kvm_main.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  52. #include <linux/pci.h>
  53. #include <linux/interrupt.h>
  54. #include "irq.h"
  55. #endif
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
  64. */
  65. DEFINE_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static bool kvm_rebooting;
  75. static bool largepages_enabled = true;
  76. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  77. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  78. int assigned_dev_id)
  79. {
  80. struct list_head *ptr;
  81. struct kvm_assigned_dev_kernel *match;
  82. list_for_each(ptr, head) {
  83. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  84. if (match->assigned_dev_id == assigned_dev_id)
  85. return match;
  86. }
  87. return NULL;
  88. }
  89. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  90. *assigned_dev, int irq)
  91. {
  92. int i, index;
  93. struct msix_entry *host_msix_entries;
  94. host_msix_entries = assigned_dev->host_msix_entries;
  95. index = -1;
  96. for (i = 0; i < assigned_dev->entries_nr; i++)
  97. if (irq == host_msix_entries[i].vector) {
  98. index = i;
  99. break;
  100. }
  101. if (index < 0) {
  102. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  103. return 0;
  104. }
  105. return index;
  106. }
  107. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  108. {
  109. struct kvm_assigned_dev_kernel *assigned_dev;
  110. struct kvm *kvm;
  111. int i;
  112. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  113. interrupt_work);
  114. kvm = assigned_dev->kvm;
  115. mutex_lock(&kvm->irq_lock);
  116. spin_lock_irq(&assigned_dev->assigned_dev_lock);
  117. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  118. struct kvm_guest_msix_entry *guest_entries =
  119. assigned_dev->guest_msix_entries;
  120. for (i = 0; i < assigned_dev->entries_nr; i++) {
  121. if (!(guest_entries[i].flags &
  122. KVM_ASSIGNED_MSIX_PENDING))
  123. continue;
  124. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  125. kvm_set_irq(assigned_dev->kvm,
  126. assigned_dev->irq_source_id,
  127. guest_entries[i].vector, 1);
  128. }
  129. } else
  130. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  131. assigned_dev->guest_irq, 1);
  132. spin_unlock_irq(&assigned_dev->assigned_dev_lock);
  133. mutex_unlock(&assigned_dev->kvm->irq_lock);
  134. }
  135. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  136. {
  137. unsigned long flags;
  138. struct kvm_assigned_dev_kernel *assigned_dev =
  139. (struct kvm_assigned_dev_kernel *) dev_id;
  140. spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
  141. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  142. int index = find_index_from_host_irq(assigned_dev, irq);
  143. if (index < 0)
  144. goto out;
  145. assigned_dev->guest_msix_entries[index].flags |=
  146. KVM_ASSIGNED_MSIX_PENDING;
  147. }
  148. schedule_work(&assigned_dev->interrupt_work);
  149. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
  150. disable_irq_nosync(irq);
  151. assigned_dev->host_irq_disabled = true;
  152. }
  153. out:
  154. spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
  155. return IRQ_HANDLED;
  156. }
  157. /* Ack the irq line for an assigned device */
  158. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  159. {
  160. struct kvm_assigned_dev_kernel *dev;
  161. unsigned long flags;
  162. if (kian->gsi == -1)
  163. return;
  164. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  165. ack_notifier);
  166. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  167. /* The guest irq may be shared so this ack may be
  168. * from another device.
  169. */
  170. spin_lock_irqsave(&dev->assigned_dev_lock, flags);
  171. if (dev->host_irq_disabled) {
  172. enable_irq(dev->host_irq);
  173. dev->host_irq_disabled = false;
  174. }
  175. spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
  176. }
  177. static void deassign_guest_irq(struct kvm *kvm,
  178. struct kvm_assigned_dev_kernel *assigned_dev)
  179. {
  180. kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
  181. assigned_dev->ack_notifier.gsi = -1;
  182. if (assigned_dev->irq_source_id != -1)
  183. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  184. assigned_dev->irq_source_id = -1;
  185. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  186. }
  187. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  188. static void deassign_host_irq(struct kvm *kvm,
  189. struct kvm_assigned_dev_kernel *assigned_dev)
  190. {
  191. /*
  192. * In kvm_free_device_irq, cancel_work_sync return true if:
  193. * 1. work is scheduled, and then cancelled.
  194. * 2. work callback is executed.
  195. *
  196. * The first one ensured that the irq is disabled and no more events
  197. * would happen. But for the second one, the irq may be enabled (e.g.
  198. * for MSI). So we disable irq here to prevent further events.
  199. *
  200. * Notice this maybe result in nested disable if the interrupt type is
  201. * INTx, but it's OK for we are going to free it.
  202. *
  203. * If this function is a part of VM destroy, please ensure that till
  204. * now, the kvm state is still legal for probably we also have to wait
  205. * interrupt_work done.
  206. */
  207. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  208. int i;
  209. for (i = 0; i < assigned_dev->entries_nr; i++)
  210. disable_irq_nosync(assigned_dev->
  211. host_msix_entries[i].vector);
  212. cancel_work_sync(&assigned_dev->interrupt_work);
  213. for (i = 0; i < assigned_dev->entries_nr; i++)
  214. free_irq(assigned_dev->host_msix_entries[i].vector,
  215. (void *)assigned_dev);
  216. assigned_dev->entries_nr = 0;
  217. kfree(assigned_dev->host_msix_entries);
  218. kfree(assigned_dev->guest_msix_entries);
  219. pci_disable_msix(assigned_dev->dev);
  220. } else {
  221. /* Deal with MSI and INTx */
  222. disable_irq_nosync(assigned_dev->host_irq);
  223. cancel_work_sync(&assigned_dev->interrupt_work);
  224. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  225. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  226. pci_disable_msi(assigned_dev->dev);
  227. }
  228. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  229. }
  230. static int kvm_deassign_irq(struct kvm *kvm,
  231. struct kvm_assigned_dev_kernel *assigned_dev,
  232. unsigned long irq_requested_type)
  233. {
  234. unsigned long guest_irq_type, host_irq_type;
  235. if (!irqchip_in_kernel(kvm))
  236. return -EINVAL;
  237. /* no irq assignment to deassign */
  238. if (!assigned_dev->irq_requested_type)
  239. return -ENXIO;
  240. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  241. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  242. if (host_irq_type)
  243. deassign_host_irq(kvm, assigned_dev);
  244. if (guest_irq_type)
  245. deassign_guest_irq(kvm, assigned_dev);
  246. return 0;
  247. }
  248. static void kvm_free_assigned_irq(struct kvm *kvm,
  249. struct kvm_assigned_dev_kernel *assigned_dev)
  250. {
  251. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  252. }
  253. static void kvm_free_assigned_device(struct kvm *kvm,
  254. struct kvm_assigned_dev_kernel
  255. *assigned_dev)
  256. {
  257. kvm_free_assigned_irq(kvm, assigned_dev);
  258. pci_reset_function(assigned_dev->dev);
  259. pci_release_regions(assigned_dev->dev);
  260. pci_disable_device(assigned_dev->dev);
  261. pci_dev_put(assigned_dev->dev);
  262. list_del(&assigned_dev->list);
  263. kfree(assigned_dev);
  264. }
  265. void kvm_free_all_assigned_devices(struct kvm *kvm)
  266. {
  267. struct list_head *ptr, *ptr2;
  268. struct kvm_assigned_dev_kernel *assigned_dev;
  269. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  270. assigned_dev = list_entry(ptr,
  271. struct kvm_assigned_dev_kernel,
  272. list);
  273. kvm_free_assigned_device(kvm, assigned_dev);
  274. }
  275. }
  276. static int assigned_device_enable_host_intx(struct kvm *kvm,
  277. struct kvm_assigned_dev_kernel *dev)
  278. {
  279. dev->host_irq = dev->dev->irq;
  280. /* Even though this is PCI, we don't want to use shared
  281. * interrupts. Sharing host devices with guest-assigned devices
  282. * on the same interrupt line is not a happy situation: there
  283. * are going to be long delays in accepting, acking, etc.
