sched.c 269 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/smp_lock.h>
  36. #include <asm/mmu_context.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/capability.h>
  39. #include <linux/completion.h>
  40. #include <linux/kernel_stat.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/security.h>
  44. #include <linux/notifier.h>
  45. #include <linux/profile.h>
  46. #include <linux/freezer.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/blkdev.h>
  49. #include <linux/delay.h>
  50. #include <linux/pid_namespace.h>
  51. #include <linux/smp.h>
  52. #include <linux/threads.h>
  53. #include <linux/timer.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/cpu.h>
  56. #include <linux/cpuset.h>
  57. #include <linux/percpu.h>
  58. #include <linux/kthread.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/sysctl.h>
  62. #include <linux/syscalls.h>
  63. #include <linux/times.h>
  64. #include <linux/tsacct_kern.h>
  65. #include <linux/kprobes.h>
  66. #include <linux/delayacct.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_SMP
  263. static int root_task_group_empty(void)
  264. {
  265. return list_empty(&root_task_group.children);
  266. }
  267. #endif
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  319. static inline struct task_group *task_group(struct task_struct *p)
  320. {
  321. return NULL;
  322. }
  323. #endif /* CONFIG_GROUP_SCHED */
  324. /* CFS-related fields in a runqueue */
  325. struct cfs_rq {
  326. struct load_weight load;
  327. unsigned long nr_running;
  328. u64 exec_clock;
  329. u64 min_vruntime;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next, *last;
  339. unsigned int nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. struct {
  381. int curr; /* highest queued rt task prio */
  382. #ifdef CONFIG_SMP
  383. int next; /* next highest */
  384. #endif
  385. } highest_prio;
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. unsigned long rt_nr_total;
  390. int overloaded;
  391. struct plist_head pushable_tasks;
  392. #endif
  393. int rt_throttled;
  394. u64 rt_time;
  395. u64 rt_runtime;
  396. /* Nests inside the rq lock: */
  397. raw_spinlock_t rt_runtime_lock;
  398. #ifdef CONFIG_RT_GROUP_SCHED
  399. unsigned long rt_nr_boosted;
  400. struct rq *rq;
  401. struct list_head leaf_rt_rq_list;
  402. struct task_group *tg;
  403. struct sched_rt_entity *rt_se;
  404. #endif
  405. };
  406. #ifdef CONFIG_SMP
  407. /*
  408. * We add the notion of a root-domain which will be used to define per-domain
  409. * variables. Each exclusive cpuset essentially defines an island domain by
  410. * fully partitioning the member cpus from any other cpuset. Whenever a new
  411. * exclusive cpuset is created, we also create and attach a new root-domain
  412. * object.
  413. *
  414. */
  415. struct root_domain {
  416. atomic_t refcount;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /*
  420. * The "RT overload" flag: it gets set if a CPU has more than
  421. * one runnable RT task.
  422. */
  423. cpumask_var_t rto_mask;
  424. atomic_t rto_count;
  425. #ifdef CONFIG_SMP
  426. struct cpupri cpupri;
  427. #endif
  428. };
  429. /*
  430. * By default the system creates a single root-domain with all cpus as
  431. * members (mimicking the global state we have today).
  432. */
  433. static struct root_domain def_root_domain;
  434. #endif
  435. /*
  436. * This is the main, per-CPU runqueue data structure.
  437. *
  438. * Locking rule: those places that want to lock multiple runqueues
  439. * (such as the load balancing or the thread migration code), lock
  440. * acquire operations must be ordered by ascending &runqueue.
  441. */
  442. struct rq {
  443. /* runqueue lock: */
  444. raw_spinlock_t lock;
  445. /*
  446. * nr_running and cpu_load should be in the same cacheline because
  447. * remote CPUs use both these fields when doing load calculation.
  448. */
  449. unsigned long nr_running;
  450. #define CPU_LOAD_IDX_MAX 5
  451. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  452. #ifdef CONFIG_NO_HZ
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. unsigned char idle_at_tick;
  484. /* For active balancing */
  485. int post_schedule;
  486. int active_balance;
  487. int push_cpu;
  488. /* cpu of this runqueue: */
  489. int cpu;
  490. int online;
  491. unsigned long avg_load_per_task;
  492. struct task_struct *migration_thread;
  493. struct list_head migration_queue;
  494. u64 rt_avg;
  495. u64 age_stamp;
  496. u64 idle_stamp;
  497. u64 avg_idle;
  498. #endif
  499. /* calc_load related fields */
  500. unsigned long calc_load_update;
  501. long calc_load_active;
  502. #ifdef CONFIG_SCHED_HRTICK
  503. #ifdef CONFIG_SMP
  504. int hrtick_csd_pending;
  505. struct call_single_data hrtick_csd;
  506. #endif
  507. struct hrtimer hrtick_timer;
  508. #endif
  509. #ifdef CONFIG_SCHEDSTATS
  510. /* latency stats */
  511. struct sched_info rq_sched_info;
  512. unsigned long long rq_cpu_time;
  513. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  514. /* sys_sched_yield() stats */
  515. unsigned int yld_count;
  516. /* schedule() stats */
  517. unsigned int sched_switch;
  518. unsigned int sched_count;
  519. unsigned int sched_goidle;
  520. /* try_to_wake_up() stats */
  521. unsigned int ttwu_count;
  522. unsigned int ttwu_local;
  523. /* BKL stats */
  524. unsigned int bkl_count;
  525. #endif
  526. };
  527. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  528. static inline
  529. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  555. inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. * @cpu: the processor in question.
  570. *
  571. * Returns true if the current cpu runqueue is locked.
  572. * This interface allows printk to be called with the runqueue lock
  573. * held and know whether or not it is OK to wake up the klogd.
  574. */
  575. int runqueue_is_locked(int cpu)
  576. {
  577. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. *ppos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static const struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  676. /*
  677. * Inject some fuzzyness into changing the per-cpu group shares
  678. * this avoids remote rq-locks at the expense of fairness.
  679. * default: 4
  680. */
  681. unsigned int sysctl_sched_shares_thresh = 4;
  682. /*
  683. * period over which we average the RT time consumption, measured
  684. * in ms.
  685. *
  686. * default: 1s
  687. */
  688. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  689. /*
  690. * period over which we measure -rt task cpu usage in us.
  691. * default: 1s
  692. */
  693. unsigned int sysctl_sched_rt_period = 1000000;
  694. static __read_mostly int scheduler_running;
  695. /*
  696. * part of the period that we allow rt tasks to run in us.
  697. * default: 0.95s
  698. */
  699. int sysctl_sched_rt_runtime = 950000;
  700. static inline u64 global_rt_period(void)
  701. {
  702. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  703. }
  704. static inline u64 global_rt_runtime(void)
  705. {
  706. if (sysctl_sched_rt_runtime < 0)
  707. return RUNTIME_INF;
  708. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  709. }
  710. #ifndef prepare_arch_switch
  711. # define prepare_arch_switch(next) do { } while (0)
  712. #endif
  713. #ifndef finish_arch_switch
  714. # define finish_arch_switch(prev) do { } while (0)
  715. #endif
  716. static inline int task_current(struct rq *rq, struct task_struct *p)
  717. {
  718. return rq->curr == p;
  719. }
  720. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  721. static inline int task_running(struct rq *rq, struct task_struct *p)
  722. {
  723. return task_current(rq, p);
  724. }
  725. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  726. {
  727. }
  728. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  729. {
  730. #ifdef CONFIG_DEBUG_SPINLOCK
  731. /* this is a valid case when another task releases the spinlock */
  732. rq->lock.owner = current;
  733. #endif
  734. /*
  735. * If we are tracking spinlock dependencies then we have to
  736. * fix up the runqueue lock - which gets 'carried over' from
  737. * prev into current:
  738. */
  739. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  740. raw_spin_unlock_irq(&rq->lock);
  741. }
  742. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. #ifdef CONFIG_SMP
  746. return p->oncpu;
  747. #else
  748. return task_current(rq, p);
  749. #endif
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * We can optimise this out completely for !SMP, because the
  756. * SMP rebalancing from interrupt is the only thing that cares
  757. * here.
  758. */
  759. next->oncpu = 1;
  760. #endif
  761. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. raw_spin_unlock_irq(&rq->lock);
  763. #else
  764. raw_spin_unlock(&rq->lock);
  765. #endif
  766. }
  767. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * After ->oncpu is cleared, the task can be moved to a different CPU.
  772. * We must ensure this doesn't happen until the switch is completely
  773. * finished.
  774. */
  775. smp_wmb();
  776. prev->oncpu = 0;
  777. #endif
  778. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  779. local_irq_enable();
  780. #endif
  781. }
  782. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  783. /*
  784. * __task_rq_lock - lock the runqueue a given task resides on.
  785. * Must be called interrupts disabled.
  786. */
  787. static inline struct rq *__task_rq_lock(struct task_struct *p)
  788. __acquires(rq->lock)
  789. {
  790. for (;;) {
  791. struct rq *rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. }
  797. }
  798. /*
  799. * task_rq_lock - lock the runqueue a given task resides on and disable
  800. * interrupts. Note the ordering: we can safely lookup the task_rq without
  801. * explicitly disabling preemption.
  802. */
  803. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  804. __acquires(rq->lock)
  805. {
  806. struct rq *rq;
  807. for (;;) {
  808. local_irq_save(*flags);
  809. rq = task_rq(p);
  810. raw_spin_lock(&rq->lock);
  811. if (likely(rq == task_rq(p)))
  812. return rq;
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. }
  816. void task_rq_unlock_wait(struct task_struct *p)
  817. {
  818. struct rq *rq = task_rq(p);
  819. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  820. raw_spin_unlock_wait(&rq->lock);
  821. }
  822. static void __task_rq_unlock(struct rq *rq)
  823. __releases(rq->lock)
  824. {
  825. raw_spin_unlock(&rq->lock);
  826. }
  827. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  828. __releases(rq->lock)
  829. {
  830. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  831. }
  832. /*
  833. * this_rq_lock - lock this runqueue and disable interrupts.
  834. */
  835. static struct rq *this_rq_lock(void)
  836. __acquires(rq->lock)
  837. {
  838. struct rq *rq;
  839. local_irq_disable();
  840. rq = this_rq();
  841. raw_spin_lock(&rq->lock);
  842. return rq;
  843. }
  844. #ifdef CONFIG_SCHED_HRTICK
  845. /*
  846. * Use HR-timers to deliver accurate preemption points.
  847. *
  848. * Its all a bit involved since we cannot program an hrt while holding the
  849. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  850. * reschedule event.
  851. *
  852. * When we get rescheduled we reprogram the hrtick_timer outside of the
  853. * rq->lock.
  854. */
  855. /*
  856. * Use hrtick when:
  857. * - enabled by features
  858. * - hrtimer is actually high res
  859. */
  860. static inline int hrtick_enabled(struct rq *rq)
  861. {
  862. if (!sched_feat(HRTICK))
  863. return 0;
  864. if (!cpu_active(cpu_of(rq)))
  865. return 0;
  866. return hrtimer_is_hres_active(&rq->hrtick_timer);
  867. }
  868. static void hrtick_clear(struct rq *rq)
  869. {
  870. if (hrtimer_active(&rq->hrtick_timer))
  871. hrtimer_cancel(&rq->hrtick_timer);
  872. }
  873. /*
  874. * High-resolution timer tick.
  875. * Runs from hardirq context with interrupts disabled.
  876. */
  877. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  878. {
  879. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  880. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  881. raw_spin_lock(&rq->lock);
  882. update_rq_clock(rq);
  883. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  884. raw_spin_unlock(&rq->lock);
  885. return HRTIMER_NORESTART;
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * called from hardirq (IPI) context
  890. */
  891. static void __hrtick_start(void *arg)
  892. {
  893. struct rq *rq = arg;
  894. raw_spin_lock(&rq->lock);
  895. hrtimer_restart(&rq->hrtick_timer);
  896. rq->hrtick_csd_pending = 0;
  897. raw_spin_unlock(&rq->lock);
  898. }
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. struct hrtimer *timer = &rq->hrtick_timer;
  907. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  908. hrtimer_set_expires(timer, time);
  909. if (rq == this_rq()) {
  910. hrtimer_restart(timer);
  911. } else if (!rq->hrtick_csd_pending) {
  912. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  913. rq->hrtick_csd_pending = 1;
  914. }
  915. }
  916. static int
  917. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  918. {
  919. int cpu = (int)(long)hcpu;
  920. switch (action) {
  921. case CPU_UP_CANCELED:
  922. case CPU_UP_CANCELED_FROZEN:
  923. case CPU_DOWN_PREPARE:
  924. case CPU_DOWN_PREPARE_FROZEN:
  925. case CPU_DEAD:
  926. case CPU_DEAD_FROZEN:
  927. hrtick_clear(cpu_rq(cpu));
  928. return NOTIFY_OK;
  929. }
  930. return NOTIFY_DONE;
  931. }
  932. static __init void init_hrtick(void)
  933. {
  934. hotcpu_notifier(hotplug_hrtick, 0);
  935. }
  936. #else
  937. /*
  938. * Called to set the hrtick timer state.
  939. *
  940. * called with rq->lock held and irqs disabled
  941. */
  942. static void hrtick_start(struct rq *rq, u64 delay)
  943. {
  944. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  945. HRTIMER_MODE_REL_PINNED, 0);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. }
  962. #else /* CONFIG_SCHED_HRTICK */
  963. static inline void hrtick_clear(struct rq *rq)
  964. {
  965. }
  966. static inline void init_rq_hrtick(struct rq *rq)
  967. {
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SCHED_HRTICK */
  973. /*
  974. * resched_task - mark a task 'to be rescheduled now'.
  975. *
  976. * On UP this means the setting of the need_resched flag, on SMP it
  977. * might also involve a cross-CPU call to trigger the scheduler on
  978. * the target CPU.
  979. */
  980. #ifdef CONFIG_SMP
  981. #ifndef tsk_is_polling
  982. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  983. #endif
  984. static void resched_task(struct task_struct *p)
  985. {
  986. int cpu;
  987. assert_raw_spin_locked(&task_rq(p)->lock);
  988. if (test_tsk_need_resched(p))
  989. return;
  990. set_tsk_need_resched(p);
  991. cpu = task_cpu(p);
  992. if (cpu == smp_processor_id())
  993. return;
  994. /* NEED_RESCHED must be visible before we test polling */
  995. smp_mb();
  996. if (!tsk_is_polling(p))
  997. smp_send_reschedule(cpu);
  998. }
  999. static void resched_cpu(int cpu)
  1000. {
  1001. struct rq *rq = cpu_rq(cpu);
  1002. unsigned long flags;
  1003. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1004. return;
  1005. resched_task(cpu_curr(cpu));
  1006. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1007. }
  1008. #ifdef CONFIG_NO_HZ
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_raw_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. /* Used instead of source_load when we know the type == 0 */
  1252. static unsigned long weighted_cpuload(const int cpu)
  1253. {
  1254. return cpu_rq(cpu)->load.weight;
  1255. }
  1256. /*
  1257. * Return a low guess at the load of a migration-source cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. *
  1260. * We want to under-estimate the load of migration sources, to
  1261. * balance conservatively.
  1262. */
  1263. static unsigned long source_load(int cpu, int type)
  1264. {
  1265. struct rq *rq = cpu_rq(cpu);
  1266. unsigned long total = weighted_cpuload(cpu);
  1267. if (type == 0 || !sched_feat(LB_BIAS))
  1268. return total;
  1269. return min(rq->cpu_load[type-1], total);
  1270. }
  1271. /*
  1272. * Return a high guess at the load of a migration-target cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. */
  1275. static unsigned long target_load(int cpu, int type)
  1276. {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long total = weighted_cpuload(cpu);
  1279. if (type == 0 || !sched_feat(LB_BIAS))
  1280. return total;
  1281. return max(rq->cpu_load[type-1], total);
  1282. }
  1283. static struct sched_group *group_of(int cpu)
  1284. {
  1285. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1286. if (!sd)
  1287. return NULL;
  1288. return sd->groups;
  1289. }
  1290. static unsigned long power_of(int cpu)
  1291. {
  1292. struct sched_group *group = group_of(cpu);
  1293. if (!group)
  1294. return SCHED_LOAD_SCALE;
  1295. return group->cpu_power;
  1296. }
  1297. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1298. static unsigned long cpu_avg_load_per_task(int cpu)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1302. if (nr_running)
  1303. rq->avg_load_per_task = rq->load.weight / nr_running;
  1304. else
  1305. rq->avg_load_per_task = 0;
  1306. return rq->avg_load_per_task;
  1307. }
  1308. #ifdef CONFIG_FAIR_GROUP_SCHED
  1309. static __read_mostly unsigned long *update_shares_data;
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. unsigned long *usd_rq_weight)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd_rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. raw_spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1352. unsigned long *usd_rq_weight;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd_rq_weight[i] = weight;
  1363. rq_weight += weight;
  1364. /*
  1365. * If there are currently no tasks on the cpu pretend there
  1366. * is one of average load so that when a new task gets to
  1367. * run here it will not get delayed by group starvation.
  1368. */
  1369. if (!weight)
  1370. weight = NICE_0_LOAD;
  1371. sum_weight += weight;
  1372. shares += tg->cfs_rq[i]->shares;
  1373. }
  1374. if (!rq_weight)
  1375. rq_weight = sum_weight;
  1376. if ((!shares && rq_weight) || shares > tg->shares)
  1377. shares = tg->shares;
  1378. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1379. shares = tg->shares;
  1380. for_each_cpu(i, sched_domain_span(sd))
  1381. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1382. local_irq_restore(flags);
  1383. return 0;
  1384. }
  1385. /*
  1386. * Compute the cpu's hierarchical load factor for each task group.
  1387. * This needs to be done in a top-down fashion because the load of a child
  1388. * group is a fraction of its parents load.
  1389. */
  1390. static int tg_load_down(struct task_group *tg, void *data)
  1391. {
  1392. unsigned long load;
  1393. long cpu = (long)data;
  1394. if (!tg->parent) {
  1395. load = cpu_rq(cpu)->load.weight;
  1396. } else {
  1397. load = tg->parent->cfs_rq[cpu]->h_load;
  1398. load *= tg->cfs_rq[cpu]->shares;
  1399. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1400. }
  1401. tg->cfs_rq[cpu]->h_load = load;
  1402. return 0;
  1403. }
  1404. static void update_shares(struct sched_domain *sd)
  1405. {
  1406. s64 elapsed;
  1407. u64 now;
  1408. if (root_task_group_empty())
  1409. return;
  1410. now = cpu_clock(raw_smp_processor_id());
  1411. elapsed = now - sd->last_update;
  1412. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1413. sd->last_update = now;
  1414. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1415. }
  1416. }
  1417. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1418. {
  1419. if (root_task_group_empty())
  1420. return;
  1421. raw_spin_unlock(&rq->lock);
  1422. update_shares(sd);
  1423. raw_spin_lock(&rq->lock);
  1424. }
  1425. static void update_h_load(long cpu)
  1426. {
  1427. if (root_task_group_empty())
  1428. return;
  1429. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1430. }
  1431. #else
  1432. static inline void update_shares(struct sched_domain *sd)
  1433. {
  1434. }
  1435. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1436. {
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_PREEMPT
  1440. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1441. /*
  1442. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1443. * way at the expense of forcing extra atomic operations in all
  1444. * invocations. This assures that the double_lock is acquired using the
  1445. * same underlying policy as the spinlock_t on this architecture, which
  1446. * reduces latency compared to the unfair variant below. However, it
  1447. * also adds more overhead and therefore may reduce throughput.
  1448. */
  1449. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(this_rq->lock)
  1451. __acquires(busiest->lock)
  1452. __acquires(this_rq->lock)
  1453. {
  1454. raw_spin_unlock(&this_rq->lock);
  1455. double_rq_lock(this_rq, busiest);
  1456. return 1;
  1457. }
  1458. #else
  1459. /*
  1460. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1461. * latency by eliminating extra atomic operations when the locks are
  1462. * already in proper order on entry. This favors lower cpu-ids and will
  1463. * grant the double lock to lower cpus over higher ids under contention,
  1464. * regardless of entry order into the function.
  1465. */
  1466. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. __releases(this_rq->lock)
  1468. __acquires(busiest->lock)
  1469. __acquires(this_rq->lock)
  1470. {
  1471. int ret = 0;
  1472. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1473. if (busiest < this_rq) {
  1474. raw_spin_unlock(&this_rq->lock);
  1475. raw_spin_lock(&busiest->lock);
  1476. raw_spin_lock_nested(&this_rq->lock,
  1477. SINGLE_DEPTH_NESTING);
  1478. ret = 1;
  1479. } else
  1480. raw_spin_lock_nested(&busiest->lock,
  1481. SINGLE_DEPTH_NESTING);
  1482. }
  1483. return ret;
  1484. }
  1485. #endif /* CONFIG_PREEMPT */
  1486. /*
  1487. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1488. */
  1489. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1490. {
  1491. if (unlikely(!irqs_disabled())) {
  1492. /* printk() doesn't work good under rq->lock */
  1493. raw_spin_unlock(&this_rq->lock);
  1494. BUG_ON(1);
  1495. }
  1496. return _double_lock_balance(this_rq, busiest);
  1497. }
  1498. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1499. __releases(busiest->lock)
  1500. {
  1501. raw_spin_unlock(&busiest->lock);
  1502. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1503. }
  1504. #endif
  1505. #ifdef CONFIG_FAIR_GROUP_SCHED
  1506. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1507. {
  1508. #ifdef CONFIG_SMP
  1509. cfs_rq->shares = shares;
  1510. #endif
  1511. }
  1512. #endif
  1513. static void calc_load_account_active(struct rq *this_rq);
  1514. static void update_sysctl(void);
  1515. static int get_update_sysctl_factor(void);
  1516. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1517. {
  1518. set_task_rq(p, cpu);
  1519. #ifdef CONFIG_SMP
  1520. /*
  1521. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1522. * successfuly executed on another CPU. We must ensure that updates of
  1523. * per-task data have been completed by this moment.
  1524. */
  1525. smp_wmb();
  1526. task_thread_info(p)->cpu = cpu;
  1527. #endif
  1528. }
  1529. #include "sched_stats.h"
  1530. #include "sched_idletask.c"
  1531. #include "sched_fair.c"
  1532. #include "sched_rt.c"
  1533. #ifdef CONFIG_SCHED_DEBUG
  1534. # include "sched_debug.c"
  1535. #endif
  1536. #define sched_class_highest (&rt_sched_class)
  1537. #define for_each_class(class) \
  1538. for (class = sched_class_highest; class; class = class->next)
  1539. static void inc_nr_running(struct rq *rq)
  1540. {
  1541. rq->nr_running++;
  1542. }
  1543. static void dec_nr_running(struct rq *rq)
  1544. {
  1545. rq->nr_running--;
  1546. }
  1547. static void set_load_weight(struct task_struct *p)
  1548. {
  1549. if (task_has_rt_policy(p)) {
  1550. p->se.load.weight = prio_to_weight[0] * 2;
  1551. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1552. return;
  1553. }
  1554. /*
  1555. * SCHED_IDLE tasks get minimal weight:
  1556. */
  1557. if (p->policy == SCHED_IDLE) {
  1558. p->se.load.weight = WEIGHT_IDLEPRIO;
  1559. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1560. return;
  1561. }
  1562. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1563. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1564. }
  1565. static void update_avg(u64 *avg, u64 sample)
  1566. {
  1567. s64 diff = sample - *avg;
  1568. *avg += diff >> 3;
  1569. }
  1570. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1571. {
  1572. if (wakeup)
  1573. p->se.start_runtime = p->se.sum_exec_runtime;
  1574. sched_info_queued(p);
  1575. p->sched_class->enqueue_task(rq, p, wakeup);
  1576. p->se.on_rq = 1;
  1577. }
  1578. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1579. {
  1580. if (sleep) {
  1581. if (p->se.last_wakeup) {
  1582. update_avg(&p->se.avg_overlap,
  1583. p->se.sum_exec_runtime - p->se.last_wakeup);
  1584. p->se.last_wakeup = 0;
  1585. } else {
  1586. update_avg(&p->se.avg_wakeup,
  1587. sysctl_sched_wakeup_granularity);
  1588. }
  1589. }
  1590. sched_info_dequeued(p);
  1591. p->sched_class->dequeue_task(rq, p, sleep);
  1592. p->se.on_rq = 0;
  1593. }
  1594. /*
  1595. * __normal_prio - return the priority that is based on the static prio
  1596. */
  1597. static inline int __normal_prio(struct task_struct *p)
  1598. {
  1599. return p->static_prio;
  1600. }
  1601. /*
  1602. * Calculate the expected normal priority: i.e. priority
  1603. * without taking RT-inheritance into account. Might be
  1604. * boosted by interactivity modifiers. Changes upon fork,
  1605. * setprio syscalls, and whenever the interactivity
  1606. * estimator recalculates.
  1607. */
  1608. static inline int normal_prio(struct task_struct *p)
  1609. {
  1610. int prio;
  1611. if (task_has_rt_policy(p))
  1612. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1613. else
  1614. prio = __normal_prio(p);
  1615. return prio;
  1616. }
  1617. /*
  1618. * Calculate the current priority, i.e. the priority
  1619. * taken into account by the scheduler. This value might
  1620. * be boosted by RT tasks, or might be boosted by
  1621. * interactivity modifiers. Will be RT if the task got
  1622. * RT-boosted. If not then it returns p->normal_prio.
  1623. */
  1624. static int effective_prio(struct task_struct *p)
  1625. {
  1626. p->normal_prio = normal_prio(p);
  1627. /*
  1628. * If we are RT tasks or we were boosted to RT priority,
  1629. * keep the priority unchanged. Otherwise, update priority
  1630. * to the normal priority:
  1631. */
  1632. if (!rt_prio(p->prio))
  1633. return p->normal_prio;
  1634. return p->prio;
  1635. }
  1636. /*
  1637. * activate_task - move a task to the runqueue.
  1638. */
  1639. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1640. {
  1641. if (task_contributes_to_load(p))
  1642. rq->nr_uninterruptible--;
  1643. enqueue_task(rq, p, wakeup);
  1644. inc_nr_running(rq);
  1645. }
  1646. /*
  1647. * deactivate_task - remove a task from the runqueue.
  1648. */
  1649. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1650. {
  1651. if (task_contributes_to_load(p))
  1652. rq->nr_uninterruptible++;
  1653. dequeue_task(rq, p, sleep);
  1654. dec_nr_running(rq);
  1655. }
  1656. /**
  1657. * task_curr - is this task currently executing on a CPU?
  1658. * @p: the task in question.
  1659. */
  1660. inline int task_curr(const struct task_struct *p)
  1661. {
  1662. return cpu_curr(task_cpu(p)) == p;
  1663. }
  1664. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1665. const struct sched_class *prev_class,
  1666. int oldprio, int running)
  1667. {
  1668. if (prev_class != p->sched_class) {
  1669. if (prev_class->switched_from)
  1670. prev_class->switched_from(rq, p, running);
  1671. p->sched_class->switched_to(rq, p, running);
  1672. } else
  1673. p->sched_class->prio_changed(rq, p, oldprio, running);
  1674. }
  1675. #ifdef CONFIG_SMP
  1676. /*
  1677. * Is this task likely cache-hot:
  1678. */
  1679. static int
  1680. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1681. {
  1682. s64 delta;
  1683. if (p->sched_class != &fair_sched_class)
  1684. return 0;
  1685. /*
  1686. * Buddy candidates are cache hot:
  1687. */
  1688. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1689. (&p->se == cfs_rq_of(&p->se)->next ||
  1690. &p->se == cfs_rq_of(&p->se)->last))
  1691. return 1;
  1692. if (sysctl_sched_migration_cost == -1)
  1693. return 1;
  1694. if (sysctl_sched_migration_cost == 0)
  1695. return 0;
  1696. delta = now - p->se.exec_start;
  1697. return delta < (s64)sysctl_sched_migration_cost;
  1698. }
  1699. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1700. {
  1701. #ifdef CONFIG_SCHED_DEBUG
  1702. /*
  1703. * We should never call set_task_cpu() on a blocked task,
  1704. * ttwu() will sort out the placement.
  1705. */
  1706. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING);
  1707. #endif
  1708. trace_sched_migrate_task(p, new_cpu);
  1709. if (task_cpu(p) == new_cpu)
  1710. return;
  1711. p->se.nr_migrations++;
  1712. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1713. __set_task_cpu(p, new_cpu);
  1714. }
  1715. struct migration_req {
  1716. struct list_head list;
  1717. struct task_struct *task;
  1718. int dest_cpu;
  1719. struct completion done;
  1720. };
  1721. /*
  1722. * The task's runqueue lock must be held.
  1723. * Returns true if you have to wait for migration thread.
  1724. */
  1725. static int
  1726. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1727. {
  1728. struct rq *rq = task_rq(p);
  1729. /*
  1730. * If the task is not on a runqueue (and not running), then
  1731. * the next wake-up will properly place the task.
  1732. */
  1733. if (!p->se.on_rq && !task_running(rq, p))
  1734. return 0;
  1735. init_completion(&req->done);
  1736. req->task = p;
  1737. req->dest_cpu = dest_cpu;
  1738. list_add(&req->list, &rq->migration_queue);
  1739. return 1;
  1740. }
  1741. /*
  1742. * wait_task_context_switch - wait for a thread to complete at least one
  1743. * context switch.
  1744. *
  1745. * @p must not be current.
  1746. */
  1747. void wait_task_context_switch(struct task_struct *p)
  1748. {
  1749. unsigned long nvcsw, nivcsw, flags;
  1750. int running;
  1751. struct rq *rq;
  1752. nvcsw = p->nvcsw;
  1753. nivcsw = p->nivcsw;
  1754. for (;;) {
  1755. /*
  1756. * The runqueue is assigned before the actual context
  1757. * switch. We need to take the runqueue lock.
  1758. *
  1759. * We could check initially without the lock but it is
  1760. * very likely that we need to take the lock in every
  1761. * iteration.
  1762. */
  1763. rq = task_rq_lock(p, &flags);
  1764. running = task_running(rq, p);
  1765. task_rq_unlock(rq, &flags);
  1766. if (likely(!running))
  1767. break;
  1768. /*
  1769. * The switch count is incremented before the actual
  1770. * context switch. We thus wait for two switches to be
  1771. * sure at least one completed.
  1772. */
  1773. if ((p->nvcsw - nvcsw) > 1)
  1774. break;
  1775. if ((p->nivcsw - nivcsw) > 1)
  1776. break;
  1777. cpu_relax();
  1778. }
  1779. }
  1780. /*
  1781. * wait_task_inactive - wait for a thread to unschedule.
  1782. *
  1783. * If @match_state is nonzero, it's the @p->state value just checked and
  1784. * not expected to change. If it changes, i.e. @p might have woken up,
  1785. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1786. * we return a positive number (its total switch count). If a second call
  1787. * a short while later returns the same number, the caller can be sure that
  1788. * @p has remained unscheduled the whole time.
  1789. *
  1790. * The caller must ensure that the task *will* unschedule sometime soon,
  1791. * else this function might spin for a *long* time. This function can't
  1792. * be called with interrupts off, or it may introduce deadlock with
  1793. * smp_call_function() if an IPI is sent by the same process we are
  1794. * waiting to become inactive.
  1795. */
  1796. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1797. {
  1798. unsigned long flags;
  1799. int running, on_rq;
  1800. unsigned long ncsw;
  1801. struct rq *rq;
  1802. for (;;) {
  1803. /*
  1804. * We do the initial early heuristics without holding
  1805. * any task-queue locks at all. We'll only try to get
  1806. * the runqueue lock when things look like they will
  1807. * work out!
  1808. */
  1809. rq = task_rq(p);
  1810. /*
  1811. * If the task is actively running on another CPU
  1812. * still, just relax and busy-wait without holding
  1813. * any locks.
  1814. *
  1815. * NOTE! Since we don't hold any locks, it's not
  1816. * even sure that "rq" stays as the right runqueue!
  1817. * But we don't care, since "task_running()" will
  1818. * return false if the runqueue has changed and p
  1819. * is actually now running somewhere else!
  1820. */
  1821. while (task_running(rq, p)) {
  1822. if (match_state && unlikely(p->state != match_state))
  1823. return 0;
  1824. cpu_relax();
  1825. }
  1826. /*
  1827. * Ok, time to look more closely! We need the rq
  1828. * lock now, to be *sure*. If we're wrong, we'll
  1829. * just go back and repeat.
  1830. */
  1831. rq = task_rq_lock(p, &flags);
  1832. trace_sched_wait_task(rq, p);
  1833. running = task_running(rq, p);
  1834. on_rq = p->se.on_rq;
  1835. ncsw = 0;
  1836. if (!match_state || p->state == match_state)
  1837. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1838. task_rq_unlock(rq, &flags);
  1839. /*
  1840. * If it changed from the expected state, bail out now.
  1841. */
  1842. if (unlikely(!ncsw))
  1843. break;
  1844. /*
  1845. * Was it really running after all now that we
  1846. * checked with the proper locks actually held?
  1847. *
  1848. * Oops. Go back and try again..
  1849. */
  1850. if (unlikely(running)) {
  1851. cpu_relax();
  1852. continue;
  1853. }
  1854. /*
  1855. * It's not enough that it's not actively running,
  1856. * it must be off the runqueue _entirely_, and not
  1857. * preempted!
  1858. *
  1859. * So if it was still runnable (but just not actively
  1860. * running right now), it's preempted, and we should
  1861. * yield - it could be a while.
  1862. */
  1863. if (unlikely(on_rq)) {
  1864. schedule_timeout_uninterruptible(1);
  1865. continue;
  1866. }
  1867. /*
  1868. * Ahh, all good. It wasn't running, and it wasn't
  1869. * runnable, which means that it will never become
  1870. * running in the future either. We're all done!
  1871. */
  1872. break;
  1873. }
  1874. return ncsw;
  1875. }
  1876. /***
  1877. * kick_process - kick a running thread to enter/exit the kernel
  1878. * @p: the to-be-kicked thread
  1879. *
  1880. * Cause a process which is running on another CPU to enter
  1881. * kernel-mode, without any delay. (to get signals handled.)
  1882. *
  1883. * NOTE: this function doesnt have to take the runqueue lock,
  1884. * because all it wants to ensure is that the remote task enters
  1885. * the kernel. If the IPI races and the task has been migrated
  1886. * to another CPU then no harm is done and the purpose has been
  1887. * achieved as well.
  1888. */
  1889. void kick_process(struct task_struct *p)
  1890. {
  1891. int cpu;
  1892. preempt_disable();
  1893. cpu = task_cpu(p);
  1894. if ((cpu != smp_processor_id()) && task_curr(p))
  1895. smp_send_reschedule(cpu);
  1896. preempt_enable();
  1897. }
  1898. EXPORT_SYMBOL_GPL(kick_process);
  1899. #endif /* CONFIG_SMP */
  1900. /**
  1901. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1902. * @p: the task to evaluate
  1903. * @func: the function to be called
  1904. * @info: the function call argument
  1905. *
  1906. * Calls the function @func when the task is currently running. This might
  1907. * be on the current CPU, which just calls the function directly
  1908. */
  1909. void task_oncpu_function_call(struct task_struct *p,
  1910. void (*func) (void *info), void *info)
  1911. {
  1912. int cpu;
  1913. preempt_disable();
  1914. cpu = task_cpu(p);
  1915. if (task_curr(p))
  1916. smp_call_function_single(cpu, func, info, 1);
  1917. preempt_enable();
  1918. }
  1919. #ifdef CONFIG_SMP
  1920. static int select_fallback_rq(int cpu, struct task_struct *p)
  1921. {
  1922. int dest_cpu;
  1923. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1924. /* Look for allowed, online CPU in same node. */
  1925. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1926. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1927. return dest_cpu;
  1928. /* Any allowed, online CPU? */
  1929. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1930. if (dest_cpu < nr_cpu_ids)
  1931. return dest_cpu;
  1932. /* No more Mr. Nice Guy. */
  1933. if (dest_cpu >= nr_cpu_ids) {
  1934. rcu_read_lock();
  1935. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1936. rcu_read_unlock();
  1937. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1938. /*
  1939. * Don't tell them about moving exiting tasks or
  1940. * kernel threads (both mm NULL), since they never
  1941. * leave kernel.
