bnx2.c 208 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2010 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  38. #define BCM_VLAN 1
  39. #endif
  40. #include <net/ip.h>
  41. #include <net/tcp.h>
  42. #include <net/checksum.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/crc32.h>
  45. #include <linux/prefetch.h>
  46. #include <linux/cache.h>
  47. #include <linux/firmware.h>
  48. #include <linux/log2.h>
  49. #include <linux/aer.h>
  50. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  51. #define BCM_CNIC 1
  52. #include "cnic_if.h"
  53. #endif
  54. #include "bnx2.h"
  55. #include "bnx2_fw.h"
  56. #define DRV_MODULE_NAME "bnx2"
  57. #define DRV_MODULE_VERSION "2.0.17"
  58. #define DRV_MODULE_RELDATE "July 18, 2010"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.0.15.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.0.17.fw"
  62. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  63. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  64. #define RUN_AT(x) (jiffies + (x))
  65. /* Time in jiffies before concluding the transmitter is hung. */
  66. #define TX_TIMEOUT (5*HZ)
  67. static char version[] __devinitdata =
  68. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  69. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  70. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_MODULE_VERSION);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  75. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  77. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  78. static int disable_msi = 0;
  79. module_param(disable_msi, int, 0);
  80. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  81. typedef enum {
  82. BCM5706 = 0,
  83. NC370T,
  84. NC370I,
  85. BCM5706S,
  86. NC370F,
  87. BCM5708,
  88. BCM5708S,
  89. BCM5709,
  90. BCM5709S,
  91. BCM5716,
  92. BCM5716S,
  93. } board_t;
  94. /* indexed by board_t, above */
  95. static struct {
  96. char *name;
  97. } board_info[] __devinitdata = {
  98. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  99. { "HP NC370T Multifunction Gigabit Server Adapter" },
  100. { "HP NC370i Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  102. { "HP NC370F Multifunction Gigabit Server Adapter" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  108. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  109. };
  110. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  127. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  131. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  132. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  133. { 0, }
  134. };
  135. static const struct flash_spec flash_table[] =
  136. {
  137. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  138. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  139. /* Slow EEPROM */
  140. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  141. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  142. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  143. "EEPROM - slow"},
  144. /* Expansion entry 0001 */
  145. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  148. "Entry 0001"},
  149. /* Saifun SA25F010 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  154. "Non-buffered flash (128kB)"},
  155. /* Saifun SA25F020 (non-buffered flash) */
  156. /* strap, cfg1, & write1 need updates */
  157. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  158. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  159. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  160. "Non-buffered flash (256kB)"},
  161. /* Expansion entry 0100 */
  162. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  163. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  164. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  165. "Entry 0100"},
  166. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  167. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  168. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  169. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  170. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  171. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  172. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  174. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  175. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  176. /* Saifun SA25F005 (non-buffered flash) */
  177. /* strap, cfg1, & write1 need updates */
  178. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  179. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  181. "Non-buffered flash (64kB)"},
  182. /* Fast EEPROM */
  183. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  184. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  185. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  186. "EEPROM - fast"},
  187. /* Expansion entry 1001 */
  188. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  189. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  190. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1001"},
  192. /* Expansion entry 1010 */
  193. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  194. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  196. "Entry 1010"},
  197. /* ATMEL AT45DB011B (buffered flash) */
  198. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  199. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  200. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  201. "Buffered flash (128kB)"},
  202. /* Expansion entry 1100 */
  203. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  204. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  205. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  206. "Entry 1100"},
  207. /* Expansion entry 1101 */
  208. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  209. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  210. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  211. "Entry 1101"},
  212. /* Ateml Expansion entry 1110 */
  213. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  214. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  215. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  216. "Entry 1110 (Atmel)"},
  217. /* ATMEL AT45DB021B (buffered flash) */
  218. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  219. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  220. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  221. "Buffered flash (256kB)"},
  222. };
  223. static const struct flash_spec flash_5709 = {
  224. .flags = BNX2_NV_BUFFERED,
  225. .page_bits = BCM5709_FLASH_PAGE_BITS,
  226. .page_size = BCM5709_FLASH_PAGE_SIZE,
  227. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  228. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  229. .name = "5709 Buffered flash (256kB)",
  230. };
  231. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  232. static void bnx2_init_napi(struct bnx2 *bp);
  233. static void bnx2_del_napi(struct bnx2 *bp);
  234. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  235. {
  236. u32 diff;
  237. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  238. barrier();
  239. /* The ring uses 256 indices for 255 entries, one of them
  240. * needs to be skipped.
  241. */
  242. diff = txr->tx_prod - txr->tx_cons;
  243. if (unlikely(diff >= TX_DESC_CNT)) {
  244. diff &= 0xffff;
  245. if (diff == TX_DESC_CNT)
  246. diff = MAX_TX_DESC_CNT;
  247. }
  248. return bp->tx_ring_size - diff;
  249. }
  250. static u32
  251. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  252. {
  253. u32 val;
  254. spin_lock_bh(&bp->indirect_lock);
  255. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  256. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  257. spin_unlock_bh(&bp->indirect_lock);
  258. return val;
  259. }
  260. static void
  261. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  262. {
  263. spin_lock_bh(&bp->indirect_lock);
  264. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  265. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  266. spin_unlock_bh(&bp->indirect_lock);
  267. }
  268. static void
  269. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  270. {
  271. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  272. }
  273. static u32
  274. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  275. {
  276. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  277. }
  278. static void
  279. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  280. {
  281. offset += cid_addr;
  282. spin_lock_bh(&bp->indirect_lock);
  283. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  284. int i;
  285. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  286. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  287. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  288. for (i = 0; i < 5; i++) {
  289. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  290. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  291. break;
  292. udelay(5);
  293. }
  294. } else {
  295. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  296. REG_WR(bp, BNX2_CTX_DATA, val);
  297. }
  298. spin_unlock_bh(&bp->indirect_lock);
  299. }
  300. #ifdef BCM_CNIC
  301. static int
  302. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  303. {
  304. struct bnx2 *bp = netdev_priv(dev);
  305. struct drv_ctl_io *io = &info->data.io;
  306. switch (info->cmd) {
  307. case DRV_CTL_IO_WR_CMD:
  308. bnx2_reg_wr_ind(bp, io->offset, io->data);
  309. break;
  310. case DRV_CTL_IO_RD_CMD:
  311. io->data = bnx2_reg_rd_ind(bp, io->offset);
  312. break;
  313. case DRV_CTL_CTX_WR_CMD:
  314. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  315. break;
  316. default:
  317. return -EINVAL;
  318. }
  319. return 0;
  320. }
  321. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  322. {
  323. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  324. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  325. int sb_id;
  326. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  327. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  328. bnapi->cnic_present = 0;
  329. sb_id = bp->irq_nvecs;
  330. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  331. } else {
  332. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  333. bnapi->cnic_tag = bnapi->last_status_idx;
  334. bnapi->cnic_present = 1;
  335. sb_id = 0;
  336. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  337. }
  338. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  339. cp->irq_arr[0].status_blk = (void *)
  340. ((unsigned long) bnapi->status_blk.msi +
  341. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  342. cp->irq_arr[0].status_blk_num = sb_id;
  343. cp->num_irq = 1;
  344. }
  345. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  346. void *data)
  347. {
  348. struct bnx2 *bp = netdev_priv(dev);
  349. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  350. if (ops == NULL)
  351. return -EINVAL;
  352. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  353. return -EBUSY;
  354. bp->cnic_data = data;
  355. rcu_assign_pointer(bp->cnic_ops, ops);
  356. cp->num_irq = 0;
  357. cp->drv_state = CNIC_DRV_STATE_REGD;
  358. bnx2_setup_cnic_irq_info(bp);
  359. return 0;
  360. }
  361. static int bnx2_unregister_cnic(struct net_device *dev)
  362. {
  363. struct bnx2 *bp = netdev_priv(dev);
  364. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  365. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  366. mutex_lock(&bp->cnic_lock);
  367. cp->drv_state = 0;
  368. bnapi->cnic_present = 0;
  369. rcu_assign_pointer(bp->cnic_ops, NULL);
  370. mutex_unlock(&bp->cnic_lock);
  371. synchronize_rcu();
  372. return 0;
  373. }
  374. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  375. {
  376. struct bnx2 *bp = netdev_priv(dev);
  377. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  378. cp->drv_owner = THIS_MODULE;
  379. cp->chip_id = bp->chip_id;
  380. cp->pdev = bp->pdev;
  381. cp->io_base = bp->regview;
  382. cp->drv_ctl = bnx2_drv_ctl;
  383. cp->drv_register_cnic = bnx2_register_cnic;
  384. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  385. return cp;
  386. }
  387. EXPORT_SYMBOL(bnx2_cnic_probe);
  388. static void
  389. bnx2_cnic_stop(struct bnx2 *bp)
  390. {
  391. struct cnic_ops *c_ops;
  392. struct cnic_ctl_info info;
  393. mutex_lock(&bp->cnic_lock);
  394. c_ops = bp->cnic_ops;
  395. if (c_ops) {
  396. info.cmd = CNIC_CTL_STOP_CMD;
  397. c_ops->cnic_ctl(bp->cnic_data, &info);
  398. }
  399. mutex_unlock(&bp->cnic_lock);
  400. }
  401. static void
  402. bnx2_cnic_start(struct bnx2 *bp)
  403. {
  404. struct cnic_ops *c_ops;
  405. struct cnic_ctl_info info;
  406. mutex_lock(&bp->cnic_lock);
  407. c_ops = bp->cnic_ops;
  408. if (c_ops) {
  409. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  410. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  411. bnapi->cnic_tag = bnapi->last_status_idx;
  412. }
  413. info.cmd = CNIC_CTL_START_CMD;
  414. c_ops->cnic_ctl(bp->cnic_data, &info);
  415. }
  416. mutex_unlock(&bp->cnic_lock);
  417. }
  418. #else
  419. static void
  420. bnx2_cnic_stop(struct bnx2 *bp)
  421. {
  422. }
  423. static void
  424. bnx2_cnic_start(struct bnx2 *bp)
  425. {
  426. }
  427. #endif
  428. static int
  429. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  430. {
  431. u32 val1;
  432. int i, ret;
  433. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  434. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  436. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  437. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  438. udelay(40);
  439. }
  440. val1 = (bp->phy_addr << 21) | (reg << 16) |
  441. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  442. BNX2_EMAC_MDIO_COMM_START_BUSY;
  443. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  444. for (i = 0; i < 50; i++) {
  445. udelay(10);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  448. udelay(5);
  449. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  450. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  451. break;
  452. }
  453. }
  454. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  455. *val = 0x0;
  456. ret = -EBUSY;
  457. }
  458. else {
  459. *val = val1;
  460. ret = 0;
  461. }
  462. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  463. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  465. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  466. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  467. udelay(40);
  468. }
  469. return ret;
  470. }
  471. static int
  472. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  473. {
  474. u32 val1;
  475. int i, ret;
  476. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  477. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  479. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  480. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  481. udelay(40);
  482. }
  483. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  484. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  485. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  486. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  487. for (i = 0; i < 50; i++) {
  488. udelay(10);
  489. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  490. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  491. udelay(5);
  492. break;
  493. }
  494. }
  495. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  496. ret = -EBUSY;
  497. else
  498. ret = 0;
  499. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  500. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  502. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  503. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  504. udelay(40);
  505. }
  506. return ret;
  507. }
  508. static void
  509. bnx2_disable_int(struct bnx2 *bp)
  510. {
  511. int i;
  512. struct bnx2_napi *bnapi;
  513. for (i = 0; i < bp->irq_nvecs; i++) {
  514. bnapi = &bp->bnx2_napi[i];
  515. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  516. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  517. }
  518. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  519. }
  520. static void
  521. bnx2_enable_int(struct bnx2 *bp)
  522. {
  523. int i;
  524. struct bnx2_napi *bnapi;
  525. for (i = 0; i < bp->irq_nvecs; i++) {
  526. bnapi = &bp->bnx2_napi[i];
  527. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  528. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  529. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  530. bnapi->last_status_idx);
  531. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  532. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  533. bnapi->last_status_idx);
  534. }
  535. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  536. }
  537. static void
  538. bnx2_disable_int_sync(struct bnx2 *bp)
  539. {
  540. int i;
  541. atomic_inc(&bp->intr_sem);
  542. if (!netif_running(bp->dev))
  543. return;
  544. bnx2_disable_int(bp);
  545. for (i = 0; i < bp->irq_nvecs; i++)
  546. synchronize_irq(bp->irq_tbl[i].vector);
  547. }
  548. static void
  549. bnx2_napi_disable(struct bnx2 *bp)
  550. {
  551. int i;
  552. for (i = 0; i < bp->irq_nvecs; i++)
  553. napi_disable(&bp->bnx2_napi[i].napi);
  554. }
  555. static void
  556. bnx2_napi_enable(struct bnx2 *bp)
  557. {
  558. int i;
  559. for (i = 0; i < bp->irq_nvecs; i++)
  560. napi_enable(&bp->bnx2_napi[i].napi);
  561. }
  562. static void
  563. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  564. {
  565. if (stop_cnic)
  566. bnx2_cnic_stop(bp);
  567. if (netif_running(bp->dev)) {
  568. bnx2_napi_disable(bp);
  569. netif_tx_disable(bp->dev);
  570. }
  571. bnx2_disable_int_sync(bp);
  572. netif_carrier_off(bp->dev); /* prevent tx timeout */
  573. }
  574. static void
  575. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  576. {
  577. if (atomic_dec_and_test(&bp->intr_sem)) {
  578. if (netif_running(bp->dev)) {
  579. netif_tx_wake_all_queues(bp->dev);
  580. spin_lock_bh(&bp->phy_lock);
  581. if (bp->link_up)
  582. netif_carrier_on(bp->dev);
  583. spin_unlock_bh(&bp->phy_lock);
  584. bnx2_napi_enable(bp);
  585. bnx2_enable_int(bp);
  586. if (start_cnic)
  587. bnx2_cnic_start(bp);
  588. }
  589. }
  590. }
  591. static void
  592. bnx2_free_tx_mem(struct bnx2 *bp)
  593. {
  594. int i;
  595. for (i = 0; i < bp->num_tx_rings; i++) {
  596. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  597. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  598. if (txr->tx_desc_ring) {
  599. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  600. txr->tx_desc_ring,
  601. txr->tx_desc_mapping);
  602. txr->tx_desc_ring = NULL;
  603. }
  604. kfree(txr->tx_buf_ring);
  605. txr->tx_buf_ring = NULL;
  606. }
  607. }
  608. static void
  609. bnx2_free_rx_mem(struct bnx2 *bp)
  610. {
  611. int i;
  612. for (i = 0; i < bp->num_rx_rings; i++) {
  613. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  614. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  615. int j;
  616. for (j = 0; j < bp->rx_max_ring; j++) {
  617. if (rxr->rx_desc_ring[j])
  618. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  619. rxr->rx_desc_ring[j],
  620. rxr->rx_desc_mapping[j]);
  621. rxr->rx_desc_ring[j] = NULL;
  622. }
  623. vfree(rxr->rx_buf_ring);
  624. rxr->rx_buf_ring = NULL;
  625. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  626. if (rxr->rx_pg_desc_ring[j])
  627. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  628. rxr->rx_pg_desc_ring[j],
  629. rxr->rx_pg_desc_mapping[j]);
  630. rxr->rx_pg_desc_ring[j] = NULL;
  631. }
  632. vfree(rxr->rx_pg_ring);
  633. rxr->rx_pg_ring = NULL;
  634. }
  635. }
  636. static int
  637. bnx2_alloc_tx_mem(struct bnx2 *bp)
  638. {
  639. int i;
  640. for (i = 0; i < bp->num_tx_rings; i++) {
  641. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  642. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  643. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  644. if (txr->tx_buf_ring == NULL)
  645. return -ENOMEM;
  646. txr->tx_desc_ring =
  647. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  648. &txr->tx_desc_mapping, GFP_KERNEL);
  649. if (txr->tx_desc_ring == NULL)
  650. return -ENOMEM;
  651. }
  652. return 0;
  653. }
  654. static int
  655. bnx2_alloc_rx_mem(struct bnx2 *bp)
  656. {
  657. int i;
  658. for (i = 0; i < bp->num_rx_rings; i++) {
  659. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  660. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  661. int j;
  662. rxr->rx_buf_ring =
  663. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  664. if (rxr->rx_buf_ring == NULL)
  665. return -ENOMEM;
  666. memset(rxr->rx_buf_ring, 0,
  667. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  668. for (j = 0; j < bp->rx_max_ring; j++) {
  669. rxr->rx_desc_ring[j] =
  670. dma_alloc_coherent(&bp->pdev->dev,
  671. RXBD_RING_SIZE,
  672. &rxr->rx_desc_mapping[j],
  673. GFP_KERNEL);
  674. if (rxr->rx_desc_ring[j] == NULL)
  675. return -ENOMEM;
  676. }
  677. if (bp->rx_pg_ring_size) {
  678. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  679. bp->rx_max_pg_ring);
  680. if (rxr->rx_pg_ring == NULL)
  681. return -ENOMEM;
  682. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  683. bp->rx_max_pg_ring);
  684. }
  685. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  686. rxr->rx_pg_desc_ring[j] =
  687. dma_alloc_coherent(&bp->pdev->dev,
  688. RXBD_RING_SIZE,
  689. &rxr->rx_pg_desc_mapping[j],
  690. GFP_KERNEL);
  691. if (rxr->rx_pg_desc_ring[j] == NULL)
  692. return -ENOMEM;
  693. }
  694. }
  695. return 0;
  696. }
  697. static void
  698. bnx2_free_mem(struct bnx2 *bp)
  699. {
  700. int i;
  701. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  702. bnx2_free_tx_mem(bp);
  703. bnx2_free_rx_mem(bp);
  704. for (i = 0; i < bp->ctx_pages; i++) {
  705. if (bp->ctx_blk[i]) {
  706. dma_free_coherent(&bp->pdev->dev, BCM_PAGE_SIZE,
  707. bp->ctx_blk[i],
  708. bp->ctx_blk_mapping[i]);
  709. bp->ctx_blk[i] = NULL;
  710. }
  711. }
  712. if (bnapi->status_blk.msi) {
  713. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  714. bnapi->status_blk.msi,
  715. bp->status_blk_mapping);
  716. bnapi->status_blk.msi = NULL;
  717. bp->stats_blk = NULL;
  718. }
  719. }
  720. static int
  721. bnx2_alloc_mem(struct bnx2 *bp)
  722. {
  723. int i, status_blk_size, err;
  724. struct bnx2_napi *bnapi;
  725. void *status_blk;
  726. /* Combine status and statistics blocks into one allocation. */
  727. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  728. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  729. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  730. BNX2_SBLK_MSIX_ALIGN_SIZE);
  731. bp->status_stats_size = status_blk_size +
  732. sizeof(struct statistics_block);
  733. status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  734. &bp->status_blk_mapping, GFP_KERNEL);
  735. if (status_blk == NULL)
  736. goto alloc_mem_err;
  737. memset(status_blk, 0, bp->status_stats_size);
  738. bnapi = &bp->bnx2_napi[0];
  739. bnapi->status_blk.msi = status_blk;
  740. bnapi->hw_tx_cons_ptr =
  741. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  742. bnapi->hw_rx_cons_ptr =
  743. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  744. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  745. for (i = 1; i < bp->irq_nvecs; i++) {
  746. struct status_block_msix *sblk;
  747. bnapi = &bp->bnx2_napi[i];
  748. sblk = (void *) (status_blk +
  749. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  750. bnapi->status_blk.msix = sblk;
  751. bnapi->hw_tx_cons_ptr =
  752. &sblk->status_tx_quick_consumer_index;
  753. bnapi->hw_rx_cons_ptr =
  754. &sblk->status_rx_quick_consumer_index;
  755. bnapi->int_num = i << 24;
  756. }
  757. }
  758. bp->stats_blk = status_blk + status_blk_size;
  759. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  760. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  761. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  762. if (bp->ctx_pages == 0)
  763. bp->ctx_pages = 1;
  764. for (i = 0; i < bp->ctx_pages; i++) {
  765. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  766. BCM_PAGE_SIZE,
  767. &bp->ctx_blk_mapping[i],
  768. GFP_KERNEL);
  769. if (bp->ctx_blk[i] == NULL)
  770. goto alloc_mem_err;
  771. }
  772. }
  773. err = bnx2_alloc_rx_mem(bp);
  774. if (err)
  775. goto alloc_mem_err;
  776. err = bnx2_alloc_tx_mem(bp);
  777. if (err)
  778. goto alloc_mem_err;
  779. return 0;
  780. alloc_mem_err:
  781. bnx2_free_mem(bp);
  782. return -ENOMEM;
  783. }
  784. static void
  785. bnx2_report_fw_link(struct bnx2 *bp)
  786. {
  787. u32 fw_link_status = 0;
  788. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  789. return;
  790. if (bp->link_up) {
  791. u32 bmsr;
  792. switch (bp->line_speed) {
  793. case SPEED_10:
  794. if (bp->duplex == DUPLEX_HALF)
  795. fw_link_status = BNX2_LINK_STATUS_10HALF;
  796. else
  797. fw_link_status = BNX2_LINK_STATUS_10FULL;
  798. break;
  799. case SPEED_100:
  800. if (bp->duplex == DUPLEX_HALF)
  801. fw_link_status = BNX2_LINK_STATUS_100HALF;
  802. else
  803. fw_link_status = BNX2_LINK_STATUS_100FULL;
  804. break;
  805. case SPEED_1000:
  806. if (bp->duplex == DUPLEX_HALF)
  807. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  808. else
  809. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  810. break;
  811. case SPEED_2500:
  812. if (bp->duplex == DUPLEX_HALF)
  813. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  814. else
  815. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  816. break;
  817. }
  818. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  819. if (bp->autoneg) {
  820. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  821. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  822. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  823. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  824. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  825. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  826. else
  827. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  828. }
  829. }
  830. else
  831. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  832. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  833. }
  834. static char *
  835. bnx2_xceiver_str(struct bnx2 *bp)
  836. {
  837. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  838. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  839. "Copper");
  840. }
  841. static void
  842. bnx2_report_link(struct bnx2 *bp)
  843. {
  844. if (bp->link_up) {
  845. netif_carrier_on(bp->dev);
  846. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  847. bnx2_xceiver_str(bp),
  848. bp->line_speed,
  849. bp->duplex == DUPLEX_FULL ? "full" : "half");
  850. if (bp->flow_ctrl) {
  851. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  852. pr_cont(", receive ");
  853. if (bp->flow_ctrl & FLOW_CTRL_TX)
  854. pr_cont("& transmit ");
  855. }
  856. else {
  857. pr_cont(", transmit ");
  858. }
  859. pr_cont("flow control ON");
  860. }
  861. pr_cont("\n");
  862. } else {
  863. netif_carrier_off(bp->dev);
  864. netdev_err(bp->dev, "NIC %s Link is Down\n",
  865. bnx2_xceiver_str(bp));
  866. }
  867. bnx2_report_fw_link(bp);
  868. }
  869. static void
  870. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  871. {
  872. u32 local_adv, remote_adv;
  873. bp->flow_ctrl = 0;
  874. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  875. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  876. if (bp->duplex == DUPLEX_FULL) {
  877. bp->flow_ctrl = bp->req_flow_ctrl;
  878. }
  879. return;
  880. }
  881. if (bp->duplex != DUPLEX_FULL) {
  882. return;
  883. }
  884. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  885. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  886. u32 val;
  887. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  888. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  889. bp->flow_ctrl |= FLOW_CTRL_TX;
  890. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  891. bp->flow_ctrl |= FLOW_CTRL_RX;
  892. return;
  893. }
  894. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  895. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  896. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  897. u32 new_local_adv = 0;
  898. u32 new_remote_adv = 0;
  899. if (local_adv & ADVERTISE_1000XPAUSE)
  900. new_local_adv |= ADVERTISE_PAUSE_CAP;
  901. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  902. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  903. if (remote_adv & ADVERTISE_1000XPAUSE)
  904. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  905. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  906. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  907. local_adv = new_local_adv;
  908. remote_adv = new_remote_adv;
  909. }
  910. /* See Table 28B-3 of 802.3ab-1999 spec. */
  911. if (local_adv & ADVERTISE_PAUSE_CAP) {
  912. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  913. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  914. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  915. }
  916. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  917. bp->flow_ctrl = FLOW_CTRL_RX;
  918. }
  919. }
  920. else {
  921. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  922. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  923. }
  924. }
  925. }
  926. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  927. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  928. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  929. bp->flow_ctrl = FLOW_CTRL_TX;
  930. }
  931. }
  932. }
  933. static int
  934. bnx2_5709s_linkup(struct bnx2 *bp)
  935. {
  936. u32 val, speed;
  937. bp->link_up = 1;
  938. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  939. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  940. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  941. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  942. bp->line_speed = bp->req_line_speed;
  943. bp->duplex = bp->req_duplex;
  944. return 0;
  945. }
  946. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  947. switch (speed) {
  948. case MII_BNX2_GP_TOP_AN_SPEED_10:
  949. bp->line_speed = SPEED_10;
  950. break;
  951. case MII_BNX2_GP_TOP_AN_SPEED_100:
  952. bp->line_speed = SPEED_100;
  953. break;