  284. */
  285. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  286. 0, "kvm_assigned_intx_device", (void *)dev))
  287. return -EIO;
  288. return 0;
  289. }
  290. #ifdef __KVM_HAVE_MSI
  291. static int assigned_device_enable_host_msi(struct kvm *kvm,
  292. struct kvm_assigned_dev_kernel *dev)
  293. {
  294. int r;
  295. if (!dev->dev->msi_enabled) {
  296. r = pci_enable_msi(dev->dev);
  297. if (r)
  298. return r;
  299. }
  300. dev->host_irq = dev->dev->irq;
  301. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  302. "kvm_assigned_msi_device", (void *)dev)) {
  303. pci_disable_msi(dev->dev);
  304. return -EIO;
  305. }
  306. return 0;
  307. }
  308. #endif
  309. #ifdef __KVM_HAVE_MSIX
  310. static int assigned_device_enable_host_msix(struct kvm *kvm,
  311. struct kvm_assigned_dev_kernel *dev)
  312. {
  313. int i, r = -EINVAL;
  314. /* host_msix_entries and guest_msix_entries should have been
  315. * initialized */
  316. if (dev->entries_nr == 0)
  317. return r;
  318. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  319. if (r)
  320. return r;
  321. for (i = 0; i < dev->entries_nr; i++) {
  322. r = request_irq(dev->host_msix_entries[i].vector,
  323. kvm_assigned_dev_intr, 0,
  324. "kvm_assigned_msix_device",
  325. (void *)dev);
  326. /* FIXME: free requested_irq's on failure */
  327. if (r)
  328. return r;
  329. }
  330. return 0;
  331. }
  332. #endif
  333. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  334. struct kvm_assigned_dev_kernel *dev,
  335. struct kvm_assigned_irq *irq)
  336. {
  337. dev->guest_irq = irq->guest_irq;
  338. dev->ack_notifier.gsi = irq->guest_irq;
  339. return 0;
  340. }
  341. #ifdef __KVM_HAVE_MSI
  342. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  343. struct kvm_assigned_dev_kernel *dev,
  344. struct kvm_assigned_irq *irq)
  345. {
  346. dev->guest_irq = irq->guest_irq;
  347. dev->ack_notifier.gsi = -1;
  348. dev->host_irq_disabled = false;
  349. return 0;
  350. }
  351. #endif
  352. #ifdef __KVM_HAVE_MSIX
  353. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  354. struct kvm_assigned_dev_kernel *dev,
  355. struct kvm_assigned_irq *irq)
  356. {
  357. dev->guest_irq = irq->guest_irq;
  358. dev->ack_notifier.gsi = -1;
  359. dev->host_irq_disabled = false;
  360. return 0;
  361. }
  362. #endif
  363. static int assign_host_irq(struct kvm *kvm,
  364. struct kvm_assigned_dev_kernel *dev,
  365. __u32 host_irq_type)
  366. {
  367. int r = -EEXIST;
  368. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  369. return r;
  370. switch (host_irq_type) {
  371. case KVM_DEV_IRQ_HOST_INTX:
  372. r = assigned_device_enable_host_intx(kvm, dev);
  373. break;
  374. #ifdef __KVM_HAVE_MSI
  375. case KVM_DEV_IRQ_HOST_MSI:
  376. r = assigned_device_enable_host_msi(kvm, dev);
  377. break;
  378. #endif
  379. #ifdef __KVM_HAVE_MSIX
  380. case KVM_DEV_IRQ_HOST_MSIX:
  381. r = assigned_device_enable_host_msix(kvm, dev);
  382. break;
  383. #endif
  384. default:
  385. r = -EINVAL;
  386. }
  387. if (!r)
  388. dev->irq_requested_type |= host_irq_type;
  389. return r;
  390. }
  391. static int assign_guest_irq(struct kvm *kvm,
  392. struct kvm_assigned_dev_kernel *dev,
  393. struct kvm_assigned_irq *irq,
  394. unsigned long guest_irq_type)
  395. {
  396. int id;
  397. int r = -EEXIST;
  398. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  399. return r;
  400. id = kvm_request_irq_source_id(kvm);
  401. if (id < 0)
  402. return id;
  403. dev->irq_source_id = id;
  404. switch (guest_irq_type) {
  405. case KVM_DEV_IRQ_GUEST_INTX:
  406. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  407. break;
  408. #ifdef __KVM_HAVE_MSI
  409. case KVM_DEV_IRQ_GUEST_MSI:
  410. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  411. break;
  412. #endif
  413. #ifdef __KVM_HAVE_MSIX
  414. case KVM_DEV_IRQ_GUEST_MSIX:
  415. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  416. break;
  417. #endif
  418. default:
  419. r = -EINVAL;
  420. }
  421. if (!r) {
  422. dev->irq_requested_type |= guest_irq_type;
  423. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  424. } else
  425. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  426. return r;
  427. }
  428. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  429. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  430. struct kvm_assigned_irq *assigned_irq)
  431. {
  432. int r = -EINVAL;
  433. struct kvm_assigned_dev_kernel *match;
  434. unsigned long host_irq_type, guest_irq_type;
  435. if (!capable(CAP_SYS_RAWIO))
  436. return -EPERM;
  437. if (!irqchip_in_kernel(kvm))
  438. return r;
  439. mutex_lock(&kvm->lock);
  440. r = -ENODEV;
  441. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  442. assigned_irq->assigned_dev_id);
  443. if (!match)
  444. goto out;
  445. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  446. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  447. r = -EINVAL;
  448. /* can only assign one type at a time */
  449. if (hweight_long(host_irq_type) > 1)
  450. goto out;
  451. if (hweight_long(guest_irq_type) > 1)
  452. goto out;
  453. if (host_irq_type == 0 && guest_irq_type == 0)
  454. goto out;
  455. r = 0;
  456. if (host_irq_type)
  457. r = assign_host_irq(kvm, match, host_irq_type);
  458. if (r)
  459. goto out;
  460. if (guest_irq_type)
  461. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  462. out:
  463. mutex_unlock(&kvm->lock);
  464. return r;
  465. }
  466. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  467. struct kvm_assigned_irq
  468. *assigned_irq)
  469. {
  470. int r = -ENODEV;
  471. struct kvm_assigned_dev_kernel *match;
  472. mutex_lock(&kvm->lock);
  473. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  474. assigned_irq->assigned_dev_id);
  475. if (!match)
  476. goto out;
  477. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  478. out:
  479. mutex_unlock(&kvm->lock);
  480. return r;
  481. }
  482. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  483. struct kvm_assigned_pci_dev *assigned_dev)
  484. {
  485. int r = 0;
  486. struct kvm_assigned_dev_kernel *match;
  487. struct pci_dev *dev;
  488. down_read(&kvm->slots_lock);
  489. mutex_lock(&kvm->lock);
  490. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  491. assigned_dev->assigned_dev_id);
  492. if (match) {
  493. /* device already assigned */
  494. r = -EEXIST;
  495. goto out;
  496. }
  497. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  498. if (match == NULL) {
  499. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  500. __func__);
  501. r = -ENOMEM;
  502. goto out;
  503. }
  504. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  505. assigned_dev->devfn);
  506. if (!dev) {
  507. printk(KERN_INFO "%s: host device not found\n", __func__);
  508. r = -EINVAL;
  509. goto out_free;
  510. }
  511. if (pci_enable_device(dev)) {
  512. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  513. r = -EBUSY;
  514. goto out_put;
  515. }
  516. r = pci_request_regions(dev, "kvm_assigned_device");
  517. if (r) {
  518. printk(KERN_INFO "%s: Could not get access to device regions\n",
  519. __func__);
  520. goto out_disable;
  521. }
  522. pci_reset_function(dev);
  523. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  524. match->host_busnr = assigned_dev->busnr;
  525. match->host_devfn = assigned_dev->devfn;
  526. match->flags = assigned_dev->flags;
  527. match->dev = dev;
  528. spin_lock_init(&match->assigned_dev_lock);
  529. match->irq_source_id = -1;
  530. match->kvm = kvm;
  531. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  532. INIT_WORK(&match->interrupt_work,
  533. kvm_assigned_dev_interrupt_work_handler);
  534. list_add(&match->list, &kvm->arch.assigned_dev_head);
  535. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  536. if (!kvm->arch.iommu_domain) {
  537. r = kvm_iommu_map_guest(kvm);
  538. if (r)
  539. goto out_list_del;
  540. }
  541. r = kvm_assign_device(kvm, match);
  542. if (r)
  543. goto out_list_del;
  544. }
  545. out:
  546. mutex_unlock(&kvm->lock);
  547. up_read(&kvm->slots_lock);
  548. return r;
  549. out_list_del:
  550. list_del(&match->list);
  551. pci_release_regions(dev);
  552. out_disable:
  553. pci_disable_device(dev);
  554. out_put:
  555. pci_dev_put(dev);
  556. out_free:
  557. kfree(match);
  558. mutex_unlock(&kvm->lock);
  559. up_read(&kvm->slots_lock);
  560. return r;
  561. }
  562. #endif
  563. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  564. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  565. struct kvm_assigned_pci_dev *assigned_dev)
  566. {
  567. int r = 0;
  568. struct kvm_assigned_dev_kernel *match;
  569. mutex_lock(&kvm->lock);
  570. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  571. assigned_dev->assigned_dev_id);
  572. if (!match) {
  573. printk(KERN_INFO "%s: device hasn't been assigned before, "
  574. "so cannot be deassigned\n", __func__);
  575. r = -EINVAL;
  576. goto out;
  577. }
  578. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  579. kvm_deassign_device(kvm, match);
  580. kvm_free_assigned_device(kvm, match);
  581. out:
  582. mutex_unlock(&kvm->lock);
  583. return r;
  584. }
  585. #endif
  586. inline int kvm_is_mmio_pfn(pfn_t pfn)
  587. {
  588. if (pfn_valid(pfn)) {
  589. struct page *page = compound_head(pfn_to_page(pfn));
  590. return PageReserved(page);
  591. }
  592. return true;
  593. }
  594. /*
  595. * Switches to specified vcpu, until a matching vcpu_put()
  596. */
  597. void vcpu_load(struct kvm_vcpu *vcpu)
  598. {
  599. int cpu;
  600. mutex_lock(&vcpu->mutex);
  601. cpu = get_cpu();
  602. preempt_notifier_register(&vcpu->preempt_notifier);
  603. kvm_arch_vcpu_load(vcpu, cpu);
  604. put_cpu();
  605. }
  606. void vcpu_put(struct kvm_vcpu *vcpu)
  607. {
  608. preempt_disable();
  609. kvm_arch_vcpu_put(vcpu);
  610. preempt_notifier_unregister(&vcpu->preempt_notifier);
  611. preempt_enable();
  612. mutex_unlock(&vcpu->mutex);
  613. }
  614. static void ack_flush(void *_completed)
  615. {
  616. }
  617. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  618. {
  619. int i, cpu, me;
  620. cpumask_var_t cpus;
  621. bool called = true;
  622. struct kvm_vcpu *vcpu;
  623. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  624. cpumask_clear(cpus);
  625. me = get_cpu();
  626. spin_lock(&kvm->requests_lock);
  627. kvm_for_each_vcpu(i, vcpu, kvm) {
  628. if (test_and_set_bit(req, &vcpu->requests))
  629. continue;
  630. cpu = vcpu->cpu;
  631. if (cpus != NULL && cpu != -1 && cpu != me)
  632. cpumask_set_cpu(cpu, cpus);
  633. }
  634. if (unlikely(cpus == NULL))
  635. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  636. else if (!cpumask_empty(cpus))
  637. smp_call_function_many(cpus, ack_flush, NULL, 1);
  638. else
  639. called = false;
  640. spin_unlock(&kvm->requests_lock);
  641. put_cpu();
  642. free_cpumask_var(cpus);
  643. return called;
  644. }
  645. void kvm_flush_remote_tlbs(struct kvm *kvm)
  646. {
  647. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  648. ++kvm->stat.remote_tlb_flush;
  649. }
  650. void kvm_reload_remote_mmus(struct kvm *kvm)
  651. {
  652. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  653. }
  654. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  655. {
  656. struct page *page;
  657. int r;
  658. mutex_init(&vcpu->mutex);
  659. vcpu->cpu = -1;
  660. vcpu->kvm = kvm;
  661. vcpu->vcpu_id = id;
  662. init_waitqueue_head(&vcpu->wq);
  663. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  664. if (!page) {
  665. r = -ENOMEM;
  666. goto fail;
  667. }
  668. vcpu->run = page_address(page);
  669. r = kvm_arch_vcpu_init(vcpu);
  670. if (r < 0)
  671. goto fail_free_run;
  672. return 0;
  673. fail_free_run:
  674. free_page((unsigned long)vcpu->run);
  675. fail:
  676. return r;
  677. }
  678. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  679. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  680. {
  681. kvm_arch_vcpu_uninit(vcpu);
  682. free_page((unsigned long)vcpu->run);
  683. }
  684. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  685. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  686. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  687. {
  688. return container_of(mn, struct kvm, mmu_notifier);
  689. }
  690. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  691. struct mm_struct *mm,
  692. unsigned long address)
  693. {
  694. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  695. int need_tlb_flush;
  696. /*
  697. * When ->invalidate_page runs, the linux pte has been zapped
  698. * already but the page is still allocated until
  699. * ->invalidate_page returns. So if we increase the sequence
  700. * here the kvm page fault will notice if the spte can't be
  701. * established because the page is going to be freed. If
  702. * instead the kvm page fault establishes the spte before
  703. * ->invalidate_page runs, kvm_unmap_hva will release it
  704. * before returning.
