  2171. return 0;
  2172. }
  2173. static int
  2174. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  2175. {
  2176. u32 cmd, val32;
  2177. int j;
  2178. /* Build the command word. */
  2179. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  2180. /* Calculate an offset of a buffered flash. */
  2181. if (bp->flash_info->buffered) {
  2182. offset = ((offset / bp->flash_info->page_size) <<
  2183. bp->flash_info->page_bits) +
  2184. (offset % bp->flash_info->page_size);
  2185. }
  2186. /* Need to clear DONE bit separately. */
  2187. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2188. memcpy(&val32, val, 4);
  2189. val32 = cpu_to_be32(val32);
  2190. /* Write the data. */
  2191. REG_WR(bp, BNX2_NVM_WRITE, val32);
  2192. /* Address of the NVRAM to write to. */
  2193. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2194. /* Issue the write command. */
  2195. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2196. /* Wait for completion. */
  2197. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2198. udelay(5);
  2199. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  2200. break;
  2201. }
  2202. if (j >= NVRAM_TIMEOUT_COUNT)
  2203. return -EBUSY;
  2204. return 0;
  2205. }
  2206. static int
  2207. bnx2_init_nvram(struct bnx2 *bp)
  2208. {
  2209. u32 val;
  2210. int j, entry_count, rc;
  2211. struct flash_spec *flash;
  2212. /* Determine the selected interface. */
  2213. val = REG_RD(bp, BNX2_NVM_CFG1);
  2214. entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
  2215. rc = 0;
  2216. if (val & 0x40000000) {
  2217. /* Flash interface has been reconfigured */
  2218. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2219. j++, flash++) {
  2220. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  2221. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  2222. bp->flash_info = flash;
  2223. break;
  2224. }
  2225. }
  2226. }
  2227. else {
  2228. u32 mask;
  2229. /* Not yet been reconfigured */
  2230. if (val & (1 << 23))
  2231. mask = FLASH_BACKUP_STRAP_MASK;
  2232. else
  2233. mask = FLASH_STRAP_MASK;
  2234. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2235. j++, flash++) {
  2236. if ((val & mask) == (flash->strapping & mask)) {
  2237. bp->flash_info = flash;
  2238. /* Request access to the flash interface. */
  2239. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2240. return rc;
  2241. /* Enable access to flash interface */
  2242. bnx2_enable_nvram_access(bp);
  2243. /* Reconfigure the flash interface */
  2244. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  2245. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  2246. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  2247. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  2248. /* Disable access to flash interface */
  2249. bnx2_disable_nvram_access(bp);
  2250. bnx2_release_nvram_lock(bp);
  2251. break;
  2252. }
  2253. }
  2254. } /* if (val & 0x40000000) */
  2255. if (j == entry_count) {
  2256. bp->flash_info = NULL;
  2257. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  2258. return -ENODEV;
  2259. }
  2260. val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
  2261. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  2262. if (val)
  2263. bp->flash_size = val;
  2264. else
  2265. bp->flash_size = bp->flash_info->total_size;
  2266. return rc;
  2267. }
  2268. static int
  2269. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  2270. int buf_size)
  2271. {
  2272. int rc = 0;
  2273. u32 cmd_flags, offset32, len32, extra;
  2274. if (buf_size == 0)
  2275. return 0;
  2276. /* Request access to the flash interface. */
  2277. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2278. return rc;
  2279. /* Enable access to flash interface */
  2280. bnx2_enable_nvram_access(bp);
  2281. len32 = buf_size;
  2282. offset32 = offset;
  2283. extra = 0;
  2284. cmd_flags = 0;
  2285. if (offset32 & 3) {
  2286. u8 buf[4];
  2287. u32 pre_len;
  2288. offset32 &= ~3;
  2289. pre_len = 4 - (offset & 3);
  2290. if (pre_len >= len32) {
  2291. pre_len = len32;
  2292. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2293. BNX2_NVM_COMMAND_LAST;
  2294. }
  2295. else {
  2296. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2297. }
  2298. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2299. if (rc)
  2300. return rc;
  2301. memcpy(ret_buf, buf + (offset & 3), pre_len);
  2302. offset32 += 4;
  2303. ret_buf += pre_len;
  2304. len32 -= pre_len;
  2305. }
  2306. if (len32 & 3) {
  2307. extra = 4 - (len32 & 3);
  2308. len32 = (len32 + 4) & ~3;
  2309. }
  2310. if (len32 == 4) {
  2311. u8 buf[4];
  2312. if (cmd_flags)
  2313. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2314. else
  2315. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2316. BNX2_NVM_COMMAND_LAST;
  2317. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2318. memcpy(ret_buf, buf, 4 - extra);
  2319. }
  2320. else if (len32 > 0) {
  2321. u8 buf[4];
  2322. /* Read the first word. */
  2323. if (cmd_flags)
  2324. cmd_flags = 0;
  2325. else
  2326. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2327. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  2328. /* Advance to the next dword. */
  2329. offset32 += 4;
  2330. ret_buf += 4;
  2331. len32 -= 4;
  2332. while (len32 > 4 && rc == 0) {
  2333. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  2334. /* Advance to the next dword. */
  2335. offset32 += 4;
  2336. ret_buf += 4;
  2337. len32 -= 4;
  2338. }
  2339. if (rc)
  2340. return rc;
  2341. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2342. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2343. memcpy(ret_buf, buf, 4 - extra);
  2344. }
  2345. /* Disable access to flash interface */
  2346. bnx2_disable_nvram_access(bp);
  2347. bnx2_release_nvram_lock(bp);
  2348. return rc;
  2349. }
  2350. static int
  2351. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  2352. int buf_size)
  2353. {
  2354. u32 written, offset32, len32;
  2355. u8 *buf, start[4], end[4];
  2356. int rc = 0;
  2357. int align_start, align_end;
  2358. buf = data_buf;
  2359. offset32 = offset;
  2360. len32 = buf_size;
  2361. align_start = align_end = 0;
  2362. if ((align_start = (offset32 & 3))) {
  2363. offset32 &= ~3;
  2364. len32 += align_start;
  2365. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  2366. return rc;
  2367. }
  2368. if (len32 & 3) {
  2369. if ((len32 > 4) || !align_start) {
  2370. align_end = 4 - (len32 & 3);
  2371. len32 += align_end;
  2372. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
  2373. end, 4))) {
  2374. return rc;
  2375. }
  2376. }
  2377. }
  2378. if (align_start || align_end) {
  2379. buf = kmalloc(len32, GFP_KERNEL);
  2380. if (buf == 0)
  2381. return -ENOMEM;
  2382. if (align_start) {
  2383. memcpy(buf, start, 4);
  2384. }
  2385. if (align_end) {
  2386. memcpy(buf + len32 - 4, end, 4);
  2387. }
  2388. memcpy(buf + align_start, data_buf, buf_size);
  2389. }
  2390. written = 0;
  2391. while ((written < len32) && (rc == 0)) {
  2392. u32 page_start, page_end, data_start, data_end;
  2393. u32 addr, cmd_flags;
  2394. int i;
  2395. u8 flash_buffer[264];
  2396. /* Find the page_start addr */
  2397. page_start = offset32 + written;
  2398. page_start -= (page_start % bp->flash_info->page_size);
  2399. /* Find the page_end addr */
  2400. page_end = page_start + bp->flash_info->page_size;
  2401. /* Find the data_start addr */
  2402. data_start = (written == 0) ? offset32 : page_start;
  2403. /* Find the data_end addr */
  2404. data_end = (page_end > offset32 + len32) ?
  2405. (offset32 + len32) : page_end;
  2406. /* Request access to the flash interface. */
  2407. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2408. goto nvram_write_end;
  2409. /* Enable access to flash interface */
  2410. bnx2_enable_nvram_access(bp);
  2411. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2412. if (bp->flash_info->buffered == 0) {
  2413. int j;
  2414. /* Read the whole page into the buffer
  2415. * (non-buffer flash only) */
  2416. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  2417. if (j == (bp->flash_info->page_size - 4)) {
  2418. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2419. }
  2420. rc = bnx2_nvram_read_dword(bp,
  2421. page_start + j,
  2422. &flash_buffer[j],
  2423. cmd_flags);
  2424. if (rc)
  2425. goto nvram_write_end;
  2426. cmd_flags = 0;
  2427. }
  2428. }
  2429. /* Enable writes to flash interface (unlock write-protect) */
  2430. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  2431. goto nvram_write_end;
  2432. /* Erase the page */
  2433. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  2434. goto nvram_write_end;
  2435. /* Re-enable the write again for the actual write */
  2436. bnx2_enable_nvram_write(bp);
  2437. /* Loop to write back the buffer data from page_start to
  2438. * data_start */
  2439. i = 0;
  2440. if (bp->flash_info->buffered == 0) {
  2441. for (addr = page_start; addr < data_start;
  2442. addr += 4, i += 4) {
  2443. rc = bnx2_nvram_write_dword(bp, addr,
  2444. &flash_buffer[i], cmd_flags);
  2445. if (rc != 0)
  2446. goto nvram_write_end;
  2447. cmd_flags = 0;
  2448. }
  2449. }
  2450. /* Loop to write the new data from data_start to data_end */
  2451. for (addr = data_start; addr < data_end; addr += 4, i++) {
  2452. if ((addr == page_end - 4) ||
  2453. ((bp->flash_info->buffered) &&
  2454. (addr == data_end - 4))) {
  2455. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2456. }
  2457. rc = bnx2_nvram_write_dword(bp, addr, buf,
  2458. cmd_flags);
  2459. if (rc != 0)
  2460. goto nvram_write_end;
  2461. cmd_flags = 0;
  2462. buf += 4;
  2463. }
  2464. /* Loop to write back the buffer data from data_end
  2465. * to page_end */
  2466. if (bp->flash_info->buffered == 0) {
  2467. for (addr = data_end; addr < page_end;
  2468. addr += 4, i += 4) {
  2469. if (addr == page_end-4) {
  2470. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2471. }
  2472. rc = bnx2_nvram_write_dword(bp, addr,
  2473. &flash_buffer[i], cmd_flags);
  2474. if (rc != 0)
  2475. goto nvram_write_end;
  2476. cmd_flags = 0;
  2477. }
  2478. }
  2479. /* Disable writes to flash interface (lock write-protect) */
  2480. bnx2_disable_nvram_write(bp);
  2481. /* Disable access to flash interface */
  2482. bnx2_disable_nvram_access(bp);
  2483. bnx2_release_nvram_lock(bp);
  2484. /* Increment written */
  2485. written += data_end - data_start;
  2486. }
  2487. nvram_write_end:
  2488. if (align_start || align_end)
  2489. kfree(buf);
  2490. return rc;
  2491. }
  2492. static int
  2493. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  2494. {
  2495. u32 val;
  2496. int i, rc = 0;
  2497. /* Wait for the current PCI transaction to complete before
  2498. * issuing a reset. */
  2499. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  2500. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  2501. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  2502. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  2503. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  2504. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  2505. udelay(5);
  2506. /* Wait for the firmware to tell us it is ok to issue a reset. */
  2507. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
  2508. /* Deposit a driver reset signature so the firmware knows that
  2509. * this is a soft reset. */
  2510. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
  2511. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  2512. /* Do a dummy read to force the chip to complete all current transaction
  2513. * before we issue a reset. */
  2514. val = REG_RD(bp, BNX2_MISC_ID);