  954. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  955. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  956. bp->line_speed = SPEED_1000;
  957. break;
  958. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  959. bp->line_speed = SPEED_2500;
  960. break;
  961. }
  962. if (val & MII_BNX2_GP_TOP_AN_FD)
  963. bp->duplex = DUPLEX_FULL;
  964. else
  965. bp->duplex = DUPLEX_HALF;
  966. return 0;
  967. }
  968. static int
  969. bnx2_5708s_linkup(struct bnx2 *bp)
  970. {
  971. u32 val;
  972. bp->link_up = 1;
  973. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  974. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  975. case BCM5708S_1000X_STAT1_SPEED_10:
  976. bp->line_speed = SPEED_10;
  977. break;
  978. case BCM5708S_1000X_STAT1_SPEED_100:
  979. bp->line_speed = SPEED_100;
  980. break;
  981. case BCM5708S_1000X_STAT1_SPEED_1G:
  982. bp->line_speed = SPEED_1000;
  983. break;
  984. case BCM5708S_1000X_STAT1_SPEED_2G5:
  985. bp->line_speed = SPEED_2500;
  986. break;
  987. }
  988. if (val & BCM5708S_1000X_STAT1_FD)
  989. bp->duplex = DUPLEX_FULL;
  990. else
  991. bp->duplex = DUPLEX_HALF;
  992. return 0;
  993. }
  994. static int
  995. bnx2_5706s_linkup(struct bnx2 *bp)
  996. {
  997. u32 bmcr, local_adv, remote_adv, common;
  998. bp->link_up = 1;
  999. bp->line_speed = SPEED_1000;
  1000. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1001. if (bmcr & BMCR_FULLDPLX) {
  1002. bp->duplex = DUPLEX_FULL;
  1003. }
  1004. else {
  1005. bp->duplex = DUPLEX_HALF;
  1006. }
  1007. if (!(bmcr & BMCR_ANENABLE)) {
  1008. return 0;
  1009. }
  1010. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1011. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1012. common = local_adv & remote_adv;
  1013. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1014. if (common & ADVERTISE_1000XFULL) {
  1015. bp->duplex = DUPLEX_FULL;
  1016. }
  1017. else {
  1018. bp->duplex = DUPLEX_HALF;
  1019. }
  1020. }
  1021. return 0;
  1022. }
  1023. static int
  1024. bnx2_copper_linkup(struct bnx2 *bp)
  1025. {
  1026. u32 bmcr;
  1027. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1028. if (bmcr & BMCR_ANENABLE) {
  1029. u32 local_adv, remote_adv, common;
  1030. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1031. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1032. common = local_adv & (remote_adv >> 2);
  1033. if (common & ADVERTISE_1000FULL) {
  1034. bp->line_speed = SPEED_1000;
  1035. bp->duplex = DUPLEX_FULL;
  1036. }
  1037. else if (common & ADVERTISE_1000HALF) {
  1038. bp->line_speed = SPEED_1000;
  1039. bp->duplex = DUPLEX_HALF;
  1040. }
  1041. else {
  1042. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1043. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1044. common = local_adv & remote_adv;
  1045. if (common & ADVERTISE_100FULL) {
  1046. bp->line_speed = SPEED_100;
  1047. bp->duplex = DUPLEX_FULL;
  1048. }
  1049. else if (common & ADVERTISE_100HALF) {
  1050. bp->line_speed = SPEED_100;
  1051. bp->duplex = DUPLEX_HALF;
  1052. }
  1053. else if (common & ADVERTISE_10FULL) {
  1054. bp->line_speed = SPEED_10;
  1055. bp->duplex = DUPLEX_FULL;
  1056. }
  1057. else if (common & ADVERTISE_10HALF) {
  1058. bp->line_speed = SPEED_10;
  1059. bp->duplex = DUPLEX_HALF;
  1060. }
  1061. else {
  1062. bp->line_speed = 0;
  1063. bp->link_up = 0;
  1064. }
  1065. }
  1066. }
  1067. else {
  1068. if (bmcr & BMCR_SPEED100) {
  1069. bp->line_speed = SPEED_100;
  1070. }
  1071. else {
  1072. bp->line_speed = SPEED_10;
  1073. }
  1074. if (bmcr & BMCR_FULLDPLX) {
  1075. bp->duplex = DUPLEX_FULL;
  1076. }
  1077. else {
  1078. bp->duplex = DUPLEX_HALF;
  1079. }
  1080. }
  1081. return 0;
  1082. }
  1083. static void
  1084. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1085. {
  1086. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1087. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1088. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1089. val |= 0x02 << 8;
  1090. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1091. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1092. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1093. }
  1094. static void
  1095. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1096. {
  1097. int i;
  1098. u32 cid;
  1099. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1100. if (i == 1)
  1101. cid = RX_RSS_CID;
  1102. bnx2_init_rx_context(bp, cid);
  1103. }
  1104. }
  1105. static void
  1106. bnx2_set_mac_link(struct bnx2 *bp)
  1107. {
  1108. u32 val;
  1109. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1110. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1111. (bp->duplex == DUPLEX_HALF)) {
  1112. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1113. }
  1114. /* Configure the EMAC mode register. */
  1115. val = REG_RD(bp, BNX2_EMAC_MODE);
  1116. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1117. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1118. BNX2_EMAC_MODE_25G_MODE);
  1119. if (bp->link_up) {
  1120. switch (bp->line_speed) {
  1121. case SPEED_10:
  1122. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1123. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1124. break;
  1125. }
  1126. /* fall through */
  1127. case SPEED_100:
  1128. val |= BNX2_EMAC_MODE_PORT_MII;
  1129. break;
  1130. case SPEED_2500:
  1131. val |= BNX2_EMAC_MODE_25G_MODE;
  1132. /* fall through */
  1133. case SPEED_1000:
  1134. val |= BNX2_EMAC_MODE_PORT_GMII;
  1135. break;
  1136. }
  1137. }
  1138. else {
  1139. val |= BNX2_EMAC_MODE_PORT_GMII;
  1140. }
  1141. /* Set the MAC to operate in the appropriate duplex mode. */
  1142. if (bp->duplex == DUPLEX_HALF)
  1143. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1144. REG_WR(bp, BNX2_EMAC_MODE, val);
  1145. /* Enable/disable rx PAUSE. */
  1146. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1147. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1148. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1149. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1150. /* Enable/disable tx PAUSE. */
  1151. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1152. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1153. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1154. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1155. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1156. /* Acknowledge the interrupt. */
  1157. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1158. bnx2_init_all_rx_contexts(bp);
  1159. }
  1160. static void
  1161. bnx2_enable_bmsr1(struct bnx2 *bp)
  1162. {
  1163. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1164. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1165. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1166. MII_BNX2_BLK_ADDR_GP_STATUS);
  1167. }
  1168. static void
  1169. bnx2_disable_bmsr1(struct bnx2 *bp)
  1170. {
  1171. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1172. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1173. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1174. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1175. }
  1176. static int
  1177. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1178. {
  1179. u32 up1;
  1180. int ret = 1;
  1181. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1182. return 0;
  1183. if (bp->autoneg & AUTONEG_SPEED)
  1184. bp->advertising |= ADVERTISED_2500baseX_Full;
  1185. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1186. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1187. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1188. if (!(up1 & BCM5708S_UP1_2G5)) {
  1189. up1 |= BCM5708S_UP1_2G5;
  1190. bnx2_write_phy(bp, bp->mii_up1, up1);
  1191. ret = 0;
  1192. }
  1193. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1194. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1195. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1196. return ret;
  1197. }
  1198. static int
  1199. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1200. {
  1201. u32 up1;
  1202. int ret = 0;
  1203. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1204. return 0;
  1205. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1206. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1207. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1208. if (up1 & BCM5708S_UP1_2G5) {
  1209. up1 &= ~BCM5708S_UP1_2G5;
  1210. bnx2_write_phy(bp, bp->mii_up1, up1);
  1211. ret = 1;
  1212. }
  1213. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1214. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1215. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1216. return ret;
  1217. }
  1218. static void
  1219. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1220. {
  1221. u32 uninitialized_var(bmcr);
  1222. int err;
  1223. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1224. return;
  1225. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1226. u32 val;
  1227. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1228. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1229. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1230. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1231. val |= MII_BNX2_SD_MISC1_FORCE |
  1232. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1233. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1234. }
  1235. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1236. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1237. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1238. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1239. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1240. if (!err)
  1241. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1242. } else {
  1243. return;
  1244. }
  1245. if (err)
  1246. return;
  1247. if (bp->autoneg & AUTONEG_SPEED) {
  1248. bmcr &= ~BMCR_ANENABLE;
  1249. if (bp->req_duplex == DUPLEX_FULL)
  1250. bmcr |= BMCR_FULLDPLX;
  1251. }
  1252. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1253. }
  1254. static void
  1255. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1256. {
  1257. u32 uninitialized_var(bmcr);
  1258. int err;
  1259. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1260. return;
  1261. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1262. u32 val;
  1263. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1264. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1265. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1266. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1267. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1268. }
  1269. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1270. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1271. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1272. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1273. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1274. if (!err)
  1275. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1276. } else {
  1277. return;
  1278. }
  1279. if (err)
  1280. return;
  1281. if (bp->autoneg & AUTONEG_SPEED)
  1282. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1283. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1284. }
  1285. static void
  1286. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1287. {
  1288. u32 val;
  1289. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1290. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1291. if (start)
  1292. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1293. else
  1294. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1295. }
  1296. static int
  1297. bnx2_set_link(struct bnx2 *bp)
  1298. {
  1299. u32 bmsr;
  1300. u8 link_up;
  1301. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1302. bp->link_up = 1;
  1303. return 0;
  1304. }
  1305. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1306. return 0;
  1307. link_up = bp->link_up;
  1308. bnx2_enable_bmsr1(bp);
  1309. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1310. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1311. bnx2_disable_bmsr1(bp);
  1312. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1313. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1314. u32 val, an_dbg;
  1315. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1316. bnx2_5706s_force_link_dn(bp, 0);
  1317. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1318. }
  1319. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1320. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1321. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1322. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1323. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1324. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1325. bmsr |= BMSR_LSTATUS;
  1326. else
  1327. bmsr &= ~BMSR_LSTATUS;
  1328. }
  1329. if (bmsr & BMSR_LSTATUS) {
  1330. bp->link_up = 1;
  1331. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1332. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1333. bnx2_5706s_linkup(bp);
  1334. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1335. bnx2_5708s_linkup(bp);
  1336. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1337. bnx2_5709s_linkup(bp);
  1338. }
  1339. else {
  1340. bnx2_copper_linkup(bp);
  1341. }
  1342. bnx2_resolve_flow_ctrl(bp);
  1343. }
  1344. else {
  1345. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1346. (bp->autoneg & AUTONEG_SPEED))
  1347. bnx2_disable_forced_2g5(bp);
  1348. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1349. u32 bmcr;
  1350. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1351. bmcr |= BMCR_ANENABLE;
  1352. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1353. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1354. }
  1355. bp->link_up = 0;
  1356. }
  1357. if (bp->link_up != link_up) {
  1358. bnx2_report_link(bp);
  1359. }
  1360. bnx2_set_mac_link(bp);
  1361. return 0;
  1362. }
  1363. static int
  1364. bnx2_reset_phy(struct bnx2 *bp)
  1365. {
  1366. int i;
  1367. u32 reg;
  1368. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1369. #define PHY_RESET_MAX_WAIT 100
  1370. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1371. udelay(10);
  1372. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1373. if (!(reg & BMCR_RESET)) {
  1374. udelay(20);
  1375. break;
  1376. }
  1377. }
  1378. if (i == PHY_RESET_MAX_WAIT) {
  1379. return -EBUSY;
  1380. }
  1381. return 0;
  1382. }
  1383. static u32
  1384. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1385. {
  1386. u32 adv = 0;
  1387. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1388. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1389. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1390. adv = ADVERTISE_1000XPAUSE;
  1391. }
  1392. else {
  1393. adv = ADVERTISE_PAUSE_CAP;
  1394. }
  1395. }
  1396. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1397. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1398. adv = ADVERTISE_1000XPSE_ASYM;
  1399. }
  1400. else {
  1401. adv = ADVERTISE_PAUSE_ASYM;
  1402. }
  1403. }
  1404. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1405. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1406. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1407. }
  1408. else {
  1409. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1410. }
  1411. }
  1412. return adv;
  1413. }
  1414. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1415. static int
  1416. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1417. __releases(&bp->phy_lock)
  1418. __acquires(&bp->phy_lock)
  1419. {
  1420. u32 speed_arg = 0, pause_adv;
  1421. pause_adv = bnx2_phy_get_pause_adv(bp);
  1422. if (bp->autoneg & AUTONEG_SPEED) {
  1423. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1424. if (bp->advertising & ADVERTISED_10baseT_Half)
  1425. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1426. if (bp->advertising & ADVERTISED_10baseT_Full)
  1427. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1428. if (bp->advertising & ADVERTISED_100baseT_Half)
  1429. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1430. if (bp->advertising & ADVERTISED_100baseT_Full)
  1431. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1432. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1433. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1434. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1435. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1436. } else {
  1437. if (bp->req_line_speed == SPEED_2500)
  1438. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1439. else if (bp->req_line_speed == SPEED_1000)
  1440. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1441. else if (bp->req_line_speed == SPEED_100) {
  1442. if (bp->req_duplex == DUPLEX_FULL)
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1444. else
  1445. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1446. } else if (bp->req_line_speed == SPEED_10) {
  1447. if (bp->req_duplex == DUPLEX_FULL)
  1448. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1449. else
  1450. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1451. }
  1452. }
  1453. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1454. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1455. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1456. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1457. if (port == PORT_TP)
  1458. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1459. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1460. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1461. spin_unlock_bh(&bp->phy_lock);
  1462. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1463. spin_lock_bh(&bp->phy_lock);
  1464. return 0;
  1465. }
  1466. static int
  1467. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1468. __releases(&bp->phy_lock)
  1469. __acquires(&bp->phy_lock)
  1470. {
  1471. u32 adv, bmcr;
  1472. u32 new_adv = 0;
  1473. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1474. return bnx2_setup_remote_phy(bp, port);
  1475. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1476. u32 new_bmcr;
  1477. int force_link_down = 0;
  1478. if (bp->req_line_speed == SPEED_2500) {
  1479. if (!bnx2_test_and_enable_2g5(bp))
  1480. force_link_down = 1;
  1481. } else if (bp->req_line_speed == SPEED_1000) {
  1482. if (bnx2_test_and_disable_2g5(bp))
  1483. force_link_down = 1;
  1484. }
  1485. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1486. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1487. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1488. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1489. new_bmcr |= BMCR_SPEED1000;
  1490. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1491. if (bp->req_line_speed == SPEED_2500)
  1492. bnx2_enable_forced_2g5(bp);
  1493. else if (bp->req_line_speed == SPEED_1000) {
  1494. bnx2_disable_forced_2g5(bp);
  1495. new_bmcr &= ~0x2000;
  1496. }
  1497. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1498. if (bp->req_line_speed == SPEED_2500)
  1499. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1500. else
  1501. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1502. }
  1503. if (bp->req_duplex == DUPLEX_FULL) {
  1504. adv |= ADVERTISE_1000XFULL;
  1505. new_bmcr |= BMCR_FULLDPLX;
  1506. }
  1507. else {
  1508. adv |= ADVERTISE_1000XHALF;
  1509. new_bmcr &= ~BMCR_FULLDPLX;
  1510. }
  1511. if ((new_bmcr != bmcr) || (force_link_down)) {
  1512. /* Force a link down visible on the other side */
  1513. if (bp->link_up) {
  1514. bnx2_write_phy(bp, bp->mii_adv, adv &
  1515. ~(ADVERTISE_1000XFULL |
  1516. ADVERTISE_1000XHALF));
  1517. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1518. BMCR_ANRESTART | BMCR_ANENABLE);
  1519. bp->link_up = 0;
  1520. netif_carrier_off(bp->dev);
  1521. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1522. bnx2_report_link(bp);
  1523. }
  1524. bnx2_write_phy(bp, bp->mii_adv, adv);
  1525. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1526. } else {
  1527. bnx2_resolve_flow_ctrl(bp);
  1528. bnx2_set_mac_link(bp);
  1529. }
  1530. return 0;
  1531. }
  1532. bnx2_test_and_enable_2g5(bp);
  1533. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1534. new_adv |= ADVERTISE_1000XFULL;
  1535. new_adv |= bnx2_phy_get_pause_adv(bp);
  1536. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1537. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1538. bp->serdes_an_pending = 0;
  1539. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1540. /* Force a link down visible on the other side */
  1541. if (bp->link_up) {
  1542. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1543. spin_unlock_bh(&bp->phy_lock);
  1544. msleep(20);
  1545. spin_lock_bh(&bp->phy_lock);
  1546. }
  1547. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1548. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1549. BMCR_ANENABLE);
  1550. /* Speed up link-up time when the link partner
  1551. * does not autonegotiate which is very common
  1552. * in blade servers. Some blade servers use
  1553. * IPMI for kerboard input and it's important
  1554. * to minimize link disruptions. Autoneg. involves
  1555. * exchanging base pages plus 3 next pages and
  1556. * normally completes in about 120 msec.
  1557. */
  1558. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1559. bp->serdes_an_pending = 1;
  1560. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1561. } else {
  1562. bnx2_resolve_flow_ctrl(bp);
  1563. bnx2_set_mac_link(bp);
  1564. }
  1565. return 0;
  1566. }
  1567. #define ETHTOOL_ALL_FIBRE_SPEED \
  1568. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1569. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1570. (ADVERTISED_1000baseT_Full)
  1571. #define ETHTOOL_ALL_COPPER_SPEED \
  1572. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1573. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1574. ADVERTISED_1000baseT_Full)
  1575. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1576. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1577. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1578. static void
  1579. bnx2_set_default_remote_link(struct bnx2 *bp)
  1580. {
  1581. u32 link;
  1582. if (bp->phy_port == PORT_TP)
  1583. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1584. else
  1585. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1586. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1587. bp->req_line_speed = 0;
  1588. bp->autoneg |= AUTONEG_SPEED;
  1589. bp->advertising = ADVERTISED_Autoneg;
  1590. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1591. bp->advertising |= ADVERTISED_10baseT_Half;
  1592. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1593. bp->advertising |= ADVERTISED_10baseT_Full;
  1594. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1595. bp->advertising |= ADVERTISED_100baseT_Half;
  1596. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1597. bp->advertising |= ADVERTISED_100baseT_Full;
  1598. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1599. bp->advertising |= ADVERTISED_1000baseT_Full;
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1601. bp->advertising |= ADVERTISED_2500baseX_Full;
  1602. } else {
  1603. bp->autoneg = 0;
  1604. bp->advertising = 0;
  1605. bp->req_duplex = DUPLEX_FULL;
  1606. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1607. bp->req_line_speed = SPEED_10;
  1608. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1609. bp->req_duplex = DUPLEX_HALF;
  1610. }
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1612. bp->req_line_speed = SPEED_100;
  1613. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1614. bp->req_duplex = DUPLEX_HALF;
  1615. }
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1617. bp->req_line_speed = SPEED_1000;
  1618. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1619. bp->req_line_speed = SPEED_2500;
  1620. }
  1621. }
  1622. static void
  1623. bnx2_set_default_link(struct bnx2 *bp)
  1624. {
  1625. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1626. bnx2_set_default_remote_link(bp);
  1627. return;
  1628. }
  1629. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1630. bp->req_line_speed = 0;
  1631. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1632. u32 reg;
  1633. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1634. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1635. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1636. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1637. bp->autoneg = 0;
  1638. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1639. bp->req_duplex = DUPLEX_FULL;
  1640. }
  1641. } else
  1642. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1643. }
  1644. static void
  1645. bnx2_send_heart_beat(struct bnx2 *bp)
  1646. {
  1647. u32 msg;
  1648. u32 addr;
  1649. spin_lock(&bp->indirect_lock);
  1650. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1651. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1652. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1653. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1654. spin_unlock(&bp->indirect_lock);
  1655. }
  1656. static void
  1657. bnx2_remote_phy_event(struct bnx2 *bp)
  1658. {
  1659. u32 msg;
  1660. u8 link_up = bp->link_up;
  1661. u8 old_port;
  1662. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1663. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1664. bnx2_send_heart_beat(bp);
  1665. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1666. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1667. bp->link_up = 0;
  1668. else {
  1669. u32 speed;
  1670. bp->link_up = 1;
  1671. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1672. bp->duplex = DUPLEX_FULL;
  1673. switch (speed) {
  1674. case BNX2_LINK_STATUS_10HALF:
  1675. bp->duplex = DUPLEX_HALF;
  1676. case BNX2_LINK_STATUS_10FULL:
  1677. bp->line_speed = SPEED_10;
  1678. break;
  1679. case BNX2_LINK_STATUS_100HALF:
  1680. bp->duplex = DUPLEX_HALF;
  1681. case BNX2_LINK_STATUS_100BASE_T4:
  1682. case BNX2_LINK_STATUS_100FULL:
  1683. bp->line_speed = SPEED_100;
  1684. break;
  1685. case BNX2_LINK_STATUS_1000HALF:
  1686. bp->duplex = DUPLEX_HALF;
  1687. case BNX2_LINK_STATUS_1000FULL:
  1688. bp->line_speed = SPEED_1000;
  1689. break;
  1690. case BNX2_LINK_STATUS_2500HALF:
  1691. bp->duplex = DUPLEX_HALF;
  1692. case BNX2_LINK_STATUS_2500FULL:
  1693. bp->line_speed = SPEED_2500;
  1694. break;
  1695. default:
  1696. bp->line_speed = 0;
  1697. break;
  1698. }
  1699. bp->flow_ctrl = 0;
  1700. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1701. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1702. if (bp->duplex == DUPLEX_FULL)
  1703. bp->flow_ctrl = bp->req_flow_ctrl;
  1704. } else {
  1705. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1706. bp->flow_ctrl |= FLOW_CTRL_TX;
  1707. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1708. bp->flow_ctrl |= FLOW_CTRL_RX;
  1709. }
  1710. old_port = bp->phy_port;
  1711. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1712. bp->phy_port = PORT_FIBRE;
  1713. else
  1714. bp->phy_port = PORT_TP;
  1715. if (old_port != bp->phy_port)
  1716. bnx2_set_default_link(bp);
  1717. }
  1718. if (bp->link_up != link_up)
  1719. bnx2_report_link(bp);
  1720. bnx2_set_mac_link(bp);
  1721. }
  1722. static int
  1723. bnx2_set_remote_link(struct bnx2 *bp)
  1724. {
  1725. u32 evt_code;
  1726. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1727. switch (evt_code) {
  1728. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1729. bnx2_remote_phy_event(bp);
  1730. break;
  1731. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1732. default:
  1733. bnx2_send_heart_beat(bp);
  1734. break;
  1735. }
  1736. return 0;
  1737. }
  1738. static int
  1739. bnx2_setup_copper_phy(struct bnx2 *bp)
  1740. __releases(&bp->phy_lock)
  1741. __acquires(&bp->phy_lock)
  1742. {
  1743. u32 bmcr;
  1744. u32 new_bmcr;
  1745. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1746. if (bp->autoneg & AUTONEG_SPEED) {
  1747. u32 adv_reg, adv1000_reg;
  1748. u32 new_adv_reg = 0;
  1749. u32 new_adv1000_reg = 0;
  1750. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1751. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1752. ADVERTISE_PAUSE_ASYM);
  1753. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1754. adv1000_reg &= PHY_ALL_1000_SPEED;
  1755. if (bp->advertising & ADVERTISED_10baseT_Half)
  1756. new_adv_reg |= ADVERTISE_10HALF;
  1757. if (bp->advertising & ADVERTISED_10baseT_Full)
  1758. new_adv_reg |= ADVERTISE_10FULL;
  1759. if (bp->advertising & ADVERTISED_100baseT_Half)
  1760. new_adv_reg |= ADVERTISE_100HALF;
  1761. if (bp->advertising & ADVERTISED_100baseT_Full)
  1762. new_adv_reg |= ADVERTISE_100FULL;
  1763. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1764. new_adv1000_reg |= ADVERTISE_1000FULL;
  1765. new_adv_reg |= ADVERTISE_CSMA;
  1766. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1767. if ((adv1000_reg != new_adv1000_reg) ||
  1768. (adv_reg != new_adv_reg) ||
  1769. ((bmcr & BMCR_ANENABLE) == 0)) {
  1770. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1771. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1772. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1773. BMCR_ANENABLE);
  1774. }
  1775. else if (bp->link_up) {
  1776. /* Flow ctrl may have changed from auto to forced */
  1777. /* or vice-versa. */
  1778. bnx2_resolve_flow_ctrl(bp);
  1779. bnx2_set_mac_link(bp);
  1780. }
  1781. return 0;
  1782. }
  1783. new_bmcr = 0;
  1784. if (bp->req_line_speed == SPEED_100) {
  1785. new_bmcr |= BMCR_SPEED100;
  1786. }
  1787. if (bp->req_duplex == DUPLEX_FULL) {
  1788. new_bmcr |= BMCR_FULLDPLX;
  1789. }
  1790. if (new_bmcr != bmcr) {
  1791. u32 bmsr;
  1792. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1793. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1794. if (bmsr & BMSR_LSTATUS) {
  1795. /* Force link down */
  1796. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1797. spin_unlock_bh(&bp->phy_lock);
  1798. msleep(50);
  1799. spin_lock_bh(&bp->phy_lock);
  1800. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1801. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1802. }
  1803. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1804. /* Normally, the new speed is setup after the link has
  1805. * gone down and up again. In some cases, link will not go
  1806. * down so we need to set up the new speed here.