  705. *
  706. * The sequence increase only need to be seen at spin_unlock
  707. * time, and not at spin_lock time.
  708. *
  709. * Increasing the sequence after the spin_unlock would be
  710. * unsafe because the kvm page fault could then establish the
  711. * pte after kvm_unmap_hva returned, without noticing the page
  712. * is going to be freed.
  713. */
  714. spin_lock(&kvm->mmu_lock);
  715. kvm->mmu_notifier_seq++;
  716. need_tlb_flush = kvm_unmap_hva(kvm, address);
  717. spin_unlock(&kvm->mmu_lock);
  718. /* we've to flush the tlb before the pages can be freed */
  719. if (need_tlb_flush)
  720. kvm_flush_remote_tlbs(kvm);
  721. }
  722. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  723. struct mm_struct *mm,
  724. unsigned long start,
  725. unsigned long end)
  726. {
  727. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  728. int need_tlb_flush = 0;
  729. spin_lock(&kvm->mmu_lock);
  730. /*
  731. * The count increase must become visible at unlock time as no
  732. * spte can be established without taking the mmu_lock and
  733. * count is also read inside the mmu_lock critical section.
  734. */
  735. kvm->mmu_notifier_count++;
  736. for (; start < end; start += PAGE_SIZE)
  737. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  738. spin_unlock(&kvm->mmu_lock);
  739. /* we've to flush the tlb before the pages can be freed */
  740. if (need_tlb_flush)
  741. kvm_flush_remote_tlbs(kvm);
  742. }
  743. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  744. struct mm_struct *mm,
  745. unsigned long start,
  746. unsigned long end)
  747. {
  748. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  749. spin_lock(&kvm->mmu_lock);
  750. /*
  751. * This sequence increase will notify the kvm page fault that
  752. * the page that is going to be mapped in the spte could have
  753. * been freed.
  754. */
  755. kvm->mmu_notifier_seq++;
  756. /*
  757. * The above sequence increase must be visible before the
  758. * below count decrease but both values are read by the kvm
  759. * page fault under mmu_lock spinlock so we don't need to add
  760. * a smb_wmb() here in between the two.
  761. */
  762. kvm->mmu_notifier_count--;
  763. spin_unlock(&kvm->mmu_lock);
  764. BUG_ON(kvm->mmu_notifier_count < 0);
  765. }
  766. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  767. struct mm_struct *mm,
  768. unsigned long address)
  769. {
  770. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  771. int young;
  772. spin_lock(&kvm->mmu_lock);
  773. young = kvm_age_hva(kvm, address);
  774. spin_unlock(&kvm->mmu_lock);
  775. if (young)
  776. kvm_flush_remote_tlbs(kvm);
  777. return young;
  778. }
  779. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  780. struct mm_struct *mm)
  781. {
  782. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  783. kvm_arch_flush_shadow(kvm);
  784. }
  785. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  786. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  787. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  788. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  789. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  790. .release = kvm_mmu_notifier_release,
  791. };
  792. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  793. static struct kvm *kvm_create_vm(void)
  794. {
  795. struct kvm *kvm = kvm_arch_create_vm();
  796. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  797. struct page *page;
  798. #endif
  799. if (IS_ERR(kvm))
  800. goto out;
  801. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  802. INIT_LIST_HEAD(&kvm->irq_routing);
  803. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  804. #endif
  805. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  806. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  807. if (!page) {
  808. kfree(kvm);
  809. return ERR_PTR(-ENOMEM);
  810. }
  811. kvm->coalesced_mmio_ring =
  812. (struct kvm_coalesced_mmio_ring *)page_address(page);
  813. #endif
  814. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  815. {
  816. int err;
  817. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  818. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  819. if (err) {
  820. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  821. put_page(page);
  822. #endif
  823. kfree(kvm);
  824. return ERR_PTR(err);
  825. }
  826. }
  827. #endif
  828. kvm->mm = current->mm;
  829. atomic_inc(&kvm->mm->mm_count);
  830. spin_lock_init(&kvm->mmu_lock);
  831. spin_lock_init(&kvm->requests_lock);
  832. kvm_io_bus_init(&kvm->pio_bus);
  833. kvm_irqfd_init(kvm);
  834. mutex_init(&kvm->lock);
  835. mutex_init(&kvm->irq_lock);
  836. kvm_io_bus_init(&kvm->mmio_bus);
  837. init_rwsem(&kvm->slots_lock);
  838. atomic_set(&kvm->users_count, 1);
  839. spin_lock(&kvm_lock);
  840. list_add(&kvm->vm_list, &vm_list);
  841. spin_unlock(&kvm_lock);
  842. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  843. kvm_coalesced_mmio_init(kvm);
  844. #endif
  845. out:
  846. return kvm;
  847. }
  848. /*
  849. * Free any memory in @free but not in @dont.
  850. */
  851. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  852. struct kvm_memory_slot *dont)
  853. {
  854. int i;
  855. if (!dont || free->rmap != dont->rmap)
  856. vfree(free->rmap);
  857. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  858. vfree(free->dirty_bitmap);
  859. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  860. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  861. vfree(free->lpage_info[i]);
  862. free->lpage_info[i] = NULL;
  863. }
  864. }
  865. free->npages = 0;
  866. free->dirty_bitmap = NULL;
  867. free->rmap = NULL;
  868. }
  869. void kvm_free_physmem(struct kvm *kvm)
  870. {
  871. int i;
  872. for (i = 0; i < kvm->nmemslots; ++i)
  873. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  874. }
  875. static void kvm_destroy_vm(struct kvm *kvm)
  876. {
  877. struct mm_struct *mm = kvm->mm;
  878. kvm_arch_sync_events(kvm);
  879. spin_lock(&kvm_lock);
  880. list_del(&kvm->vm_list);
  881. spin_unlock(&kvm_lock);
  882. kvm_free_irq_routing(kvm);
  883. kvm_io_bus_destroy(&kvm->pio_bus);
  884. kvm_io_bus_destroy(&kvm->mmio_bus);
  885. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  886. if (kvm->coalesced_mmio_ring != NULL)
  887. free_page((unsigned long)kvm->coalesced_mmio_ring);
  888. #endif
  889. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  890. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  891. #else
  892. kvm_arch_flush_shadow(kvm);
  893. #endif
  894. kvm_arch_destroy_vm(kvm);
  895. mmdrop(mm);
  896. }
  897. void kvm_get_kvm(struct kvm *kvm)
  898. {
  899. atomic_inc(&kvm->users_count);
  900. }
  901. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  902. void kvm_put_kvm(struct kvm *kvm)
  903. {
  904. if (atomic_dec_and_test(&kvm->users_count))
  905. kvm_destroy_vm(kvm);
  906. }
  907. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  908. static int kvm_vm_release(struct inode *inode, struct file *filp)
  909. {
  910. struct kvm *kvm = filp->private_data;
  911. kvm_irqfd_release(kvm);
  912. kvm_put_kvm(kvm);
  913. return 0;
  914. }
  915. /*
  916. * Allocate some memory and give it an address in the guest physical address
  917. * space.
  918. *
  919. * Discontiguous memory is allowed, mostly for framebuffers.
  920. *
  921. * Must be called holding mmap_sem for write.