  1942. */
  1943. if (p->mm && printk_ratelimit()) {
  1944. printk(KERN_INFO "process %d (%s) no "
  1945. "longer affine to cpu%d\n",
  1946. task_pid_nr(p), p->comm, cpu);
  1947. }
  1948. }
  1949. return dest_cpu;
  1950. }
  1951. /*
  1952. * Called from:
  1953. *
  1954. * - fork, @p is stable because it isn't on the tasklist yet
  1955. *
  1956. * - exec, @p is unstable, retry loop
  1957. *
  1958. * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
  1959. * we should be good.
  1960. */
  1961. static inline
  1962. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1963. {
  1964. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1965. /*
  1966. * In order not to call set_task_cpu() on a blocking task we need
  1967. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1968. * cpu.
  1969. *
  1970. * Since this is common to all placement strategies, this lives here.
  1971. *
  1972. * [ this allows ->select_task() to simply return task_cpu(p) and
  1973. * not worry about this generic constraint ]
  1974. */
  1975. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1976. !cpu_active(cpu)))
  1977. cpu = select_fallback_rq(task_cpu(p), p);
  1978. return cpu;
  1979. }
  1980. #endif
  1981. /***
  1982. * try_to_wake_up - wake up a thread
  1983. * @p: the to-be-woken-up thread
  1984. * @state: the mask of task states that can be woken
  1985. * @sync: do a synchronous wakeup?
  1986. *
  1987. * Put it on the run-queue if it's not already there. The "current"
  1988. * thread is always on the run-queue (except when the actual
  1989. * re-schedule is in progress), and as such you're allowed to do
  1990. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1991. * runnable without the overhead of this.
  1992. *
  1993. * returns failure only if the task is already active.
  1994. */
  1995. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1996. int wake_flags)
  1997. {
  1998. int cpu, orig_cpu, this_cpu, success = 0;
  1999. unsigned long flags;
  2000. struct rq *rq, *orig_rq;
  2001. if (!sched_feat(SYNC_WAKEUPS))
  2002. wake_flags &= ~WF_SYNC;
  2003. this_cpu = get_cpu();
  2004. smp_wmb();
  2005. rq = orig_rq = task_rq_lock(p, &flags);
  2006. update_rq_clock(rq);
  2007. if (!(p->state & state))
  2008. goto out;
  2009. if (p->se.on_rq)
  2010. goto out_running;
  2011. cpu = task_cpu(p);
  2012. orig_cpu = cpu;
  2013. #ifdef CONFIG_SMP
  2014. if (unlikely(task_running(rq, p)))
  2015. goto out_activate;
  2016. /*
  2017. * In order to handle concurrent wakeups and release the rq->lock
  2018. * we put the task in TASK_WAKING state.
  2019. *
  2020. * First fix up the nr_uninterruptible count:
  2021. */
  2022. if (task_contributes_to_load(p))
  2023. rq->nr_uninterruptible--;
  2024. p->state = TASK_WAKING;
  2025. if (p->sched_class->task_waking)
  2026. p->sched_class->task_waking(rq, p);
  2027. __task_rq_unlock(rq);
  2028. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2029. if (cpu != orig_cpu)
  2030. set_task_cpu(p, cpu);
  2031. rq = __task_rq_lock(p);
  2032. update_rq_clock(rq);
  2033. WARN_ON(p->state != TASK_WAKING);
  2034. cpu = task_cpu(p);
  2035. #ifdef CONFIG_SCHEDSTATS
  2036. schedstat_inc(rq, ttwu_count);
  2037. if (cpu == this_cpu)
  2038. schedstat_inc(rq, ttwu_local);
  2039. else {
  2040. struct sched_domain *sd;
  2041. for_each_domain(this_cpu, sd) {
  2042. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2043. schedstat_inc(sd, ttwu_wake_remote);
  2044. break;
  2045. }
  2046. }
  2047. }
  2048. #endif /* CONFIG_SCHEDSTATS */
  2049. out_activate:
  2050. #endif /* CONFIG_SMP */
  2051. schedstat_inc(p, se.nr_wakeups);
  2052. if (wake_flags & WF_SYNC)
  2053. schedstat_inc(p, se.nr_wakeups_sync);
  2054. if (orig_cpu != cpu)
  2055. schedstat_inc(p, se.nr_wakeups_migrate);
  2056. if (cpu == this_cpu)
  2057. schedstat_inc(p, se.nr_wakeups_local);
  2058. else
  2059. schedstat_inc(p, se.nr_wakeups_remote);
  2060. activate_task(rq, p, 1);
  2061. success = 1;
  2062. /*
  2063. * Only attribute actual wakeups done by this task.
  2064. */
  2065. if (!in_interrupt()) {
  2066. struct sched_entity *se = &current->se;
  2067. u64 sample = se->sum_exec_runtime;
  2068. if (se->last_wakeup)
  2069. sample -= se->last_wakeup;
  2070. else
  2071. sample -= se->start_runtime;
  2072. update_avg(&se->avg_wakeup, sample);
  2073. se->last_wakeup = se->sum_exec_runtime;
  2074. }
  2075. out_running:
  2076. trace_sched_wakeup(rq, p, success);
  2077. check_preempt_curr(rq, p, wake_flags);
  2078. p->state = TASK_RUNNING;
  2079. #ifdef CONFIG_SMP
  2080. if (p->sched_class->task_woken)
  2081. p->sched_class->task_woken(rq, p);
  2082. if (unlikely(rq->idle_stamp)) {
  2083. u64 delta = rq->clock - rq->idle_stamp;
  2084. u64 max = 2*sysctl_sched_migration_cost;
  2085. if (delta > max)
  2086. rq->avg_idle = max;
  2087. else
  2088. update_avg(&rq->avg_idle, delta);
  2089. rq->idle_stamp = 0;
  2090. }
  2091. #endif
  2092. out:
  2093. task_rq_unlock(rq, &flags);
  2094. put_cpu();
  2095. return success;
  2096. }
  2097. /**
  2098. * wake_up_process - Wake up a specific process
  2099. * @p: The process to be woken up.
  2100. *
  2101. * Attempt to wake up the nominated process and move it to the set of runnable
  2102. * processes. Returns 1 if the process was woken up, 0 if it was already
  2103. * running.
  2104. *
  2105. * It may be assumed that this function implies a write memory barrier before
  2106. * changing the task state if and only if any tasks are woken up.
  2107. */
  2108. int wake_up_process(struct task_struct *p)
  2109. {
  2110. return try_to_wake_up(p, TASK_ALL, 0);
  2111. }
  2112. EXPORT_SYMBOL(wake_up_process);
  2113. int wake_up_state(struct task_struct *p, unsigned int state)
  2114. {
  2115. return try_to_wake_up(p, state, 0);
  2116. }
  2117. /*
  2118. * Perform scheduler related setup for a newly forked process p.
  2119. * p is forked by current.
  2120. *
  2121. * __sched_fork() is basic setup used by init_idle() too:
  2122. */
  2123. static void __sched_fork(struct task_struct *p)
  2124. {
  2125. p->se.exec_start = 0;
  2126. p->se.sum_exec_runtime = 0;
  2127. p->se.prev_sum_exec_runtime = 0;
  2128. p->se.nr_migrations = 0;
  2129. p->se.last_wakeup = 0;
  2130. p->se.avg_overlap = 0;
  2131. p->se.start_runtime = 0;
  2132. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2133. #ifdef CONFIG_SCHEDSTATS
  2134. p->se.wait_start = 0;
  2135. p->se.wait_max = 0;
  2136. p->se.wait_count = 0;
  2137. p->se.wait_sum = 0;
  2138. p->se.sleep_start = 0;
  2139. p->se.sleep_max = 0;
  2140. p->se.sum_sleep_runtime = 0;
  2141. p->se.block_start = 0;
  2142. p->se.block_max = 0;
  2143. p->se.exec_max = 0;
  2144. p->se.slice_max = 0;
  2145. p->se.nr_migrations_cold = 0;
  2146. p->se.nr_failed_migrations_affine = 0;
  2147. p->se.nr_failed_migrations_running = 0;
  2148. p->se.nr_failed_migrations_hot = 0;
  2149. p->se.nr_forced_migrations = 0;
  2150. p->se.nr_wakeups = 0;
  2151. p->se.nr_wakeups_sync = 0;
  2152. p->se.nr_wakeups_migrate = 0;
  2153. p->se.nr_wakeups_local = 0;
  2154. p->se.nr_wakeups_remote = 0;
  2155. p->se.nr_wakeups_affine = 0;
  2156. p->se.nr_wakeups_affine_attempts = 0;
  2157. p->se.nr_wakeups_passive = 0;
  2158. p->se.nr_wakeups_idle = 0;
  2159. #endif
  2160. INIT_LIST_HEAD(&p->rt.run_list);
  2161. p->se.on_rq = 0;
  2162. INIT_LIST_HEAD(&p->se.group_node);
  2163. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2164. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2165. #endif
  2166. }
  2167. /*
  2168. * fork()/clone()-time setup:
  2169. */
  2170. void sched_fork(struct task_struct *p, int clone_flags)
  2171. {
  2172. int cpu = get_cpu();
  2173. __sched_fork(p);
  2174. /*
  2175. * We mark the process as waking here. This guarantees that
  2176. * nobody will actually run it, and a signal or other external
  2177. * event cannot wake it up and insert it on the runqueue either.
  2178. */
  2179. p->state = TASK_WAKING;
  2180. /*
  2181. * Revert to default priority/policy on fork if requested.
  2182. */
  2183. if (unlikely(p->sched_reset_on_fork)) {
  2184. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2185. p->policy = SCHED_NORMAL;
  2186. p->normal_prio = p->static_prio;
  2187. }
  2188. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2189. p->static_prio = NICE_TO_PRIO(0);
  2190. p->normal_prio = p->static_prio;
  2191. set_load_weight(p);
  2192. }
  2193. /*
  2194. * We don't need the reset flag anymore after the fork. It has
  2195. * fulfilled its duty:
  2196. */
  2197. p->sched_reset_on_fork = 0;
  2198. }
  2199. /*
  2200. * Make sure we do not leak PI boosting priority to the child.
  2201. */
  2202. p->prio = current->normal_prio;
  2203. if (!rt_prio(p->prio))
  2204. p->sched_class = &fair_sched_class;
  2205. if (p->sched_class->task_fork)
  2206. p->sched_class->task_fork(p);
  2207. #ifdef CONFIG_SMP
  2208. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2209. #endif
  2210. set_task_cpu(p, cpu);
  2211. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2212. if (likely(sched_info_on()))
  2213. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2214. #endif
  2215. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2216. p->oncpu = 0;
  2217. #endif
  2218. #ifdef CONFIG_PREEMPT
  2219. /* Want to start with kernel preemption disabled. */
  2220. task_thread_info(p)->preempt_count = 1;
  2221. #endif
  2222. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2223. put_cpu();
  2224. }
  2225. /*
  2226. * wake_up_new_task - wake up a newly created task for the first time.
  2227. *
  2228. * This function will do some initial scheduler statistics housekeeping
  2229. * that must be done for every newly created context, then puts the task
  2230. * on the runqueue and wakes it.
  2231. */
  2232. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2233. {
  2234. unsigned long flags;
  2235. struct rq *rq;
  2236. rq = task_rq_lock(p, &flags);
  2237. BUG_ON(p->state != TASK_WAKING);
  2238. p->state = TASK_RUNNING;
  2239. update_rq_clock(rq);
  2240. activate_task(rq, p, 0);
  2241. trace_sched_wakeup_new(rq, p, 1);
  2242. check_preempt_curr(rq, p, WF_FORK);
  2243. #ifdef CONFIG_SMP
  2244. if (p->sched_class->task_woken)
  2245. p->sched_class->task_woken(rq, p);
  2246. #endif
  2247. task_rq_unlock(rq, &flags);
  2248. }
  2249. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2250. /**
  2251. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2252. * @notifier: notifier struct to register
  2253. */
  2254. void preempt_notifier_register(struct preempt_notifier *notifier)
  2255. {
  2256. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2257. }
  2258. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2259. /**
  2260. * preempt_notifier_unregister - no longer interested in preemption notifications
  2261. * @notifier: notifier struct to unregister
  2262. *
  2263. * This is safe to call from within a preemption notifier.
  2264. */
  2265. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2266. {
  2267. hlist_del(&notifier->link);
  2268. }
  2269. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2270. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2271. {
  2272. struct preempt_notifier *notifier;
  2273. struct hlist_node *node;
  2274. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2275. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2276. }
  2277. static void
  2278. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2279. struct task_struct *next)
  2280. {
  2281. struct preempt_notifier *notifier;
  2282. struct hlist_node *node;
  2283. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2284. notifier->ops->sched_out(notifier, next);
  2285. }
  2286. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2287. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2288. {
  2289. }
  2290. static void
  2291. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2292. struct task_struct *next)
  2293. {
  2294. }
  2295. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2296. /**
  2297. * prepare_task_switch - prepare to switch tasks
  2298. * @rq: the runqueue preparing to switch
  2299. * @prev: the current task that is being switched out
  2300. * @next: the task we are going to switch to.
  2301. *
  2302. * This is called with the rq lock held and interrupts off. It must
  2303. * be paired with a subsequent finish_task_switch after the context
  2304. * switch.
  2305. *
  2306. * prepare_task_switch sets up locking and calls architecture specific
  2307. * hooks.
  2308. */
  2309. static inline void
  2310. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2311. struct task_struct *next)
  2312. {
  2313. fire_sched_out_preempt_notifiers(prev, next);
  2314. prepare_lock_switch(rq, next);
  2315. prepare_arch_switch(next);
  2316. }
  2317. /**
  2318. * finish_task_switch - clean up after a task-switch
  2319. * @rq: runqueue associated with task-switch
  2320. * @prev: the thread we just switched away from.
  2321. *
  2322. * finish_task_switch must be called after the context switch, paired
  2323. * with a prepare_task_switch call before the context switch.
  2324. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2325. * and do any other architecture-specific cleanup actions.
  2326. *
  2327. * Note that we may have delayed dropping an mm in context_switch(). If
  2328. * so, we finish that here outside of the runqueue lock. (Doing it
  2329. * with the lock held can cause deadlocks; see schedule() for
  2330. * details.)
  2331. */
  2332. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2333. __releases(rq->lock)
  2334. {
  2335. struct mm_struct *mm = rq->prev_mm;
  2336. long prev_state;
  2337. rq->prev_mm = NULL;
  2338. /*
  2339. * A task struct has one reference for the use as "current".
  2340. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2341. * schedule one last time. The schedule call will never return, and
  2342. * the scheduled task must drop that reference.
  2343. * The test for TASK_DEAD must occur while the runqueue locks are
  2344. * still held, otherwise prev could be scheduled on another cpu, die
  2345. * there before we look at prev->state, and then the reference would
  2346. * be dropped twice.
  2347. * Manfred Spraul <manfred@colorfullife.com>
  2348. */
  2349. prev_state = prev->state;
  2350. finish_arch_switch(prev);
  2351. perf_event_task_sched_in(current, cpu_of(rq));
  2352. finish_lock_switch(rq, prev);
  2353. fire_sched_in_preempt_notifiers(current);
  2354. if (mm)
  2355. mmdrop(mm);
  2356. if (unlikely(prev_state == TASK_DEAD)) {
  2357. /*
  2358. * Remove function-return probe instances associated with this
  2359. * task and put them back on the free list.
  2360. */
  2361. kprobe_flush_task(prev);
  2362. put_task_struct(prev);
  2363. }
  2364. }
  2365. #ifdef CONFIG_SMP
  2366. /* assumes rq->lock is held */
  2367. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2368. {
  2369. if (prev->sched_class->pre_schedule)
  2370. prev->sched_class->pre_schedule(rq, prev);
  2371. }
  2372. /* rq->lock is NOT held, but preemption is disabled */
  2373. static inline void post_schedule(struct rq *rq)
  2374. {
  2375. if (rq->post_schedule) {
  2376. unsigned long flags;
  2377. raw_spin_lock_irqsave(&rq->lock, flags);
  2378. if (rq->curr->sched_class->post_schedule)
  2379. rq->curr->sched_class->post_schedule(rq);
  2380. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2381. rq->post_schedule = 0;
  2382. }
  2383. }
  2384. #else
  2385. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2386. {
  2387. }
  2388. static inline void post_schedule(struct rq *rq)
  2389. {
  2390. }
  2391. #endif
  2392. /**
  2393. * schedule_tail - first thing a freshly forked thread must call.
  2394. * @prev: the thread we just switched away from.
  2395. */
  2396. asmlinkage void schedule_tail(struct task_struct *prev)
  2397. __releases(rq->lock)
  2398. {
  2399. struct rq *rq = this_rq();
  2400. finish_task_switch(rq, prev);
  2401. /*
  2402. * FIXME: do we need to worry about rq being invalidated by the
  2403. * task_switch?
  2404. */
  2405. post_schedule(rq);
  2406. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2407. /* In this case, finish_task_switch does not reenable preemption */
  2408. preempt_enable();
  2409. #endif
  2410. if (current->set_child_tid)
  2411. put_user(task_pid_vnr(current), current->set_child_tid);
  2412. }
  2413. /*
  2414. * context_switch - switch to the new MM and the new
  2415. * thread's register state.
  2416. */
  2417. static inline void
  2418. context_switch(struct rq *rq, struct task_struct *prev,
  2419. struct task_struct *next)
  2420. {
  2421. struct mm_struct *mm, *oldmm;
  2422. prepare_task_switch(rq, prev, next);
  2423. trace_sched_switch(rq, prev, next);
  2424. mm = next->mm;
  2425. oldmm = prev->active_mm;
  2426. /*
  2427. * For paravirt, this is coupled with an exit in switch_to to
  2428. * combine the page table reload and the switch backend into
  2429. * one hypercall.
  2430. */
  2431. arch_start_context_switch(prev);
  2432. if (likely(!mm)) {
  2433. next->active_mm = oldmm;
  2434. atomic_inc(&oldmm->mm_count);
  2435. enter_lazy_tlb(oldmm, next);
  2436. } else
  2437. switch_mm(oldmm, mm, next);
  2438. if (likely(!prev->mm)) {
  2439. prev->active_mm = NULL;
  2440. rq->prev_mm = oldmm;
  2441. }
  2442. /*
  2443. * Since the runqueue lock will be released by the next
  2444. * task (which is an invalid locking op but in the case
  2445. * of the scheduler it's an obvious special-case), so we
  2446. * do an early lockdep release here:
  2447. */
  2448. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2449. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2450. #endif
  2451. /* Here we just switch the register state and the stack. */
  2452. switch_to(prev, next, prev);
  2453. barrier();
  2454. /*
  2455. * this_rq must be evaluated again because prev may have moved
  2456. * CPUs since it called schedule(), thus the 'rq' on its stack
  2457. * frame will be invalid.
  2458. */
  2459. finish_task_switch(this_rq(), prev);
  2460. }
  2461. /*
  2462. * nr_running, nr_uninterruptible and nr_context_switches:
  2463. *
  2464. * externally visible scheduler statistics: current number of runnable
  2465. * threads, current number of uninterruptible-sleeping threads, total
  2466. * number of context switches performed since bootup.
  2467. */
  2468. unsigned long nr_running(void)
  2469. {
  2470. unsigned long i, sum = 0;
  2471. for_each_online_cpu(i)
  2472. sum += cpu_rq(i)->nr_running;
  2473. return sum;
  2474. }
  2475. unsigned long nr_uninterruptible(void)
  2476. {
  2477. unsigned long i, sum = 0;
  2478. for_each_possible_cpu(i)
  2479. sum += cpu_rq(i)->nr_uninterruptible;
  2480. /*
  2481. * Since we read the counters lockless, it might be slightly
  2482. * inaccurate. Do not allow it to go below zero though:
  2483. */
  2484. if (unlikely((long)sum < 0))
  2485. sum = 0;
  2486. return sum;
  2487. }
  2488. unsigned long long nr_context_switches(void)
  2489. {
  2490. int i;
  2491. unsigned long long sum = 0;
  2492. for_each_possible_cpu(i)
  2493. sum += cpu_rq(i)->nr_switches;
  2494. return sum;
  2495. }
  2496. unsigned long nr_iowait(void)
  2497. {
  2498. unsigned long i, sum = 0;
  2499. for_each_possible_cpu(i)
  2500. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2501. return sum;
  2502. }
  2503. unsigned long nr_iowait_cpu(void)
  2504. {
  2505. struct rq *this = this_rq();
  2506. return atomic_read(&this->nr_iowait);
  2507. }
  2508. unsigned long this_cpu_load(void)
  2509. {
  2510. struct rq *this = this_rq();
  2511. return this->cpu_load[0];
  2512. }
  2513. /* Variables and functions for calc_load */
  2514. static atomic_long_t calc_load_tasks;
  2515. static unsigned long calc_load_update;
  2516. unsigned long avenrun[3];
  2517. EXPORT_SYMBOL(avenrun);
  2518. /**
  2519. * get_avenrun - get the load average array
  2520. * @loads: pointer to dest load array
  2521. * @offset: offset to add
  2522. * @shift: shift count to shift the result left
  2523. *
  2524. * These values are estimates at best, so no need for locking.
  2525. */
  2526. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2527. {
  2528. loads[0] = (avenrun[0] + offset) << shift;
  2529. loads[1] = (avenrun[1] + offset) << shift;
  2530. loads[2] = (avenrun[2] + offset) << shift;
  2531. }
  2532. static unsigned long
  2533. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2534. {
  2535. load *= exp;
  2536. load += active * (FIXED_1 - exp);
  2537. return load >> FSHIFT;
  2538. }
  2539. /*
  2540. * calc_load - update the avenrun load estimates 10 ticks after the
  2541. * CPUs have updated calc_load_tasks.
  2542. */
  2543. void calc_global_load(void)
  2544. {
  2545. unsigned long upd = calc_load_update + 10;
  2546. long active;
  2547. if (time_before(jiffies, upd))
  2548. return;
  2549. active = atomic_long_read(&calc_load_tasks);
  2550. active = active > 0 ? active * FIXED_1 : 0;
  2551. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2552. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2553. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2554. calc_load_update += LOAD_FREQ;
  2555. }
  2556. /*
  2557. * Either called from update_cpu_load() or from a cpu going idle
  2558. */
  2559. static void calc_load_account_active(struct rq *this_rq)
  2560. {
  2561. long nr_active, delta;
  2562. nr_active = this_rq->nr_running;
  2563. nr_active += (long) this_rq->nr_uninterruptible;
  2564. if (nr_active != this_rq->calc_load_active) {
  2565. delta = nr_active - this_rq->calc_load_active;
  2566. this_rq->calc_load_active = nr_active;
  2567. atomic_long_add(delta, &calc_load_tasks);
  2568. }
  2569. }
  2570. /*
  2571. * Update rq->cpu_load[] statistics. This function is usually called every
  2572. * scheduler tick (TICK_NSEC).
  2573. */
  2574. static void update_cpu_load(struct rq *this_rq)
  2575. {
  2576. unsigned long this_load = this_rq->load.weight;
  2577. int i, scale;
  2578. this_rq->nr_load_updates++;
  2579. /* Update our load: */
  2580. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2581. unsigned long old_load, new_load;
  2582. /* scale is effectively 1 << i now, and >> i divides by scale */
  2583. old_load = this_rq->cpu_load[i];
  2584. new_load = this_load;
  2585. /*
  2586. * Round up the averaging division if load is increasing. This
  2587. * prevents us from getting stuck on 9 if the load is 10, for
  2588. * example.
  2589. */
  2590. if (new_load > old_load)
  2591. new_load += scale-1;
  2592. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2593. }
  2594. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2595. this_rq->calc_load_update += LOAD_FREQ;
  2596. calc_load_account_active(this_rq);
  2597. }
  2598. }
  2599. #ifdef CONFIG_SMP
  2600. /*
  2601. * double_rq_lock - safely lock two runqueues
  2602. *
  2603. * Note this does not disable interrupts like task_rq_lock,
  2604. * you need to do so manually before calling.
  2605. */
  2606. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2607. __acquires(rq1->lock)
  2608. __acquires(rq2->lock)
  2609. {
  2610. BUG_ON(!irqs_disabled());
  2611. if (rq1 == rq2) {
  2612. raw_spin_lock(&rq1->lock);
  2613. __acquire(rq2->lock); /* Fake it out ;) */
  2614. } else {
  2615. if (rq1 < rq2) {
  2616. raw_spin_lock(&rq1->lock);
  2617. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2618. } else {
  2619. raw_spin_lock(&rq2->lock);
  2620. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2621. }
  2622. }
  2623. update_rq_clock(rq1);
  2624. update_rq_clock(rq2);
  2625. }
  2626. /*
  2627. * double_rq_unlock - safely unlock two runqueues
  2628. *
  2629. * Note this does not restore interrupts like task_rq_unlock,
  2630. * you need to do so manually after calling.
  2631. */
  2632. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2633. __releases(rq1->lock)
  2634. __releases(rq2->lock)
  2635. {
  2636. raw_spin_unlock(&rq1->lock);
  2637. if (rq1 != rq2)
  2638. raw_spin_unlock(&rq2->lock);
  2639. else
  2640. __release(rq2->lock);
  2641. }
  2642. /*
  2643. * sched_exec - execve() is a valuable balancing opportunity, because at
  2644. * this point the task has the smallest effective memory and cache footprint.
  2645. */
  2646. void sched_exec(void)
  2647. {
  2648. struct task_struct *p = current;
  2649. struct migration_req req;
  2650. int dest_cpu, this_cpu;
  2651. unsigned long flags;
  2652. struct rq *rq;
  2653. again:
  2654. this_cpu = get_cpu();
  2655. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2656. if (dest_cpu == this_cpu) {
  2657. put_cpu();
  2658. return;
  2659. }
  2660. rq = task_rq_lock(p, &flags);
  2661. put_cpu();
  2662. /*
  2663. * select_task_rq() can race against ->cpus_allowed
  2664. */
  2665. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2666. || unlikely(!cpu_active(dest_cpu))) {
  2667. task_rq_unlock(rq, &flags);
  2668. goto again;
  2669. }
  2670. /* force the process onto the specified CPU */
  2671. if (migrate_task(p, dest_cpu, &req)) {
  2672. /* Need to wait for migration thread (might exit: take ref). */
  2673. struct task_struct *mt = rq->migration_thread;
  2674. get_task_struct(mt);
  2675. task_rq_unlock(rq, &flags);
  2676. wake_up_process(mt);
  2677. put_task_struct(mt);
  2678. wait_for_completion(&req.done);
  2679. return;
  2680. }
  2681. task_rq_unlock(rq, &flags);
  2682. }
  2683. /*
  2684. * pull_task - move a task from a remote runqueue to the local runqueue.
  2685. * Both runqueues must be locked.
  2686. */
  2687. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2688. struct rq *this_rq, int this_cpu)
  2689. {
  2690. deactivate_task(src_rq, p, 0);
  2691. set_task_cpu(p, this_cpu);
  2692. activate_task(this_rq, p, 0);
  2693. check_preempt_curr(this_rq, p, 0);
  2694. }
  2695. /*
  2696. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2697. */
  2698. static
  2699. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2700. struct sched_domain *sd, enum cpu_idle_type idle,
  2701. int *all_pinned)
  2702. {
  2703. int tsk_cache_hot = 0;
  2704. /*
  2705. * We do not migrate tasks that are:
  2706. * 1) running (obviously), or
  2707. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2708. * 3) are cache-hot on their current CPU.
  2709. */
  2710. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2711. schedstat_inc(p, se.nr_failed_migrations_affine);
  2712. return 0;
  2713. }
  2714. *all_pinned = 0;
  2715. if (task_running(rq, p)) {
  2716. schedstat_inc(p, se.nr_failed_migrations_running);
  2717. return 0;
  2718. }
  2719. /*
  2720. * Aggressive migration if:
  2721. * 1) task is cache cold, or
  2722. * 2) too many balance attempts have failed.
  2723. */
  2724. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2725. if (!tsk_cache_hot ||
  2726. sd->nr_balance_failed > sd->cache_nice_tries) {
  2727. #ifdef CONFIG_SCHEDSTATS
  2728. if (tsk_cache_hot) {
  2729. schedstat_inc(sd, lb_hot_gained[idle]);
  2730. schedstat_inc(p, se.nr_forced_migrations);
  2731. }
  2732. #endif
  2733. return 1;
  2734. }
  2735. if (tsk_cache_hot) {
  2736. schedstat_inc(p, se.nr_failed_migrations_hot);
  2737. return 0;
  2738. }
  2739. return 1;
  2740. }
  2741. static unsigned long
  2742. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2743. unsigned long max_load_move, struct sched_domain *sd,
  2744. enum cpu_idle_type idle, int *all_pinned,
  2745. int *this_best_prio, struct rq_iterator *iterator)
  2746. {
  2747. int loops = 0, pulled = 0, pinned = 0;
  2748. struct task_struct *p;
  2749. long rem_load_move = max_load_move;
  2750. if (max_load_move == 0)
  2751. goto out;
  2752. pinned = 1;
  2753. /*
  2754. * Start the load-balancing iterator:
  2755. */
  2756. p = iterator->start(iterator->arg);
  2757. next:
  2758. if (!p || loops++ > sysctl_sched_nr_migrate)
  2759. goto out;
  2760. if ((p->se.load.weight >> 1) > rem_load_move ||
  2761. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2762. p = iterator->next(iterator->arg);
  2763. goto next;
  2764. }
  2765. pull_task(busiest, p, this_rq, this_cpu);
  2766. pulled++;
  2767. rem_load_move -= p->se.load.weight;
  2768. #ifdef CONFIG_PREEMPT
  2769. /*
  2770. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2771. * will stop after the first task is pulled to minimize the critical
  2772. * section.
  2773. */
  2774. if (idle == CPU_NEWLY_IDLE)
  2775. goto out;
  2776. #endif
  2777. /*
  2778. * We only want to steal up to the prescribed amount of weighted load.
  2779. */
  2780. if (rem_load_move > 0) {
  2781. if (p->prio < *this_best_prio)
  2782. *this_best_prio = p->prio;
  2783. p = iterator->next(iterator->arg);
  2784. goto next;
  2785. }
  2786. out:
  2787. /*
  2788. * Right now, this is one of only two places pull_task() is called,
  2789. * so we can safely collect pull_task() stats here rather than
  2790. * inside pull_task().
  2791. */
  2792. schedstat_add(sd, lb_gained[idle], pulled);
  2793. if (all_pinned)
  2794. *all_pinned = pinned;
  2795. return max_load_move - rem_load_move;
  2796. }
  2797. /*
  2798. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2799. * this_rq, as part of a balancing operation within domain "sd".
  2800. * Returns 1 if successful and 0 otherwise.
  2801. *
  2802. * Called with both runqueues locked.
  2803. */
  2804. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2805. unsigned long max_load_move,
  2806. struct sched_domain *sd, enum cpu_idle_type idle,
  2807. int *all_pinned)
  2808. {
  2809. const struct sched_class *class = sched_class_highest;
  2810. unsigned long total_load_moved = 0;
  2811. int this_best_prio = this_rq->curr->prio;
  2812. do {
  2813. total_load_moved +=
  2814. class->load_balance(this_rq, this_cpu, busiest,
  2815. max_load_move - total_load_moved,
  2816. sd, idle, all_pinned, &this_best_prio);
  2817. class = class->next;
  2818. #ifdef CONFIG_PREEMPT
  2819. /*
  2820. * NEWIDLE balancing is a source of latency, so preemptible
  2821. * kernels will stop after the first task is pulled to minimize
  2822. * the critical section.
  2823. */
  2824. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2825. break;
  2826. #endif
  2827. } while (class && max_load_move > total_load_moved);
  2828. return total_load_moved > 0;
  2829. }
  2830. static int
  2831. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2832. struct sched_domain *sd, enum cpu_idle_type idle,
  2833. struct rq_iterator *iterator)
  2834. {
  2835. struct task_struct *p = iterator->start(iterator->arg);
  2836. int pinned = 0;
  2837. while (p) {
  2838. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2839. pull_task(busiest, p, this_rq, this_cpu);
  2840. /*
  2841. * Right now, this is only the second place pull_task()
  2842. * is called, so we can safely collect pull_task()
  2843. * stats here rather than inside pull_task().
  2844. */
  2845. schedstat_inc(sd, lb_gained[idle]);
  2846. return 1;
  2847. }
  2848. p = iterator->next(iterator->arg);
  2849. }
  2850. return 0;
  2851. }
  2852. /*
  2853. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2854. * part of active balancing operations within "domain".
  2855. * Returns 1 if successful and 0 otherwise.
  2856. *
  2857. * Called with both runqueues locked.
  2858. */
  2859. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2860. struct sched_domain *sd, enum cpu_idle_type idle)
  2861. {
  2862. const struct sched_class *class;
  2863. for_each_class(class) {
  2864. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2865. return 1;
  2866. }
  2867. return 0;
  2868. }
  2869. /********** Helpers for find_busiest_group ************************/
  2870. /*
  2871. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2872. * during load balancing.
  2873. */
  2874. struct sd_lb_stats {
  2875. struct sched_group *busiest; /* Busiest group in this sd */
  2876. struct sched_group *this; /* Local group in this sd */
  2877. unsigned long total_load; /* Total load of all groups in sd */
  2878. unsigned long total_pwr; /* Total power of all groups in sd */
  2879. unsigned long avg_load; /* Average load across all groups in sd */
  2880. /** Statistics of this group */
  2881. unsigned long this_load;
  2882. unsigned long this_load_per_task;
  2883. unsigned long this_nr_running;
  2884. /* Statistics of the busiest group */
  2885. unsigned long max_load;
  2886. unsigned long busiest_load_per_task;
  2887. unsigned long busiest_nr_running;
  2888. int group_imb; /* Is there imbalance in this sd */
  2889. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2890. int power_savings_balance; /* Is powersave balance needed for this sd */
  2891. struct sched_group *group_min; /* Least loaded group in sd */
  2892. struct sched_group *group_leader; /* Group which relieves group_min */
  2893. unsigned long min_load_per_task; /* load_per_task in group_min */
  2894. unsigned long leader_nr_running; /* Nr running of group_leader */
  2895. unsigned long min_nr_running; /* Nr running of group_min */
  2896. #endif
  2897. };
  2898. /*
  2899. * sg_lb_stats - stats of a sched_group required for load_balancing
  2900. */
  2901. struct sg_lb_stats {
  2902. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2903. unsigned long group_load; /* Total load over the CPUs of the group */
  2904. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2905. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2906. unsigned long group_capacity;
  2907. int group_imb; /* Is there an imbalance in the group ? */
  2908. };
  2909. /**
  2910. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2911. * @group: The group whose first cpu is to be returned.
  2912. */
  2913. static inline unsigned int group_first_cpu(struct sched_group *group)
  2914. {
  2915. return cpumask_first(sched_group_cpus(group));
  2916. }
  2917. /**
  2918. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2919. * @sd: The sched_domain whose load_idx is to be obtained.
  2920. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2921. */
  2922. static inline int get_sd_load_idx(struct sched_domain *sd,
  2923. enum cpu_idle_type idle)
  2924. {
  2925. int load_idx;
  2926. switch (idle) {
  2927. case CPU_NOT_IDLE:
  2928. load_idx = sd->busy_idx;
  2929. break;
  2930. case CPU_NEWLY_IDLE:
  2931. load_idx = sd->newidle_idx;
  2932. break;
  2933. default:
  2934. load_idx = sd->idle_idx;
  2935. break;
  2936. }
  2937. return load_idx;
  2938. }
  2939. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2940. /**
  2941. * init_sd_power_savings_stats - Initialize power savings statistics for
  2942. * the given sched_domain, during load balancing.
  2943. *
  2944. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2945. * @sds: Variable containing the statistics for sd.
  2946. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2947. */
  2948. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2949. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2950. {
  2951. /*
  2952. * Busy processors will not participate in power savings
  2953. * balance.
  2954. */
  2955. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2956. sds->power_savings_balance = 0;
  2957. else {
  2958. sds->power_savings_balance = 1;
  2959. sds->min_nr_running = ULONG_MAX;
  2960. sds->leader_nr_running = 0;
  2961. }
  2962. }
  2963. /**
  2964. * update_sd_power_savings_stats - Update the power saving stats for a
  2965. * sched_domain while performing load balancing.
  2966. *
  2967. * @group: sched_group belonging to the sched_domain under consideration.
  2968. * @sds: Variable containing the statistics of the sched_domain
  2969. * @local_group: Does group contain the CPU for which we're performing
  2970. * load balancing ?
  2971. * @sgs: Variable containing the statistics of the group.
