process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745
  1. /*
  2. * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Licensed under the GPL
  4. */
  5. #include <stdlib.h>
  6. #include <unistd.h>
  7. #include <sched.h>
  8. #include <errno.h>
  9. #include <string.h>
  10. #include <sys/mman.h>
  11. #include <sys/ptrace.h>
  12. #include <sys/wait.h>
  13. #include <asm/unistd.h>
  14. #include "as-layout.h"
  15. #include "chan_user.h"
  16. #include "kern_constants.h"
  17. #include "kern_util.h"
  18. #include "mem.h"
  19. #include "os.h"
  20. #include "process.h"
  21. #include "proc_mm.h"
  22. #include "ptrace_user.h"
  23. #include "registers.h"
  24. #include "skas.h"
  25. #include "skas_ptrace.h"
  26. #include "user.h"
  27. #include "sysdep/stub.h"
  28. int is_skas_winch(int pid, int fd, void *data)
  29. {
  30. if (pid != getpgrp())
  31. return 0;
  32. register_winch_irq(-1, fd, -1, data, 0);
  33. return 1;
  34. }
  35. static int ptrace_dump_regs(int pid)
  36. {
  37. unsigned long regs[MAX_REG_NR];
  38. int i;
  39. if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
  40. return -errno;
  41. printk(UM_KERN_ERR "Stub registers -\n");
  42. for (i = 0; i < ARRAY_SIZE(regs); i++)
  43. printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]);
  44. return 0;
  45. }
  46. /*
  47. * Signals that are OK to receive in the stub - we'll just continue it.
  48. * SIGWINCH will happen when UML is inside a detached screen.
  49. */
  50. #define STUB_SIG_MASK ((1 << SIGVTALRM) | (1 << SIGWINCH))
  51. /* Signals that the stub will finish with - anything else is an error */
  52. #define STUB_DONE_MASK (1 << SIGTRAP)
  53. void wait_stub_done(int pid)
  54. {
  55. int n, status, err;
  56. while (1) {
  57. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  58. if ((n < 0) || !WIFSTOPPED(status))
  59. goto bad_wait;
  60. if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
  61. break;
  62. err = ptrace(PTRACE_CONT, pid, 0, 0);
  63. if (err) {
  64. printk(UM_KERN_ERR "wait_stub_done : continue failed, "
  65. "errno = %d\n", errno);
  66. fatal_sigsegv();
  67. }
  68. }
  69. if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
  70. return;
  71. bad_wait:
  72. err = ptrace_dump_regs(pid);
  73. if (err)
  74. printk(UM_KERN_ERR "Failed to get registers from stub, "
  75. "errno = %d\n", -err);
  76. printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
  77. "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
  78. status);
  79. fatal_sigsegv();
  80. }
  81. extern unsigned long current_stub_stack(void);
  82. static void get_skas_faultinfo(int pid, struct faultinfo *fi)
  83. {
  84. int err;
  85. if (ptrace_faultinfo) {
  86. err = ptrace(PTRACE_FAULTINFO, pid, 0, fi);
  87. if (err) {
  88. printk(UM_KERN_ERR "get_skas_faultinfo - "
  89. "PTRACE_FAULTINFO failed, errno = %d\n", errno);
  90. fatal_sigsegv();
  91. }
  92. /* Special handling for i386, which has different structs */
  93. if (sizeof(struct ptrace_faultinfo) < sizeof(struct faultinfo))
  94. memset((char *)fi + sizeof(struct ptrace_faultinfo), 0,
  95. sizeof(struct faultinfo) -
  96. sizeof(struct ptrace_faultinfo));
  97. }
  98. else {
  99. unsigned long fpregs[FP_SIZE];
  100. err = get_fp_registers(pid, fpregs);
  101. if (err < 0) {
  102. printk(UM_KERN_ERR "save_fp_registers returned %d\n",
  103. err);
  104. fatal_sigsegv();
  105. }
  106. err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
  107. if (err) {
  108. printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
  109. "errno = %d\n", pid, errno);
  110. fatal_sigsegv();
  111. }
  112. wait_stub_done(pid);
  113. /*
  114. * faultinfo is prepared by the stub-segv-handler at start of
  115. * the stub stack page. We just have to copy it.