  2515. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2516. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  2517. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  2518. /* Chip reset. */
  2519. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  2520. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2521. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  2522. msleep(15);
  2523. /* Reset takes approximate 30 usec */
  2524. for (i = 0; i < 10; i++) {
  2525. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  2526. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2527. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
  2528. break;
  2529. }
  2530. udelay(10);
  2531. }
  2532. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2533. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  2534. printk(KERN_ERR PFX "Chip reset did not complete\n");
  2535. return -EBUSY;
  2536. }
  2537. /* Make sure byte swapping is properly configured. */
  2538. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  2539. if (val != 0x01020304) {
  2540. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  2541. return -ENODEV;
  2542. }
  2543. /* Wait for the firmware to finish its initialization. */
  2544. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
  2545. if (rc)
  2546. return rc;
  2547. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2548. /* Adjust the voltage regular to two steps lower. The default
  2549. * of this register is 0x0000000e. */
  2550. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  2551. /* Remove bad rbuf memory from the free pool. */
  2552. rc = bnx2_alloc_bad_rbuf(bp);
  2553. }
  2554. return rc;
  2555. }
  2556. static int
  2557. bnx2_init_chip(struct bnx2 *bp)
  2558. {
  2559. u32 val;
  2560. int rc;
  2561. /* Make sure the interrupt is not active. */
  2562. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2563. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  2564. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  2565. #ifdef __BIG_ENDIAN
  2566. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  2567. #endif
  2568. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  2569. DMA_READ_CHANS << 12 |
  2570. DMA_WRITE_CHANS << 16;
  2571. val |= (0x2 << 20) | (1 << 11);
  2572. if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
  2573. val |= (1 << 23);
  2574. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  2575. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
  2576. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  2577. REG_WR(bp, BNX2_DMA_CONFIG, val);
  2578. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2579. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  2580. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  2581. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  2582. }
  2583. if (bp->flags & PCIX_FLAG) {
  2584. u16 val16;
  2585. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  2586. &val16);
  2587. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  2588. val16 & ~PCI_X_CMD_ERO);
  2589. }
  2590. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2591. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  2592. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  2593. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  2594. /* Initialize context mapping and zero out the quick contexts. The
  2595. * context block must have already been enabled. */
  2596. bnx2_init_context(bp);
  2597. bnx2_init_cpus(bp);
  2598. bnx2_init_nvram(bp);
  2599. bnx2_set_mac_addr(bp);
  2600. val = REG_RD(bp, BNX2_MQ_CONFIG);
  2601. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  2602. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  2603. REG_WR(bp, BNX2_MQ_CONFIG, val);
  2604. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  2605. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  2606. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  2607. val = (BCM_PAGE_BITS - 8) << 24;
  2608. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  2609. /* Configure page size. */
  2610. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  2611. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  2612. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  2613. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  2614. val = bp->mac_addr[0] +
  2615. (bp->mac_addr[1] << 8) +
  2616. (bp->mac_addr[2] << 16) +
  2617. bp->mac_addr[3] +
  2618. (bp->mac_addr[4] << 8) +
  2619. (bp->mac_addr[5] << 16);
  2620. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  2621. /* Program the MTU. Also include 4 bytes for CRC32. */
  2622. val = bp->dev->mtu + ETH_HLEN + 4;
  2623. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  2624. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  2625. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  2626. bp->last_status_idx = 0;
  2627. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  2628. /* Set up how to generate a link change interrupt. */
  2629. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2630. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  2631. (u64) bp->status_blk_mapping & 0xffffffff);
  2632. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  2633. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  2634. (u64) bp->stats_blk_mapping & 0xffffffff);
  2635. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  2636. (u64) bp->stats_blk_mapping >> 32);
  2637. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  2638. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  2639. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  2640. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  2641. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  2642. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  2643. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  2644. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  2645. REG_WR(bp, BNX2_HC_COM_TICKS,
  2646. (bp->com_ticks_int << 16) | bp->com_ticks);
  2647. REG_WR(bp, BNX2_HC_CMD_TICKS,
  2648. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  2649. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
  2650. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  2651. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  2652. REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
  2653. else {
  2654. REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
  2655. BNX2_HC_CONFIG_TX_TMR_MODE |
  2656. BNX2_HC_CONFIG_COLLECT_STATS);
  2657. }
  2658. /* Clear internal stats counters. */
  2659. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  2660. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
  2661. if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
  2662. BNX2_PORT_FEATURE_ASF_ENABLED)
  2663. bp->flags |= ASF_ENABLE_FLAG;
  2664. /* Initialize the receive filter. */
  2665. bnx2_set_rx_mode(bp->dev);
  2666. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  2667. 0);
  2668. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
  2669. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  2670. udelay(20);
  2671. return rc;
  2672. }
  2673. static void
  2674. bnx2_init_tx_ring(struct bnx2 *bp)
  2675. {
  2676. struct tx_bd *txbd;
  2677. u32 val;
  2678. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  2679. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  2680. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  2681. bp->tx_prod = 0;
  2682. bp->tx_cons = 0;
  2683. bp->hw_tx_cons = 0;
  2684. bp->tx_prod_bseq = 0;
  2685. val = BNX2_L2CTX_TYPE_TYPE_L2;
  2686. val |= BNX2_L2CTX_TYPE_SIZE_L2;
  2687. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val);
  2688. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2;
  2689. val |= 8 << 16;
  2690. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val);
  2691. val = (u64) bp->tx_desc_mapping >> 32;
  2692. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val);
  2693. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  2694. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val);
  2695. }
  2696. static void
  2697. bnx2_init_rx_ring(struct bnx2 *bp)
  2698. {
  2699. struct rx_bd *rxbd;
  2700. int i;
  2701. u16 prod, ring_prod;
  2702. u32 val;
  2703. /* 8 for CRC and VLAN */
  2704. bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  2705. /* 8 for alignment */
  2706. bp->rx_buf_size = bp->rx_buf_use_size + 8;
  2707. ring_prod = prod = bp->rx_prod = 0;
  2708. bp->rx_cons = 0;
  2709. bp->hw_rx_cons = 0;
  2710. bp->rx_prod_bseq = 0;
  2711. rxbd = &bp->rx_desc_ring[0];
  2712. for (i = 0; i < MAX_RX_DESC_CNT; i++, rxbd++) {
  2713. rxbd->rx_bd_len = bp->rx_buf_use_size;
  2714. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  2715. }
  2716. rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping >> 32;
  2717. rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping & 0xffffffff;
  2718. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  2719. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  2720. val |= 0x02 << 8;
  2721. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
  2722. val = (u64) bp->rx_desc_mapping >> 32;
  2723. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
  2724. val = (u64) bp->rx_desc_mapping & 0xffffffff;
  2725. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
  2726. for (i = 0; i < bp->rx_ring_size; i++) {
  2727. if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
  2728. break;
  2729. }
  2730. prod = NEXT_RX_BD(prod);
  2731. ring_prod = RX_RING_IDX(prod);
  2732. }
  2733. bp->rx_prod = prod;
  2734. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  2735. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  2736. }
  2737. static void
  2738. bnx2_free_tx_skbs(struct bnx2 *bp)
  2739. {
  2740. int i;
  2741. if (bp->tx_buf_ring == NULL)
  2742. return;
  2743. for (i = 0; i < TX_DESC_CNT; ) {
  2744. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  2745. struct sk_buff *skb = tx_buf->skb;
  2746. int j, last;
  2747. if (skb == NULL) {
  2748. i++;
  2749. continue;
  2750. }
  2751. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2752. skb_headlen(skb), PCI_DMA_TODEVICE);
  2753. tx_buf->skb = NULL;
  2754. last = skb_shinfo(skb)->nr_frags;
  2755. for (j = 0; j < last; j++) {
  2756. tx_buf = &bp->tx_buf_ring[i + j + 1];
  2757. pci_unmap_page(bp->pdev,
  2758. pci_unmap_addr(tx_buf, mapping),
  2759. skb_shinfo(skb)->frags[j].size,
  2760. PCI_DMA_TODEVICE);
  2761. }
  2762. dev_kfree_skb_any(skb);
  2763. i += j + 1;
  2764. }
  2765. }
  2766. static void
  2767. bnx2_free_rx_skbs(struct bnx2 *bp)
  2768. {
  2769. int i;
  2770. if (bp->rx_buf_ring == NULL)
  2771. return;
  2772. for (i = 0; i < RX_DESC_CNT; i++) {
  2773. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  2774. struct sk_buff *skb = rx_buf->skb;
  2775. if (skb == NULL)
  2776. continue;
  2777. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  2778. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  2779. rx_buf->skb = NULL;
  2780. dev_kfree_skb_any(skb);
  2781. }
  2782. }
  2783. static void
  2784. bnx2_free_skbs(struct bnx2 *bp)
  2785. {
  2786. bnx2_free_tx_skbs(bp);
  2787. bnx2_free_rx_skbs(bp);
  2788. }
  2789. static int
  2790. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  2791. {
  2792. int rc;
  2793. rc = bnx2_reset_chip(bp, reset_code);
  2794. bnx2_free_skbs(bp);
  2795. if (rc)
  2796. return rc;
  2797. bnx2_init_chip(bp);
  2798. bnx2_init_tx_ring(bp);
  2799. bnx2_init_rx_ring(bp);
  2800. return 0;
  2801. }
  2802. static int
  2803. bnx2_init_nic(struct bnx2 *bp)
  2804. {
  2805. int rc;
  2806. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  2807. return rc;
  2808. bnx2_init_phy(bp);
  2809. bnx2_set_link(bp);
  2810. return 0;
  2811. }
  2812. static int
  2813. bnx2_test_registers(struct bnx2 *bp)