  2972. */
  2973. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2974. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2975. {
  2976. if (!sds->power_savings_balance)
  2977. return;
  2978. /*
  2979. * If the local group is idle or completely loaded
  2980. * no need to do power savings balance at this domain
  2981. */
  2982. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2983. !sds->this_nr_running))
  2984. sds->power_savings_balance = 0;
  2985. /*
  2986. * If a group is already running at full capacity or idle,
  2987. * don't include that group in power savings calculations
  2988. */
  2989. if (!sds->power_savings_balance ||
  2990. sgs->sum_nr_running >= sgs->group_capacity ||
  2991. !sgs->sum_nr_running)
  2992. return;
  2993. /*
  2994. * Calculate the group which has the least non-idle load.
  2995. * This is the group from where we need to pick up the load
  2996. * for saving power
  2997. */
  2998. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2999. (sgs->sum_nr_running == sds->min_nr_running &&
  3000. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3001. sds->group_min = group;
  3002. sds->min_nr_running = sgs->sum_nr_running;
  3003. sds->min_load_per_task = sgs->sum_weighted_load /
  3004. sgs->sum_nr_running;
  3005. }
  3006. /*
  3007. * Calculate the group which is almost near its
  3008. * capacity but still has some space to pick up some load
  3009. * from other group and save more power
  3010. */
  3011. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3012. return;
  3013. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3014. (sgs->sum_nr_running == sds->leader_nr_running &&
  3015. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3016. sds->group_leader = group;
  3017. sds->leader_nr_running = sgs->sum_nr_running;
  3018. }
  3019. }
  3020. /**
  3021. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3022. * @sds: Variable containing the statistics of the sched_domain
  3023. * under consideration.
  3024. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3025. * @imbalance: Variable to store the imbalance.
  3026. *
  3027. * Description:
  3028. * Check if we have potential to perform some power-savings balance.
  3029. * If yes, set the busiest group to be the least loaded group in the
  3030. * sched_domain, so that it's CPUs can be put to idle.
  3031. *
  3032. * Returns 1 if there is potential to perform power-savings balance.
  3033. * Else returns 0.
  3034. */
  3035. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3036. int this_cpu, unsigned long *imbalance)
  3037. {
  3038. if (!sds->power_savings_balance)
  3039. return 0;
  3040. if (sds->this != sds->group_leader ||
  3041. sds->group_leader == sds->group_min)
  3042. return 0;
  3043. *imbalance = sds->min_load_per_task;
  3044. sds->busiest = sds->group_min;
  3045. return 1;
  3046. }
  3047. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3048. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3049. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3050. {
  3051. return;
  3052. }
  3053. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3054. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3055. {
  3056. return;
  3057. }
  3058. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3059. int this_cpu, unsigned long *imbalance)
  3060. {
  3061. return 0;
  3062. }
  3063. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3064. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3065. {
  3066. return SCHED_LOAD_SCALE;
  3067. }
  3068. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3069. {
  3070. return default_scale_freq_power(sd, cpu);
  3071. }
  3072. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3073. {
  3074. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3075. unsigned long smt_gain = sd->smt_gain;
  3076. smt_gain /= weight;
  3077. return smt_gain;
  3078. }
  3079. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3080. {
  3081. return default_scale_smt_power(sd, cpu);
  3082. }
  3083. unsigned long scale_rt_power(int cpu)
  3084. {
  3085. struct rq *rq = cpu_rq(cpu);
  3086. u64 total, available;
  3087. sched_avg_update(rq);
  3088. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3089. available = total - rq->rt_avg;
  3090. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3091. total = SCHED_LOAD_SCALE;
  3092. total >>= SCHED_LOAD_SHIFT;
  3093. return div_u64(available, total);
  3094. }
  3095. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3096. {
  3097. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3098. unsigned long power = SCHED_LOAD_SCALE;
  3099. struct sched_group *sdg = sd->groups;
  3100. if (sched_feat(ARCH_POWER))
  3101. power *= arch_scale_freq_power(sd, cpu);
  3102. else
  3103. power *= default_scale_freq_power(sd, cpu);
  3104. power >>= SCHED_LOAD_SHIFT;
  3105. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3106. if (sched_feat(ARCH_POWER))
  3107. power *= arch_scale_smt_power(sd, cpu);
  3108. else
  3109. power *= default_scale_smt_power(sd, cpu);
  3110. power >>= SCHED_LOAD_SHIFT;
  3111. }
  3112. power *= scale_rt_power(cpu);
  3113. power >>= SCHED_LOAD_SHIFT;
  3114. if (!power)
  3115. power = 1;
  3116. sdg->cpu_power = power;
  3117. }
  3118. static void update_group_power(struct sched_domain *sd, int cpu)
  3119. {
  3120. struct sched_domain *child = sd->child;
  3121. struct sched_group *group, *sdg = sd->groups;
  3122. unsigned long power;
  3123. if (!child) {
  3124. update_cpu_power(sd, cpu);
  3125. return;
  3126. }
  3127. power = 0;
  3128. group = child->groups;
  3129. do {
  3130. power += group->cpu_power;
  3131. group = group->next;
  3132. } while (group != child->groups);
  3133. sdg->cpu_power = power;
  3134. }
  3135. /**
  3136. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3137. * @sd: The sched_domain whose statistics are to be updated.
  3138. * @group: sched_group whose statistics are to be updated.
  3139. * @this_cpu: Cpu for which load balance is currently performed.
  3140. * @idle: Idle status of this_cpu
  3141. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3142. * @sd_idle: Idle status of the sched_domain containing group.
  3143. * @local_group: Does group contain this_cpu.
  3144. * @cpus: Set of cpus considered for load balancing.
  3145. * @balance: Should we balance.
  3146. * @sgs: variable to hold the statistics for this group.
  3147. */
  3148. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3149. struct sched_group *group, int this_cpu,
  3150. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3151. int local_group, const struct cpumask *cpus,
  3152. int *balance, struct sg_lb_stats *sgs)
  3153. {
  3154. unsigned long load, max_cpu_load, min_cpu_load;
  3155. int i;
  3156. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3157. unsigned long sum_avg_load_per_task;
  3158. unsigned long avg_load_per_task;
  3159. if (local_group) {
  3160. balance_cpu = group_first_cpu(group);
  3161. if (balance_cpu == this_cpu)
  3162. update_group_power(sd, this_cpu);
  3163. }
  3164. /* Tally up the load of all CPUs in the group */
  3165. sum_avg_load_per_task = avg_load_per_task = 0;
  3166. max_cpu_load = 0;
  3167. min_cpu_load = ~0UL;
  3168. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3169. struct rq *rq = cpu_rq(i);
  3170. if (*sd_idle && rq->nr_running)
  3171. *sd_idle = 0;
  3172. /* Bias balancing toward cpus of our domain */
  3173. if (local_group) {
  3174. if (idle_cpu(i) && !first_idle_cpu) {
  3175. first_idle_cpu = 1;
  3176. balance_cpu = i;
  3177. }
  3178. load = target_load(i, load_idx);
  3179. } else {
  3180. load = source_load(i, load_idx);
  3181. if (load > max_cpu_load)
  3182. max_cpu_load = load;
  3183. if (min_cpu_load > load)
  3184. min_cpu_load = load;
  3185. }
  3186. sgs->group_load += load;
  3187. sgs->sum_nr_running += rq->nr_running;
  3188. sgs->sum_weighted_load += weighted_cpuload(i);
  3189. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3190. }
  3191. /*
  3192. * First idle cpu or the first cpu(busiest) in this sched group
  3193. * is eligible for doing load balancing at this and above
  3194. * domains. In the newly idle case, we will allow all the cpu's
  3195. * to do the newly idle load balance.
  3196. */
  3197. if (idle != CPU_NEWLY_IDLE && local_group &&
  3198. balance_cpu != this_cpu && balance) {
  3199. *balance = 0;
  3200. return;
  3201. }
  3202. /* Adjust by relative CPU power of the group */
  3203. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3204. /*
  3205. * Consider the group unbalanced when the imbalance is larger
  3206. * than the average weight of two tasks.
  3207. *
  3208. * APZ: with cgroup the avg task weight can vary wildly and
  3209. * might not be a suitable number - should we keep a
  3210. * normalized nr_running number somewhere that negates
  3211. * the hierarchy?
  3212. */
  3213. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3214. group->cpu_power;
  3215. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3216. sgs->group_imb = 1;
  3217. sgs->group_capacity =
  3218. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3219. }
  3220. /**
  3221. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3222. * @sd: sched_domain whose statistics are to be updated.
  3223. * @this_cpu: Cpu for which load balance is currently performed.
  3224. * @idle: Idle status of this_cpu
  3225. * @sd_idle: Idle status of the sched_domain containing group.
  3226. * @cpus: Set of cpus considered for load balancing.
  3227. * @balance: Should we balance.
  3228. * @sds: variable to hold the statistics for this sched_domain.
  3229. */
  3230. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3231. enum cpu_idle_type idle, int *sd_idle,
  3232. const struct cpumask *cpus, int *balance,
  3233. struct sd_lb_stats *sds)
  3234. {
  3235. struct sched_domain *child = sd->child;
  3236. struct sched_group *group = sd->groups;
  3237. struct sg_lb_stats sgs;
  3238. int load_idx, prefer_sibling = 0;
  3239. if (child && child->flags & SD_PREFER_SIBLING)
  3240. prefer_sibling = 1;
  3241. init_sd_power_savings_stats(sd, sds, idle);
  3242. load_idx = get_sd_load_idx(sd, idle);
  3243. do {
  3244. int local_group;
  3245. local_group = cpumask_test_cpu(this_cpu,
  3246. sched_group_cpus(group));
  3247. memset(&sgs, 0, sizeof(sgs));
  3248. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3249. local_group, cpus, balance, &sgs);
  3250. if (local_group && balance && !(*balance))
  3251. return;
  3252. sds->total_load += sgs.group_load;
  3253. sds->total_pwr += group->cpu_power;
  3254. /*
  3255. * In case the child domain prefers tasks go to siblings
  3256. * first, lower the group capacity to one so that we'll try
  3257. * and move all the excess tasks away.
  3258. */
  3259. if (prefer_sibling)
  3260. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3261. if (local_group) {
  3262. sds->this_load = sgs.avg_load;
  3263. sds->this = group;
  3264. sds->this_nr_running = sgs.sum_nr_running;
  3265. sds->this_load_per_task = sgs.sum_weighted_load;
  3266. } else if (sgs.avg_load > sds->max_load &&
  3267. (sgs.sum_nr_running > sgs.group_capacity ||
  3268. sgs.group_imb)) {
  3269. sds->max_load = sgs.avg_load;
  3270. sds->busiest = group;
  3271. sds->busiest_nr_running = sgs.sum_nr_running;
  3272. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3273. sds->group_imb = sgs.group_imb;
  3274. }
  3275. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3276. group = group->next;
  3277. } while (group != sd->groups);
  3278. }
  3279. /**
  3280. * fix_small_imbalance - Calculate the minor imbalance that exists
  3281. * amongst the groups of a sched_domain, during
  3282. * load balancing.
  3283. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3284. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3285. * @imbalance: Variable to store the imbalance.
  3286. */
  3287. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3288. int this_cpu, unsigned long *imbalance)
  3289. {
  3290. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3291. unsigned int imbn = 2;
  3292. if (sds->this_nr_running) {
  3293. sds->this_load_per_task /= sds->this_nr_running;
  3294. if (sds->busiest_load_per_task >
  3295. sds->this_load_per_task)
  3296. imbn = 1;
  3297. } else
  3298. sds->this_load_per_task =
  3299. cpu_avg_load_per_task(this_cpu);
  3300. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3301. sds->busiest_load_per_task * imbn) {
  3302. *imbalance = sds->busiest_load_per_task;
  3303. return;
  3304. }
  3305. /*
  3306. * OK, we don't have enough imbalance to justify moving tasks,
  3307. * however we may be able to increase total CPU power used by
  3308. * moving them.
  3309. */
  3310. pwr_now += sds->busiest->cpu_power *
  3311. min(sds->busiest_load_per_task, sds->max_load);
  3312. pwr_now += sds->this->cpu_power *
  3313. min(sds->this_load_per_task, sds->this_load);
  3314. pwr_now /= SCHED_LOAD_SCALE;
  3315. /* Amount of load we'd subtract */
  3316. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3317. sds->busiest->cpu_power;
  3318. if (sds->max_load > tmp)
  3319. pwr_move += sds->busiest->cpu_power *
  3320. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3321. /* Amount of load we'd add */
  3322. if (sds->max_load * sds->busiest->cpu_power <
  3323. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3324. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3325. sds->this->cpu_power;
  3326. else
  3327. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3328. sds->this->cpu_power;
  3329. pwr_move += sds->this->cpu_power *
  3330. min(sds->this_load_per_task, sds->this_load + tmp);
  3331. pwr_move /= SCHED_LOAD_SCALE;
  3332. /* Move if we gain throughput */
  3333. if (pwr_move > pwr_now)
  3334. *imbalance = sds->busiest_load_per_task;
  3335. }
  3336. /**
  3337. * calculate_imbalance - Calculate the amount of imbalance present within the
  3338. * groups of a given sched_domain during load balance.
  3339. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3340. * @this_cpu: Cpu for which currently load balance is being performed.
  3341. * @imbalance: The variable to store the imbalance.
  3342. */
  3343. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3344. unsigned long *imbalance)
  3345. {
  3346. unsigned long max_pull;
  3347. /*
  3348. * In the presence of smp nice balancing, certain scenarios can have
  3349. * max load less than avg load(as we skip the groups at or below
  3350. * its cpu_power, while calculating max_load..)
  3351. */
  3352. if (sds->max_load < sds->avg_load) {
  3353. *imbalance = 0;
  3354. return fix_small_imbalance(sds, this_cpu, imbalance);
  3355. }
  3356. /* Don't want to pull so many tasks that a group would go idle */
  3357. max_pull = min(sds->max_load - sds->avg_load,
  3358. sds->max_load - sds->busiest_load_per_task);
  3359. /* How much load to actually move to equalise the imbalance */
  3360. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3361. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3362. / SCHED_LOAD_SCALE;
  3363. /*
  3364. * if *imbalance is less than the average load per runnable task
  3365. * there is no gaurantee that any tasks will be moved so we'll have
  3366. * a think about bumping its value to force at least one task to be
  3367. * moved
  3368. */
  3369. if (*imbalance < sds->busiest_load_per_task)
  3370. return fix_small_imbalance(sds, this_cpu, imbalance);
  3371. }
  3372. /******* find_busiest_group() helpers end here *********************/
  3373. /**
  3374. * find_busiest_group - Returns the busiest group within the sched_domain
  3375. * if there is an imbalance. If there isn't an imbalance, and
  3376. * the user has opted for power-savings, it returns a group whose
  3377. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3378. * such a group exists.
  3379. *
  3380. * Also calculates the amount of weighted load which should be moved
  3381. * to restore balance.
  3382. *
  3383. * @sd: The sched_domain whose busiest group is to be returned.
  3384. * @this_cpu: The cpu for which load balancing is currently being performed.
  3385. * @imbalance: Variable which stores amount of weighted load which should
  3386. * be moved to restore balance/put a group to idle.
  3387. * @idle: The idle status of this_cpu.
  3388. * @sd_idle: The idleness of sd
  3389. * @cpus: The set of CPUs under consideration for load-balancing.
  3390. * @balance: Pointer to a variable indicating if this_cpu
  3391. * is the appropriate cpu to perform load balancing at this_level.
  3392. *
  3393. * Returns: - the busiest group if imbalance exists.
  3394. * - If no imbalance and user has opted for power-savings balance,
  3395. * return the least loaded group whose CPUs can be
  3396. * put to idle by rebalancing its tasks onto our group.
  3397. */
  3398. static struct sched_group *
  3399. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3400. unsigned long *imbalance, enum cpu_idle_type idle,
  3401. int *sd_idle, const struct cpumask *cpus, int *balance)
  3402. {
  3403. struct sd_lb_stats sds;
  3404. memset(&sds, 0, sizeof(sds));
  3405. /*
  3406. * Compute the various statistics relavent for load balancing at
  3407. * this level.
  3408. */
  3409. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3410. balance, &sds);
  3411. /* Cases where imbalance does not exist from POV of this_cpu */
  3412. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3413. * at this level.
  3414. * 2) There is no busy sibling group to pull from.
  3415. * 3) This group is the busiest group.
  3416. * 4) This group is more busy than the avg busieness at this
  3417. * sched_domain.
  3418. * 5) The imbalance is within the specified limit.
  3419. * 6) Any rebalance would lead to ping-pong
  3420. */
  3421. if (balance && !(*balance))
  3422. goto ret;
  3423. if (!sds.busiest || sds.busiest_nr_running == 0)
  3424. goto out_balanced;
  3425. if (sds.this_load >= sds.max_load)
  3426. goto out_balanced;
  3427. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3428. if (sds.this_load >= sds.avg_load)
  3429. goto out_balanced;
  3430. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3431. goto out_balanced;
  3432. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3433. if (sds.group_imb)
  3434. sds.busiest_load_per_task =
  3435. min(sds.busiest_load_per_task, sds.avg_load);
  3436. /*
  3437. * We're trying to get all the cpus to the average_load, so we don't
  3438. * want to push ourselves above the average load, nor do we wish to
  3439. * reduce the max loaded cpu below the average load, as either of these
  3440. * actions would just result in more rebalancing later, and ping-pong
  3441. * tasks around. Thus we look for the minimum possible imbalance.
  3442. * Negative imbalances (*we* are more loaded than anyone else) will
  3443. * be counted as no imbalance for these purposes -- we can't fix that
  3444. * by pulling tasks to us. Be careful of negative numbers as they'll
  3445. * appear as very large values with unsigned longs.
  3446. */
  3447. if (sds.max_load <= sds.busiest_load_per_task)
  3448. goto out_balanced;
  3449. /* Looks like there is an imbalance. Compute it */
  3450. calculate_imbalance(&sds, this_cpu, imbalance);
  3451. return sds.busiest;
  3452. out_balanced:
  3453. /*
  3454. * There is no obvious imbalance. But check if we can do some balancing
  3455. * to save power.
  3456. */
  3457. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3458. return sds.busiest;
  3459. ret:
  3460. *imbalance = 0;
  3461. return NULL;
  3462. }
  3463. /*
  3464. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3465. */
  3466. static struct rq *
  3467. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3468. unsigned long imbalance, const struct cpumask *cpus)
  3469. {
  3470. struct rq *busiest = NULL, *rq;
  3471. unsigned long max_load = 0;
  3472. int i;
  3473. for_each_cpu(i, sched_group_cpus(group)) {
  3474. unsigned long power = power_of(i);
  3475. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3476. unsigned long wl;
  3477. if (!cpumask_test_cpu(i, cpus))
  3478. continue;
  3479. rq = cpu_rq(i);
  3480. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3481. wl /= power;
  3482. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3483. continue;
  3484. if (wl > max_load) {
  3485. max_load = wl;
  3486. busiest = rq;
  3487. }
  3488. }
  3489. return busiest;
  3490. }
  3491. /*
  3492. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3493. * so long as it is large enough.
  3494. */
  3495. #define MAX_PINNED_INTERVAL 512
  3496. /* Working cpumask for load_balance and load_balance_newidle. */
  3497. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3498. /*
  3499. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3500. * tasks if there is an imbalance.
  3501. */
  3502. static int load_balance(int this_cpu, struct rq *this_rq,
  3503. struct sched_domain *sd, enum cpu_idle_type idle,
  3504. int *balance)
  3505. {
  3506. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3507. struct sched_group *group;
  3508. unsigned long imbalance;
  3509. struct rq *busiest;
  3510. unsigned long flags;
  3511. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3512. cpumask_copy(cpus, cpu_active_mask);
  3513. /*
  3514. * When power savings policy is enabled for the parent domain, idle
  3515. * sibling can pick up load irrespective of busy siblings. In this case,
  3516. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3517. * portraying it as CPU_NOT_IDLE.
  3518. */
  3519. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3520. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3521. sd_idle = 1;
  3522. schedstat_inc(sd, lb_count[idle]);
  3523. redo:
  3524. update_shares(sd);
  3525. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3526. cpus, balance);
  3527. if (*balance == 0)
  3528. goto out_balanced;
  3529. if (!group) {
  3530. schedstat_inc(sd, lb_nobusyg[idle]);
  3531. goto out_balanced;
  3532. }
  3533. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3534. if (!busiest) {
  3535. schedstat_inc(sd, lb_nobusyq[idle]);
  3536. goto out_balanced;
  3537. }
  3538. BUG_ON(busiest == this_rq);
  3539. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3540. ld_moved = 0;
  3541. if (busiest->nr_running > 1) {
  3542. /*
  3543. * Attempt to move tasks. If find_busiest_group has found
  3544. * an imbalance but busiest->nr_running <= 1, the group is
  3545. * still unbalanced. ld_moved simply stays zero, so it is
  3546. * correctly treated as an imbalance.
  3547. */
  3548. local_irq_save(flags);
  3549. double_rq_lock(this_rq, busiest);
  3550. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3551. imbalance, sd, idle, &all_pinned);
  3552. double_rq_unlock(this_rq, busiest);
  3553. local_irq_restore(flags);
  3554. /*
  3555. * some other cpu did the load balance for us.
  3556. */
  3557. if (ld_moved && this_cpu != smp_processor_id())
  3558. resched_cpu(this_cpu);
  3559. /* All tasks on this runqueue were pinned by CPU affinity */
  3560. if (unlikely(all_pinned)) {
  3561. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3562. if (!cpumask_empty(cpus))
  3563. goto redo;
  3564. goto out_balanced;
  3565. }
  3566. }
  3567. if (!ld_moved) {
  3568. schedstat_inc(sd, lb_failed[idle]);
  3569. sd->nr_balance_failed++;
  3570. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3571. raw_spin_lock_irqsave(&busiest->lock, flags);
  3572. /* don't kick the migration_thread, if the curr
  3573. * task on busiest cpu can't be moved to this_cpu
  3574. */
  3575. if (!cpumask_test_cpu(this_cpu,
  3576. &busiest->curr->cpus_allowed)) {
  3577. raw_spin_unlock_irqrestore(&busiest->lock,
  3578. flags);
  3579. all_pinned = 1;
  3580. goto out_one_pinned;
  3581. }
  3582. if (!busiest->active_balance) {
  3583. busiest->active_balance = 1;
  3584. busiest->push_cpu = this_cpu;
  3585. active_balance = 1;
  3586. }
  3587. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3588. if (active_balance)
  3589. wake_up_process(busiest->migration_thread);
  3590. /*
  3591. * We've kicked active balancing, reset the failure
  3592. * counter.
  3593. */
  3594. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3595. }
  3596. } else
  3597. sd->nr_balance_failed = 0;
  3598. if (likely(!active_balance)) {
  3599. /* We were unbalanced, so reset the balancing interval */
  3600. sd->balance_interval = sd->min_interval;
  3601. } else {
  3602. /*
  3603. * If we've begun active balancing, start to back off. This
  3604. * case may not be covered by the all_pinned logic if there
  3605. * is only 1 task on the busy runqueue (because we don't call
  3606. * move_tasks).
  3607. */
  3608. if (sd->balance_interval < sd->max_interval)
  3609. sd->balance_interval *= 2;
  3610. }
  3611. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3612. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3613. ld_moved = -1;
  3614. goto out;
  3615. out_balanced:
  3616. schedstat_inc(sd, lb_balanced[idle]);
  3617. sd->nr_balance_failed = 0;
  3618. out_one_pinned:
  3619. /* tune up the balancing interval */
  3620. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3621. (sd->balance_interval < sd->max_interval))
  3622. sd->balance_interval *= 2;
  3623. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3624. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3625. ld_moved = -1;
  3626. else
  3627. ld_moved = 0;
  3628. out:
  3629. if (ld_moved)
  3630. update_shares(sd);
  3631. return ld_moved;
  3632. }
  3633. /*
  3634. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3635. * tasks if there is an imbalance.
  3636. *
  3637. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3638. * this_rq is locked.
  3639. */
  3640. static int
  3641. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3642. {
  3643. struct sched_group *group;
  3644. struct rq *busiest = NULL;
  3645. unsigned long imbalance;
  3646. int ld_moved = 0;
  3647. int sd_idle = 0;
  3648. int all_pinned = 0;
  3649. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3650. cpumask_copy(cpus, cpu_active_mask);
  3651. /*
  3652. * When power savings policy is enabled for the parent domain, idle
  3653. * sibling can pick up load irrespective of busy siblings. In this case,
  3654. * let the state of idle sibling percolate up as IDLE, instead of
  3655. * portraying it as CPU_NOT_IDLE.
  3656. */
  3657. if (sd->flags & SD_SHARE_CPUPOWER &&
  3658. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3659. sd_idle = 1;
  3660. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3661. redo:
  3662. update_shares_locked(this_rq, sd);
  3663. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3664. &sd_idle, cpus, NULL);
  3665. if (!group) {
  3666. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3667. goto out_balanced;
  3668. }
  3669. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3670. if (!busiest) {
  3671. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3672. goto out_balanced;
  3673. }
  3674. BUG_ON(busiest == this_rq);
  3675. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3676. ld_moved = 0;
  3677. if (busiest->nr_running > 1) {
  3678. /* Attempt to move tasks */
  3679. double_lock_balance(this_rq, busiest);
  3680. /* this_rq->clock is already updated */
  3681. update_rq_clock(busiest);
  3682. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3683. imbalance, sd, CPU_NEWLY_IDLE,
  3684. &all_pinned);
  3685. double_unlock_balance(this_rq, busiest);
  3686. if (unlikely(all_pinned)) {
  3687. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3688. if (!cpumask_empty(cpus))
  3689. goto redo;
  3690. }
  3691. }
  3692. if (!ld_moved) {
  3693. int active_balance = 0;
  3694. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3695. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3696. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3697. return -1;
  3698. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3699. return -1;
  3700. if (sd->nr_balance_failed++ < 2)
  3701. return -1;
  3702. /*
  3703. * The only task running in a non-idle cpu can be moved to this
  3704. * cpu in an attempt to completely freeup the other CPU
  3705. * package. The same method used to move task in load_balance()
  3706. * have been extended for load_balance_newidle() to speedup
  3707. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3708. *
  3709. * The package power saving logic comes from
  3710. * find_busiest_group(). If there are no imbalance, then
  3711. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3712. * f_b_g() will select a group from which a running task may be
  3713. * pulled to this cpu in order to make the other package idle.
  3714. * If there is no opportunity to make a package idle and if
  3715. * there are no imbalance, then f_b_g() will return NULL and no
  3716. * action will be taken in load_balance_newidle().
  3717. *
  3718. * Under normal task pull operation due to imbalance, there
  3719. * will be more than one task in the source run queue and
  3720. * move_tasks() will succeed. ld_moved will be true and this
  3721. * active balance code will not be triggered.
  3722. */
  3723. /* Lock busiest in correct order while this_rq is held */
  3724. double_lock_balance(this_rq, busiest);
  3725. /*
  3726. * don't kick the migration_thread, if the curr
  3727. * task on busiest cpu can't be moved to this_cpu
  3728. */
  3729. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3730. double_unlock_balance(this_rq, busiest);
  3731. all_pinned = 1;
  3732. return ld_moved;
  3733. }
  3734. if (!busiest->active_balance) {
  3735. busiest->active_balance = 1;
  3736. busiest->push_cpu = this_cpu;
  3737. active_balance = 1;
  3738. }
  3739. double_unlock_balance(this_rq, busiest);
  3740. /*
  3741. * Should not call ttwu while holding a rq->lock
  3742. */
  3743. raw_spin_unlock(&this_rq->lock);
  3744. if (active_balance)
  3745. wake_up_process(busiest->migration_thread);
  3746. raw_spin_lock(&this_rq->lock);
  3747. } else
  3748. sd->nr_balance_failed = 0;
  3749. update_shares_locked(this_rq, sd);
  3750. return ld_moved;
  3751. out_balanced:
  3752. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3753. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3754. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3755. return -1;
  3756. sd->nr_balance_failed = 0;
  3757. return 0;
  3758. }
  3759. /*
  3760. * idle_balance is called by schedule() if this_cpu is about to become
  3761. * idle. Attempts to pull tasks from other CPUs.
  3762. */
  3763. static void idle_balance(int this_cpu, struct rq *this_rq)
  3764. {
  3765. struct sched_domain *sd;
  3766. int pulled_task = 0;
  3767. unsigned long next_balance = jiffies + HZ;
  3768. this_rq->idle_stamp = this_rq->clock;
  3769. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3770. return;
  3771. for_each_domain(this_cpu, sd) {
  3772. unsigned long interval;
  3773. if (!(sd->flags & SD_LOAD_BALANCE))
  3774. continue;
  3775. if (sd->flags & SD_BALANCE_NEWIDLE)
  3776. /* If we've pulled tasks over stop searching: */
  3777. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3778. sd);
  3779. interval = msecs_to_jiffies(sd->balance_interval);
  3780. if (time_after(next_balance, sd->last_balance + interval))
  3781. next_balance = sd->last_balance + interval;
  3782. if (pulled_task) {
  3783. this_rq->idle_stamp = 0;
  3784. break;
  3785. }
  3786. }
  3787. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3788. /*
  3789. * We are going idle. next_balance may be set based on
  3790. * a busy processor. So reset next_balance.
  3791. */
  3792. this_rq->next_balance = next_balance;
  3793. }
  3794. }
  3795. /*
  3796. * active_load_balance is run by migration threads. It pushes running tasks
  3797. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3798. * running on each physical CPU where possible, and avoids physical /
  3799. * logical imbalances.
  3800. *
  3801. * Called with busiest_rq locked.
  3802. */
  3803. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3804. {
  3805. int target_cpu = busiest_rq->push_cpu;
  3806. struct sched_domain *sd;
  3807. struct rq *target_rq;
  3808. /* Is there any task to move? */
  3809. if (busiest_rq->nr_running <= 1)
  3810. return;
  3811. target_rq = cpu_rq(target_cpu);
  3812. /*
  3813. * This condition is "impossible", if it occurs
  3814. * we need to fix it. Originally reported by
  3815. * Bjorn Helgaas on a 128-cpu setup.
  3816. */
  3817. BUG_ON(busiest_rq == target_rq);
  3818. /* move a task from busiest_rq to target_rq */
  3819. double_lock_balance(busiest_rq, target_rq);
  3820. update_rq_clock(busiest_rq);
  3821. update_rq_clock(target_rq);
  3822. /* Search for an sd spanning us and the target CPU. */
  3823. for_each_domain(target_cpu, sd) {
  3824. if ((sd->flags & SD_LOAD_BALANCE) &&
  3825. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3826. break;
  3827. }
  3828. if (likely(sd)) {
  3829. schedstat_inc(sd, alb_count);
  3830. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3831. sd, CPU_IDLE))
  3832. schedstat_inc(sd, alb_pushed);
  3833. else
  3834. schedstat_inc(sd, alb_failed);
  3835. }
  3836. double_unlock_balance(busiest_rq, target_rq);
  3837. }
  3838. #ifdef CONFIG_NO_HZ
  3839. static struct {
  3840. atomic_t load_balancer;
  3841. cpumask_var_t cpu_mask;
  3842. cpumask_var_t ilb_grp_nohz_mask;
  3843. } nohz ____cacheline_aligned = {
  3844. .load_balancer = ATOMIC_INIT(-1),
  3845. };
  3846. int get_nohz_load_balancer(void)
  3847. {
  3848. return atomic_read(&nohz.load_balancer);
  3849. }
  3850. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3851. /**
  3852. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3853. * @cpu: The cpu whose lowest level of sched domain is to
  3854. * be returned.
  3855. * @flag: The flag to check for the lowest sched_domain
  3856. * for the given cpu.
  3857. *
  3858. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3859. */
  3860. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3861. {
  3862. struct sched_domain *sd;
  3863. for_each_domain(cpu, sd)
  3864. if (sd && (sd->flags & flag))
  3865. break;
  3866. return sd;
  3867. }
  3868. /**
  3869. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3870. * @cpu: The cpu whose domains we're iterating over.
  3871. * @sd: variable holding the value of the power_savings_sd
  3872. * for cpu.
  3873. * @flag: The flag to filter the sched_domains to be iterated.
  3874. *
  3875. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3876. * set, starting from the lowest sched_domain to the highest.
  3877. */
  3878. #define for_each_flag_domain(cpu, sd, flag) \
  3879. for (sd = lowest_flag_domain(cpu, flag); \
  3880. (sd && (sd->flags & flag)); sd = sd->parent)
  3881. /**
  3882. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3883. * @ilb_group: group to be checked for semi-idleness
  3884. *
  3885. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3886. *
  3887. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3888. * and atleast one non-idle CPU. This helper function checks if the given
  3889. * sched_group is semi-idle or not.
  3890. */
  3891. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3892. {
  3893. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3894. sched_group_cpus(ilb_group));
  3895. /*
  3896. * A sched_group is semi-idle when it has atleast one busy cpu
  3897. * and atleast one idle cpu.
  3898. */
  3899. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3900. return 0;
  3901. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3902. return 0;
  3903. return 1;
  3904. }
  3905. /**
  3906. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3907. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3908. *
  3909. * Returns: Returns the id of the idle load balancer if it exists,
  3910. * Else, returns >= nr_cpu_ids.
  3911. *
  3912. * This algorithm picks the idle load balancer such that it belongs to a
  3913. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3914. * completely idle packages/cores just for the purpose of idle load balancing
  3915. * when there are other idle cpu's which are better suited for that job.
  3916. */
  3917. static int find_new_ilb(int cpu)
  3918. {
  3919. struct sched_domain *sd;
  3920. struct sched_group *ilb_group;
  3921. /*
  3922. * Have idle load balancer selection from semi-idle packages only
  3923. * when power-aware load balancing is enabled
  3924. */
  3925. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3926. goto out_done;
  3927. /*
  3928. * Optimize for the case when we have no idle CPUs or only one
  3929. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3930. */
  3931. if (cpumask_weight(nohz.cpu_mask) < 2)
  3932. goto out_done;
  3933. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3934. ilb_group = sd->groups;
  3935. do {
  3936. if (is_semi_idle_group(ilb_group))
  3937. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3938. ilb_group = ilb_group->next;
  3939. } while (ilb_group != sd->groups);
  3940. }
  3941. out_done:
  3942. return cpumask_first(nohz.cpu_mask);
  3943. }
  3944. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3945. static inline int find_new_ilb(int call_cpu)
  3946. {
  3947. return cpumask_first(nohz.cpu_mask);
  3948. }
  3949. #endif
  3950. /*
  3951. * This routine will try to nominate the ilb (idle load balancing)
  3952. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3953. * load balancing on behalf of all those cpus. If all the cpus in the system
  3954. * go into this tickless mode, then there will be no ilb owner (as there is
  3955. * no need for one) and all the cpus will sleep till the next wakeup event
  3956. * arrives...
  3957. *
  3958. * For the ilb owner, tick is not stopped. And this tick will be used
  3959. * for idle load balancing. ilb owner will still be part of
  3960. * nohz.cpu_mask..
  3961. *
  3962. * While stopping the tick, this cpu will become the ilb owner if there
  3963. * is no other owner. And will be the owner till that cpu becomes busy
  3964. * or if all cpus in the system stop their ticks at which point
  3965. * there is no need for ilb owner.
  3966. *
  3967. * When the ilb owner becomes busy, it nominates another owner, during the
  3968. * next busy scheduler_tick()
  3969. */
  3970. int select_nohz_load_balancer(int stop_tick)
  3971. {
  3972. int cpu = smp_processor_id();
  3973. if (stop_tick) {
  3974. cpu_rq(cpu)->in_nohz_recently = 1;
  3975. if (!cpu_active(cpu)) {
  3976. if (atomic_read(&nohz.load_balancer) != cpu)
  3977. return 0;
  3978. /*
  3979. * If we are going offline and still the leader,
  3980. * give up!
  3981. */
  3982. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3983. BUG();
  3984. return 0;
  3985. }
  3986. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3987. /* time for ilb owner also to sleep */
  3988. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3989. if (atomic_read(&nohz.load_balancer) == cpu)
  3990. atomic_set(&nohz.load_balancer, -1);
  3991. return 0;
  3992. }
  3993. if (atomic_read(&nohz.load_balancer) == -1) {
  3994. /* make me the ilb owner */
  3995. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3996. return 1;
  3997. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3998. int new_ilb;
  3999. if (!(sched_smt_power_savings ||
  4000. sched_mc_power_savings))
  4001. return 1;
  4002. /*
  4003. * Check to see if there is a more power-efficient
  4004. * ilb.