  1807. */
  1808. if (bmsr & BMSR_LSTATUS) {
  1809. bp->line_speed = bp->req_line_speed;
  1810. bp->duplex = bp->req_duplex;
  1811. bnx2_resolve_flow_ctrl(bp);
  1812. bnx2_set_mac_link(bp);
  1813. }
  1814. } else {
  1815. bnx2_resolve_flow_ctrl(bp);
  1816. bnx2_set_mac_link(bp);
  1817. }
  1818. return 0;
  1819. }
  1820. static int
  1821. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1822. __releases(&bp->phy_lock)
  1823. __acquires(&bp->phy_lock)
  1824. {
  1825. if (bp->loopback == MAC_LOOPBACK)
  1826. return 0;
  1827. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1828. return bnx2_setup_serdes_phy(bp, port);
  1829. }
  1830. else {
  1831. return bnx2_setup_copper_phy(bp);
  1832. }
  1833. }
  1834. static int
  1835. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1836. {
  1837. u32 val;
  1838. bp->mii_bmcr = MII_BMCR + 0x10;
  1839. bp->mii_bmsr = MII_BMSR + 0x10;
  1840. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1841. bp->mii_adv = MII_ADVERTISE + 0x10;
  1842. bp->mii_lpa = MII_LPA + 0x10;
  1843. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1844. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1845. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1846. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1847. if (reset_phy)
  1848. bnx2_reset_phy(bp);
  1849. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1850. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1851. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1852. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1853. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1854. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1855. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1856. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1857. val |= BCM5708S_UP1_2G5;
  1858. else
  1859. val &= ~BCM5708S_UP1_2G5;
  1860. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1861. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1862. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1863. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1864. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1865. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1866. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1867. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1868. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1869. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1870. return 0;
  1871. }
  1872. static int
  1873. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1874. {
  1875. u32 val;
  1876. if (reset_phy)
  1877. bnx2_reset_phy(bp);
  1878. bp->mii_up1 = BCM5708S_UP1;
  1879. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1880. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1881. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1882. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1883. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1884. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1885. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1886. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1887. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1888. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1889. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1890. val |= BCM5708S_UP1_2G5;
  1891. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1892. }
  1893. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1894. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1895. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1896. /* increase tx signal amplitude */
  1897. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1898. BCM5708S_BLK_ADDR_TX_MISC);
  1899. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1900. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1901. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1902. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1903. }
  1904. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1905. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1906. if (val) {
  1907. u32 is_backplane;
  1908. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1909. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1910. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1911. BCM5708S_BLK_ADDR_TX_MISC);
  1912. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1913. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1914. BCM5708S_BLK_ADDR_DIG);
  1915. }
  1916. }
  1917. return 0;
  1918. }
  1919. static int
  1920. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1921. {
  1922. if (reset_phy)
  1923. bnx2_reset_phy(bp);
  1924. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1925. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1926. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1927. if (bp->dev->mtu > 1500) {
  1928. u32 val;
  1929. /* Set extended packet length bit */
  1930. bnx2_write_phy(bp, 0x18, 0x7);
  1931. bnx2_read_phy(bp, 0x18, &val);
  1932. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1933. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1934. bnx2_read_phy(bp, 0x1c, &val);
  1935. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1936. }
  1937. else {
  1938. u32 val;
  1939. bnx2_write_phy(bp, 0x18, 0x7);
  1940. bnx2_read_phy(bp, 0x18, &val);
  1941. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1942. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1943. bnx2_read_phy(bp, 0x1c, &val);
  1944. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1945. }
  1946. return 0;
  1947. }
  1948. static int
  1949. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1950. {
  1951. u32 val;
  1952. if (reset_phy)
  1953. bnx2_reset_phy(bp);
  1954. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1955. bnx2_write_phy(bp, 0x18, 0x0c00);
  1956. bnx2_write_phy(bp, 0x17, 0x000a);
  1957. bnx2_write_phy(bp, 0x15, 0x310b);
  1958. bnx2_write_phy(bp, 0x17, 0x201f);
  1959. bnx2_write_phy(bp, 0x15, 0x9506);
  1960. bnx2_write_phy(bp, 0x17, 0x401f);
  1961. bnx2_write_phy(bp, 0x15, 0x14e2);
  1962. bnx2_write_phy(bp, 0x18, 0x0400);
  1963. }
  1964. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1965. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1966. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1967. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1968. val &= ~(1 << 8);
  1969. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1970. }
  1971. if (bp->dev->mtu > 1500) {
  1972. /* Set extended packet length bit */
  1973. bnx2_write_phy(bp, 0x18, 0x7);
  1974. bnx2_read_phy(bp, 0x18, &val);
  1975. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1976. bnx2_read_phy(bp, 0x10, &val);
  1977. bnx2_write_phy(bp, 0x10, val | 0x1);
  1978. }
  1979. else {
  1980. bnx2_write_phy(bp, 0x18, 0x7);
  1981. bnx2_read_phy(bp, 0x18, &val);
  1982. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1983. bnx2_read_phy(bp, 0x10, &val);
  1984. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1985. }
  1986. /* ethernet@wirespeed */
  1987. bnx2_write_phy(bp, 0x18, 0x7007);
  1988. bnx2_read_phy(bp, 0x18, &val);
  1989. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1990. return 0;
  1991. }
  1992. static int
  1993. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1994. __releases(&bp->phy_lock)
  1995. __acquires(&bp->phy_lock)
  1996. {
  1997. u32 val;
  1998. int rc = 0;
  1999. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2000. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2001. bp->mii_bmcr = MII_BMCR;
  2002. bp->mii_bmsr = MII_BMSR;
  2003. bp->mii_bmsr1 = MII_BMSR;
  2004. bp->mii_adv = MII_ADVERTISE;
  2005. bp->mii_lpa = MII_LPA;
  2006. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2007. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2008. goto setup_phy;
  2009. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2010. bp->phy_id = val << 16;
  2011. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2012. bp->phy_id |= val & 0xffff;
  2013. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2014. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2015. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2016. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2017. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2018. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2019. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2020. }
  2021. else {
  2022. rc = bnx2_init_copper_phy(bp, reset_phy);
  2023. }
  2024. setup_phy:
  2025. if (!rc)
  2026. rc = bnx2_setup_phy(bp, bp->phy_port);
  2027. return rc;
  2028. }
  2029. static int
  2030. bnx2_set_mac_loopback(struct bnx2 *bp)
  2031. {
  2032. u32 mac_mode;
  2033. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2034. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2035. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2036. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2037. bp->link_up = 1;
  2038. return 0;
  2039. }
  2040. static int bnx2_test_link(struct bnx2 *);
  2041. static int
  2042. bnx2_set_phy_loopback(struct bnx2 *bp)
  2043. {
  2044. u32 mac_mode;
  2045. int rc, i;
  2046. spin_lock_bh(&bp->phy_lock);
  2047. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2048. BMCR_SPEED1000);
  2049. spin_unlock_bh(&bp->phy_lock);
  2050. if (rc)
  2051. return rc;
  2052. for (i = 0; i < 10; i++) {
  2053. if (bnx2_test_link(bp) == 0)
  2054. break;
  2055. msleep(100);
  2056. }
  2057. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2058. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2059. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2060. BNX2_EMAC_MODE_25G_MODE);
  2061. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2062. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2063. bp->link_up = 1;
  2064. return 0;
  2065. }
  2066. static int
  2067. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2068. {
  2069. int i;
  2070. u32 val;
  2071. bp->fw_wr_seq++;
  2072. msg_data |= bp->fw_wr_seq;
  2073. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2074. if (!ack)
  2075. return 0;
  2076. /* wait for an acknowledgement. */
  2077. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2078. msleep(10);
  2079. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2080. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2081. break;
  2082. }
  2083. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2084. return 0;
  2085. /* If we timed out, inform the firmware that this is the case. */
  2086. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2087. if (!silent)
  2088. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2089. msg_data &= ~BNX2_DRV_MSG_CODE;
  2090. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2091. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2092. return -EBUSY;
  2093. }
  2094. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2095. return -EIO;
  2096. return 0;
  2097. }
  2098. static int
  2099. bnx2_init_5709_context(struct bnx2 *bp)
  2100. {
  2101. int i, ret = 0;
  2102. u32 val;
  2103. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2104. val |= (BCM_PAGE_BITS - 8) << 16;
  2105. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2106. for (i = 0; i < 10; i++) {
  2107. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2108. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2109. break;
  2110. udelay(2);
  2111. }
  2112. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2113. return -EBUSY;
  2114. for (i = 0; i < bp->ctx_pages; i++) {
  2115. int j;
  2116. if (bp->ctx_blk[i])
  2117. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2118. else
  2119. return -ENOMEM;
  2120. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2121. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2122. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2123. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2124. (u64) bp->ctx_blk_mapping[i] >> 32);
  2125. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2126. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2127. for (j = 0; j < 10; j++) {
  2128. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2129. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2130. break;
  2131. udelay(5);
  2132. }
  2133. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2134. ret = -EBUSY;
  2135. break;
  2136. }
  2137. }
  2138. return ret;
  2139. }
  2140. static void
  2141. bnx2_init_context(struct bnx2 *bp)
  2142. {
  2143. u32 vcid;
  2144. vcid = 96;
  2145. while (vcid) {
  2146. u32 vcid_addr, pcid_addr, offset;
  2147. int i;
  2148. vcid--;
  2149. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2150. u32 new_vcid;
  2151. vcid_addr = GET_PCID_ADDR(vcid);
  2152. if (vcid & 0x8) {
  2153. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2154. }
  2155. else {
  2156. new_vcid = vcid;
  2157. }
  2158. pcid_addr = GET_PCID_ADDR(new_vcid);
  2159. }
  2160. else {
  2161. vcid_addr = GET_CID_ADDR(vcid);
  2162. pcid_addr = vcid_addr;
  2163. }
  2164. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2165. vcid_addr += (i << PHY_CTX_SHIFT);
  2166. pcid_addr += (i << PHY_CTX_SHIFT);
  2167. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2168. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2169. /* Zero out the context. */
  2170. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2171. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2172. }
  2173. }
  2174. }
  2175. static int
  2176. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2177. {
  2178. u16 *good_mbuf;
  2179. u32 good_mbuf_cnt;
  2180. u32 val;
  2181. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2182. if (good_mbuf == NULL) {
  2183. pr_err("Failed to allocate memory in %s\n", __func__);
  2184. return -ENOMEM;
  2185. }
  2186. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2187. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2188. good_mbuf_cnt = 0;
  2189. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2190. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2191. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2192. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2193. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2194. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2195. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2196. /* The addresses with Bit 9 set are bad memory blocks. */
  2197. if (!(val & (1 << 9))) {
  2198. good_mbuf[good_mbuf_cnt] = (u16) val;
  2199. good_mbuf_cnt++;
  2200. }
  2201. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2202. }
  2203. /* Free the good ones back to the mbuf pool thus discarding
  2204. * all the bad ones. */
  2205. while (good_mbuf_cnt) {
  2206. good_mbuf_cnt--;
  2207. val = good_mbuf[good_mbuf_cnt];
  2208. val = (val << 9) | val | 1;
  2209. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2210. }
  2211. kfree(good_mbuf);
  2212. return 0;
  2213. }
  2214. static void
  2215. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2216. {
  2217. u32 val;
  2218. val = (mac_addr[0] << 8) | mac_addr[1];
  2219. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2220. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2221. (mac_addr[4] << 8) | mac_addr[5];
  2222. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2223. }
  2224. static inline int
  2225. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2226. {
  2227. dma_addr_t mapping;
  2228. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2229. struct rx_bd *rxbd =
  2230. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2231. struct page *page = alloc_page(gfp);
  2232. if (!page)
  2233. return -ENOMEM;
  2234. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2235. PCI_DMA_FROMDEVICE);
  2236. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2237. __free_page(page);
  2238. return -EIO;
  2239. }
  2240. rx_pg->page = page;
  2241. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2242. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2243. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2244. return 0;
  2245. }
  2246. static void
  2247. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2248. {
  2249. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2250. struct page *page = rx_pg->page;
  2251. if (!page)
  2252. return;
  2253. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2254. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2255. __free_page(page);
  2256. rx_pg->page = NULL;
  2257. }
  2258. static inline int
  2259. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2260. {
  2261. struct sk_buff *skb;
  2262. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2263. dma_addr_t mapping;
  2264. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2265. unsigned long align;
  2266. skb = __netdev_alloc_skb(bp->dev, bp->rx_buf_size, gfp);
  2267. if (skb == NULL) {
  2268. return -ENOMEM;
  2269. }
  2270. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2271. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2272. mapping = dma_map_single(&bp->pdev->dev, skb->data, bp->rx_buf_use_size,
  2273. PCI_DMA_FROMDEVICE);
  2274. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2275. dev_kfree_skb(skb);
  2276. return -EIO;
  2277. }
  2278. rx_buf->skb = skb;
  2279. rx_buf->desc = (struct l2_fhdr *) skb->data;
  2280. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2281. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2282. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2283. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2284. return 0;
  2285. }
  2286. static int
  2287. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2288. {
  2289. struct status_block *sblk = bnapi->status_blk.msi;
  2290. u32 new_link_state, old_link_state;
  2291. int is_set = 1;
  2292. new_link_state = sblk->status_attn_bits & event;
  2293. old_link_state = sblk->status_attn_bits_ack & event;
  2294. if (new_link_state != old_link_state) {
  2295. if (new_link_state)
  2296. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2297. else
  2298. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2299. } else
  2300. is_set = 0;
  2301. return is_set;
  2302. }
  2303. static void
  2304. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2305. {
  2306. spin_lock(&bp->phy_lock);
  2307. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2308. bnx2_set_link(bp);
  2309. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2310. bnx2_set_remote_link(bp);
  2311. spin_unlock(&bp->phy_lock);
  2312. }
  2313. static inline u16
  2314. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2315. {
  2316. u16 cons;
  2317. /* Tell compiler that status block fields can change. */
  2318. barrier();
  2319. cons = *bnapi->hw_tx_cons_ptr;
  2320. barrier();
  2321. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2322. cons++;
  2323. return cons;
  2324. }
  2325. static int
  2326. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2327. {
  2328. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2329. u16 hw_cons, sw_cons, sw_ring_cons;
  2330. int tx_pkt = 0, index;
  2331. struct netdev_queue *txq;
  2332. index = (bnapi - bp->bnx2_napi);
  2333. txq = netdev_get_tx_queue(bp->dev, index);
  2334. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2335. sw_cons = txr->tx_cons;
  2336. while (sw_cons != hw_cons) {
  2337. struct sw_tx_bd *tx_buf;
  2338. struct sk_buff *skb;
  2339. int i, last;
  2340. sw_ring_cons = TX_RING_IDX(sw_cons);
  2341. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2342. skb = tx_buf->skb;
  2343. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2344. prefetch(&skb->end);
  2345. /* partial BD completions possible with TSO packets */
  2346. if (tx_buf->is_gso) {
  2347. u16 last_idx, last_ring_idx;
  2348. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2349. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2350. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2351. last_idx++;
  2352. }
  2353. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2354. break;
  2355. }
  2356. }
  2357. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2358. skb_headlen(skb), PCI_DMA_TODEVICE);
  2359. tx_buf->skb = NULL;
  2360. last = tx_buf->nr_frags;
  2361. for (i = 0; i < last; i++) {
  2362. sw_cons = NEXT_TX_BD(sw_cons);
  2363. dma_unmap_page(&bp->pdev->dev,
  2364. dma_unmap_addr(
  2365. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2366. mapping),
  2367. skb_shinfo(skb)->frags[i].size,
  2368. PCI_DMA_TODEVICE);
  2369. }
  2370. sw_cons = NEXT_TX_BD(sw_cons);
  2371. dev_kfree_skb(skb);
  2372. tx_pkt++;
  2373. if (tx_pkt == budget)
  2374. break;
  2375. if (hw_cons == sw_cons)
  2376. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2377. }
  2378. txr->hw_tx_cons = hw_cons;
  2379. txr->tx_cons = sw_cons;
  2380. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2381. * before checking for netif_tx_queue_stopped(). Without the
  2382. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2383. * will miss it and cause the queue to be stopped forever.
  2384. */
  2385. smp_mb();
  2386. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2387. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2388. __netif_tx_lock(txq, smp_processor_id());
  2389. if ((netif_tx_queue_stopped(txq)) &&
  2390. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2391. netif_tx_wake_queue(txq);
  2392. __netif_tx_unlock(txq);
  2393. }
  2394. return tx_pkt;
  2395. }
  2396. static void
  2397. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2398. struct sk_buff *skb, int count)
  2399. {
  2400. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2401. struct rx_bd *cons_bd, *prod_bd;
  2402. int i;
  2403. u16 hw_prod, prod;
  2404. u16 cons = rxr->rx_pg_cons;
  2405. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2406. /* The caller was unable to allocate a new page to replace the
  2407. * last one in the frags array, so we need to recycle that page
  2408. * and then free the skb.
  2409. */
  2410. if (skb) {
  2411. struct page *page;
  2412. struct skb_shared_info *shinfo;
  2413. shinfo = skb_shinfo(skb);
  2414. shinfo->nr_frags--;
  2415. page = shinfo->frags[shinfo->nr_frags].page;
  2416. shinfo->frags[shinfo->nr_frags].page = NULL;
  2417. cons_rx_pg->page = page;
  2418. dev_kfree_skb(skb);
  2419. }
  2420. hw_prod = rxr->rx_pg_prod;
  2421. for (i = 0; i < count; i++) {
  2422. prod = RX_PG_RING_IDX(hw_prod);
  2423. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2424. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2425. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2426. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2427. if (prod != cons) {
  2428. prod_rx_pg->page = cons_rx_pg->page;
  2429. cons_rx_pg->page = NULL;
  2430. dma_unmap_addr_set(prod_rx_pg, mapping,
  2431. dma_unmap_addr(cons_rx_pg, mapping));
  2432. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2433. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2434. }
  2435. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2436. hw_prod = NEXT_RX_BD(hw_prod);
  2437. }
  2438. rxr->rx_pg_prod = hw_prod;
  2439. rxr->rx_pg_cons = cons;
  2440. }
  2441. static inline void
  2442. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2443. struct sk_buff *skb, u16 cons, u16 prod)
  2444. {
  2445. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2446. struct rx_bd *cons_bd, *prod_bd;
  2447. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2448. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2449. dma_sync_single_for_device(&bp->pdev->dev,
  2450. dma_unmap_addr(cons_rx_buf, mapping),
  2451. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2452. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2453. prod_rx_buf->skb = skb;
  2454. prod_rx_buf->desc = (struct l2_fhdr *) skb->data;
  2455. if (cons == prod)
  2456. return;
  2457. dma_unmap_addr_set(prod_rx_buf, mapping,
  2458. dma_unmap_addr(cons_rx_buf, mapping));
  2459. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2460. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2461. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2462. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2463. }
  2464. static int
  2465. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2466. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2467. u32 ring_idx)
  2468. {
  2469. int err;
  2470. u16 prod = ring_idx & 0xffff;
  2471. err = bnx2_alloc_rx_skb(bp, rxr, prod, GFP_ATOMIC);
  2472. if (unlikely(err)) {
  2473. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2474. if (hdr_len) {
  2475. unsigned int raw_len = len + 4;
  2476. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2477. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2478. }
  2479. return err;
  2480. }
  2481. skb_reserve(skb, BNX2_RX_OFFSET);
  2482. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2483. PCI_DMA_FROMDEVICE);
  2484. if (hdr_len == 0) {
  2485. skb_put(skb, len);
  2486. return 0;
  2487. } else {
  2488. unsigned int i, frag_len, frag_size, pages;
  2489. struct sw_pg *rx_pg;
  2490. u16 pg_cons = rxr->rx_pg_cons;
  2491. u16 pg_prod = rxr->rx_pg_prod;
  2492. frag_size = len + 4 - hdr_len;
  2493. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2494. skb_put(skb, hdr_len);
  2495. for (i = 0; i < pages; i++) {
  2496. dma_addr_t mapping_old;
  2497. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2498. if (unlikely(frag_len <= 4)) {
  2499. unsigned int tail = 4 - frag_len;
  2500. rxr->rx_pg_cons = pg_cons;
  2501. rxr->rx_pg_prod = pg_prod;
  2502. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2503. pages - i);
  2504. skb->len -= tail;
  2505. if (i == 0) {
  2506. skb->tail -= tail;
  2507. } else {
  2508. skb_frag_t *frag =
  2509. &skb_shinfo(skb)->frags[i - 1];
  2510. frag->size -= tail;
  2511. skb->data_len -= tail;
  2512. skb->truesize -= tail;
  2513. }
  2514. return 0;
  2515. }
  2516. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2517. /* Don't unmap yet. If we're unable to allocate a new
  2518. * page, we need to recycle the page and the DMA addr.
  2519. */
  2520. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2521. if (i == pages - 1)
  2522. frag_len -= 4;
  2523. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2524. rx_pg->page = NULL;
  2525. err = bnx2_alloc_rx_page(bp, rxr,
  2526. RX_PG_RING_IDX(pg_prod),
  2527. GFP_ATOMIC);
  2528. if (unlikely(err)) {
  2529. rxr->rx_pg_cons = pg_cons;
  2530. rxr->rx_pg_prod = pg_prod;
  2531. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2532. pages - i);
  2533. return err;
  2534. }
  2535. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2536. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2537. frag_size -= frag_len;
  2538. skb->data_len += frag_len;
  2539. skb->truesize += frag_len;
  2540. skb->len += frag_len;
  2541. pg_prod = NEXT_RX_BD(pg_prod);
  2542. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2543. }
  2544. rxr->rx_pg_prod = pg_prod;
  2545. rxr->rx_pg_cons = pg_cons;
  2546. }
  2547. return 0;
  2548. }
  2549. static inline u16
  2550. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2551. {
  2552. u16 cons;
  2553. /* Tell compiler that status block fields can change. */
  2554. barrier();
  2555. cons = *bnapi->hw_rx_cons_ptr;
  2556. barrier();
  2557. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2558. cons++;
  2559. return cons;
  2560. }
  2561. static int
  2562. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2563. {
  2564. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2565. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2566. struct l2_fhdr *rx_hdr;
  2567. int rx_pkt = 0, pg_ring_used = 0;
  2568. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2569. sw_cons = rxr->rx_cons;
  2570. sw_prod = rxr->rx_prod;
  2571. /* Memory barrier necessary as speculative reads of the rx
  2572. * buffer can be ahead of the index in the status block
  2573. */
  2574. rmb();
  2575. while (sw_cons != hw_cons) {
  2576. unsigned int len, hdr_len;
  2577. u32 status;
  2578. struct sw_bd *rx_buf, *next_rx_buf;
  2579. struct sk_buff *skb;
  2580. dma_addr_t dma_addr;
  2581. u16 vtag = 0;
  2582. int hw_vlan __maybe_unused = 0;
  2583. sw_ring_cons = RX_RING_IDX(sw_cons);
  2584. sw_ring_prod = RX_RING_IDX(sw_prod);
  2585. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2586. skb = rx_buf->skb;
  2587. prefetchw(skb);
  2588. next_rx_buf =
  2589. &rxr->rx_buf_ring[RX_RING_IDX(NEXT_RX_BD(sw_cons))];
  2590. prefetch(next_rx_buf->desc);
  2591. rx_buf->skb = NULL;
  2592. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2593. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2594. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2595. PCI_DMA_FROMDEVICE);
  2596. rx_hdr = rx_buf->desc;
  2597. len = rx_hdr->l2_fhdr_pkt_len;
  2598. status = rx_hdr->l2_fhdr_status;
  2599. hdr_len = 0;
  2600. if (status & L2_FHDR_STATUS_SPLIT) {
  2601. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2602. pg_ring_used = 1;
  2603. } else if (len > bp->rx_jumbo_thresh) {
  2604. hdr_len = bp->rx_jumbo_thresh;
  2605. pg_ring_used = 1;
  2606. }
  2607. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2608. L2_FHDR_ERRORS_PHY_DECODE |
  2609. L2_FHDR_ERRORS_ALIGNMENT |
  2610. L2_FHDR_ERRORS_TOO_SHORT |
  2611. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2612. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2613. sw_ring_prod);
  2614. if (pg_ring_used) {
  2615. int pages;
  2616. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2617. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2618. }
  2619. goto next_rx;
  2620. }
  2621. len -= 4;
  2622. if (len <= bp->rx_copy_thresh) {
  2623. struct sk_buff *new_skb;
  2624. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2625. if (new_skb == NULL) {
  2626. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2627. sw_ring_prod);
  2628. goto next_rx;
  2629. }
  2630. /* aligned copy */
  2631. skb_copy_from_linear_data_offset(skb,
  2632. BNX2_RX_OFFSET - 6,
  2633. new_skb->data, len + 6);
  2634. skb_reserve(new_skb, 6);
  2635. skb_put(new_skb, len);
  2636. bnx2_reuse_rx_skb(bp, rxr, skb,
  2637. sw_ring_cons, sw_ring_prod);
  2638. skb = new_skb;
  2639. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2640. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2641. goto next_rx;
  2642. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2643. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2644. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2645. #ifdef BCM_VLAN
  2646. if (bp->vlgrp)
  2647. hw_vlan = 1;
  2648. else
  2649. #endif
  2650. {
  2651. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2652. __skb_push(skb, 4);
  2653. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2654. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2655. ve->h_vlan_TCI = htons(vtag);
  2656. len += 4;
  2657. }
  2658. }
  2659. skb->protocol = eth_type_trans(skb, bp->dev);
  2660. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2661. (ntohs(skb->protocol) != 0x8100)) {
  2662. dev_kfree_skb(skb);
  2663. goto next_rx;
  2664. }
  2665. skb_checksum_none_assert(skb);
  2666. if (bp->rx_csum &&
  2667. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2668. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2669. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2670. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2671. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2672. }
  2673. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2674. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2675. L2_FHDR_STATUS_USE_RXHASH))
  2676. skb->rxhash = rx_hdr->l2_fhdr_hash;
  2677. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2678. #ifdef BCM_VLAN
  2679. if (hw_vlan)
  2680. vlan_gro_receive(&bnapi->napi, bp->vlgrp, vtag, skb);
  2681. else
  2682. #endif
  2683. napi_gro_receive(&bnapi->napi, skb);
  2684. rx_pkt++;
  2685. next_rx:
  2686. sw_cons = NEXT_RX_BD(sw_cons);
  2687. sw_prod = NEXT_RX_BD(sw_prod);
  2688. if ((rx_pkt == budget))
  2689. break;
  2690. /* Refresh hw_cons to see if there is new work */
  2691. if (sw_cons == hw_cons) {
  2692. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2693. rmb();
  2694. }
  2695. }
  2696. rxr->rx_cons = sw_cons;
  2697. rxr->rx_prod = sw_prod;
  2698. if (pg_ring_used)
  2699. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2700. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2701. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2702. mmiowb();
  2703. return rx_pkt;
  2704. }
  2705. /* MSI ISR - The only difference between this and the INTx ISR
  2706. * is that the MSI interrupt is always serviced.
  2707. */
  2708. static irqreturn_t
  2709. bnx2_msi(int irq, void *dev_instance)
  2710. {
  2711. struct bnx2_napi *bnapi = dev_instance;
  2712. struct bnx2 *bp = bnapi->bp;
  2713. prefetch(bnapi->status_blk.msi);
  2714. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2715. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2716. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2717. /* Return here if interrupt is disabled. */
  2718. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2719. return IRQ_HANDLED;
  2720. napi_schedule(&bnapi->napi);
  2721. return IRQ_HANDLED;
  2722. }
  2723. static irqreturn_t
  2724. bnx2_msi_1shot(int irq, void *dev_instance)
  2725. {
  2726. struct bnx2_napi *bnapi = dev_instance;
  2727. struct bnx2 *bp = bnapi->bp;
  2728. prefetch(bnapi->status_blk.msi);
  2729. /* Return here if interrupt is disabled. */
  2730. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2731. return IRQ_HANDLED;
  2732. napi_schedule(&bnapi->napi);
  2733. return IRQ_HANDLED;
  2734. }
  2735. static irqreturn_t
  2736. bnx2_interrupt(int irq, void *dev_instance)
  2737. {
  2738. struct bnx2_napi *bnapi = dev_instance;
  2739. struct bnx2 *bp = bnapi->bp;
  2740. struct status_block *sblk = bnapi->status_blk.msi;
  2741. /* When using INTx, it is possible for the interrupt to arrive
  2742. * at the CPU before the status block posted prior to the
  2743. * interrupt. Reading a register will flush the status block.
  2744. * When using MSI, the MSI message will always complete after
  2745. * the status block write.