  2814. {
  2815. int ret;
  2816. int i;
  2817. static const struct {
  2818. u16 offset;
  2819. u16 flags;
  2820. u32 rw_mask;
  2821. u32 ro_mask;
  2822. } reg_tbl[] = {
  2823. { 0x006c, 0, 0x00000000, 0x0000003f },
  2824. { 0x0090, 0, 0xffffffff, 0x00000000 },
  2825. { 0x0094, 0, 0x00000000, 0x00000000 },
  2826. { 0x0404, 0, 0x00003f00, 0x00000000 },
  2827. { 0x0418, 0, 0x00000000, 0xffffffff },
  2828. { 0x041c, 0, 0x00000000, 0xffffffff },
  2829. { 0x0420, 0, 0x00000000, 0x80ffffff },
  2830. { 0x0424, 0, 0x00000000, 0x00000000 },
  2831. { 0x0428, 0, 0x00000000, 0x00000001 },
  2832. { 0x0450, 0, 0x00000000, 0x0000ffff },
  2833. { 0x0454, 0, 0x00000000, 0xffffffff },
  2834. { 0x0458, 0, 0x00000000, 0xffffffff },
  2835. { 0x0808, 0, 0x00000000, 0xffffffff },
  2836. { 0x0854, 0, 0x00000000, 0xffffffff },
  2837. { 0x0868, 0, 0x00000000, 0x77777777 },
  2838. { 0x086c, 0, 0x00000000, 0x77777777 },
  2839. { 0x0870, 0, 0x00000000, 0x77777777 },
  2840. { 0x0874, 0, 0x00000000, 0x77777777 },
  2841. { 0x0c00, 0, 0x00000000, 0x00000001 },
  2842. { 0x0c04, 0, 0x00000000, 0x03ff0001 },
  2843. { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
  2844. { 0x1000, 0, 0x00000000, 0x00000001 },
  2845. { 0x1004, 0, 0x00000000, 0x000f0001 },
  2846. { 0x1408, 0, 0x01c00800, 0x00000000 },
  2847. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  2848. { 0x14a8, 0, 0x00000000, 0x000001ff },
  2849. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  2850. { 0x14b0, 0, 0x00000002, 0x00000001 },
  2851. { 0x14b8, 0, 0x00000000, 0x00000000 },
  2852. { 0x14c0, 0, 0x00000000, 0x00000009 },
  2853. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  2854. { 0x14cc, 0, 0x00000000, 0x00000001 },
  2855. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  2856. { 0x1800, 0, 0x00000000, 0x00000001 },
  2857. { 0x1804, 0, 0x00000000, 0x00000003 },
  2858. { 0x2800, 0, 0x00000000, 0x00000001 },
  2859. { 0x2804, 0, 0x00000000, 0x00003f01 },
  2860. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  2861. { 0x2810, 0, 0xffff0000, 0x00000000 },
  2862. { 0x2814, 0, 0xffff0000, 0x00000000 },
  2863. { 0x2818, 0, 0xffff0000, 0x00000000 },
  2864. { 0x281c, 0, 0xffff0000, 0x00000000 },
  2865. { 0x2834, 0, 0xffffffff, 0x00000000 },
  2866. { 0x2840, 0, 0x00000000, 0xffffffff },
  2867. { 0x2844, 0, 0x00000000, 0xffffffff },
  2868. { 0x2848, 0, 0xffffffff, 0x00000000 },
  2869. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  2870. { 0x2c00, 0, 0x00000000, 0x00000011 },
  2871. { 0x2c04, 0, 0x00000000, 0x00030007 },
  2872. { 0x3c00, 0, 0x00000000, 0x00000001 },
  2873. { 0x3c04, 0, 0x00000000, 0x00070000 },
  2874. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  2875. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  2876. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  2877. { 0x3c14, 0, 0x00000000, 0xffffffff },
  2878. { 0x3c18, 0, 0x00000000, 0xffffffff },
  2879. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  2880. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  2881. { 0x5004, 0, 0x00000000, 0x0000007f },
  2882. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  2883. { 0x500c, 0, 0xf800f800, 0x07ff07ff },
  2884. { 0x5c00, 0, 0x00000000, 0x00000001 },
  2885. { 0x5c04, 0, 0x00000000, 0x0003000f },
  2886. { 0x5c08, 0, 0x00000003, 0x00000000 },
  2887. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  2888. { 0x5c10, 0, 0x00000000, 0xffffffff },
  2889. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  2890. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  2891. { 0x5c88, 0, 0x00000000, 0x00077373 },
  2892. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  2893. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  2894. { 0x680c, 0, 0xffffffff, 0x00000000 },
  2895. { 0x6810, 0, 0xffffffff, 0x00000000 },
  2896. { 0x6814, 0, 0xffffffff, 0x00000000 },
  2897. { 0x6818, 0, 0xffffffff, 0x00000000 },
  2898. { 0x681c, 0, 0xffffffff, 0x00000000 },
  2899. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  2900. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  2901. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  2902. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  2903. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  2904. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  2905. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  2906. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  2907. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  2908. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  2909. { 0x684c, 0, 0xffffffff, 0x00000000 },
  2910. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  2911. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  2912. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  2913. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  2914. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  2915. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  2916. { 0xffff, 0, 0x00000000, 0x00000000 },
  2917. };
  2918. ret = 0;
  2919. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  2920. u32 offset, rw_mask, ro_mask, save_val, val;
  2921. offset = (u32) reg_tbl[i].offset;
  2922. rw_mask = reg_tbl[i].rw_mask;
  2923. ro_mask = reg_tbl[i].ro_mask;
  2924. save_val = readl(bp->regview + offset);
  2925. writel(0, bp->regview + offset);
  2926. val = readl(bp->regview + offset);
  2927. if ((val & rw_mask) != 0) {
  2928. goto reg_test_err;
  2929. }
  2930. if ((val & ro_mask) != (save_val & ro_mask)) {
  2931. goto reg_test_err;
  2932. }
  2933. writel(0xffffffff, bp->regview + offset);
  2934. val = readl(bp->regview + offset);
  2935. if ((val & rw_mask) != rw_mask) {
  2936. goto reg_test_err;
  2937. }
  2938. if ((val & ro_mask) != (save_val & ro_mask)) {
  2939. goto reg_test_err;
  2940. }
  2941. writel(save_val, bp->regview + offset);
  2942. continue;
  2943. reg_test_err:
  2944. writel(save_val, bp->regview + offset);
  2945. ret = -ENODEV;
  2946. break;
  2947. }
  2948. return ret;
  2949. }
  2950. static int
  2951. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  2952. {
  2953. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  2954. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  2955. int i;
  2956. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  2957. u32 offset;
  2958. for (offset = 0; offset < size; offset += 4) {
  2959. REG_WR_IND(bp, start + offset, test_pattern[i]);
  2960. if (REG_RD_IND(bp, start + offset) !=
  2961. test_pattern[i]) {
  2962. return -ENODEV;
  2963. }
  2964. }
  2965. }
  2966. return 0;
  2967. }
  2968. static int
  2969. bnx2_test_memory(struct bnx2 *bp)
  2970. {
  2971. int ret = 0;
  2972. int i;
  2973. static const struct {
  2974. u32 offset;
  2975. u32 len;
  2976. } mem_tbl[] = {
  2977. { 0x60000, 0x4000 },
  2978. { 0xa0000, 0x3000 },
  2979. { 0xe0000, 0x4000 },
  2980. { 0x120000, 0x4000 },
  2981. { 0x1a0000, 0x4000 },
  2982. { 0x160000, 0x4000 },
  2983. { 0xffffffff, 0 },
  2984. };
  2985. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  2986. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  2987. mem_tbl[i].len)) != 0) {
  2988. return ret;
  2989. }
  2990. }
  2991. return ret;
  2992. }
  2993. #define BNX2_MAC_LOOPBACK 0
  2994. #define BNX2_PHY_LOOPBACK 1
  2995. static int
  2996. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  2997. {
  2998. unsigned int pkt_size, num_pkts, i;
  2999. struct sk_buff *skb, *rx_skb;
  3000. unsigned char *packet;
  3001. u16 rx_start_idx, rx_idx;
  3002. u32 val;
  3003. dma_addr_t map;
  3004. struct tx_bd *txbd;
  3005. struct sw_bd *rx_buf;
  3006. struct l2_fhdr *rx_hdr;
  3007. int ret = -ENODEV;
  3008. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  3009. bp->loopback = MAC_LOOPBACK;
  3010. bnx2_set_mac_loopback(bp);
  3011. }
  3012. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  3013. bp->loopback = 0;
  3014. bnx2_set_phy_loopback(bp);
  3015. }
  3016. else
  3017. return -EINVAL;
  3018. pkt_size = 1514;
  3019. skb = dev_alloc_skb(pkt_size);
  3020. if (!skb)
  3021. return -ENOMEM;
  3022. packet = skb_put(skb, pkt_size);
  3023. memcpy(packet, bp->mac_addr, 6);
  3024. memset(packet + 6, 0x0, 8);
  3025. for (i = 14; i < pkt_size; i++)
  3026. packet[i] = (unsigned char) (i & 0xff);
  3027. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  3028. PCI_DMA_TODEVICE);
  3029. val = REG_RD(bp, BNX2_HC_COMMAND);
  3030. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3031. REG_RD(bp, BNX2_HC_COMMAND);
  3032. udelay(5);
  3033. rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3034. num_pkts = 0;
  3035. txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
  3036. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  3037. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  3038. txbd->tx_bd_mss_nbytes = pkt_size;
  3039. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  3040. num_pkts++;
  3041. bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
  3042. bp->tx_prod_bseq += pkt_size;
  3043. REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, bp->tx_prod);
  3044. REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
  3045. udelay(100);
  3046. val = REG_RD(bp, BNX2_HC_COMMAND);
  3047. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3048. REG_RD(bp, BNX2_HC_COMMAND);
  3049. udelay(5);
  3050. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  3051. dev_kfree_skb_irq(skb);
  3052. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
  3053. goto loopback_test_done;
  3054. }
  3055. rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3056. if (rx_idx != rx_start_idx + num_pkts) {
  3057. goto loopback_test_done;
  3058. }
  3059. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  3060. rx_skb = rx_buf->skb;
  3061. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  3062. skb_reserve(rx_skb, bp->rx_offset);
  3063. pci_dma_sync_single_for_cpu(bp->pdev,
  3064. pci_unmap_addr(rx_buf, mapping),
  3065. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  3066. if (rx_hdr->l2_fhdr_status &
  3067. (L2_FHDR_ERRORS_BAD_CRC |
  3068. L2_FHDR_ERRORS_PHY_DECODE |
  3069. L2_FHDR_ERRORS_ALIGNMENT |
  3070. L2_FHDR_ERRORS_TOO_SHORT |
  3071. L2_FHDR_ERRORS_GIANT_FRAME)) {
  3072. goto loopback_test_done;
  3073. }
  3074. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  3075. goto loopback_test_done;
  3076. }
  3077. for (i = 14; i < pkt_size; i++) {
  3078. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  3079. goto loopback_test_done;
  3080. }
  3081. }
  3082. ret = 0;
  3083. loopback_test_done:
  3084. bp->loopback = 0;
  3085. return ret;
  3086. }
  3087. #define BNX2_MAC_LOOPBACK_FAILED 1
  3088. #define BNX2_PHY_LOOPBACK_FAILED 2
  3089. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  3090. BNX2_PHY_LOOPBACK_FAILED)
  3091. static int
  3092. bnx2_test_loopback(struct bnx2 *bp)
  3093. {
  3094. int rc = 0;
  3095. if (!netif_running(bp->dev))
  3096. return BNX2_LOOPBACK_FAILED;
  3097. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  3098. spin_lock_bh(&bp->phy_lock);
  3099. bnx2_init_phy(bp);
  3100. spin_unlock_bh(&bp->phy_lock);
  3101. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  3102. rc |= BNX2_MAC_LOOPBACK_FAILED;
  3103. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  3104. rc |= BNX2_PHY_LOOPBACK_FAILED;
  3105. return rc;
  3106. }
  3107. #define NVRAM_SIZE 0x200
  3108. #define CRC32_RESIDUAL 0xdebb20e3
  3109. static int
  3110. bnx2_test_nvram(struct bnx2 *bp)
  3111. {
  3112. u32 buf[NVRAM_SIZE / 4];
  3113. u8 *data = (u8 *) buf;
  3114. int rc = 0;
  3115. u32 magic, csum;
  3116. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  3117. goto test_nvram_done;
  3118. magic = be32_to_cpu(buf[0]);
  3119. if (magic != 0x669955aa) {
  3120. rc = -ENODEV;
