memory-failure.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/kernel-page-flags.h>
  37. #include <linux/sched.h>
  38. #include <linux/ksm.h>
  39. #include <linux/rmap.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/backing-dev.h>
  43. #include "internal.h"
  44. int sysctl_memory_failure_early_kill __read_mostly = 0;
  45. int sysctl_memory_failure_recovery __read_mostly = 1;
  46. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  47. u32 hwpoison_filter_enable = 0;
  48. u32 hwpoison_filter_dev_major = ~0U;
  49. u32 hwpoison_filter_dev_minor = ~0U;
  50. u64 hwpoison_filter_flags_mask;
  51. u64 hwpoison_filter_flags_value;
  52. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  53. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  54. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  55. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  56. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  57. static int hwpoison_filter_dev(struct page *p)
  58. {
  59. struct address_space *mapping;
  60. dev_t dev;
  61. if (hwpoison_filter_dev_major == ~0U &&
  62. hwpoison_filter_dev_minor == ~0U)
  63. return 0;
  64. /*
  65. * page_mapping() does not accept slab page
  66. */
  67. if (PageSlab(p))
  68. return -EINVAL;
  69. mapping = page_mapping(p);
  70. if (mapping == NULL || mapping->host == NULL)
  71. return -EINVAL;
  72. dev = mapping->host->i_sb->s_dev;
  73. if (hwpoison_filter_dev_major != ~0U &&
  74. hwpoison_filter_dev_major != MAJOR(dev))
  75. return -EINVAL;
  76. if (hwpoison_filter_dev_minor != ~0U &&
  77. hwpoison_filter_dev_minor != MINOR(dev))
  78. return -EINVAL;
  79. return 0;
  80. }
  81. static int hwpoison_filter_flags(struct page *p)
  82. {
  83. if (!hwpoison_filter_flags_mask)
  84. return 0;
  85. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  86. hwpoison_filter_flags_value)
  87. return 0;
  88. else
  89. return -EINVAL;
  90. }
  91. /*
  92. * This allows stress tests to limit test scope to a collection of tasks
  93. * by putting them under some memcg. This prevents killing unrelated/important
  94. * processes such as /sbin/init. Note that the target task may share clean
  95. * pages with init (eg. libc text), which is harmless. If the target task
  96. * share _dirty_ pages with another task B, the test scheme must make sure B
  97. * is also included in the memcg. At last, due to race conditions this filter
  98. * can only guarantee that the page either belongs to the memcg tasks, or is
  99. * a freed page.
  100. */
  101. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  102. u64 hwpoison_filter_memcg;
  103. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  104. static int hwpoison_filter_task(struct page *p)
  105. {
  106. struct mem_cgroup *mem;
  107. struct cgroup_subsys_state *css;
  108. unsigned long ino;
  109. if (!hwpoison_filter_memcg)
  110. return 0;
  111. mem = try_get_mem_cgroup_from_page(p);
  112. if (!mem)
  113. return -EINVAL;
  114. css = mem_cgroup_css(mem);
  115. /* root_mem_cgroup has NULL dentries */
  116. if (!css->cgroup->dentry)
  117. return -EINVAL;
  118. ino = css->cgroup->dentry->d_inode->i_ino;
  119. css_put(css);
  120. if (ino != hwpoison_filter_memcg)
  121. return -EINVAL;
  122. return 0;
  123. }
  124. #else
  125. static int hwpoison_filter_task(struct page *p) { return 0; }
  126. #endif
  127. int hwpoison_filter(struct page *p)
  128. {
  129. if (!hwpoison_filter_enable)
  130. return 0;
  131. if (hwpoison_filter_dev(p))
  132. return -EINVAL;
  133. if (hwpoison_filter_flags(p))
  134. return -EINVAL;
  135. if (hwpoison_filter_task(p))
  136. return -EINVAL;
  137. return 0;
  138. }
  139. EXPORT_SYMBOL_GPL(hwpoison_filter);
  140. /*
  141. * Send all the processes who have the page mapped an ``action optional''
  142. * signal.