  2746. */
  2747. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2748. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2749. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2750. return IRQ_NONE;
  2751. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2752. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2753. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2754. /* Read back to deassert IRQ immediately to avoid too many
  2755. * spurious interrupts.
  2756. */
  2757. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2758. /* Return here if interrupt is shared and is disabled. */
  2759. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2760. return IRQ_HANDLED;
  2761. if (napi_schedule_prep(&bnapi->napi)) {
  2762. bnapi->last_status_idx = sblk->status_idx;
  2763. __napi_schedule(&bnapi->napi);
  2764. }
  2765. return IRQ_HANDLED;
  2766. }
  2767. static inline int
  2768. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2769. {
  2770. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2771. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2772. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2773. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2774. return 1;
  2775. return 0;
  2776. }
  2777. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2778. STATUS_ATTN_BITS_TIMER_ABORT)
  2779. static inline int
  2780. bnx2_has_work(struct bnx2_napi *bnapi)
  2781. {
  2782. struct status_block *sblk = bnapi->status_blk.msi;
  2783. if (bnx2_has_fast_work(bnapi))
  2784. return 1;
  2785. #ifdef BCM_CNIC
  2786. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2787. return 1;
  2788. #endif
  2789. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2790. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2791. return 1;
  2792. return 0;
  2793. }
  2794. static void
  2795. bnx2_chk_missed_msi(struct bnx2 *bp)
  2796. {
  2797. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2798. u32 msi_ctrl;
  2799. if (bnx2_has_work(bnapi)) {
  2800. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2801. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2802. return;
  2803. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2804. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2805. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2806. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2807. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2808. }
  2809. }
  2810. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2811. }
  2812. #ifdef BCM_CNIC
  2813. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2814. {
  2815. struct cnic_ops *c_ops;
  2816. if (!bnapi->cnic_present)
  2817. return;
  2818. rcu_read_lock();
  2819. c_ops = rcu_dereference(bp->cnic_ops);
  2820. if (c_ops)
  2821. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2822. bnapi->status_blk.msi);
  2823. rcu_read_unlock();
  2824. }
  2825. #endif
  2826. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2827. {
  2828. struct status_block *sblk = bnapi->status_blk.msi;
  2829. u32 status_attn_bits = sblk->status_attn_bits;
  2830. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2831. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2832. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2833. bnx2_phy_int(bp, bnapi);
  2834. /* This is needed to take care of transient status
  2835. * during link changes.
  2836. */
  2837. REG_WR(bp, BNX2_HC_COMMAND,
  2838. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2839. REG_RD(bp, BNX2_HC_COMMAND);
  2840. }
  2841. }
  2842. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2843. int work_done, int budget)
  2844. {
  2845. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2846. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2847. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2848. bnx2_tx_int(bp, bnapi, 0);
  2849. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2850. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2851. return work_done;
  2852. }
  2853. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2854. {
  2855. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2856. struct bnx2 *bp = bnapi->bp;
  2857. int work_done = 0;
  2858. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2859. while (1) {
  2860. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2861. if (unlikely(work_done >= budget))
  2862. break;
  2863. bnapi->last_status_idx = sblk->status_idx;
  2864. /* status idx must be read before checking for more work. */
  2865. rmb();
  2866. if (likely(!bnx2_has_fast_work(bnapi))) {
  2867. napi_complete(napi);
  2868. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2869. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2870. bnapi->last_status_idx);
  2871. break;
  2872. }
  2873. }
  2874. return work_done;
  2875. }
  2876. static int bnx2_poll(struct napi_struct *napi, int budget)
  2877. {
  2878. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2879. struct bnx2 *bp = bnapi->bp;
  2880. int work_done = 0;
  2881. struct status_block *sblk = bnapi->status_blk.msi;
  2882. while (1) {
  2883. bnx2_poll_link(bp, bnapi);
  2884. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2885. #ifdef BCM_CNIC
  2886. bnx2_poll_cnic(bp, bnapi);
  2887. #endif
  2888. /* bnapi->last_status_idx is used below to tell the hw how
  2889. * much work has been processed, so we must read it before
  2890. * checking for more work.
  2891. */
  2892. bnapi->last_status_idx = sblk->status_idx;
  2893. if (unlikely(work_done >= budget))
  2894. break;
  2895. rmb();
  2896. if (likely(!bnx2_has_work(bnapi))) {
  2897. napi_complete(napi);
  2898. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2899. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2900. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2901. bnapi->last_status_idx);
  2902. break;
  2903. }
  2904. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2905. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2906. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2907. bnapi->last_status_idx);
  2908. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2909. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2910. bnapi->last_status_idx);
  2911. break;
  2912. }
  2913. }
  2914. return work_done;
  2915. }
  2916. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2917. * from set_multicast.
  2918. */
  2919. static void
  2920. bnx2_set_rx_mode(struct net_device *dev)
  2921. {
  2922. struct bnx2 *bp = netdev_priv(dev);
  2923. u32 rx_mode, sort_mode;
  2924. struct netdev_hw_addr *ha;
  2925. int i;
  2926. if (!netif_running(dev))
  2927. return;
  2928. spin_lock_bh(&bp->phy_lock);
  2929. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2930. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2931. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2932. #ifdef BCM_VLAN
  2933. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2934. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2935. #else
  2936. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2937. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2938. #endif
  2939. if (dev->flags & IFF_PROMISC) {
  2940. /* Promiscuous mode. */
  2941. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2942. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2943. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2944. }
  2945. else if (dev->flags & IFF_ALLMULTI) {
  2946. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2947. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2948. 0xffffffff);
  2949. }
  2950. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2951. }
  2952. else {
  2953. /* Accept one or more multicast(s). */
  2954. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2955. u32 regidx;
  2956. u32 bit;
  2957. u32 crc;
  2958. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2959. netdev_for_each_mc_addr(ha, dev) {
  2960. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2961. bit = crc & 0xff;
  2962. regidx = (bit & 0xe0) >> 5;
  2963. bit &= 0x1f;
  2964. mc_filter[regidx] |= (1 << bit);
  2965. }
  2966. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2967. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2968. mc_filter[i]);
  2969. }
  2970. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2971. }
  2972. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2973. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2974. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2975. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2976. } else if (!(dev->flags & IFF_PROMISC)) {
  2977. /* Add all entries into to the match filter list */
  2978. i = 0;
  2979. netdev_for_each_uc_addr(ha, dev) {
  2980. bnx2_set_mac_addr(bp, ha->addr,
  2981. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2982. sort_mode |= (1 <<
  2983. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2984. i++;
  2985. }
  2986. }
  2987. if (rx_mode != bp->rx_mode) {
  2988. bp->rx_mode = rx_mode;
  2989. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2990. }
  2991. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2992. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2993. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2994. spin_unlock_bh(&bp->phy_lock);
  2995. }
  2996. static int __devinit
  2997. check_fw_section(const struct firmware *fw,
  2998. const struct bnx2_fw_file_section *section,
  2999. u32 alignment, bool non_empty)
  3000. {
  3001. u32 offset = be32_to_cpu(section->offset);
  3002. u32 len = be32_to_cpu(section->len);
  3003. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3004. return -EINVAL;
  3005. if ((non_empty && len == 0) || len > fw->size - offset ||
  3006. len & (alignment - 1))
  3007. return -EINVAL;
  3008. return 0;
  3009. }
  3010. static int __devinit
  3011. check_mips_fw_entry(const struct firmware *fw,
  3012. const struct bnx2_mips_fw_file_entry *entry)
  3013. {
  3014. if (check_fw_section(fw, &entry->text, 4, true) ||
  3015. check_fw_section(fw, &entry->data, 4, false) ||
  3016. check_fw_section(fw, &entry->rodata, 4, false))
  3017. return -EINVAL;
  3018. return 0;
  3019. }
  3020. static int __devinit
  3021. bnx2_request_firmware(struct bnx2 *bp)
  3022. {
  3023. const char *mips_fw_file, *rv2p_fw_file;
  3024. const struct bnx2_mips_fw_file *mips_fw;
  3025. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3026. int rc;
  3027. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3028. mips_fw_file = FW_MIPS_FILE_09;
  3029. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3030. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3031. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3032. else
  3033. rv2p_fw_file = FW_RV2P_FILE_09;
  3034. } else {
  3035. mips_fw_file = FW_MIPS_FILE_06;
  3036. rv2p_fw_file = FW_RV2P_FILE_06;
  3037. }
  3038. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3039. if (rc) {
  3040. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3041. return rc;
  3042. }
  3043. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3044. if (rc) {
  3045. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3046. return rc;
  3047. }
  3048. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3049. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3050. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3051. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3052. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3053. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3054. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3055. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3056. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3057. return -EINVAL;
  3058. }
  3059. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3060. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3061. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3062. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3063. return -EINVAL;
  3064. }
  3065. return 0;
  3066. }
  3067. static u32
  3068. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3069. {
  3070. switch (idx) {
  3071. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3072. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3073. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3074. break;
  3075. }
  3076. return rv2p_code;
  3077. }
  3078. static int
  3079. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3080. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3081. {
  3082. u32 rv2p_code_len, file_offset;
  3083. __be32 *rv2p_code;
  3084. int i;
  3085. u32 val, cmd, addr;
  3086. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3087. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3088. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3089. if (rv2p_proc == RV2P_PROC1) {
  3090. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3091. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3092. } else {
  3093. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3094. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3095. }
  3096. for (i = 0; i < rv2p_code_len; i += 8) {
  3097. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3098. rv2p_code++;
  3099. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3100. rv2p_code++;
  3101. val = (i / 8) | cmd;
  3102. REG_WR(bp, addr, val);
  3103. }
  3104. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3105. for (i = 0; i < 8; i++) {
  3106. u32 loc, code;
  3107. loc = be32_to_cpu(fw_entry->fixup[i]);
  3108. if (loc && ((loc * 4) < rv2p_code_len)) {
  3109. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3110. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3111. code = be32_to_cpu(*(rv2p_code + loc));
  3112. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3113. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3114. val = (loc / 2) | cmd;
  3115. REG_WR(bp, addr, val);
  3116. }
  3117. }
  3118. /* Reset the processor, un-stall is done later. */
  3119. if (rv2p_proc == RV2P_PROC1) {
  3120. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3121. }
  3122. else {
  3123. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3124. }
  3125. return 0;
  3126. }
  3127. static int
  3128. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3129. const struct bnx2_mips_fw_file_entry *fw_entry)
  3130. {
  3131. u32 addr, len, file_offset;
  3132. __be32 *data;
  3133. u32 offset;
  3134. u32 val;
  3135. /* Halt the CPU. */
  3136. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3137. val |= cpu_reg->mode_value_halt;
  3138. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3139. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3140. /* Load the Text area. */
  3141. addr = be32_to_cpu(fw_entry->text.addr);
  3142. len = be32_to_cpu(fw_entry->text.len);
  3143. file_offset = be32_to_cpu(fw_entry->text.offset);
  3144. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3145. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3146. if (len) {
  3147. int j;
  3148. for (j = 0; j < (len / 4); j++, offset += 4)
  3149. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3150. }
  3151. /* Load the Data area. */
  3152. addr = be32_to_cpu(fw_entry->data.addr);
  3153. len = be32_to_cpu(fw_entry->data.len);
  3154. file_offset = be32_to_cpu(fw_entry->data.offset);
  3155. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3156. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3157. if (len) {
  3158. int j;
  3159. for (j = 0; j < (len / 4); j++, offset += 4)
  3160. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3161. }
  3162. /* Load the Read-Only area. */
  3163. addr = be32_to_cpu(fw_entry->rodata.addr);
  3164. len = be32_to_cpu(fw_entry->rodata.len);
  3165. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3166. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3167. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3168. if (len) {
  3169. int j;
  3170. for (j = 0; j < (len / 4); j++, offset += 4)
  3171. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3172. }
  3173. /* Clear the pre-fetch instruction. */
  3174. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3175. val = be32_to_cpu(fw_entry->start_addr);
  3176. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3177. /* Start the CPU. */
  3178. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3179. val &= ~cpu_reg->mode_value_halt;
  3180. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3181. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3182. return 0;
  3183. }
  3184. static int
  3185. bnx2_init_cpus(struct bnx2 *bp)
  3186. {
  3187. const struct bnx2_mips_fw_file *mips_fw =
  3188. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3189. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3190. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3191. int rc;
  3192. /* Initialize the RV2P processor. */
  3193. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3194. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3195. /* Initialize the RX Processor. */
  3196. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3197. if (rc)
  3198. goto init_cpu_err;
  3199. /* Initialize the TX Processor. */
  3200. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3201. if (rc)
  3202. goto init_cpu_err;
  3203. /* Initialize the TX Patch-up Processor. */
  3204. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3205. if (rc)
  3206. goto init_cpu_err;
  3207. /* Initialize the Completion Processor. */
  3208. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3209. if (rc)
  3210. goto init_cpu_err;
  3211. /* Initialize the Command Processor. */
  3212. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3213. init_cpu_err:
  3214. return rc;
  3215. }
  3216. static int
  3217. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3218. {
  3219. u16 pmcsr;
  3220. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3221. switch (state) {
  3222. case PCI_D0: {
  3223. u32 val;
  3224. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3225. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3226. PCI_PM_CTRL_PME_STATUS);
  3227. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3228. /* delay required during transition out of D3hot */
  3229. msleep(20);
  3230. val = REG_RD(bp, BNX2_EMAC_MODE);
  3231. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3232. val &= ~BNX2_EMAC_MODE_MPKT;
  3233. REG_WR(bp, BNX2_EMAC_MODE, val);
  3234. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3235. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3236. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3237. break;
  3238. }
  3239. case PCI_D3hot: {
  3240. int i;
  3241. u32 val, wol_msg;
  3242. if (bp->wol) {
  3243. u32 advertising;
  3244. u8 autoneg;
  3245. autoneg = bp->autoneg;
  3246. advertising = bp->advertising;
  3247. if (bp->phy_port == PORT_TP) {
  3248. bp->autoneg = AUTONEG_SPEED;
  3249. bp->advertising = ADVERTISED_10baseT_Half |
  3250. ADVERTISED_10baseT_Full |
  3251. ADVERTISED_100baseT_Half |
  3252. ADVERTISED_100baseT_Full |
  3253. ADVERTISED_Autoneg;
  3254. }
  3255. spin_lock_bh(&bp->phy_lock);
  3256. bnx2_setup_phy(bp, bp->phy_port);
  3257. spin_unlock_bh(&bp->phy_lock);
  3258. bp->autoneg = autoneg;
  3259. bp->advertising = advertising;
  3260. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3261. val = REG_RD(bp, BNX2_EMAC_MODE);
  3262. /* Enable port mode. */
  3263. val &= ~BNX2_EMAC_MODE_PORT;
  3264. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3265. BNX2_EMAC_MODE_ACPI_RCVD |
  3266. BNX2_EMAC_MODE_MPKT;
  3267. if (bp->phy_port == PORT_TP)
  3268. val |= BNX2_EMAC_MODE_PORT_MII;
  3269. else {
  3270. val |= BNX2_EMAC_MODE_PORT_GMII;
  3271. if (bp->line_speed == SPEED_2500)
  3272. val |= BNX2_EMAC_MODE_25G_MODE;
  3273. }
  3274. REG_WR(bp, BNX2_EMAC_MODE, val);
  3275. /* receive all multicast */
  3276. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3277. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3278. 0xffffffff);
  3279. }
  3280. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3281. BNX2_EMAC_RX_MODE_SORT_MODE);
  3282. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3283. BNX2_RPM_SORT_USER0_MC_EN;
  3284. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3285. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3286. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3287. BNX2_RPM_SORT_USER0_ENA);
  3288. /* Need to enable EMAC and RPM for WOL. */
  3289. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3290. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3291. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3292. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3293. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3294. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3295. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3296. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3297. }
  3298. else {
  3299. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3300. }
  3301. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3302. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3303. 1, 0);
  3304. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3305. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3306. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3307. if (bp->wol)
  3308. pmcsr |= 3;
  3309. }
  3310. else {
  3311. pmcsr |= 3;
  3312. }
  3313. if (bp->wol) {
  3314. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3315. }
  3316. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3317. pmcsr);
  3318. /* No more memory access after this point until
  3319. * device is brought back to D0.
  3320. */
  3321. udelay(50);
  3322. break;
  3323. }
  3324. default:
  3325. return -EINVAL;
  3326. }
  3327. return 0;
  3328. }
  3329. static int
  3330. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3331. {
  3332. u32 val;
  3333. int j;
  3334. /* Request access to the flash interface. */
  3335. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3336. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3337. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3338. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3339. break;
  3340. udelay(5);
  3341. }
  3342. if (j >= NVRAM_TIMEOUT_COUNT)
  3343. return -EBUSY;
  3344. return 0;
  3345. }
  3346. static int
  3347. bnx2_release_nvram_lock(struct bnx2 *bp)
  3348. {
  3349. int j;
  3350. u32 val;
  3351. /* Relinquish nvram interface. */
  3352. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3353. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3354. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3355. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3356. break;
  3357. udelay(5);
  3358. }
  3359. if (j >= NVRAM_TIMEOUT_COUNT)
  3360. return -EBUSY;
  3361. return 0;
  3362. }
  3363. static int
  3364. bnx2_enable_nvram_write(struct bnx2 *bp)
  3365. {
  3366. u32 val;
  3367. val = REG_RD(bp, BNX2_MISC_CFG);
  3368. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3369. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3370. int j;
  3371. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3372. REG_WR(bp, BNX2_NVM_COMMAND,
  3373. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3374. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3375. udelay(5);
  3376. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3377. if (val & BNX2_NVM_COMMAND_DONE)
  3378. break;
  3379. }
  3380. if (j >= NVRAM_TIMEOUT_COUNT)
  3381. return -EBUSY;
  3382. }
  3383. return 0;
  3384. }
  3385. static void
  3386. bnx2_disable_nvram_write(struct bnx2 *bp)
  3387. {
  3388. u32 val;
  3389. val = REG_RD(bp, BNX2_MISC_CFG);
  3390. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3391. }
  3392. static void
  3393. bnx2_enable_nvram_access(struct bnx2 *bp)
  3394. {
  3395. u32 val;
  3396. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3397. /* Enable both bits, even on read. */
  3398. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3399. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3400. }
  3401. static void
  3402. bnx2_disable_nvram_access(struct bnx2 *bp)
  3403. {
  3404. u32 val;
  3405. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3406. /* Disable both bits, even after read. */
  3407. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3408. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3409. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3410. }
  3411. static int
  3412. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3413. {
  3414. u32 cmd;
  3415. int j;
  3416. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3417. /* Buffered flash, no erase needed */
  3418. return 0;
  3419. /* Build an erase command */
  3420. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3421. BNX2_NVM_COMMAND_DOIT;
  3422. /* Need to clear DONE bit separately. */
  3423. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3424. /* Address of the NVRAM to read from. */
  3425. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3426. /* Issue an erase command. */
  3427. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3428. /* Wait for completion. */
  3429. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3430. u32 val;
  3431. udelay(5);
  3432. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3433. if (val & BNX2_NVM_COMMAND_DONE)
  3434. break;
  3435. }
  3436. if (j >= NVRAM_TIMEOUT_COUNT)
  3437. return -EBUSY;
  3438. return 0;
  3439. }
  3440. static int
  3441. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3442. {
  3443. u32 cmd;
  3444. int j;
  3445. /* Build the command word. */
  3446. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3447. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3448. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3449. offset = ((offset / bp->flash_info->page_size) <<
  3450. bp->flash_info->page_bits) +
  3451. (offset % bp->flash_info->page_size);
  3452. }
  3453. /* Need to clear DONE bit separately. */
  3454. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3455. /* Address of the NVRAM to read from. */
  3456. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3457. /* Issue a read command. */
  3458. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3459. /* Wait for completion. */
  3460. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3461. u32 val;
  3462. udelay(5);
  3463. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3464. if (val & BNX2_NVM_COMMAND_DONE) {
  3465. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3466. memcpy(ret_val, &v, 4);
  3467. break;
  3468. }
  3469. }
  3470. if (j >= NVRAM_TIMEOUT_COUNT)
  3471. return -EBUSY;
  3472. return 0;
  3473. }
  3474. static int
  3475. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3476. {
  3477. u32 cmd;
  3478. __be32 val32;
  3479. int j;
  3480. /* Build the command word. */
  3481. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3482. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3483. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3484. offset = ((offset / bp->flash_info->page_size) <<
  3485. bp->flash_info->page_bits) +
  3486. (offset % bp->flash_info->page_size);
  3487. }
  3488. /* Need to clear DONE bit separately. */
  3489. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3490. memcpy(&val32, val, 4);
  3491. /* Write the data. */
  3492. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3493. /* Address of the NVRAM to write to. */
  3494. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3495. /* Issue the write command. */
  3496. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3497. /* Wait for completion. */
  3498. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3499. udelay(5);
  3500. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3501. break;
  3502. }
  3503. if (j >= NVRAM_TIMEOUT_COUNT)
  3504. return -EBUSY;
  3505. return 0;
  3506. }
  3507. static int
  3508. bnx2_init_nvram(struct bnx2 *bp)
  3509. {
  3510. u32 val;
  3511. int j, entry_count, rc = 0;
  3512. const struct flash_spec *flash;
  3513. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3514. bp->flash_info = &flash_5709;
  3515. goto get_flash_size;
  3516. }
  3517. /* Determine the selected interface. */
  3518. val = REG_RD(bp, BNX2_NVM_CFG1);
  3519. entry_count = ARRAY_SIZE(flash_table);
  3520. if (val & 0x40000000) {
  3521. /* Flash interface has been reconfigured */
  3522. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3523. j++, flash++) {
  3524. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3525. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3526. bp->flash_info = flash;
  3527. break;
  3528. }
  3529. }
  3530. }
  3531. else {
  3532. u32 mask;
  3533. /* Not yet been reconfigured */
  3534. if (val & (1 << 23))
  3535. mask = FLASH_BACKUP_STRAP_MASK;
  3536. else
  3537. mask = FLASH_STRAP_MASK;
  3538. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3539. j++, flash++) {
  3540. if ((val & mask) == (flash->strapping & mask)) {
  3541. bp->flash_info = flash;
  3542. /* Request access to the flash interface. */
  3543. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3544. return rc;
  3545. /* Enable access to flash interface */
  3546. bnx2_enable_nvram_access(bp);
  3547. /* Reconfigure the flash interface */
  3548. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3549. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3550. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3551. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3552. /* Disable access to flash interface */
  3553. bnx2_disable_nvram_access(bp);
  3554. bnx2_release_nvram_lock(bp);
  3555. break;
  3556. }
  3557. }
  3558. } /* if (val & 0x40000000) */
  3559. if (j == entry_count) {
  3560. bp->flash_info = NULL;
  3561. pr_alert("Unknown flash/EEPROM type\n");
  3562. return -ENODEV;
  3563. }
  3564. get_flash_size:
  3565. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3566. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3567. if (val)
  3568. bp->flash_size = val;
  3569. else
  3570. bp->flash_size = bp->flash_info->total_size;
  3571. return rc;
  3572. }
  3573. static int
  3574. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3575. int buf_size)
  3576. {
  3577. int rc = 0;
  3578. u32 cmd_flags, offset32, len32, extra;
  3579. if (buf_size == 0)
  3580. return 0;
  3581. /* Request access to the flash interface. */
  3582. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3583. return rc;
  3584. /* Enable access to flash interface */
  3585. bnx2_enable_nvram_access(bp);
  3586. len32 = buf_size;
  3587. offset32 = offset;
  3588. extra = 0;
  3589. cmd_flags = 0;
  3590. if (offset32 & 3) {
  3591. u8 buf[4];
  3592. u32 pre_len;
  3593. offset32 &= ~3;
  3594. pre_len = 4 - (offset & 3);
  3595. if (pre_len >= len32) {
  3596. pre_len = len32;
  3597. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3598. BNX2_NVM_COMMAND_LAST;
  3599. }
  3600. else {
  3601. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3602. }
  3603. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3604. if (rc)
  3605. return rc;
  3606. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3607. offset32 += 4;
  3608. ret_buf += pre_len;
  3609. len32 -= pre_len;
  3610. }
  3611. if (len32 & 3) {
  3612. extra = 4 - (len32 & 3);
  3613. len32 = (len32 + 4) & ~3;
  3614. }
  3615. if (len32 == 4) {
  3616. u8 buf[4];
  3617. if (cmd_flags)
  3618. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3619. else
  3620. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3621. BNX2_NVM_COMMAND_LAST;
  3622. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3623. memcpy(ret_buf, buf, 4 - extra);
  3624. }
  3625. else if (len32 > 0) {
  3626. u8 buf[4];
  3627. /* Read the first word. */
  3628. if (cmd_flags)
  3629. cmd_flags = 0;
  3630. else
  3631. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3632. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3633. /* Advance to the next dword. */
  3634. offset32 += 4;
  3635. ret_buf += 4;
  3636. len32 -= 4;
  3637. while (len32 > 4 && rc == 0) {
  3638. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3639. /* Advance to the next dword. */
  3640. offset32 += 4;
  3641. ret_buf += 4;
  3642. len32 -= 4;
  3643. }
  3644. if (rc)
  3645. return rc;
  3646. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3647. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3648. memcpy(ret_buf, buf, 4 - extra);
  3649. }
  3650. /* Disable access to flash interface */
  3651. bnx2_disable_nvram_access(bp);
  3652. bnx2_release_nvram_lock(bp);
  3653. return rc;
  3654. }
  3655. static int
  3656. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3657. int buf_size)
  3658. {
  3659. u32 written, offset32, len32;
  3660. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3661. int rc = 0;
  3662. int align_start, align_end;
  3663. buf = data_buf;
  3664. offset32 = offset;
  3665. len32 = buf_size;
  3666. align_start = align_end = 0;
  3667. if ((align_start = (offset32 & 3))) {
  3668. offset32 &= ~3;
  3669. len32 += align_start;
  3670. if (len32 < 4)
  3671. len32 = 4;
  3672. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3673. return rc;
  3674. }
  3675. if (len32 & 3) {
  3676. align_end = 4 - (len32 & 3);
  3677. len32 += align_end;
  3678. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3679. return rc;
  3680. }
  3681. if (align_start || align_end) {
  3682. align_buf = kmalloc(len32, GFP_KERNEL);
  3683. if (align_buf == NULL)
  3684. return -ENOMEM;
  3685. if (align_start) {
  3686. memcpy(align_buf, start, 4);
  3687. }
  3688. if (align_end) {
  3689. memcpy(align_buf + len32 - 4, end, 4);
  3690. }
  3691. memcpy(align_buf + align_start, data_buf, buf_size);
  3692. buf = align_buf;
  3693. }
  3694. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3695. flash_buffer = kmalloc(264, GFP_KERNEL);
  3696. if (flash_buffer == NULL) {
  3697. rc = -ENOMEM;
  3698. goto nvram_write_end;
  3699. }
  3700. }
  3701. written = 0;
  3702. while ((written < len32) && (rc == 0)) {
  3703. u32 page_start, page_end, data_start, data_end;
  3704. u32 addr, cmd_flags;
  3705. int i;
  3706. /* Find the page_start addr */
  3707. page_start = offset32 + written;
  3708. page_start -= (page_start % bp->flash_info->page_size);
  3709. /* Find the page_end addr */
  3710. page_end = page_start + bp->flash_info->page_size;
  3711. /* Find the data_start addr */
  3712. data_start = (written == 0) ? offset32 : page_start;
  3713. /* Find the data_end addr */
  3714. data_end = (page_end > offset32 + len32) ?