  4005. */
  4006. new_ilb = find_new_ilb(cpu);
  4007. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4008. atomic_set(&nohz.load_balancer, -1);
  4009. resched_cpu(new_ilb);
  4010. return 0;
  4011. }
  4012. return 1;
  4013. }
  4014. } else {
  4015. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4016. return 0;
  4017. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4018. if (atomic_read(&nohz.load_balancer) == cpu)
  4019. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4020. BUG();
  4021. }
  4022. return 0;
  4023. }
  4024. #endif
  4025. static DEFINE_SPINLOCK(balancing);
  4026. /*
  4027. * It checks each scheduling domain to see if it is due to be balanced,
  4028. * and initiates a balancing operation if so.
  4029. *
  4030. * Balancing parameters are set up in arch_init_sched_domains.
  4031. */
  4032. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4033. {
  4034. int balance = 1;
  4035. struct rq *rq = cpu_rq(cpu);
  4036. unsigned long interval;
  4037. struct sched_domain *sd;
  4038. /* Earliest time when we have to do rebalance again */
  4039. unsigned long next_balance = jiffies + 60*HZ;
  4040. int update_next_balance = 0;
  4041. int need_serialize;
  4042. for_each_domain(cpu, sd) {
  4043. if (!(sd->flags & SD_LOAD_BALANCE))
  4044. continue;
  4045. interval = sd->balance_interval;
  4046. if (idle != CPU_IDLE)
  4047. interval *= sd->busy_factor;
  4048. /* scale ms to jiffies */
  4049. interval = msecs_to_jiffies(interval);
  4050. if (unlikely(!interval))
  4051. interval = 1;
  4052. if (interval > HZ*NR_CPUS/10)
  4053. interval = HZ*NR_CPUS/10;
  4054. need_serialize = sd->flags & SD_SERIALIZE;
  4055. if (need_serialize) {
  4056. if (!spin_trylock(&balancing))
  4057. goto out;
  4058. }
  4059. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4060. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4061. /*
  4062. * We've pulled tasks over so either we're no
  4063. * longer idle, or one of our SMT siblings is
  4064. * not idle.
  4065. */
  4066. idle = CPU_NOT_IDLE;
  4067. }
  4068. sd->last_balance = jiffies;
  4069. }
  4070. if (need_serialize)
  4071. spin_unlock(&balancing);
  4072. out:
  4073. if (time_after(next_balance, sd->last_balance + interval)) {
  4074. next_balance = sd->last_balance + interval;
  4075. update_next_balance = 1;
  4076. }
  4077. /*
  4078. * Stop the load balance at this level. There is another
  4079. * CPU in our sched group which is doing load balancing more
  4080. * actively.
  4081. */
  4082. if (!balance)
  4083. break;
  4084. }
  4085. /*
  4086. * next_balance will be updated only when there is a need.
  4087. * When the cpu is attached to null domain for ex, it will not be
  4088. * updated.
  4089. */
  4090. if (likely(update_next_balance))
  4091. rq->next_balance = next_balance;
  4092. }
  4093. /*
  4094. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4095. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4096. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4097. */
  4098. static void run_rebalance_domains(struct softirq_action *h)
  4099. {
  4100. int this_cpu = smp_processor_id();
  4101. struct rq *this_rq = cpu_rq(this_cpu);
  4102. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4103. CPU_IDLE : CPU_NOT_IDLE;
  4104. rebalance_domains(this_cpu, idle);
  4105. #ifdef CONFIG_NO_HZ
  4106. /*
  4107. * If this cpu is the owner for idle load balancing, then do the
  4108. * balancing on behalf of the other idle cpus whose ticks are
  4109. * stopped.
  4110. */
  4111. if (this_rq->idle_at_tick &&
  4112. atomic_read(&nohz.load_balancer) == this_cpu) {
  4113. struct rq *rq;
  4114. int balance_cpu;
  4115. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4116. if (balance_cpu == this_cpu)
  4117. continue;
  4118. /*
  4119. * If this cpu gets work to do, stop the load balancing
  4120. * work being done for other cpus. Next load
  4121. * balancing owner will pick it up.
  4122. */
  4123. if (need_resched())
  4124. break;
  4125. rebalance_domains(balance_cpu, CPU_IDLE);
  4126. rq = cpu_rq(balance_cpu);
  4127. if (time_after(this_rq->next_balance, rq->next_balance))
  4128. this_rq->next_balance = rq->next_balance;
  4129. }
  4130. }
  4131. #endif
  4132. }
  4133. static inline int on_null_domain(int cpu)
  4134. {
  4135. return !rcu_dereference(cpu_rq(cpu)->sd);
  4136. }
  4137. /*
  4138. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4139. *
  4140. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4141. * idle load balancing owner or decide to stop the periodic load balancing,
  4142. * if the whole system is idle.
  4143. */
  4144. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4145. {
  4146. #ifdef CONFIG_NO_HZ
  4147. /*
  4148. * If we were in the nohz mode recently and busy at the current
  4149. * scheduler tick, then check if we need to nominate new idle
  4150. * load balancer.
  4151. */
  4152. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4153. rq->in_nohz_recently = 0;
  4154. if (atomic_read(&nohz.load_balancer) == cpu) {
  4155. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4156. atomic_set(&nohz.load_balancer, -1);
  4157. }
  4158. if (atomic_read(&nohz.load_balancer) == -1) {
  4159. int ilb = find_new_ilb(cpu);
  4160. if (ilb < nr_cpu_ids)
  4161. resched_cpu(ilb);
  4162. }
  4163. }
  4164. /*
  4165. * If this cpu is idle and doing idle load balancing for all the
  4166. * cpus with ticks stopped, is it time for that to stop?
  4167. */
  4168. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4169. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4170. resched_cpu(cpu);
  4171. return;
  4172. }
  4173. /*
  4174. * If this cpu is idle and the idle load balancing is done by
  4175. * someone else, then no need raise the SCHED_SOFTIRQ
  4176. */
  4177. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4178. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4179. return;
  4180. #endif
  4181. /* Don't need to rebalance while attached to NULL domain */
  4182. if (time_after_eq(jiffies, rq->next_balance) &&
  4183. likely(!on_null_domain(cpu)))
  4184. raise_softirq(SCHED_SOFTIRQ);
  4185. }
  4186. #else /* CONFIG_SMP */
  4187. /*
  4188. * on UP we do not need to balance between CPUs:
  4189. */
  4190. static inline void idle_balance(int cpu, struct rq *rq)
  4191. {
  4192. }
  4193. #endif
  4194. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4195. EXPORT_PER_CPU_SYMBOL(kstat);
  4196. /*
  4197. * Return any ns on the sched_clock that have not yet been accounted in
  4198. * @p in case that task is currently running.
  4199. *
  4200. * Called with task_rq_lock() held on @rq.
  4201. */
  4202. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4203. {
  4204. u64 ns = 0;
  4205. if (task_current(rq, p)) {
  4206. update_rq_clock(rq);
  4207. ns = rq->clock - p->se.exec_start;
  4208. if ((s64)ns < 0)
  4209. ns = 0;
  4210. }
  4211. return ns;
  4212. }
  4213. unsigned long long task_delta_exec(struct task_struct *p)
  4214. {
  4215. unsigned long flags;
  4216. struct rq *rq;
  4217. u64 ns = 0;
  4218. rq = task_rq_lock(p, &flags);
  4219. ns = do_task_delta_exec(p, rq);
  4220. task_rq_unlock(rq, &flags);
  4221. return ns;
  4222. }
  4223. /*
  4224. * Return accounted runtime for the task.
  4225. * In case the task is currently running, return the runtime plus current's
  4226. * pending runtime that have not been accounted yet.
  4227. */
  4228. unsigned long long task_sched_runtime(struct task_struct *p)
  4229. {
  4230. unsigned long flags;
  4231. struct rq *rq;
  4232. u64 ns = 0;
  4233. rq = task_rq_lock(p, &flags);
  4234. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4235. task_rq_unlock(rq, &flags);
  4236. return ns;
  4237. }
  4238. /*
  4239. * Return sum_exec_runtime for the thread group.
  4240. * In case the task is currently running, return the sum plus current's
  4241. * pending runtime that have not been accounted yet.
  4242. *
  4243. * Note that the thread group might have other running tasks as well,
  4244. * so the return value not includes other pending runtime that other
  4245. * running tasks might have.
  4246. */
  4247. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4248. {
  4249. struct task_cputime totals;
  4250. unsigned long flags;
  4251. struct rq *rq;
  4252. u64 ns;
  4253. rq = task_rq_lock(p, &flags);
  4254. thread_group_cputime(p, &totals);
  4255. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4256. task_rq_unlock(rq, &flags);
  4257. return ns;
  4258. }
  4259. /*
  4260. * Account user cpu time to a process.
  4261. * @p: the process that the cpu time gets accounted to
  4262. * @cputime: the cpu time spent in user space since the last update
  4263. * @cputime_scaled: cputime scaled by cpu frequency
  4264. */
  4265. void account_user_time(struct task_struct *p, cputime_t cputime,
  4266. cputime_t cputime_scaled)
  4267. {
  4268. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4269. cputime64_t tmp;
  4270. /* Add user time to process. */
  4271. p->utime = cputime_add(p->utime, cputime);
  4272. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4273. account_group_user_time(p, cputime);
  4274. /* Add user time to cpustat. */
  4275. tmp = cputime_to_cputime64(cputime);
  4276. if (TASK_NICE(p) > 0)
  4277. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4278. else
  4279. cpustat->user = cputime64_add(cpustat->user, tmp);
  4280. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4281. /* Account for user time used */
  4282. acct_update_integrals(p);
  4283. }
  4284. /*
  4285. * Account guest cpu time to a process.
  4286. * @p: the process that the cpu time gets accounted to
  4287. * @cputime: the cpu time spent in virtual machine since the last update
  4288. * @cputime_scaled: cputime scaled by cpu frequency
  4289. */
  4290. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4291. cputime_t cputime_scaled)
  4292. {
  4293. cputime64_t tmp;
  4294. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4295. tmp = cputime_to_cputime64(cputime);
  4296. /* Add guest time to process. */
  4297. p->utime = cputime_add(p->utime, cputime);
  4298. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4299. account_group_user_time(p, cputime);
  4300. p->gtime = cputime_add(p->gtime, cputime);
  4301. /* Add guest time to cpustat. */
  4302. if (TASK_NICE(p) > 0) {
  4303. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4304. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4305. } else {
  4306. cpustat->user = cputime64_add(cpustat->user, tmp);
  4307. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4308. }
  4309. }
  4310. /*
  4311. * Account system cpu time to a process.
  4312. * @p: the process that the cpu time gets accounted to
  4313. * @hardirq_offset: the offset to subtract from hardirq_count()
  4314. * @cputime: the cpu time spent in kernel space since the last update
  4315. * @cputime_scaled: cputime scaled by cpu frequency
  4316. */
  4317. void account_system_time(struct task_struct *p, int hardirq_offset,
  4318. cputime_t cputime, cputime_t cputime_scaled)
  4319. {
  4320. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4321. cputime64_t tmp;
  4322. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4323. account_guest_time(p, cputime, cputime_scaled);
  4324. return;
  4325. }
  4326. /* Add system time to process. */
  4327. p->stime = cputime_add(p->stime, cputime);
  4328. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4329. account_group_system_time(p, cputime);
  4330. /* Add system time to cpustat. */
  4331. tmp = cputime_to_cputime64(cputime);
  4332. if (hardirq_count() - hardirq_offset)
  4333. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4334. else if (softirq_count())
  4335. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4336. else
  4337. cpustat->system = cputime64_add(cpustat->system, tmp);
  4338. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4339. /* Account for system time used */
  4340. acct_update_integrals(p);
  4341. }
  4342. /*
  4343. * Account for involuntary wait time.
  4344. * @steal: the cpu time spent in involuntary wait
  4345. */
  4346. void account_steal_time(cputime_t cputime)
  4347. {
  4348. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4349. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4350. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4351. }
  4352. /*
  4353. * Account for idle time.
  4354. * @cputime: the cpu time spent in idle wait
  4355. */
  4356. void account_idle_time(cputime_t cputime)
  4357. {
  4358. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4359. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4360. struct rq *rq = this_rq();
  4361. if (atomic_read(&rq->nr_iowait) > 0)
  4362. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4363. else
  4364. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4365. }
  4366. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4367. /*
  4368. * Account a single tick of cpu time.
  4369. * @p: the process that the cpu time gets accounted to
  4370. * @user_tick: indicates if the tick is a user or a system tick
  4371. */
  4372. void account_process_tick(struct task_struct *p, int user_tick)
  4373. {
  4374. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4375. struct rq *rq = this_rq();
  4376. if (user_tick)
  4377. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4378. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4379. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4380. one_jiffy_scaled);
  4381. else
  4382. account_idle_time(cputime_one_jiffy);
  4383. }
  4384. /*
  4385. * Account multiple ticks of steal time.
  4386. * @p: the process from which the cpu time has been stolen
  4387. * @ticks: number of stolen ticks
  4388. */
  4389. void account_steal_ticks(unsigned long ticks)
  4390. {
  4391. account_steal_time(jiffies_to_cputime(ticks));
  4392. }
  4393. /*
  4394. * Account multiple ticks of idle time.
  4395. * @ticks: number of stolen ticks
  4396. */
  4397. void account_idle_ticks(unsigned long ticks)
  4398. {
  4399. account_idle_time(jiffies_to_cputime(ticks));
  4400. }
  4401. #endif
  4402. /*
  4403. * Use precise platform statistics if available:
  4404. */
  4405. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4406. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4407. {
  4408. *ut = p->utime;
  4409. *st = p->stime;
  4410. }
  4411. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4412. {
  4413. struct task_cputime cputime;
  4414. thread_group_cputime(p, &cputime);
  4415. *ut = cputime.utime;
  4416. *st = cputime.stime;
  4417. }
  4418. #else
  4419. #ifndef nsecs_to_cputime
  4420. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4421. #endif
  4422. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4423. {
  4424. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4425. /*
  4426. * Use CFS's precise accounting:
  4427. */
  4428. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4429. if (total) {
  4430. u64 temp;
  4431. temp = (u64)(rtime * utime);
  4432. do_div(temp, total);
  4433. utime = (cputime_t)temp;
  4434. } else
  4435. utime = rtime;
  4436. /*
  4437. * Compare with previous values, to keep monotonicity:
  4438. */
  4439. p->prev_utime = max(p->prev_utime, utime);
  4440. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4441. *ut = p->prev_utime;
  4442. *st = p->prev_stime;
  4443. }
  4444. /*
  4445. * Must be called with siglock held.
  4446. */
  4447. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4448. {
  4449. struct signal_struct *sig = p->signal;
  4450. struct task_cputime cputime;
  4451. cputime_t rtime, utime, total;
  4452. thread_group_cputime(p, &cputime);
  4453. total = cputime_add(cputime.utime, cputime.stime);
  4454. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4455. if (total) {
  4456. u64 temp;
  4457. temp = (u64)(rtime * cputime.utime);
  4458. do_div(temp, total);
  4459. utime = (cputime_t)temp;
  4460. } else
  4461. utime = rtime;
  4462. sig->prev_utime = max(sig->prev_utime, utime);
  4463. sig->prev_stime = max(sig->prev_stime,
  4464. cputime_sub(rtime, sig->prev_utime));
  4465. *ut = sig->prev_utime;
  4466. *st = sig->prev_stime;
  4467. }
  4468. #endif
  4469. /*
  4470. * This function gets called by the timer code, with HZ frequency.
  4471. * We call it with interrupts disabled.
  4472. *
  4473. * It also gets called by the fork code, when changing the parent's
  4474. * timeslices.
  4475. */
  4476. void scheduler_tick(void)
  4477. {
  4478. int cpu = smp_processor_id();
  4479. struct rq *rq = cpu_rq(cpu);
  4480. struct task_struct *curr = rq->curr;
  4481. sched_clock_tick();
  4482. raw_spin_lock(&rq->lock);
  4483. update_rq_clock(rq);
  4484. update_cpu_load(rq);
  4485. curr->sched_class->task_tick(rq, curr, 0);
  4486. raw_spin_unlock(&rq->lock);
  4487. perf_event_task_tick(curr, cpu);
  4488. #ifdef CONFIG_SMP
  4489. rq->idle_at_tick = idle_cpu(cpu);
  4490. trigger_load_balance(rq, cpu);
  4491. #endif
  4492. }
  4493. notrace unsigned long get_parent_ip(unsigned long addr)
  4494. {
  4495. if (in_lock_functions(addr)) {
  4496. addr = CALLER_ADDR2;
  4497. if (in_lock_functions(addr))
  4498. addr = CALLER_ADDR3;
  4499. }
  4500. return addr;
  4501. }
  4502. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4503. defined(CONFIG_PREEMPT_TRACER))
  4504. void __kprobes add_preempt_count(int val)
  4505. {
  4506. #ifdef CONFIG_DEBUG_PREEMPT
  4507. /*
  4508. * Underflow?
  4509. */
  4510. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4511. return;
  4512. #endif
  4513. preempt_count() += val;
  4514. #ifdef CONFIG_DEBUG_PREEMPT
  4515. /*
  4516. * Spinlock count overflowing soon?
  4517. */
  4518. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4519. PREEMPT_MASK - 10);
  4520. #endif
  4521. if (preempt_count() == val)
  4522. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4523. }
  4524. EXPORT_SYMBOL(add_preempt_count);
  4525. void __kprobes sub_preempt_count(int val)
  4526. {
  4527. #ifdef CONFIG_DEBUG_PREEMPT
  4528. /*
  4529. * Underflow?
  4530. */
  4531. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4532. return;
  4533. /*
  4534. * Is the spinlock portion underflowing?
  4535. */
  4536. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4537. !(preempt_count() & PREEMPT_MASK)))
  4538. return;
  4539. #endif
  4540. if (preempt_count() == val)
  4541. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4542. preempt_count() -= val;
  4543. }
  4544. EXPORT_SYMBOL(sub_preempt_count);
  4545. #endif
  4546. /*
  4547. * Print scheduling while atomic bug:
  4548. */
  4549. static noinline void __schedule_bug(struct task_struct *prev)
  4550. {
  4551. struct pt_regs *regs = get_irq_regs();
  4552. pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4553. prev->comm, prev->pid, preempt_count());
  4554. debug_show_held_locks(prev);
  4555. print_modules();
  4556. if (irqs_disabled())
  4557. print_irqtrace_events(prev);
  4558. if (regs)
  4559. show_regs(regs);
  4560. else
  4561. dump_stack();
  4562. }
  4563. /*
  4564. * Various schedule()-time debugging checks and statistics:
  4565. */
  4566. static inline void schedule_debug(struct task_struct *prev)
  4567. {
  4568. /*
  4569. * Test if we are atomic. Since do_exit() needs to call into
  4570. * schedule() atomically, we ignore that path for now.
  4571. * Otherwise, whine if we are scheduling when we should not be.
  4572. */
  4573. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4574. __schedule_bug(prev);
  4575. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4576. schedstat_inc(this_rq(), sched_count);
  4577. #ifdef CONFIG_SCHEDSTATS
  4578. if (unlikely(prev->lock_depth >= 0)) {
  4579. schedstat_inc(this_rq(), bkl_count);
  4580. schedstat_inc(prev, sched_info.bkl_count);
  4581. }
  4582. #endif
  4583. }
  4584. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4585. {
  4586. if (prev->state == TASK_RUNNING) {
  4587. u64 runtime = prev->se.sum_exec_runtime;
  4588. runtime -= prev->se.prev_sum_exec_runtime;
  4589. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4590. /*
  4591. * In order to avoid avg_overlap growing stale when we are
  4592. * indeed overlapping and hence not getting put to sleep, grow
  4593. * the avg_overlap on preemption.
  4594. *
  4595. * We use the average preemption runtime because that
  4596. * correlates to the amount of cache footprint a task can
  4597. * build up.
  4598. */
  4599. update_avg(&prev->se.avg_overlap, runtime);
  4600. }
  4601. prev->sched_class->put_prev_task(rq, prev);
  4602. }
  4603. /*
  4604. * Pick up the highest-prio task:
  4605. */
  4606. static inline struct task_struct *
  4607. pick_next_task(struct rq *rq)
  4608. {
  4609. const struct sched_class *class;
  4610. struct task_struct *p;
  4611. /*
  4612. * Optimization: we know that if all tasks are in
  4613. * the fair class we can call that function directly:
  4614. */
  4615. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4616. p = fair_sched_class.pick_next_task(rq);
  4617. if (likely(p))
  4618. return p;
  4619. }
  4620. class = sched_class_highest;
  4621. for ( ; ; ) {
  4622. p = class->pick_next_task(rq);
  4623. if (p)
  4624. return p;
  4625. /*
  4626. * Will never be NULL as the idle class always
  4627. * returns a non-NULL p:
  4628. */
  4629. class = class->next;
  4630. }
  4631. }
  4632. /*
  4633. * schedule() is the main scheduler function.
  4634. */
  4635. asmlinkage void __sched schedule(void)
  4636. {
  4637. struct task_struct *prev, *next;
  4638. unsigned long *switch_count;
  4639. struct rq *rq;
  4640. int cpu;
  4641. need_resched:
  4642. preempt_disable();
  4643. cpu = smp_processor_id();
  4644. rq = cpu_rq(cpu);
  4645. rcu_sched_qs(cpu);
  4646. prev = rq->curr;
  4647. switch_count = &prev->nivcsw;
  4648. release_kernel_lock(prev);
  4649. need_resched_nonpreemptible:
  4650. schedule_debug(prev);
  4651. if (sched_feat(HRTICK))
  4652. hrtick_clear(rq);
  4653. raw_spin_lock_irq(&rq->lock);
  4654. update_rq_clock(rq);
  4655. clear_tsk_need_resched(prev);
  4656. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4657. if (unlikely(signal_pending_state(prev->state, prev)))
  4658. prev->state = TASK_RUNNING;
  4659. else
  4660. deactivate_task(rq, prev, 1);
  4661. switch_count = &prev->nvcsw;
  4662. }
  4663. pre_schedule(rq, prev);
  4664. if (unlikely(!rq->nr_running))
  4665. idle_balance(cpu, rq);
  4666. put_prev_task(rq, prev);
  4667. next = pick_next_task(rq);
  4668. if (likely(prev != next)) {
  4669. sched_info_switch(prev, next);
  4670. perf_event_task_sched_out(prev, next, cpu);
  4671. rq->nr_switches++;
  4672. rq->curr = next;
  4673. ++*switch_count;
  4674. context_switch(rq, prev, next); /* unlocks the rq */
  4675. /*
  4676. * the context switch might have flipped the stack from under
  4677. * us, hence refresh the local variables.
  4678. */
  4679. cpu = smp_processor_id();
  4680. rq = cpu_rq(cpu);
  4681. } else
  4682. raw_spin_unlock_irq(&rq->lock);
  4683. post_schedule(rq);
  4684. if (unlikely(reacquire_kernel_lock(current) < 0))
  4685. goto need_resched_nonpreemptible;
  4686. preempt_enable_no_resched();
  4687. if (need_resched())
  4688. goto need_resched;
  4689. }
  4690. EXPORT_SYMBOL(schedule);
  4691. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4692. /*
  4693. * Look out! "owner" is an entirely speculative pointer
  4694. * access and not reliable.
  4695. */
  4696. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4697. {
  4698. unsigned int cpu;
  4699. struct rq *rq;
  4700. if (!sched_feat(OWNER_SPIN))
  4701. return 0;
  4702. #ifdef CONFIG_DEBUG_PAGEALLOC
  4703. /*
  4704. * Need to access the cpu field knowing that
  4705. * DEBUG_PAGEALLOC could have unmapped it if
  4706. * the mutex owner just released it and exited.
  4707. */
  4708. if (probe_kernel_address(&owner->cpu, cpu))
  4709. goto out;
  4710. #else
  4711. cpu = owner->cpu;
  4712. #endif
  4713. /*
  4714. * Even if the access succeeded (likely case),
  4715. * the cpu field may no longer be valid.
  4716. */
  4717. if (cpu >= nr_cpumask_bits)
  4718. goto out;
  4719. /*
  4720. * We need to validate that we can do a
  4721. * get_cpu() and that we have the percpu area.
  4722. */
  4723. if (!cpu_online(cpu))
  4724. goto out;
  4725. rq = cpu_rq(cpu);
  4726. for (;;) {
  4727. /*
  4728. * Owner changed, break to re-assess state.
  4729. */
  4730. if (lock->owner != owner)
  4731. break;
  4732. /*
  4733. * Is that owner really running on that cpu?
  4734. */
  4735. if (task_thread_info(rq->curr) != owner || need_resched())
  4736. return 0;
  4737. cpu_relax();
  4738. }
  4739. out:
  4740. return 1;
  4741. }
  4742. #endif
  4743. #ifdef CONFIG_PREEMPT
  4744. /*
  4745. * this is the entry point to schedule() from in-kernel preemption
  4746. * off of preempt_enable. Kernel preemptions off return from interrupt
  4747. * occur there and call schedule directly.
  4748. */
  4749. asmlinkage void __sched preempt_schedule(void)
  4750. {
  4751. struct thread_info *ti = current_thread_info();
  4752. /*
  4753. * If there is a non-zero preempt_count or interrupts are disabled,
  4754. * we do not want to preempt the current task. Just return..
  4755. */
  4756. if (likely(ti->preempt_count || irqs_disabled()))
  4757. return;
  4758. do {
  4759. add_preempt_count(PREEMPT_ACTIVE);
  4760. schedule();
  4761. sub_preempt_count(PREEMPT_ACTIVE);
  4762. /*
  4763. * Check again in case we missed a preemption opportunity
  4764. * between schedule and now.
  4765. */
  4766. barrier();
  4767. } while (need_resched());
  4768. }
  4769. EXPORT_SYMBOL(preempt_schedule);
  4770. /*
  4771. * this is the entry point to schedule() from kernel preemption
  4772. * off of irq context.
  4773. * Note, that this is called and return with irqs disabled. This will
  4774. * protect us against recursive calling from irq.
  4775. */
  4776. asmlinkage void __sched preempt_schedule_irq(void)
  4777. {
  4778. struct thread_info *ti = current_thread_info();
  4779. /* Catch callers which need to be fixed */
  4780. BUG_ON(ti->preempt_count || !irqs_disabled());
  4781. do {
  4782. add_preempt_count(PREEMPT_ACTIVE);
  4783. local_irq_enable();
  4784. schedule();
  4785. local_irq_disable();
  4786. sub_preempt_count(PREEMPT_ACTIVE);
  4787. /*
  4788. * Check again in case we missed a preemption opportunity
  4789. * between schedule and now.
  4790. */
  4791. barrier();
  4792. } while (need_resched());
  4793. }
  4794. #endif /* CONFIG_PREEMPT */
  4795. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4796. void *key)
  4797. {
  4798. return try_to_wake_up(curr->private, mode, wake_flags);
  4799. }
  4800. EXPORT_SYMBOL(default_wake_function);
  4801. /*
  4802. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4803. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4804. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4805. *
  4806. * There are circumstances in which we can try to wake a task which has already
  4807. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4808. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4809. */
  4810. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4811. int nr_exclusive, int wake_flags, void *key)
  4812. {
  4813. wait_queue_t *curr, *next;
  4814. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4815. unsigned flags = curr->flags;
  4816. if (curr->func(curr, mode, wake_flags, key) &&
  4817. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4818. break;
  4819. }
  4820. }
  4821. /**
  4822. * __wake_up - wake up threads blocked on a waitqueue.
  4823. * @q: the waitqueue
  4824. * @mode: which threads
  4825. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4826. * @key: is directly passed to the wakeup function
  4827. *
  4828. * It may be assumed that this function implies a write memory barrier before
  4829. * changing the task state if and only if any tasks are woken up.
  4830. */
  4831. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4832. int nr_exclusive, void *key)
  4833. {
  4834. unsigned long flags;
  4835. spin_lock_irqsave(&q->lock, flags);
  4836. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4837. spin_unlock_irqrestore(&q->lock, flags);
  4838. }
  4839. EXPORT_SYMBOL(__wake_up);
  4840. /*
  4841. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4842. */
  4843. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4844. {
  4845. __wake_up_common(q, mode, 1, 0, NULL);
  4846. }
  4847. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4848. {
  4849. __wake_up_common(q, mode, 1, 0, key);
  4850. }
  4851. /**
  4852. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4853. * @q: the waitqueue
  4854. * @mode: which threads
  4855. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4856. * @key: opaque value to be passed to wakeup targets
  4857. *
  4858. * The sync wakeup differs that the waker knows that it will schedule
  4859. * away soon, so while the target thread will be woken up, it will not
  4860. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4861. * with each other. This can prevent needless bouncing between CPUs.
  4862. *
  4863. * On UP it can prevent extra preemption.
  4864. *
  4865. * It may be assumed that this function implies a write memory barrier before
  4866. * changing the task state if and only if any tasks are woken up.
  4867. */
  4868. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4869. int nr_exclusive, void *key)
  4870. {
  4871. unsigned long flags;
  4872. int wake_flags = WF_SYNC;
  4873. if (unlikely(!q))
  4874. return;
  4875. if (unlikely(!nr_exclusive))
  4876. wake_flags = 0;
  4877. spin_lock_irqsave(&q->lock, flags);
  4878. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4879. spin_unlock_irqrestore(&q->lock, flags);
  4880. }
  4881. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4882. /*
  4883. * __wake_up_sync - see __wake_up_sync_key()
  4884. */
  4885. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4886. {
  4887. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4888. }
  4889. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4890. /**
  4891. * complete: - signals a single thread waiting on this completion
  4892. * @x: holds the state of this particular completion
  4893. *
  4894. * This will wake up a single thread waiting on this completion. Threads will be
  4895. * awakened in the same order in which they were queued.
  4896. *
  4897. * See also complete_all(), wait_for_completion() and related routines.
  4898. *
  4899. * It may be assumed that this function implies a write memory barrier before
  4900. * changing the task state if and only if any tasks are woken up.
  4901. */
  4902. void complete(struct completion *x)
  4903. {
  4904. unsigned long flags;
  4905. spin_lock_irqsave(&x->wait.lock, flags);
  4906. x->done++;
  4907. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4908. spin_unlock_irqrestore(&x->wait.lock, flags);
  4909. }
  4910. EXPORT_SYMBOL(complete);
  4911. /**
  4912. * complete_all: - signals all threads waiting on this completion
  4913. * @x: holds the state of this particular completion
  4914. *
  4915. * This will wake up all threads waiting on this particular completion event.
  4916. *
  4917. * It may be assumed that this function implies a write memory barrier before
  4918. * changing the task state if and only if any tasks are woken up.
  4919. */
  4920. void complete_all(struct completion *x)
  4921. {
  4922. unsigned long flags;
  4923. spin_lock_irqsave(&x->wait.lock, flags);
  4924. x->done += UINT_MAX/2;
  4925. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4926. spin_unlock_irqrestore(&x->wait.lock, flags);
  4927. }
  4928. EXPORT_SYMBOL(complete_all);
  4929. static inline long __sched
  4930. do_wait_for_common(struct completion *x, long timeout, int state)
  4931. {
  4932. if (!x->done) {
  4933. DECLARE_WAITQUEUE(wait, current);
  4934. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4935. __add_wait_queue_tail(&x->wait, &wait);
  4936. do {
  4937. if (signal_pending_state(state, current)) {
  4938. timeout = -ERESTARTSYS;
  4939. break;
  4940. }
  4941. __set_current_state(state);
  4942. spin_unlock_irq(&x->wait.lock);
  4943. timeout = schedule_timeout(timeout);
  4944. spin_lock_irq(&x->wait.lock);
  4945. } while (!x->done && timeout);
  4946. __remove_wait_queue(&x->wait, &wait);
  4947. if (!x->done)
  4948. return timeout;
  4949. }
  4950. x->done--;
  4951. return timeout ?: 1;
  4952. }
  4953. static long __sched
  4954. wait_for_common(struct completion *x, long timeout, int state)
  4955. {
  4956. might_sleep();
  4957. spin_lock_irq(&x->wait.lock);
  4958. timeout = do_wait_for_common(x, timeout, state);
  4959. spin_unlock_irq(&x->wait.lock);
  4960. return timeout;
  4961. }
  4962. /**
  4963. * wait_for_completion: - waits for completion of a task
  4964. * @x: holds the state of this particular completion
  4965. *
  4966. * This waits to be signaled for completion of a specific task. It is NOT
  4967. * interruptible and there is no timeout.
  4968. *
  4969. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4970. * and interrupt capability. Also see complete().
  4971. */
  4972. void __sched wait_for_completion(struct completion *x)
  4973. {
  4974. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4975. }
  4976. EXPORT_SYMBOL(wait_for_completion);
  4977. /**
  4978. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4979. * @x: holds the state of this particular completion
  4980. * @timeout: timeout value in jiffies
  4981. *
  4982. * This waits for either a completion of a specific task to be signaled or for a
  4983. * specified timeout to expire. The timeout is in jiffies. It is not
  4984. * interruptible.
  4985. */
  4986. unsigned long __sched
  4987. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4988. {
  4989. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4990. }
  4991. EXPORT_SYMBOL(wait_for_completion_timeout);
  4992. /**
  4993. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4994. * @x: holds the state of this particular completion
  4995. *
  4996. * This waits for completion of a specific task to be signaled. It is
  4997. * interruptible.
  4998. */
  4999. int __sched wait_for_completion_interruptible(struct completion *x)
  5000. {
  5001. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5002. if (t == -ERESTARTSYS)
  5003. return t;
  5004. return 0;
  5005. }
  5006. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5007. /**
  5008. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5009. * @x: holds the state of this particular completion
  5010. * @timeout: timeout value in jiffies
  5011. *
  5012. * This waits for either a completion of a specific task to be signaled or for a
  5013. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5014. */
  5015. unsigned long __sched
  5016. wait_for_completion_interruptible_timeout(struct completion *x,
  5017. unsigned long timeout)
  5018. {
  5019. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5020. }
  5021. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5022. /**
  5023. * wait_for_completion_killable: - waits for completion of a task (killable)
  5024. * @x: holds the state of this particular completion
  5025. *
  5026. * This waits to be signaled for completion of a specific task. It can be
  5027. * interrupted by a kill signal.
  5028. */
  5029. int __sched wait_for_completion_killable(struct completion *x)
  5030. {
  5031. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5032. if (t == -ERESTARTSYS)
  5033. return t;
  5034. return 0;
  5035. }
  5036. EXPORT_SYMBOL(wait_for_completion_killable);
  5037. /**
  5038. * try_wait_for_completion - try to decrement a completion without blocking
  5039. * @x: completion structure
  5040. *
  5041. * Returns: 0 if a decrement cannot be done without blocking
  5042. * 1 if a decrement succeeded.
  5043. *
  5044. * If a completion is being used as a counting completion,
  5045. * attempt to decrement the counter without blocking. This
  5046. * enables us to avoid waiting if the resource the completion
  5047. * is protecting is not available.
  5048. */
  5049. bool try_wait_for_completion(struct completion *x)
  5050. {
  5051. unsigned long flags;
  5052. int ret = 1;
  5053. spin_lock_irqsave(&x->wait.lock, flags);
  5054. if (!x->done)
  5055. ret = 0;
  5056. else
  5057. x->done--;
  5058. spin_unlock_irqrestore(&x->wait.lock, flags);
  5059. return ret;
  5060. }
  5061. EXPORT_SYMBOL(try_wait_for_completion);
  5062. /**
  5063. * completion_done - Test to see if a completion has any waiters
  5064. * @x: completion structure
  5065. *
  5066. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5067. * 1 if there are no waiters.