  3121. goto test_nvram_done;
  3122. }
  3123. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  3124. goto test_nvram_done;
  3125. csum = ether_crc_le(0x100, data);
  3126. if (csum != CRC32_RESIDUAL) {
  3127. rc = -ENODEV;
  3128. goto test_nvram_done;
  3129. }
  3130. csum = ether_crc_le(0x100, data + 0x100);
  3131. if (csum != CRC32_RESIDUAL) {
  3132. rc = -ENODEV;
  3133. }
  3134. test_nvram_done:
  3135. return rc;
  3136. }
  3137. static int
  3138. bnx2_test_link(struct bnx2 *bp)
  3139. {
  3140. u32 bmsr;
  3141. spin_lock_bh(&bp->phy_lock);
  3142. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  3143. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  3144. spin_unlock_bh(&bp->phy_lock);
  3145. if (bmsr & BMSR_LSTATUS) {
  3146. return 0;
  3147. }
  3148. return -ENODEV;
  3149. }
  3150. static int
  3151. bnx2_test_intr(struct bnx2 *bp)
  3152. {
  3153. int i;
  3154. u32 val;
  3155. u16 status_idx;
  3156. if (!netif_running(bp->dev))
  3157. return -ENODEV;
  3158. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  3159. /* This register is not touched during run-time. */
  3160. val = REG_RD(bp, BNX2_HC_COMMAND);
  3161. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW);
  3162. REG_RD(bp, BNX2_HC_COMMAND);
  3163. for (i = 0; i < 10; i++) {
  3164. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  3165. status_idx) {
  3166. break;
  3167. }
  3168. msleep_interruptible(10);
  3169. }
  3170. if (i < 10)
  3171. return 0;
  3172. return -ENODEV;
  3173. }
  3174. static void
  3175. bnx2_timer(unsigned long data)
  3176. {
  3177. struct bnx2 *bp = (struct bnx2 *) data;
  3178. u32 msg;
  3179. if (!netif_running(bp->dev))
  3180. return;
  3181. if (atomic_read(&bp->intr_sem) != 0)
  3182. goto bnx2_restart_timer;
  3183. msg = (u32) ++bp->fw_drv_pulse_wr_seq;
  3184. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
  3185. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  3186. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  3187. spin_lock(&bp->phy_lock);
  3188. if (bp->serdes_an_pending) {
  3189. bp->serdes_an_pending--;
  3190. }
  3191. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3192. u32 bmcr;
  3193. bp->current_interval = bp->timer_interval;
  3194. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3195. if (bmcr & BMCR_ANENABLE) {
  3196. u32 phy1, phy2;
  3197. bnx2_write_phy(bp, 0x1c, 0x7c00);
  3198. bnx2_read_phy(bp, 0x1c, &phy1);
  3199. bnx2_write_phy(bp, 0x17, 0x0f01);
  3200. bnx2_read_phy(bp, 0x15, &phy2);
  3201. bnx2_write_phy(bp, 0x17, 0x0f01);
  3202. bnx2_read_phy(bp, 0x15, &phy2);
  3203. if ((phy1 & 0x10) && /* SIGNAL DETECT */
  3204. !(phy2 & 0x20)) { /* no CONFIG */
  3205. bmcr &= ~BMCR_ANENABLE;
  3206. bmcr |= BMCR_SPEED1000 |
  3207. BMCR_FULLDPLX;
  3208. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3209. bp->phy_flags |=
  3210. PHY_PARALLEL_DETECT_FLAG;
  3211. }
  3212. }
  3213. }
  3214. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  3215. (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
  3216. u32 phy2;
  3217. bnx2_write_phy(bp, 0x17, 0x0f01);
  3218. bnx2_read_phy(bp, 0x15, &phy2);
  3219. if (phy2 & 0x20) {
  3220. u32 bmcr;
  3221. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3222. bmcr |= BMCR_ANENABLE;
  3223. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3224. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  3225. }
  3226. }
  3227. else
  3228. bp->current_interval = bp->timer_interval;
  3229. spin_unlock(&bp->phy_lock);
  3230. }
  3231. bnx2_restart_timer:
  3232. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3233. }
  3234. /* Called with rtnl_lock */
  3235. static int
  3236. bnx2_open(struct net_device *dev)
  3237. {
  3238. struct bnx2 *bp = netdev_priv(dev);
  3239. int rc;
  3240. bnx2_set_power_state(bp, PCI_D0);
  3241. bnx2_disable_int(bp);
  3242. rc = bnx2_alloc_mem(bp);
  3243. if (rc)
  3244. return rc;
  3245. if ((CHIP_ID(bp) != CHIP_ID_5706_A0) &&
  3246. (CHIP_ID(bp) != CHIP_ID_5706_A1) &&
  3247. !disable_msi) {
  3248. if (pci_enable_msi(bp->pdev) == 0) {
  3249. bp->flags |= USING_MSI_FLAG;
  3250. rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name,
  3251. dev);
  3252. }
  3253. else {
  3254. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3255. SA_SHIRQ, dev->name, dev);
  3256. }
  3257. }
  3258. else {
  3259. rc = request_irq(bp->pdev->irq, bnx2_interrupt, SA_SHIRQ,
  3260. dev->name, dev);
  3261. }
  3262. if (rc) {
  3263. bnx2_free_mem(bp);
  3264. return rc;
  3265. }
  3266. rc = bnx2_init_nic(bp);
  3267. if (rc) {
  3268. free_irq(bp->pdev->irq, dev);
  3269. if (bp->flags & USING_MSI_FLAG) {
  3270. pci_disable_msi(bp->pdev);
  3271. bp->flags &= ~USING_MSI_FLAG;
  3272. }
  3273. bnx2_free_skbs(bp);
  3274. bnx2_free_mem(bp);
  3275. return rc;
  3276. }
  3277. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3278. atomic_set(&bp->intr_sem, 0);
  3279. bnx2_enable_int(bp);
  3280. if (bp->flags & USING_MSI_FLAG) {
  3281. /* Test MSI to make sure it is working
  3282. * If MSI test fails, go back to INTx mode
  3283. */
  3284. if (bnx2_test_intr(bp) != 0) {
  3285. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  3286. " using MSI, switching to INTx mode. Please"
  3287. " report this failure to the PCI maintainer"
  3288. " and include system chipset information.\n",
  3289. bp->dev->name);
  3290. bnx2_disable_int(bp);
  3291. free_irq(bp->pdev->irq, dev);
  3292. pci_disable_msi(bp->pdev);
  3293. bp->flags &= ~USING_MSI_FLAG;
  3294. rc = bnx2_init_nic(bp);
  3295. if (!rc) {
  3296. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3297. SA_SHIRQ, dev->name, dev);
  3298. }
  3299. if (rc) {
  3300. bnx2_free_skbs(bp);
  3301. bnx2_free_mem(bp);
  3302. del_timer_sync(&bp->timer);
  3303. return rc;
  3304. }
  3305. bnx2_enable_int(bp);
  3306. }
  3307. }
  3308. if (bp->flags & USING_MSI_FLAG) {
  3309. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  3310. }
  3311. netif_start_queue(dev);
  3312. return 0;
  3313. }
  3314. static void
  3315. bnx2_reset_task(void *data)
  3316. {
  3317. struct bnx2 *bp = data;
  3318. if (!netif_running(bp->dev))
  3319. return;
  3320. bp->in_reset_task = 1;
  3321. bnx2_netif_stop(bp);
  3322. bnx2_init_nic(bp);
  3323. atomic_set(&bp->intr_sem, 1);
  3324. bnx2_netif_start(bp);
  3325. bp->in_reset_task = 0;
  3326. }
  3327. static void
  3328. bnx2_tx_timeout(struct net_device *dev)
  3329. {
  3330. struct bnx2 *bp = netdev_priv(dev);
  3331. /* This allows the netif to be shutdown gracefully before resetting */
  3332. schedule_work(&bp->reset_task);
  3333. }
  3334. #ifdef BCM_VLAN
  3335. /* Called with rtnl_lock */
  3336. static void
  3337. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  3338. {
  3339. struct bnx2 *bp = netdev_priv(dev);
  3340. bnx2_netif_stop(bp);
  3341. bp->vlgrp = vlgrp;
  3342. bnx2_set_rx_mode(dev);
  3343. bnx2_netif_start(bp);
  3344. }
  3345. /* Called with rtnl_lock */
  3346. static void
  3347. bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
  3348. {
  3349. struct bnx2 *bp = netdev_priv(dev);
  3350. bnx2_netif_stop(bp);
  3351. if (bp->vlgrp)
  3352. bp->vlgrp->vlan_devices[vid] = NULL;
  3353. bnx2_set_rx_mode(dev);
  3354. bnx2_netif_start(bp);
  3355. }
  3356. #endif
  3357. /* Called with dev->xmit_lock.
  3358. * hard_start_xmit is pseudo-lockless - a lock is only required when
  3359. * the tx queue is full. This way, we get the benefit of lockless
  3360. * operations most of the time without the complexities to handle
  3361. * netif_stop_queue/wake_queue race conditions.
  3362. */
  3363. static int
  3364. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  3365. {
  3366. struct bnx2 *bp = netdev_priv(dev);
  3367. dma_addr_t mapping;
  3368. struct tx_bd *txbd;
  3369. struct sw_bd *tx_buf;
  3370. u32 len, vlan_tag_flags, last_frag, mss;
  3371. u16 prod, ring_prod;
  3372. int i;
  3373. if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
  3374. netif_stop_queue(dev);
  3375. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  3376. dev->name);
  3377. return NETDEV_TX_BUSY;
  3378. }
  3379. len = skb_headlen(skb);
  3380. prod = bp->tx_prod;
  3381. ring_prod = TX_RING_IDX(prod);
  3382. vlan_tag_flags = 0;
  3383. if (skb->ip_summed == CHECKSUM_HW) {
  3384. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  3385. }
  3386. if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
  3387. vlan_tag_flags |=
  3388. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  3389. }
  3390. #ifdef BCM_TSO
  3391. if ((mss = skb_shinfo(skb)->tso_size) &&
  3392. (skb->len > (bp->dev->mtu + ETH_HLEN))) {
  3393. u32 tcp_opt_len, ip_tcp_len;
  3394. if (skb_header_cloned(skb) &&
  3395. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  3396. dev_kfree_skb(skb);
  3397. return NETDEV_TX_OK;
  3398. }
  3399. tcp_opt_len = ((skb->h.th->doff - 5) * 4);
  3400. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  3401. tcp_opt_len = 0;
  3402. if (skb->h.th->doff > 5) {
  3403. tcp_opt_len = (skb->h.th->doff - 5) << 2;
  3404. }
  3405. ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr);
  3406. skb->nh.iph->check = 0;
  3407. skb->nh.iph->tot_len = ntohs(mss + ip_tcp_len + tcp_opt_len);
  3408. skb->h.th->check =
  3409. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  3410. skb->nh.iph->daddr,
  3411. 0, IPPROTO_TCP, 0);
  3412. if (tcp_opt_len || (skb->nh.iph->ihl > 5)) {
  3413. vlan_tag_flags |= ((skb->nh.iph->ihl - 5) +
  3414. (tcp_opt_len >> 2)) << 8;
  3415. }
  3416. }
  3417. else
  3418. #endif
  3419. {
  3420. mss = 0;
  3421. }
  3422. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  3423. tx_buf = &bp->tx_buf_ring[ring_prod];
  3424. tx_buf->skb = skb;
  3425. pci_unmap_addr_set(tx_buf, mapping, mapping);
  3426. txbd = &bp->tx_desc_ring[ring_prod];
  3427. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3428. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3429. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3430. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  3431. last_frag = skb_shinfo(skb)->nr_frags;
  3432. for (i = 0; i < last_frag; i++) {
  3433. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3434. prod = NEXT_TX_BD(prod);
  3435. ring_prod = TX_RING_IDX(prod);
  3436. txbd = &bp->tx_desc_ring[ring_prod];
  3437. len = frag->size;
  3438. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  3439. len, PCI_DMA_TODEVICE);
  3440. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  3441. mapping, mapping);
  3442. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3443. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3444. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3445. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  3446. }
  3447. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  3448. prod = NEXT_TX_BD(prod);
  3449. bp->tx_prod_bseq += skb->len;
  3450. REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod);
  3451. REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
  3452. mmiowb();
  3453. bp->tx_prod = prod;
  3454. dev->trans_start = jiffies;
  3455. if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
  3456. spin_lock(&bp->tx_lock);
  3457. netif_stop_queue(dev);
  3458. if (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)
  3459. netif_wake_queue(dev);
  3460. spin_unlock(&bp->tx_lock);
  3461. }
  3462. return NETDEV_TX_OK;
  3463. }
  3464. /* Called with rtnl_lock */
  3465. static int
  3466. bnx2_close(struct net_device *dev)
  3467. {
  3468. struct bnx2 *bp = netdev_priv(dev);
  3469. u32 reset_code;
  3470. /* Calling flush_scheduled_work() may deadlock because
  3471. * linkwatch_event() may be on the workqueue and it will try to get
  3472. * the rtnl_lock which we are holding.