  3715. (offset32 + len32) : page_end;
  3716. /* Request access to the flash interface. */
  3717. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3718. goto nvram_write_end;
  3719. /* Enable access to flash interface */
  3720. bnx2_enable_nvram_access(bp);
  3721. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3722. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3723. int j;
  3724. /* Read the whole page into the buffer
  3725. * (non-buffer flash only) */
  3726. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3727. if (j == (bp->flash_info->page_size - 4)) {
  3728. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3729. }
  3730. rc = bnx2_nvram_read_dword(bp,
  3731. page_start + j,
  3732. &flash_buffer[j],
  3733. cmd_flags);
  3734. if (rc)
  3735. goto nvram_write_end;
  3736. cmd_flags = 0;
  3737. }
  3738. }
  3739. /* Enable writes to flash interface (unlock write-protect) */
  3740. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3741. goto nvram_write_end;
  3742. /* Loop to write back the buffer data from page_start to
  3743. * data_start */
  3744. i = 0;
  3745. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3746. /* Erase the page */
  3747. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3748. goto nvram_write_end;
  3749. /* Re-enable the write again for the actual write */
  3750. bnx2_enable_nvram_write(bp);
  3751. for (addr = page_start; addr < data_start;
  3752. addr += 4, i += 4) {
  3753. rc = bnx2_nvram_write_dword(bp, addr,
  3754. &flash_buffer[i], cmd_flags);
  3755. if (rc != 0)
  3756. goto nvram_write_end;
  3757. cmd_flags = 0;
  3758. }
  3759. }
  3760. /* Loop to write the new data from data_start to data_end */
  3761. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3762. if ((addr == page_end - 4) ||
  3763. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3764. (addr == data_end - 4))) {
  3765. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3766. }
  3767. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3768. cmd_flags);
  3769. if (rc != 0)
  3770. goto nvram_write_end;
  3771. cmd_flags = 0;
  3772. buf += 4;
  3773. }
  3774. /* Loop to write back the buffer data from data_end
  3775. * to page_end */
  3776. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3777. for (addr = data_end; addr < page_end;
  3778. addr += 4, i += 4) {
  3779. if (addr == page_end-4) {
  3780. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3781. }
  3782. rc = bnx2_nvram_write_dword(bp, addr,
  3783. &flash_buffer[i], cmd_flags);
  3784. if (rc != 0)
  3785. goto nvram_write_end;
  3786. cmd_flags = 0;
  3787. }
  3788. }
  3789. /* Disable writes to flash interface (lock write-protect) */
  3790. bnx2_disable_nvram_write(bp);
  3791. /* Disable access to flash interface */
  3792. bnx2_disable_nvram_access(bp);
  3793. bnx2_release_nvram_lock(bp);
  3794. /* Increment written */
  3795. written += data_end - data_start;
  3796. }
  3797. nvram_write_end:
  3798. kfree(flash_buffer);
  3799. kfree(align_buf);
  3800. return rc;
  3801. }
  3802. static void
  3803. bnx2_init_fw_cap(struct bnx2 *bp)
  3804. {
  3805. u32 val, sig = 0;
  3806. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3807. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3808. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3809. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3810. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3811. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3812. return;
  3813. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3814. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3815. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3816. }
  3817. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3818. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3819. u32 link;
  3820. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3821. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3822. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3823. bp->phy_port = PORT_FIBRE;
  3824. else
  3825. bp->phy_port = PORT_TP;
  3826. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3827. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3828. }
  3829. if (netif_running(bp->dev) && sig)
  3830. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3831. }
  3832. static void
  3833. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3834. {
  3835. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3836. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3837. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3838. }
  3839. static int
  3840. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3841. {
  3842. u32 val;
  3843. int i, rc = 0;
  3844. u8 old_port;
  3845. /* Wait for the current PCI transaction to complete before
  3846. * issuing a reset. */
  3847. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3848. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3849. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3850. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3851. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3852. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3853. udelay(5);
  3854. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3855. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3856. /* Deposit a driver reset signature so the firmware knows that
  3857. * this is a soft reset. */
  3858. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3859. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3860. /* Do a dummy read to force the chip to complete all current transaction
  3861. * before we issue a reset. */
  3862. val = REG_RD(bp, BNX2_MISC_ID);
  3863. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3864. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3865. REG_RD(bp, BNX2_MISC_COMMAND);
  3866. udelay(5);
  3867. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3868. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3869. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3870. } else {
  3871. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3872. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3873. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3874. /* Chip reset. */
  3875. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3876. /* Reading back any register after chip reset will hang the
  3877. * bus on 5706 A0 and A1. The msleep below provides plenty
  3878. * of margin for write posting.
  3879. */
  3880. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3881. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3882. msleep(20);
  3883. /* Reset takes approximate 30 usec */
  3884. for (i = 0; i < 10; i++) {
  3885. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3886. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3887. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3888. break;
  3889. udelay(10);
  3890. }
  3891. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3892. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3893. pr_err("Chip reset did not complete\n");
  3894. return -EBUSY;
  3895. }
  3896. }
  3897. /* Make sure byte swapping is properly configured. */
  3898. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3899. if (val != 0x01020304) {
  3900. pr_err("Chip not in correct endian mode\n");
  3901. return -ENODEV;
  3902. }
  3903. /* Wait for the firmware to finish its initialization. */
  3904. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3905. if (rc)
  3906. return rc;
  3907. spin_lock_bh(&bp->phy_lock);
  3908. old_port = bp->phy_port;
  3909. bnx2_init_fw_cap(bp);
  3910. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3911. old_port != bp->phy_port)
  3912. bnx2_set_default_remote_link(bp);
  3913. spin_unlock_bh(&bp->phy_lock);
  3914. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3915. /* Adjust the voltage regular to two steps lower. The default
  3916. * of this register is 0x0000000e. */
  3917. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3918. /* Remove bad rbuf memory from the free pool. */
  3919. rc = bnx2_alloc_bad_rbuf(bp);
  3920. }
  3921. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3922. bnx2_setup_msix_tbl(bp);
  3923. /* Prevent MSIX table reads and write from timing out */
  3924. REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3925. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3926. }
  3927. return rc;
  3928. }
  3929. static int
  3930. bnx2_init_chip(struct bnx2 *bp)
  3931. {
  3932. u32 val, mtu;
  3933. int rc, i;
  3934. /* Make sure the interrupt is not active. */
  3935. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3936. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3937. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3938. #ifdef __BIG_ENDIAN
  3939. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3940. #endif
  3941. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3942. DMA_READ_CHANS << 12 |
  3943. DMA_WRITE_CHANS << 16;
  3944. val |= (0x2 << 20) | (1 << 11);
  3945. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3946. val |= (1 << 23);
  3947. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3948. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3949. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3950. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3951. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3952. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3953. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3954. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3955. }
  3956. if (bp->flags & BNX2_FLAG_PCIX) {
  3957. u16 val16;
  3958. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3959. &val16);
  3960. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3961. val16 & ~PCI_X_CMD_ERO);
  3962. }
  3963. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3964. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3965. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3966. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3967. /* Initialize context mapping and zero out the quick contexts. The
  3968. * context block must have already been enabled. */
  3969. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3970. rc = bnx2_init_5709_context(bp);
  3971. if (rc)
  3972. return rc;
  3973. } else
  3974. bnx2_init_context(bp);
  3975. if ((rc = bnx2_init_cpus(bp)) != 0)
  3976. return rc;
  3977. bnx2_init_nvram(bp);
  3978. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3979. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3980. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3981. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3982. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3983. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3984. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3985. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3986. }
  3987. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3988. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3989. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3990. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3991. val = (BCM_PAGE_BITS - 8) << 24;
  3992. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3993. /* Configure page size. */
  3994. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3995. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3996. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3997. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3998. val = bp->mac_addr[0] +
  3999. (bp->mac_addr[1] << 8) +
  4000. (bp->mac_addr[2] << 16) +
  4001. bp->mac_addr[3] +
  4002. (bp->mac_addr[4] << 8) +
  4003. (bp->mac_addr[5] << 16);
  4004. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4005. /* Program the MTU. Also include 4 bytes for CRC32. */
  4006. mtu = bp->dev->mtu;
  4007. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4008. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4009. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4010. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4011. if (mtu < 1500)
  4012. mtu = 1500;
  4013. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4014. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4015. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4016. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4017. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4018. bp->bnx2_napi[i].last_status_idx = 0;
  4019. bp->idle_chk_status_idx = 0xffff;
  4020. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4021. /* Set up how to generate a link change interrupt. */
  4022. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4023. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4024. (u64) bp->status_blk_mapping & 0xffffffff);
  4025. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4026. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4027. (u64) bp->stats_blk_mapping & 0xffffffff);
  4028. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4029. (u64) bp->stats_blk_mapping >> 32);
  4030. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4031. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4032. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4033. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4034. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4035. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4036. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4037. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4038. REG_WR(bp, BNX2_HC_COM_TICKS,
  4039. (bp->com_ticks_int << 16) | bp->com_ticks);
  4040. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4041. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4042. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4043. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4044. else
  4045. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4046. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4047. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4048. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4049. else {
  4050. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4051. BNX2_HC_CONFIG_COLLECT_STATS;
  4052. }
  4053. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4054. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4055. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4056. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4057. }
  4058. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4059. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4060. REG_WR(bp, BNX2_HC_CONFIG, val);
  4061. if (bp->rx_ticks < 25)
  4062. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4063. else
  4064. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4065. for (i = 1; i < bp->irq_nvecs; i++) {
  4066. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4067. BNX2_HC_SB_CONFIG_1;
  4068. REG_WR(bp, base,
  4069. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4070. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4071. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4072. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4073. (bp->tx_quick_cons_trip_int << 16) |
  4074. bp->tx_quick_cons_trip);
  4075. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4076. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4077. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4078. (bp->rx_quick_cons_trip_int << 16) |
  4079. bp->rx_quick_cons_trip);
  4080. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4081. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4082. }
  4083. /* Clear internal stats counters. */
  4084. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4085. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4086. /* Initialize the receive filter. */
  4087. bnx2_set_rx_mode(bp->dev);
  4088. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4089. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4090. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4091. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4092. }
  4093. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4094. 1, 0);
  4095. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4096. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4097. udelay(20);
  4098. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4099. return rc;
  4100. }
  4101. static void
  4102. bnx2_clear_ring_states(struct bnx2 *bp)
  4103. {
  4104. struct bnx2_napi *bnapi;
  4105. struct bnx2_tx_ring_info *txr;
  4106. struct bnx2_rx_ring_info *rxr;
  4107. int i;
  4108. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4109. bnapi = &bp->bnx2_napi[i];
  4110. txr = &bnapi->tx_ring;
  4111. rxr = &bnapi->rx_ring;
  4112. txr->tx_cons = 0;
  4113. txr->hw_tx_cons = 0;
  4114. rxr->rx_prod_bseq = 0;
  4115. rxr->rx_prod = 0;
  4116. rxr->rx_cons = 0;
  4117. rxr->rx_pg_prod = 0;
  4118. rxr->rx_pg_cons = 0;
  4119. }
  4120. }
  4121. static void
  4122. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4123. {
  4124. u32 val, offset0, offset1, offset2, offset3;
  4125. u32 cid_addr = GET_CID_ADDR(cid);
  4126. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4127. offset0 = BNX2_L2CTX_TYPE_XI;
  4128. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4129. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4130. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4131. } else {
  4132. offset0 = BNX2_L2CTX_TYPE;
  4133. offset1 = BNX2_L2CTX_CMD_TYPE;
  4134. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4135. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4136. }
  4137. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4138. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4139. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4140. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4141. val = (u64) txr->tx_desc_mapping >> 32;
  4142. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4143. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4144. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4145. }
  4146. static void
  4147. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4148. {
  4149. struct tx_bd *txbd;
  4150. u32 cid = TX_CID;
  4151. struct bnx2_napi *bnapi;
  4152. struct bnx2_tx_ring_info *txr;
  4153. bnapi = &bp->bnx2_napi[ring_num];
  4154. txr = &bnapi->tx_ring;
  4155. if (ring_num == 0)
  4156. cid = TX_CID;
  4157. else
  4158. cid = TX_TSS_CID + ring_num - 1;
  4159. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4160. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4161. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4162. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4163. txr->tx_prod = 0;
  4164. txr->tx_prod_bseq = 0;
  4165. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4166. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4167. bnx2_init_tx_context(bp, cid, txr);
  4168. }
  4169. static void
  4170. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4171. int num_rings)
  4172. {
  4173. int i;
  4174. struct rx_bd *rxbd;
  4175. for (i = 0; i < num_rings; i++) {
  4176. int j;
  4177. rxbd = &rx_ring[i][0];
  4178. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4179. rxbd->rx_bd_len = buf_size;
  4180. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4181. }
  4182. if (i == (num_rings - 1))
  4183. j = 0;
  4184. else
  4185. j = i + 1;
  4186. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4187. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4188. }
  4189. }
  4190. static void
  4191. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4192. {
  4193. int i;
  4194. u16 prod, ring_prod;
  4195. u32 cid, rx_cid_addr, val;
  4196. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4197. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4198. if (ring_num == 0)
  4199. cid = RX_CID;
  4200. else
  4201. cid = RX_RSS_CID + ring_num - 1;
  4202. rx_cid_addr = GET_CID_ADDR(cid);
  4203. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4204. bp->rx_buf_use_size, bp->rx_max_ring);
  4205. bnx2_init_rx_context(bp, cid);
  4206. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4207. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4208. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4209. }
  4210. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4211. if (bp->rx_pg_ring_size) {
  4212. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4213. rxr->rx_pg_desc_mapping,
  4214. PAGE_SIZE, bp->rx_max_pg_ring);
  4215. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4216. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4217. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4218. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4219. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4220. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4221. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4222. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4223. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4224. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4225. }
  4226. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4227. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4228. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4229. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4230. ring_prod = prod = rxr->rx_pg_prod;
  4231. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4232. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4233. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4234. ring_num, i, bp->rx_pg_ring_size);
  4235. break;
  4236. }
  4237. prod = NEXT_RX_BD(prod);
  4238. ring_prod = RX_PG_RING_IDX(prod);
  4239. }
  4240. rxr->rx_pg_prod = prod;
  4241. ring_prod = prod = rxr->rx_prod;
  4242. for (i = 0; i < bp->rx_ring_size; i++) {
  4243. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4244. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4245. ring_num, i, bp->rx_ring_size);
  4246. break;
  4247. }
  4248. prod = NEXT_RX_BD(prod);
  4249. ring_prod = RX_RING_IDX(prod);
  4250. }
  4251. rxr->rx_prod = prod;
  4252. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4253. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4254. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4255. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4256. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4257. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4258. }
  4259. static void
  4260. bnx2_init_all_rings(struct bnx2 *bp)
  4261. {
  4262. int i;
  4263. u32 val;
  4264. bnx2_clear_ring_states(bp);
  4265. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4266. for (i = 0; i < bp->num_tx_rings; i++)
  4267. bnx2_init_tx_ring(bp, i);
  4268. if (bp->num_tx_rings > 1)
  4269. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4270. (TX_TSS_CID << 7));
  4271. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4272. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4273. for (i = 0; i < bp->num_rx_rings; i++)
  4274. bnx2_init_rx_ring(bp, i);
  4275. if (bp->num_rx_rings > 1) {
  4276. u32 tbl_32 = 0;
  4277. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4278. int shift = (i % 8) << 2;
  4279. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4280. if ((i % 8) == 7) {
  4281. REG_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4282. REG_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4283. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4284. BNX2_RLUP_RSS_COMMAND_WRITE |
  4285. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4286. tbl_32 = 0;
  4287. }
  4288. }
  4289. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4290. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4291. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4292. }
  4293. }
  4294. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4295. {
  4296. u32 max, num_rings = 1;
  4297. while (ring_size > MAX_RX_DESC_CNT) {
  4298. ring_size -= MAX_RX_DESC_CNT;
  4299. num_rings++;
  4300. }
  4301. /* round to next power of 2 */
  4302. max = max_size;
  4303. while ((max & num_rings) == 0)
  4304. max >>= 1;
  4305. if (num_rings != max)
  4306. max <<= 1;
  4307. return max;
  4308. }
  4309. static void
  4310. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4311. {
  4312. u32 rx_size, rx_space, jumbo_size;
  4313. /* 8 for CRC and VLAN */
  4314. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4315. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4316. sizeof(struct skb_shared_info);
  4317. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4318. bp->rx_pg_ring_size = 0;
  4319. bp->rx_max_pg_ring = 0;
  4320. bp->rx_max_pg_ring_idx = 0;
  4321. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4322. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4323. jumbo_size = size * pages;
  4324. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4325. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4326. bp->rx_pg_ring_size = jumbo_size;
  4327. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4328. MAX_RX_PG_RINGS);
  4329. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4330. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4331. bp->rx_copy_thresh = 0;
  4332. }
  4333. bp->rx_buf_use_size = rx_size;
  4334. /* hw alignment */
  4335. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4336. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4337. bp->rx_ring_size = size;
  4338. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4339. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4340. }
  4341. static void
  4342. bnx2_free_tx_skbs(struct bnx2 *bp)
  4343. {
  4344. int i;
  4345. for (i = 0; i < bp->num_tx_rings; i++) {
  4346. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4347. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4348. int j;
  4349. if (txr->tx_buf_ring == NULL)
  4350. continue;
  4351. for (j = 0; j < TX_DESC_CNT; ) {
  4352. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4353. struct sk_buff *skb = tx_buf->skb;
  4354. int k, last;
  4355. if (skb == NULL) {
  4356. j++;
  4357. continue;
  4358. }
  4359. dma_unmap_single(&bp->pdev->dev,
  4360. dma_unmap_addr(tx_buf, mapping),
  4361. skb_headlen(skb),
  4362. PCI_DMA_TODEVICE);
  4363. tx_buf->skb = NULL;
  4364. last = tx_buf->nr_frags;
  4365. j++;
  4366. for (k = 0; k < last; k++, j++) {
  4367. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4368. dma_unmap_page(&bp->pdev->dev,
  4369. dma_unmap_addr(tx_buf, mapping),
  4370. skb_shinfo(skb)->frags[k].size,
  4371. PCI_DMA_TODEVICE);
  4372. }
  4373. dev_kfree_skb(skb);
  4374. }
  4375. }
  4376. }
  4377. static void
  4378. bnx2_free_rx_skbs(struct bnx2 *bp)
  4379. {
  4380. int i;
  4381. for (i = 0; i < bp->num_rx_rings; i++) {
  4382. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4383. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4384. int j;
  4385. if (rxr->rx_buf_ring == NULL)
  4386. return;
  4387. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4388. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4389. struct sk_buff *skb = rx_buf->skb;
  4390. if (skb == NULL)
  4391. continue;
  4392. dma_unmap_single(&bp->pdev->dev,
  4393. dma_unmap_addr(rx_buf, mapping),
  4394. bp->rx_buf_use_size,
  4395. PCI_DMA_FROMDEVICE);
  4396. rx_buf->skb = NULL;
  4397. dev_kfree_skb(skb);
  4398. }
  4399. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4400. bnx2_free_rx_page(bp, rxr, j);
  4401. }
  4402. }
  4403. static void
  4404. bnx2_free_skbs(struct bnx2 *bp)
  4405. {
  4406. bnx2_free_tx_skbs(bp);
  4407. bnx2_free_rx_skbs(bp);
  4408. }
  4409. static int
  4410. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4411. {
  4412. int rc;
  4413. rc = bnx2_reset_chip(bp, reset_code);
  4414. bnx2_free_skbs(bp);
  4415. if (rc)
  4416. return rc;
  4417. if ((rc = bnx2_init_chip(bp)) != 0)
  4418. return rc;
  4419. bnx2_init_all_rings(bp);
  4420. return 0;
  4421. }
  4422. static int
  4423. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4424. {
  4425. int rc;
  4426. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4427. return rc;
  4428. spin_lock_bh(&bp->phy_lock);
  4429. bnx2_init_phy(bp, reset_phy);
  4430. bnx2_set_link(bp);
  4431. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4432. bnx2_remote_phy_event(bp);
  4433. spin_unlock_bh(&bp->phy_lock);
  4434. return 0;
  4435. }
  4436. static int
  4437. bnx2_shutdown_chip(struct bnx2 *bp)
  4438. {
  4439. u32 reset_code;
  4440. if (bp->flags & BNX2_FLAG_NO_WOL)
  4441. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4442. else if (bp->wol)
  4443. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4444. else
  4445. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4446. return bnx2_reset_chip(bp, reset_code);
  4447. }
  4448. static int
  4449. bnx2_test_registers(struct bnx2 *bp)
  4450. {
  4451. int ret;
  4452. int i, is_5709;
  4453. static const struct {
  4454. u16 offset;
  4455. u16 flags;
  4456. #define BNX2_FL_NOT_5709 1
  4457. u32 rw_mask;
  4458. u32 ro_mask;
  4459. } reg_tbl[] = {
  4460. { 0x006c, 0, 0x00000000, 0x0000003f },
  4461. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4462. { 0x0094, 0, 0x00000000, 0x00000000 },
  4463. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4464. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4465. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4466. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4467. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4468. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4469. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4470. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4471. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4472. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4473. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4474. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4475. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4476. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4477. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4478. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4479. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4480. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4481. { 0x1000, 0, 0x00000000, 0x00000001 },
  4482. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4483. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4484. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4485. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4486. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4487. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4488. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4489. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4490. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4491. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4492. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4493. { 0x1800, 0, 0x00000000, 0x00000001 },
  4494. { 0x1804, 0, 0x00000000, 0x00000003 },
  4495. { 0x2800, 0, 0x00000000, 0x00000001 },
  4496. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4497. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4498. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4499. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4500. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4501. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4502. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4503. { 0x2840, 0, 0x00000000, 0xffffffff },
  4504. { 0x2844, 0, 0x00000000, 0xffffffff },
  4505. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4506. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4507. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4508. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4509. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4510. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4511. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4512. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4513. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4514. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4515. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4516. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4517. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4518. { 0x5004, 0, 0x00000000, 0x0000007f },
  4519. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4520. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4521. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4522. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4523. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4524. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4525. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4526. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4527. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4528. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4529. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4530. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4531. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4532. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4533. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4534. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4535. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4536. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4537. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4538. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4539. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4540. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4541. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4542. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4543. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4544. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4545. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4546. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4547. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4548. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4549. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4550. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4551. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4552. { 0xffff, 0, 0x00000000, 0x00000000 },
  4553. };
  4554. ret = 0;
  4555. is_5709 = 0;