  5068. *
  5069. */
  5070. bool completion_done(struct completion *x)
  5071. {
  5072. unsigned long flags;
  5073. int ret = 1;
  5074. spin_lock_irqsave(&x->wait.lock, flags);
  5075. if (!x->done)
  5076. ret = 0;
  5077. spin_unlock_irqrestore(&x->wait.lock, flags);
  5078. return ret;
  5079. }
  5080. EXPORT_SYMBOL(completion_done);
  5081. static long __sched
  5082. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5083. {
  5084. unsigned long flags;
  5085. wait_queue_t wait;
  5086. init_waitqueue_entry(&wait, current);
  5087. __set_current_state(state);
  5088. spin_lock_irqsave(&q->lock, flags);
  5089. __add_wait_queue(q, &wait);
  5090. spin_unlock(&q->lock);
  5091. timeout = schedule_timeout(timeout);
  5092. spin_lock_irq(&q->lock);
  5093. __remove_wait_queue(q, &wait);
  5094. spin_unlock_irqrestore(&q->lock, flags);
  5095. return timeout;
  5096. }
  5097. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5098. {
  5099. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5100. }
  5101. EXPORT_SYMBOL(interruptible_sleep_on);
  5102. long __sched
  5103. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5104. {
  5105. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5106. }
  5107. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5108. void __sched sleep_on(wait_queue_head_t *q)
  5109. {
  5110. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5111. }
  5112. EXPORT_SYMBOL(sleep_on);
  5113. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5114. {
  5115. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5116. }
  5117. EXPORT_SYMBOL(sleep_on_timeout);
  5118. #ifdef CONFIG_RT_MUTEXES
  5119. /*
  5120. * rt_mutex_setprio - set the current priority of a task
  5121. * @p: task
  5122. * @prio: prio value (kernel-internal form)
  5123. *
  5124. * This function changes the 'effective' priority of a task. It does
  5125. * not touch ->normal_prio like __setscheduler().
  5126. *
  5127. * Used by the rt_mutex code to implement priority inheritance logic.
  5128. */
  5129. void rt_mutex_setprio(struct task_struct *p, int prio)
  5130. {
  5131. unsigned long flags;
  5132. int oldprio, on_rq, running;
  5133. struct rq *rq;
  5134. const struct sched_class *prev_class = p->sched_class;
  5135. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5136. rq = task_rq_lock(p, &flags);
  5137. update_rq_clock(rq);
  5138. oldprio = p->prio;
  5139. on_rq = p->se.on_rq;
  5140. running = task_current(rq, p);
  5141. if (on_rq)
  5142. dequeue_task(rq, p, 0);
  5143. if (running)
  5144. p->sched_class->put_prev_task(rq, p);
  5145. if (rt_prio(prio))
  5146. p->sched_class = &rt_sched_class;
  5147. else
  5148. p->sched_class = &fair_sched_class;
  5149. p->prio = prio;
  5150. if (running)
  5151. p->sched_class->set_curr_task(rq);
  5152. if (on_rq) {
  5153. enqueue_task(rq, p, 0);
  5154. check_class_changed(rq, p, prev_class, oldprio, running);
  5155. }
  5156. task_rq_unlock(rq, &flags);
  5157. }
  5158. #endif
  5159. void set_user_nice(struct task_struct *p, long nice)
  5160. {
  5161. int old_prio, delta, on_rq;
  5162. unsigned long flags;
  5163. struct rq *rq;
  5164. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5165. return;
  5166. /*
  5167. * We have to be careful, if called from sys_setpriority(),
  5168. * the task might be in the middle of scheduling on another CPU.
  5169. */
  5170. rq = task_rq_lock(p, &flags);
  5171. update_rq_clock(rq);
  5172. /*
  5173. * The RT priorities are set via sched_setscheduler(), but we still
  5174. * allow the 'normal' nice value to be set - but as expected
  5175. * it wont have any effect on scheduling until the task is
  5176. * SCHED_FIFO/SCHED_RR:
  5177. */
  5178. if (task_has_rt_policy(p)) {
  5179. p->static_prio = NICE_TO_PRIO(nice);
  5180. goto out_unlock;
  5181. }
  5182. on_rq = p->se.on_rq;
  5183. if (on_rq)
  5184. dequeue_task(rq, p, 0);
  5185. p->static_prio = NICE_TO_PRIO(nice);
  5186. set_load_weight(p);
  5187. old_prio = p->prio;
  5188. p->prio = effective_prio(p);
  5189. delta = p->prio - old_prio;
  5190. if (on_rq) {
  5191. enqueue_task(rq, p, 0);
  5192. /*
  5193. * If the task increased its priority or is running and
  5194. * lowered its priority, then reschedule its CPU:
  5195. */
  5196. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5197. resched_task(rq->curr);
  5198. }
  5199. out_unlock:
  5200. task_rq_unlock(rq, &flags);
  5201. }
  5202. EXPORT_SYMBOL(set_user_nice);
  5203. /*
  5204. * can_nice - check if a task can reduce its nice value
  5205. * @p: task
  5206. * @nice: nice value
  5207. */
  5208. int can_nice(const struct task_struct *p, const int nice)
  5209. {
  5210. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5211. int nice_rlim = 20 - nice;
  5212. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5213. capable(CAP_SYS_NICE));
  5214. }
  5215. #ifdef __ARCH_WANT_SYS_NICE
  5216. /*
  5217. * sys_nice - change the priority of the current process.
  5218. * @increment: priority increment
  5219. *
  5220. * sys_setpriority is a more generic, but much slower function that
  5221. * does similar things.
  5222. */
  5223. SYSCALL_DEFINE1(nice, int, increment)
  5224. {
  5225. long nice, retval;
  5226. /*
  5227. * Setpriority might change our priority at the same moment.
  5228. * We don't have to worry. Conceptually one call occurs first
  5229. * and we have a single winner.
  5230. */
  5231. if (increment < -40)
  5232. increment = -40;
  5233. if (increment > 40)
  5234. increment = 40;
  5235. nice = TASK_NICE(current) + increment;
  5236. if (nice < -20)
  5237. nice = -20;
  5238. if (nice > 19)
  5239. nice = 19;
  5240. if (increment < 0 && !can_nice(current, nice))
  5241. return -EPERM;
  5242. retval = security_task_setnice(current, nice);
  5243. if (retval)
  5244. return retval;
  5245. set_user_nice(current, nice);
  5246. return 0;
  5247. }
  5248. #endif
  5249. /**
  5250. * task_prio - return the priority value of a given task.
  5251. * @p: the task in question.
  5252. *
  5253. * This is the priority value as seen by users in /proc.
  5254. * RT tasks are offset by -200. Normal tasks are centered
  5255. * around 0, value goes from -16 to +15.
  5256. */
  5257. int task_prio(const struct task_struct *p)
  5258. {
  5259. return p->prio - MAX_RT_PRIO;
  5260. }
  5261. /**
  5262. * task_nice - return the nice value of a given task.
  5263. * @p: the task in question.
  5264. */
  5265. int task_nice(const struct task_struct *p)
  5266. {
  5267. return TASK_NICE(p);
  5268. }
  5269. EXPORT_SYMBOL(task_nice);
  5270. /**
  5271. * idle_cpu - is a given cpu idle currently?
  5272. * @cpu: the processor in question.
  5273. */
  5274. int idle_cpu(int cpu)
  5275. {
  5276. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5277. }
  5278. /**
  5279. * idle_task - return the idle task for a given cpu.
  5280. * @cpu: the processor in question.
  5281. */
  5282. struct task_struct *idle_task(int cpu)
  5283. {
  5284. return cpu_rq(cpu)->idle;
  5285. }
  5286. /**
  5287. * find_process_by_pid - find a process with a matching PID value.
  5288. * @pid: the pid in question.
  5289. */
  5290. static struct task_struct *find_process_by_pid(pid_t pid)
  5291. {
  5292. return pid ? find_task_by_vpid(pid) : current;
  5293. }
  5294. /* Actually do priority change: must hold rq lock. */
  5295. static void
  5296. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5297. {
  5298. BUG_ON(p->se.on_rq);
  5299. p->policy = policy;
  5300. p->rt_priority = prio;
  5301. p->normal_prio = normal_prio(p);
  5302. /* we are holding p->pi_lock already */
  5303. p->prio = rt_mutex_getprio(p);
  5304. if (rt_prio(p->prio))
  5305. p->sched_class = &rt_sched_class;
  5306. else
  5307. p->sched_class = &fair_sched_class;
  5308. set_load_weight(p);
  5309. }
  5310. /*
  5311. * check the target process has a UID that matches the current process's
  5312. */
  5313. static bool check_same_owner(struct task_struct *p)
  5314. {
  5315. const struct cred *cred = current_cred(), *pcred;
  5316. bool match;
  5317. rcu_read_lock();
  5318. pcred = __task_cred(p);
  5319. match = (cred->euid == pcred->euid ||
  5320. cred->euid == pcred->uid);
  5321. rcu_read_unlock();
  5322. return match;
  5323. }
  5324. static int __sched_setscheduler(struct task_struct *p, int policy,
  5325. struct sched_param *param, bool user)
  5326. {
  5327. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5328. unsigned long flags;
  5329. const struct sched_class *prev_class = p->sched_class;
  5330. struct rq *rq;
  5331. int reset_on_fork;
  5332. /* may grab non-irq protected spin_locks */
  5333. BUG_ON(in_interrupt());
  5334. recheck:
  5335. /* double check policy once rq lock held */
  5336. if (policy < 0) {
  5337. reset_on_fork = p->sched_reset_on_fork;
  5338. policy = oldpolicy = p->policy;
  5339. } else {
  5340. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5341. policy &= ~SCHED_RESET_ON_FORK;
  5342. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5343. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5344. policy != SCHED_IDLE)
  5345. return -EINVAL;
  5346. }
  5347. /*
  5348. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5349. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5350. * SCHED_BATCH and SCHED_IDLE is 0.
  5351. */
  5352. if (param->sched_priority < 0 ||
  5353. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5354. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5355. return -EINVAL;
  5356. if (rt_policy(policy) != (param->sched_priority != 0))
  5357. return -EINVAL;
  5358. /*
  5359. * Allow unprivileged RT tasks to decrease priority:
  5360. */
  5361. if (user && !capable(CAP_SYS_NICE)) {
  5362. if (rt_policy(policy)) {
  5363. unsigned long rlim_rtprio;
  5364. if (!lock_task_sighand(p, &flags))
  5365. return -ESRCH;
  5366. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5367. unlock_task_sighand(p, &flags);
  5368. /* can't set/change the rt policy */
  5369. if (policy != p->policy && !rlim_rtprio)
  5370. return -EPERM;
  5371. /* can't increase priority */
  5372. if (param->sched_priority > p->rt_priority &&
  5373. param->sched_priority > rlim_rtprio)
  5374. return -EPERM;
  5375. }
  5376. /*
  5377. * Like positive nice levels, dont allow tasks to
  5378. * move out of SCHED_IDLE either:
  5379. */
  5380. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5381. return -EPERM;
  5382. /* can't change other user's priorities */
  5383. if (!check_same_owner(p))
  5384. return -EPERM;
  5385. /* Normal users shall not reset the sched_reset_on_fork flag */
  5386. if (p->sched_reset_on_fork && !reset_on_fork)
  5387. return -EPERM;
  5388. }
  5389. if (user) {
  5390. #ifdef CONFIG_RT_GROUP_SCHED
  5391. /*
  5392. * Do not allow realtime tasks into groups that have no runtime
  5393. * assigned.
  5394. */
  5395. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5396. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5397. return -EPERM;
  5398. #endif
  5399. retval = security_task_setscheduler(p, policy, param);
  5400. if (retval)
  5401. return retval;
  5402. }
  5403. /*
  5404. * make sure no PI-waiters arrive (or leave) while we are
  5405. * changing the priority of the task:
  5406. */
  5407. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5408. /*
  5409. * To be able to change p->policy safely, the apropriate
  5410. * runqueue lock must be held.
  5411. */
  5412. rq = __task_rq_lock(p);
  5413. /* recheck policy now with rq lock held */
  5414. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5415. policy = oldpolicy = -1;
  5416. __task_rq_unlock(rq);
  5417. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5418. goto recheck;
  5419. }
  5420. update_rq_clock(rq);
  5421. on_rq = p->se.on_rq;
  5422. running = task_current(rq, p);
  5423. if (on_rq)
  5424. deactivate_task(rq, p, 0);
  5425. if (running)
  5426. p->sched_class->put_prev_task(rq, p);
  5427. p->sched_reset_on_fork = reset_on_fork;
  5428. oldprio = p->prio;
  5429. __setscheduler(rq, p, policy, param->sched_priority);
  5430. if (running)
  5431. p->sched_class->set_curr_task(rq);
  5432. if (on_rq) {
  5433. activate_task(rq, p, 0);
  5434. check_class_changed(rq, p, prev_class, oldprio, running);
  5435. }
  5436. __task_rq_unlock(rq);
  5437. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5438. rt_mutex_adjust_pi(p);
  5439. return 0;
  5440. }
  5441. /**
  5442. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5443. * @p: the task in question.
  5444. * @policy: new policy.
  5445. * @param: structure containing the new RT priority.
  5446. *
  5447. * NOTE that the task may be already dead.
  5448. */
  5449. int sched_setscheduler(struct task_struct *p, int policy,
  5450. struct sched_param *param)
  5451. {
  5452. return __sched_setscheduler(p, policy, param, true);
  5453. }
  5454. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5455. /**
  5456. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5457. * @p: the task in question.
  5458. * @policy: new policy.
  5459. * @param: structure containing the new RT priority.
  5460. *
  5461. * Just like sched_setscheduler, only don't bother checking if the
  5462. * current context has permission. For example, this is needed in
  5463. * stop_machine(): we create temporary high priority worker threads,
  5464. * but our caller might not have that capability.
  5465. */
  5466. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5467. struct sched_param *param)
  5468. {
  5469. return __sched_setscheduler(p, policy, param, false);
  5470. }
  5471. static int
  5472. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5473. {
  5474. struct sched_param lparam;
  5475. struct task_struct *p;
  5476. int retval;
  5477. if (!param || pid < 0)
  5478. return -EINVAL;
  5479. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5480. return -EFAULT;
  5481. rcu_read_lock();
  5482. retval = -ESRCH;
  5483. p = find_process_by_pid(pid);
  5484. if (p != NULL)
  5485. retval = sched_setscheduler(p, policy, &lparam);
  5486. rcu_read_unlock();
  5487. return retval;
  5488. }
  5489. /**
  5490. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5491. * @pid: the pid in question.
  5492. * @policy: new policy.
  5493. * @param: structure containing the new RT priority.
  5494. */
  5495. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5496. struct sched_param __user *, param)
  5497. {
  5498. /* negative values for policy are not valid */
  5499. if (policy < 0)
  5500. return -EINVAL;
  5501. return do_sched_setscheduler(pid, policy, param);
  5502. }
  5503. /**
  5504. * sys_sched_setparam - set/change the RT priority of a thread
  5505. * @pid: the pid in question.
  5506. * @param: structure containing the new RT priority.
  5507. */
  5508. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5509. {
  5510. return do_sched_setscheduler(pid, -1, param);
  5511. }
  5512. /**
  5513. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5514. * @pid: the pid in question.
  5515. */
  5516. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5517. {
  5518. struct task_struct *p;
  5519. int retval;
  5520. if (pid < 0)
  5521. return -EINVAL;
  5522. retval = -ESRCH;
  5523. rcu_read_lock();
  5524. p = find_process_by_pid(pid);
  5525. if (p) {
  5526. retval = security_task_getscheduler(p);
  5527. if (!retval)
  5528. retval = p->policy
  5529. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5530. }
  5531. rcu_read_unlock();
  5532. return retval;
  5533. }
  5534. /**
  5535. * sys_sched_getparam - get the RT priority of a thread
  5536. * @pid: the pid in question.
  5537. * @param: structure containing the RT priority.
  5538. */
  5539. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5540. {
  5541. struct sched_param lp;
  5542. struct task_struct *p;
  5543. int retval;
  5544. if (!param || pid < 0)
  5545. return -EINVAL;
  5546. rcu_read_lock();
  5547. p = find_process_by_pid(pid);
  5548. retval = -ESRCH;
  5549. if (!p)
  5550. goto out_unlock;
  5551. retval = security_task_getscheduler(p);
  5552. if (retval)
  5553. goto out_unlock;
  5554. lp.sched_priority = p->rt_priority;
  5555. rcu_read_unlock();
  5556. /*
  5557. * This one might sleep, we cannot do it with a spinlock held ...
  5558. */
  5559. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5560. return retval;
  5561. out_unlock:
  5562. rcu_read_unlock();
  5563. return retval;
  5564. }
  5565. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5566. {
  5567. cpumask_var_t cpus_allowed, new_mask;
  5568. struct task_struct *p;
  5569. int retval;
  5570. get_online_cpus();
  5571. rcu_read_lock();
  5572. p = find_process_by_pid(pid);
  5573. if (!p) {
  5574. rcu_read_unlock();
  5575. put_online_cpus();
  5576. return -ESRCH;
  5577. }
  5578. /* Prevent p going away */
  5579. get_task_struct(p);
  5580. rcu_read_unlock();
  5581. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5582. retval = -ENOMEM;
  5583. goto out_put_task;
  5584. }
  5585. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5586. retval = -ENOMEM;
  5587. goto out_free_cpus_allowed;
  5588. }
  5589. retval = -EPERM;
  5590. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5591. goto out_unlock;
  5592. retval = security_task_setscheduler(p, 0, NULL);
  5593. if (retval)
  5594. goto out_unlock;
  5595. cpuset_cpus_allowed(p, cpus_allowed);
  5596. cpumask_and(new_mask, in_mask, cpus_allowed);
  5597. again:
  5598. retval = set_cpus_allowed_ptr(p, new_mask);
  5599. if (!retval) {
  5600. cpuset_cpus_allowed(p, cpus_allowed);
  5601. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5602. /*
  5603. * We must have raced with a concurrent cpuset
  5604. * update. Just reset the cpus_allowed to the
  5605. * cpuset's cpus_allowed
  5606. */
  5607. cpumask_copy(new_mask, cpus_allowed);
  5608. goto again;
  5609. }
  5610. }
  5611. out_unlock:
  5612. free_cpumask_var(new_mask);
  5613. out_free_cpus_allowed:
  5614. free_cpumask_var(cpus_allowed);
  5615. out_put_task:
  5616. put_task_struct(p);
  5617. put_online_cpus();
  5618. return retval;
  5619. }
  5620. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5621. struct cpumask *new_mask)
  5622. {
  5623. if (len < cpumask_size())
  5624. cpumask_clear(new_mask);
  5625. else if (len > cpumask_size())
  5626. len = cpumask_size();
  5627. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5628. }
  5629. /**
  5630. * sys_sched_setaffinity - set the cpu affinity of a process
  5631. * @pid: pid of the process
  5632. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5633. * @user_mask_ptr: user-space pointer to the new cpu mask
  5634. */
  5635. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5636. unsigned long __user *, user_mask_ptr)
  5637. {
  5638. cpumask_var_t new_mask;
  5639. int retval;
  5640. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5641. return -ENOMEM;
  5642. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5643. if (retval == 0)
  5644. retval = sched_setaffinity(pid, new_mask);
  5645. free_cpumask_var(new_mask);
  5646. return retval;
  5647. }
  5648. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5649. {
  5650. struct task_struct *p;
  5651. unsigned long flags;
  5652. struct rq *rq;
  5653. int retval;
  5654. get_online_cpus();
  5655. rcu_read_lock();
  5656. retval = -ESRCH;
  5657. p = find_process_by_pid(pid);
  5658. if (!p)
  5659. goto out_unlock;
  5660. retval = security_task_getscheduler(p);
  5661. if (retval)
  5662. goto out_unlock;
  5663. rq = task_rq_lock(p, &flags);
  5664. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5665. task_rq_unlock(rq, &flags);
  5666. out_unlock:
  5667. rcu_read_unlock();
  5668. put_online_cpus();
  5669. return retval;
  5670. }
  5671. /**
  5672. * sys_sched_getaffinity - get the cpu affinity of a process
  5673. * @pid: pid of the process
  5674. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5675. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5676. */
  5677. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5678. unsigned long __user *, user_mask_ptr)
  5679. {
  5680. int ret;
  5681. cpumask_var_t mask;
  5682. if (len < cpumask_size())
  5683. return -EINVAL;
  5684. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5685. return -ENOMEM;
  5686. ret = sched_getaffinity(pid, mask);
  5687. if (ret == 0) {
  5688. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5689. ret = -EFAULT;
  5690. else
  5691. ret = cpumask_size();
  5692. }
  5693. free_cpumask_var(mask);
  5694. return ret;
  5695. }
  5696. /**
  5697. * sys_sched_yield - yield the current processor to other threads.
  5698. *
  5699. * This function yields the current CPU to other tasks. If there are no
  5700. * other threads running on this CPU then this function will return.
  5701. */
  5702. SYSCALL_DEFINE0(sched_yield)
  5703. {
  5704. struct rq *rq = this_rq_lock();
  5705. schedstat_inc(rq, yld_count);
  5706. current->sched_class->yield_task(rq);
  5707. /*
  5708. * Since we are going to call schedule() anyway, there's
  5709. * no need to preempt or enable interrupts:
  5710. */
  5711. __release(rq->lock);
  5712. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5713. do_raw_spin_unlock(&rq->lock);
  5714. preempt_enable_no_resched();
  5715. schedule();
  5716. return 0;
  5717. }
  5718. static inline int should_resched(void)
  5719. {
  5720. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5721. }
  5722. static void __cond_resched(void)
  5723. {
  5724. add_preempt_count(PREEMPT_ACTIVE);
  5725. schedule();
  5726. sub_preempt_count(PREEMPT_ACTIVE);
  5727. }
  5728. int __sched _cond_resched(void)
  5729. {
  5730. if (should_resched()) {
  5731. __cond_resched();
  5732. return 1;
  5733. }
  5734. return 0;
  5735. }
  5736. EXPORT_SYMBOL(_cond_resched);
  5737. /*
  5738. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5739. * call schedule, and on return reacquire the lock.
  5740. *
  5741. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5742. * operations here to prevent schedule() from being called twice (once via
  5743. * spin_unlock(), once by hand).
  5744. */
  5745. int __cond_resched_lock(spinlock_t *lock)
  5746. {
  5747. int resched = should_resched();
  5748. int ret = 0;
  5749. lockdep_assert_held(lock);
  5750. if (spin_needbreak(lock) || resched) {
  5751. spin_unlock(lock);
  5752. if (resched)
  5753. __cond_resched();
  5754. else
  5755. cpu_relax();
  5756. ret = 1;
  5757. spin_lock(lock);
  5758. }
  5759. return ret;
  5760. }
  5761. EXPORT_SYMBOL(__cond_resched_lock);
  5762. int __sched __cond_resched_softirq(void)
  5763. {
  5764. BUG_ON(!in_softirq());
  5765. if (should_resched()) {
  5766. local_bh_enable();
  5767. __cond_resched();
  5768. local_bh_disable();
  5769. return 1;
  5770. }
  5771. return 0;
  5772. }
  5773. EXPORT_SYMBOL(__cond_resched_softirq);
  5774. /**
  5775. * yield - yield the current processor to other threads.
  5776. *
  5777. * This is a shortcut for kernel-space yielding - it marks the
  5778. * thread runnable and calls sys_sched_yield().
  5779. */
  5780. void __sched yield(void)
  5781. {
  5782. set_current_state(TASK_RUNNING);
  5783. sys_sched_yield();
  5784. }
  5785. EXPORT_SYMBOL(yield);
  5786. /*
  5787. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5788. * that process accounting knows that this is a task in IO wait state.
  5789. */
  5790. void __sched io_schedule(void)
  5791. {
  5792. struct rq *rq = raw_rq();
  5793. delayacct_blkio_start();
  5794. atomic_inc(&rq->nr_iowait);
  5795. current->in_iowait = 1;
  5796. schedule();
  5797. current->in_iowait = 0;
  5798. atomic_dec(&rq->nr_iowait);
  5799. delayacct_blkio_end();
  5800. }
  5801. EXPORT_SYMBOL(io_schedule);
  5802. long __sched io_schedule_timeout(long timeout)
  5803. {
  5804. struct rq *rq = raw_rq();
  5805. long ret;
  5806. delayacct_blkio_start();
  5807. atomic_inc(&rq->nr_iowait);
  5808. current->in_iowait = 1;
  5809. ret = schedule_timeout(timeout);
  5810. current->in_iowait = 0;
  5811. atomic_dec(&rq->nr_iowait);
  5812. delayacct_blkio_end();
  5813. return ret;
  5814. }
  5815. /**
  5816. * sys_sched_get_priority_max - return maximum RT priority.
  5817. * @policy: scheduling class.
  5818. *
  5819. * this syscall returns the maximum rt_priority that can be used
  5820. * by a given scheduling class.
  5821. */
  5822. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5823. {
  5824. int ret = -EINVAL;
  5825. switch (policy) {
  5826. case SCHED_FIFO:
  5827. case SCHED_RR:
  5828. ret = MAX_USER_RT_PRIO-1;
  5829. break;
  5830. case SCHED_NORMAL:
  5831. case SCHED_BATCH:
  5832. case SCHED_IDLE:
  5833. ret = 0;
  5834. break;
  5835. }
  5836. return ret;
  5837. }
  5838. /**
  5839. * sys_sched_get_priority_min - return minimum RT priority.
  5840. * @policy: scheduling class.
  5841. *
  5842. * this syscall returns the minimum rt_priority that can be used
  5843. * by a given scheduling class.
  5844. */
  5845. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5846. {
  5847. int ret = -EINVAL;
  5848. switch (policy) {
  5849. case SCHED_FIFO:
  5850. case SCHED_RR:
  5851. ret = 1;
  5852. break;
  5853. case SCHED_NORMAL:
  5854. case SCHED_BATCH:
  5855. case SCHED_IDLE:
  5856. ret = 0;
  5857. }
  5858. return ret;
  5859. }
  5860. /**
  5861. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5862. * @pid: pid of the process.
  5863. * @interval: userspace pointer to the timeslice value.
  5864. *
  5865. * this syscall writes the default timeslice value of a given process
  5866. * into the user-space timespec buffer. A value of '0' means infinity.
  5867. */
  5868. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5869. struct timespec __user *, interval)
  5870. {
  5871. struct task_struct *p;
  5872. unsigned int time_slice;
  5873. unsigned long flags;
  5874. struct rq *rq;
  5875. int retval;
  5876. struct timespec t;
  5877. if (pid < 0)
  5878. return -EINVAL;
  5879. retval = -ESRCH;
  5880. rcu_read_lock();
  5881. p = find_process_by_pid(pid);
  5882. if (!p)
  5883. goto out_unlock;
  5884. retval = security_task_getscheduler(p);
  5885. if (retval)
  5886. goto out_unlock;
  5887. rq = task_rq_lock(p, &flags);
  5888. time_slice = p->sched_class->get_rr_interval(rq, p);
  5889. task_rq_unlock(rq, &flags);
  5890. rcu_read_unlock();
  5891. jiffies_to_timespec(time_slice, &t);
  5892. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5893. return retval;
  5894. out_unlock:
  5895. rcu_read_unlock();
  5896. return retval;
  5897. }
  5898. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5899. void sched_show_task(struct task_struct *p)
  5900. {
  5901. unsigned long free = 0;
  5902. unsigned state;
  5903. state = p->state ? __ffs(p->state) + 1 : 0;
  5904. pr_info("%-13.13s %c", p->comm,
  5905. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5906. #if BITS_PER_LONG == 32
  5907. if (state == TASK_RUNNING)
  5908. pr_cont(" running ");
  5909. else
  5910. pr_cont(" %08lx ", thread_saved_pc(p));
  5911. #else
  5912. if (state == TASK_RUNNING)
  5913. pr_cont(" running task ");
  5914. else
  5915. pr_cont(" %016lx ", thread_saved_pc(p));
  5916. #endif
  5917. #ifdef CONFIG_DEBUG_STACK_USAGE
  5918. free = stack_not_used(p);
  5919. #endif
  5920. pr_cont("%5lu %5d %6d 0x%08lx\n", free,
  5921. task_pid_nr(p), task_pid_nr(p->real_parent),
  5922. (unsigned long)task_thread_info(p)->flags);
  5923. show_stack(p, NULL);
  5924. }
  5925. void show_state_filter(unsigned long state_filter)
  5926. {
  5927. struct task_struct *g, *p;
  5928. #if BITS_PER_LONG == 32
  5929. pr_info(" task PC stack pid father\n");
  5930. #else
  5931. pr_info(" task PC stack pid father\n");
  5932. #endif
  5933. read_lock(&tasklist_lock);
  5934. do_each_thread(g, p) {
  5935. /*
  5936. * reset the NMI-timeout, listing all files on a slow
  5937. * console might take alot of time:
  5938. */
  5939. touch_nmi_watchdog();
  5940. if (!state_filter || (p->state & state_filter))
  5941. sched_show_task(p);
  5942. } while_each_thread(g, p);
  5943. touch_all_softlockup_watchdogs();
  5944. #ifdef CONFIG_SCHED_DEBUG
  5945. sysrq_sched_debug_show();
  5946. #endif
  5947. read_unlock(&tasklist_lock);
  5948. /*
  5949. * Only show locks if all tasks are dumped:
  5950. */
  5951. if (!state_filter)
  5952. debug_show_all_locks();
  5953. }
  5954. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5955. {
  5956. idle->sched_class = &idle_sched_class;
  5957. }
  5958. /**
  5959. * init_idle - set up an idle thread for a given CPU
  5960. * @idle: task in question
  5961. * @cpu: cpu the idle task belongs to
  5962. *
  5963. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5964. * flag, to make booting more robust.
  5965. */
  5966. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5967. {
  5968. struct rq *rq = cpu_rq(cpu);
  5969. unsigned long flags;
  5970. raw_spin_lock_irqsave(&rq->lock, flags);
  5971. __sched_fork(idle);
  5972. idle->state = TASK_RUNNING;
  5973. idle->se.exec_start = sched_clock();
  5974. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5975. __set_task_cpu(idle, cpu);
  5976. rq->curr = rq->idle = idle;
  5977. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5978. idle->oncpu = 1;
  5979. #endif
  5980. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5981. /* Set the preempt count _outside_ the spinlocks! */
  5982. #if defined(CONFIG_PREEMPT)
  5983. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5984. #else
  5985. task_thread_info(idle)->preempt_count = 0;
  5986. #endif
  5987. /*
  5988. * The idle tasks have their own, simple scheduling class:
  5989. */
  5990. idle->sched_class = &idle_sched_class;
  5991. ftrace_graph_init_task(idle);
  5992. }
  5993. /*
  5994. * In a system that switches off the HZ timer nohz_cpu_mask
  5995. * indicates which cpus entered this state. This is used
  5996. * in the rcu update to wait only for active cpus. For system
  5997. * which do not switch off the HZ timer nohz_cpu_mask should
  5998. * always be CPU_BITS_NONE.
  5999. */
  6000. cpumask_var_t nohz_cpu_mask;
  6001. /*
  6002. * Increase the granularity value when there are more CPUs,
  6003. * because with more CPUs the 'effective latency' as visible
  6004. * to users decreases. But the relationship is not linear,
  6005. * so pick a second-best guess by going with the log2 of the
  6006. * number of CPUs.
  6007. *
  6008. * This idea comes from the SD scheduler of Con Kolivas:
  6009. */
  6010. static int get_update_sysctl_factor(void)
  6011. {
  6012. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  6013. unsigned int factor;
  6014. switch (sysctl_sched_tunable_scaling) {
  6015. case SCHED_TUNABLESCALING_NONE:
  6016. factor = 1;
  6017. break;
  6018. case SCHED_TUNABLESCALING_LINEAR:
  6019. factor = cpus;
  6020. break;
  6021. case SCHED_TUNABLESCALING_LOG:
  6022. default:
  6023. factor = 1 + ilog2(cpus);
  6024. break;
  6025. }
  6026. return factor;
  6027. }
  6028. static void update_sysctl(void)
  6029. {
  6030. unsigned int factor = get_update_sysctl_factor();
  6031. #define SET_SYSCTL(name) \
  6032. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6033. SET_SYSCTL(sched_min_granularity);
  6034. SET_SYSCTL(sched_latency);
  6035. SET_SYSCTL(sched_wakeup_granularity);
  6036. SET_SYSCTL(sched_shares_ratelimit);
  6037. #undef SET_SYSCTL
  6038. }
  6039. static inline void sched_init_granularity(void)
  6040. {
  6041. update_sysctl();
  6042. }
  6043. #ifdef CONFIG_SMP
  6044. /*
  6045. * This is how migration works:
  6046. *
  6047. * 1) we queue a struct migration_req structure in the source CPU's
  6048. * runqueue and wake up that CPU's migration thread.
  6049. * 2) we down() the locked semaphore => thread blocks.
  6050. * 3) migration thread wakes up (implicitly it forces the migrated
  6051. * thread off the CPU)
  6052. * 4) it gets the migration request and checks whether the migrated
  6053. * task is still in the wrong runqueue.
  6054. * 5) if it's in the wrong runqueue then the migration thread removes
  6055. * it and puts it into the right queue.
  6056. * 6) migration thread up()s the semaphore.
  6057. * 7) we wake up and the migration is done.
  6058. */
  6059. /*
  6060. * Change a given task's CPU affinity. Migrate the thread to a
  6061. * proper CPU and schedule it away if the CPU it's executing on
  6062. * is removed from the allowed bitmask.
  6063. *
  6064. * NOTE: the caller must have a valid reference to the task, the
  6065. * task must not exit() & deallocate itself prematurely. The
  6066. * call is not atomic; no spinlocks may be held.
  6067. */
  6068. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6069. {
  6070. struct migration_req req;
  6071. unsigned long flags;
  6072. struct rq *rq;
  6073. int ret = 0;
  6074. /*
  6075. * Since we rely on wake-ups to migrate sleeping tasks, don't change
  6076. * the ->cpus_allowed mask from under waking tasks, which would be
  6077. * possible when we change rq->lock in ttwu(), so synchronize against
  6078. * TASK_WAKING to avoid that.
  6079. */
  6080. again:
  6081. while (p->state == TASK_WAKING)
  6082. cpu_relax();
  6083. rq = task_rq_lock(p, &flags);
  6084. if (p->state == TASK_WAKING) {
  6085. task_rq_unlock(rq, &flags);
  6086. goto again;
  6087. }
  6088. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6089. ret = -EINVAL;
  6090. goto out;
  6091. }
  6092. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6093. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6094. ret = -EINVAL;
  6095. goto out;
  6096. }
  6097. if (p->sched_class->set_cpus_allowed)
  6098. p->sched_class->set_cpus_allowed(p, new_mask);
  6099. else {
  6100. cpumask_copy(&p->cpus_allowed, new_mask);
  6101. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6102. }
  6103. /* Can the task run on the task's current CPU? If so, we're done */
  6104. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6105. goto out;
  6106. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6107. /* Need help from migration thread: drop lock and wait. */
  6108. struct task_struct *mt = rq->migration_thread;
  6109. get_task_struct(mt);
  6110. task_rq_unlock(rq, &flags);
  6111. wake_up_process(rq->migration_thread);
  6112. put_task_struct(mt);
  6113. wait_for_completion(&req.done);
  6114. tlb_migrate_finish(p->mm);
  6115. return 0;
  6116. }
  6117. out:
  6118. task_rq_unlock(rq, &flags);
  6119. return ret;
  6120. }
  6121. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6122. /*
  6123. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6124. * this because either it can't run here any more (set_cpus_allowed()
  6125. * away from this CPU, or CPU going down), or because we're
  6126. * attempting to rebalance this task on exec (sched_exec).
  6127. *
  6128. * So we race with normal scheduler movements, but that's OK, as long
  6129. * as the task is no longer on this CPU.
  6130. *
  6131. * Returns non-zero if task was successfully migrated.
  6132. */
  6133. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6134. {
  6135. struct rq *rq_dest, *rq_src;
  6136. int ret = 0;
  6137. if (unlikely(!cpu_active(dest_cpu)))
  6138. return ret;
  6139. rq_src = cpu_rq(src_cpu);
  6140. rq_dest = cpu_rq(dest_cpu);
  6141. double_rq_lock(rq_src, rq_dest);
  6142. /* Already moved. */
  6143. if (task_cpu(p) != src_cpu)
  6144. goto done;
  6145. /* Affinity changed (again). */
  6146. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6147. goto fail;
  6148. /*
  6149. * If we're not on a rq, the next wake-up will ensure we're
  6150. * placed properly.
  6151. */
  6152. if (p->se.on_rq) {
  6153. deactivate_task(rq_src, p, 0);
  6154. set_task_cpu(p, dest_cpu);
  6155. activate_task(rq_dest, p, 0);
  6156. check_preempt_curr(rq_dest, p, 0);
  6157. }
  6158. done:
  6159. ret = 1;
  6160. fail:
  6161. double_rq_unlock(rq_src, rq_dest);
  6162. return ret;
  6163. }
  6164. #define RCU_MIGRATION_IDLE 0
  6165. #define RCU_MIGRATION_NEED_QS 1
  6166. #define RCU_MIGRATION_GOT_QS 2
  6167. #define RCU_MIGRATION_MUST_SYNC 3
  6168. /*
  6169. * migration_thread - this is a highprio system thread that performs
  6170. * thread migration by bumping thread off CPU then 'pushing' onto
  6171. * another runqueue.