  143. */
  144. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  145. unsigned long pfn)
  146. {
  147. struct siginfo si;
  148. int ret;
  149. printk(KERN_ERR
  150. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  151. pfn, t->comm, t->pid);
  152. si.si_signo = SIGBUS;
  153. si.si_errno = 0;
  154. si.si_code = BUS_MCEERR_AO;
  155. si.si_addr = (void *)addr;
  156. #ifdef __ARCH_SI_TRAPNO
  157. si.si_trapno = trapno;
  158. #endif
  159. si.si_addr_lsb = PAGE_SHIFT;
  160. /*
  161. * Don't use force here, it's convenient if the signal
  162. * can be temporarily blocked.
  163. * This could cause a loop when the user sets SIGBUS
  164. * to SIG_IGN, but hopefully noone will do that?
  165. */
  166. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  167. if (ret < 0)
  168. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  169. t->comm, t->pid, ret);
  170. return ret;
  171. }
  172. /*
  173. * When a unknown page type is encountered drain as many buffers as possible
  174. * in the hope to turn the page into a LRU or free page, which we can handle.
  175. */
  176. void shake_page(struct page *p)
  177. {
  178. if (!PageSlab(p)) {
  179. lru_add_drain_all();
  180. if (PageLRU(p))
  181. return;
  182. drain_all_pages();
  183. if (PageLRU(p) || is_free_buddy_page(p))
  184. return;
  185. }
  186. /*
  187. * Could call shrink_slab here (which would also
  188. * shrink other caches). Unfortunately that might
  189. * also access the corrupted page, which could be fatal.
  190. */
  191. }
  192. EXPORT_SYMBOL_GPL(shake_page);
  193. /*
  194. * Kill all processes that have a poisoned page mapped and then isolate
  195. * the page.
  196. *
  197. * General strategy:
  198. * Find all processes having the page mapped and kill them.
  199. * But we keep a page reference around so that the page is not
  200. * actually freed yet.
  201. * Then stash the page away
  202. *
  203. * There's no convenient way to get back to mapped processes
  204. * from the VMAs. So do a brute-force search over all
  205. * running processes.
  206. *
  207. * Remember that machine checks are not common (or rather
  208. * if they are common you have other problems), so this shouldn't
  209. * be a performance issue.
  210. *
  211. * Also there are some races possible while we get from the
  212. * error detection to actually handle it.
  213. */
  214. struct to_kill {
  215. struct list_head nd;
  216. struct task_struct *tsk;
  217. unsigned long addr;
  218. unsigned addr_valid:1;
  219. };
  220. /*
  221. * Failure handling: if we can't find or can't kill a process there's
  222. * not much we can do. We just print a message and ignore otherwise.
  223. */
  224. /*
  225. * Schedule a process for later kill.
  226. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  227. * TBD would GFP_NOIO be enough?
  228. */
  229. static void add_to_kill(struct task_struct *tsk, struct page *p,
  230. struct vm_area_struct *vma,
  231. struct list_head *to_kill,
  232. struct to_kill **tkc)
  233. {
  234. struct to_kill *tk;
  235. if (*tkc) {
  236. tk = *tkc;
  237. *tkc = NULL;
  238. } else {
  239. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  240. if (!tk) {
  241. printk(KERN_ERR
  242. "MCE: Out of memory while machine check handling\n");
  243. return;
  244. }
  245. }
  246. tk->addr = page_address_in_vma(p, vma);
  247. tk->addr_valid = 1;
  248. /*
  249. * In theory we don't have to kill when the page was
  250. * munmaped. But it could be also a mremap. Since that's
  251. * likely very rare kill anyways just out of paranoia, but use
  252. * a SIGKILL because the error is not contained anymore.
  253. */
  254. if (tk->addr == -EFAULT) {
  255. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  256. page_to_pfn(p), tsk->comm);
  257. tk->addr_valid = 0;
  258. }
  259. get_task_struct(tsk);
  260. tk->tsk = tsk;
  261. list_add_tail(&tk->nd, to_kill);
  262. }
  263. /*
  264. * Kill the processes that have been collected earlier.