  3473. */
  3474. while (bp->in_reset_task)
  3475. msleep(1);
  3476. bnx2_netif_stop(bp);
  3477. del_timer_sync(&bp->timer);
  3478. if (bp->flags & NO_WOL_FLAG)
  3479. reset_code = BNX2_DRV_MSG_CODE_UNLOAD;
  3480. else if (bp->wol)
  3481. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3482. else
  3483. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3484. bnx2_reset_chip(bp, reset_code);
  3485. free_irq(bp->pdev->irq, dev);
  3486. if (bp->flags & USING_MSI_FLAG) {
  3487. pci_disable_msi(bp->pdev);
  3488. bp->flags &= ~USING_MSI_FLAG;
  3489. }
  3490. bnx2_free_skbs(bp);
  3491. bnx2_free_mem(bp);
  3492. bp->link_up = 0;
  3493. netif_carrier_off(bp->dev);
  3494. bnx2_set_power_state(bp, PCI_D3hot);
  3495. return 0;
  3496. }
  3497. #define GET_NET_STATS64(ctr) \
  3498. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  3499. (unsigned long) (ctr##_lo)
  3500. #define GET_NET_STATS32(ctr) \
  3501. (ctr##_lo)
  3502. #if (BITS_PER_LONG == 64)
  3503. #define GET_NET_STATS GET_NET_STATS64
  3504. #else
  3505. #define GET_NET_STATS GET_NET_STATS32
  3506. #endif
  3507. static struct net_device_stats *
  3508. bnx2_get_stats(struct net_device *dev)
  3509. {
  3510. struct bnx2 *bp = netdev_priv(dev);
  3511. struct statistics_block *stats_blk = bp->stats_blk;
  3512. struct net_device_stats *net_stats = &bp->net_stats;
  3513. if (bp->stats_blk == NULL) {
  3514. return net_stats;
  3515. }
  3516. net_stats->rx_packets =
  3517. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  3518. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  3519. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  3520. net_stats->tx_packets =
  3521. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  3522. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  3523. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  3524. net_stats->rx_bytes =
  3525. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  3526. net_stats->tx_bytes =
  3527. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  3528. net_stats->multicast =
  3529. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  3530. net_stats->collisions =
  3531. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  3532. net_stats->rx_length_errors =
  3533. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  3534. stats_blk->stat_EtherStatsOverrsizePkts);
  3535. net_stats->rx_over_errors =
  3536. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  3537. net_stats->rx_frame_errors =
  3538. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  3539. net_stats->rx_crc_errors =
  3540. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  3541. net_stats->rx_errors = net_stats->rx_length_errors +
  3542. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  3543. net_stats->rx_crc_errors;
  3544. net_stats->tx_aborted_errors =
  3545. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  3546. stats_blk->stat_Dot3StatsLateCollisions);
  3547. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  3548. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  3549. net_stats->tx_carrier_errors = 0;
  3550. else {
  3551. net_stats->tx_carrier_errors =
  3552. (unsigned long)
  3553. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  3554. }
  3555. net_stats->tx_errors =
  3556. (unsigned long)
  3557. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  3558. +
  3559. net_stats->tx_aborted_errors +
  3560. net_stats->tx_carrier_errors;
  3561. return net_stats;
  3562. }
  3563. /* All ethtool functions called with rtnl_lock */
  3564. static int
  3565. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  3566. {
  3567. struct bnx2 *bp = netdev_priv(dev);
  3568. cmd->supported = SUPPORTED_Autoneg;
  3569. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3570. cmd->supported |= SUPPORTED_1000baseT_Full |
  3571. SUPPORTED_FIBRE;
  3572. cmd->port = PORT_FIBRE;
  3573. }
  3574. else {
  3575. cmd->supported |= SUPPORTED_10baseT_Half |
  3576. SUPPORTED_10baseT_Full |
  3577. SUPPORTED_100baseT_Half |
  3578. SUPPORTED_100baseT_Full |
  3579. SUPPORTED_1000baseT_Full |
  3580. SUPPORTED_TP;
  3581. cmd->port = PORT_TP;
  3582. }
  3583. cmd->advertising = bp->advertising;
  3584. if (bp->autoneg & AUTONEG_SPEED) {
  3585. cmd->autoneg = AUTONEG_ENABLE;
  3586. }
  3587. else {
  3588. cmd->autoneg = AUTONEG_DISABLE;
  3589. }
  3590. if (netif_carrier_ok(dev)) {
  3591. cmd->speed = bp->line_speed;
  3592. cmd->duplex = bp->duplex;
  3593. }
  3594. else {
  3595. cmd->speed = -1;
  3596. cmd->duplex = -1;
  3597. }
  3598. cmd->transceiver = XCVR_INTERNAL;
  3599. cmd->phy_address = bp->phy_addr;
  3600. return 0;
  3601. }
  3602. static int
  3603. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  3604. {
  3605. struct bnx2 *bp = netdev_priv(dev);
  3606. u8 autoneg = bp->autoneg;
  3607. u8 req_duplex = bp->req_duplex;
  3608. u16 req_line_speed = bp->req_line_speed;
  3609. u32 advertising = bp->advertising;
  3610. if (cmd->autoneg == AUTONEG_ENABLE) {
  3611. autoneg |= AUTONEG_SPEED;
  3612. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  3613. /* allow advertising 1 speed */
  3614. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  3615. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  3616. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  3617. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  3618. if (bp->phy_flags & PHY_SERDES_FLAG)
  3619. return -EINVAL;
  3620. advertising = cmd->advertising;
  3621. }
  3622. else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
  3623. advertising = cmd->advertising;
  3624. }
  3625. else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
  3626. return -EINVAL;
  3627. }
  3628. else {
  3629. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3630. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  3631. }
  3632. else {
  3633. advertising = ETHTOOL_ALL_COPPER_SPEED;
  3634. }
  3635. }
  3636. advertising |= ADVERTISED_Autoneg;
  3637. }
  3638. else {
  3639. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3640. if ((cmd->speed != SPEED_1000) ||
  3641. (cmd->duplex != DUPLEX_FULL)) {
  3642. return -EINVAL;
  3643. }
  3644. }
  3645. else if (cmd->speed == SPEED_1000) {
  3646. return -EINVAL;
  3647. }
  3648. autoneg &= ~AUTONEG_SPEED;
  3649. req_line_speed = cmd->speed;
  3650. req_duplex = cmd->duplex;
  3651. advertising = 0;
  3652. }
  3653. bp->autoneg = autoneg;
  3654. bp->advertising = advertising;
  3655. bp->req_line_speed = req_line_speed;
  3656. bp->req_duplex = req_duplex;
  3657. spin_lock_bh(&bp->phy_lock);
  3658. bnx2_setup_phy(bp);
  3659. spin_unlock_bh(&bp->phy_lock);
  3660. return 0;
  3661. }
  3662. static void
  3663. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3664. {
  3665. struct bnx2 *bp = netdev_priv(dev);
  3666. strcpy(info->driver, DRV_MODULE_NAME);
  3667. strcpy(info->version, DRV_MODULE_VERSION);
  3668. strcpy(info->bus_info, pci_name(bp->pdev));
  3669. info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
  3670. info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
  3671. info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
  3672. info->fw_version[1] = info->fw_version[3] = '.';
  3673. info->fw_version[5] = 0;
  3674. }
  3675. #define BNX2_REGDUMP_LEN (32 * 1024)
  3676. static int
  3677. bnx2_get_regs_len(struct net_device *dev)
  3678. {
  3679. return BNX2_REGDUMP_LEN;
  3680. }
  3681. static void
  3682. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  3683. {
  3684. u32 *p = _p, i, offset;
  3685. u8 *orig_p = _p;
  3686. struct bnx2 *bp = netdev_priv(dev);
  3687. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  3688. 0x0800, 0x0880, 0x0c00, 0x0c10,
  3689. 0x0c30, 0x0d08, 0x1000, 0x101c,
  3690. 0x1040, 0x1048, 0x1080, 0x10a4,
  3691. 0x1400, 0x1490, 0x1498, 0x14f0,
  3692. 0x1500, 0x155c, 0x1580, 0x15dc,
  3693. 0x1600, 0x1658, 0x1680, 0x16d8,
  3694. 0x1800, 0x1820, 0x1840, 0x1854,
  3695. 0x1880, 0x1894, 0x1900, 0x1984,
  3696. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  3697. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  3698. 0x2000, 0x2030, 0x23c0, 0x2400,
  3699. 0x2800, 0x2820, 0x2830, 0x2850,
  3700. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  3701. 0x3c00, 0x3c94, 0x4000, 0x4010,
  3702. 0x4080, 0x4090, 0x43c0, 0x4458,
  3703. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  3704. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  3705. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  3706. 0x5fc0, 0x6000, 0x6400, 0x6428,
  3707. 0x6800, 0x6848, 0x684c, 0x6860,
  3708. 0x6888, 0x6910, 0x8000 };
  3709. regs->version = 0;
  3710. memset(p, 0, BNX2_REGDUMP_LEN);
  3711. if (!netif_running(bp->dev))
  3712. return;
  3713. i = 0;
  3714. offset = reg_boundaries[0];
  3715. p += offset;
  3716. while (offset < BNX2_REGDUMP_LEN) {
  3717. *p++ = REG_RD(bp, offset);
  3718. offset += 4;
  3719. if (offset == reg_boundaries[i + 1]) {
  3720. offset = reg_boundaries[i + 2];
  3721. p = (u32 *) (orig_p + offset);
  3722. i += 2;
  3723. }
  3724. }
  3725. }
  3726. static void
  3727. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  3728. {
  3729. struct bnx2 *bp = netdev_priv(dev);
  3730. if (bp->flags & NO_WOL_FLAG) {
  3731. wol->supported = 0;
  3732. wol->wolopts = 0;
  3733. }
  3734. else {
  3735. wol->supported = WAKE_MAGIC;
  3736. if (bp->wol)
  3737. wol->wolopts = WAKE_MAGIC;
  3738. else
  3739. wol->wolopts = 0;
  3740. }
  3741. memset(&wol->sopass, 0, sizeof(wol->sopass));
  3742. }
  3743. static int
  3744. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  3745. {
  3746. struct bnx2 *bp = netdev_priv(dev);
  3747. if (wol->wolopts & ~WAKE_MAGIC)
  3748. return -EINVAL;
  3749. if (wol->wolopts & WAKE_MAGIC) {
  3750. if (bp->flags & NO_WOL_FLAG)
  3751. return -EINVAL;
  3752. bp->wol = 1;
  3753. }
  3754. else {
  3755. bp->wol = 0;
  3756. }
  3757. return 0;
  3758. }
  3759. static int
  3760. bnx2_nway_reset(struct net_device *dev)
  3761. {
  3762. struct bnx2 *bp = netdev_priv(dev);
  3763. u32 bmcr;
  3764. if (!(bp->autoneg & AUTONEG_SPEED)) {
  3765. return -EINVAL;
  3766. }
  3767. spin_lock_bh(&bp->phy_lock);
  3768. /* Force a link down visible on the other side */
  3769. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3770. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  3771. spin_unlock_bh(&bp->phy_lock);