  6172. */
  6173. static int migration_thread(void *data)
  6174. {
  6175. int badcpu;
  6176. int cpu = (long)data;
  6177. struct rq *rq;
  6178. rq = cpu_rq(cpu);
  6179. BUG_ON(rq->migration_thread != current);
  6180. set_current_state(TASK_INTERRUPTIBLE);
  6181. while (!kthread_should_stop()) {
  6182. struct migration_req *req;
  6183. struct list_head *head;
  6184. raw_spin_lock_irq(&rq->lock);
  6185. if (cpu_is_offline(cpu)) {
  6186. raw_spin_unlock_irq(&rq->lock);
  6187. break;
  6188. }
  6189. if (rq->active_balance) {
  6190. active_load_balance(rq, cpu);
  6191. rq->active_balance = 0;
  6192. }
  6193. head = &rq->migration_queue;
  6194. if (list_empty(head)) {
  6195. raw_spin_unlock_irq(&rq->lock);
  6196. schedule();
  6197. set_current_state(TASK_INTERRUPTIBLE);
  6198. continue;
  6199. }
  6200. req = list_entry(head->next, struct migration_req, list);
  6201. list_del_init(head->next);
  6202. if (req->task != NULL) {
  6203. raw_spin_unlock(&rq->lock);
  6204. __migrate_task(req->task, cpu, req->dest_cpu);
  6205. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6206. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6207. raw_spin_unlock(&rq->lock);
  6208. } else {
  6209. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6210. raw_spin_unlock(&rq->lock);
  6211. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6212. }
  6213. local_irq_enable();
  6214. complete(&req->done);
  6215. }
  6216. __set_current_state(TASK_RUNNING);
  6217. return 0;
  6218. }
  6219. #ifdef CONFIG_HOTPLUG_CPU
  6220. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6221. {
  6222. int ret;
  6223. local_irq_disable();
  6224. ret = __migrate_task(p, src_cpu, dest_cpu);
  6225. local_irq_enable();
  6226. return ret;
  6227. }
  6228. /*
  6229. * Figure out where task on dead CPU should go, use force if necessary.
  6230. */
  6231. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6232. {
  6233. int dest_cpu;
  6234. again:
  6235. dest_cpu = select_fallback_rq(dead_cpu, p);
  6236. /* It can have affinity changed while we were choosing. */
  6237. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6238. goto again;
  6239. }
  6240. /*
  6241. * While a dead CPU has no uninterruptible tasks queued at this point,
  6242. * it might still have a nonzero ->nr_uninterruptible counter, because
  6243. * for performance reasons the counter is not stricly tracking tasks to
  6244. * their home CPUs. So we just add the counter to another CPU's counter,
  6245. * to keep the global sum constant after CPU-down:
  6246. */
  6247. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6248. {
  6249. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6250. unsigned long flags;
  6251. local_irq_save(flags);
  6252. double_rq_lock(rq_src, rq_dest);
  6253. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6254. rq_src->nr_uninterruptible = 0;
  6255. double_rq_unlock(rq_src, rq_dest);
  6256. local_irq_restore(flags);
  6257. }
  6258. /* Run through task list and migrate tasks from the dead cpu. */
  6259. static void migrate_live_tasks(int src_cpu)
  6260. {
  6261. struct task_struct *p, *t;
  6262. read_lock(&tasklist_lock);
  6263. do_each_thread(t, p) {
  6264. if (p == current)
  6265. continue;
  6266. if (task_cpu(p) == src_cpu)
  6267. move_task_off_dead_cpu(src_cpu, p);
  6268. } while_each_thread(t, p);
  6269. read_unlock(&tasklist_lock);
  6270. }
  6271. /*
  6272. * Schedules idle task to be the next runnable task on current CPU.
  6273. * It does so by boosting its priority to highest possible.
  6274. * Used by CPU offline code.
  6275. */
  6276. void sched_idle_next(void)
  6277. {
  6278. int this_cpu = smp_processor_id();
  6279. struct rq *rq = cpu_rq(this_cpu);
  6280. struct task_struct *p = rq->idle;
  6281. unsigned long flags;
  6282. /* cpu has to be offline */
  6283. BUG_ON(cpu_online(this_cpu));
  6284. /*
  6285. * Strictly not necessary since rest of the CPUs are stopped by now
  6286. * and interrupts disabled on the current cpu.
  6287. */
  6288. raw_spin_lock_irqsave(&rq->lock, flags);
  6289. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6290. update_rq_clock(rq);
  6291. activate_task(rq, p, 0);
  6292. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6293. }
  6294. /*
  6295. * Ensures that the idle task is using init_mm right before its cpu goes
  6296. * offline.
  6297. */
  6298. void idle_task_exit(void)
  6299. {
  6300. struct mm_struct *mm = current->active_mm;
  6301. BUG_ON(cpu_online(smp_processor_id()));
  6302. if (mm != &init_mm)
  6303. switch_mm(mm, &init_mm, current);
  6304. mmdrop(mm);
  6305. }
  6306. /* called under rq->lock with disabled interrupts */
  6307. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6308. {
  6309. struct rq *rq = cpu_rq(dead_cpu);
  6310. /* Must be exiting, otherwise would be on tasklist. */
  6311. BUG_ON(!p->exit_state);
  6312. /* Cannot have done final schedule yet: would have vanished. */
  6313. BUG_ON(p->state == TASK_DEAD);
  6314. get_task_struct(p);
  6315. /*
  6316. * Drop lock around migration; if someone else moves it,
  6317. * that's OK. No task can be added to this CPU, so iteration is
  6318. * fine.
  6319. */
  6320. raw_spin_unlock_irq(&rq->lock);
  6321. move_task_off_dead_cpu(dead_cpu, p);
  6322. raw_spin_lock_irq(&rq->lock);
  6323. put_task_struct(p);
  6324. }
  6325. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6326. static void migrate_dead_tasks(unsigned int dead_cpu)
  6327. {
  6328. struct rq *rq = cpu_rq(dead_cpu);
  6329. struct task_struct *next;
  6330. for ( ; ; ) {
  6331. if (!rq->nr_running)
  6332. break;
  6333. update_rq_clock(rq);
  6334. next = pick_next_task(rq);
  6335. if (!next)
  6336. break;
  6337. next->sched_class->put_prev_task(rq, next);
  6338. migrate_dead(dead_cpu, next);
  6339. }
  6340. }
  6341. /*
  6342. * remove the tasks which were accounted by rq from calc_load_tasks.
  6343. */
  6344. static void calc_global_load_remove(struct rq *rq)
  6345. {
  6346. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6347. rq->calc_load_active = 0;
  6348. }
  6349. #endif /* CONFIG_HOTPLUG_CPU */
  6350. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6351. static struct ctl_table sd_ctl_dir[] = {
  6352. {
  6353. .procname = "sched_domain",
  6354. .mode = 0555,
  6355. },
  6356. {}
  6357. };
  6358. static struct ctl_table sd_ctl_root[] = {
  6359. {
  6360. .procname = "kernel",
  6361. .mode = 0555,
  6362. .child = sd_ctl_dir,
  6363. },
  6364. {}
  6365. };
  6366. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6367. {
  6368. struct ctl_table *entry =
  6369. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6370. return entry;
  6371. }
  6372. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6373. {
  6374. struct ctl_table *entry;
  6375. /*
  6376. * In the intermediate directories, both the child directory and
  6377. * procname are dynamically allocated and could fail but the mode
  6378. * will always be set. In the lowest directory the names are
  6379. * static strings and all have proc handlers.
  6380. */
  6381. for (entry = *tablep; entry->mode; entry++) {
  6382. if (entry->child)
  6383. sd_free_ctl_entry(&entry->child);
  6384. if (entry->proc_handler == NULL)
  6385. kfree(entry->procname);
  6386. }
  6387. kfree(*tablep);
  6388. *tablep = NULL;
  6389. }
  6390. static void
  6391. set_table_entry(struct ctl_table *entry,
  6392. const char *procname, void *data, int maxlen,
  6393. mode_t mode, proc_handler *proc_handler)
  6394. {
  6395. entry->procname = procname;
  6396. entry->data = data;
  6397. entry->maxlen = maxlen;
  6398. entry->mode = mode;
  6399. entry->proc_handler = proc_handler;
  6400. }
  6401. static struct ctl_table *
  6402. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6403. {
  6404. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6405. if (table == NULL)
  6406. return NULL;
  6407. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6408. sizeof(long), 0644, proc_doulongvec_minmax);
  6409. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6410. sizeof(long), 0644, proc_doulongvec_minmax);
  6411. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6412. sizeof(int), 0644, proc_dointvec_minmax);
  6413. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6414. sizeof(int), 0644, proc_dointvec_minmax);
  6415. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6416. sizeof(int), 0644, proc_dointvec_minmax);
  6417. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6418. sizeof(int), 0644, proc_dointvec_minmax);
  6419. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6420. sizeof(int), 0644, proc_dointvec_minmax);
  6421. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6422. sizeof(int), 0644, proc_dointvec_minmax);
  6423. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6424. sizeof(int), 0644, proc_dointvec_minmax);
  6425. set_table_entry(&table[9], "cache_nice_tries",
  6426. &sd->cache_nice_tries,
  6427. sizeof(int), 0644, proc_dointvec_minmax);
  6428. set_table_entry(&table[10], "flags", &sd->flags,
  6429. sizeof(int), 0644, proc_dointvec_minmax);
  6430. set_table_entry(&table[11], "name", sd->name,
  6431. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6432. /* &table[12] is terminator */
  6433. return table;
  6434. }
  6435. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6436. {
  6437. struct ctl_table *entry, *table;
  6438. struct sched_domain *sd;
  6439. int domain_num = 0, i;
  6440. char buf[32];
  6441. for_each_domain(cpu, sd)
  6442. domain_num++;
  6443. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6444. if (table == NULL)
  6445. return NULL;
  6446. i = 0;
  6447. for_each_domain(cpu, sd) {
  6448. snprintf(buf, 32, "domain%d", i);
  6449. entry->procname = kstrdup(buf, GFP_KERNEL);
  6450. entry->mode = 0555;
  6451. entry->child = sd_alloc_ctl_domain_table(sd);
  6452. entry++;
  6453. i++;
  6454. }
  6455. return table;
  6456. }
  6457. static struct ctl_table_header *sd_sysctl_header;
  6458. static void register_sched_domain_sysctl(void)
  6459. {
  6460. int i, cpu_num = num_possible_cpus();
  6461. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6462. char buf[32];
  6463. WARN_ON(sd_ctl_dir[0].child);
  6464. sd_ctl_dir[0].child = entry;
  6465. if (entry == NULL)
  6466. return;
  6467. for_each_possible_cpu(i) {
  6468. snprintf(buf, 32, "cpu%d", i);
  6469. entry->procname = kstrdup(buf, GFP_KERNEL);
  6470. entry->mode = 0555;
  6471. entry->child = sd_alloc_ctl_cpu_table(i);
  6472. entry++;
  6473. }
  6474. WARN_ON(sd_sysctl_header);
  6475. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6476. }
  6477. /* may be called multiple times per register */
  6478. static void unregister_sched_domain_sysctl(void)
  6479. {
  6480. if (sd_sysctl_header)
  6481. unregister_sysctl_table(sd_sysctl_header);
  6482. sd_sysctl_header = NULL;
  6483. if (sd_ctl_dir[0].child)
  6484. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6485. }
  6486. #else
  6487. static void register_sched_domain_sysctl(void)
  6488. {
  6489. }
  6490. static void unregister_sched_domain_sysctl(void)
  6491. {
  6492. }
  6493. #endif
  6494. static void set_rq_online(struct rq *rq)
  6495. {
  6496. if (!rq->online) {
  6497. const struct sched_class *class;
  6498. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6499. rq->online = 1;
  6500. for_each_class(class) {
  6501. if (class->rq_online)
  6502. class->rq_online(rq);
  6503. }
  6504. }
  6505. }
  6506. static void set_rq_offline(struct rq *rq)
  6507. {
  6508. if (rq->online) {
  6509. const struct sched_class *class;
  6510. for_each_class(class) {
  6511. if (class->rq_offline)
  6512. class->rq_offline(rq);
  6513. }
  6514. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6515. rq->online = 0;
  6516. }
  6517. }
  6518. /*
  6519. * migration_call - callback that gets triggered when a CPU is added.
  6520. * Here we can start up the necessary migration thread for the new CPU.
  6521. */
  6522. static int __cpuinit
  6523. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6524. {
  6525. struct task_struct *p;
  6526. int cpu = (long)hcpu;
  6527. unsigned long flags;
  6528. struct rq *rq;
  6529. switch (action) {
  6530. case CPU_UP_PREPARE:
  6531. case CPU_UP_PREPARE_FROZEN:
  6532. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6533. if (IS_ERR(p))
  6534. return NOTIFY_BAD;
  6535. kthread_bind(p, cpu);
  6536. /* Must be high prio: stop_machine expects to yield to it. */
  6537. rq = task_rq_lock(p, &flags);
  6538. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6539. task_rq_unlock(rq, &flags);
  6540. get_task_struct(p);
  6541. cpu_rq(cpu)->migration_thread = p;
  6542. rq->calc_load_update = calc_load_update;
  6543. break;
  6544. case CPU_ONLINE:
  6545. case CPU_ONLINE_FROZEN:
  6546. /* Strictly unnecessary, as first user will wake it. */
  6547. wake_up_process(cpu_rq(cpu)->migration_thread);
  6548. /* Update our root-domain */
  6549. rq = cpu_rq(cpu);
  6550. raw_spin_lock_irqsave(&rq->lock, flags);
  6551. if (rq->rd) {
  6552. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6553. set_rq_online(rq);
  6554. }
  6555. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6556. break;
  6557. #ifdef CONFIG_HOTPLUG_CPU
  6558. case CPU_UP_CANCELED:
  6559. case CPU_UP_CANCELED_FROZEN:
  6560. if (!cpu_rq(cpu)->migration_thread)
  6561. break;
  6562. /* Unbind it from offline cpu so it can run. Fall thru. */
  6563. kthread_bind(cpu_rq(cpu)->migration_thread,
  6564. cpumask_any(cpu_online_mask));
  6565. kthread_stop(cpu_rq(cpu)->migration_thread);
  6566. put_task_struct(cpu_rq(cpu)->migration_thread);
  6567. cpu_rq(cpu)->migration_thread = NULL;
  6568. break;
  6569. case CPU_DEAD:
  6570. case CPU_DEAD_FROZEN:
  6571. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6572. migrate_live_tasks(cpu);
  6573. rq = cpu_rq(cpu);
  6574. kthread_stop(rq->migration_thread);
  6575. put_task_struct(rq->migration_thread);
  6576. rq->migration_thread = NULL;
  6577. /* Idle task back to normal (off runqueue, low prio) */
  6578. raw_spin_lock_irq(&rq->lock);
  6579. update_rq_clock(rq);
  6580. deactivate_task(rq, rq->idle, 0);
  6581. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6582. rq->idle->sched_class = &idle_sched_class;
  6583. migrate_dead_tasks(cpu);
  6584. raw_spin_unlock_irq(&rq->lock);
  6585. cpuset_unlock();
  6586. migrate_nr_uninterruptible(rq);
  6587. BUG_ON(rq->nr_running != 0);
  6588. calc_global_load_remove(rq);
  6589. /*
  6590. * No need to migrate the tasks: it was best-effort if
  6591. * they didn't take sched_hotcpu_mutex. Just wake up
  6592. * the requestors.
  6593. */
  6594. raw_spin_lock_irq(&rq->lock);
  6595. while (!list_empty(&rq->migration_queue)) {
  6596. struct migration_req *req;
  6597. req = list_entry(rq->migration_queue.next,
  6598. struct migration_req, list);
  6599. list_del_init(&req->list);
  6600. raw_spin_unlock_irq(&rq->lock);
  6601. complete(&req->done);
  6602. raw_spin_lock_irq(&rq->lock);
  6603. }
  6604. raw_spin_unlock_irq(&rq->lock);
  6605. break;
  6606. case CPU_DYING:
  6607. case CPU_DYING_FROZEN:
  6608. /* Update our root-domain */
  6609. rq = cpu_rq(cpu);
  6610. raw_spin_lock_irqsave(&rq->lock, flags);
  6611. if (rq->rd) {
  6612. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6613. set_rq_offline(rq);
  6614. }
  6615. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6616. break;
  6617. #endif
  6618. }
  6619. return NOTIFY_OK;
  6620. }
  6621. /*
  6622. * Register at high priority so that task migration (migrate_all_tasks)
  6623. * happens before everything else. This has to be lower priority than
  6624. * the notifier in the perf_event subsystem, though.
  6625. */
  6626. static struct notifier_block __cpuinitdata migration_notifier = {
  6627. .notifier_call = migration_call,
  6628. .priority = 10
  6629. };
  6630. static int __init migration_init(void)
  6631. {
  6632. void *cpu = (void *)(long)smp_processor_id();
  6633. int err;
  6634. /* Start one for the boot CPU: */
  6635. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6636. BUG_ON(err == NOTIFY_BAD);
  6637. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6638. register_cpu_notifier(&migration_notifier);
  6639. return 0;
  6640. }
  6641. early_initcall(migration_init);
  6642. #endif
  6643. #ifdef CONFIG_SMP
  6644. #ifdef CONFIG_SCHED_DEBUG
  6645. static __read_mostly int sched_domain_debug_enabled;
  6646. static int __init sched_domain_debug_setup(char *str)
  6647. {
  6648. sched_domain_debug_enabled = 1;
  6649. return 0;
  6650. }
  6651. early_param("sched_debug", sched_domain_debug_setup);
  6652. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6653. struct cpumask *groupmask)
  6654. {
  6655. struct sched_group *group = sd->groups;
  6656. char str[256];
  6657. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6658. cpumask_clear(groupmask);
  6659. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6660. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6661. pr_cont("does not load-balance\n");
  6662. if (sd->parent)
  6663. pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
  6664. return -1;
  6665. }
  6666. pr_cont("span %s level %s\n", str, sd->name);
  6667. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6668. pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
  6669. }
  6670. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6671. pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
  6672. }
  6673. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6674. do {
  6675. if (!group) {
  6676. pr_cont("\n");
  6677. pr_err("ERROR: group is NULL\n");
  6678. break;
  6679. }
  6680. if (!group->cpu_power) {
  6681. pr_cont("\n");
  6682. pr_err("ERROR: domain->cpu_power not set\n");
  6683. break;
  6684. }
  6685. if (!cpumask_weight(sched_group_cpus(group))) {
  6686. pr_cont("\n");
  6687. pr_err("ERROR: empty group\n");
  6688. break;
  6689. }
  6690. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6691. pr_cont("\n");
  6692. pr_err("ERROR: repeated CPUs\n");
  6693. break;
  6694. }
  6695. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6696. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6697. pr_cont(" %s", str);
  6698. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6699. pr_cont(" (cpu_power = %d)", group->cpu_power);
  6700. }
  6701. group = group->next;
  6702. } while (group != sd->groups);
  6703. pr_cont("\n");
  6704. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6705. pr_err("ERROR: groups don't span domain->span\n");
  6706. if (sd->parent &&
  6707. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6708. pr_err("ERROR: parent span is not a superset of domain->span\n");
  6709. return 0;
  6710. }
  6711. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6712. {
  6713. cpumask_var_t groupmask;
  6714. int level = 0;
  6715. if (!sched_domain_debug_enabled)
  6716. return;
  6717. if (!sd) {
  6718. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6719. return;
  6720. }
  6721. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6722. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6723. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6724. return;
  6725. }
  6726. for (;;) {
  6727. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6728. break;
  6729. level++;
  6730. sd = sd->parent;
  6731. if (!sd)
  6732. break;
  6733. }
  6734. free_cpumask_var(groupmask);
  6735. }
  6736. #else /* !CONFIG_SCHED_DEBUG */
  6737. # define sched_domain_debug(sd, cpu) do { } while (0)
  6738. #endif /* CONFIG_SCHED_DEBUG */
  6739. static int sd_degenerate(struct sched_domain *sd)
  6740. {
  6741. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6742. return 1;
  6743. /* Following flags need at least 2 groups */
  6744. if (sd->flags & (SD_LOAD_BALANCE |
  6745. SD_BALANCE_NEWIDLE |
  6746. SD_BALANCE_FORK |
  6747. SD_BALANCE_EXEC |
  6748. SD_SHARE_CPUPOWER |
  6749. SD_SHARE_PKG_RESOURCES)) {
  6750. if (sd->groups != sd->groups->next)
  6751. return 0;
  6752. }
  6753. /* Following flags don't use groups */
  6754. if (sd->flags & (SD_WAKE_AFFINE))
  6755. return 0;
  6756. return 1;
  6757. }
  6758. static int
  6759. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6760. {
  6761. unsigned long cflags = sd->flags, pflags = parent->flags;
  6762. if (sd_degenerate(parent))
  6763. return 1;
  6764. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6765. return 0;
  6766. /* Flags needing groups don't count if only 1 group in parent */
  6767. if (parent->groups == parent->groups->next) {
  6768. pflags &= ~(SD_LOAD_BALANCE |
  6769. SD_BALANCE_NEWIDLE |
  6770. SD_BALANCE_FORK |
  6771. SD_BALANCE_EXEC |
  6772. SD_SHARE_CPUPOWER |
  6773. SD_SHARE_PKG_RESOURCES);
  6774. if (nr_node_ids == 1)
  6775. pflags &= ~SD_SERIALIZE;
  6776. }
  6777. if (~cflags & pflags)
  6778. return 0;
  6779. return 1;
  6780. }
  6781. static void free_rootdomain(struct root_domain *rd)
  6782. {
  6783. synchronize_sched();
  6784. cpupri_cleanup(&rd->cpupri);
  6785. free_cpumask_var(rd->rto_mask);
  6786. free_cpumask_var(rd->online);
  6787. free_cpumask_var(rd->span);
  6788. kfree(rd);
  6789. }
  6790. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6791. {
  6792. struct root_domain *old_rd = NULL;
  6793. unsigned long flags;
  6794. raw_spin_lock_irqsave(&rq->lock, flags);
  6795. if (rq->rd) {
  6796. old_rd = rq->rd;
  6797. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6798. set_rq_offline(rq);
  6799. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6800. /*
  6801. * If we dont want to free the old_rt yet then
  6802. * set old_rd to NULL to skip the freeing later
  6803. * in this function:
  6804. */
  6805. if (!atomic_dec_and_test(&old_rd->refcount))
  6806. old_rd = NULL;
  6807. }
  6808. atomic_inc(&rd->refcount);
  6809. rq->rd = rd;
  6810. cpumask_set_cpu(rq->cpu, rd->span);
  6811. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6812. set_rq_online(rq);
  6813. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6814. if (old_rd)
  6815. free_rootdomain(old_rd);
  6816. }
  6817. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6818. {
  6819. gfp_t gfp = GFP_KERNEL;
  6820. memset(rd, 0, sizeof(*rd));
  6821. if (bootmem)
  6822. gfp = GFP_NOWAIT;
  6823. if (!alloc_cpumask_var(&rd->span, gfp))
  6824. goto out;
  6825. if (!alloc_cpumask_var(&rd->online, gfp))
  6826. goto free_span;
  6827. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6828. goto free_online;
  6829. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6830. goto free_rto_mask;
  6831. return 0;
  6832. free_rto_mask:
  6833. free_cpumask_var(rd->rto_mask);
  6834. free_online:
  6835. free_cpumask_var(rd->online);
  6836. free_span:
  6837. free_cpumask_var(rd->span);
  6838. out:
  6839. return -ENOMEM;
  6840. }
  6841. static void init_defrootdomain(void)
  6842. {
  6843. init_rootdomain(&def_root_domain, true);
  6844. atomic_set(&def_root_domain.refcount, 1);
  6845. }
  6846. static struct root_domain *alloc_rootdomain(void)
  6847. {
  6848. struct root_domain *rd;
  6849. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6850. if (!rd)
  6851. return NULL;
  6852. if (init_rootdomain(rd, false) != 0) {
  6853. kfree(rd);
  6854. return NULL;
  6855. }
  6856. return rd;
  6857. }
  6858. /*
  6859. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6860. * hold the hotplug lock.
  6861. */
  6862. static void
  6863. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6864. {
  6865. struct rq *rq = cpu_rq(cpu);
  6866. struct sched_domain *tmp;
  6867. /* Remove the sched domains which do not contribute to scheduling. */
  6868. for (tmp = sd; tmp; ) {
  6869. struct sched_domain *parent = tmp->parent;
  6870. if (!parent)
  6871. break;
  6872. if (sd_parent_degenerate(tmp, parent)) {
  6873. tmp->parent = parent->parent;
  6874. if (parent->parent)
  6875. parent->parent->child = tmp;
  6876. } else
  6877. tmp = tmp->parent;
  6878. }
  6879. if (sd && sd_degenerate(sd)) {
  6880. sd = sd->parent;
  6881. if (sd)
  6882. sd->child = NULL;
  6883. }
  6884. sched_domain_debug(sd, cpu);
  6885. rq_attach_root(rq, rd);
  6886. rcu_assign_pointer(rq->sd, sd);
  6887. }
  6888. /* cpus with isolated domains */
  6889. static cpumask_var_t cpu_isolated_map;
  6890. /* Setup the mask of cpus configured for isolated domains */
  6891. static int __init isolated_cpu_setup(char *str)
  6892. {
  6893. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6894. cpulist_parse(str, cpu_isolated_map);
  6895. return 1;
  6896. }
  6897. __setup("isolcpus=", isolated_cpu_setup);
  6898. /*
  6899. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6900. * to a function which identifies what group(along with sched group) a CPU
  6901. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6902. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6903. *
  6904. * init_sched_build_groups will build a circular linked list of the groups
  6905. * covered by the given span, and will set each group's ->cpumask correctly,
  6906. * and ->cpu_power to 0.
  6907. */
  6908. static void
  6909. init_sched_build_groups(const struct cpumask *span,
  6910. const struct cpumask *cpu_map,
  6911. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6912. struct sched_group **sg,
  6913. struct cpumask *tmpmask),
  6914. struct cpumask *covered, struct cpumask *tmpmask)
  6915. {
  6916. struct sched_group *first = NULL, *last = NULL;
  6917. int i;
  6918. cpumask_clear(covered);
  6919. for_each_cpu(i, span) {
  6920. struct sched_group *sg;
  6921. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6922. int j;
  6923. if (cpumask_test_cpu(i, covered))
  6924. continue;
  6925. cpumask_clear(sched_group_cpus(sg));
  6926. sg->cpu_power = 0;
  6927. for_each_cpu(j, span) {
  6928. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6929. continue;
  6930. cpumask_set_cpu(j, covered);
  6931. cpumask_set_cpu(j, sched_group_cpus(sg));
  6932. }
  6933. if (!first)
  6934. first = sg;
  6935. if (last)
  6936. last->next = sg;
  6937. last = sg;
  6938. }
  6939. last->next = first;
  6940. }
  6941. #define SD_NODES_PER_DOMAIN 16
  6942. #ifdef CONFIG_NUMA
  6943. /**
  6944. * find_next_best_node - find the next node to include in a sched_domain
  6945. * @node: node whose sched_domain we're building
  6946. * @used_nodes: nodes already in the sched_domain
  6947. *
  6948. * Find the next node to include in a given scheduling domain. Simply
  6949. * finds the closest node not already in the @used_nodes map.
  6950. *
  6951. * Should use nodemask_t.
  6952. */
  6953. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6954. {
  6955. int i, n, val, min_val, best_node = 0;
  6956. min_val = INT_MAX;
  6957. for (i = 0; i < nr_node_ids; i++) {
  6958. /* Start at @node */
  6959. n = (node + i) % nr_node_ids;
  6960. if (!nr_cpus_node(n))
  6961. continue;
  6962. /* Skip already used nodes */
  6963. if (node_isset(n, *used_nodes))
  6964. continue;
  6965. /* Simple min distance search */
  6966. val = node_distance(node, n);
  6967. if (val < min_val) {
  6968. min_val = val;
  6969. best_node = n;
  6970. }
  6971. }
  6972. node_set(best_node, *used_nodes);
  6973. return best_node;
  6974. }
  6975. /**
  6976. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6977. * @node: node whose cpumask we're constructing
  6978. * @span: resulting cpumask
  6979. *
  6980. * Given a node, construct a good cpumask for its sched_domain to span. It
  6981. * should be one that prevents unnecessary balancing, but also spreads tasks
  6982. * out optimally.
  6983. */
  6984. static void sched_domain_node_span(int node, struct cpumask *span)
  6985. {
  6986. nodemask_t used_nodes;
  6987. int i;
  6988. cpumask_clear(span);
  6989. nodes_clear(used_nodes);
  6990. cpumask_or(span, span, cpumask_of_node(node));
  6991. node_set(node, used_nodes);
  6992. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6993. int next_node = find_next_best_node(node, &used_nodes);
  6994. cpumask_or(span, span, cpumask_of_node(next_node));
  6995. }
  6996. }
  6997. #endif /* CONFIG_NUMA */
  6998. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6999. /*
  7000. * The cpus mask in sched_group and sched_domain hangs off the end.
  7001. *
  7002. * ( See the the comments in include/linux/sched.h:struct sched_group
  7003. * and struct sched_domain. )
  7004. */
  7005. struct static_sched_group {
  7006. struct sched_group sg;
  7007. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7008. };
  7009. struct static_sched_domain {
  7010. struct sched_domain sd;
  7011. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7012. };
  7013. struct s_data {
  7014. #ifdef CONFIG_NUMA
  7015. int sd_allnodes;
  7016. cpumask_var_t domainspan;
  7017. cpumask_var_t covered;
  7018. cpumask_var_t notcovered;
  7019. #endif
  7020. cpumask_var_t nodemask;
  7021. cpumask_var_t this_sibling_map;
  7022. cpumask_var_t this_core_map;
  7023. cpumask_var_t send_covered;
  7024. cpumask_var_t tmpmask;
  7025. struct sched_group **sched_group_nodes;
  7026. struct root_domain *rd;
  7027. };
  7028. enum s_alloc {
  7029. sa_sched_groups = 0,
  7030. sa_rootdomain,
  7031. sa_tmpmask,
  7032. sa_send_covered,
  7033. sa_this_core_map,
  7034. sa_this_sibling_map,
  7035. sa_nodemask,
  7036. sa_sched_group_nodes,
  7037. #ifdef CONFIG_NUMA
  7038. sa_notcovered,
  7039. sa_covered,
  7040. sa_domainspan,
  7041. #endif
  7042. sa_none,
  7043. };
  7044. /*
  7045. * SMT sched-domains:
  7046. */
  7047. #ifdef CONFIG_SCHED_SMT
  7048. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7049. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  7050. static int
  7051. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7052. struct sched_group **sg, struct cpumask *unused)
  7053. {
  7054. if (sg)
  7055. *sg = &per_cpu(sched_groups, cpu).sg;
  7056. return cpu;
  7057. }
  7058. #endif /* CONFIG_SCHED_SMT */
  7059. /*
  7060. * multi-core sched-domains:
  7061. */
  7062. #ifdef CONFIG_SCHED_MC
  7063. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7064. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7065. #endif /* CONFIG_SCHED_MC */
  7066. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7067. static int
  7068. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7069. struct sched_group **sg, struct cpumask *mask)
  7070. {
  7071. int group;
  7072. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7073. group = cpumask_first(mask);
  7074. if (sg)
  7075. *sg = &per_cpu(sched_group_core, group).sg;
  7076. return group;
  7077. }
  7078. #elif defined(CONFIG_SCHED_MC)
  7079. static int
  7080. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7081. struct sched_group **sg, struct cpumask *unused)
  7082. {
  7083. if (sg)
  7084. *sg = &per_cpu(sched_group_core, cpu).sg;
  7085. return cpu;
  7086. }
  7087. #endif
  7088. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7089. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7090. static int
  7091. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7092. struct sched_group **sg, struct cpumask *mask)
  7093. {
  7094. int group;
  7095. #ifdef CONFIG_SCHED_MC
  7096. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7097. group = cpumask_first(mask);
  7098. #elif defined(CONFIG_SCHED_SMT)
  7099. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7100. group = cpumask_first(mask);
  7101. #else
  7102. group = cpu;
  7103. #endif
  7104. if (sg)
  7105. *sg = &per_cpu(sched_group_phys, group).sg;
  7106. return group;
  7107. }
  7108. #ifdef CONFIG_NUMA
  7109. /*
  7110. * The init_sched_build_groups can't handle what we want to do with node
  7111. * groups, so roll our own. Now each node has its own list of groups which
  7112. * gets dynamically allocated.
  7113. */
  7114. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7115. static struct sched_group ***sched_group_nodes_bycpu;
  7116. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7117. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7118. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7119. struct sched_group **sg,
  7120. struct cpumask *nodemask)
  7121. {
  7122. int group;
  7123. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7124. group = cpumask_first(nodemask);
  7125. if (sg)
  7126. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7127. return group;
  7128. }
  7129. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7130. {
  7131. struct sched_group *sg = group_head;
  7132. int j;
  7133. if (!sg)
  7134. return;
  7135. do {
  7136. for_each_cpu(j, sched_group_cpus(sg)) {
  7137. struct sched_domain *sd;
  7138. sd = &per_cpu(phys_domains, j).sd;
  7139. if (j != group_first_cpu(sd->groups)) {
  7140. /*
  7141. * Only add "power" once for each
  7142. * physical package.
  7143. */
  7144. continue;
  7145. }
  7146. sg->cpu_power += sd->groups->cpu_power;
  7147. }
  7148. sg = sg->next;
  7149. } while (sg != group_head);
  7150. }
  7151. static int build_numa_sched_groups(struct s_data *d,
  7152. const struct cpumask *cpu_map, int num)
  7153. {
  7154. struct sched_domain *sd;
  7155. struct sched_group *sg, *prev;
  7156. int n, j;
  7157. cpumask_clear(d->covered);
  7158. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7159. if (cpumask_empty(d->nodemask)) {
  7160. d->sched_group_nodes[num] = NULL;
  7161. goto out;
  7162. }
  7163. sched_domain_node_span(num, d->domainspan);
  7164. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7165. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7166. GFP_KERNEL, num);
  7167. if (!sg) {
  7168. pr_warning("Can not alloc domain group for node %d\n", num);
  7169. return -ENOMEM;
  7170. }
  7171. d->sched_group_nodes[num] = sg;
  7172. for_each_cpu(j, d->nodemask) {
  7173. sd = &per_cpu(node_domains, j).sd;
  7174. sd->groups = sg;
  7175. }
  7176. sg->cpu_power = 0;
  7177. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7178. sg->next = sg;
  7179. cpumask_or(d->covered, d->covered, d->nodemask);
  7180. prev = sg;
  7181. for (j = 0; j < nr_node_ids; j++) {
  7182. n = (num + j) % nr_node_ids;
  7183. cpumask_complement(d->notcovered, d->covered);
  7184. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7185. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7186. if (cpumask_empty(d->tmpmask))
  7187. break;
  7188. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7189. if (cpumask_empty(d->tmpmask))
  7190. continue;
  7191. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7192. GFP_KERNEL, num);
  7193. if (!sg) {
  7194. pr_warning("Can not alloc domain group for node %d\n",
  7195. j);
  7196. return -ENOMEM;
  7197. }
  7198. sg->cpu_power = 0;
  7199. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7200. sg->next = prev->next;
  7201. cpumask_or(d->covered, d->covered, d->tmpmask);
  7202. prev->next = sg;
  7203. prev = sg;
  7204. }
  7205. out:
  7206. return 0;
  7207. }
  7208. #endif /* CONFIG_NUMA */
  7209. #ifdef CONFIG_NUMA
  7210. /* Free memory allocated for various sched_group structures */
  7211. static void free_sched_groups(const struct cpumask *cpu_map,
  7212. struct cpumask *nodemask)
  7213. {
  7214. int cpu, i;
  7215. for_each_cpu(cpu, cpu_map) {
  7216. struct sched_group **sched_group_nodes
  7217. = sched_group_nodes_bycpu[cpu];
  7218. if (!sched_group_nodes)
  7219. continue;
  7220. for (i = 0; i < nr_node_ids; i++) {
  7221. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7222. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7223. if (cpumask_empty(nodemask))
  7224. continue;
  7225. if (sg == NULL)
  7226. continue;
  7227. sg = sg->next;
  7228. next_sg:
  7229. oldsg = sg;
  7230. sg = sg->next;
  7231. kfree(oldsg);
  7232. if (oldsg != sched_group_nodes[i])
  7233. goto next_sg;
  7234. }
  7235. kfree(sched_group_nodes);
  7236. sched_group_nodes_bycpu[cpu] = NULL;
  7237. }
  7238. }
  7239. #else /* !CONFIG_NUMA */
  7240. static void free_sched_groups(const struct cpumask *cpu_map,
  7241. struct cpumask *nodemask)
  7242. {
  7243. }
  7244. #endif /* CONFIG_NUMA */
  7245. /*
  7246. * Initialize sched groups cpu_power.