  116. */
  117. memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
  118. err = put_fp_registers(pid, fpregs);
  119. if (err < 0) {
  120. printk(UM_KERN_ERR "put_fp_registers returned %d\n",
  121. err);
  122. fatal_sigsegv();
  123. }
  124. }
  125. }
  126. static void handle_segv(int pid, struct uml_pt_regs * regs)
  127. {
  128. get_skas_faultinfo(pid, &regs->faultinfo);
  129. segv(regs->faultinfo, 0, 1, NULL);
  130. }
  131. /*
  132. * To use the same value of using_sysemu as the caller, ask it that value
  133. * (in local_using_sysemu
  134. */
  135. static void handle_trap(int pid, struct uml_pt_regs *regs,
  136. int local_using_sysemu)
  137. {
  138. int err, status;
  139. if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
  140. fatal_sigsegv();
  141. /* Mark this as a syscall */
  142. UPT_SYSCALL_NR(regs) = PT_SYSCALL_NR(regs->gp);
  143. if (!local_using_sysemu)
  144. {
  145. err = ptrace(PTRACE_POKEUSR, pid, PT_SYSCALL_NR_OFFSET,
  146. __NR_getpid);
  147. if (err < 0) {
  148. printk(UM_KERN_ERR "handle_trap - nullifying syscall "
  149. "failed, errno = %d\n", errno);
  150. fatal_sigsegv();
  151. }
  152. err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
  153. if (err < 0) {
  154. printk(UM_KERN_ERR "handle_trap - continuing to end of "
  155. "syscall failed, errno = %d\n", errno);
  156. fatal_sigsegv();
  157. }
  158. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  159. if ((err < 0) || !WIFSTOPPED(status) ||
  160. (WSTOPSIG(status) != SIGTRAP + 0x80)) {
  161. err = ptrace_dump_regs(pid);
  162. if (err)
  163. printk(UM_KERN_ERR "Failed to get registers "
  164. "from process, errno = %d\n", -err);
  165. printk(UM_KERN_ERR "handle_trap - failed to wait at "
  166. "end of syscall, errno = %d, status = %d\n",
  167. errno, status);
  168. fatal_sigsegv();
  169. }
  170. }
  171. handle_syscall(regs);
  172. }
  173. extern int __syscall_stub_start;
  174. static int userspace_tramp(void *stack)
  175. {
  176. void *addr;
  177. int err;
  178. ptrace(PTRACE_TRACEME, 0, 0, 0);
  179. signal(SIGTERM, SIG_DFL);
  180. signal(SIGWINCH, SIG_IGN);
  181. err = set_interval();
  182. if (err) {
  183. printk(UM_KERN_ERR "userspace_tramp - setting timer failed, "
  184. "errno = %d\n", err);
  185. exit(1);
  186. }
  187. if (!proc_mm) {
  188. /*
  189. * This has a pte, but it can't be mapped in with the usual
  190. * tlb_flush mechanism because this is part of that mechanism
  191. */
  192. int fd;
  193. unsigned long long offset;
  194. fd = phys_mapping(to_phys(&__syscall_stub_start), &offset);
  195. addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
  196. PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
  197. if (addr == MAP_FAILED) {
  198. printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
  199. "errno = %d\n", STUB_CODE, errno);
  200. exit(1);
  201. }
  202. if (stack != NULL) {
  203. fd = phys_mapping(to_phys(stack), &offset);
  204. addr = mmap((void *) STUB_DATA,
  205. UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
  206. MAP_FIXED | MAP_SHARED, fd, offset);
  207. if (addr == MAP_FAILED) {
  208. printk(UM_KERN_ERR "mapping segfault stack "
  209. "at 0x%lx failed, errno = %d\n",
  210. STUB_DATA, errno);
  211. exit(1);
  212. }
  213. }
  214. }
  215. if (!ptrace_faultinfo && (stack != NULL)) {
  216. struct sigaction sa;
  217. unsigned long v = STUB_CODE +
  218. (unsigned long) stub_segv_handler -