  265. *
  266. * Only do anything when DOIT is set, otherwise just free the list
  267. * (this is used for clean pages which do not need killing)
  268. * Also when FAIL is set do a force kill because something went
  269. * wrong earlier.
  270. */
  271. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  272. int fail, unsigned long pfn)
  273. {
  274. struct to_kill *tk, *next;
  275. list_for_each_entry_safe (tk, next, to_kill, nd) {
  276. if (doit) {
  277. /*
  278. * In case something went wrong with munmapping
  279. * make sure the process doesn't catch the
  280. * signal and then access the memory. Just kill it.
  281. * the signal handlers
  282. */
  283. if (fail || tk->addr_valid == 0) {
  284. printk(KERN_ERR
  285. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  286. pfn, tk->tsk->comm, tk->tsk->pid);
  287. force_sig(SIGKILL, tk->tsk);
  288. }
  289. /*
  290. * In theory the process could have mapped
  291. * something else on the address in-between. We could
  292. * check for that, but we need to tell the
  293. * process anyways.
  294. */
  295. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  296. pfn) < 0)
  297. printk(KERN_ERR
  298. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  299. pfn, tk->tsk->comm, tk->tsk->pid);
  300. }
  301. put_task_struct(tk->tsk);
  302. kfree(tk);
  303. }
  304. }
  305. static int task_early_kill(struct task_struct *tsk)
  306. {
  307. if (!tsk->mm)
  308. return 0;
  309. if (tsk->flags & PF_MCE_PROCESS)
  310. return !!(tsk->flags & PF_MCE_EARLY);
  311. return sysctl_memory_failure_early_kill;
  312. }
  313. /*
  314. * Collect processes when the error hit an anonymous page.
  315. */
  316. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  317. struct to_kill **tkc)
  318. {
  319. struct vm_area_struct *vma;
  320. struct task_struct *tsk;
  321. struct anon_vma *av;
  322. read_lock(&tasklist_lock);
  323. av = page_lock_anon_vma(page);
  324. if (av == NULL) /* Not actually mapped anymore */
  325. goto out;
  326. for_each_process (tsk) {
  327. if (!task_early_kill(tsk))
  328. continue;
  329. list_for_each_entry (vma, &av->head, anon_vma_node) {
  330. if (!page_mapped_in_vma(page, vma))
  331. continue;
  332. if (vma->vm_mm == tsk->mm)
  333. add_to_kill(tsk, page, vma, to_kill, tkc);
  334. }
  335. }
  336. page_unlock_anon_vma(av);
  337. out:
  338. read_unlock(&tasklist_lock);
  339. }
  340. /*
  341. * Collect processes when the error hit a file mapped page.
  342. */
  343. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  344. struct to_kill **tkc)
  345. {
  346. struct vm_area_struct *vma;
  347. struct task_struct *tsk;
  348. struct prio_tree_iter iter;
  349. struct address_space *mapping = page->mapping;
  350. /*
  351. * A note on the locking order between the two locks.
  352. * We don't rely on this particular order.
  353. * If you have some other code that needs a different order
  354. * feel free to switch them around. Or add a reverse link
  355. * from mm_struct to task_struct, then this could be all
  356. * done without taking tasklist_lock and looping over all tasks.
  357. */
  358. read_lock(&tasklist_lock);
  359. spin_lock(&mapping->i_mmap_lock);
  360. for_each_process(tsk) {
  361. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  362. if (!task_early_kill(tsk))
  363. continue;
  364. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  365. pgoff) {
  366. /*
  367. * Send early kill signal to tasks where a vma covers
  368. * the page but the corrupted page is not necessarily
  369. * mapped it in its pte.
  370. * Assume applications who requested early kill want
  371. * to be informed of all such data corruptions.
  372. */
  373. if (vma->vm_mm == tsk->mm)
  374. add_to_kill(tsk, page, vma, to_kill, tkc);
  375. }
  376. }
  377. spin_unlock(&mapping->i_mmap_lock);
  378. read_unlock(&tasklist_lock);
  379. }
  380. /*
  381. * Collect the processes who have the corrupted page mapped to kill.
  382. * This is done in two steps for locking reasons.