  4556. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4557. is_5709 = 1;
  4558. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4559. u32 offset, rw_mask, ro_mask, save_val, val;
  4560. u16 flags = reg_tbl[i].flags;
  4561. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4562. continue;
  4563. offset = (u32) reg_tbl[i].offset;
  4564. rw_mask = reg_tbl[i].rw_mask;
  4565. ro_mask = reg_tbl[i].ro_mask;
  4566. save_val = readl(bp->regview + offset);
  4567. writel(0, bp->regview + offset);
  4568. val = readl(bp->regview + offset);
  4569. if ((val & rw_mask) != 0) {
  4570. goto reg_test_err;
  4571. }
  4572. if ((val & ro_mask) != (save_val & ro_mask)) {
  4573. goto reg_test_err;
  4574. }
  4575. writel(0xffffffff, bp->regview + offset);
  4576. val = readl(bp->regview + offset);
  4577. if ((val & rw_mask) != rw_mask) {
  4578. goto reg_test_err;
  4579. }
  4580. if ((val & ro_mask) != (save_val & ro_mask)) {
  4581. goto reg_test_err;
  4582. }
  4583. writel(save_val, bp->regview + offset);
  4584. continue;
  4585. reg_test_err:
  4586. writel(save_val, bp->regview + offset);
  4587. ret = -ENODEV;
  4588. break;
  4589. }
  4590. return ret;
  4591. }
  4592. static int
  4593. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4594. {
  4595. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4596. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4597. int i;
  4598. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4599. u32 offset;
  4600. for (offset = 0; offset < size; offset += 4) {
  4601. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4602. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4603. test_pattern[i]) {
  4604. return -ENODEV;
  4605. }
  4606. }
  4607. }
  4608. return 0;
  4609. }
  4610. static int
  4611. bnx2_test_memory(struct bnx2 *bp)
  4612. {
  4613. int ret = 0;
  4614. int i;
  4615. static struct mem_entry {
  4616. u32 offset;
  4617. u32 len;
  4618. } mem_tbl_5706[] = {
  4619. { 0x60000, 0x4000 },
  4620. { 0xa0000, 0x3000 },
  4621. { 0xe0000, 0x4000 },
  4622. { 0x120000, 0x4000 },
  4623. { 0x1a0000, 0x4000 },
  4624. { 0x160000, 0x4000 },
  4625. { 0xffffffff, 0 },
  4626. },
  4627. mem_tbl_5709[] = {
  4628. { 0x60000, 0x4000 },
  4629. { 0xa0000, 0x3000 },
  4630. { 0xe0000, 0x4000 },
  4631. { 0x120000, 0x4000 },
  4632. { 0x1a0000, 0x4000 },
  4633. { 0xffffffff, 0 },
  4634. };
  4635. struct mem_entry *mem_tbl;
  4636. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4637. mem_tbl = mem_tbl_5709;
  4638. else
  4639. mem_tbl = mem_tbl_5706;
  4640. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4641. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4642. mem_tbl[i].len)) != 0) {
  4643. return ret;
  4644. }
  4645. }
  4646. return ret;
  4647. }
  4648. #define BNX2_MAC_LOOPBACK 0
  4649. #define BNX2_PHY_LOOPBACK 1
  4650. static int
  4651. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4652. {
  4653. unsigned int pkt_size, num_pkts, i;
  4654. struct sk_buff *skb, *rx_skb;
  4655. unsigned char *packet;
  4656. u16 rx_start_idx, rx_idx;
  4657. dma_addr_t map;
  4658. struct tx_bd *txbd;
  4659. struct sw_bd *rx_buf;
  4660. struct l2_fhdr *rx_hdr;
  4661. int ret = -ENODEV;
  4662. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4663. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4664. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4665. tx_napi = bnapi;
  4666. txr = &tx_napi->tx_ring;
  4667. rxr = &bnapi->rx_ring;
  4668. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4669. bp->loopback = MAC_LOOPBACK;
  4670. bnx2_set_mac_loopback(bp);
  4671. }
  4672. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4673. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4674. return 0;
  4675. bp->loopback = PHY_LOOPBACK;
  4676. bnx2_set_phy_loopback(bp);
  4677. }
  4678. else
  4679. return -EINVAL;
  4680. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4681. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4682. if (!skb)
  4683. return -ENOMEM;
  4684. packet = skb_put(skb, pkt_size);
  4685. memcpy(packet, bp->dev->dev_addr, 6);
  4686. memset(packet + 6, 0x0, 8);
  4687. for (i = 14; i < pkt_size; i++)
  4688. packet[i] = (unsigned char) (i & 0xff);
  4689. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4690. PCI_DMA_TODEVICE);
  4691. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4692. dev_kfree_skb(skb);
  4693. return -EIO;
  4694. }
  4695. REG_WR(bp, BNX2_HC_COMMAND,
  4696. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4697. REG_RD(bp, BNX2_HC_COMMAND);
  4698. udelay(5);
  4699. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4700. num_pkts = 0;
  4701. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4702. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4703. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4704. txbd->tx_bd_mss_nbytes = pkt_size;
  4705. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4706. num_pkts++;
  4707. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4708. txr->tx_prod_bseq += pkt_size;
  4709. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4710. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4711. udelay(100);
  4712. REG_WR(bp, BNX2_HC_COMMAND,
  4713. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4714. REG_RD(bp, BNX2_HC_COMMAND);
  4715. udelay(5);
  4716. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4717. dev_kfree_skb(skb);
  4718. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4719. goto loopback_test_done;
  4720. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4721. if (rx_idx != rx_start_idx + num_pkts) {
  4722. goto loopback_test_done;
  4723. }
  4724. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4725. rx_skb = rx_buf->skb;
  4726. rx_hdr = rx_buf->desc;
  4727. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4728. dma_sync_single_for_cpu(&bp->pdev->dev,
  4729. dma_unmap_addr(rx_buf, mapping),
  4730. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4731. if (rx_hdr->l2_fhdr_status &
  4732. (L2_FHDR_ERRORS_BAD_CRC |
  4733. L2_FHDR_ERRORS_PHY_DECODE |
  4734. L2_FHDR_ERRORS_ALIGNMENT |
  4735. L2_FHDR_ERRORS_TOO_SHORT |
  4736. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4737. goto loopback_test_done;
  4738. }
  4739. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4740. goto loopback_test_done;
  4741. }
  4742. for (i = 14; i < pkt_size; i++) {
  4743. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4744. goto loopback_test_done;
  4745. }
  4746. }
  4747. ret = 0;
  4748. loopback_test_done:
  4749. bp->loopback = 0;
  4750. return ret;
  4751. }
  4752. #define BNX2_MAC_LOOPBACK_FAILED 1
  4753. #define BNX2_PHY_LOOPBACK_FAILED 2
  4754. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4755. BNX2_PHY_LOOPBACK_FAILED)
  4756. static int
  4757. bnx2_test_loopback(struct bnx2 *bp)
  4758. {
  4759. int rc = 0;
  4760. if (!netif_running(bp->dev))
  4761. return BNX2_LOOPBACK_FAILED;
  4762. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4763. spin_lock_bh(&bp->phy_lock);
  4764. bnx2_init_phy(bp, 1);
  4765. spin_unlock_bh(&bp->phy_lock);
  4766. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4767. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4768. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4769. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4770. return rc;
  4771. }
  4772. #define NVRAM_SIZE 0x200
  4773. #define CRC32_RESIDUAL 0xdebb20e3
  4774. static int
  4775. bnx2_test_nvram(struct bnx2 *bp)
  4776. {
  4777. __be32 buf[NVRAM_SIZE / 4];
  4778. u8 *data = (u8 *) buf;
  4779. int rc = 0;
  4780. u32 magic, csum;
  4781. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4782. goto test_nvram_done;
  4783. magic = be32_to_cpu(buf[0]);
  4784. if (magic != 0x669955aa) {
  4785. rc = -ENODEV;
  4786. goto test_nvram_done;
  4787. }
  4788. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4789. goto test_nvram_done;
  4790. csum = ether_crc_le(0x100, data);
  4791. if (csum != CRC32_RESIDUAL) {
  4792. rc = -ENODEV;
  4793. goto test_nvram_done;
  4794. }
  4795. csum = ether_crc_le(0x100, data + 0x100);
  4796. if (csum != CRC32_RESIDUAL) {
  4797. rc = -ENODEV;
  4798. }
  4799. test_nvram_done:
  4800. return rc;
  4801. }
  4802. static int
  4803. bnx2_test_link(struct bnx2 *bp)
  4804. {
  4805. u32 bmsr;
  4806. if (!netif_running(bp->dev))
  4807. return -ENODEV;
  4808. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4809. if (bp->link_up)
  4810. return 0;
  4811. return -ENODEV;
  4812. }
  4813. spin_lock_bh(&bp->phy_lock);
  4814. bnx2_enable_bmsr1(bp);
  4815. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4816. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4817. bnx2_disable_bmsr1(bp);
  4818. spin_unlock_bh(&bp->phy_lock);
  4819. if (bmsr & BMSR_LSTATUS) {
  4820. return 0;
  4821. }
  4822. return -ENODEV;
  4823. }
  4824. static int
  4825. bnx2_test_intr(struct bnx2 *bp)
  4826. {
  4827. int i;
  4828. u16 status_idx;
  4829. if (!netif_running(bp->dev))
  4830. return -ENODEV;
  4831. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4832. /* This register is not touched during run-time. */
  4833. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4834. REG_RD(bp, BNX2_HC_COMMAND);
  4835. for (i = 0; i < 10; i++) {
  4836. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4837. status_idx) {
  4838. break;
  4839. }
  4840. msleep_interruptible(10);
  4841. }
  4842. if (i < 10)
  4843. return 0;
  4844. return -ENODEV;
  4845. }
  4846. /* Determining link for parallel detection. */
  4847. static int
  4848. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4849. {
  4850. u32 mode_ctl, an_dbg, exp;
  4851. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4852. return 0;
  4853. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4854. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4855. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4856. return 0;
  4857. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4858. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4859. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4860. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4861. return 0;
  4862. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4863. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4864. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4865. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4866. return 0;
  4867. return 1;
  4868. }
  4869. static void
  4870. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4871. {
  4872. int check_link = 1;
  4873. spin_lock(&bp->phy_lock);
  4874. if (bp->serdes_an_pending) {
  4875. bp->serdes_an_pending--;
  4876. check_link = 0;
  4877. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4878. u32 bmcr;
  4879. bp->current_interval = BNX2_TIMER_INTERVAL;
  4880. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4881. if (bmcr & BMCR_ANENABLE) {
  4882. if (bnx2_5706_serdes_has_link(bp)) {
  4883. bmcr &= ~BMCR_ANENABLE;
  4884. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4885. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4886. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4887. }
  4888. }
  4889. }
  4890. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4891. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4892. u32 phy2;
  4893. bnx2_write_phy(bp, 0x17, 0x0f01);
  4894. bnx2_read_phy(bp, 0x15, &phy2);
  4895. if (phy2 & 0x20) {
  4896. u32 bmcr;
  4897. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4898. bmcr |= BMCR_ANENABLE;
  4899. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4900. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4901. }
  4902. } else
  4903. bp->current_interval = BNX2_TIMER_INTERVAL;
  4904. if (check_link) {
  4905. u32 val;
  4906. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4907. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4908. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4909. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4910. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4911. bnx2_5706s_force_link_dn(bp, 1);
  4912. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4913. } else
  4914. bnx2_set_link(bp);
  4915. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4916. bnx2_set_link(bp);
  4917. }
  4918. spin_unlock(&bp->phy_lock);
  4919. }
  4920. static void
  4921. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4922. {
  4923. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4924. return;
  4925. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4926. bp->serdes_an_pending = 0;
  4927. return;
  4928. }
  4929. spin_lock(&bp->phy_lock);
  4930. if (bp->serdes_an_pending)
  4931. bp->serdes_an_pending--;
  4932. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4933. u32 bmcr;
  4934. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4935. if (bmcr & BMCR_ANENABLE) {
  4936. bnx2_enable_forced_2g5(bp);
  4937. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4938. } else {
  4939. bnx2_disable_forced_2g5(bp);
  4940. bp->serdes_an_pending = 2;
  4941. bp->current_interval = BNX2_TIMER_INTERVAL;
  4942. }
  4943. } else
  4944. bp->current_interval = BNX2_TIMER_INTERVAL;
  4945. spin_unlock(&bp->phy_lock);
  4946. }
  4947. static void
  4948. bnx2_timer(unsigned long data)
  4949. {
  4950. struct bnx2 *bp = (struct bnx2 *) data;
  4951. if (!netif_running(bp->dev))
  4952. return;
  4953. if (atomic_read(&bp->intr_sem) != 0)
  4954. goto bnx2_restart_timer;
  4955. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4956. BNX2_FLAG_USING_MSI)
  4957. bnx2_chk_missed_msi(bp);
  4958. bnx2_send_heart_beat(bp);
  4959. bp->stats_blk->stat_FwRxDrop =
  4960. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4961. /* workaround occasional corrupted counters */
  4962. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4963. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4964. BNX2_HC_COMMAND_STATS_NOW);
  4965. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4966. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4967. bnx2_5706_serdes_timer(bp);
  4968. else
  4969. bnx2_5708_serdes_timer(bp);
  4970. }
  4971. bnx2_restart_timer:
  4972. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4973. }
  4974. static int
  4975. bnx2_request_irq(struct bnx2 *bp)
  4976. {
  4977. unsigned long flags;
  4978. struct bnx2_irq *irq;
  4979. int rc = 0, i;
  4980. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4981. flags = 0;
  4982. else
  4983. flags = IRQF_SHARED;
  4984. for (i = 0; i < bp->irq_nvecs; i++) {
  4985. irq = &bp->irq_tbl[i];
  4986. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4987. &bp->bnx2_napi[i]);
  4988. if (rc)
  4989. break;
  4990. irq->requested = 1;
  4991. }
  4992. return rc;
  4993. }
  4994. static void
  4995. bnx2_free_irq(struct bnx2 *bp)
  4996. {
  4997. struct bnx2_irq *irq;
  4998. int i;
  4999. for (i = 0; i < bp->irq_nvecs; i++) {
  5000. irq = &bp->irq_tbl[i];
  5001. if (irq->requested)
  5002. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5003. irq->requested = 0;
  5004. }
  5005. if (bp->flags & BNX2_FLAG_USING_MSI)
  5006. pci_disable_msi(bp->pdev);
  5007. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5008. pci_disable_msix(bp->pdev);
  5009. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5010. }
  5011. static void
  5012. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5013. {
  5014. int i, total_vecs, rc;
  5015. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5016. struct net_device *dev = bp->dev;
  5017. const int len = sizeof(bp->irq_tbl[0].name);
  5018. bnx2_setup_msix_tbl(bp);
  5019. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5020. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5021. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5022. /* Need to flush the previous three writes to ensure MSI-X
  5023. * is setup properly */
  5024. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5025. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5026. msix_ent[i].entry = i;
  5027. msix_ent[i].vector = 0;
  5028. }
  5029. total_vecs = msix_vecs;
  5030. #ifdef BCM_CNIC
  5031. total_vecs++;
  5032. #endif
  5033. rc = -ENOSPC;
  5034. while (total_vecs >= BNX2_MIN_MSIX_VEC) {
  5035. rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
  5036. if (rc <= 0)
  5037. break;
  5038. if (rc > 0)
  5039. total_vecs = rc;
  5040. }
  5041. if (rc != 0)
  5042. return;
  5043. msix_vecs = total_vecs;
  5044. #ifdef BCM_CNIC
  5045. msix_vecs--;
  5046. #endif
  5047. bp->irq_nvecs = msix_vecs;
  5048. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5049. for (i = 0; i < total_vecs; i++) {
  5050. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5051. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5052. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5053. }
  5054. }
  5055. static int
  5056. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5057. {
  5058. int cpus = num_online_cpus();
  5059. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5060. bp->irq_tbl[0].handler = bnx2_interrupt;
  5061. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5062. bp->irq_nvecs = 1;
  5063. bp->irq_tbl[0].vector = bp->pdev->irq;
  5064. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5065. bnx2_enable_msix(bp, msix_vecs);
  5066. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5067. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5068. if (pci_enable_msi(bp->pdev) == 0) {
  5069. bp->flags |= BNX2_FLAG_USING_MSI;
  5070. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5071. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5072. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5073. } else
  5074. bp->irq_tbl[0].handler = bnx2_msi;
  5075. bp->irq_tbl[0].vector = bp->pdev->irq;
  5076. }
  5077. }
  5078. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5079. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5080. bp->num_rx_rings = bp->irq_nvecs;
  5081. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5082. }
  5083. /* Called with rtnl_lock */
  5084. static int
  5085. bnx2_open(struct net_device *dev)
  5086. {
  5087. struct bnx2 *bp = netdev_priv(dev);
  5088. int rc;
  5089. netif_carrier_off(dev);
  5090. bnx2_set_power_state(bp, PCI_D0);
  5091. bnx2_disable_int(bp);
  5092. rc = bnx2_setup_int_mode(bp, disable_msi);
  5093. if (rc)
  5094. goto open_err;
  5095. bnx2_init_napi(bp);
  5096. bnx2_napi_enable(bp);
  5097. rc = bnx2_alloc_mem(bp);
  5098. if (rc)
  5099. goto open_err;
  5100. rc = bnx2_request_irq(bp);
  5101. if (rc)
  5102. goto open_err;
  5103. rc = bnx2_init_nic(bp, 1);
  5104. if (rc)
  5105. goto open_err;
  5106. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5107. atomic_set(&bp->intr_sem, 0);
  5108. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5109. bnx2_enable_int(bp);
  5110. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5111. /* Test MSI to make sure it is working
  5112. * If MSI test fails, go back to INTx mode
  5113. */
  5114. if (bnx2_test_intr(bp) != 0) {
  5115. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5116. bnx2_disable_int(bp);
  5117. bnx2_free_irq(bp);
  5118. bnx2_setup_int_mode(bp, 1);
  5119. rc = bnx2_init_nic(bp, 0);
  5120. if (!rc)
  5121. rc = bnx2_request_irq(bp);
  5122. if (rc) {
  5123. del_timer_sync(&bp->timer);
  5124. goto open_err;
  5125. }
  5126. bnx2_enable_int(bp);
  5127. }
  5128. }
  5129. if (bp->flags & BNX2_FLAG_USING_MSI)
  5130. netdev_info(dev, "using MSI\n");
  5131. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5132. netdev_info(dev, "using MSIX\n");
  5133. netif_tx_start_all_queues(dev);
  5134. return 0;
  5135. open_err:
  5136. bnx2_napi_disable(bp);
  5137. bnx2_free_skbs(bp);
  5138. bnx2_free_irq(bp);
  5139. bnx2_free_mem(bp);
  5140. bnx2_del_napi(bp);
  5141. return rc;
  5142. }
  5143. static void
  5144. bnx2_reset_task(struct work_struct *work)
  5145. {
  5146. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5147. rtnl_lock();
  5148. if (!netif_running(bp->dev)) {
  5149. rtnl_unlock();
  5150. return;
  5151. }
  5152. bnx2_netif_stop(bp, true);
  5153. bnx2_init_nic(bp, 1);
  5154. atomic_set(&bp->intr_sem, 1);
  5155. bnx2_netif_start(bp, true);
  5156. rtnl_unlock();
  5157. }
  5158. static void
  5159. bnx2_dump_state(struct bnx2 *bp)
  5160. {
  5161. struct net_device *dev = bp->dev;
  5162. u32 mcp_p0, mcp_p1, val1, val2;
  5163. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5164. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5165. atomic_read(&bp->intr_sem), val1);
  5166. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5167. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5168. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5169. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5170. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5171. REG_RD(bp, BNX2_EMAC_RX_STATUS));
  5172. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5173. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5174. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5175. mcp_p0 = BNX2_MCP_STATE_P0;
  5176. mcp_p1 = BNX2_MCP_STATE_P1;
  5177. } else {
  5178. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  5179. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  5180. }
  5181. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5182. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  5183. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5184. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5185. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5186. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5187. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5188. }
  5189. static void
  5190. bnx2_tx_timeout(struct net_device *dev)
  5191. {
  5192. struct bnx2 *bp = netdev_priv(dev);
  5193. bnx2_dump_state(bp);
  5194. /* This allows the netif to be shutdown gracefully before resetting */
  5195. schedule_work(&bp->reset_task);
  5196. }
  5197. #ifdef BCM_VLAN
  5198. /* Called with rtnl_lock */
  5199. static void
  5200. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5201. {
  5202. struct bnx2 *bp = netdev_priv(dev);
  5203. if (netif_running(dev))
  5204. bnx2_netif_stop(bp, false);
  5205. bp->vlgrp = vlgrp;
  5206. if (!netif_running(dev))
  5207. return;
  5208. bnx2_set_rx_mode(dev);
  5209. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5210. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5211. bnx2_netif_start(bp, false);
  5212. }
  5213. #endif
  5214. /* Called with netif_tx_lock.
  5215. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5216. * netif_wake_queue().
  5217. */
  5218. static netdev_tx_t
  5219. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5220. {
  5221. struct bnx2 *bp = netdev_priv(dev);
  5222. dma_addr_t mapping;
  5223. struct tx_bd *txbd;
  5224. struct sw_tx_bd *tx_buf;
  5225. u32 len, vlan_tag_flags, last_frag, mss;
  5226. u16 prod, ring_prod;
  5227. int i;
  5228. struct bnx2_napi *bnapi;
  5229. struct bnx2_tx_ring_info *txr;
  5230. struct netdev_queue *txq;
  5231. /* Determine which tx ring we will be placed on */
  5232. i = skb_get_queue_mapping(skb);
  5233. bnapi = &bp->bnx2_napi[i];
  5234. txr = &bnapi->tx_ring;
  5235. txq = netdev_get_tx_queue(dev, i);
  5236. if (unlikely(bnx2_tx_avail(bp, txr) <
  5237. (skb_shinfo(skb)->nr_frags + 1))) {
  5238. netif_tx_stop_queue(txq);
  5239. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5240. return NETDEV_TX_BUSY;
  5241. }
  5242. len = skb_headlen(skb);
  5243. prod = txr->tx_prod;
  5244. ring_prod = TX_RING_IDX(prod);
  5245. vlan_tag_flags = 0;
  5246. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5247. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5248. }
  5249. #ifdef BCM_VLAN
  5250. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5251. vlan_tag_flags |=
  5252. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5253. }
  5254. #endif
  5255. if ((mss = skb_shinfo(skb)->gso_size)) {
  5256. u32 tcp_opt_len;
  5257. struct iphdr *iph;
  5258. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5259. tcp_opt_len = tcp_optlen(skb);
  5260. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5261. u32 tcp_off = skb_transport_offset(skb) -
  5262. sizeof(struct ipv6hdr) - ETH_HLEN;
  5263. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5264. TX_BD_FLAGS_SW_FLAGS;
  5265. if (likely(tcp_off == 0))
  5266. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5267. else {
  5268. tcp_off >>= 3;
  5269. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5270. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5271. ((tcp_off & 0x10) <<
  5272. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5273. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5274. }
  5275. } else {
  5276. iph = ip_hdr(skb);
  5277. if (tcp_opt_len || (iph->ihl > 5)) {
  5278. vlan_tag_flags |= ((iph->ihl - 5) +
  5279. (tcp_opt_len >> 2)) << 8;
  5280. }
  5281. }
  5282. } else
  5283. mss = 0;
  5284. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5285. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5286. dev_kfree_skb(skb);
  5287. return NETDEV_TX_OK;
  5288. }
  5289. tx_buf = &txr->tx_buf_ring[ring_prod];
  5290. tx_buf->skb = skb;
  5291. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5292. txbd = &txr->tx_desc_ring[ring_prod];
  5293. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5294. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5295. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5296. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5297. last_frag = skb_shinfo(skb)->nr_frags;
  5298. tx_buf->nr_frags = last_frag;
  5299. tx_buf->is_gso = skb_is_gso(skb);
  5300. for (i = 0; i < last_frag; i++) {
  5301. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5302. prod = NEXT_TX_BD(prod);
  5303. ring_prod = TX_RING_IDX(prod);
  5304. txbd = &txr->tx_desc_ring[ring_prod];
  5305. len = frag->size;
  5306. mapping = dma_map_page(&bp->pdev->dev, frag->page, frag->page_offset,
  5307. len, PCI_DMA_TODEVICE);
  5308. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5309. goto dma_error;
  5310. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5311. mapping);
  5312. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5313. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5314. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5315. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5316. }
  5317. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5318. prod = NEXT_TX_BD(prod);
  5319. txr->tx_prod_bseq += skb->len;
  5320. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5321. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5322. mmiowb();
  5323. txr->tx_prod = prod;
  5324. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5325. netif_tx_stop_queue(txq);
  5326. /* netif_tx_stop_queue() must be done before checking
  5327. * tx index in bnx2_tx_avail() below, because in
  5328. * bnx2_tx_int(), we update tx index before checking for
  5329. * netif_tx_queue_stopped().
  5330. */
  5331. smp_mb();
  5332. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5333. netif_tx_wake_queue(txq);
  5334. }
  5335. return NETDEV_TX_OK;
  5336. dma_error:
  5337. /* save value of frag that failed */
  5338. last_frag = i;
  5339. /* start back at beginning and unmap skb */
  5340. prod = txr->tx_prod;
  5341. ring_prod = TX_RING_IDX(prod);
  5342. tx_buf = &txr->tx_buf_ring[ring_prod];
  5343. tx_buf->skb = NULL;
  5344. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5345. skb_headlen(skb), PCI_DMA_TODEVICE);
  5346. /* unmap remaining mapped pages */
  5347. for (i = 0; i < last_frag; i++) {
  5348. prod = NEXT_TX_BD(prod);
  5349. ring_prod = TX_RING_IDX(prod);
  5350. tx_buf = &txr->tx_buf_ring[ring_prod];
  5351. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5352. skb_shinfo(skb)->frags[i].size,
  5353. PCI_DMA_TODEVICE);
  5354. }
  5355. dev_kfree_skb(skb);
  5356. return NETDEV_TX_OK;
  5357. }
  5358. /* Called with rtnl_lock */
  5359. static int
  5360. bnx2_close(struct net_device *dev)
  5361. {
  5362. struct bnx2 *bp = netdev_priv(dev);
  5363. cancel_work_sync(&bp->reset_task);
  5364. bnx2_disable_int_sync(bp);
  5365. bnx2_napi_disable(bp);
  5366. del_timer_sync(&bp->timer);
  5367. bnx2_shutdown_chip(bp);
  5368. bnx2_free_irq(bp);
  5369. bnx2_free_skbs(bp);
  5370. bnx2_free_mem(bp);
  5371. bnx2_del_napi(bp);
  5372. bp->link_up = 0;
  5373. netif_carrier_off(bp->dev);
  5374. bnx2_set_power_state(bp, PCI_D3hot);
  5375. return 0;
  5376. }
  5377. static void
  5378. bnx2_save_stats(struct bnx2 *bp)
  5379. {
  5380. u32 *hw_stats = (u32 *) bp->stats_blk;
  5381. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5382. int i;
  5383. /* The 1st 10 counters are 64-bit counters */
  5384. for (i = 0; i < 20; i += 2) {
  5385. u32 hi;
  5386. u64 lo;
  5387. hi = temp_stats[i] + hw_stats[i];
  5388. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5389. if (lo > 0xffffffff)
  5390. hi++;
  5391. temp_stats[i] = hi;
  5392. temp_stats[i + 1] = lo & 0xffffffff;
  5393. }
  5394. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5395. temp_stats[i] += hw_stats[i];
  5396. }
  5397. #define GET_64BIT_NET_STATS64(ctr) \
  5398. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5399. #define GET_64BIT_NET_STATS(ctr) \
  5400. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5401. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5402. #define GET_32BIT_NET_STATS(ctr) \
  5403. (unsigned long) (bp->stats_blk->ctr + \
  5404. bp->temp_stats_blk->ctr)
  5405. static struct rtnl_link_stats64 *
  5406. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5407. {
  5408. struct bnx2 *bp = netdev_priv(dev);
  5409. if (bp->stats_blk == NULL)
  5410. return net_stats;
  5411. net_stats->rx_packets =
  5412. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5413. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5414. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5415. net_stats->tx_packets =
  5416. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5417. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5418. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5419. net_stats->rx_bytes =
  5420. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5421. net_stats->tx_bytes =
  5422. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5423. net_stats->multicast =
  5424. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5425. net_stats->collisions =
  5426. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5427. net_stats->rx_length_errors =
  5428. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5429. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5430. net_stats->rx_over_errors =
  5431. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5432. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5433. net_stats->rx_frame_errors =
  5434. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5435. net_stats->rx_crc_errors =
  5436. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5437. net_stats->rx_errors = net_stats->rx_length_errors +
  5438. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5439. net_stats->rx_crc_errors;
  5440. net_stats->tx_aborted_errors =
  5441. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5442. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5443. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5444. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5445. net_stats->tx_carrier_errors = 0;
  5446. else {
  5447. net_stats->tx_carrier_errors =
  5448. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5449. }
  5450. net_stats->tx_errors =
  5451. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5452. net_stats->tx_aborted_errors +
  5453. net_stats->tx_carrier_errors;
  5454. net_stats->rx_missed_errors =
  5455. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5456. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5457. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5458. return net_stats;
  5459. }
  5460. /* All ethtool functions called with rtnl_lock */
  5461. static int
  5462. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5463. {
  5464. struct bnx2 *bp = netdev_priv(dev);
  5465. int support_serdes = 0, support_copper = 0;
  5466. cmd->supported = SUPPORTED_Autoneg;
  5467. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5468. support_serdes = 1;
  5469. support_copper = 1;
  5470. } else if (bp->phy_port == PORT_FIBRE)
  5471. support_serdes = 1;
  5472. else
  5473. support_copper = 1;
  5474. if (support_serdes) {
  5475. cmd->supported |= SUPPORTED_1000baseT_Full |
  5476. SUPPORTED_FIBRE;
  5477. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5478. cmd->supported |= SUPPORTED_2500baseX_Full;
  5479. }
  5480. if (support_copper) {
  5481. cmd->supported |= SUPPORTED_10baseT_Half |
  5482. SUPPORTED_10baseT_Full |
  5483. SUPPORTED_100baseT_Half |
  5484. SUPPORTED_100baseT_Full |
  5485. SUPPORTED_1000baseT_Full |
  5486. SUPPORTED_TP;
  5487. }
  5488. spin_lock_bh(&bp->phy_lock);
  5489. cmd->port = bp->phy_port;
  5490. cmd->advertising = bp->advertising;
  5491. if (bp->autoneg & AUTONEG_SPEED) {
  5492. cmd->autoneg = AUTONEG_ENABLE;
  5493. }
  5494. else {
  5495. cmd->autoneg = AUTONEG_DISABLE;
  5496. }
  5497. if (netif_carrier_ok(dev)) {
  5498. cmd->speed = bp->line_speed;
  5499. cmd->duplex = bp->duplex;
  5500. }
  5501. else {
  5502. cmd->speed = -1;
  5503. cmd->duplex = -1;
  5504. }
  5505. spin_unlock_bh(&bp->phy_lock);
  5506. cmd->transceiver = XCVR_INTERNAL;
  5507. cmd->phy_address = bp->phy_addr;
  5508. return 0;
  5509. }
  5510. static int
  5511. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5512. {
  5513. struct bnx2 *bp = netdev_priv(dev);
  5514. u8 autoneg = bp->autoneg;
  5515. u8 req_duplex = bp->req_duplex;
  5516. u16 req_line_speed = bp->req_line_speed;
  5517. u32 advertising = bp->advertising;
  5518. int err = -EINVAL;
  5519. spin_lock_bh(&bp->phy_lock);
  5520. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5521. goto err_out_unlock;
  5522. if (cmd->port != bp->phy_port &&
  5523. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5524. goto err_out_unlock;
  5525. /* If device is down, we can store the settings only if the user
  5526. * is setting the currently active port.