  7247. *
  7248. * cpu_power indicates the capacity of sched group, which is used while
  7249. * distributing the load between different sched groups in a sched domain.
  7250. * Typically cpu_power for all the groups in a sched domain will be same unless
  7251. * there are asymmetries in the topology. If there are asymmetries, group
  7252. * having more cpu_power will pickup more load compared to the group having
  7253. * less cpu_power.
  7254. */
  7255. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7256. {
  7257. struct sched_domain *child;
  7258. struct sched_group *group;
  7259. long power;
  7260. int weight;
  7261. WARN_ON(!sd || !sd->groups);
  7262. if (cpu != group_first_cpu(sd->groups))
  7263. return;
  7264. child = sd->child;
  7265. sd->groups->cpu_power = 0;
  7266. if (!child) {
  7267. power = SCHED_LOAD_SCALE;
  7268. weight = cpumask_weight(sched_domain_span(sd));
  7269. /*
  7270. * SMT siblings share the power of a single core.
  7271. * Usually multiple threads get a better yield out of
  7272. * that one core than a single thread would have,
  7273. * reflect that in sd->smt_gain.
  7274. */
  7275. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7276. power *= sd->smt_gain;
  7277. power /= weight;
  7278. power >>= SCHED_LOAD_SHIFT;
  7279. }
  7280. sd->groups->cpu_power += power;
  7281. return;
  7282. }
  7283. /*
  7284. * Add cpu_power of each child group to this groups cpu_power.
  7285. */
  7286. group = child->groups;
  7287. do {
  7288. sd->groups->cpu_power += group->cpu_power;
  7289. group = group->next;
  7290. } while (group != child->groups);
  7291. }
  7292. /*
  7293. * Initializers for schedule domains
  7294. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7295. */
  7296. #ifdef CONFIG_SCHED_DEBUG
  7297. # define SD_INIT_NAME(sd, type) sd->name = #type
  7298. #else
  7299. # define SD_INIT_NAME(sd, type) do { } while (0)
  7300. #endif
  7301. #define SD_INIT(sd, type) sd_init_##type(sd)
  7302. #define SD_INIT_FUNC(type) \
  7303. static noinline void sd_init_##type(struct sched_domain *sd) \
  7304. { \
  7305. memset(sd, 0, sizeof(*sd)); \
  7306. *sd = SD_##type##_INIT; \
  7307. sd->level = SD_LV_##type; \
  7308. SD_INIT_NAME(sd, type); \
  7309. }
  7310. SD_INIT_FUNC(CPU)
  7311. #ifdef CONFIG_NUMA
  7312. SD_INIT_FUNC(ALLNODES)
  7313. SD_INIT_FUNC(NODE)
  7314. #endif
  7315. #ifdef CONFIG_SCHED_SMT
  7316. SD_INIT_FUNC(SIBLING)
  7317. #endif
  7318. #ifdef CONFIG_SCHED_MC
  7319. SD_INIT_FUNC(MC)
  7320. #endif
  7321. static int default_relax_domain_level = -1;
  7322. static int __init setup_relax_domain_level(char *str)
  7323. {
  7324. unsigned long val;
  7325. val = simple_strtoul(str, NULL, 0);
  7326. if (val < SD_LV_MAX)
  7327. default_relax_domain_level = val;
  7328. return 1;
  7329. }
  7330. __setup("relax_domain_level=", setup_relax_domain_level);
  7331. static void set_domain_attribute(struct sched_domain *sd,
  7332. struct sched_domain_attr *attr)
  7333. {
  7334. int request;
  7335. if (!attr || attr->relax_domain_level < 0) {
  7336. if (default_relax_domain_level < 0)
  7337. return;
  7338. else
  7339. request = default_relax_domain_level;
  7340. } else
  7341. request = attr->relax_domain_level;
  7342. if (request < sd->level) {
  7343. /* turn off idle balance on this domain */
  7344. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7345. } else {
  7346. /* turn on idle balance on this domain */
  7347. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7348. }
  7349. }
  7350. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7351. const struct cpumask *cpu_map)
  7352. {
  7353. switch (what) {
  7354. case sa_sched_groups:
  7355. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7356. d->sched_group_nodes = NULL;
  7357. case sa_rootdomain:
  7358. free_rootdomain(d->rd); /* fall through */
  7359. case sa_tmpmask:
  7360. free_cpumask_var(d->tmpmask); /* fall through */
  7361. case sa_send_covered:
  7362. free_cpumask_var(d->send_covered); /* fall through */
  7363. case sa_this_core_map:
  7364. free_cpumask_var(d->this_core_map); /* fall through */
  7365. case sa_this_sibling_map:
  7366. free_cpumask_var(d->this_sibling_map); /* fall through */
  7367. case sa_nodemask:
  7368. free_cpumask_var(d->nodemask); /* fall through */
  7369. case sa_sched_group_nodes:
  7370. #ifdef CONFIG_NUMA
  7371. kfree(d->sched_group_nodes); /* fall through */
  7372. case sa_notcovered:
  7373. free_cpumask_var(d->notcovered); /* fall through */
  7374. case sa_covered:
  7375. free_cpumask_var(d->covered); /* fall through */
  7376. case sa_domainspan:
  7377. free_cpumask_var(d->domainspan); /* fall through */
  7378. #endif
  7379. case sa_none:
  7380. break;
  7381. }
  7382. }
  7383. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7384. const struct cpumask *cpu_map)
  7385. {
  7386. #ifdef CONFIG_NUMA
  7387. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7388. return sa_none;
  7389. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7390. return sa_domainspan;
  7391. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7392. return sa_covered;
  7393. /* Allocate the per-node list of sched groups */
  7394. d->sched_group_nodes = kcalloc(nr_node_ids,
  7395. sizeof(struct sched_group *), GFP_KERNEL);
  7396. if (!d->sched_group_nodes) {
  7397. pr_warning("Can not alloc sched group node list\n");
  7398. return sa_notcovered;
  7399. }
  7400. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7401. #endif
  7402. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7403. return sa_sched_group_nodes;
  7404. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7405. return sa_nodemask;
  7406. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7407. return sa_this_sibling_map;
  7408. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7409. return sa_this_core_map;
  7410. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7411. return sa_send_covered;
  7412. d->rd = alloc_rootdomain();
  7413. if (!d->rd) {
  7414. pr_warning("Cannot alloc root domain\n");
  7415. return sa_tmpmask;
  7416. }
  7417. return sa_rootdomain;
  7418. }
  7419. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7420. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7421. {
  7422. struct sched_domain *sd = NULL;
  7423. #ifdef CONFIG_NUMA
  7424. struct sched_domain *parent;
  7425. d->sd_allnodes = 0;
  7426. if (cpumask_weight(cpu_map) >
  7427. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7428. sd = &per_cpu(allnodes_domains, i).sd;
  7429. SD_INIT(sd, ALLNODES);
  7430. set_domain_attribute(sd, attr);
  7431. cpumask_copy(sched_domain_span(sd), cpu_map);
  7432. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7433. d->sd_allnodes = 1;
  7434. }
  7435. parent = sd;
  7436. sd = &per_cpu(node_domains, i).sd;
  7437. SD_INIT(sd, NODE);
  7438. set_domain_attribute(sd, attr);
  7439. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7440. sd->parent = parent;
  7441. if (parent)
  7442. parent->child = sd;
  7443. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7444. #endif
  7445. return sd;
  7446. }
  7447. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7448. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7449. struct sched_domain *parent, int i)
  7450. {
  7451. struct sched_domain *sd;
  7452. sd = &per_cpu(phys_domains, i).sd;
  7453. SD_INIT(sd, CPU);
  7454. set_domain_attribute(sd, attr);
  7455. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7456. sd->parent = parent;
  7457. if (parent)
  7458. parent->child = sd;
  7459. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7460. return sd;
  7461. }
  7462. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7463. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7464. struct sched_domain *parent, int i)
  7465. {
  7466. struct sched_domain *sd = parent;
  7467. #ifdef CONFIG_SCHED_MC
  7468. sd = &per_cpu(core_domains, i).sd;
  7469. SD_INIT(sd, MC);
  7470. set_domain_attribute(sd, attr);
  7471. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7472. sd->parent = parent;
  7473. parent->child = sd;
  7474. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7475. #endif
  7476. return sd;
  7477. }
  7478. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7479. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7480. struct sched_domain *parent, int i)
  7481. {
  7482. struct sched_domain *sd = parent;
  7483. #ifdef CONFIG_SCHED_SMT
  7484. sd = &per_cpu(cpu_domains, i).sd;
  7485. SD_INIT(sd, SIBLING);
  7486. set_domain_attribute(sd, attr);
  7487. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7488. sd->parent = parent;
  7489. parent->child = sd;
  7490. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7491. #endif
  7492. return sd;
  7493. }
  7494. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7495. const struct cpumask *cpu_map, int cpu)
  7496. {
  7497. switch (l) {
  7498. #ifdef CONFIG_SCHED_SMT
  7499. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7500. cpumask_and(d->this_sibling_map, cpu_map,
  7501. topology_thread_cpumask(cpu));
  7502. if (cpu == cpumask_first(d->this_sibling_map))
  7503. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7504. &cpu_to_cpu_group,
  7505. d->send_covered, d->tmpmask);
  7506. break;
  7507. #endif
  7508. #ifdef CONFIG_SCHED_MC
  7509. case SD_LV_MC: /* set up multi-core groups */
  7510. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7511. if (cpu == cpumask_first(d->this_core_map))
  7512. init_sched_build_groups(d->this_core_map, cpu_map,
  7513. &cpu_to_core_group,
  7514. d->send_covered, d->tmpmask);
  7515. break;
  7516. #endif
  7517. case SD_LV_CPU: /* set up physical groups */
  7518. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7519. if (!cpumask_empty(d->nodemask))
  7520. init_sched_build_groups(d->nodemask, cpu_map,
  7521. &cpu_to_phys_group,
  7522. d->send_covered, d->tmpmask);
  7523. break;
  7524. #ifdef CONFIG_NUMA
  7525. case SD_LV_ALLNODES:
  7526. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7527. d->send_covered, d->tmpmask);
  7528. break;
  7529. #endif
  7530. default:
  7531. break;
  7532. }
  7533. }
  7534. /*
  7535. * Build sched domains for a given set of cpus and attach the sched domains
  7536. * to the individual cpus
  7537. */
  7538. static int __build_sched_domains(const struct cpumask *cpu_map,
  7539. struct sched_domain_attr *attr)
  7540. {
  7541. enum s_alloc alloc_state = sa_none;
  7542. struct s_data d;
  7543. struct sched_domain *sd;
  7544. int i;
  7545. #ifdef CONFIG_NUMA
  7546. d.sd_allnodes = 0;
  7547. #endif
  7548. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7549. if (alloc_state != sa_rootdomain)
  7550. goto error;
  7551. alloc_state = sa_sched_groups;
  7552. /*
  7553. * Set up domains for cpus specified by the cpu_map.
  7554. */
  7555. for_each_cpu(i, cpu_map) {
  7556. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7557. cpu_map);
  7558. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7559. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7560. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7561. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7562. }
  7563. for_each_cpu(i, cpu_map) {
  7564. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7565. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7566. }
  7567. /* Set up physical groups */
  7568. for (i = 0; i < nr_node_ids; i++)
  7569. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7570. #ifdef CONFIG_NUMA
  7571. /* Set up node groups */
  7572. if (d.sd_allnodes)
  7573. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7574. for (i = 0; i < nr_node_ids; i++)
  7575. if (build_numa_sched_groups(&d, cpu_map, i))
  7576. goto error;
  7577. #endif
  7578. /* Calculate CPU power for physical packages and nodes */
  7579. #ifdef CONFIG_SCHED_SMT
  7580. for_each_cpu(i, cpu_map) {
  7581. sd = &per_cpu(cpu_domains, i).sd;
  7582. init_sched_groups_power(i, sd);
  7583. }
  7584. #endif
  7585. #ifdef CONFIG_SCHED_MC
  7586. for_each_cpu(i, cpu_map) {
  7587. sd = &per_cpu(core_domains, i).sd;
  7588. init_sched_groups_power(i, sd);
  7589. }
  7590. #endif
  7591. for_each_cpu(i, cpu_map) {
  7592. sd = &per_cpu(phys_domains, i).sd;
  7593. init_sched_groups_power(i, sd);
  7594. }
  7595. #ifdef CONFIG_NUMA
  7596. for (i = 0; i < nr_node_ids; i++)
  7597. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7598. if (d.sd_allnodes) {
  7599. struct sched_group *sg;
  7600. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7601. d.tmpmask);
  7602. init_numa_sched_groups_power(sg);
  7603. }
  7604. #endif
  7605. /* Attach the domains */
  7606. for_each_cpu(i, cpu_map) {
  7607. #ifdef CONFIG_SCHED_SMT
  7608. sd = &per_cpu(cpu_domains, i).sd;
  7609. #elif defined(CONFIG_SCHED_MC)
  7610. sd = &per_cpu(core_domains, i).sd;
  7611. #else
  7612. sd = &per_cpu(phys_domains, i).sd;
  7613. #endif
  7614. cpu_attach_domain(sd, d.rd, i);
  7615. }
  7616. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7617. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7618. return 0;
  7619. error:
  7620. __free_domain_allocs(&d, alloc_state, cpu_map);
  7621. return -ENOMEM;
  7622. }
  7623. static int build_sched_domains(const struct cpumask *cpu_map)
  7624. {
  7625. return __build_sched_domains(cpu_map, NULL);
  7626. }
  7627. static cpumask_var_t *doms_cur; /* current sched domains */
  7628. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7629. static struct sched_domain_attr *dattr_cur;
  7630. /* attribues of custom domains in 'doms_cur' */
  7631. /*
  7632. * Special case: If a kmalloc of a doms_cur partition (array of
  7633. * cpumask) fails, then fallback to a single sched domain,
  7634. * as determined by the single cpumask fallback_doms.
  7635. */
  7636. static cpumask_var_t fallback_doms;
  7637. /*
  7638. * arch_update_cpu_topology lets virtualized architectures update the
  7639. * cpu core maps. It is supposed to return 1 if the topology changed
  7640. * or 0 if it stayed the same.
  7641. */
  7642. int __attribute__((weak)) arch_update_cpu_topology(void)
  7643. {
  7644. return 0;
  7645. }
  7646. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7647. {
  7648. int i;
  7649. cpumask_var_t *doms;
  7650. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7651. if (!doms)
  7652. return NULL;
  7653. for (i = 0; i < ndoms; i++) {
  7654. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7655. free_sched_domains(doms, i);
  7656. return NULL;
  7657. }
  7658. }
  7659. return doms;
  7660. }
  7661. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7662. {
  7663. unsigned int i;
  7664. for (i = 0; i < ndoms; i++)
  7665. free_cpumask_var(doms[i]);
  7666. kfree(doms);
  7667. }
  7668. /*
  7669. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7670. * For now this just excludes isolated cpus, but could be used to
  7671. * exclude other special cases in the future.
  7672. */
  7673. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7674. {
  7675. int err;
  7676. arch_update_cpu_topology();
  7677. ndoms_cur = 1;
  7678. doms_cur = alloc_sched_domains(ndoms_cur);
  7679. if (!doms_cur)
  7680. doms_cur = &fallback_doms;
  7681. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7682. dattr_cur = NULL;
  7683. err = build_sched_domains(doms_cur[0]);
  7684. register_sched_domain_sysctl();
  7685. return err;
  7686. }
  7687. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7688. struct cpumask *tmpmask)
  7689. {
  7690. free_sched_groups(cpu_map, tmpmask);
  7691. }
  7692. /*
  7693. * Detach sched domains from a group of cpus specified in cpu_map
  7694. * These cpus will now be attached to the NULL domain
  7695. */
  7696. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7697. {
  7698. /* Save because hotplug lock held. */
  7699. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7700. int i;
  7701. for_each_cpu(i, cpu_map)
  7702. cpu_attach_domain(NULL, &def_root_domain, i);
  7703. synchronize_sched();
  7704. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7705. }
  7706. /* handle null as "default" */
  7707. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7708. struct sched_domain_attr *new, int idx_new)
  7709. {
  7710. struct sched_domain_attr tmp;
  7711. /* fast path */
  7712. if (!new && !cur)
  7713. return 1;
  7714. tmp = SD_ATTR_INIT;
  7715. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7716. new ? (new + idx_new) : &tmp,
  7717. sizeof(struct sched_domain_attr));
  7718. }
  7719. /*
  7720. * Partition sched domains as specified by the 'ndoms_new'
  7721. * cpumasks in the array doms_new[] of cpumasks. This compares
  7722. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7723. * It destroys each deleted domain and builds each new domain.
  7724. *
  7725. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7726. * The masks don't intersect (don't overlap.) We should setup one
  7727. * sched domain for each mask. CPUs not in any of the cpumasks will
  7728. * not be load balanced. If the same cpumask appears both in the
  7729. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7730. * it as it is.
  7731. *
  7732. * The passed in 'doms_new' should be allocated using
  7733. * alloc_sched_domains. This routine takes ownership of it and will
  7734. * free_sched_domains it when done with it. If the caller failed the
  7735. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7736. * and partition_sched_domains() will fallback to the single partition
  7737. * 'fallback_doms', it also forces the domains to be rebuilt.
  7738. *
  7739. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7740. * ndoms_new == 0 is a special case for destroying existing domains,
  7741. * and it will not create the default domain.
  7742. *
  7743. * Call with hotplug lock held
  7744. */
  7745. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7746. struct sched_domain_attr *dattr_new)
  7747. {
  7748. int i, j, n;
  7749. int new_topology;
  7750. mutex_lock(&sched_domains_mutex);
  7751. /* always unregister in case we don't destroy any domains */
  7752. unregister_sched_domain_sysctl();
  7753. /* Let architecture update cpu core mappings. */
  7754. new_topology = arch_update_cpu_topology();
  7755. n = doms_new ? ndoms_new : 0;
  7756. /* Destroy deleted domains */
  7757. for (i = 0; i < ndoms_cur; i++) {
  7758. for (j = 0; j < n && !new_topology; j++) {
  7759. if (cpumask_equal(doms_cur[i], doms_new[j])
  7760. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7761. goto match1;
  7762. }
  7763. /* no match - a current sched domain not in new doms_new[] */
  7764. detach_destroy_domains(doms_cur[i]);
  7765. match1:
  7766. ;
  7767. }
  7768. if (doms_new == NULL) {
  7769. ndoms_cur = 0;
  7770. doms_new = &fallback_doms;
  7771. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7772. WARN_ON_ONCE(dattr_new);
  7773. }
  7774. /* Build new domains */
  7775. for (i = 0; i < ndoms_new; i++) {
  7776. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7777. if (cpumask_equal(doms_new[i], doms_cur[j])
  7778. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7779. goto match2;
  7780. }
  7781. /* no match - add a new doms_new */
  7782. __build_sched_domains(doms_new[i],
  7783. dattr_new ? dattr_new + i : NULL);
  7784. match2:
  7785. ;
  7786. }
  7787. /* Remember the new sched domains */
  7788. if (doms_cur != &fallback_doms)
  7789. free_sched_domains(doms_cur, ndoms_cur);
  7790. kfree(dattr_cur); /* kfree(NULL) is safe */
  7791. doms_cur = doms_new;
  7792. dattr_cur = dattr_new;
  7793. ndoms_cur = ndoms_new;
  7794. register_sched_domain_sysctl();
  7795. mutex_unlock(&sched_domains_mutex);
  7796. }
  7797. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7798. static void arch_reinit_sched_domains(void)
  7799. {
  7800. get_online_cpus();
  7801. /* Destroy domains first to force the rebuild */
  7802. partition_sched_domains(0, NULL, NULL);
  7803. rebuild_sched_domains();
  7804. put_online_cpus();
  7805. }
  7806. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7807. {
  7808. unsigned int level = 0;
  7809. if (sscanf(buf, "%u", &level) != 1)
  7810. return -EINVAL;
  7811. /*
  7812. * level is always be positive so don't check for
  7813. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7814. * What happens on 0 or 1 byte write,
  7815. * need to check for count as well?
  7816. */
  7817. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7818. return -EINVAL;
  7819. if (smt)
  7820. sched_smt_power_savings = level;
  7821. else
  7822. sched_mc_power_savings = level;
  7823. arch_reinit_sched_domains();
  7824. return count;
  7825. }
  7826. #ifdef CONFIG_SCHED_MC
  7827. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7828. char *page)
  7829. {
  7830. return sprintf(page, "%u\n", sched_mc_power_savings);
  7831. }
  7832. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7833. const char *buf, size_t count)
  7834. {
  7835. return sched_power_savings_store(buf, count, 0);
  7836. }
  7837. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7838. sched_mc_power_savings_show,
  7839. sched_mc_power_savings_store);
  7840. #endif
  7841. #ifdef CONFIG_SCHED_SMT
  7842. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7843. char *page)
  7844. {
  7845. return sprintf(page, "%u\n", sched_smt_power_savings);
  7846. }
  7847. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7848. const char *buf, size_t count)
  7849. {
  7850. return sched_power_savings_store(buf, count, 1);
  7851. }
  7852. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7853. sched_smt_power_savings_show,
  7854. sched_smt_power_savings_store);
  7855. #endif
  7856. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7857. {
  7858. int err = 0;
  7859. #ifdef CONFIG_SCHED_SMT
  7860. if (smt_capable())
  7861. err = sysfs_create_file(&cls->kset.kobj,
  7862. &attr_sched_smt_power_savings.attr);
  7863. #endif
  7864. #ifdef CONFIG_SCHED_MC
  7865. if (!err && mc_capable())
  7866. err = sysfs_create_file(&cls->kset.kobj,
  7867. &attr_sched_mc_power_savings.attr);
  7868. #endif
  7869. return err;
  7870. }
  7871. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7872. #ifndef CONFIG_CPUSETS
  7873. /*
  7874. * Add online and remove offline CPUs from the scheduler domains.
  7875. * When cpusets are enabled they take over this function.
  7876. */
  7877. static int update_sched_domains(struct notifier_block *nfb,
  7878. unsigned long action, void *hcpu)
  7879. {
  7880. switch (action) {
  7881. case CPU_ONLINE:
  7882. case CPU_ONLINE_FROZEN:
  7883. case CPU_DOWN_PREPARE:
  7884. case CPU_DOWN_PREPARE_FROZEN:
  7885. case CPU_DOWN_FAILED:
  7886. case CPU_DOWN_FAILED_FROZEN:
  7887. partition_sched_domains(1, NULL, NULL);
  7888. return NOTIFY_OK;
  7889. default:
  7890. return NOTIFY_DONE;
  7891. }
  7892. }
  7893. #endif
  7894. static int update_runtime(struct notifier_block *nfb,
  7895. unsigned long action, void *hcpu)
  7896. {
  7897. int cpu = (int)(long)hcpu;
  7898. switch (action) {
  7899. case CPU_DOWN_PREPARE:
  7900. case CPU_DOWN_PREPARE_FROZEN:
  7901. disable_runtime(cpu_rq(cpu));
  7902. return NOTIFY_OK;
  7903. case CPU_DOWN_FAILED:
  7904. case CPU_DOWN_FAILED_FROZEN:
  7905. case CPU_ONLINE:
  7906. case CPU_ONLINE_FROZEN:
  7907. enable_runtime(cpu_rq(cpu));
  7908. return NOTIFY_OK;
  7909. default:
  7910. return NOTIFY_DONE;
  7911. }
  7912. }
  7913. void __init sched_init_smp(void)
  7914. {
  7915. cpumask_var_t non_isolated_cpus;
  7916. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7917. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7918. #if defined(CONFIG_NUMA)
  7919. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7920. GFP_KERNEL);
  7921. BUG_ON(sched_group_nodes_bycpu == NULL);
  7922. #endif
  7923. get_online_cpus();
  7924. mutex_lock(&sched_domains_mutex);
  7925. arch_init_sched_domains(cpu_active_mask);
  7926. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7927. if (cpumask_empty(non_isolated_cpus))
  7928. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7929. mutex_unlock(&sched_domains_mutex);
  7930. put_online_cpus();
  7931. #ifndef CONFIG_CPUSETS
  7932. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7933. hotcpu_notifier(update_sched_domains, 0);
  7934. #endif
  7935. /* RT runtime code needs to handle some hotplug events */
  7936. hotcpu_notifier(update_runtime, 0);
  7937. init_hrtick();
  7938. /* Move init over to a non-isolated CPU */
  7939. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7940. BUG();
  7941. sched_init_granularity();
  7942. free_cpumask_var(non_isolated_cpus);
  7943. init_sched_rt_class();
  7944. }
  7945. #else
  7946. void __init sched_init_smp(void)
  7947. {
  7948. sched_init_granularity();
  7949. }
  7950. #endif /* CONFIG_SMP */
  7951. const_debug unsigned int sysctl_timer_migration = 1;
  7952. int in_sched_functions(unsigned long addr)
  7953. {
  7954. return in_lock_functions(addr) ||
  7955. (addr >= (unsigned long)__sched_text_start
  7956. && addr < (unsigned long)__sched_text_end);
  7957. }
  7958. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7959. {
  7960. cfs_rq->tasks_timeline = RB_ROOT;
  7961. INIT_LIST_HEAD(&cfs_rq->tasks);
  7962. #ifdef CONFIG_FAIR_GROUP_SCHED
  7963. cfs_rq->rq = rq;
  7964. #endif
  7965. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7966. }
  7967. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7968. {
  7969. struct rt_prio_array *array;
  7970. int i;
  7971. array = &rt_rq->active;
  7972. for (i = 0; i < MAX_RT_PRIO; i++) {
  7973. INIT_LIST_HEAD(array->queue + i);
  7974. __clear_bit(i, array->bitmap);
  7975. }
  7976. /* delimiter for bitsearch: */
  7977. __set_bit(MAX_RT_PRIO, array->bitmap);
  7978. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7979. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7980. #ifdef CONFIG_SMP
  7981. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7982. #endif
  7983. #endif
  7984. #ifdef CONFIG_SMP
  7985. rt_rq->rt_nr_migratory = 0;
  7986. rt_rq->overloaded = 0;
  7987. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  7988. #endif
  7989. rt_rq->rt_time = 0;
  7990. rt_rq->rt_throttled = 0;
  7991. rt_rq->rt_runtime = 0;
  7992. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  7993. #ifdef CONFIG_RT_GROUP_SCHED
  7994. rt_rq->rt_nr_boosted = 0;
  7995. rt_rq->rq = rq;
  7996. #endif
  7997. }
  7998. #ifdef CONFIG_FAIR_GROUP_SCHED
  7999. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8000. struct sched_entity *se, int cpu, int add,
  8001. struct sched_entity *parent)
  8002. {
  8003. struct rq *rq = cpu_rq(cpu);
  8004. tg->cfs_rq[cpu] = cfs_rq;
  8005. init_cfs_rq(cfs_rq, rq);
  8006. cfs_rq->tg = tg;
  8007. if (add)
  8008. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8009. tg->se[cpu] = se;
  8010. /* se could be NULL for init_task_group */
  8011. if (!se)
  8012. return;
  8013. if (!parent)
  8014. se->cfs_rq = &rq->cfs;
  8015. else
  8016. se->cfs_rq = parent->my_q;
  8017. se->my_q = cfs_rq;
  8018. se->load.weight = tg->shares;
  8019. se->load.inv_weight = 0;
  8020. se->parent = parent;
  8021. }
  8022. #endif
  8023. #ifdef CONFIG_RT_GROUP_SCHED
  8024. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8025. struct sched_rt_entity *rt_se, int cpu, int add,
  8026. struct sched_rt_entity *parent)
  8027. {
  8028. struct rq *rq = cpu_rq(cpu);
  8029. tg->rt_rq[cpu] = rt_rq;
  8030. init_rt_rq(rt_rq, rq);
  8031. rt_rq->tg = tg;
  8032. rt_rq->rt_se = rt_se;
  8033. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8034. if (add)
  8035. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8036. tg->rt_se[cpu] = rt_se;
  8037. if (!rt_se)
  8038. return;
  8039. if (!parent)
  8040. rt_se->rt_rq = &rq->rt;
  8041. else
  8042. rt_se->rt_rq = parent->my_q;
  8043. rt_se->my_q = rt_rq;
  8044. rt_se->parent = parent;
  8045. INIT_LIST_HEAD(&rt_se->run_list);
  8046. }
  8047. #endif
  8048. void __init sched_init(void)
  8049. {
  8050. int i, j;
  8051. unsigned long alloc_size = 0, ptr;
  8052. #ifdef CONFIG_FAIR_GROUP_SCHED
  8053. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8054. #endif
  8055. #ifdef CONFIG_RT_GROUP_SCHED
  8056. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8057. #endif
  8058. #ifdef CONFIG_USER_SCHED
  8059. alloc_size *= 2;
  8060. #endif
  8061. #ifdef CONFIG_CPUMASK_OFFSTACK
  8062. alloc_size += num_possible_cpus() * cpumask_size();
  8063. #endif
  8064. if (alloc_size) {
  8065. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8066. #ifdef CONFIG_FAIR_GROUP_SCHED
  8067. init_task_group.se = (struct sched_entity **)ptr;
  8068. ptr += nr_cpu_ids * sizeof(void **);
  8069. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8070. ptr += nr_cpu_ids * sizeof(void **);
  8071. #ifdef CONFIG_USER_SCHED
  8072. root_task_group.se = (struct sched_entity **)ptr;
  8073. ptr += nr_cpu_ids * sizeof(void **);
  8074. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8075. ptr += nr_cpu_ids * sizeof(void **);
  8076. #endif /* CONFIG_USER_SCHED */
  8077. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8078. #ifdef CONFIG_RT_GROUP_SCHED
  8079. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8080. ptr += nr_cpu_ids * sizeof(void **);
  8081. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8082. ptr += nr_cpu_ids * sizeof(void **);
  8083. #ifdef CONFIG_USER_SCHED
  8084. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8085. ptr += nr_cpu_ids * sizeof(void **);
  8086. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8087. ptr += nr_cpu_ids * sizeof(void **);
  8088. #endif /* CONFIG_USER_SCHED */
  8089. #endif /* CONFIG_RT_GROUP_SCHED */
  8090. #ifdef CONFIG_CPUMASK_OFFSTACK
  8091. for_each_possible_cpu(i) {
  8092. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8093. ptr += cpumask_size();
  8094. }
  8095. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8096. }
  8097. #ifdef CONFIG_SMP
  8098. init_defrootdomain();
  8099. #endif
  8100. init_rt_bandwidth(&def_rt_bandwidth,
  8101. global_rt_period(), global_rt_runtime());
  8102. #ifdef CONFIG_RT_GROUP_SCHED
  8103. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8104. global_rt_period(), global_rt_runtime());
  8105. #ifdef CONFIG_USER_SCHED
  8106. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8107. global_rt_period(), RUNTIME_INF);
  8108. #endif /* CONFIG_USER_SCHED */
  8109. #endif /* CONFIG_RT_GROUP_SCHED */
  8110. #ifdef CONFIG_GROUP_SCHED
  8111. list_add(&init_task_group.list, &task_groups);
  8112. INIT_LIST_HEAD(&init_task_group.children);
  8113. #ifdef CONFIG_USER_SCHED
  8114. INIT_LIST_HEAD(&root_task_group.children);
  8115. init_task_group.parent = &root_task_group;
  8116. list_add(&init_task_group.siblings, &root_task_group.children);
  8117. #endif /* CONFIG_USER_SCHED */
  8118. #endif /* CONFIG_GROUP_SCHED */
  8119. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8120. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8121. __alignof__(unsigned long));
  8122. #endif
  8123. for_each_possible_cpu(i) {
  8124. struct rq *rq;
  8125. rq = cpu_rq(i);
  8126. raw_spin_lock_init(&rq->lock);
  8127. rq->nr_running = 0;
  8128. rq->calc_load_active = 0;
  8129. rq->calc_load_update = jiffies + LOAD_FREQ;
  8130. init_cfs_rq(&rq->cfs, rq);
  8131. init_rt_rq(&rq->rt, rq);
  8132. #ifdef CONFIG_FAIR_GROUP_SCHED
  8133. init_task_group.shares = init_task_group_load;
  8134. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8135. #ifdef CONFIG_CGROUP_SCHED
  8136. /*
  8137. * How much cpu bandwidth does init_task_group get?
  8138. *
  8139. * In case of task-groups formed thr' the cgroup filesystem, it
  8140. * gets 100% of the cpu resources in the system. This overall
  8141. * system cpu resource is divided among the tasks of
  8142. * init_task_group and its child task-groups in a fair manner,
  8143. * based on each entity's (task or task-group's) weight
  8144. * (se->load.weight).
  8145. *
  8146. * In other words, if init_task_group has 10 tasks of weight
  8147. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8148. * then A0's share of the cpu resource is:
  8149. *
  8150. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8151. *
  8152. * We achieve this by letting init_task_group's tasks sit
  8153. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8154. */
  8155. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8156. #elif defined CONFIG_USER_SCHED
  8157. root_task_group.shares = NICE_0_LOAD;
  8158. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8159. /*
  8160. * In case of task-groups formed thr' the user id of tasks,
  8161. * init_task_group represents tasks belonging to root user.
  8162. * Hence it forms a sibling of all subsequent groups formed.
  8163. * In this case, init_task_group gets only a fraction of overall
  8164. * system cpu resource, based on the weight assigned to root
  8165. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8166. * by letting tasks of init_task_group sit in a separate cfs_rq
  8167. * (init_tg_cfs_rq) and having one entity represent this group of
  8168. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8169. */
  8170. init_tg_cfs_entry(&init_task_group,
  8171. &per_cpu(init_tg_cfs_rq, i),
  8172. &per_cpu(init_sched_entity, i), i, 1,
  8173. root_task_group.se[i]);
  8174. #endif
  8175. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8176. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8177. #ifdef CONFIG_RT_GROUP_SCHED
  8178. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8179. #ifdef CONFIG_CGROUP_SCHED
  8180. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8181. #elif defined CONFIG_USER_SCHED
  8182. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8183. init_tg_rt_entry(&init_task_group,
  8184. &per_cpu(init_rt_rq_var, i),
  8185. &per_cpu(init_sched_rt_entity, i), i, 1,
  8186. root_task_group.rt_se[i]);
  8187. #endif
  8188. #endif
  8189. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8190. rq->cpu_load[j] = 0;
  8191. #ifdef CONFIG_SMP
  8192. rq->sd = NULL;
  8193. rq->rd = NULL;
  8194. rq->post_schedule = 0;
  8195. rq->active_balance = 0;
  8196. rq->next_balance = jiffies;
  8197. rq->push_cpu = 0;
  8198. rq->cpu = i;
  8199. rq->online = 0;
  8200. rq->migration_thread = NULL;
  8201. rq->idle_stamp = 0;
  8202. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8203. INIT_LIST_HEAD(&rq->migration_queue);
  8204. rq_attach_root(rq, &def_root_domain);
  8205. #endif
  8206. init_rq_hrtick(rq);
  8207. atomic_set(&rq->nr_iowait, 0);
  8208. }
  8209. set_load_weight(&init_task);
  8210. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8211. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8212. #endif
  8213. #ifdef CONFIG_SMP
  8214. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8215. #endif
  8216. #ifdef CONFIG_RT_MUTEXES
  8217. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  8218. #endif
  8219. /*
  8220. * The boot idle thread does lazy MMU switching as well:
  8221. */
  8222. atomic_inc(&init_mm.mm_count);
  8223. enter_lazy_tlb(&init_mm, current);
  8224. /*
  8225. * Make us the idle thread. Technically, schedule() should not be
  8226. * called from this thread, however somewhere below it might be,
  8227. * but because we are the idle thread, we just pick up running again
  8228. * when this runqueue becomes "idle".