  383. * First preallocate one tokill structure outside the spin locks,
  384. * so that we can kill at least one process reasonably reliable.
  385. */
  386. static void collect_procs(struct page *page, struct list_head *tokill)
  387. {
  388. struct to_kill *tk;
  389. if (!page->mapping)
  390. return;
  391. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  392. if (!tk)
  393. return;
  394. if (PageAnon(page))
  395. collect_procs_anon(page, tokill, &tk);
  396. else
  397. collect_procs_file(page, tokill, &tk);
  398. kfree(tk);
  399. }
  400. /*
  401. * Error handlers for various types of pages.
  402. */
  403. enum outcome {
  404. IGNORED, /* Error: cannot be handled */
  405. FAILED, /* Error: handling failed */
  406. DELAYED, /* Will be handled later */
  407. RECOVERED, /* Successfully recovered */
  408. };
  409. static const char *action_name[] = {
  410. [IGNORED] = "Ignored",
  411. [FAILED] = "Failed",
  412. [DELAYED] = "Delayed",
  413. [RECOVERED] = "Recovered",
  414. };
  415. /*
  416. * XXX: It is possible that a page is isolated from LRU cache,
  417. * and then kept in swap cache or failed to remove from page cache.
  418. * The page count will stop it from being freed by unpoison.
  419. * Stress tests should be aware of this memory leak problem.
  420. */
  421. static int delete_from_lru_cache(struct page *p)
  422. {
  423. if (!isolate_lru_page(p)) {
  424. /*
  425. * Clear sensible page flags, so that the buddy system won't
  426. * complain when the page is unpoison-and-freed.
  427. */
  428. ClearPageActive(p);
  429. ClearPageUnevictable(p);
  430. /*
  431. * drop the page count elevated by isolate_lru_page()
  432. */
  433. page_cache_release(p);
  434. return 0;
  435. }
  436. return -EIO;
  437. }
  438. /*
  439. * Error hit kernel page.
  440. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  441. * could be more sophisticated.
  442. */
  443. static int me_kernel(struct page *p, unsigned long pfn)
  444. {
  445. return IGNORED;
  446. }
  447. /*
  448. * Page in unknown state. Do nothing.
  449. */
  450. static int me_unknown(struct page *p, unsigned long pfn)
  451. {
  452. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  453. return FAILED;
  454. }
  455. /*
  456. * Clean (or cleaned) page cache page.
  457. */
  458. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  459. {
  460. int err;
  461. int ret = FAILED;
  462. struct address_space *mapping;
  463. delete_from_lru_cache(p);
  464. /*
  465. * For anonymous pages we're done the only reference left
  466. * should be the one m_f() holds.
  467. */
  468. if (PageAnon(p))
  469. return RECOVERED;
  470. /*
  471. * Now truncate the page in the page cache. This is really
  472. * more like a "temporary hole punch"
  473. * Don't do this for block devices when someone else
  474. * has a reference, because it could be file system metadata
  475. * and that's not safe to truncate.
  476. */
  477. mapping = page_mapping(p);
  478. if (!mapping) {
  479. /*
  480. * Page has been teared down in the meanwhile
  481. */
  482. return FAILED;
  483. }
  484. /*
  485. * Truncation is a bit tricky. Enable it per file system for now.
  486. *
  487. * Open: to take i_mutex or not for this? Right now we don't.
  488. */
  489. if (mapping->a_ops->error_remove_page) {
  490. err = mapping->a_ops->error_remove_page(mapping, p);
  491. if (err != 0) {
  492. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  493. pfn, err);
  494. } else if (page_has_private(p) &&
  495. !try_to_release_page(p, GFP_NOIO)) {
  496. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  497. } else {
  498. ret = RECOVERED;
  499. }
  500. } else {
  501. /*
  502. * If the file system doesn't support it just invalidate
  503. * This fails on dirty or anything with private pages
  504. */
  505. if (invalidate_inode_page(p))
  506. ret = RECOVERED;
  507. else
  508. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  509. pfn);
  510. }
  511. return ret;
  512. }
  513. /*
  514. * Dirty cache page page
  515. * Issues: when the error hit a hole page the error is not properly
  516. * propagated.