  922. */
  923. int __kvm_set_memory_region(struct kvm *kvm,
  924. struct kvm_userspace_memory_region *mem,
  925. int user_alloc)
  926. {
  927. int r;
  928. gfn_t base_gfn;
  929. unsigned long npages, ugfn;
  930. int lpages;
  931. unsigned long i, j;
  932. struct kvm_memory_slot *memslot;
  933. struct kvm_memory_slot old, new;
  934. r = -EINVAL;
  935. /* General sanity checks */
  936. if (mem->memory_size & (PAGE_SIZE - 1))
  937. goto out;
  938. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  939. goto out;
  940. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  941. goto out;
  942. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  943. goto out;
  944. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  945. goto out;
  946. memslot = &kvm->memslots[mem->slot];
  947. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  948. npages = mem->memory_size >> PAGE_SHIFT;
  949. if (!npages)
  950. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  951. new = old = *memslot;
  952. new.base_gfn = base_gfn;
  953. new.npages = npages;
  954. new.flags = mem->flags;
  955. /* Disallow changing a memory slot's size. */
  956. r = -EINVAL;
  957. if (npages && old.npages && npages != old.npages)
  958. goto out_free;
  959. /* Check for overlaps */
  960. r = -EEXIST;
  961. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  962. struct kvm_memory_slot *s = &kvm->memslots[i];
  963. if (s == memslot || !s->npages)
  964. continue;
  965. if (!((base_gfn + npages <= s->base_gfn) ||
  966. (base_gfn >= s->base_gfn + s->npages)))
  967. goto out_free;
  968. }
  969. /* Free page dirty bitmap if unneeded */
  970. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  971. new.dirty_bitmap = NULL;
  972. r = -ENOMEM;
  973. /* Allocate if a slot is being created */
  974. #ifndef CONFIG_S390
  975. if (npages && !new.rmap) {
  976. new.rmap = vmalloc(npages * sizeof(struct page *));
  977. if (!new.rmap)
  978. goto out_free;
  979. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  980. new.user_alloc = user_alloc;
  981. /*
  982. * hva_to_rmmap() serialzies with the mmu_lock and to be
  983. * safe it has to ignore memslots with !user_alloc &&
  984. * !userspace_addr.
  985. */
  986. if (user_alloc)
  987. new.userspace_addr = mem->userspace_addr;
  988. else
  989. new.userspace_addr = 0;
  990. }
  991. if (!npages)
  992. goto skip_lpage;
  993. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  994. int level = i + 2;
  995. /* Avoid unused variable warning if no large pages */
  996. (void)level;
  997. if (new.lpage_info[i])
  998. continue;
  999. lpages = 1 + (base_gfn + npages - 1) /
  1000. KVM_PAGES_PER_HPAGE(level);
  1001. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  1002. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  1003. if (!new.lpage_info[i])
  1004. goto out_free;
  1005. memset(new.lpage_info[i], 0,
  1006. lpages * sizeof(*new.lpage_info[i]));
  1007. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  1008. new.lpage_info[i][0].write_count = 1;
  1009. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  1010. new.lpage_info[i][lpages - 1].write_count = 1;
  1011. ugfn = new.userspace_addr >> PAGE_SHIFT;
  1012. /*
  1013. * If the gfn and userspace address are not aligned wrt each
  1014. * other, or if explicitly asked to, disable large page
  1015. * support for this slot
  1016. */
  1017. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  1018. !largepages_enabled)
  1019. for (j = 0; j < lpages; ++j)
  1020. new.lpage_info[i][j].write_count = 1;
  1021. }
  1022. skip_lpage:
  1023. /* Allocate page dirty bitmap if needed */
  1024. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  1025. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  1026. new.dirty_bitmap = vmalloc(dirty_bytes);
  1027. if (!new.dirty_bitmap)
  1028. goto out_free;
  1029. memset(new.dirty_bitmap, 0, dirty_bytes);
  1030. if (old.npages)
  1031. kvm_arch_flush_shadow(kvm);
  1032. }
  1033. #else /* not defined CONFIG_S390 */
  1034. new.user_alloc = user_alloc;
  1035. if (user_alloc)
  1036. new.userspace_addr = mem->userspace_addr;
  1037. #endif /* not defined CONFIG_S390 */
  1038. if (!npages)
  1039. kvm_arch_flush_shadow(kvm);
  1040. spin_lock(&kvm->mmu_lock);
  1041. if (mem->slot >= kvm->nmemslots)
  1042. kvm->nmemslots = mem->slot + 1;
  1043. *memslot = new;
  1044. spin_unlock(&kvm->mmu_lock);
  1045. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1046. if (r) {
  1047. spin_lock(&kvm->mmu_lock);
  1048. *memslot = old;
  1049. spin_unlock(&kvm->mmu_lock);
  1050. goto out_free;
  1051. }
  1052. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1053. /* Slot deletion case: we have to update the current slot */
  1054. spin_lock(&kvm->mmu_lock);
  1055. if (!npages)
  1056. *memslot = old;
  1057. spin_unlock(&kvm->mmu_lock);
  1058. #ifdef CONFIG_DMAR
  1059. /* map the pages in iommu page table */
  1060. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1061. if (r)
  1062. goto out;
  1063. #endif
  1064. return 0;
  1065. out_free:
  1066. kvm_free_physmem_slot(&new, &old);
  1067. out:
  1068. return r;
  1069. }
  1070. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1071. int kvm_set_memory_region(struct kvm *kvm,
  1072. struct kvm_userspace_memory_region *mem,
  1073. int user_alloc)
  1074. {
  1075. int r;
  1076. down_write(&kvm->slots_lock);
  1077. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1078. up_write(&kvm->slots_lock);
  1079. return r;
  1080. }
  1081. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1082. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1083. struct
  1084. kvm_userspace_memory_region *mem,
  1085. int user_alloc)
  1086. {
  1087. if (mem->slot >= KVM_MEMORY_SLOTS)
  1088. return -EINVAL;
  1089. return kvm_set_memory_region(kvm, mem, user_alloc);
  1090. }
  1091. int kvm_get_dirty_log(struct kvm *kvm,
  1092. struct kvm_dirty_log *log, int *is_dirty)
  1093. {
  1094. struct kvm_memory_slot *memslot;
  1095. int r, i;
  1096. int n;
  1097. unsigned long any = 0;
  1098. r = -EINVAL;
  1099. if (log->slot >= KVM_MEMORY_SLOTS)
  1100. goto out;
  1101. memslot = &kvm->memslots[log->slot];
  1102. r = -ENOENT;
  1103. if (!memslot->dirty_bitmap)
  1104. goto out;
  1105. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1106. for (i = 0; !any && i < n/sizeof(long); ++i)
  1107. any = memslot->dirty_bitmap[i];
  1108. r = -EFAULT;
  1109. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1110. goto out;
  1111. if (any)
  1112. *is_dirty = 1;
  1113. r = 0;
  1114. out:
  1115. return r;
  1116. }
  1117. void kvm_disable_largepages(void)
  1118. {
  1119. largepages_enabled = false;
  1120. }
  1121. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  1122. int is_error_page(struct page *page)
  1123. {
  1124. return page == bad_page;
  1125. }
  1126. EXPORT_SYMBOL_GPL(is_error_page);
  1127. int is_error_pfn(pfn_t pfn)
  1128. {
  1129. return pfn == bad_pfn;
  1130. }
  1131. EXPORT_SYMBOL_GPL(is_error_pfn);
  1132. static inline unsigned long bad_hva(void)
  1133. {
  1134. return PAGE_OFFSET;
  1135. }
  1136. int kvm_is_error_hva(unsigned long addr)
  1137. {
  1138. return addr == bad_hva();
  1139. }
  1140. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1141. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1142. {
  1143. int i;
  1144. for (i = 0; i < kvm->nmemslots; ++i) {
  1145. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1146. if (gfn >= memslot->base_gfn
  1147. && gfn < memslot->base_gfn + memslot->npages)
  1148. return memslot;
  1149. }
  1150. return NULL;
  1151. }
  1152. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1153. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1154. {
  1155. gfn = unalias_gfn(kvm, gfn);
  1156. return gfn_to_memslot_unaliased(kvm, gfn);
  1157. }
  1158. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1159. {
  1160. int i;
  1161. gfn = unalias_gfn(kvm, gfn);
  1162. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1163. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1164. if (gfn >= memslot->base_gfn
  1165. && gfn < memslot->base_gfn + memslot->npages)
  1166. return 1;
  1167. }
  1168. return 0;
  1169. }
  1170. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1171. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1172. {
  1173. struct kvm_memory_slot *slot;
  1174. gfn = unalias_gfn(kvm, gfn);
  1175. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1176. if (!slot)
  1177. return bad_hva();
  1178. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1179. }
  1180. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1181. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1182. {
  1183. struct page *page[1];
  1184. unsigned long addr;
  1185. int npages;
  1186. pfn_t pfn;
  1187. might_sleep();
  1188. addr = gfn_to_hva(kvm, gfn);