  219. (unsigned long) &__syscall_stub_start;
  220. set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
  221. sigemptyset(&sa.sa_mask);
  222. sa.sa_flags = SA_ONSTACK | SA_NODEFER;
  223. sa.sa_handler = (void *) v;
  224. sa.sa_restorer = NULL;
  225. if (sigaction(SIGSEGV, &sa, NULL) < 0) {
  226. printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
  227. "handler failed - errno = %d\n", errno);
  228. exit(1);
  229. }
  230. }
  231. kill(os_getpid(), SIGSTOP);
  232. return 0;
  233. }
  234. /* Each element set once, and only accessed by a single processor anyway */
  235. #undef NR_CPUS
  236. #define NR_CPUS 1
  237. int userspace_pid[NR_CPUS];
  238. int start_userspace(unsigned long stub_stack)
  239. {
  240. void *stack;
  241. unsigned long sp;
  242. int pid, status, n, flags, err;
  243. stack = mmap(NULL, UM_KERN_PAGE_SIZE,
  244. PROT_READ | PROT_WRITE | PROT_EXEC,
  245. MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  246. if (stack == MAP_FAILED) {
  247. err = -errno;
  248. printk(UM_KERN_ERR "start_userspace : mmap failed, "
  249. "errno = %d\n", errno);
  250. return err;
  251. }
  252. sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
  253. flags = CLONE_FILES;
  254. if (proc_mm)
  255. flags |= CLONE_VM;
  256. else
  257. flags |= SIGCHLD;
  258. pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
  259. if (pid < 0) {
  260. err = -errno;
  261. printk(UM_KERN_ERR "start_userspace : clone failed, "
  262. "errno = %d\n", errno);
  263. return err;
  264. }
  265. do {
  266. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  267. if (n < 0) {
  268. err = -errno;
  269. printk(UM_KERN_ERR "start_userspace : wait failed, "
  270. "errno = %d\n", errno);
  271. goto out_kill;
  272. }
  273. } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGVTALRM));
  274. if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
  275. err = -EINVAL;
  276. printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
  277. "status = %d\n", status);
  278. goto out_kill;
  279. }
  280. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  281. (void *) PTRACE_O_TRACESYSGOOD) < 0) {
  282. err = -errno;
  283. printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
  284. "failed, errno = %d\n", errno);
  285. goto out_kill;
  286. }
  287. if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
  288. err = -errno;
  289. printk(UM_KERN_ERR "start_userspace : munmap failed, "
  290. "errno = %d\n", errno);
  291. goto out_kill;
  292. }
  293. return pid;
  294. out_kill:
  295. os_kill_ptraced_process(pid, 1);
  296. return err;
  297. }
  298. void userspace(struct uml_pt_regs *regs)
  299. {
  300. struct itimerval timer;
  301. unsigned long long nsecs, now;
  302. int err, status, op, pid = userspace_pid[0];
  303. /* To prevent races if using_sysemu changes under us.*/
  304. int local_using_sysemu;
  305. if (getitimer(ITIMER_VIRTUAL, &timer))
  306. printk(UM_KERN_ERR "Failed to get itimer, errno = %d\n", errno);
  307. nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC +
  308. timer.it_value.tv_usec * UM_NSEC_PER_USEC;
  309. nsecs += os_nsecs();
  310. while (1) {
  311. /*
  312. * This can legitimately fail if the process loads a
  313. * bogus value into a segment register. It will
  314. * segfault and PTRACE_GETREGS will read that value
  315. * out of the process. However, PTRACE_SETREGS will
  316. * fail. In this case, there is nothing to do but
  317. * just kill the process.