  517. */
  518. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  519. {
  520. struct address_space *mapping = page_mapping(p);
  521. SetPageError(p);
  522. /* TBD: print more information about the file. */
  523. if (mapping) {
  524. /*
  525. * IO error will be reported by write(), fsync(), etc.
  526. * who check the mapping.
  527. * This way the application knows that something went
  528. * wrong with its dirty file data.
  529. *
  530. * There's one open issue:
  531. *
  532. * The EIO will be only reported on the next IO
  533. * operation and then cleared through the IO map.
  534. * Normally Linux has two mechanisms to pass IO error
  535. * first through the AS_EIO flag in the address space
  536. * and then through the PageError flag in the page.
  537. * Since we drop pages on memory failure handling the
  538. * only mechanism open to use is through AS_AIO.
  539. *
  540. * This has the disadvantage that it gets cleared on
  541. * the first operation that returns an error, while
  542. * the PageError bit is more sticky and only cleared
  543. * when the page is reread or dropped. If an
  544. * application assumes it will always get error on
  545. * fsync, but does other operations on the fd before
  546. * and the page is dropped inbetween then the error
  547. * will not be properly reported.
  548. *
  549. * This can already happen even without hwpoisoned
  550. * pages: first on metadata IO errors (which only
  551. * report through AS_EIO) or when the page is dropped
  552. * at the wrong time.
  553. *
  554. * So right now we assume that the application DTRT on
  555. * the first EIO, but we're not worse than other parts
  556. * of the kernel.
  557. */
  558. mapping_set_error(mapping, EIO);
  559. }
  560. return me_pagecache_clean(p, pfn);
  561. }
  562. /*
  563. * Clean and dirty swap cache.
  564. *
  565. * Dirty swap cache page is tricky to handle. The page could live both in page
  566. * cache and swap cache(ie. page is freshly swapped in). So it could be
  567. * referenced concurrently by 2 types of PTEs:
  568. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  569. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  570. * and then
  571. * - clear dirty bit to prevent IO
  572. * - remove from LRU
  573. * - but keep in the swap cache, so that when we return to it on
  574. * a later page fault, we know the application is accessing
  575. * corrupted data and shall be killed (we installed simple
  576. * interception code in do_swap_page to catch it).
  577. *
  578. * Clean swap cache pages can be directly isolated. A later page fault will
  579. * bring in the known good data from disk.
  580. */
  581. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  582. {
  583. ClearPageDirty(p);
  584. /* Trigger EIO in shmem: */
  585. ClearPageUptodate(p);
  586. if (!delete_from_lru_cache(p))
  587. return DELAYED;
  588. else
  589. return FAILED;
  590. }
  591. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  592. {
  593. delete_from_swap_cache(p);
  594. if (!delete_from_lru_cache(p))
  595. return RECOVERED;
  596. else
  597. return FAILED;
  598. }
  599. /*
  600. * Huge pages. Needs work.
  601. * Issues:
  602. * No rmap support so we cannot find the original mapper. In theory could walk
  603. * all MMs and look for the mappings, but that would be non atomic and racy.
  604. * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
  605. * like just walking the current process and hoping it has it mapped (that
  606. * should be usually true for the common "shared database cache" case)
  607. * Should handle free huge pages and dequeue them too, but this needs to
  608. * handle huge page accounting correctly.
  609. */
  610. static int me_huge_page(struct page *p, unsigned long pfn)
  611. {
  612. return FAILED;
  613. }
  614. /*
  615. * Various page states we can handle.
  616. *
  617. * A page state is defined by its current page->flags bits.
  618. * The table matches them in order and calls the right handler.
  619. *
  620. * This is quite tricky because we can access page at any time
  621. * in its live cycle, so all accesses have to be extremly careful.
  622. *
  623. * This is not complete. More states could be added.
  624. * For any missing state don't attempt recovery.