  5527. */
  5528. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5529. goto err_out_unlock;
  5530. if (cmd->autoneg == AUTONEG_ENABLE) {
  5531. autoneg |= AUTONEG_SPEED;
  5532. advertising = cmd->advertising;
  5533. if (cmd->port == PORT_TP) {
  5534. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5535. if (!advertising)
  5536. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5537. } else {
  5538. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5539. if (!advertising)
  5540. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5541. }
  5542. advertising |= ADVERTISED_Autoneg;
  5543. }
  5544. else {
  5545. if (cmd->port == PORT_FIBRE) {
  5546. if ((cmd->speed != SPEED_1000 &&
  5547. cmd->speed != SPEED_2500) ||
  5548. (cmd->duplex != DUPLEX_FULL))
  5549. goto err_out_unlock;
  5550. if (cmd->speed == SPEED_2500 &&
  5551. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5552. goto err_out_unlock;
  5553. }
  5554. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5555. goto err_out_unlock;
  5556. autoneg &= ~AUTONEG_SPEED;
  5557. req_line_speed = cmd->speed;
  5558. req_duplex = cmd->duplex;
  5559. advertising = 0;
  5560. }
  5561. bp->autoneg = autoneg;
  5562. bp->advertising = advertising;
  5563. bp->req_line_speed = req_line_speed;
  5564. bp->req_duplex = req_duplex;
  5565. err = 0;
  5566. /* If device is down, the new settings will be picked up when it is
  5567. * brought up.
  5568. */
  5569. if (netif_running(dev))
  5570. err = bnx2_setup_phy(bp, cmd->port);
  5571. err_out_unlock:
  5572. spin_unlock_bh(&bp->phy_lock);
  5573. return err;
  5574. }
  5575. static void
  5576. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5577. {
  5578. struct bnx2 *bp = netdev_priv(dev);
  5579. strcpy(info->driver, DRV_MODULE_NAME);
  5580. strcpy(info->version, DRV_MODULE_VERSION);
  5581. strcpy(info->bus_info, pci_name(bp->pdev));
  5582. strcpy(info->fw_version, bp->fw_version);
  5583. }
  5584. #define BNX2_REGDUMP_LEN (32 * 1024)
  5585. static int
  5586. bnx2_get_regs_len(struct net_device *dev)
  5587. {
  5588. return BNX2_REGDUMP_LEN;
  5589. }
  5590. static void
  5591. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5592. {
  5593. u32 *p = _p, i, offset;
  5594. u8 *orig_p = _p;
  5595. struct bnx2 *bp = netdev_priv(dev);
  5596. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5597. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5598. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5599. 0x1040, 0x1048, 0x1080, 0x10a4,
  5600. 0x1400, 0x1490, 0x1498, 0x14f0,
  5601. 0x1500, 0x155c, 0x1580, 0x15dc,
  5602. 0x1600, 0x1658, 0x1680, 0x16d8,
  5603. 0x1800, 0x1820, 0x1840, 0x1854,
  5604. 0x1880, 0x1894, 0x1900, 0x1984,
  5605. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5606. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5607. 0x2000, 0x2030, 0x23c0, 0x2400,
  5608. 0x2800, 0x2820, 0x2830, 0x2850,
  5609. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5610. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5611. 0x4080, 0x4090, 0x43c0, 0x4458,
  5612. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5613. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5614. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5615. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5616. 0x6800, 0x6848, 0x684c, 0x6860,
  5617. 0x6888, 0x6910, 0x8000 };
  5618. regs->version = 0;
  5619. memset(p, 0, BNX2_REGDUMP_LEN);
  5620. if (!netif_running(bp->dev))
  5621. return;
  5622. i = 0;
  5623. offset = reg_boundaries[0];
  5624. p += offset;
  5625. while (offset < BNX2_REGDUMP_LEN) {
  5626. *p++ = REG_RD(bp, offset);
  5627. offset += 4;
  5628. if (offset == reg_boundaries[i + 1]) {
  5629. offset = reg_boundaries[i + 2];
  5630. p = (u32 *) (orig_p + offset);
  5631. i += 2;
  5632. }
  5633. }
  5634. }
  5635. static void
  5636. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5637. {
  5638. struct bnx2 *bp = netdev_priv(dev);
  5639. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5640. wol->supported = 0;
  5641. wol->wolopts = 0;
  5642. }
  5643. else {
  5644. wol->supported = WAKE_MAGIC;
  5645. if (bp->wol)
  5646. wol->wolopts = WAKE_MAGIC;
  5647. else
  5648. wol->wolopts = 0;
  5649. }
  5650. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5651. }
  5652. static int
  5653. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5654. {
  5655. struct bnx2 *bp = netdev_priv(dev);
  5656. if (wol->wolopts & ~WAKE_MAGIC)
  5657. return -EINVAL;
  5658. if (wol->wolopts & WAKE_MAGIC) {
  5659. if (bp->flags & BNX2_FLAG_NO_WOL)
  5660. return -EINVAL;
  5661. bp->wol = 1;
  5662. }
  5663. else {
  5664. bp->wol = 0;
  5665. }
  5666. return 0;
  5667. }
  5668. static int
  5669. bnx2_nway_reset(struct net_device *dev)
  5670. {
  5671. struct bnx2 *bp = netdev_priv(dev);
  5672. u32 bmcr;
  5673. if (!netif_running(dev))
  5674. return -EAGAIN;
  5675. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5676. return -EINVAL;
  5677. }
  5678. spin_lock_bh(&bp->phy_lock);
  5679. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5680. int rc;
  5681. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5682. spin_unlock_bh(&bp->phy_lock);
  5683. return rc;
  5684. }
  5685. /* Force a link down visible on the other side */
  5686. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5687. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5688. spin_unlock_bh(&bp->phy_lock);
  5689. msleep(20);
  5690. spin_lock_bh(&bp->phy_lock);
  5691. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5692. bp->serdes_an_pending = 1;
  5693. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5694. }
  5695. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5696. bmcr &= ~BMCR_LOOPBACK;
  5697. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5698. spin_unlock_bh(&bp->phy_lock);
  5699. return 0;
  5700. }
  5701. static u32
  5702. bnx2_get_link(struct net_device *dev)
  5703. {
  5704. struct bnx2 *bp = netdev_priv(dev);
  5705. return bp->link_up;
  5706. }
  5707. static int
  5708. bnx2_get_eeprom_len(struct net_device *dev)
  5709. {
  5710. struct bnx2 *bp = netdev_priv(dev);
  5711. if (bp->flash_info == NULL)
  5712. return 0;
  5713. return (int) bp->flash_size;
  5714. }
  5715. static int
  5716. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5717. u8 *eebuf)
  5718. {
  5719. struct bnx2 *bp = netdev_priv(dev);
  5720. int rc;
  5721. if (!netif_running(dev))
  5722. return -EAGAIN;
  5723. /* parameters already validated in ethtool_get_eeprom */
  5724. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5725. return rc;
  5726. }
  5727. static int
  5728. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5729. u8 *eebuf)
  5730. {
  5731. struct bnx2 *bp = netdev_priv(dev);
  5732. int rc;
  5733. if (!netif_running(dev))
  5734. return -EAGAIN;
  5735. /* parameters already validated in ethtool_set_eeprom */
  5736. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5737. return rc;
  5738. }
  5739. static int
  5740. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5741. {
  5742. struct bnx2 *bp = netdev_priv(dev);
  5743. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5744. coal->rx_coalesce_usecs = bp->rx_ticks;
  5745. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5746. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5747. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5748. coal->tx_coalesce_usecs = bp->tx_ticks;
  5749. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5750. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5751. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5752. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5753. return 0;
  5754. }
  5755. static int
  5756. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5757. {
  5758. struct bnx2 *bp = netdev_priv(dev);
  5759. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5760. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5761. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5762. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5763. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5764. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5765. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5766. if (bp->rx_quick_cons_trip_int > 0xff)
  5767. bp->rx_quick_cons_trip_int = 0xff;
  5768. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5769. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5770. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5771. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5772. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5773. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5774. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5775. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5776. 0xff;
  5777. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5778. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5779. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5780. bp->stats_ticks = USEC_PER_SEC;
  5781. }
  5782. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5783. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5784. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5785. if (netif_running(bp->dev)) {
  5786. bnx2_netif_stop(bp, true);
  5787. bnx2_init_nic(bp, 0);
  5788. bnx2_netif_start(bp, true);
  5789. }
  5790. return 0;
  5791. }
  5792. static void
  5793. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5794. {
  5795. struct bnx2 *bp = netdev_priv(dev);
  5796. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5797. ering->rx_mini_max_pending = 0;
  5798. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5799. ering->rx_pending = bp->rx_ring_size;
  5800. ering->rx_mini_pending = 0;
  5801. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5802. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5803. ering->tx_pending = bp->tx_ring_size;
  5804. }
  5805. static int
  5806. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5807. {
  5808. if (netif_running(bp->dev)) {
  5809. /* Reset will erase chipset stats; save them */
  5810. bnx2_save_stats(bp);
  5811. bnx2_netif_stop(bp, true);
  5812. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5813. bnx2_free_skbs(bp);
  5814. bnx2_free_mem(bp);
  5815. }
  5816. bnx2_set_rx_ring_size(bp, rx);
  5817. bp->tx_ring_size = tx;
  5818. if (netif_running(bp->dev)) {
  5819. int rc;
  5820. rc = bnx2_alloc_mem(bp);
  5821. if (!rc)
  5822. rc = bnx2_init_nic(bp, 0);
  5823. if (rc) {
  5824. bnx2_napi_enable(bp);
  5825. dev_close(bp->dev);
  5826. return rc;
  5827. }
  5828. #ifdef BCM_CNIC
  5829. mutex_lock(&bp->cnic_lock);
  5830. /* Let cnic know about the new status block. */
  5831. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5832. bnx2_setup_cnic_irq_info(bp);
  5833. mutex_unlock(&bp->cnic_lock);
  5834. #endif
  5835. bnx2_netif_start(bp, true);
  5836. }
  5837. return 0;
  5838. }
  5839. static int
  5840. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5841. {
  5842. struct bnx2 *bp = netdev_priv(dev);
  5843. int rc;
  5844. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5845. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5846. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5847. return -EINVAL;
  5848. }
  5849. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5850. return rc;
  5851. }
  5852. static void
  5853. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5854. {
  5855. struct bnx2 *bp = netdev_priv(dev);
  5856. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5857. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5858. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5859. }
  5860. static int
  5861. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5862. {
  5863. struct bnx2 *bp = netdev_priv(dev);
  5864. bp->req_flow_ctrl = 0;
  5865. if (epause->rx_pause)
  5866. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5867. if (epause->tx_pause)
  5868. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5869. if (epause->autoneg) {
  5870. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5871. }
  5872. else {
  5873. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5874. }
  5875. if (netif_running(dev)) {
  5876. spin_lock_bh(&bp->phy_lock);
  5877. bnx2_setup_phy(bp, bp->phy_port);
  5878. spin_unlock_bh(&bp->phy_lock);
  5879. }
  5880. return 0;
  5881. }
  5882. static u32
  5883. bnx2_get_rx_csum(struct net_device *dev)
  5884. {
  5885. struct bnx2 *bp = netdev_priv(dev);
  5886. return bp->rx_csum;
  5887. }
  5888. static int
  5889. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5890. {
  5891. struct bnx2 *bp = netdev_priv(dev);
  5892. bp->rx_csum = data;
  5893. return 0;
  5894. }
  5895. static int
  5896. bnx2_set_tso(struct net_device *dev, u32 data)
  5897. {
  5898. struct bnx2 *bp = netdev_priv(dev);
  5899. if (data) {
  5900. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5901. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5902. dev->features |= NETIF_F_TSO6;
  5903. } else
  5904. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5905. NETIF_F_TSO_ECN);
  5906. return 0;
  5907. }
  5908. static struct {
  5909. char string[ETH_GSTRING_LEN];
  5910. } bnx2_stats_str_arr[] = {
  5911. { "rx_bytes" },
  5912. { "rx_error_bytes" },
  5913. { "tx_bytes" },
  5914. { "tx_error_bytes" },
  5915. { "rx_ucast_packets" },
  5916. { "rx_mcast_packets" },
  5917. { "rx_bcast_packets" },
  5918. { "tx_ucast_packets" },
  5919. { "tx_mcast_packets" },
  5920. { "tx_bcast_packets" },
  5921. { "tx_mac_errors" },
  5922. { "tx_carrier_errors" },
  5923. { "rx_crc_errors" },
  5924. { "rx_align_errors" },
  5925. { "tx_single_collisions" },
  5926. { "tx_multi_collisions" },
  5927. { "tx_deferred" },
  5928. { "tx_excess_collisions" },
  5929. { "tx_late_collisions" },
  5930. { "tx_total_collisions" },
  5931. { "rx_fragments" },
  5932. { "rx_jabbers" },
  5933. { "rx_undersize_packets" },
  5934. { "rx_oversize_packets" },
  5935. { "rx_64_byte_packets" },
  5936. { "rx_65_to_127_byte_packets" },
  5937. { "rx_128_to_255_byte_packets" },
  5938. { "rx_256_to_511_byte_packets" },
  5939. { "rx_512_to_1023_byte_packets" },
  5940. { "rx_1024_to_1522_byte_packets" },
  5941. { "rx_1523_to_9022_byte_packets" },
  5942. { "tx_64_byte_packets" },
  5943. { "tx_65_to_127_byte_packets" },
  5944. { "tx_128_to_255_byte_packets" },
  5945. { "tx_256_to_511_byte_packets" },
  5946. { "tx_512_to_1023_byte_packets" },
  5947. { "tx_1024_to_1522_byte_packets" },
  5948. { "tx_1523_to_9022_byte_packets" },
  5949. { "rx_xon_frames" },
  5950. { "rx_xoff_frames" },
  5951. { "tx_xon_frames" },
  5952. { "tx_xoff_frames" },
  5953. { "rx_mac_ctrl_frames" },
  5954. { "rx_filtered_packets" },
  5955. { "rx_ftq_discards" },
  5956. { "rx_discards" },
  5957. { "rx_fw_discards" },
  5958. };
  5959. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5960. sizeof(bnx2_stats_str_arr[0]))
  5961. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5962. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5963. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5964. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5965. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5966. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5967. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5968. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5969. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5970. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5971. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5972. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5973. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5974. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5975. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5976. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5977. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5978. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5979. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5980. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5981. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5982. STATS_OFFSET32(stat_EtherStatsCollisions),
  5983. STATS_OFFSET32(stat_EtherStatsFragments),
  5984. STATS_OFFSET32(stat_EtherStatsJabbers),
  5985. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5986. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5987. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5988. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5989. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5990. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5991. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5992. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5993. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5994. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5995. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5996. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5997. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5998. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5999. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6000. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6001. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6002. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6003. STATS_OFFSET32(stat_OutXonSent),
  6004. STATS_OFFSET32(stat_OutXoffSent),
  6005. STATS_OFFSET32(stat_MacControlFramesReceived),
  6006. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6007. STATS_OFFSET32(stat_IfInFTQDiscards),
  6008. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6009. STATS_OFFSET32(stat_FwRxDrop),
  6010. };
  6011. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6012. * skipped because of errata.
  6013. */
  6014. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6015. 8,0,8,8,8,8,8,8,8,8,
  6016. 4,0,4,4,4,4,4,4,4,4,
  6017. 4,4,4,4,4,4,4,4,4,4,
  6018. 4,4,4,4,4,4,4,4,4,4,
  6019. 4,4,4,4,4,4,4,
  6020. };
  6021. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6022. 8,0,8,8,8,8,8,8,8,8,
  6023. 4,4,4,4,4,4,4,4,4,4,
  6024. 4,4,4,4,4,4,4,4,4,4,
  6025. 4,4,4,4,4,4,4,4,4,4,
  6026. 4,4,4,4,4,4,4,
  6027. };
  6028. #define BNX2_NUM_TESTS 6
  6029. static struct {
  6030. char string[ETH_GSTRING_LEN];
  6031. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6032. { "register_test (offline)" },
  6033. { "memory_test (offline)" },
  6034. { "loopback_test (offline)" },
  6035. { "nvram_test (online)" },
  6036. { "interrupt_test (online)" },
  6037. { "link_test (online)" },
  6038. };
  6039. static int
  6040. bnx2_get_sset_count(struct net_device *dev, int sset)
  6041. {
  6042. switch (sset) {
  6043. case ETH_SS_TEST:
  6044. return BNX2_NUM_TESTS;
  6045. case ETH_SS_STATS:
  6046. return BNX2_NUM_STATS;
  6047. default:
  6048. return -EOPNOTSUPP;
  6049. }
  6050. }
  6051. static void
  6052. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6053. {
  6054. struct bnx2 *bp = netdev_priv(dev);
  6055. bnx2_set_power_state(bp, PCI_D0);
  6056. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6057. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6058. int i;
  6059. bnx2_netif_stop(bp, true);
  6060. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6061. bnx2_free_skbs(bp);
  6062. if (bnx2_test_registers(bp) != 0) {
  6063. buf[0] = 1;
  6064. etest->flags |= ETH_TEST_FL_FAILED;
  6065. }
  6066. if (bnx2_test_memory(bp) != 0) {
  6067. buf[1] = 1;
  6068. etest->flags |= ETH_TEST_FL_FAILED;
  6069. }
  6070. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6071. etest->flags |= ETH_TEST_FL_FAILED;
  6072. if (!netif_running(bp->dev))
  6073. bnx2_shutdown_chip(bp);
  6074. else {
  6075. bnx2_init_nic(bp, 1);
  6076. bnx2_netif_start(bp, true);
  6077. }
  6078. /* wait for link up */
  6079. for (i = 0; i < 7; i++) {
  6080. if (bp->link_up)
  6081. break;
  6082. msleep_interruptible(1000);
  6083. }
  6084. }
  6085. if (bnx2_test_nvram(bp) != 0) {
  6086. buf[3] = 1;
  6087. etest->flags |= ETH_TEST_FL_FAILED;
  6088. }
  6089. if (bnx2_test_intr(bp) != 0) {
  6090. buf[4] = 1;
  6091. etest->flags |= ETH_TEST_FL_FAILED;
  6092. }
  6093. if (bnx2_test_link(bp) != 0) {
  6094. buf[5] = 1;
  6095. etest->flags |= ETH_TEST_FL_FAILED;
  6096. }
  6097. if (!netif_running(bp->dev))
  6098. bnx2_set_power_state(bp, PCI_D3hot);
  6099. }
  6100. static void
  6101. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6102. {
  6103. switch (stringset) {
  6104. case ETH_SS_STATS:
  6105. memcpy(buf, bnx2_stats_str_arr,
  6106. sizeof(bnx2_stats_str_arr));
  6107. break;
  6108. case ETH_SS_TEST:
  6109. memcpy(buf, bnx2_tests_str_arr,
  6110. sizeof(bnx2_tests_str_arr));
  6111. break;
  6112. }
  6113. }
  6114. static void
  6115. bnx2_get_ethtool_stats(struct net_device *dev,
  6116. struct ethtool_stats *stats, u64 *buf)
  6117. {
  6118. struct bnx2 *bp = netdev_priv(dev);
  6119. int i;
  6120. u32 *hw_stats = (u32 *) bp->stats_blk;
  6121. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6122. u8 *stats_len_arr = NULL;
  6123. if (hw_stats == NULL) {
  6124. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6125. return;
  6126. }
  6127. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6128. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6129. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6130. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6131. stats_len_arr = bnx2_5706_stats_len_arr;
  6132. else
  6133. stats_len_arr = bnx2_5708_stats_len_arr;
  6134. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6135. unsigned long offset;
  6136. if (stats_len_arr[i] == 0) {
  6137. /* skip this counter */
  6138. buf[i] = 0;
  6139. continue;
  6140. }
  6141. offset = bnx2_stats_offset_arr[i];
  6142. if (stats_len_arr[i] == 4) {
  6143. /* 4-byte counter */
  6144. buf[i] = (u64) *(hw_stats + offset) +
  6145. *(temp_stats + offset);
  6146. continue;
  6147. }
  6148. /* 8-byte counter */
  6149. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6150. *(hw_stats + offset + 1) +
  6151. (((u64) *(temp_stats + offset)) << 32) +
  6152. *(temp_stats + offset + 1);
  6153. }
  6154. }
  6155. static int
  6156. bnx2_phys_id(struct net_device *dev, u32 data)
  6157. {
  6158. struct bnx2 *bp = netdev_priv(dev);
  6159. int i;
  6160. u32 save;
  6161. bnx2_set_power_state(bp, PCI_D0);
  6162. if (data == 0)
  6163. data = 2;
  6164. save = REG_RD(bp, BNX2_MISC_CFG);
  6165. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6166. for (i = 0; i < (data * 2); i++) {
  6167. if ((i % 2) == 0) {
  6168. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6169. }
  6170. else {
  6171. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6172. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6173. BNX2_EMAC_LED_100MB_OVERRIDE |
  6174. BNX2_EMAC_LED_10MB_OVERRIDE |
  6175. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6176. BNX2_EMAC_LED_TRAFFIC);
  6177. }
  6178. msleep_interruptible(500);
  6179. if (signal_pending(current))
  6180. break;
  6181. }
  6182. REG_WR(bp, BNX2_EMAC_LED, 0);
  6183. REG_WR(bp, BNX2_MISC_CFG, save);
  6184. if (!netif_running(dev))
  6185. bnx2_set_power_state(bp, PCI_D3hot);
  6186. return 0;
  6187. }
  6188. static int
  6189. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6190. {
  6191. struct bnx2 *bp = netdev_priv(dev);
  6192. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6193. return ethtool_op_set_tx_ipv6_csum(dev, data);
  6194. else
  6195. return ethtool_op_set_tx_csum(dev, data);
  6196. }
  6197. static int
  6198. bnx2_set_flags(struct net_device *dev, u32 data)
  6199. {
  6200. return ethtool_op_set_flags(dev, data, ETH_FLAG_RXHASH);
  6201. }
  6202. static const struct ethtool_ops bnx2_ethtool_ops = {
  6203. .get_settings = bnx2_get_settings,
  6204. .set_settings = bnx2_set_settings,
  6205. .get_drvinfo = bnx2_get_drvinfo,
  6206. .get_regs_len = bnx2_get_regs_len,
  6207. .get_regs = bnx2_get_regs,
  6208. .get_wol = bnx2_get_wol,
  6209. .set_wol = bnx2_set_wol,
  6210. .nway_reset = bnx2_nway_reset,
  6211. .get_link = bnx2_get_link,
  6212. .get_eeprom_len = bnx2_get_eeprom_len,
  6213. .get_eeprom = bnx2_get_eeprom,
  6214. .set_eeprom = bnx2_set_eeprom,
  6215. .get_coalesce = bnx2_get_coalesce,
  6216. .set_coalesce = bnx2_set_coalesce,
  6217. .get_ringparam = bnx2_get_ringparam,
  6218. .set_ringparam = bnx2_set_ringparam,
  6219. .get_pauseparam = bnx2_get_pauseparam,
  6220. .set_pauseparam = bnx2_set_pauseparam,
  6221. .get_rx_csum = bnx2_get_rx_csum,
  6222. .set_rx_csum = bnx2_set_rx_csum,
  6223. .set_tx_csum = bnx2_set_tx_csum,
  6224. .set_sg = ethtool_op_set_sg,
  6225. .set_tso = bnx2_set_tso,
  6226. .self_test = bnx2_self_test,
  6227. .get_strings = bnx2_get_strings,
  6228. .phys_id = bnx2_phys_id,
  6229. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6230. .get_sset_count = bnx2_get_sset_count,
  6231. .set_flags = bnx2_set_flags,
  6232. .get_flags = ethtool_op_get_flags,
  6233. };
  6234. /* Called with rtnl_lock */
  6235. static int
  6236. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6237. {
  6238. struct mii_ioctl_data *data = if_mii(ifr);
  6239. struct bnx2 *bp = netdev_priv(dev);
  6240. int err;
  6241. switch(cmd) {
  6242. case SIOCGMIIPHY:
  6243. data->phy_id = bp->phy_addr;
  6244. /* fallthru */
  6245. case SIOCGMIIREG: {
  6246. u32 mii_regval;
  6247. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6248. return -EOPNOTSUPP;
  6249. if (!netif_running(dev))
  6250. return -EAGAIN;
  6251. spin_lock_bh(&bp->phy_lock);
  6252. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6253. spin_unlock_bh(&bp->phy_lock);
  6254. data->val_out = mii_regval;
  6255. return err;
  6256. }
  6257. case SIOCSMIIREG:
  6258. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6259. return -EOPNOTSUPP;
  6260. if (!netif_running(dev))
  6261. return -EAGAIN;
  6262. spin_lock_bh(&bp->phy_lock);
  6263. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6264. spin_unlock_bh(&bp->phy_lock);
  6265. return err;
  6266. default:
  6267. /* do nothing */
  6268. break;
  6269. }
  6270. return -EOPNOTSUPP;
  6271. }
  6272. /* Called with rtnl_lock */
  6273. static int
  6274. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6275. {
  6276. struct sockaddr *addr = p;
  6277. struct bnx2 *bp = netdev_priv(dev);
  6278. if (!is_valid_ether_addr(addr->sa_data))
  6279. return -EINVAL;
  6280. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6281. if (netif_running(dev))
  6282. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6283. return 0;
  6284. }
  6285. /* Called with rtnl_lock */
  6286. static int
  6287. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6288. {
  6289. struct bnx2 *bp = netdev_priv(dev);
  6290. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6291. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6292. return -EINVAL;
  6293. dev->mtu = new_mtu;
  6294. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size);
  6295. }
  6296. #ifdef CONFIG_NET_POLL_CONTROLLER
  6297. static void
  6298. poll_bnx2(struct net_device *dev)
  6299. {
  6300. struct bnx2 *bp = netdev_priv(dev);
  6301. int i;
  6302. for (i = 0; i < bp->irq_nvecs; i++) {
  6303. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6304. disable_irq(irq->vector);
  6305. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6306. enable_irq(irq->vector);
  6307. }
  6308. }
  6309. #endif
  6310. static void __devinit
  6311. bnx2_get_5709_media(struct bnx2 *bp)
  6312. {
  6313. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6314. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6315. u32 strap;
  6316. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6317. return;
  6318. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6319. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6320. return;
  6321. }
  6322. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6323. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6324. else
  6325. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6326. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6327. switch (strap) {
  6328. case 0x4:
  6329. case 0x5:
  6330. case 0x6:
  6331. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6332. return;
  6333. }
  6334. } else {
  6335. switch (strap) {
  6336. case 0x1:
  6337. case 0x2:
  6338. case 0x4:
  6339. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6340. return;
  6341. }
  6342. }
  6343. }
  6344. static void __devinit
  6345. bnx2_get_pci_speed(struct bnx2 *bp)
  6346. {
  6347. u32 reg;
  6348. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6349. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6350. u32 clkreg;
  6351. bp->flags |= BNX2_FLAG_PCIX;
  6352. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6353. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6354. switch (clkreg) {
  6355. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6356. bp->bus_speed_mhz = 133;
  6357. break;
  6358. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6359. bp->bus_speed_mhz = 100;
  6360. break;
  6361. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6362. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6363. bp->bus_speed_mhz = 66;
  6364. break;
  6365. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6366. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6367. bp->bus_speed_mhz = 50;
  6368. break;
  6369. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6370. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6371. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6372. bp->bus_speed_mhz = 33;
  6373. break;
  6374. }
  6375. }
  6376. else {
  6377. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6378. bp->bus_speed_mhz = 66;
  6379. else
  6380. bp->bus_speed_mhz = 33;
  6381. }
  6382. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6383. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6384. }
  6385. static void __devinit
  6386. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6387. {
  6388. int rc, i, j;
  6389. u8 *data;
  6390. unsigned int block_end, rosize, len;
  6391. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6392. #define BNX2_VPD_LEN 128
  6393. #define BNX2_MAX_VER_SLEN 30
  6394. data = kmalloc(256, GFP_KERNEL);
  6395. if (!data)
  6396. return;
  6397. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6398. BNX2_VPD_LEN);
  6399. if (rc)
  6400. goto vpd_done;
  6401. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6402. data[i] = data[i + BNX2_VPD_LEN + 3];
  6403. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6404. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6405. data[i + 3] = data[i + BNX2_VPD_LEN];
  6406. }
  6407. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6408. if (i < 0)
  6409. goto vpd_done;
  6410. rosize = pci_vpd_lrdt_size(&data[i]);
  6411. i += PCI_VPD_LRDT_TAG_SIZE;
  6412. block_end = i + rosize;
  6413. if (block_end > BNX2_VPD_LEN)
  6414. goto vpd_done;
  6415. j = pci_vpd_find_info_keyword(data, i, rosize,
  6416. PCI_VPD_RO_KEYWORD_MFR_ID);
  6417. if (j < 0)
  6418. goto vpd_done;
  6419. len = pci_vpd_info_field_size(&data[j]);
  6420. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6421. if (j + len > block_end || len != 4 ||
  6422. memcmp(&data[j], "1028", 4))
  6423. goto vpd_done;
  6424. j = pci_vpd_find_info_keyword(data, i, rosize,
  6425. PCI_VPD_RO_KEYWORD_VENDOR0);
  6426. if (j < 0)
  6427. goto vpd_done;
  6428. len = pci_vpd_info_field_size(&data[j]);
  6429. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6430. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6431. goto vpd_done;
  6432. memcpy(bp->fw_version, &data[j], len);
  6433. bp->fw_version[len] = ' ';
  6434. vpd_done:
  6435. kfree(data);
  6436. }
  6437. static int __devinit
  6438. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6439. {
  6440. struct bnx2 *bp;
  6441. unsigned long mem_len;
  6442. int rc, i, j;
  6443. u32 reg;
  6444. u64 dma_mask, persist_dma_mask;
  6445. int err;
  6446. SET_NETDEV_DEV(dev, &pdev->dev);
  6447. bp = netdev_priv(dev);
  6448. bp->flags = 0;
  6449. bp->phy_flags = 0;
  6450. bp->temp_stats_blk =
  6451. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6452. if (bp->temp_stats_blk == NULL) {
  6453. rc = -ENOMEM;
  6454. goto err_out;
  6455. }
  6456. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6457. rc = pci_enable_device(pdev);
  6458. if (rc) {
  6459. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6460. goto err_out;
  6461. }
  6462. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6463. dev_err(&pdev->dev,
  6464. "Cannot find PCI device base address, aborting\n");
  6465. rc = -ENODEV;
  6466. goto err_out_disable;
  6467. }
  6468. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6469. if (rc) {
  6470. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6471. goto err_out_disable;
  6472. }
  6473. /* AER (Advanced Error Reporting) hooks */
  6474. err = pci_enable_pcie_error_reporting(pdev);
  6475. if (err) {
  6476. dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
  6477. "0x%x\n", err);
  6478. /* non-fatal, continue */
  6479. }
  6480. pci_set_master(pdev);
  6481. pci_save_state(pdev);
  6482. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6483. if (bp->pm_cap == 0) {
  6484. dev_err(&pdev->dev,
  6485. "Cannot find power management capability, aborting\n");
  6486. rc = -EIO;
  6487. goto err_out_release;
  6488. }
  6489. bp->dev = dev;
  6490. bp->pdev = pdev;
  6491. spin_lock_init(&bp->phy_lock);
  6492. spin_lock_init(&bp->indirect_lock);
  6493. #ifdef BCM_CNIC
  6494. mutex_init(&bp->cnic_lock);
  6495. #endif
  6496. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6497. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6498. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6499. dev->mem_end = dev->mem_start + mem_len;
  6500. dev->irq = pdev->irq;
  6501. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6502. if (!bp->regview) {
  6503. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6504. rc = -ENOMEM;
  6505. goto err_out_release;
  6506. }
  6507. /* Configure byte swap and enable write to the reg_window registers.