  1189. if (kvm_is_error_hva(addr)) {
  1190. get_page(bad_page);
  1191. return page_to_pfn(bad_page);
  1192. }
  1193. npages = get_user_pages_fast(addr, 1, 1, page);
  1194. if (unlikely(npages != 1)) {
  1195. struct vm_area_struct *vma;
  1196. down_read(&current->mm->mmap_sem);
  1197. vma = find_vma(current->mm, addr);
  1198. if (vma == NULL || addr < vma->vm_start ||
  1199. !(vma->vm_flags & VM_PFNMAP)) {
  1200. up_read(&current->mm->mmap_sem);
  1201. get_page(bad_page);
  1202. return page_to_pfn(bad_page);
  1203. }
  1204. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1205. up_read(&current->mm->mmap_sem);
  1206. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1207. } else
  1208. pfn = page_to_pfn(page[0]);
  1209. return pfn;
  1210. }
  1211. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1212. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1213. {
  1214. pfn_t pfn;
  1215. pfn = gfn_to_pfn(kvm, gfn);
  1216. if (!kvm_is_mmio_pfn(pfn))
  1217. return pfn_to_page(pfn);
  1218. WARN_ON(kvm_is_mmio_pfn(pfn));
  1219. get_page(bad_page);
  1220. return bad_page;
  1221. }
  1222. EXPORT_SYMBOL_GPL(gfn_to_page);
  1223. void kvm_release_page_clean(struct page *page)
  1224. {
  1225. kvm_release_pfn_clean(page_to_pfn(page));
  1226. }
  1227. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1228. void kvm_release_pfn_clean(pfn_t pfn)
  1229. {
  1230. if (!kvm_is_mmio_pfn(pfn))
  1231. put_page(pfn_to_page(pfn));
  1232. }
  1233. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1234. void kvm_release_page_dirty(struct page *page)
  1235. {
  1236. kvm_release_pfn_dirty(page_to_pfn(page));
  1237. }
  1238. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1239. void kvm_release_pfn_dirty(pfn_t pfn)
  1240. {
  1241. kvm_set_pfn_dirty(pfn);
  1242. kvm_release_pfn_clean(pfn);
  1243. }
  1244. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1245. void kvm_set_page_dirty(struct page *page)
  1246. {
  1247. kvm_set_pfn_dirty(page_to_pfn(page));
  1248. }
  1249. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1250. void kvm_set_pfn_dirty(pfn_t pfn)
  1251. {
  1252. if (!kvm_is_mmio_pfn(pfn)) {
  1253. struct page *page = pfn_to_page(pfn);
  1254. if (!PageReserved(page))
  1255. SetPageDirty(page);
  1256. }
  1257. }
  1258. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1259. void kvm_set_pfn_accessed(pfn_t pfn)
  1260. {
  1261. if (!kvm_is_mmio_pfn(pfn))
  1262. mark_page_accessed(pfn_to_page(pfn));
  1263. }
  1264. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1265. void kvm_get_pfn(pfn_t pfn)
  1266. {
  1267. if (!kvm_is_mmio_pfn(pfn))
  1268. get_page(pfn_to_page(pfn));
  1269. }
  1270. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1271. static int next_segment(unsigned long len, int offset)
  1272. {
  1273. if (len > PAGE_SIZE - offset)
  1274. return PAGE_SIZE - offset;
  1275. else
  1276. return len;
  1277. }
  1278. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1279. int len)
  1280. {
  1281. int r;
  1282. unsigned long addr;
  1283. addr = gfn_to_hva(kvm, gfn);
  1284. if (kvm_is_error_hva(addr))
  1285. return -EFAULT;
  1286. r = copy_from_user(data, (void __user *)addr + offset, len);
  1287. if (r)
  1288. return -EFAULT;
  1289. return 0;
  1290. }
  1291. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1292. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1293. {
  1294. gfn_t gfn = gpa >> PAGE_SHIFT;
  1295. int seg;
  1296. int offset = offset_in_page(gpa);
  1297. int ret;
  1298. while ((seg = next_segment(len, offset)) != 0) {
  1299. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1300. if (ret < 0)
  1301. return ret;
  1302. offset = 0;
  1303. len -= seg;
  1304. data += seg;
  1305. ++gfn;
  1306. }
  1307. return 0;
  1308. }
  1309. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1310. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1311. unsigned long len)
  1312. {
  1313. int r;
  1314. unsigned long addr;
  1315. gfn_t gfn = gpa >> PAGE_SHIFT;
  1316. int offset = offset_in_page(gpa);
  1317. addr = gfn_to_hva(kvm, gfn);
  1318. if (kvm_is_error_hva(addr))
  1319. return -EFAULT;
  1320. pagefault_disable();
  1321. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1322. pagefault_enable();
  1323. if (r)
  1324. return -EFAULT;
  1325. return 0;
  1326. }
  1327. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1328. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1329. int offset, int len)
  1330. {
  1331. int r;
  1332. unsigned long addr;
  1333. addr = gfn_to_hva(kvm, gfn);
  1334. if (kvm_is_error_hva(addr))
  1335. return -EFAULT;
  1336. r = copy_to_user((void __user *)addr + offset, data, len);
  1337. if (r)
  1338. return -EFAULT;
  1339. mark_page_dirty(kvm, gfn);
  1340. return 0;
  1341. }
  1342. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1343. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1344. unsigned long len)
  1345. {
  1346. gfn_t gfn = gpa >> PAGE_SHIFT;
  1347. int seg;
  1348. int offset = offset_in_page(gpa);
  1349. int ret;
  1350. while ((seg = next_segment(len, offset)) != 0) {
  1351. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1352. if (ret < 0)
  1353. return ret;
  1354. offset = 0;
  1355. len -= seg;
  1356. data += seg;
  1357. ++gfn;
  1358. }
  1359. return 0;
  1360. }
  1361. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1362. {
  1363. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1364. }
  1365. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1366. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1367. {
  1368. gfn_t gfn = gpa >> PAGE_SHIFT;
  1369. int seg;
  1370. int offset = offset_in_page(gpa);
  1371. int ret;
  1372. while ((seg = next_segment(len, offset)) != 0) {
  1373. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1374. if (ret < 0)
  1375. return ret;
  1376. offset = 0;
  1377. len -= seg;
  1378. ++gfn;
  1379. }
  1380. return 0;
  1381. }
  1382. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1383. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1384. {
  1385. struct kvm_memory_slot *memslot;
  1386. gfn = unalias_gfn(kvm, gfn);
  1387. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1388. if (memslot && memslot->dirty_bitmap) {
  1389. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1390. /* avoid RMW */
  1391. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1392. set_bit(rel_gfn, memslot->dirty_bitmap);
  1393. }
  1394. }
  1395. /*
  1396. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1397. */
  1398. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1399. {
  1400. DEFINE_WAIT(wait);
  1401. for (;;) {
  1402. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1403. if ((kvm_arch_interrupt_allowed(vcpu) &&
  1404. kvm_cpu_has_interrupt(vcpu)) ||
  1405. kvm_arch_vcpu_runnable(vcpu)) {
  1406. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1407. break;
  1408. }
  1409. if (kvm_cpu_has_pending_timer(vcpu))
  1410. break;
  1411. if (signal_pending(current))
  1412. break;
  1413. vcpu_put(vcpu);
  1414. schedule();
  1415. vcpu_load(vcpu);
  1416. }
  1417. finish_wait(&vcpu->wq, &wait);
  1418. }
  1419. void kvm_resched(struct kvm_vcpu *vcpu)
  1420. {
  1421. if (!need_resched())
  1422. return;
  1423. cond_resched();
  1424. }
  1425. EXPORT_SYMBOL_GPL(kvm_resched);
  1426. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1427. {
  1428. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1429. struct page *page;
  1430. if (vmf->pgoff == 0)
  1431. page = virt_to_page(vcpu->run);
  1432. #ifdef CONFIG_X86
  1433. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1434. page = virt_to_page(vcpu->arch.pio_data);
  1435. #endif
  1436. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1437. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1438. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1439. #endif
  1440. else
  1441. return VM_FAULT_SIGBUS;
  1442. get_page(page);
  1443. vmf->page = page;
  1444. return 0;
  1445. }
  1446. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1447. .fault = kvm_vcpu_fault,
  1448. };
  1449. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1450. {
  1451. vma->vm_ops = &kvm_vcpu_vm_ops;
  1452. return 0;
  1453. }
  1454. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1455. {
  1456. struct kvm_vcpu *vcpu = filp->private_data;
  1457. kvm_put_kvm(vcpu->kvm);
  1458. return 0;
  1459. }
  1460. static struct file_operations kvm_vcpu_fops = {
  1461. .release = kvm_vcpu_release,
  1462. .unlocked_ioctl = kvm_vcpu_ioctl,
  1463. .compat_ioctl = kvm_vcpu_ioctl,
  1464. .mmap = kvm_vcpu_mmap,
  1465. };
  1466. /*
  1467. * Allocates an inode for the vcpu.
  1468. */
  1469. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1470. {
  1471. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1472. }
  1473. /*
  1474. * Creates some virtual cpus. Good luck creating more than one.