  625. */
  626. #define dirty (1UL << PG_dirty)
  627. #define sc (1UL << PG_swapcache)
  628. #define unevict (1UL << PG_unevictable)
  629. #define mlock (1UL << PG_mlocked)
  630. #define writeback (1UL << PG_writeback)
  631. #define lru (1UL << PG_lru)
  632. #define swapbacked (1UL << PG_swapbacked)
  633. #define head (1UL << PG_head)
  634. #define tail (1UL << PG_tail)
  635. #define compound (1UL << PG_compound)
  636. #define slab (1UL << PG_slab)
  637. #define reserved (1UL << PG_reserved)
  638. static struct page_state {
  639. unsigned long mask;
  640. unsigned long res;
  641. char *msg;
  642. int (*action)(struct page *p, unsigned long pfn);
  643. } error_states[] = {
  644. { reserved, reserved, "reserved kernel", me_kernel },
  645. /*
  646. * free pages are specially detected outside this table:
  647. * PG_buddy pages only make a small fraction of all free pages.
  648. */
  649. /*
  650. * Could in theory check if slab page is free or if we can drop
  651. * currently unused objects without touching them. But just
  652. * treat it as standard kernel for now.
  653. */
  654. { slab, slab, "kernel slab", me_kernel },
  655. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  656. { head, head, "huge", me_huge_page },
  657. { tail, tail, "huge", me_huge_page },
  658. #else
  659. { compound, compound, "huge", me_huge_page },
  660. #endif
  661. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  662. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  663. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  664. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  665. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  666. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  667. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  668. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  669. /*
  670. * Catchall entry: must be at end.
  671. */
  672. { 0, 0, "unknown page state", me_unknown },
  673. };
  674. #undef dirty
  675. #undef sc
  676. #undef unevict
  677. #undef mlock
  678. #undef writeback
  679. #undef lru
  680. #undef swapbacked
  681. #undef head
  682. #undef tail
  683. #undef compound
  684. #undef slab
  685. #undef reserved
  686. static void action_result(unsigned long pfn, char *msg, int result)
  687. {
  688. struct page *page = pfn_to_page(pfn);
  689. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  690. pfn,
  691. PageDirty(page) ? "dirty " : "",
  692. msg, action_name[result]);
  693. }
  694. static int page_action(struct page_state *ps, struct page *p,
  695. unsigned long pfn)
  696. {
  697. int result;
  698. int count;
  699. result = ps->action(p, pfn);
  700. action_result(pfn, ps->msg, result);
  701. count = page_count(p) - 1;
  702. if (ps->action == me_swapcache_dirty && result == DELAYED)
  703. count--;
  704. if (count != 0) {
  705. printk(KERN_ERR
  706. "MCE %#lx: %s page still referenced by %d users\n",
  707. pfn, ps->msg, count);
  708. result = FAILED;
  709. }
  710. /* Could do more checks here if page looks ok */
  711. /*
  712. * Could adjust zone counters here to correct for the missing page.
  713. */
  714. return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
  715. }
  716. #define N_UNMAP_TRIES 5
  717. /*
  718. * Do all that is necessary to remove user space mappings. Unmap
  719. * the pages and send SIGBUS to the processes if the data was dirty.
  720. */
  721. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  722. int trapno)
  723. {
  724. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  725. struct address_space *mapping;
  726. LIST_HEAD(tokill);
  727. int ret;
  728. int i;
  729. int kill = 1;
  730. if (PageReserved(p) || PageSlab(p))
  731. return SWAP_SUCCESS;
  732. /*
  733. * This check implies we don't kill processes if their pages
  734. * are in the swap cache early. Those are always late kills.
  735. */
  736. if (!page_mapped(p))
  737. return SWAP_SUCCESS;
  738. if (PageCompound(p) || PageKsm(p))
  739. return SWAP_FAIL;
  740. if (PageSwapCache(p)) {
  741. printk(KERN_ERR
  742. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  743. ttu |= TTU_IGNORE_HWPOISON;
  744. }
  745. /*
  746. * Propagate the dirty bit from PTEs to struct page first, because we
  747. * need this to decide if we should kill or just drop the page.
  748. * XXX: the dirty test could be racy: set_page_dirty() may not always
  749. * be called inside page lock (it's recommended but not enforced).