  8229. */
  8230. init_idle(current, smp_processor_id());
  8231. calc_load_update = jiffies + LOAD_FREQ;
  8232. /*
  8233. * During early bootup we pretend to be a normal task:
  8234. */
  8235. current->sched_class = &fair_sched_class;
  8236. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8237. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8238. #ifdef CONFIG_SMP
  8239. #ifdef CONFIG_NO_HZ
  8240. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8241. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8242. #endif
  8243. /* May be allocated at isolcpus cmdline parse time */
  8244. if (cpu_isolated_map == NULL)
  8245. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8246. #endif /* SMP */
  8247. perf_event_init();
  8248. scheduler_running = 1;
  8249. }
  8250. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8251. static inline int preempt_count_equals(int preempt_offset)
  8252. {
  8253. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  8254. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8255. }
  8256. void __might_sleep(char *file, int line, int preempt_offset)
  8257. {
  8258. #ifdef in_atomic
  8259. static unsigned long prev_jiffy; /* ratelimiting */
  8260. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8261. system_state != SYSTEM_RUNNING || oops_in_progress)
  8262. return;
  8263. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8264. return;
  8265. prev_jiffy = jiffies;
  8266. pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
  8267. file, line);
  8268. pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8269. in_atomic(), irqs_disabled(),
  8270. current->pid, current->comm);
  8271. debug_show_held_locks(current);
  8272. if (irqs_disabled())
  8273. print_irqtrace_events(current);
  8274. dump_stack();
  8275. #endif
  8276. }
  8277. EXPORT_SYMBOL(__might_sleep);
  8278. #endif
  8279. #ifdef CONFIG_MAGIC_SYSRQ
  8280. static void normalize_task(struct rq *rq, struct task_struct *p)
  8281. {
  8282. int on_rq;
  8283. update_rq_clock(rq);
  8284. on_rq = p->se.on_rq;
  8285. if (on_rq)
  8286. deactivate_task(rq, p, 0);
  8287. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8288. if (on_rq) {
  8289. activate_task(rq, p, 0);
  8290. resched_task(rq->curr);
  8291. }
  8292. }
  8293. void normalize_rt_tasks(void)
  8294. {
  8295. struct task_struct *g, *p;
  8296. unsigned long flags;
  8297. struct rq *rq;
  8298. read_lock_irqsave(&tasklist_lock, flags);
  8299. do_each_thread(g, p) {
  8300. /*
  8301. * Only normalize user tasks:
  8302. */
  8303. if (!p->mm)
  8304. continue;
  8305. p->se.exec_start = 0;
  8306. #ifdef CONFIG_SCHEDSTATS
  8307. p->se.wait_start = 0;
  8308. p->se.sleep_start = 0;
  8309. p->se.block_start = 0;
  8310. #endif
  8311. if (!rt_task(p)) {
  8312. /*
  8313. * Renice negative nice level userspace
  8314. * tasks back to 0:
  8315. */
  8316. if (TASK_NICE(p) < 0 && p->mm)
  8317. set_user_nice(p, 0);
  8318. continue;
  8319. }
  8320. raw_spin_lock(&p->pi_lock);
  8321. rq = __task_rq_lock(p);
  8322. normalize_task(rq, p);
  8323. __task_rq_unlock(rq);
  8324. raw_spin_unlock(&p->pi_lock);
  8325. } while_each_thread(g, p);
  8326. read_unlock_irqrestore(&tasklist_lock, flags);
  8327. }
  8328. #endif /* CONFIG_MAGIC_SYSRQ */
  8329. #ifdef CONFIG_IA64
  8330. /*
  8331. * These functions are only useful for the IA64 MCA handling.
  8332. *
  8333. * They can only be called when the whole system has been
  8334. * stopped - every CPU needs to be quiescent, and no scheduling
  8335. * activity can take place. Using them for anything else would
  8336. * be a serious bug, and as a result, they aren't even visible
  8337. * under any other configuration.
  8338. */
  8339. /**
  8340. * curr_task - return the current task for a given cpu.
  8341. * @cpu: the processor in question.
  8342. *
  8343. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8344. */
  8345. struct task_struct *curr_task(int cpu)
  8346. {
  8347. return cpu_curr(cpu);
  8348. }
  8349. /**
  8350. * set_curr_task - set the current task for a given cpu.
  8351. * @cpu: the processor in question.
  8352. * @p: the task pointer to set.
  8353. *
  8354. * Description: This function must only be used when non-maskable interrupts
  8355. * are serviced on a separate stack. It allows the architecture to switch the
  8356. * notion of the current task on a cpu in a non-blocking manner. This function
  8357. * must be called with all CPU's synchronized, and interrupts disabled, the
  8358. * and caller must save the original value of the current task (see
  8359. * curr_task() above) and restore that value before reenabling interrupts and
  8360. * re-starting the system.
  8361. *
  8362. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8363. */
  8364. void set_curr_task(int cpu, struct task_struct *p)
  8365. {
  8366. cpu_curr(cpu) = p;
  8367. }
  8368. #endif
  8369. #ifdef CONFIG_FAIR_GROUP_SCHED
  8370. static void free_fair_sched_group(struct task_group *tg)
  8371. {
  8372. int i;
  8373. for_each_possible_cpu(i) {
  8374. if (tg->cfs_rq)
  8375. kfree(tg->cfs_rq[i]);
  8376. if (tg->se)
  8377. kfree(tg->se[i]);
  8378. }
  8379. kfree(tg->cfs_rq);
  8380. kfree(tg->se);
  8381. }
  8382. static
  8383. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8384. {
  8385. struct cfs_rq *cfs_rq;
  8386. struct sched_entity *se;
  8387. struct rq *rq;
  8388. int i;
  8389. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8390. if (!tg->cfs_rq)
  8391. goto err;
  8392. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8393. if (!tg->se)
  8394. goto err;
  8395. tg->shares = NICE_0_LOAD;
  8396. for_each_possible_cpu(i) {
  8397. rq = cpu_rq(i);
  8398. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8399. GFP_KERNEL, cpu_to_node(i));
  8400. if (!cfs_rq)
  8401. goto err;
  8402. se = kzalloc_node(sizeof(struct sched_entity),
  8403. GFP_KERNEL, cpu_to_node(i));
  8404. if (!se)
  8405. goto err_free_rq;
  8406. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8407. }
  8408. return 1;
  8409. err_free_rq:
  8410. kfree(cfs_rq);
  8411. err:
  8412. return 0;
  8413. }
  8414. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8415. {
  8416. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8417. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8418. }
  8419. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8420. {
  8421. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8422. }
  8423. #else /* !CONFG_FAIR_GROUP_SCHED */
  8424. static inline void free_fair_sched_group(struct task_group *tg)
  8425. {
  8426. }
  8427. static inline
  8428. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8429. {
  8430. return 1;
  8431. }
  8432. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8433. {
  8434. }
  8435. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8436. {
  8437. }
  8438. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8439. #ifdef CONFIG_RT_GROUP_SCHED
  8440. static void free_rt_sched_group(struct task_group *tg)
  8441. {
  8442. int i;
  8443. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8444. for_each_possible_cpu(i) {
  8445. if (tg->rt_rq)
  8446. kfree(tg->rt_rq[i]);
  8447. if (tg->rt_se)
  8448. kfree(tg->rt_se[i]);
  8449. }
  8450. kfree(tg->rt_rq);
  8451. kfree(tg->rt_se);
  8452. }
  8453. static
  8454. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8455. {
  8456. struct rt_rq *rt_rq;
  8457. struct sched_rt_entity *rt_se;
  8458. struct rq *rq;
  8459. int i;
  8460. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8461. if (!tg->rt_rq)
  8462. goto err;
  8463. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8464. if (!tg->rt_se)
  8465. goto err;
  8466. init_rt_bandwidth(&tg->rt_bandwidth,
  8467. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8468. for_each_possible_cpu(i) {
  8469. rq = cpu_rq(i);
  8470. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8471. GFP_KERNEL, cpu_to_node(i));
  8472. if (!rt_rq)
  8473. goto err;
  8474. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8475. GFP_KERNEL, cpu_to_node(i));
  8476. if (!rt_se)
  8477. goto err_free_rq;
  8478. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8479. }
  8480. return 1;
  8481. err_free_rq:
  8482. kfree(rt_rq);
  8483. err:
  8484. return 0;
  8485. }
  8486. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8487. {
  8488. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8489. &cpu_rq(cpu)->leaf_rt_rq_list);
  8490. }
  8491. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8492. {
  8493. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8494. }
  8495. #else /* !CONFIG_RT_GROUP_SCHED */
  8496. static inline void free_rt_sched_group(struct task_group *tg)
  8497. {
  8498. }
  8499. static inline
  8500. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8501. {
  8502. return 1;
  8503. }
  8504. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8505. {
  8506. }
  8507. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8508. {
  8509. }
  8510. #endif /* CONFIG_RT_GROUP_SCHED */
  8511. #ifdef CONFIG_GROUP_SCHED
  8512. static void free_sched_group(struct task_group *tg)
  8513. {
  8514. free_fair_sched_group(tg);
  8515. free_rt_sched_group(tg);
  8516. kfree(tg);
  8517. }
  8518. /* allocate runqueue etc for a new task group */
  8519. struct task_group *sched_create_group(struct task_group *parent)
  8520. {
  8521. struct task_group *tg;
  8522. unsigned long flags;
  8523. int i;
  8524. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8525. if (!tg)
  8526. return ERR_PTR(-ENOMEM);
  8527. if (!alloc_fair_sched_group(tg, parent))
  8528. goto err;
  8529. if (!alloc_rt_sched_group(tg, parent))
  8530. goto err;
  8531. spin_lock_irqsave(&task_group_lock, flags);
  8532. for_each_possible_cpu(i) {
  8533. register_fair_sched_group(tg, i);
  8534. register_rt_sched_group(tg, i);
  8535. }
  8536. list_add_rcu(&tg->list, &task_groups);
  8537. WARN_ON(!parent); /* root should already exist */
  8538. tg->parent = parent;
  8539. INIT_LIST_HEAD(&tg->children);
  8540. list_add_rcu(&tg->siblings, &parent->children);
  8541. spin_unlock_irqrestore(&task_group_lock, flags);
  8542. return tg;
  8543. err:
  8544. free_sched_group(tg);
  8545. return ERR_PTR(-ENOMEM);
  8546. }
  8547. /* rcu callback to free various structures associated with a task group */
  8548. static void free_sched_group_rcu(struct rcu_head *rhp)
  8549. {
  8550. /* now it should be safe to free those cfs_rqs */
  8551. free_sched_group(container_of(rhp, struct task_group, rcu));
  8552. }
  8553. /* Destroy runqueue etc associated with a task group */
  8554. void sched_destroy_group(struct task_group *tg)
  8555. {
  8556. unsigned long flags;
  8557. int i;
  8558. spin_lock_irqsave(&task_group_lock, flags);
  8559. for_each_possible_cpu(i) {
  8560. unregister_fair_sched_group(tg, i);
  8561. unregister_rt_sched_group(tg, i);
  8562. }
  8563. list_del_rcu(&tg->list);
  8564. list_del_rcu(&tg->siblings);
  8565. spin_unlock_irqrestore(&task_group_lock, flags);
  8566. /* wait for possible concurrent references to cfs_rqs complete */
  8567. call_rcu(&tg->rcu, free_sched_group_rcu);
  8568. }
  8569. /* change task's runqueue when it moves between groups.
  8570. * The caller of this function should have put the task in its new group
  8571. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8572. * reflect its new group.
  8573. */
  8574. void sched_move_task(struct task_struct *tsk)
  8575. {
  8576. int on_rq, running;
  8577. unsigned long flags;
  8578. struct rq *rq;
  8579. rq = task_rq_lock(tsk, &flags);
  8580. update_rq_clock(rq);
  8581. running = task_current(rq, tsk);
  8582. on_rq = tsk->se.on_rq;
  8583. if (on_rq)
  8584. dequeue_task(rq, tsk, 0);
  8585. if (unlikely(running))
  8586. tsk->sched_class->put_prev_task(rq, tsk);
  8587. set_task_rq(tsk, task_cpu(tsk));
  8588. #ifdef CONFIG_FAIR_GROUP_SCHED
  8589. if (tsk->sched_class->moved_group)
  8590. tsk->sched_class->moved_group(tsk, on_rq);
  8591. #endif
  8592. if (unlikely(running))
  8593. tsk->sched_class->set_curr_task(rq);
  8594. if (on_rq)
  8595. enqueue_task(rq, tsk, 0);
  8596. task_rq_unlock(rq, &flags);
  8597. }
  8598. #endif /* CONFIG_GROUP_SCHED */
  8599. #ifdef CONFIG_FAIR_GROUP_SCHED
  8600. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8601. {
  8602. struct cfs_rq *cfs_rq = se->cfs_rq;
  8603. int on_rq;
  8604. on_rq = se->on_rq;
  8605. if (on_rq)
  8606. dequeue_entity(cfs_rq, se, 0);
  8607. se->load.weight = shares;
  8608. se->load.inv_weight = 0;
  8609. if (on_rq)
  8610. enqueue_entity(cfs_rq, se, 0);
  8611. }
  8612. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8613. {
  8614. struct cfs_rq *cfs_rq = se->cfs_rq;
  8615. struct rq *rq = cfs_rq->rq;
  8616. unsigned long flags;
  8617. raw_spin_lock_irqsave(&rq->lock, flags);
  8618. __set_se_shares(se, shares);
  8619. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8620. }
  8621. static DEFINE_MUTEX(shares_mutex);
  8622. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8623. {
  8624. int i;
  8625. unsigned long flags;
  8626. /*
  8627. * We can't change the weight of the root cgroup.
  8628. */
  8629. if (!tg->se[0])
  8630. return -EINVAL;
  8631. if (shares < MIN_SHARES)
  8632. shares = MIN_SHARES;
  8633. else if (shares > MAX_SHARES)
  8634. shares = MAX_SHARES;
  8635. mutex_lock(&shares_mutex);
  8636. if (tg->shares == shares)
  8637. goto done;
  8638. spin_lock_irqsave(&task_group_lock, flags);
  8639. for_each_possible_cpu(i)
  8640. unregister_fair_sched_group(tg, i);
  8641. list_del_rcu(&tg->siblings);
  8642. spin_unlock_irqrestore(&task_group_lock, flags);
  8643. /* wait for any ongoing reference to this group to finish */
  8644. synchronize_sched();
  8645. /*
  8646. * Now we are free to modify the group's share on each cpu
  8647. * w/o tripping rebalance_share or load_balance_fair.
  8648. */
  8649. tg->shares = shares;
  8650. for_each_possible_cpu(i) {
  8651. /*
  8652. * force a rebalance
  8653. */
  8654. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8655. set_se_shares(tg->se[i], shares);
  8656. }
  8657. /*
  8658. * Enable load balance activity on this group, by inserting it back on
  8659. * each cpu's rq->leaf_cfs_rq_list.
  8660. */
  8661. spin_lock_irqsave(&task_group_lock, flags);
  8662. for_each_possible_cpu(i)
  8663. register_fair_sched_group(tg, i);
  8664. list_add_rcu(&tg->siblings, &tg->parent->children);
  8665. spin_unlock_irqrestore(&task_group_lock, flags);
  8666. done:
  8667. mutex_unlock(&shares_mutex);
  8668. return 0;
  8669. }
  8670. unsigned long sched_group_shares(struct task_group *tg)
  8671. {
  8672. return tg->shares;
  8673. }
  8674. #endif
  8675. #ifdef CONFIG_RT_GROUP_SCHED
  8676. /*
  8677. * Ensure that the real time constraints are schedulable.
  8678. */
  8679. static DEFINE_MUTEX(rt_constraints_mutex);
  8680. static unsigned long to_ratio(u64 period, u64 runtime)
  8681. {
  8682. if (runtime == RUNTIME_INF)
  8683. return 1ULL << 20;
  8684. return div64_u64(runtime << 20, period);
  8685. }
  8686. /* Must be called with tasklist_lock held */
  8687. static inline int tg_has_rt_tasks(struct task_group *tg)
  8688. {
  8689. struct task_struct *g, *p;
  8690. do_each_thread(g, p) {
  8691. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8692. return 1;
  8693. } while_each_thread(g, p);
  8694. return 0;
  8695. }
  8696. struct rt_schedulable_data {
  8697. struct task_group *tg;
  8698. u64 rt_period;
  8699. u64 rt_runtime;
  8700. };
  8701. static int tg_schedulable(struct task_group *tg, void *data)
  8702. {
  8703. struct rt_schedulable_data *d = data;
  8704. struct task_group *child;
  8705. unsigned long total, sum = 0;
  8706. u64 period, runtime;
  8707. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8708. runtime = tg->rt_bandwidth.rt_runtime;
  8709. if (tg == d->tg) {
  8710. period = d->rt_period;
  8711. runtime = d->rt_runtime;
  8712. }
  8713. #ifdef CONFIG_USER_SCHED
  8714. if (tg == &root_task_group) {
  8715. period = global_rt_period();
  8716. runtime = global_rt_runtime();
  8717. }
  8718. #endif
  8719. /*
  8720. * Cannot have more runtime than the period.
  8721. */
  8722. if (runtime > period && runtime != RUNTIME_INF)
  8723. return -EINVAL;
  8724. /*
  8725. * Ensure we don't starve existing RT tasks.
  8726. */
  8727. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8728. return -EBUSY;
  8729. total = to_ratio(period, runtime);
  8730. /*
  8731. * Nobody can have more than the global setting allows.
  8732. */
  8733. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8734. return -EINVAL;
  8735. /*
  8736. * The sum of our children's runtime should not exceed our own.
  8737. */
  8738. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8739. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8740. runtime = child->rt_bandwidth.rt_runtime;
  8741. if (child == d->tg) {
  8742. period = d->rt_period;
  8743. runtime = d->rt_runtime;
  8744. }
  8745. sum += to_ratio(period, runtime);
  8746. }
  8747. if (sum > total)
  8748. return -EINVAL;
  8749. return 0;
  8750. }
  8751. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8752. {
  8753. struct rt_schedulable_data data = {
  8754. .tg = tg,
  8755. .rt_period = period,
  8756. .rt_runtime = runtime,
  8757. };
  8758. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8759. }
  8760. static int tg_set_bandwidth(struct task_group *tg,
  8761. u64 rt_period, u64 rt_runtime)
  8762. {
  8763. int i, err = 0;
  8764. mutex_lock(&rt_constraints_mutex);
  8765. read_lock(&tasklist_lock);
  8766. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8767. if (err)
  8768. goto unlock;
  8769. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8770. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8771. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8772. for_each_possible_cpu(i) {
  8773. struct rt_rq *rt_rq = tg->rt_rq[i];
  8774. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8775. rt_rq->rt_runtime = rt_runtime;
  8776. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8777. }
  8778. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8779. unlock:
  8780. read_unlock(&tasklist_lock);
  8781. mutex_unlock(&rt_constraints_mutex);
  8782. return err;
  8783. }
  8784. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8785. {
  8786. u64 rt_runtime, rt_period;
  8787. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8788. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8789. if (rt_runtime_us < 0)
  8790. rt_runtime = RUNTIME_INF;
  8791. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8792. }
  8793. long sched_group_rt_runtime(struct task_group *tg)
  8794. {
  8795. u64 rt_runtime_us;
  8796. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8797. return -1;
  8798. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8799. do_div(rt_runtime_us, NSEC_PER_USEC);
  8800. return rt_runtime_us;
  8801. }
  8802. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8803. {
  8804. u64 rt_runtime, rt_period;
  8805. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8806. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8807. if (rt_period == 0)
  8808. return -EINVAL;
  8809. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8810. }
  8811. long sched_group_rt_period(struct task_group *tg)
  8812. {
  8813. u64 rt_period_us;
  8814. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8815. do_div(rt_period_us, NSEC_PER_USEC);
  8816. return rt_period_us;
  8817. }
  8818. static int sched_rt_global_constraints(void)
  8819. {
  8820. u64 runtime, period;
  8821. int ret = 0;
  8822. if (sysctl_sched_rt_period <= 0)
  8823. return -EINVAL;
  8824. runtime = global_rt_runtime();
  8825. period = global_rt_period();
  8826. /*
  8827. * Sanity check on the sysctl variables.
  8828. */
  8829. if (runtime > period && runtime != RUNTIME_INF)
  8830. return -EINVAL;
  8831. mutex_lock(&rt_constraints_mutex);
  8832. read_lock(&tasklist_lock);
  8833. ret = __rt_schedulable(NULL, 0, 0);
  8834. read_unlock(&tasklist_lock);
  8835. mutex_unlock(&rt_constraints_mutex);
  8836. return ret;
  8837. }
  8838. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8839. {
  8840. /* Don't accept realtime tasks when there is no way for them to run */
  8841. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8842. return 0;
  8843. return 1;
  8844. }
  8845. #else /* !CONFIG_RT_GROUP_SCHED */
  8846. static int sched_rt_global_constraints(void)
  8847. {
  8848. unsigned long flags;
  8849. int i;
  8850. if (sysctl_sched_rt_period <= 0)
  8851. return -EINVAL;
  8852. /*
  8853. * There's always some RT tasks in the root group
  8854. * -- migration, kstopmachine etc..
  8855. */
  8856. if (sysctl_sched_rt_runtime == 0)
  8857. return -EBUSY;
  8858. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8859. for_each_possible_cpu(i) {
  8860. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8861. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8862. rt_rq->rt_runtime = global_rt_runtime();
  8863. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8864. }
  8865. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8866. return 0;
  8867. }
  8868. #endif /* CONFIG_RT_GROUP_SCHED */
  8869. int sched_rt_handler(struct ctl_table *table, int write,
  8870. void __user *buffer, size_t *lenp,
  8871. loff_t *ppos)
  8872. {
  8873. int ret;
  8874. int old_period, old_runtime;
  8875. static DEFINE_MUTEX(mutex);
  8876. mutex_lock(&mutex);
  8877. old_period = sysctl_sched_rt_period;
  8878. old_runtime = sysctl_sched_rt_runtime;
  8879. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8880. if (!ret && write) {
  8881. ret = sched_rt_global_constraints();
  8882. if (ret) {
  8883. sysctl_sched_rt_period = old_period;
  8884. sysctl_sched_rt_runtime = old_runtime;
  8885. } else {
  8886. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8887. def_rt_bandwidth.rt_period =
  8888. ns_to_ktime(global_rt_period());
  8889. }
  8890. }
  8891. mutex_unlock(&mutex);
  8892. return ret;
  8893. }
  8894. #ifdef CONFIG_CGROUP_SCHED
  8895. /* return corresponding task_group object of a cgroup */
  8896. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8897. {
  8898. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8899. struct task_group, css);
  8900. }
  8901. static struct cgroup_subsys_state *
  8902. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8903. {
  8904. struct task_group *tg, *parent;
  8905. if (!cgrp->parent) {
  8906. /* This is early initialization for the top cgroup */
  8907. return &init_task_group.css;
  8908. }
  8909. parent = cgroup_tg(cgrp->parent);
  8910. tg = sched_create_group(parent);
  8911. if (IS_ERR(tg))
  8912. return ERR_PTR(-ENOMEM);
  8913. return &tg->css;
  8914. }
  8915. static void
  8916. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8917. {
  8918. struct task_group *tg = cgroup_tg(cgrp);
  8919. sched_destroy_group(tg);
  8920. }
  8921. static int
  8922. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8923. {
  8924. #ifdef CONFIG_RT_GROUP_SCHED
  8925. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8926. return -EINVAL;
  8927. #else
  8928. /* We don't support RT-tasks being in separate groups */
  8929. if (tsk->sched_class != &fair_sched_class)
  8930. return -EINVAL;
  8931. #endif
  8932. return 0;
  8933. }
  8934. static int
  8935. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8936. struct task_struct *tsk, bool threadgroup)
  8937. {
  8938. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8939. if (retval)
  8940. return retval;
  8941. if (threadgroup) {
  8942. struct task_struct *c;
  8943. rcu_read_lock();
  8944. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8945. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8946. if (retval) {
  8947. rcu_read_unlock();
  8948. return retval;
  8949. }
  8950. }
  8951. rcu_read_unlock();
  8952. }
  8953. return 0;
  8954. }
  8955. static void
  8956. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8957. struct cgroup *old_cont, struct task_struct *tsk,
  8958. bool threadgroup)
  8959. {
  8960. sched_move_task(tsk);
  8961. if (threadgroup) {
  8962. struct task_struct *c;
  8963. rcu_read_lock();
  8964. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8965. sched_move_task(c);
  8966. }
  8967. rcu_read_unlock();
  8968. }
  8969. }
  8970. #ifdef CONFIG_FAIR_GROUP_SCHED
  8971. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8972. u64 shareval)
  8973. {
  8974. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8975. }
  8976. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8977. {
  8978. struct task_group *tg = cgroup_tg(cgrp);
  8979. return (u64) tg->shares;
  8980. }
  8981. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8982. #ifdef CONFIG_RT_GROUP_SCHED
  8983. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8984. s64 val)
  8985. {
  8986. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8987. }
  8988. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8989. {
  8990. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8991. }
  8992. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8993. u64 rt_period_us)
  8994. {
  8995. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8996. }
  8997. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8998. {
  8999. return sched_group_rt_period(cgroup_tg(cgrp));
  9000. }
  9001. #endif /* CONFIG_RT_GROUP_SCHED */
  9002. static struct cftype cpu_files[] = {
  9003. #ifdef CONFIG_FAIR_GROUP_SCHED
  9004. {
  9005. .name = "shares",
  9006. .read_u64 = cpu_shares_read_u64,
  9007. .write_u64 = cpu_shares_write_u64,
  9008. },
  9009. #endif
  9010. #ifdef CONFIG_RT_GROUP_SCHED
  9011. {
  9012. .name = "rt_runtime_us",
  9013. .read_s64 = cpu_rt_runtime_read,
  9014. .write_s64 = cpu_rt_runtime_write,
  9015. },
  9016. {
  9017. .name = "rt_period_us",
  9018. .read_u64 = cpu_rt_period_read_uint,
  9019. .write_u64 = cpu_rt_period_write_uint,
  9020. },
  9021. #endif
  9022. };
  9023. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9024. {
  9025. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9026. }
  9027. struct cgroup_subsys cpu_cgroup_subsys = {
  9028. .name = "cpu",
  9029. .create = cpu_cgroup_create,
  9030. .destroy = cpu_cgroup_destroy,
  9031. .can_attach = cpu_cgroup_can_attach,
  9032. .attach = cpu_cgroup_attach,
  9033. .populate = cpu_cgroup_populate,
  9034. .subsys_id = cpu_cgroup_subsys_id,
  9035. .early_init = 1,
  9036. };
  9037. #endif /* CONFIG_CGROUP_SCHED */
  9038. #ifdef CONFIG_CGROUP_CPUACCT
  9039. /*
  9040. * CPU accounting code for task groups.
  9041. *
  9042. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9043. * (balbir@in.ibm.com).
  9044. */
  9045. /* track cpu usage of a group of tasks and its child groups */
  9046. struct cpuacct {
  9047. struct cgroup_subsys_state css;
  9048. /* cpuusage holds pointer to a u64-type object on every cpu */
  9049. u64 *cpuusage;
  9050. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9051. struct cpuacct *parent;
  9052. };
  9053. struct cgroup_subsys cpuacct_subsys;
  9054. /* return cpu accounting group corresponding to this container */
  9055. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9056. {
  9057. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9058. struct cpuacct, css);
  9059. }
  9060. /* return cpu accounting group to which this task belongs */
  9061. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9062. {
  9063. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9064. struct cpuacct, css);
  9065. }
  9066. /* create a new cpu accounting group */
  9067. static struct cgroup_subsys_state *cpuacct_create(
  9068. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9069. {
  9070. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9071. int i;
  9072. if (!ca)
  9073. goto out;
  9074. ca->cpuusage = alloc_percpu(u64);
  9075. if (!ca->cpuusage)
  9076. goto out_free_ca;
  9077. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9078. if (percpu_counter_init(&ca->cpustat[i], 0))
  9079. goto out_free_counters;
  9080. if (cgrp->parent)
  9081. ca->parent = cgroup_ca(cgrp->parent);
  9082. return &ca->css;
  9083. out_free_counters:
  9084. while (--i >= 0)
  9085. percpu_counter_destroy(&ca->cpustat[i]);
  9086. free_percpu(ca->cpuusage);
  9087. out_free_ca:
  9088. kfree(ca);
  9089. out:
  9090. return ERR_PTR(-ENOMEM);
  9091. }
  9092. /* destroy an existing cpu accounting group */
  9093. static void
  9094. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9095. {
  9096. struct cpuacct *ca = cgroup_ca(cgrp);
  9097. int i;
  9098. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9099. percpu_counter_destroy(&ca->cpustat[i]);
  9100. free_percpu(ca->cpuusage);
  9101. kfree(ca);
  9102. }
  9103. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9104. {
  9105. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9106. u64 data;
  9107. #ifndef CONFIG_64BIT
  9108. /*
  9109. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9110. */
  9111. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9112. data = *cpuusage;
  9113. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9114. #else
  9115. data = *cpuusage;
  9116. #endif
  9117. return data;
  9118. }
  9119. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9120. {
  9121. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9122. #ifndef CONFIG_64BIT
  9123. /*
  9124. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9125. */
  9126. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9127. *cpuusage = val;
  9128. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9129. #else
  9130. *cpuusage = val;
  9131. #endif
  9132. }
  9133. /* return total cpu usage (in nanoseconds) of a group */
  9134. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9135. {
  9136. struct cpuacct *ca = cgroup_ca(cgrp);
  9137. u64 totalcpuusage = 0;
  9138. int i;
  9139. for_each_present_cpu(i)
  9140. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9141. return totalcpuusage;
  9142. }
  9143. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9144. u64 reset)
  9145. {
  9146. struct cpuacct *ca = cgroup_ca(cgrp);
  9147. int err = 0;
  9148. int i;
  9149. if (reset) {
  9150. err = -EINVAL;
  9151. goto out;
  9152. }
  9153. for_each_present_cpu(i)
  9154. cpuacct_cpuusage_write(ca, i, 0);
  9155. out:
  9156. return err;
  9157. }
  9158. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9159. struct seq_file *m)
  9160. {
  9161. struct cpuacct *ca = cgroup_ca(cgroup);
  9162. u64 percpu;
  9163. int i;
  9164. for_each_present_cpu(i) {
  9165. percpu = cpuacct_cpuusage_read(ca, i);
  9166. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9167. }
  9168. seq_printf(m, "\n");
  9169. return 0;
  9170. }
  9171. static const char *cpuacct_stat_desc[] = {
  9172. [CPUACCT_STAT_USER] = "user",
  9173. [CPUACCT_STAT_SYSTEM] = "system",
  9174. };
  9175. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9176. struct cgroup_map_cb *cb)
  9177. {
  9178. struct cpuacct *ca = cgroup_ca(cgrp);
  9179. int i;
  9180. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9181. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9182. val = cputime64_to_clock_t(val);
  9183. cb->fill(cb, cpuacct_stat_desc[i], val);
  9184. }
  9185. return 0;
  9186. }
  9187. static struct cftype files[] = {
  9188. {
  9189. .name = "usage",
  9190. .read_u64 = cpuusage_read,
  9191. .write_u64 = cpuusage_write,
  9192. },
  9193. {
  9194. .name = "usage_percpu",
  9195. .read_seq_string = cpuacct_percpu_seq_read,
  9196. },
  9197. {
  9198. .name = "stat",
  9199. .read_map = cpuacct_stats_show,
  9200. },
  9201. };
  9202. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9203. {
  9204. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9205. }
  9206. /*
  9207. * charge this task's execution time to its accounting group.
  9208. *
  9209. * called with rq->lock held.
  9210. */
  9211. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9212. {
  9213. struct cpuacct *ca;
  9214. int cpu;
  9215. if (unlikely(!cpuacct_subsys.active))
  9216. return;
  9217. cpu = task_cpu(tsk);
  9218. rcu_read_lock();
  9219. ca = task_ca(tsk);
  9220. for (; ca; ca = ca->parent) {
  9221. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9222. *cpuusage += cputime;
  9223. }
  9224. rcu_read_unlock();
  9225. }
  9226. /*
  9227. * Charge the system/user time to the task's accounting group.
  9228. */
  9229. static void cpuacct_update_stats(struct task_struct *tsk,
  9230. enum cpuacct_stat_index idx, cputime_t val)
  9231. {
  9232. struct cpuacct *ca;
  9233. if (unlikely(!cpuacct_subsys.active))
  9234. return;
  9235. rcu_read_lock();
  9236. ca = task_ca(tsk);
  9237. do {
  9238. percpu_counter_add(&ca->cpustat[idx], val);
  9239. ca = ca->parent;
  9240. } while (ca);
  9241. rcu_read_unlock();
  9242. }
  9243. struct cgroup_subsys cpuacct_subsys = {
  9244. .name = "cpuacct",
  9245. .create = cpuacct_create,
  9246. .destroy = cpuacct_destroy,
  9247. .populate = cpuacct_populate,
  9248. .subsys_id = cpuacct_subsys_id,
  9249. };
  9250. #endif /* CONFIG_CGROUP_CPUACCT */
  9251. #ifndef CONFIG_SMP
  9252. int rcu_expedited_torture_stats(char *page)
  9253. {
  9254. return 0;
  9255. }
  9256. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9257. void synchronize_sched_expedited(void)
  9258. {
  9259. }
  9260. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9261. #else /* #ifndef CONFIG_SMP */
  9262. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9263. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9264. #define RCU_EXPEDITED_STATE_POST -2
  9265. #define RCU_EXPEDITED_STATE_IDLE -1
  9266. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9267. int rcu_expedited_torture_stats(char *page)
  9268. {
  9269. int cnt = 0;
  9270. int cpu;
  9271. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9272. for_each_online_cpu(cpu) {
  9273. cnt += sprintf(&page[cnt], " %d:%d",
  9274. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9275. }
  9276. cnt += sprintf(&page[cnt], "\n");
  9277. return cnt;
  9278. }
  9279. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9280. static long synchronize_sched_expedited_count;
  9281. /*
  9282. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9283. * approach to force grace period to end quickly. This consumes
  9284. * significant time on all CPUs, and is thus not recommended for
  9285. * any sort of common-case code.
  9286. *
  9287. * Note that it is illegal to call this function while holding any
  9288. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9289. * observe this restriction will result in deadlock.
  9290. */
  9291. void synchronize_sched_expedited(void)
  9292. {
  9293. int cpu;
  9294. unsigned long flags;
  9295. bool need_full_sync = 0;
  9296. struct rq *rq;
  9297. struct migration_req *req;
  9298. long snap;
  9299. int trycount = 0;
  9300. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9301. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9302. get_online_cpus();
  9303. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9304. put_online_cpus();
  9305. if (trycount++ < 10)
  9306. udelay(trycount * num_online_cpus());
  9307. else {
  9308. synchronize_sched();
  9309. return;
  9310. }
  9311. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9312. smp_mb(); /* ensure test happens before caller kfree */
  9313. return;
  9314. }
  9315. get_online_cpus();
  9316. }
  9317. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9318. for_each_online_cpu(cpu) {
  9319. rq = cpu_rq(cpu);
  9320. req = &per_cpu(rcu_migration_req, cpu);
  9321. init_completion(&req->done);
  9322. req->task = NULL;
  9323. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9324. raw_spin_lock_irqsave(&rq->lock, flags);
  9325. list_add(&req->list, &rq->migration_queue);
  9326. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9327. wake_up_process(rq->migration_thread);
  9328. }
  9329. for_each_online_cpu(cpu) {
  9330. rcu_expedited_state = cpu;
  9331. req = &per_cpu(rcu_migration_req, cpu);
  9332. rq = cpu_rq(cpu);
  9333. wait_for_completion(&req->done);
  9334. raw_spin_lock_irqsave(&rq->lock, flags);
  9335. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9336. need_full_sync = 1;
  9337. req->dest_cpu = RCU_MIGRATION_IDLE;
  9338. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9339. }
  9340. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9341. synchronize_sched_expedited_count++;
  9342. mutex_unlock(&rcu_sched_expedited_mutex);
  9343. put_online_cpus();
  9344. if (need_full_sync)
  9345. synchronize_sched();
  9346. }
  9347. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9348. #endif /* #else #ifndef CONFIG_SMP */