  1475. */
  1476. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1477. {
  1478. int r;
  1479. struct kvm_vcpu *vcpu, *v;
  1480. vcpu = kvm_arch_vcpu_create(kvm, id);
  1481. if (IS_ERR(vcpu))
  1482. return PTR_ERR(vcpu);
  1483. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1484. r = kvm_arch_vcpu_setup(vcpu);
  1485. if (r)
  1486. return r;
  1487. mutex_lock(&kvm->lock);
  1488. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1489. r = -EINVAL;
  1490. goto vcpu_destroy;
  1491. }
  1492. kvm_for_each_vcpu(r, v, kvm)
  1493. if (v->vcpu_id == id) {
  1494. r = -EEXIST;
  1495. goto vcpu_destroy;
  1496. }
  1497. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1498. /* Now it's all set up, let userspace reach it */
  1499. kvm_get_kvm(kvm);
  1500. r = create_vcpu_fd(vcpu);
  1501. if (r < 0) {
  1502. kvm_put_kvm(kvm);
  1503. goto vcpu_destroy;
  1504. }
  1505. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1506. smp_wmb();
  1507. atomic_inc(&kvm->online_vcpus);
  1508. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1509. if (kvm->bsp_vcpu_id == id)
  1510. kvm->bsp_vcpu = vcpu;
  1511. #endif
  1512. mutex_unlock(&kvm->lock);
  1513. return r;
  1514. vcpu_destroy:
  1515. mutex_unlock(&kvm->lock);
  1516. kvm_arch_vcpu_destroy(vcpu);
  1517. return r;
  1518. }
  1519. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1520. {
  1521. if (sigset) {
  1522. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1523. vcpu->sigset_active = 1;
  1524. vcpu->sigset = *sigset;
  1525. } else
  1526. vcpu->sigset_active = 0;
  1527. return 0;
  1528. }
  1529. #ifdef __KVM_HAVE_MSIX
  1530. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1531. struct kvm_assigned_msix_nr *entry_nr)
  1532. {
  1533. int r = 0;
  1534. struct kvm_assigned_dev_kernel *adev;
  1535. mutex_lock(&kvm->lock);
  1536. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1537. entry_nr->assigned_dev_id);
  1538. if (!adev) {
  1539. r = -EINVAL;
  1540. goto msix_nr_out;
  1541. }
  1542. if (adev->entries_nr == 0) {
  1543. adev->entries_nr = entry_nr->entry_nr;
  1544. if (adev->entries_nr == 0 ||
  1545. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1546. r = -EINVAL;
  1547. goto msix_nr_out;
  1548. }
  1549. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1550. entry_nr->entry_nr,
  1551. GFP_KERNEL);
  1552. if (!adev->host_msix_entries) {
  1553. r = -ENOMEM;
  1554. goto msix_nr_out;
  1555. }
  1556. adev->guest_msix_entries = kzalloc(
  1557. sizeof(struct kvm_guest_msix_entry) *
  1558. entry_nr->entry_nr, GFP_KERNEL);
  1559. if (!adev->guest_msix_entries) {
  1560. kfree(adev->host_msix_entries);
  1561. r = -ENOMEM;
  1562. goto msix_nr_out;
  1563. }
  1564. } else /* Not allowed set MSI-X number twice */
  1565. r = -EINVAL;
  1566. msix_nr_out:
  1567. mutex_unlock(&kvm->lock);
  1568. return r;
  1569. }
  1570. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1571. struct kvm_assigned_msix_entry *entry)
  1572. {
  1573. int r = 0, i;
  1574. struct kvm_assigned_dev_kernel *adev;
  1575. mutex_lock(&kvm->lock);
  1576. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1577. entry->assigned_dev_id);
  1578. if (!adev) {
  1579. r = -EINVAL;
  1580. goto msix_entry_out;
  1581. }
  1582. for (i = 0; i < adev->entries_nr; i++)
  1583. if (adev->guest_msix_entries[i].vector == 0 ||
  1584. adev->guest_msix_entries[i].entry == entry->entry) {
  1585. adev->guest_msix_entries[i].entry = entry->entry;
  1586. adev->guest_msix_entries[i].vector = entry->gsi;
  1587. adev->host_msix_entries[i].entry = entry->entry;
  1588. break;
  1589. }
  1590. if (i == adev->entries_nr) {
  1591. r = -ENOSPC;
  1592. goto msix_entry_out;
  1593. }
  1594. msix_entry_out:
  1595. mutex_unlock(&kvm->lock);
  1596. return r;
  1597. }
  1598. #endif
  1599. static long kvm_vcpu_ioctl(struct file *filp,
  1600. unsigned int ioctl, unsigned long arg)
  1601. {
  1602. struct kvm_vcpu *vcpu = filp->private_data;
  1603. void __user *argp = (void __user *)arg;
  1604. int r;
  1605. struct kvm_fpu *fpu = NULL;
  1606. struct kvm_sregs *kvm_sregs = NULL;
  1607. if (vcpu->kvm->mm != current->mm)
  1608. return -EIO;
  1609. switch (ioctl) {
  1610. case KVM_RUN:
  1611. r = -EINVAL;
  1612. if (arg)
  1613. goto out;
  1614. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1615. break;
  1616. case KVM_GET_REGS: {
  1617. struct kvm_regs *kvm_regs;
  1618. r = -ENOMEM;
  1619. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1620. if (!kvm_regs)
  1621. goto out;
  1622. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1623. if (r)
  1624. goto out_free1;
  1625. r = -EFAULT;
  1626. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1627. goto out_free1;
  1628. r = 0;
  1629. out_free1:
  1630. kfree(kvm_regs);
  1631. break;
  1632. }
  1633. case KVM_SET_REGS: {
  1634. struct kvm_regs *kvm_regs;
  1635. r = -ENOMEM;
  1636. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1637. if (!kvm_regs)
  1638. goto out;
  1639. r = -EFAULT;
  1640. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1641. goto out_free2;
  1642. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1643. if (r)
  1644. goto out_free2;
  1645. r = 0;
  1646. out_free2:
  1647. kfree(kvm_regs);
  1648. break;
  1649. }
  1650. case KVM_GET_SREGS: {
  1651. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1652. r = -ENOMEM;
  1653. if (!kvm_sregs)
  1654. goto out;
  1655. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1656. if (r)
  1657. goto out;
  1658. r = -EFAULT;
  1659. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1660. goto out;
  1661. r = 0;
  1662. break;
  1663. }
  1664. case KVM_SET_SREGS: {
  1665. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1666. r = -ENOMEM;
  1667. if (!kvm_sregs)
  1668. goto out;
  1669. r = -EFAULT;
  1670. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1671. goto out;
  1672. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1673. if (r)
  1674. goto out;
  1675. r = 0;
  1676. break;
  1677. }
  1678. case KVM_GET_MP_STATE: {
  1679. struct kvm_mp_state mp_state;
  1680. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1681. if (r)
  1682. goto out;
  1683. r = -EFAULT;
  1684. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1685. goto out;
  1686. r = 0;
  1687. break;
  1688. }
  1689. case KVM_SET_MP_STATE: {
  1690. struct kvm_mp_state mp_state;
  1691. r = -EFAULT;
  1692. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1693. goto out;
  1694. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1695. if (r)
  1696. goto out;
  1697. r = 0;
  1698. break;
  1699. }
  1700. case KVM_TRANSLATE: {
  1701. struct kvm_translation tr;
  1702. r = -EFAULT;
  1703. if (copy_from_user(&tr, argp, sizeof tr))
  1704. goto out;
  1705. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1706. if (r)
  1707. goto out;
  1708. r = -EFAULT;
  1709. if (copy_to_user(argp, &tr, sizeof tr))
  1710. goto out;
  1711. r = 0;
  1712. break;
  1713. }
  1714. case KVM_SET_GUEST_DEBUG: {
  1715. struct kvm_guest_debug dbg;
  1716. r = -EFAULT;
  1717. if (copy_from_user(&dbg, argp, sizeof dbg))
  1718. goto out;
  1719. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1720. if (r)
  1721. goto out;
  1722. r = 0;
  1723. break;
  1724. }
  1725. case KVM_SET_SIGNAL_MASK: {
  1726. struct kvm_signal_mask __user *sigmask_arg = argp;
  1727. struct kvm_signal_mask kvm_sigmask;
  1728. sigset_t sigset, *p;
  1729. p = NULL;
  1730. if (argp) {
  1731. r = -EFAULT;
  1732. if (copy_from_user(&kvm_sigmask, argp,
  1733. sizeof kvm_sigmask))
  1734. goto out;
  1735. r = -EINVAL;
  1736. if (kvm_sigmask.len != sizeof sigset)
  1737. goto out;
  1738. r = -EFAULT;
  1739. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1740. sizeof sigset))
  1741. goto out;
  1742. p = &sigset;
  1743. }
  1744. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1745. break;
  1746. }
  1747. case KVM_GET_FPU: {
  1748. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1749. r = -ENOMEM;
  1750. if (!fpu)
  1751. goto out;
  1752. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1753. if (r)
  1754. goto out;
  1755. r = -EFAULT;
  1756. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1757. goto out;
  1758. r = 0;
  1759. break;
  1760. }
  1761. case KVM_SET_FPU: {
  1762. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1763. r = -ENOMEM;
  1764. if (!fpu)
  1765. goto out;
  1766. r = -EFAULT;
  1767. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1768. goto out;
  1769. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1770. if (r)
  1771. goto out;
  1772. r = 0;
  1773. break;
  1774. }
  1775. default:
  1776. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1777. }
  1778. out:
  1779. kfree(fpu);
  1780. kfree(kvm_sregs);
  1781. return r;
  1782. }
  1783. static long kvm_vm_ioctl(struct file *filp,
  1784. unsigned int ioctl, unsigned long arg)
  1785. {
  1786. struct kvm *kvm = filp->private_data;
  1787. void __user *argp = (void __user *)arg;
  1788. int r;
  1789. if (kvm->mm != current->mm)
  1790. return -EIO;
  1791. switch (ioctl) {
  1792. case KVM_CREATE_VCPU:
  1793. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1794. if (r < 0)
  1795. goto out;
  1796. break;
  1797. case KVM_SET_USER_MEMORY_REGION: {
  1798. struct kvm_userspace_memory_region kvm_userspace_mem;
  1799. r = -EFAULT;
  1800. if (copy_from_user(&kvm_userspace_mem, argp,
  1801. sizeof kvm_userspace_mem))
  1802. goto out;
  1803. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1804. if (r)
  1805. goto out;
  1806. break;
  1807. }
  1808. case KVM_GET_DIRTY_LOG: {
  1809. struct kvm_dirty_log log;
  1810. r = -EFAULT;