  318. */
  319. if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp))
  320. fatal_sigsegv();
  321. if (put_fp_registers(pid, regs->fp))
  322. fatal_sigsegv();
  323. /* Now we set local_using_sysemu to be used for one loop */
  324. local_using_sysemu = get_using_sysemu();
  325. op = SELECT_PTRACE_OPERATION(local_using_sysemu,
  326. singlestepping(NULL));
  327. if (ptrace(op, pid, 0, 0)) {
  328. printk(UM_KERN_ERR "userspace - ptrace continue "
  329. "failed, op = %d, errno = %d\n", op, errno);
  330. fatal_sigsegv();
  331. }
  332. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  333. if (err < 0) {
  334. printk(UM_KERN_ERR "userspace - wait failed, "
  335. "errno = %d\n", errno);
  336. fatal_sigsegv();
  337. }
  338. regs->is_user = 1;
  339. if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
  340. printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
  341. "errno = %d\n", errno);
  342. fatal_sigsegv();
  343. }
  344. if (get_fp_registers(pid, regs->fp)) {
  345. printk(UM_KERN_ERR "userspace - get_fp_registers failed, "
  346. "errno = %d\n", errno);
  347. fatal_sigsegv();
  348. }
  349. UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
  350. if (WIFSTOPPED(status)) {
  351. int sig = WSTOPSIG(status);
  352. switch (sig) {
  353. case SIGSEGV:
  354. if (PTRACE_FULL_FAULTINFO ||
  355. !ptrace_faultinfo) {
  356. get_skas_faultinfo(pid,
  357. &regs->faultinfo);
  358. (*sig_info[SIGSEGV])(SIGSEGV, regs);
  359. }
  360. else handle_segv(pid, regs);
  361. break;
  362. case SIGTRAP + 0x80:
  363. handle_trap(pid, regs, local_using_sysemu);
  364. break;
  365. case SIGTRAP:
  366. relay_signal(SIGTRAP, regs);
  367. break;
  368. case SIGVTALRM:
  369. now = os_nsecs();
  370. if (now < nsecs)
  371. break;
  372. block_signals();
  373. (*sig_info[sig])(sig, regs);
  374. unblock_signals();
  375. nsecs = timer.it_value.tv_sec *
  376. UM_NSEC_PER_SEC +
  377. timer.it_value.tv_usec *
  378. UM_NSEC_PER_USEC;
  379. nsecs += os_nsecs();
  380. break;
  381. case SIGIO:
  382. case SIGILL:
  383. case SIGBUS:
  384. case SIGFPE:
  385. case SIGWINCH:
  386. block_signals();
  387. (*sig_info[sig])(sig, regs);
  388. unblock_signals();
  389. break;
  390. default:
  391. printk(UM_KERN_ERR "userspace - child stopped "
  392. "with signal %d\n", sig);
  393. fatal_sigsegv();
  394. }
  395. pid = userspace_pid[0];
  396. interrupt_end();
  397. /* Avoid -ERESTARTSYS handling in host */
  398. if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
  399. PT_SYSCALL_NR(regs->gp) = -1;
  400. }
  401. }
  402. }
  403. static unsigned long thread_regs[MAX_REG_NR];
  404. static unsigned long thread_fp_regs[FP_SIZE];
  405. static int __init init_thread_regs(void)
  406. {
  407. get_safe_registers(thread_regs, thread_fp_regs);
  408. /* Set parent's instruction pointer to start of clone-stub */
  409. thread_regs[REGS_IP_INDEX] = STUB_CODE +
  410. (unsigned long) stub_clone_handler -
  411. (unsigned long) &__syscall_stub_start;
  412. thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
  413. sizeof(void *);
  414. #ifdef __SIGNAL_FRAMESIZE
  415. thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
  416. #endif
  417. return 0;
  418. }
  419. __initcall(init_thread_regs);
  420. int copy_context_skas0(unsigned long new_stack, int pid)
  421. {
  422. struct timeval tv = { .tv_sec = 0, .tv_usec = UM_USEC_PER_SEC / UM_HZ };
  423. int err;
  424. unsigned long current_stack = current_stub_stack();
  425. struct stub_data *data = (struct stub_data *) current_stack;
  426. struct stub_data *child_data = (struct stub_data *) new_stack;
  427. unsigned long long new_offset;
  428. int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
  429. /*
  430. * prepare offset and fd of child's stack as argument for parent's
  431. * and child's mmap2 calls
  432. */
  433. *data = ((struct stub_data) { .offset = MMAP_OFFSET(new_offset),
  434. .fd = new_fd,
  435. .timer = ((struct itimerval)
  436. { .it_value = tv,
  437. .it_interval = tv }) });
  438. err = ptrace_setregs(pid, thread_regs);
  439. if (err < 0) {
  440. err = -errno;
  441. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
  442. "failed, pid = %d, errno = %d\n", pid, -err);
  443. return err;
  444. }
  445. err = put_fp_registers(pid, thread_fp_regs);
  446. if (err < 0) {
  447. printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
  448. "failed, pid = %d, err = %d\n", pid, err);
  449. return err;
  450. }
  451. /* set a well known return code for detection of child write failure */
  452. child_data->err = 12345678;
  453. /*
  454. * Wait, until parent has finished its work: read child's pid from
  455. * parent's stack, and check, if bad result.