  3772. msleep(20);
  3773. spin_lock_bh(&bp->phy_lock);
  3774. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  3775. bp->current_interval = SERDES_AN_TIMEOUT;
  3776. bp->serdes_an_pending = 1;
  3777. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3778. }
  3779. }
  3780. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3781. bmcr &= ~BMCR_LOOPBACK;
  3782. bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  3783. spin_unlock_bh(&bp->phy_lock);
  3784. return 0;
  3785. }
  3786. static int
  3787. bnx2_get_eeprom_len(struct net_device *dev)
  3788. {
  3789. struct bnx2 *bp = netdev_priv(dev);
  3790. if (bp->flash_info == NULL)
  3791. return 0;
  3792. return (int) bp->flash_size;
  3793. }
  3794. static int
  3795. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  3796. u8 *eebuf)
  3797. {
  3798. struct bnx2 *bp = netdev_priv(dev);
  3799. int rc;
  3800. /* parameters already validated in ethtool_get_eeprom */
  3801. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  3802. return rc;
  3803. }
  3804. static int
  3805. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  3806. u8 *eebuf)
  3807. {
  3808. struct bnx2 *bp = netdev_priv(dev);
  3809. int rc;
  3810. /* parameters already validated in ethtool_set_eeprom */
  3811. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  3812. return rc;
  3813. }
  3814. static int
  3815. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  3816. {
  3817. struct bnx2 *bp = netdev_priv(dev);
  3818. memset(coal, 0, sizeof(struct ethtool_coalesce));
  3819. coal->rx_coalesce_usecs = bp->rx_ticks;
  3820. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  3821. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  3822. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  3823. coal->tx_coalesce_usecs = bp->tx_ticks;
  3824. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  3825. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  3826. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  3827. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  3828. return 0;
  3829. }
  3830. static int
  3831. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  3832. {
  3833. struct bnx2 *bp = netdev_priv(dev);
  3834. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  3835. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  3836. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  3837. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  3838. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  3839. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  3840. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  3841. if (bp->rx_quick_cons_trip_int > 0xff)
  3842. bp->rx_quick_cons_trip_int = 0xff;
  3843. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  3844. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  3845. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  3846. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  3847. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  3848. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  3849. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  3850. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  3851. 0xff;
  3852. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  3853. if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
  3854. bp->stats_ticks &= 0xffff00;
  3855. if (netif_running(bp->dev)) {
  3856. bnx2_netif_stop(bp);
  3857. bnx2_init_nic(bp);
  3858. bnx2_netif_start(bp);
  3859. }
  3860. return 0;
  3861. }
  3862. static void
  3863. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  3864. {
  3865. struct bnx2 *bp = netdev_priv(dev);
  3866. ering->rx_max_pending = MAX_RX_DESC_CNT;
  3867. ering->rx_mini_max_pending = 0;
  3868. ering->rx_jumbo_max_pending = 0;
  3869. ering->rx_pending = bp->rx_ring_size;
  3870. ering->rx_mini_pending = 0;
  3871. ering->rx_jumbo_pending = 0;
  3872. ering->tx_max_pending = MAX_TX_DESC_CNT;
  3873. ering->tx_pending = bp->tx_ring_size;
  3874. }
  3875. static int
  3876. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  3877. {
  3878. struct bnx2 *bp = netdev_priv(dev);
  3879. if ((ering->rx_pending > MAX_RX_DESC_CNT) ||
  3880. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  3881. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  3882. return -EINVAL;
  3883. }
  3884. bp->rx_ring_size = ering->rx_pending;
  3885. bp->tx_ring_size = ering->tx_pending;
  3886. if (netif_running(bp->dev)) {
  3887. bnx2_netif_stop(bp);
  3888. bnx2_init_nic(bp);
  3889. bnx2_netif_start(bp);
  3890. }
  3891. return 0;
  3892. }
  3893. static void
  3894. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  3895. {
  3896. struct bnx2 *bp = netdev_priv(dev);
  3897. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  3898. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  3899. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  3900. }
  3901. static int
  3902. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  3903. {
  3904. struct bnx2 *bp = netdev_priv(dev);
  3905. bp->req_flow_ctrl = 0;
  3906. if (epause->rx_pause)
  3907. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  3908. if (epause->tx_pause)
  3909. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  3910. if (epause->autoneg) {
  3911. bp->autoneg |= AUTONEG_FLOW_CTRL;
  3912. }
  3913. else {
  3914. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  3915. }
  3916. spin_lock_bh(&bp->phy_lock);
  3917. bnx2_setup_phy(bp);
  3918. spin_unlock_bh(&bp->phy_lock);
  3919. return 0;
  3920. }
  3921. static u32
  3922. bnx2_get_rx_csum(struct net_device *dev)
  3923. {
  3924. struct bnx2 *bp = netdev_priv(dev);
  3925. return bp->rx_csum;
  3926. }
  3927. static int
  3928. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  3929. {
  3930. struct bnx2 *bp = netdev_priv(dev);
  3931. bp->rx_csum = data;
  3932. return 0;
  3933. }
  3934. #define BNX2_NUM_STATS 45
  3935. static struct {
  3936. char string[ETH_GSTRING_LEN];
  3937. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  3938. { "rx_bytes" },
  3939. { "rx_error_bytes" },
  3940. { "tx_bytes" },
  3941. { "tx_error_bytes" },
  3942. { "rx_ucast_packets" },
  3943. { "rx_mcast_packets" },
  3944. { "rx_bcast_packets" },
  3945. { "tx_ucast_packets" },
  3946. { "tx_mcast_packets" },
  3947. { "tx_bcast_packets" },
  3948. { "tx_mac_errors" },
  3949. { "tx_carrier_errors" },
  3950. { "rx_crc_errors" },
  3951. { "rx_align_errors" },
  3952. { "tx_single_collisions" },
  3953. { "tx_multi_collisions" },
  3954. { "tx_deferred" },
  3955. { "tx_excess_collisions" },
  3956. { "tx_late_collisions" },
  3957. { "tx_total_collisions" },
  3958. { "rx_fragments" },
  3959. { "rx_jabbers" },
  3960. { "rx_undersize_packets" },
  3961. { "rx_oversize_packets" },
  3962. { "rx_64_byte_packets" },
  3963. { "rx_65_to_127_byte_packets" },
  3964. { "rx_128_to_255_byte_packets" },
  3965. { "rx_256_to_511_byte_packets" },
  3966. { "rx_512_to_1023_byte_packets" },
  3967. { "rx_1024_to_1522_byte_packets" },
  3968. { "rx_1523_to_9022_byte_packets" },
  3969. { "tx_64_byte_packets" },
  3970. { "tx_65_to_127_byte_packets" },
  3971. { "tx_128_to_255_byte_packets" },
  3972. { "tx_256_to_511_byte_packets" },
  3973. { "tx_512_to_1023_byte_packets" },
  3974. { "tx_1024_to_1522_byte_packets" },
  3975. { "tx_1523_to_9022_byte_packets" },
  3976. { "rx_xon_frames" },
  3977. { "rx_xoff_frames" },
  3978. { "tx_xon_frames" },
  3979. { "tx_xoff_frames" },
  3980. { "rx_mac_ctrl_frames" },
  3981. { "rx_filtered_packets" },
  3982. { "rx_discards" },
  3983. };
  3984. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  3985. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  3986. STATS_OFFSET32(stat_IfHCInOctets_hi),
  3987. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  3988. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  3989. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  3990. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  3991. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  3992. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  3993. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  3994. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  3995. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  3996. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  3997. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  3998. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  3999. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  4000. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  4001. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  4002. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  4003. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  4004. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  4005. STATS_OFFSET32(stat_EtherStatsCollisions),
  4006. STATS_OFFSET32(stat_EtherStatsFragments),
  4007. STATS_OFFSET32(stat_EtherStatsJabbers),
  4008. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  4009. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  4010. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  4011. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  4012. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  4013. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  4014. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  4015. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  4016. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  4017. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  4018. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  4019. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  4020. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  4021. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  4022. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  4023. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  4024. STATS_OFFSET32(stat_XonPauseFramesReceived),
  4025. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  4026. STATS_OFFSET32(stat_OutXonSent),
  4027. STATS_OFFSET32(stat_OutXoffSent),
  4028. STATS_OFFSET32(stat_MacControlFramesReceived),
  4029. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  4030. STATS_OFFSET32(stat_IfInMBUFDiscards),
  4031. };
  4032. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  4033. * skipped because of errata.