  1811. if (copy_from_user(&log, argp, sizeof log))
  1812. goto out;
  1813. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1814. if (r)
  1815. goto out;
  1816. break;
  1817. }
  1818. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1819. case KVM_REGISTER_COALESCED_MMIO: {
  1820. struct kvm_coalesced_mmio_zone zone;
  1821. r = -EFAULT;
  1822. if (copy_from_user(&zone, argp, sizeof zone))
  1823. goto out;
  1824. r = -ENXIO;
  1825. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1826. if (r)
  1827. goto out;
  1828. r = 0;
  1829. break;
  1830. }
  1831. case KVM_UNREGISTER_COALESCED_MMIO: {
  1832. struct kvm_coalesced_mmio_zone zone;
  1833. r = -EFAULT;
  1834. if (copy_from_user(&zone, argp, sizeof zone))
  1835. goto out;
  1836. r = -ENXIO;
  1837. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1838. if (r)
  1839. goto out;
  1840. r = 0;
  1841. break;
  1842. }
  1843. #endif
  1844. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1845. case KVM_ASSIGN_PCI_DEVICE: {
  1846. struct kvm_assigned_pci_dev assigned_dev;
  1847. r = -EFAULT;
  1848. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1849. goto out;
  1850. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1851. if (r)
  1852. goto out;
  1853. break;
  1854. }
  1855. case KVM_ASSIGN_IRQ: {
  1856. r = -EOPNOTSUPP;
  1857. break;
  1858. }
  1859. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1860. case KVM_ASSIGN_DEV_IRQ: {
  1861. struct kvm_assigned_irq assigned_irq;
  1862. r = -EFAULT;
  1863. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1864. goto out;
  1865. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1866. if (r)
  1867. goto out;
  1868. break;
  1869. }
  1870. case KVM_DEASSIGN_DEV_IRQ: {
  1871. struct kvm_assigned_irq assigned_irq;
  1872. r = -EFAULT;
  1873. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1874. goto out;
  1875. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1876. if (r)
  1877. goto out;
  1878. break;
  1879. }
  1880. #endif
  1881. #endif
  1882. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1883. case KVM_DEASSIGN_PCI_DEVICE: {
  1884. struct kvm_assigned_pci_dev assigned_dev;
  1885. r = -EFAULT;
  1886. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1887. goto out;
  1888. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1889. if (r)
  1890. goto out;
  1891. break;
  1892. }
  1893. #endif
  1894. #ifdef KVM_CAP_IRQ_ROUTING
  1895. case KVM_SET_GSI_ROUTING: {
  1896. struct kvm_irq_routing routing;
  1897. struct kvm_irq_routing __user *urouting;
  1898. struct kvm_irq_routing_entry *entries;
  1899. r = -EFAULT;
  1900. if (copy_from_user(&routing, argp, sizeof(routing)))
  1901. goto out;
  1902. r = -EINVAL;
  1903. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1904. goto out;
  1905. if (routing.flags)
  1906. goto out;
  1907. r = -ENOMEM;
  1908. entries = vmalloc(routing.nr * sizeof(*entries));
  1909. if (!entries)
  1910. goto out;
  1911. r = -EFAULT;
  1912. urouting = argp;
  1913. if (copy_from_user(entries, urouting->entries,
  1914. routing.nr * sizeof(*entries)))
  1915. goto out_free_irq_routing;
  1916. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1917. routing.flags);
  1918. out_free_irq_routing:
  1919. vfree(entries);
  1920. break;
  1921. }
  1922. #ifdef __KVM_HAVE_MSIX
  1923. case KVM_ASSIGN_SET_MSIX_NR: {
  1924. struct kvm_assigned_msix_nr entry_nr;
  1925. r = -EFAULT;
  1926. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1927. goto out;
  1928. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1929. if (r)
  1930. goto out;
  1931. break;
  1932. }
  1933. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1934. struct kvm_assigned_msix_entry entry;
  1935. r = -EFAULT;
  1936. if (copy_from_user(&entry, argp, sizeof entry))
  1937. goto out;
  1938. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1939. if (r)
  1940. goto out;
  1941. break;
  1942. }
  1943. #endif
  1944. #endif /* KVM_CAP_IRQ_ROUTING */
  1945. case KVM_IRQFD: {
  1946. struct kvm_irqfd data;
  1947. r = -EFAULT;
  1948. if (copy_from_user(&data, argp, sizeof data))
  1949. goto out;
  1950. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1951. break;
  1952. }
  1953. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1954. case KVM_SET_BOOT_CPU_ID:
  1955. r = 0;
  1956. mutex_lock(&kvm->lock);
  1957. if (atomic_read(&kvm->online_vcpus) != 0)
  1958. r = -EBUSY;
  1959. else
  1960. kvm->bsp_vcpu_id = arg;
  1961. mutex_unlock(&kvm->lock);
  1962. break;
  1963. #endif
  1964. default:
  1965. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1966. }
  1967. out:
  1968. return r;
  1969. }
  1970. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1971. {
  1972. struct page *page[1];
  1973. unsigned long addr;
  1974. int npages;
  1975. gfn_t gfn = vmf->pgoff;
  1976. struct kvm *kvm = vma->vm_file->private_data;
  1977. addr = gfn_to_hva(kvm, gfn);
  1978. if (kvm_is_error_hva(addr))
  1979. return VM_FAULT_SIGBUS;
  1980. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1981. NULL);
  1982. if (unlikely(npages != 1))
  1983. return VM_FAULT_SIGBUS;
  1984. vmf->page = page[0];
  1985. return 0;
  1986. }
  1987. static struct vm_operations_struct kvm_vm_vm_ops = {
  1988. .fault = kvm_vm_fault,
  1989. };
  1990. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1991. {
  1992. vma->vm_ops = &kvm_vm_vm_ops;
  1993. return 0;
  1994. }
  1995. static struct file_operations kvm_vm_fops = {
  1996. .release = kvm_vm_release,
  1997. .unlocked_ioctl = kvm_vm_ioctl,
  1998. .compat_ioctl = kvm_vm_ioctl,
  1999. .mmap = kvm_vm_mmap,
  2000. };
  2001. static int kvm_dev_ioctl_create_vm(void)
  2002. {
  2003. int fd;
  2004. struct kvm *kvm;
  2005. kvm = kvm_create_vm();
  2006. if (IS_ERR(kvm))
  2007. return PTR_ERR(kvm);
  2008. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  2009. if (fd < 0)
  2010. kvm_put_kvm(kvm);
  2011. return fd;
  2012. }
  2013. static long kvm_dev_ioctl_check_extension_generic(long arg)
  2014. {
  2015. switch (arg) {
  2016. case KVM_CAP_USER_MEMORY:
  2017. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  2018. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  2019. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  2020. case KVM_CAP_SET_BOOT_CPU_ID:
  2021. #endif
  2022. return 1;
  2023. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  2024. case KVM_CAP_IRQ_ROUTING:
  2025. return KVM_MAX_IRQ_ROUTES;
  2026. #endif
  2027. default:
  2028. break;
  2029. }
  2030. return kvm_dev_ioctl_check_extension(arg);
  2031. }
  2032. static long kvm_dev_ioctl(struct file *filp,
  2033. unsigned int ioctl, unsigned long arg)
  2034. {
  2035. long r = -EINVAL;
  2036. switch (ioctl) {
  2037. case KVM_GET_API_VERSION:
  2038. r = -EINVAL;
  2039. if (arg)
  2040. goto out;
  2041. r = KVM_API_VERSION;
  2042. break;
  2043. case KVM_CREATE_VM:
  2044. r = -EINVAL;
  2045. if (arg)
  2046. goto out;
  2047. r = kvm_dev_ioctl_create_vm();
  2048. break;
  2049. case KVM_CHECK_EXTENSION:
  2050. r = kvm_dev_ioctl_check_extension_generic(arg);
  2051. break;
  2052. case KVM_GET_VCPU_MMAP_SIZE:
  2053. r = -EINVAL;
  2054. if (arg)
  2055. goto out;
  2056. r = PAGE_SIZE; /* struct kvm_run */
  2057. #ifdef CONFIG_X86
  2058. r += PAGE_SIZE; /* pio data page */
  2059. #endif
  2060. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2061. r += PAGE_SIZE; /* coalesced mmio ring page */
  2062. #endif
  2063. break;
  2064. case KVM_TRACE_ENABLE:
  2065. case KVM_TRACE_PAUSE:
  2066. case KVM_TRACE_DISABLE:
  2067. r = -EOPNOTSUPP;
  2068. break;
  2069. default:
  2070. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2071. }
  2072. out:
  2073. return r;
  2074. }
  2075. static struct file_operations kvm_chardev_ops = {
  2076. .unlocked_ioctl = kvm_dev_ioctl,
  2077. .compat_ioctl = kvm_dev_ioctl,
  2078. };
  2079. static struct miscdevice kvm_dev = {
  2080. KVM_MINOR,
  2081. "kvm",
  2082. &kvm_chardev_ops,
  2083. };
  2084. static void hardware_enable(void *junk)
  2085. {
  2086. int cpu = raw_smp_processor_id();
  2087. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2088. return;
  2089. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2090. kvm_arch_hardware_enable(NULL);
  2091. }
  2092. static void hardware_disable(void *junk)
  2093. {
  2094. int cpu = raw_smp_processor_id();
  2095. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2096. return;
  2097. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2098. kvm_arch_hardware_disable(NULL);
  2099. }
  2100. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2101. void *v)
  2102. {
  2103. int cpu = (long)v;
  2104. val &= ~CPU_TASKS_FROZEN;
  2105. switch (val) {
  2106. case CPU_DYING:
  2107. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2108. cpu);
  2109. hardware_disable(NULL);
  2110. break;
  2111. case CPU_UP_CANCELED:
  2112. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2113. cpu);
  2114. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2115. break;
  2116. case CPU_ONLINE:
  2117. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2118. cpu);
  2119. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2120. break;
  2121. }
  2122. return NOTIFY_OK;
  2123. }
  2124. asmlinkage void kvm_handle_fault_on_reboot(void)
  2125. {
  2126. if (kvm_rebooting)
  2127. /* spin while reset goes on */
  2128. while (true)
  2129. ;
  2130. /* Fault while not rebooting. We want the trace. */
  2131. BUG();
  2132. }
  2133. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2134. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2135. void *v)
  2136. {
  2137. /*
  2138. * Some (well, at least mine) BIOSes hang on reboot if
  2139. * in vmx root mode.