  6508. * Rely on CPU to do target byte swapping on big endian systems
  6509. * The chip's target access swapping will not swap all accesses
  6510. */
  6511. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6512. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6513. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6514. bnx2_set_power_state(bp, PCI_D0);
  6515. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6516. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6517. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6518. dev_err(&pdev->dev,
  6519. "Cannot find PCIE capability, aborting\n");
  6520. rc = -EIO;
  6521. goto err_out_unmap;
  6522. }
  6523. bp->flags |= BNX2_FLAG_PCIE;
  6524. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6525. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6526. } else {
  6527. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6528. if (bp->pcix_cap == 0) {
  6529. dev_err(&pdev->dev,
  6530. "Cannot find PCIX capability, aborting\n");
  6531. rc = -EIO;
  6532. goto err_out_unmap;
  6533. }
  6534. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6535. }
  6536. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6537. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6538. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6539. }
  6540. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6541. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6542. bp->flags |= BNX2_FLAG_MSI_CAP;
  6543. }
  6544. /* 5708 cannot support DMA addresses > 40-bit. */
  6545. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6546. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6547. else
  6548. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6549. /* Configure DMA attributes. */
  6550. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6551. dev->features |= NETIF_F_HIGHDMA;
  6552. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6553. if (rc) {
  6554. dev_err(&pdev->dev,
  6555. "pci_set_consistent_dma_mask failed, aborting\n");
  6556. goto err_out_unmap;
  6557. }
  6558. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6559. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6560. goto err_out_unmap;
  6561. }
  6562. if (!(bp->flags & BNX2_FLAG_PCIE))
  6563. bnx2_get_pci_speed(bp);
  6564. /* 5706A0 may falsely detect SERR and PERR. */
  6565. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6566. reg = REG_RD(bp, PCI_COMMAND);
  6567. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6568. REG_WR(bp, PCI_COMMAND, reg);
  6569. }
  6570. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6571. !(bp->flags & BNX2_FLAG_PCIX)) {
  6572. dev_err(&pdev->dev,
  6573. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6574. goto err_out_unmap;
  6575. }
  6576. bnx2_init_nvram(bp);
  6577. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6578. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6579. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6580. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6581. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6582. } else
  6583. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6584. /* Get the permanent MAC address. First we need to make sure the
  6585. * firmware is actually running.
  6586. */
  6587. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6588. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6589. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6590. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6591. rc = -ENODEV;
  6592. goto err_out_unmap;
  6593. }
  6594. bnx2_read_vpd_fw_ver(bp);
  6595. j = strlen(bp->fw_version);
  6596. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6597. for (i = 0; i < 3 && j < 24; i++) {
  6598. u8 num, k, skip0;
  6599. if (i == 0) {
  6600. bp->fw_version[j++] = 'b';
  6601. bp->fw_version[j++] = 'c';
  6602. bp->fw_version[j++] = ' ';
  6603. }
  6604. num = (u8) (reg >> (24 - (i * 8)));
  6605. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6606. if (num >= k || !skip0 || k == 1) {
  6607. bp->fw_version[j++] = (num / k) + '0';
  6608. skip0 = 0;
  6609. }
  6610. }
  6611. if (i != 2)
  6612. bp->fw_version[j++] = '.';
  6613. }
  6614. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6615. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6616. bp->wol = 1;
  6617. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6618. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6619. for (i = 0; i < 30; i++) {
  6620. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6621. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6622. break;
  6623. msleep(10);
  6624. }
  6625. }
  6626. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6627. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6628. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6629. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6630. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6631. if (j < 32)
  6632. bp->fw_version[j++] = ' ';
  6633. for (i = 0; i < 3 && j < 28; i++) {
  6634. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6635. reg = swab32(reg);
  6636. memcpy(&bp->fw_version[j], &reg, 4);
  6637. j += 4;
  6638. }
  6639. }
  6640. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6641. bp->mac_addr[0] = (u8) (reg >> 8);
  6642. bp->mac_addr[1] = (u8) reg;
  6643. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6644. bp->mac_addr[2] = (u8) (reg >> 24);
  6645. bp->mac_addr[3] = (u8) (reg >> 16);
  6646. bp->mac_addr[4] = (u8) (reg >> 8);
  6647. bp->mac_addr[5] = (u8) reg;
  6648. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6649. bnx2_set_rx_ring_size(bp, 255);
  6650. bp->rx_csum = 1;
  6651. bp->tx_quick_cons_trip_int = 2;
  6652. bp->tx_quick_cons_trip = 20;
  6653. bp->tx_ticks_int = 18;
  6654. bp->tx_ticks = 80;
  6655. bp->rx_quick_cons_trip_int = 2;
  6656. bp->rx_quick_cons_trip = 12;
  6657. bp->rx_ticks_int = 18;
  6658. bp->rx_ticks = 18;
  6659. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6660. bp->current_interval = BNX2_TIMER_INTERVAL;
  6661. bp->phy_addr = 1;
  6662. /* Disable WOL support if we are running on a SERDES chip. */
  6663. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6664. bnx2_get_5709_media(bp);
  6665. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6666. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6667. bp->phy_port = PORT_TP;
  6668. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6669. bp->phy_port = PORT_FIBRE;
  6670. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6671. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6672. bp->flags |= BNX2_FLAG_NO_WOL;
  6673. bp->wol = 0;
  6674. }
  6675. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6676. /* Don't do parallel detect on this board because of
  6677. * some board problems. The link will not go down
  6678. * if we do parallel detect.
  6679. */
  6680. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6681. pdev->subsystem_device == 0x310c)
  6682. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6683. } else {
  6684. bp->phy_addr = 2;
  6685. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6686. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6687. }
  6688. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6689. CHIP_NUM(bp) == CHIP_NUM_5708)
  6690. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6691. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6692. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6693. CHIP_REV(bp) == CHIP_REV_Bx))
  6694. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6695. bnx2_init_fw_cap(bp);
  6696. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6697. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6698. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6699. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6700. bp->flags |= BNX2_FLAG_NO_WOL;
  6701. bp->wol = 0;
  6702. }
  6703. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6704. bp->tx_quick_cons_trip_int =
  6705. bp->tx_quick_cons_trip;
  6706. bp->tx_ticks_int = bp->tx_ticks;
  6707. bp->rx_quick_cons_trip_int =
  6708. bp->rx_quick_cons_trip;
  6709. bp->rx_ticks_int = bp->rx_ticks;
  6710. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6711. bp->com_ticks_int = bp->com_ticks;
  6712. bp->cmd_ticks_int = bp->cmd_ticks;
  6713. }
  6714. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6715. *
  6716. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6717. * with byte enables disabled on the unused 32-bit word. This is legal
  6718. * but causes problems on the AMD 8132 which will eventually stop
  6719. * responding after a while.
  6720. *
  6721. * AMD believes this incompatibility is unique to the 5706, and
  6722. * prefers to locally disable MSI rather than globally disabling it.
  6723. */
  6724. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6725. struct pci_dev *amd_8132 = NULL;
  6726. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6727. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6728. amd_8132))) {
  6729. if (amd_8132->revision >= 0x10 &&
  6730. amd_8132->revision <= 0x13) {
  6731. disable_msi = 1;
  6732. pci_dev_put(amd_8132);
  6733. break;
  6734. }
  6735. }
  6736. }
  6737. bnx2_set_default_link(bp);
  6738. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6739. init_timer(&bp->timer);
  6740. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6741. bp->timer.data = (unsigned long) bp;
  6742. bp->timer.function = bnx2_timer;
  6743. return 0;
  6744. err_out_unmap:
  6745. if (bp->regview) {
  6746. iounmap(bp->regview);
  6747. bp->regview = NULL;
  6748. }
  6749. err_out_release:
  6750. pci_disable_pcie_error_reporting(pdev);
  6751. pci_release_regions(pdev);
  6752. err_out_disable:
  6753. pci_disable_device(pdev);
  6754. pci_set_drvdata(pdev, NULL);
  6755. err_out:
  6756. return rc;
  6757. }
  6758. static char * __devinit
  6759. bnx2_bus_string(struct bnx2 *bp, char *str)
  6760. {
  6761. char *s = str;
  6762. if (bp->flags & BNX2_FLAG_PCIE) {
  6763. s += sprintf(s, "PCI Express");
  6764. } else {
  6765. s += sprintf(s, "PCI");
  6766. if (bp->flags & BNX2_FLAG_PCIX)
  6767. s += sprintf(s, "-X");
  6768. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6769. s += sprintf(s, " 32-bit");
  6770. else
  6771. s += sprintf(s, " 64-bit");
  6772. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6773. }
  6774. return str;
  6775. }
  6776. static void
  6777. bnx2_del_napi(struct bnx2 *bp)
  6778. {
  6779. int i;
  6780. for (i = 0; i < bp->irq_nvecs; i++)
  6781. netif_napi_del(&bp->bnx2_napi[i].napi);
  6782. }
  6783. static void
  6784. bnx2_init_napi(struct bnx2 *bp)
  6785. {
  6786. int i;
  6787. for (i = 0; i < bp->irq_nvecs; i++) {
  6788. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6789. int (*poll)(struct napi_struct *, int);
  6790. if (i == 0)
  6791. poll = bnx2_poll;
  6792. else
  6793. poll = bnx2_poll_msix;
  6794. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6795. bnapi->bp = bp;
  6796. }
  6797. }
  6798. static const struct net_device_ops bnx2_netdev_ops = {
  6799. .ndo_open = bnx2_open,
  6800. .ndo_start_xmit = bnx2_start_xmit,
  6801. .ndo_stop = bnx2_close,
  6802. .ndo_get_stats64 = bnx2_get_stats64,
  6803. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6804. .ndo_do_ioctl = bnx2_ioctl,
  6805. .ndo_validate_addr = eth_validate_addr,
  6806. .ndo_set_mac_address = bnx2_change_mac_addr,
  6807. .ndo_change_mtu = bnx2_change_mtu,
  6808. .ndo_tx_timeout = bnx2_tx_timeout,
  6809. #ifdef BCM_VLAN
  6810. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6811. #endif
  6812. #ifdef CONFIG_NET_POLL_CONTROLLER
  6813. .ndo_poll_controller = poll_bnx2,
  6814. #endif
  6815. };
  6816. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6817. {
  6818. #ifdef BCM_VLAN
  6819. dev->vlan_features |= flags;
  6820. #endif
  6821. }
  6822. static int __devinit
  6823. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6824. {
  6825. static int version_printed = 0;
  6826. struct net_device *dev = NULL;
  6827. struct bnx2 *bp;
  6828. int rc;
  6829. char str[40];
  6830. if (version_printed++ == 0)
  6831. pr_info("%s", version);
  6832. /* dev zeroed in init_etherdev */
  6833. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6834. if (!dev)
  6835. return -ENOMEM;
  6836. rc = bnx2_init_board(pdev, dev);
  6837. if (rc < 0) {
  6838. free_netdev(dev);
  6839. return rc;
  6840. }
  6841. dev->netdev_ops = &bnx2_netdev_ops;
  6842. dev->watchdog_timeo = TX_TIMEOUT;
  6843. dev->ethtool_ops = &bnx2_ethtool_ops;
  6844. bp = netdev_priv(dev);
  6845. pci_set_drvdata(pdev, dev);
  6846. rc = bnx2_request_firmware(bp);
  6847. if (rc)
  6848. goto error;
  6849. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6850. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6851. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_GRO |
  6852. NETIF_F_RXHASH;
  6853. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6854. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6855. dev->features |= NETIF_F_IPV6_CSUM;
  6856. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6857. }
  6858. #ifdef BCM_VLAN
  6859. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6860. #endif
  6861. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6862. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6863. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6864. dev->features |= NETIF_F_TSO6;
  6865. vlan_features_add(dev, NETIF_F_TSO6);
  6866. }
  6867. if ((rc = register_netdev(dev))) {
  6868. dev_err(&pdev->dev, "Cannot register net device\n");
  6869. goto error;
  6870. }
  6871. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6872. board_info[ent->driver_data].name,
  6873. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6874. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6875. bnx2_bus_string(bp, str),
  6876. dev->base_addr,
  6877. bp->pdev->irq, dev->dev_addr);
  6878. return 0;
  6879. error:
  6880. if (bp->mips_firmware)
  6881. release_firmware(bp->mips_firmware);
  6882. if (bp->rv2p_firmware)
  6883. release_firmware(bp->rv2p_firmware);
  6884. if (bp->regview)
  6885. iounmap(bp->regview);
  6886. pci_release_regions(pdev);
  6887. pci_disable_device(pdev);
  6888. pci_set_drvdata(pdev, NULL);
  6889. free_netdev(dev);
  6890. return rc;
  6891. }
  6892. static void __devexit
  6893. bnx2_remove_one(struct pci_dev *pdev)
  6894. {
  6895. struct net_device *dev = pci_get_drvdata(pdev);
  6896. struct bnx2 *bp = netdev_priv(dev);
  6897. flush_scheduled_work();
  6898. unregister_netdev(dev);
  6899. if (bp->mips_firmware)
  6900. release_firmware(bp->mips_firmware);
  6901. if (bp->rv2p_firmware)
  6902. release_firmware(bp->rv2p_firmware);
  6903. if (bp->regview)
  6904. iounmap(bp->regview);
  6905. kfree(bp->temp_stats_blk);
  6906. free_netdev(dev);
  6907. pci_disable_pcie_error_reporting(pdev);
  6908. pci_release_regions(pdev);
  6909. pci_disable_device(pdev);
  6910. pci_set_drvdata(pdev, NULL);
  6911. }
  6912. static int
  6913. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6914. {
  6915. struct net_device *dev = pci_get_drvdata(pdev);
  6916. struct bnx2 *bp = netdev_priv(dev);
  6917. /* PCI register 4 needs to be saved whether netif_running() or not.
  6918. * MSI address and data need to be saved if using MSI and
  6919. * netif_running().
  6920. */
  6921. pci_save_state(pdev);
  6922. if (!netif_running(dev))
  6923. return 0;
  6924. flush_scheduled_work();
  6925. bnx2_netif_stop(bp, true);
  6926. netif_device_detach(dev);
  6927. del_timer_sync(&bp->timer);
  6928. bnx2_shutdown_chip(bp);
  6929. bnx2_free_skbs(bp);
  6930. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6931. return 0;
  6932. }
  6933. static int
  6934. bnx2_resume(struct pci_dev *pdev)
  6935. {
  6936. struct net_device *dev = pci_get_drvdata(pdev);
  6937. struct bnx2 *bp = netdev_priv(dev);
  6938. pci_restore_state(pdev);
  6939. if (!netif_running(dev))
  6940. return 0;
  6941. bnx2_set_power_state(bp, PCI_D0);
  6942. netif_device_attach(dev);
  6943. bnx2_init_nic(bp, 1);
  6944. bnx2_netif_start(bp, true);
  6945. return 0;
  6946. }
  6947. /**
  6948. * bnx2_io_error_detected - called when PCI error is detected
  6949. * @pdev: Pointer to PCI device
  6950. * @state: The current pci connection state
  6951. *
  6952. * This function is called after a PCI bus error affecting
  6953. * this device has been detected.
  6954. */
  6955. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6956. pci_channel_state_t state)
  6957. {
  6958. struct net_device *dev = pci_get_drvdata(pdev);
  6959. struct bnx2 *bp = netdev_priv(dev);
  6960. rtnl_lock();
  6961. netif_device_detach(dev);
  6962. if (state == pci_channel_io_perm_failure) {
  6963. rtnl_unlock();
  6964. return PCI_ERS_RESULT_DISCONNECT;
  6965. }
  6966. if (netif_running(dev)) {
  6967. bnx2_netif_stop(bp, true);
  6968. del_timer_sync(&bp->timer);
  6969. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6970. }
  6971. pci_disable_device(pdev);
  6972. rtnl_unlock();
  6973. /* Request a slot slot reset. */
  6974. return PCI_ERS_RESULT_NEED_RESET;
  6975. }
  6976. /**
  6977. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6978. * @pdev: Pointer to PCI device
  6979. *
  6980. * Restart the card from scratch, as if from a cold-boot.
  6981. */
  6982. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6983. {
  6984. struct net_device *dev = pci_get_drvdata(pdev);
  6985. struct bnx2 *bp = netdev_priv(dev);
  6986. pci_ers_result_t result;
  6987. int err;
  6988. rtnl_lock();
  6989. if (pci_enable_device(pdev)) {
  6990. dev_err(&pdev->dev,
  6991. "Cannot re-enable PCI device after reset\n");
  6992. result = PCI_ERS_RESULT_DISCONNECT;
  6993. } else {
  6994. pci_set_master(pdev);
  6995. pci_restore_state(pdev);
  6996. pci_save_state(pdev);
  6997. if (netif_running(dev)) {
  6998. bnx2_set_power_state(bp, PCI_D0);
  6999. bnx2_init_nic(bp, 1);
  7000. }
  7001. result = PCI_ERS_RESULT_RECOVERED;
  7002. }
  7003. rtnl_unlock();
  7004. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7005. if (err) {
  7006. dev_err(&pdev->dev,
  7007. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7008. err); /* non-fatal, continue */
  7009. }
  7010. return result;
  7011. }
  7012. /**
  7013. * bnx2_io_resume - called when traffic can start flowing again.
  7014. * @pdev: Pointer to PCI device
  7015. *
  7016. * This callback is called when the error recovery driver tells us that
  7017. * its OK to resume normal operation.
  7018. */
  7019. static void bnx2_io_resume(struct pci_dev *pdev)
  7020. {
  7021. struct net_device *dev = pci_get_drvdata(pdev);
  7022. struct bnx2 *bp = netdev_priv(dev);
  7023. rtnl_lock();
  7024. if (netif_running(dev))
  7025. bnx2_netif_start(bp, true);
  7026. netif_device_attach(dev);
  7027. rtnl_unlock();
  7028. }
  7029. static struct pci_error_handlers bnx2_err_handler = {
  7030. .error_detected = bnx2_io_error_detected,
  7031. .slot_reset = bnx2_io_slot_reset,
  7032. .resume = bnx2_io_resume,
  7033. };
  7034. static struct pci_driver bnx2_pci_driver = {
  7035. .name = DRV_MODULE_NAME,
  7036. .id_table = bnx2_pci_tbl,
  7037. .probe = bnx2_init_one,
  7038. .remove = __devexit_p(bnx2_remove_one),
  7039. .suspend = bnx2_suspend,
  7040. .resume = bnx2_resume,
  7041. .err_handler = &bnx2_err_handler,
  7042. };
  7043. static int __init bnx2_init(void)
  7044. {
  7045. return pci_register_driver(&bnx2_pci_driver);
  7046. }
  7047. static void __exit bnx2_cleanup(void)
  7048. {
  7049. pci_unregister_driver(&bnx2_pci_driver);
  7050. }
  7051. module_init(bnx2_init);
  7052. module_exit(bnx2_cleanup);