  4034. */
  4035. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  4036. 8,0,8,8,8,8,8,8,8,8,
  4037. 4,0,4,4,4,4,4,4,4,4,
  4038. 4,4,4,4,4,4,4,4,4,4,
  4039. 4,4,4,4,4,4,4,4,4,4,
  4040. 4,4,4,4,4,
  4041. };
  4042. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  4043. 8,0,8,8,8,8,8,8,8,8,
  4044. 4,4,4,4,4,4,4,4,4,4,
  4045. 4,4,4,4,4,4,4,4,4,4,
  4046. 4,4,4,4,4,4,4,4,4,4,
  4047. 4,4,4,4,4,
  4048. };
  4049. #define BNX2_NUM_TESTS 6
  4050. static struct {
  4051. char string[ETH_GSTRING_LEN];
  4052. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  4053. { "register_test (offline)" },
  4054. { "memory_test (offline)" },
  4055. { "loopback_test (offline)" },
  4056. { "nvram_test (online)" },
  4057. { "interrupt_test (online)" },
  4058. { "link_test (online)" },
  4059. };
  4060. static int
  4061. bnx2_self_test_count(struct net_device *dev)
  4062. {
  4063. return BNX2_NUM_TESTS;
  4064. }
  4065. static void
  4066. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  4067. {
  4068. struct bnx2 *bp = netdev_priv(dev);
  4069. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  4070. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  4071. bnx2_netif_stop(bp);
  4072. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  4073. bnx2_free_skbs(bp);
  4074. if (bnx2_test_registers(bp) != 0) {
  4075. buf[0] = 1;
  4076. etest->flags |= ETH_TEST_FL_FAILED;
  4077. }
  4078. if (bnx2_test_memory(bp) != 0) {
  4079. buf[1] = 1;
  4080. etest->flags |= ETH_TEST_FL_FAILED;
  4081. }
  4082. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  4083. etest->flags |= ETH_TEST_FL_FAILED;
  4084. if (!netif_running(bp->dev)) {
  4085. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4086. }
  4087. else {
  4088. bnx2_init_nic(bp);
  4089. bnx2_netif_start(bp);
  4090. }
  4091. /* wait for link up */
  4092. msleep_interruptible(3000);
  4093. if ((!bp->link_up) && !(bp->phy_flags & PHY_SERDES_FLAG))
  4094. msleep_interruptible(4000);
  4095. }
  4096. if (bnx2_test_nvram(bp) != 0) {
  4097. buf[3] = 1;
  4098. etest->flags |= ETH_TEST_FL_FAILED;
  4099. }
  4100. if (bnx2_test_intr(bp) != 0) {
  4101. buf[4] = 1;
  4102. etest->flags |= ETH_TEST_FL_FAILED;
  4103. }
  4104. if (bnx2_test_link(bp) != 0) {
  4105. buf[5] = 1;
  4106. etest->flags |= ETH_TEST_FL_FAILED;
  4107. }
  4108. }
  4109. static void
  4110. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  4111. {
  4112. switch (stringset) {
  4113. case ETH_SS_STATS:
  4114. memcpy(buf, bnx2_stats_str_arr,
  4115. sizeof(bnx2_stats_str_arr));
  4116. break;
  4117. case ETH_SS_TEST:
  4118. memcpy(buf, bnx2_tests_str_arr,
  4119. sizeof(bnx2_tests_str_arr));
  4120. break;
  4121. }
  4122. }
  4123. static int
  4124. bnx2_get_stats_count(struct net_device *dev)
  4125. {
  4126. return BNX2_NUM_STATS;
  4127. }
  4128. static void
  4129. bnx2_get_ethtool_stats(struct net_device *dev,
  4130. struct ethtool_stats *stats, u64 *buf)
  4131. {
  4132. struct bnx2 *bp = netdev_priv(dev);
  4133. int i;
  4134. u32 *hw_stats = (u32 *) bp->stats_blk;
  4135. u8 *stats_len_arr = NULL;
  4136. if (hw_stats == NULL) {
  4137. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  4138. return;
  4139. }
  4140. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  4141. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  4142. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  4143. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4144. stats_len_arr = bnx2_5706_stats_len_arr;
  4145. else
  4146. stats_len_arr = bnx2_5708_stats_len_arr;
  4147. for (i = 0; i < BNX2_NUM_STATS; i++) {
  4148. if (stats_len_arr[i] == 0) {
  4149. /* skip this counter */
  4150. buf[i] = 0;
  4151. continue;
  4152. }
  4153. if (stats_len_arr[i] == 4) {
  4154. /* 4-byte counter */
  4155. buf[i] = (u64)
  4156. *(hw_stats + bnx2_stats_offset_arr[i]);
  4157. continue;
  4158. }
  4159. /* 8-byte counter */
  4160. buf[i] = (((u64) *(hw_stats +
  4161. bnx2_stats_offset_arr[i])) << 32) +
  4162. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  4163. }
  4164. }
  4165. static int
  4166. bnx2_phys_id(struct net_device *dev, u32 data)
  4167. {
  4168. struct bnx2 *bp = netdev_priv(dev);
  4169. int i;
  4170. u32 save;
  4171. if (data == 0)
  4172. data = 2;
  4173. save = REG_RD(bp, BNX2_MISC_CFG);
  4174. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  4175. for (i = 0; i < (data * 2); i++) {
  4176. if ((i % 2) == 0) {
  4177. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  4178. }
  4179. else {
  4180. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  4181. BNX2_EMAC_LED_1000MB_OVERRIDE |
  4182. BNX2_EMAC_LED_100MB_OVERRIDE |
  4183. BNX2_EMAC_LED_10MB_OVERRIDE |
  4184. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  4185. BNX2_EMAC_LED_TRAFFIC);
  4186. }
  4187. msleep_interruptible(500);
  4188. if (signal_pending(current))
  4189. break;
  4190. }
  4191. REG_WR(bp, BNX2_EMAC_LED, 0);
  4192. REG_WR(bp, BNX2_MISC_CFG, save);
  4193. return 0;
  4194. }
  4195. static struct ethtool_ops bnx2_ethtool_ops = {
  4196. .get_settings = bnx2_get_settings,
  4197. .set_settings = bnx2_set_settings,
  4198. .get_drvinfo = bnx2_get_drvinfo,
  4199. .get_regs_len = bnx2_get_regs_len,
  4200. .get_regs = bnx2_get_regs,
  4201. .get_wol = bnx2_get_wol,
  4202. .set_wol = bnx2_set_wol,
  4203. .nway_reset = bnx2_nway_reset,
  4204. .get_link = ethtool_op_get_link,
  4205. .get_eeprom_len = bnx2_get_eeprom_len,
  4206. .get_eeprom = bnx2_get_eeprom,
  4207. .set_eeprom = bnx2_set_eeprom,
  4208. .get_coalesce = bnx2_get_coalesce,
  4209. .set_coalesce = bnx2_set_coalesce,
  4210. .get_ringparam = bnx2_get_ringparam,
  4211. .set_ringparam = bnx2_set_ringparam,
  4212. .get_pauseparam = bnx2_get_pauseparam,
  4213. .set_pauseparam = bnx2_set_pauseparam,
  4214. .get_rx_csum = bnx2_get_rx_csum,
  4215. .set_rx_csum = bnx2_set_rx_csum,
  4216. .get_tx_csum = ethtool_op_get_tx_csum,
  4217. .set_tx_csum = ethtool_op_set_tx_csum,
  4218. .get_sg = ethtool_op_get_sg,
  4219. .set_sg = ethtool_op_set_sg,
  4220. #ifdef BCM_TSO
  4221. .get_tso = ethtool_op_get_tso,
  4222. .set_tso = ethtool_op_set_tso,
  4223. #endif
  4224. .self_test_count = bnx2_self_test_count,
  4225. .self_test = bnx2_self_test,
  4226. .get_strings = bnx2_get_strings,
  4227. .phys_id = bnx2_phys_id,
  4228. .get_stats_count = bnx2_get_stats_count,
  4229. .get_ethtool_stats = bnx2_get_ethtool_stats,
  4230. .get_perm_addr = ethtool_op_get_perm_addr,
  4231. };
  4232. /* Called with rtnl_lock */
  4233. static int
  4234. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4235. {
  4236. struct mii_ioctl_data *data = if_mii(ifr);
  4237. struct bnx2 *bp = netdev_priv(dev);
  4238. int err;
  4239. switch(cmd) {
  4240. case SIOCGMIIPHY:
  4241. data->phy_id = bp->phy_addr;
  4242. /* fallthru */
  4243. case SIOCGMIIREG: {
  4244. u32 mii_regval;
  4245. spin_lock_bh(&bp->phy_lock);
  4246. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  4247. spin_unlock_bh(&bp->phy_lock);
  4248. data->val_out = mii_regval;
  4249. return err;
  4250. }
  4251. case SIOCSMIIREG:
  4252. if (!capable(CAP_NET_ADMIN))
  4253. return -EPERM;
  4254. spin_lock_bh(&bp->phy_lock);
  4255. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  4256. spin_unlock_bh(&bp->phy_lock);
  4257. return err;
  4258. default:
  4259. /* do nothing */
  4260. break;
  4261. }
  4262. return -EOPNOTSUPP;
  4263. }
  4264. /* Called with rtnl_lock */
  4265. static int
  4266. bnx2_change_mac_addr(struct net_device *dev, void *p)
  4267. {
  4268. struct sockaddr *addr = p;
  4269. struct bnx2 *bp = netdev_priv(dev);
  4270. if (!is_valid_ether_addr(addr->sa_data))
  4271. return -EINVAL;
  4272. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4273. if (netif_running(dev))
  4274. bnx2_set_mac_addr(bp);
  4275. return 0;
  4276. }
  4277. /* Called with rtnl_lock */
  4278. static int
  4279. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  4280. {
  4281. struct bnx2 *bp = netdev_priv(dev);
  4282. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  4283. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  4284. return -EINVAL;
  4285. dev->mtu = new_mtu;
  4286. if (netif_running(dev)) {
  4287. bnx2_netif_stop(bp);
  4288. bnx2_init_nic(bp);
  4289. bnx2_netif_start(bp);
  4290. }
  4291. return 0;
  4292. }
  4293. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4294. static void
  4295. poll_bnx2(struct net_device *dev)
  4296. {
  4297. struct bnx2 *bp = netdev_priv(dev);
  4298. disable_irq(bp->pdev->irq);
  4299. bnx2_interrupt(bp->pdev->irq, dev, NULL);
  4300. enable_irq(bp->pdev->irq);
  4301. }
  4302. #endif
  4303. static int __devinit
  4304. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  4305. {
  4306. struct bnx2 *bp;
  4307. unsigned long mem_len;
  4308. int rc;
  4309. u32 reg;
  4310. SET_MODULE_OWNER(dev);
  4311. SET_NETDEV_DEV(dev, &pdev->dev);
  4312. bp = netdev_priv(dev);
  4313. bp->flags = 0;
  4314. bp->phy_flags = 0;
  4315. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  4316. rc = pci_enable_device(pdev);
  4317. if (rc) {
  4318. printk(KERN_ERR PFX "Cannot enable PCI device, aborting.");
  4319. goto err_out;
  4320. }
  4321. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  4322. printk(KERN_ERR PFX "Cannot find PCI device base address, "
  4323. "aborting.\n");
  4324. rc = -ENODEV;
  4325. goto err_out_disable;
  4326. }
  4327. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  4328. if (rc) {
  4329. printk(KERN_ERR PFX "Cannot obtain PCI resources, aborting.\n");
  4330. goto err_out_disable;
  4331. }
  4332. pci_set_master(pdev);
  4333. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  4334. if (bp->pm_cap == 0) {
  4335. printk(KERN_ERR PFX "Cannot find power management capability, "
  4336. "aborting.\n");
  4337. rc = -EIO;
  4338. goto err_out_release;
  4339. }
  4340. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  4341. if (bp->pcix_cap == 0) {
  4342. printk(KERN_ERR PFX "Cannot find PCIX capability, aborting.\n");
  4343. rc = -EIO;
  4344. goto err_out_release;
  4345. }
  4346. if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) {
  4347. bp->flags |= USING_DAC_FLAG;
  4348. if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
  4349. printk(KERN_ERR PFX "pci_set_consistent_dma_mask "
  4350. "failed, aborting.\n");
  4351. rc = -EIO;
  4352. goto err_out_release;
  4353. }
  4354. }
  4355. else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) {
  4356. printk(KERN_ERR PFX "System does not support DMA, aborting.\n");
  4357. rc = -EIO;
  4358. goto err_out_release;
  4359. }
  4360. bp->dev = dev;
  4361. bp->pdev = pdev;
  4362. spin_lock_init(&bp->phy_lock);
  4363. spin_lock_init(&bp->tx_lock);
  4364. INIT_WORK(&bp->reset_task, bnx2_reset_task, bp);
  4365. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  4366. mem_len = MB_GET_CID_ADDR(17);
  4367. dev->mem_end = dev->mem_start + mem_len;
  4368. dev->irq = pdev->irq;
  4369. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  4370. if (!bp->regview) {
  4371. printk(KERN_ERR PFX "Cannot map register space, aborting.\n");
  4372. rc = -ENOMEM;
  4373. goto err_out_release;
  4374. }
  4375. /* Configure byte swap and enable write to the reg_window registers.