  2140. *
  2141. * And Intel TXT required VMX off for all cpu when system shutdown.
  2142. */
  2143. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2144. kvm_rebooting = true;
  2145. on_each_cpu(hardware_disable, NULL, 1);
  2146. return NOTIFY_OK;
  2147. }
  2148. static struct notifier_block kvm_reboot_notifier = {
  2149. .notifier_call = kvm_reboot,
  2150. .priority = 0,
  2151. };
  2152. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2153. {
  2154. memset(bus, 0, sizeof(*bus));
  2155. }
  2156. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2157. {
  2158. int i;
  2159. for (i = 0; i < bus->dev_count; i++) {
  2160. struct kvm_io_device *pos = bus->devs[i];
  2161. kvm_iodevice_destructor(pos);
  2162. }
  2163. }
  2164. /* kvm_io_bus_write - called under kvm->slots_lock */
  2165. int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
  2166. int len, const void *val)
  2167. {
  2168. int i;
  2169. for (i = 0; i < bus->dev_count; i++)
  2170. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  2171. return 0;
  2172. return -EOPNOTSUPP;
  2173. }
  2174. /* kvm_io_bus_read - called under kvm->slots_lock */
  2175. int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
  2176. {
  2177. int i;
  2178. for (i = 0; i < bus->dev_count; i++)
  2179. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  2180. return 0;
  2181. return -EOPNOTSUPP;
  2182. }
  2183. void kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
  2184. struct kvm_io_device *dev)
  2185. {
  2186. down_write(&kvm->slots_lock);
  2187. __kvm_io_bus_register_dev(bus, dev);
  2188. up_write(&kvm->slots_lock);
  2189. }
  2190. /* An unlocked version. Caller must have write lock on slots_lock. */
  2191. void __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
  2192. struct kvm_io_device *dev)
  2193. {
  2194. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2195. bus->devs[bus->dev_count++] = dev;
  2196. }
  2197. static struct notifier_block kvm_cpu_notifier = {
  2198. .notifier_call = kvm_cpu_hotplug,
  2199. .priority = 20, /* must be > scheduler priority */
  2200. };
  2201. static int vm_stat_get(void *_offset, u64 *val)
  2202. {
  2203. unsigned offset = (long)_offset;
  2204. struct kvm *kvm;
  2205. *val = 0;
  2206. spin_lock(&kvm_lock);
  2207. list_for_each_entry(kvm, &vm_list, vm_list)
  2208. *val += *(u32 *)((void *)kvm + offset);
  2209. spin_unlock(&kvm_lock);
  2210. return 0;
  2211. }
  2212. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2213. static int vcpu_stat_get(void *_offset, u64 *val)
  2214. {
  2215. unsigned offset = (long)_offset;
  2216. struct kvm *kvm;
  2217. struct kvm_vcpu *vcpu;
  2218. int i;
  2219. *val = 0;
  2220. spin_lock(&kvm_lock);
  2221. list_for_each_entry(kvm, &vm_list, vm_list)
  2222. kvm_for_each_vcpu(i, vcpu, kvm)
  2223. *val += *(u32 *)((void *)vcpu + offset);
  2224. spin_unlock(&kvm_lock);
  2225. return 0;
  2226. }
  2227. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2228. static struct file_operations *stat_fops[] = {
  2229. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2230. [KVM_STAT_VM] = &vm_stat_fops,
  2231. };
  2232. static void kvm_init_debug(void)
  2233. {
  2234. struct kvm_stats_debugfs_item *p;
  2235. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2236. for (p = debugfs_entries; p->name; ++p)
  2237. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2238. (void *)(long)p->offset,
  2239. stat_fops[p->kind]);
  2240. }
  2241. static void kvm_exit_debug(void)
  2242. {
  2243. struct kvm_stats_debugfs_item *p;
  2244. for (p = debugfs_entries; p->name; ++p)
  2245. debugfs_remove(p->dentry);
  2246. debugfs_remove(kvm_debugfs_dir);
  2247. }
  2248. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2249. {
  2250. hardware_disable(NULL);
  2251. return 0;
  2252. }
  2253. static int kvm_resume(struct sys_device *dev)
  2254. {
  2255. hardware_enable(NULL);
  2256. return 0;
  2257. }
  2258. static struct sysdev_class kvm_sysdev_class = {
  2259. .name = "kvm",
  2260. .suspend = kvm_suspend,
  2261. .resume = kvm_resume,
  2262. };
  2263. static struct sys_device kvm_sysdev = {
  2264. .id = 0,
  2265. .cls = &kvm_sysdev_class,
  2266. };
  2267. struct page *bad_page;
  2268. pfn_t bad_pfn;
  2269. static inline
  2270. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2271. {
  2272. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2273. }
  2274. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2275. {
  2276. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2277. kvm_arch_vcpu_load(vcpu, cpu);
  2278. }
  2279. static void kvm_sched_out(struct preempt_notifier *pn,
  2280. struct task_struct *next)
  2281. {
  2282. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2283. kvm_arch_vcpu_put(vcpu);
  2284. }
  2285. int kvm_init(void *opaque, unsigned int vcpu_size,
  2286. struct module *module)
  2287. {
  2288. int r;
  2289. int cpu;
  2290. kvm_init_debug();
  2291. r = kvm_arch_init(opaque);
  2292. if (r)
  2293. goto out_fail;
  2294. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2295. if (bad_page == NULL) {
  2296. r = -ENOMEM;
  2297. goto out;
  2298. }
  2299. bad_pfn = page_to_pfn(bad_page);
  2300. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2301. r = -ENOMEM;
  2302. goto out_free_0;
  2303. }
  2304. r = kvm_arch_hardware_setup();
  2305. if (r < 0)
  2306. goto out_free_0a;
  2307. for_each_online_cpu(cpu) {
  2308. smp_call_function_single(cpu,
  2309. kvm_arch_check_processor_compat,
  2310. &r, 1);
  2311. if (r < 0)
  2312. goto out_free_1;
  2313. }
  2314. on_each_cpu(hardware_enable, NULL, 1);
  2315. r = register_cpu_notifier(&kvm_cpu_notifier);
  2316. if (r)
  2317. goto out_free_2;
  2318. register_reboot_notifier(&kvm_reboot_notifier);
  2319. r = sysdev_class_register(&kvm_sysdev_class);
  2320. if (r)
  2321. goto out_free_3;
  2322. r = sysdev_register(&kvm_sysdev);
  2323. if (r)
  2324. goto out_free_4;
  2325. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2326. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2327. __alignof__(struct kvm_vcpu),
  2328. 0, NULL);
  2329. if (!kvm_vcpu_cache) {
  2330. r = -ENOMEM;
  2331. goto out_free_5;
  2332. }
  2333. kvm_chardev_ops.owner = module;
  2334. kvm_vm_fops.owner = module;
  2335. kvm_vcpu_fops.owner = module;
  2336. r = misc_register(&kvm_dev);
  2337. if (r) {
  2338. printk(KERN_ERR "kvm: misc device register failed\n");
  2339. goto out_free;
  2340. }
  2341. kvm_preempt_ops.sched_in = kvm_sched_in;
  2342. kvm_preempt_ops.sched_out = kvm_sched_out;
  2343. return 0;
  2344. out_free:
  2345. kmem_cache_destroy(kvm_vcpu_cache);
  2346. out_free_5:
  2347. sysdev_unregister(&kvm_sysdev);
  2348. out_free_4:
  2349. sysdev_class_unregister(&kvm_sysdev_class);
  2350. out_free_3:
  2351. unregister_reboot_notifier(&kvm_reboot_notifier);
  2352. unregister_cpu_notifier(&kvm_cpu_notifier);
  2353. out_free_2:
  2354. on_each_cpu(hardware_disable, NULL, 1);
  2355. out_free_1:
  2356. kvm_arch_hardware_unsetup();
  2357. out_free_0a:
  2358. free_cpumask_var(cpus_hardware_enabled);
  2359. out_free_0:
  2360. __free_page(bad_page);
  2361. out:
  2362. kvm_arch_exit();
  2363. kvm_exit_debug();
  2364. out_fail:
  2365. return r;
  2366. }
  2367. EXPORT_SYMBOL_GPL(kvm_init);
  2368. void kvm_exit(void)
  2369. {
  2370. tracepoint_synchronize_unregister();
  2371. misc_deregister(&kvm_dev);
  2372. kmem_cache_destroy(kvm_vcpu_cache);
  2373. sysdev_unregister(&kvm_sysdev);
  2374. sysdev_class_unregister(&kvm_sysdev_class);
  2375. unregister_reboot_notifier(&kvm_reboot_notifier);
  2376. unregister_cpu_notifier(&kvm_cpu_notifier);
  2377. on_each_cpu(hardware_disable, NULL, 1);
  2378. kvm_arch_hardware_unsetup();
  2379. kvm_arch_exit();
  2380. kvm_exit_debug();
  2381. free_cpumask_var(cpus_hardware_enabled);
  2382. __free_page(bad_page);
  2383. }
  2384. EXPORT_SYMBOL_GPL(kvm_exit);