  750. */
  751. mapping = page_mapping(p);
  752. if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
  753. if (page_mkclean(p)) {
  754. SetPageDirty(p);
  755. } else {
  756. kill = 0;
  757. ttu |= TTU_IGNORE_HWPOISON;
  758. printk(KERN_INFO
  759. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  760. pfn);
  761. }
  762. }
  763. /*
  764. * First collect all the processes that have the page
  765. * mapped in dirty form. This has to be done before try_to_unmap,
  766. * because ttu takes the rmap data structures down.
  767. *
  768. * Error handling: We ignore errors here because
  769. * there's nothing that can be done.
  770. */
  771. if (kill)
  772. collect_procs(p, &tokill);
  773. /*
  774. * try_to_unmap can fail temporarily due to races.
  775. * Try a few times (RED-PEN better strategy?)
  776. */
  777. for (i = 0; i < N_UNMAP_TRIES; i++) {
  778. ret = try_to_unmap(p, ttu);
  779. if (ret == SWAP_SUCCESS)
  780. break;
  781. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  782. }
  783. if (ret != SWAP_SUCCESS)
  784. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  785. pfn, page_mapcount(p));
  786. /*
  787. * Now that the dirty bit has been propagated to the
  788. * struct page and all unmaps done we can decide if
  789. * killing is needed or not. Only kill when the page
  790. * was dirty, otherwise the tokill list is merely
  791. * freed. When there was a problem unmapping earlier
  792. * use a more force-full uncatchable kill to prevent
  793. * any accesses to the poisoned memory.
  794. */
  795. kill_procs_ao(&tokill, !!PageDirty(p), trapno,
  796. ret != SWAP_SUCCESS, pfn);
  797. return ret;
  798. }
  799. int __memory_failure(unsigned long pfn, int trapno, int flags)
  800. {
  801. struct page_state *ps;
  802. struct page *p;
  803. int res;
  804. if (!sysctl_memory_failure_recovery)
  805. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  806. if (!pfn_valid(pfn)) {
  807. printk(KERN_ERR
  808. "MCE %#lx: memory outside kernel control\n",
  809. pfn);
  810. return -ENXIO;
  811. }
  812. p = pfn_to_page(pfn);
  813. if (TestSetPageHWPoison(p)) {
  814. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  815. return 0;
  816. }
  817. atomic_long_add(1, &mce_bad_pages);
  818. /*
  819. * We need/can do nothing about count=0 pages.
  820. * 1) it's a free page, and therefore in safe hand:
  821. * prep_new_page() will be the gate keeper.
  822. * 2) it's part of a non-compound high order page.
  823. * Implies some kernel user: cannot stop them from
  824. * R/W the page; let's pray that the page has been
  825. * used and will be freed some time later.
  826. * In fact it's dangerous to directly bump up page count from 0,
  827. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  828. */
  829. if (!(flags & MF_COUNT_INCREASED) &&
  830. !get_page_unless_zero(compound_head(p))) {
  831. if (is_free_buddy_page(p)) {
  832. action_result(pfn, "free buddy", DELAYED);
  833. return 0;
  834. } else {
  835. action_result(pfn, "high order kernel", IGNORED);
  836. return -EBUSY;
  837. }
  838. }
  839. /*
  840. * We ignore non-LRU pages for good reasons.
  841. * - PG_locked is only well defined for LRU pages and a few others
  842. * - to avoid races with __set_page_locked()
  843. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  844. * The check (unnecessarily) ignores LRU pages being isolated and
  845. * walked by the page reclaim code, however that's not a big loss.
  846. */
  847. if (!PageLRU(p))
  848. shake_page(p);
  849. if (!PageLRU(p)) {
  850. /*
  851. * shake_page could have turned it free.
  852. */
  853. if (is_free_buddy_page(p)) {
  854. action_result(pfn, "free buddy, 2nd try", DELAYED);
  855. return 0;
  856. }
  857. action_result(pfn, "non LRU", IGNORED);
  858. put_page(p);
  859. return -EBUSY;
  860. }
  861. /*
  862. * Lock the page and wait for writeback to finish.