  456. */
  457. err = ptrace(PTRACE_CONT, pid, 0, 0);
  458. if (err) {
  459. err = -errno;
  460. printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
  461. "errno = %d\n", pid, errno);
  462. return err;
  463. }
  464. wait_stub_done(pid);
  465. pid = data->err;
  466. if (pid < 0) {
  467. printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
  468. "error %d\n", -pid);
  469. return pid;
  470. }
  471. /*
  472. * Wait, until child has finished too: read child's result from
  473. * child's stack and check it.
  474. */
  475. wait_stub_done(pid);
  476. if (child_data->err != STUB_DATA) {
  477. printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports "
  478. "error %ld\n", child_data->err);
  479. err = child_data->err;
  480. goto out_kill;
  481. }
  482. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  483. (void *)PTRACE_O_TRACESYSGOOD) < 0) {
  484. err = -errno;
  485. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
  486. "failed, errno = %d\n", errno);
  487. goto out_kill;
  488. }
  489. return pid;
  490. out_kill:
  491. os_kill_ptraced_process(pid, 1);
  492. return err;
  493. }
  494. /*
  495. * This is used only, if stub pages are needed, while proc_mm is
  496. * available. Opening /proc/mm creates a new mm_context, which lacks
  497. * the stub-pages. Thus, we map them using /proc/mm-fd
  498. */
  499. int map_stub_pages(int fd, unsigned long code, unsigned long data,
  500. unsigned long stack)
  501. {
  502. struct proc_mm_op mmop;
  503. int n;
  504. unsigned long long code_offset;
  505. int code_fd = phys_mapping(to_phys((void *) &__syscall_stub_start),
  506. &code_offset);
  507. mmop = ((struct proc_mm_op) { .op = MM_MMAP,
  508. .u =
  509. { .mmap =
  510. { .addr = code,
  511. .len = UM_KERN_PAGE_SIZE,
  512. .prot = PROT_EXEC,
  513. .flags = MAP_FIXED | MAP_PRIVATE,
  514. .fd = code_fd,
  515. .offset = code_offset
  516. } } });
  517. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  518. if (n != sizeof(mmop)) {
  519. n = errno;
  520. printk(UM_KERN_ERR "mmap args - addr = 0x%lx, fd = %d, "
  521. "offset = %llx\n", code, code_fd,
  522. (unsigned long long) code_offset);
  523. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for code "
  524. "failed, err = %d\n", n);
  525. return -n;
  526. }
  527. if (stack) {
  528. unsigned long long map_offset;
  529. int map_fd = phys_mapping(to_phys((void *)stack), &map_offset);
  530. mmop = ((struct proc_mm_op)
  531. { .op = MM_MMAP,
  532. .u =
  533. { .mmap =
  534. { .addr = data,
  535. .len = UM_KERN_PAGE_SIZE,
  536. .prot = PROT_READ | PROT_WRITE,
  537. .flags = MAP_FIXED | MAP_SHARED,
  538. .fd = map_fd,
  539. .offset = map_offset
  540. } } });
  541. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  542. if (n != sizeof(mmop)) {
  543. n = errno;
  544. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for "
  545. "data failed, err = %d\n", n);
  546. return -n;
  547. }
  548. }
  549. return 0;
  550. }