  4376. * Rely on CPU to do target byte swapping on big endian systems
  4377. * The chip's target access swapping will not swap all accesses
  4378. */
  4379. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  4380. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  4381. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  4382. bnx2_set_power_state(bp, PCI_D0);
  4383. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  4384. /* Get bus information. */
  4385. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  4386. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  4387. u32 clkreg;
  4388. bp->flags |= PCIX_FLAG;
  4389. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  4390. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  4391. switch (clkreg) {
  4392. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  4393. bp->bus_speed_mhz = 133;
  4394. break;
  4395. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  4396. bp->bus_speed_mhz = 100;
  4397. break;
  4398. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  4399. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  4400. bp->bus_speed_mhz = 66;
  4401. break;
  4402. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  4403. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  4404. bp->bus_speed_mhz = 50;
  4405. break;
  4406. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  4407. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  4408. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  4409. bp->bus_speed_mhz = 33;
  4410. break;
  4411. }
  4412. }
  4413. else {
  4414. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  4415. bp->bus_speed_mhz = 66;
  4416. else
  4417. bp->bus_speed_mhz = 33;
  4418. }
  4419. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  4420. bp->flags |= PCI_32BIT_FLAG;
  4421. /* 5706A0 may falsely detect SERR and PERR. */
  4422. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4423. reg = REG_RD(bp, PCI_COMMAND);
  4424. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  4425. REG_WR(bp, PCI_COMMAND, reg);
  4426. }
  4427. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  4428. !(bp->flags & PCIX_FLAG)) {
  4429. printk(KERN_ERR PFX "5706 A1 can only be used in a PCIX bus, "
  4430. "aborting.\n");
  4431. goto err_out_unmap;
  4432. }
  4433. bnx2_init_nvram(bp);
  4434. reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
  4435. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  4436. BNX2_SHM_HDR_SIGNATURE_SIG)
  4437. bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0);
  4438. else
  4439. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  4440. /* Get the permanent MAC address. First we need to make sure the
  4441. * firmware is actually running.
  4442. */
  4443. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
  4444. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  4445. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  4446. printk(KERN_ERR PFX "Firmware not running, aborting.\n");
  4447. rc = -ENODEV;
  4448. goto err_out_unmap;
  4449. }
  4450. bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
  4451. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
  4452. bp->mac_addr[0] = (u8) (reg >> 8);
  4453. bp->mac_addr[1] = (u8) reg;
  4454. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
  4455. bp->mac_addr[2] = (u8) (reg >> 24);
  4456. bp->mac_addr[3] = (u8) (reg >> 16);
  4457. bp->mac_addr[4] = (u8) (reg >> 8);
  4458. bp->mac_addr[5] = (u8) reg;
  4459. bp->tx_ring_size = MAX_TX_DESC_CNT;
  4460. bp->rx_ring_size = 100;
  4461. bp->rx_csum = 1;
  4462. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  4463. bp->tx_quick_cons_trip_int = 20;
  4464. bp->tx_quick_cons_trip = 20;
  4465. bp->tx_ticks_int = 80;
  4466. bp->tx_ticks = 80;
  4467. bp->rx_quick_cons_trip_int = 6;
  4468. bp->rx_quick_cons_trip = 6;
  4469. bp->rx_ticks_int = 18;
  4470. bp->rx_ticks = 18;
  4471. bp->stats_ticks = 1000000 & 0xffff00;
  4472. bp->timer_interval = HZ;
  4473. bp->current_interval = HZ;
  4474. bp->phy_addr = 1;
  4475. /* Disable WOL support if we are running on a SERDES chip. */
  4476. if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) {
  4477. bp->phy_flags |= PHY_SERDES_FLAG;
  4478. bp->flags |= NO_WOL_FLAG;
  4479. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  4480. bp->phy_addr = 2;
  4481. reg = REG_RD_IND(bp, bp->shmem_base +
  4482. BNX2_SHARED_HW_CFG_CONFIG);
  4483. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  4484. bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
  4485. }
  4486. }
  4487. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  4488. bp->flags |= NO_WOL_FLAG;
  4489. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4490. bp->tx_quick_cons_trip_int =
  4491. bp->tx_quick_cons_trip;
  4492. bp->tx_ticks_int = bp->tx_ticks;
  4493. bp->rx_quick_cons_trip_int =
  4494. bp->rx_quick_cons_trip;
  4495. bp->rx_ticks_int = bp->rx_ticks;
  4496. bp->comp_prod_trip_int = bp->comp_prod_trip;
  4497. bp->com_ticks_int = bp->com_ticks;
  4498. bp->cmd_ticks_int = bp->cmd_ticks;
  4499. }
  4500. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  4501. bp->req_line_speed = 0;
  4502. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4503. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  4504. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
  4505. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  4506. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  4507. bp->autoneg = 0;
  4508. bp->req_line_speed = bp->line_speed = SPEED_1000;
  4509. bp->req_duplex = DUPLEX_FULL;
  4510. }
  4511. }
  4512. else {
  4513. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  4514. }
  4515. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  4516. init_timer(&bp->timer);
  4517. bp->timer.expires = RUN_AT(bp->timer_interval);
  4518. bp->timer.data = (unsigned long) bp;
  4519. bp->timer.function = bnx2_timer;
  4520. return 0;
  4521. err_out_unmap:
  4522. if (bp->regview) {
  4523. iounmap(bp->regview);
  4524. bp->regview = NULL;
  4525. }
  4526. err_out_release:
  4527. pci_release_regions(pdev);
  4528. err_out_disable:
  4529. pci_disable_device(pdev);
  4530. pci_set_drvdata(pdev, NULL);
  4531. err_out:
  4532. return rc;
  4533. }
  4534. static int __devinit
  4535. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  4536. {
  4537. static int version_printed = 0;
  4538. struct net_device *dev = NULL;
  4539. struct bnx2 *bp;
  4540. int rc, i;
  4541. if (version_printed++ == 0)
  4542. printk(KERN_INFO "%s", version);
  4543. /* dev zeroed in init_etherdev */
  4544. dev = alloc_etherdev(sizeof(*bp));
  4545. if (!dev)
  4546. return -ENOMEM;
  4547. rc = bnx2_init_board(pdev, dev);
  4548. if (rc < 0) {
  4549. free_netdev(dev);
  4550. return rc;
  4551. }
  4552. dev->open = bnx2_open;
  4553. dev->hard_start_xmit = bnx2_start_xmit;
  4554. dev->stop = bnx2_close;
  4555. dev->get_stats = bnx2_get_stats;
  4556. dev->set_multicast_list = bnx2_set_rx_mode;
  4557. dev->do_ioctl = bnx2_ioctl;
  4558. dev->set_mac_address = bnx2_change_mac_addr;
  4559. dev->change_mtu = bnx2_change_mtu;
  4560. dev->tx_timeout = bnx2_tx_timeout;
  4561. dev->watchdog_timeo = TX_TIMEOUT;
  4562. #ifdef BCM_VLAN
  4563. dev->vlan_rx_register = bnx2_vlan_rx_register;
  4564. dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid;
  4565. #endif
  4566. dev->poll = bnx2_poll;
  4567. dev->ethtool_ops = &bnx2_ethtool_ops;
  4568. dev->weight = 64;
  4569. bp = netdev_priv(dev);
  4570. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4571. dev->poll_controller = poll_bnx2;
  4572. #endif
  4573. if ((rc = register_netdev(dev))) {
  4574. printk(KERN_ERR PFX "Cannot register net device\n");
  4575. if (bp->regview)
  4576. iounmap(bp->regview);
  4577. pci_release_regions(pdev);
  4578. pci_disable_device(pdev);
  4579. pci_set_drvdata(pdev, NULL);
  4580. free_netdev(dev);
  4581. return rc;
  4582. }
  4583. pci_set_drvdata(pdev, dev);
  4584. memcpy(dev->dev_addr, bp->mac_addr, 6);
  4585. memcpy(dev->perm_addr, bp->mac_addr, 6);
  4586. bp->name = board_info[ent->driver_data].name,
  4587. printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
  4588. "IRQ %d, ",
  4589. dev->name,
  4590. bp->name,
  4591. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  4592. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  4593. ((bp->flags & PCIX_FLAG) ? "-X" : ""),
  4594. ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
  4595. bp->bus_speed_mhz,
  4596. dev->base_addr,
  4597. bp->pdev->irq);
  4598. printk("node addr ");
  4599. for (i = 0; i < 6; i++)
  4600. printk("%2.2x", dev->dev_addr[i]);
  4601. printk("\n");
  4602. dev->features |= NETIF_F_SG;
  4603. if (bp->flags & USING_DAC_FLAG)
  4604. dev->features |= NETIF_F_HIGHDMA;
  4605. dev->features |= NETIF_F_IP_CSUM;
  4606. #ifdef BCM_VLAN
  4607. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  4608. #endif
  4609. #ifdef BCM_TSO
  4610. dev->features |= NETIF_F_TSO;
  4611. #endif
  4612. netif_carrier_off(bp->dev);
  4613. return 0;
  4614. }
  4615. static void __devexit
  4616. bnx2_remove_one(struct pci_dev *pdev)
  4617. {
  4618. struct net_device *dev = pci_get_drvdata(pdev);
  4619. struct bnx2 *bp = netdev_priv(dev);
  4620. flush_scheduled_work();
  4621. unregister_netdev(dev);
  4622. if (bp->regview)
  4623. iounmap(bp->regview);
  4624. free_netdev(dev);
  4625. pci_release_regions(pdev);
  4626. pci_disable_device(pdev);
  4627. pci_set_drvdata(pdev, NULL);
  4628. }
  4629. static int
  4630. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  4631. {
  4632. struct net_device *dev = pci_get_drvdata(pdev);
  4633. struct bnx2 *bp = netdev_priv(dev);
  4634. u32 reset_code;
  4635. if (!netif_running(dev))
  4636. return 0;
  4637. bnx2_netif_stop(bp);
  4638. netif_device_detach(dev);
  4639. del_timer_sync(&bp->timer);
  4640. if (bp->flags & NO_WOL_FLAG)
  4641. reset_code = BNX2_DRV_MSG_CODE_UNLOAD;
  4642. else if (bp->wol)
  4643. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4644. else
  4645. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4646. bnx2_reset_chip(bp, reset_code);
  4647. bnx2_free_skbs(bp);
  4648. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  4649. return 0;
  4650. }
  4651. static int
  4652. bnx2_resume(struct pci_dev *pdev)
  4653. {
  4654. struct net_device *dev = pci_get_drvdata(pdev);
  4655. struct bnx2 *bp = netdev_priv(dev);
  4656. if (!netif_running(dev))
  4657. return 0;
  4658. bnx2_set_power_state(bp, PCI_D0);
  4659. netif_device_attach(dev);
  4660. bnx2_init_nic(bp);
  4661. bnx2_netif_start(bp);
  4662. return 0;
  4663. }
  4664. static struct pci_driver bnx2_pci_driver = {
  4665. .name = DRV_MODULE_NAME,
  4666. .id_table = bnx2_pci_tbl,
  4667. .probe = bnx2_init_one,
  4668. .remove = __devexit_p(bnx2_remove_one),
  4669. .suspend = bnx2_suspend,
  4670. .resume = bnx2_resume,
  4671. };
  4672. static int __init bnx2_init(void)
  4673. {
  4674. return pci_module_init(&bnx2_pci_driver);
  4675. }
  4676. static void __exit bnx2_cleanup(void)
  4677. {
  4678. pci_unregister_driver(&bnx2_pci_driver);
  4679. }
  4680. module_init(bnx2_init);
  4681. module_exit(bnx2_cleanup);