  863. * It's very difficult to mess with pages currently under IO
  864. * and in many cases impossible, so we just avoid it here.
  865. */
  866. lock_page_nosync(p);
  867. /*
  868. * unpoison always clear PG_hwpoison inside page lock
  869. */
  870. if (!PageHWPoison(p)) {
  871. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  872. res = 0;
  873. goto out;
  874. }
  875. if (hwpoison_filter(p)) {
  876. if (TestClearPageHWPoison(p))
  877. atomic_long_dec(&mce_bad_pages);
  878. unlock_page(p);
  879. put_page(p);
  880. return 0;
  881. }
  882. wait_on_page_writeback(p);
  883. /*
  884. * Now take care of user space mappings.
  885. * Abort on fail: __remove_from_page_cache() assumes unmapped page.
  886. */
  887. if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
  888. printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
  889. res = -EBUSY;
  890. goto out;
  891. }
  892. /*
  893. * Torn down by someone else?
  894. */
  895. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  896. action_result(pfn, "already truncated LRU", IGNORED);
  897. res = -EBUSY;
  898. goto out;
  899. }
  900. res = -EBUSY;
  901. for (ps = error_states;; ps++) {
  902. if ((p->flags & ps->mask) == ps->res) {
  903. res = page_action(ps, p, pfn);
  904. break;
  905. }
  906. }
  907. out:
  908. unlock_page(p);
  909. return res;
  910. }
  911. EXPORT_SYMBOL_GPL(__memory_failure);
  912. /**
  913. * memory_failure - Handle memory failure of a page.
  914. * @pfn: Page Number of the corrupted page
  915. * @trapno: Trap number reported in the signal to user space.
  916. *
  917. * This function is called by the low level machine check code
  918. * of an architecture when it detects hardware memory corruption
  919. * of a page. It tries its best to recover, which includes
  920. * dropping pages, killing processes etc.
  921. *
  922. * The function is primarily of use for corruptions that
  923. * happen outside the current execution context (e.g. when
  924. * detected by a background scrubber)
  925. *
  926. * Must run in process context (e.g. a work queue) with interrupts
  927. * enabled and no spinlocks hold.
  928. */
  929. void memory_failure(unsigned long pfn, int trapno)
  930. {
  931. __memory_failure(pfn, trapno, 0);
  932. }
  933. /**
  934. * unpoison_memory - Unpoison a previously poisoned page
  935. * @pfn: Page number of the to be unpoisoned page
  936. *
  937. * Software-unpoison a page that has been poisoned by
  938. * memory_failure() earlier.
  939. *
  940. * This is only done on the software-level, so it only works
  941. * for linux injected failures, not real hardware failures
  942. *
  943. * Returns 0 for success, otherwise -errno.
  944. */
  945. int unpoison_memory(unsigned long pfn)
  946. {
  947. struct page *page;
  948. struct page *p;
  949. int freeit = 0;
  950. if (!pfn_valid(pfn))
  951. return -ENXIO;
  952. p = pfn_to_page(pfn);
  953. page = compound_head(p);
  954. if (!PageHWPoison(p)) {
  955. pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
  956. return 0;
  957. }
  958. if (!get_page_unless_zero(page)) {
  959. if (TestClearPageHWPoison(p))
  960. atomic_long_dec(&mce_bad_pages);
  961. pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
  962. return 0;
  963. }
  964. lock_page_nosync(page);
  965. /*
  966. * This test is racy because PG_hwpoison is set outside of page lock.
  967. * That's acceptable because that won't trigger kernel panic. Instead,
  968. * the PG_hwpoison page will be caught and isolated on the entrance to
  969. * the free buddy page pool.
  970. */
  971. if (TestClearPageHWPoison(p)) {
  972. pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
  973. atomic_long_dec(&mce_bad_pages);
  974. freeit = 1;
  975. }
  976. unlock_page(page);
  977. put_page(page);
  978. if (freeit)
  979. put_page(page);
  980. return 0;
  981. }
  982. EXPORT_SYMBOL(unpoison_memory);