  551. void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
  552. {
  553. (*buf)[0].JB_IP = (unsigned long) handler;
  554. (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
  555. sizeof(void *);
  556. }
  557. #define INIT_JMP_NEW_THREAD 0
  558. #define INIT_JMP_CALLBACK 1
  559. #define INIT_JMP_HALT 2
  560. #define INIT_JMP_REBOOT 3
  561. void switch_threads(jmp_buf *me, jmp_buf *you)
  562. {
  563. if (UML_SETJMP(me) == 0)
  564. UML_LONGJMP(you, 1);
  565. }
  566. static jmp_buf initial_jmpbuf;
  567. /* XXX Make these percpu */
  568. static void (*cb_proc)(void *arg);
  569. static void *cb_arg;
  570. static jmp_buf *cb_back;
  571. int start_idle_thread(void *stack, jmp_buf *switch_buf)
  572. {
  573. int n;
  574. set_handler(SIGWINCH, (__sighandler_t) sig_handler,
  575. SA_ONSTACK | SA_RESTART, SIGUSR1, SIGIO, SIGVTALRM, -1);
  576. /*
  577. * Can't use UML_SETJMP or UML_LONGJMP here because they save
  578. * and restore signals, with the possible side-effect of
  579. * trying to handle any signals which came when they were
  580. * blocked, which can't be done on this stack.
  581. * Signals must be blocked when jumping back here and restored
  582. * after returning to the jumper.
  583. */
  584. n = setjmp(initial_jmpbuf);
  585. switch (n) {
  586. case INIT_JMP_NEW_THREAD:
  587. (*switch_buf)[0].JB_IP = (unsigned long) new_thread_handler;
  588. (*switch_buf)[0].JB_SP = (unsigned long) stack +
  589. UM_THREAD_SIZE - sizeof(void *);
  590. break;
  591. case INIT_JMP_CALLBACK:
  592. (*cb_proc)(cb_arg);
  593. longjmp(*cb_back, 1);
  594. break;
  595. case INIT_JMP_HALT:
  596. kmalloc_ok = 0;
  597. return 0;
  598. case INIT_JMP_REBOOT:
  599. kmalloc_ok = 0;
  600. return 1;
  601. default:
  602. printk(UM_KERN_ERR "Bad sigsetjmp return in "
  603. "start_idle_thread - %d\n", n);
  604. fatal_sigsegv();
  605. }
  606. longjmp(*switch_buf, 1);
  607. }
  608. void initial_thread_cb_skas(void (*proc)(void *), void *arg)
  609. {
  610. jmp_buf here;
  611. cb_proc = proc;
  612. cb_arg = arg;
  613. cb_back = &here;
  614. block_signals();
  615. if (UML_SETJMP(&here) == 0)
  616. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
  617. unblock_signals();
  618. cb_proc = NULL;
  619. cb_arg = NULL;
  620. cb_back = NULL;
  621. }
  622. void halt_skas(void)
  623. {
  624. block_signals();
  625. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
  626. }
  627. void reboot_skas(void)
  628. {
  629. block_signals();
  630. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
  631. }
  632. void __switch_mm(struct mm_id *mm_idp)
  633. {
  634. int err;
  635. /* FIXME: need cpu pid in __switch_mm */
  636. if (proc_mm) {
  637. err = ptrace(PTRACE_SWITCH_MM, userspace_pid[0], 0,
  638. mm_idp->u.mm_fd);
  639. if (err) {
  640. printk(UM_KERN_ERR "__switch_mm - PTRACE_SWITCH_MM "
  641. "failed, errno = %d\n", errno);
  642. fatal_sigsegv();
  643. }
  644. }
  645. else userspace_pid[0] = mm_idp->u.pid;
  646. }