input.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  23. MODULE_DESCRIPTION("Input core");
  24. MODULE_LICENSE("GPL");
  25. #define INPUT_DEVICES 256
  26. static LIST_HEAD(input_dev_list);
  27. static LIST_HEAD(input_handler_list);
  28. /*
  29. * input_mutex protects access to both input_dev_list and input_handler_list.
  30. * This also causes input_[un]register_device and input_[un]register_handler
  31. * be mutually exclusive which simplifies locking in drivers implementing
  32. * input handlers.
  33. */
  34. static DEFINE_MUTEX(input_mutex);
  35. static struct input_handler *input_table[8];
  36. static inline int is_event_supported(unsigned int code,
  37. unsigned long *bm, unsigned int max)
  38. {
  39. return code <= max && test_bit(code, bm);
  40. }
  41. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  42. {
  43. if (fuzz) {
  44. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  45. return old_val;
  46. if (value > old_val - fuzz && value < old_val + fuzz)
  47. return (old_val * 3 + value) / 4;
  48. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  49. return (old_val + value) / 2;
  50. }
  51. return value;
  52. }
  53. /*
  54. * Pass event through all open handles. This function is called with
  55. * dev->event_lock held and interrupts disabled.
  56. */
  57. static void input_pass_event(struct input_dev *dev,
  58. unsigned int type, unsigned int code, int value)
  59. {
  60. struct input_handle *handle;
  61. rcu_read_lock();
  62. handle = rcu_dereference(dev->grab);
  63. if (handle)
  64. handle->handler->event(handle, type, code, value);
  65. else
  66. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  67. if (handle->open)
  68. handle->handler->event(handle,
  69. type, code, value);
  70. rcu_read_unlock();
  71. }
  72. /*
  73. * Generate software autorepeat event. Note that we take
  74. * dev->event_lock here to avoid racing with input_event
  75. * which may cause keys get "stuck".
  76. */
  77. static void input_repeat_key(unsigned long data)
  78. {
  79. struct input_dev *dev = (void *) data;
  80. unsigned long flags;
  81. spin_lock_irqsave(&dev->event_lock, flags);
  82. if (test_bit(dev->repeat_key, dev->key) &&
  83. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  84. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  85. if (dev->sync) {
  86. /*
  87. * Only send SYN_REPORT if we are not in a middle
  88. * of driver parsing a new hardware packet.
  89. * Otherwise assume that the driver will send
  90. * SYN_REPORT once it's done.
  91. */
  92. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  93. }
  94. if (dev->rep[REP_PERIOD])
  95. mod_timer(&dev->timer, jiffies +
  96. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  97. }
  98. spin_unlock_irqrestore(&dev->event_lock, flags);
  99. }
  100. static void input_start_autorepeat(struct input_dev *dev, int code)
  101. {
  102. if (test_bit(EV_REP, dev->evbit) &&
  103. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  104. dev->timer.data) {
  105. dev->repeat_key = code;
  106. mod_timer(&dev->timer,
  107. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  108. }
  109. }
  110. #define INPUT_IGNORE_EVENT 0
  111. #define INPUT_PASS_TO_HANDLERS 1
  112. #define INPUT_PASS_TO_DEVICE 2
  113. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  114. static void input_handle_event(struct input_dev *dev,
  115. unsigned int type, unsigned int code, int value)
  116. {
  117. int disposition = INPUT_IGNORE_EVENT;
  118. switch (type) {
  119. case EV_SYN:
  120. switch (code) {
  121. case SYN_CONFIG:
  122. disposition = INPUT_PASS_TO_ALL;
  123. break;
  124. case SYN_REPORT:
  125. if (!dev->sync) {
  126. dev->sync = 1;
  127. disposition = INPUT_PASS_TO_HANDLERS;
  128. }
  129. break;
  130. }
  131. break;
  132. case EV_KEY:
  133. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  134. !!test_bit(code, dev->key) != value) {
  135. if (value != 2) {
  136. __change_bit(code, dev->key);
  137. if (value)
  138. input_start_autorepeat(dev, code);
  139. }
  140. disposition = INPUT_PASS_TO_HANDLERS;
  141. }
  142. break;
  143. case EV_SW:
  144. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  145. !!test_bit(code, dev->sw) != value) {
  146. __change_bit(code, dev->sw);
  147. disposition = INPUT_PASS_TO_HANDLERS;
  148. }
  149. break;
  150. case EV_ABS:
  151. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  152. value = input_defuzz_abs_event(value,
  153. dev->abs[code], dev->absfuzz[code]);
  154. if (dev->abs[code] != value) {
  155. dev->abs[code] = value;
  156. disposition = INPUT_PASS_TO_HANDLERS;
  157. }
  158. }
  159. break;
  160. case EV_REL:
  161. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  162. disposition = INPUT_PASS_TO_HANDLERS;
  163. break;
  164. case EV_MSC:
  165. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  166. disposition = INPUT_PASS_TO_ALL;
  167. break;
  168. case EV_LED:
  169. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  170. !!test_bit(code, dev->led) != value) {
  171. __change_bit(code, dev->led);
  172. disposition = INPUT_PASS_TO_ALL;
  173. }
  174. break;
  175. case EV_SND:
  176. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  177. if (!!test_bit(code, dev->snd) != !!value)
  178. __change_bit(code, dev->snd);
  179. disposition = INPUT_PASS_TO_ALL;
  180. }
  181. break;
  182. case EV_REP:
  183. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  184. dev->rep[code] = value;
  185. disposition = INPUT_PASS_TO_ALL;
  186. }
  187. break;
  188. case EV_FF:
  189. if (value >= 0)
  190. disposition = INPUT_PASS_TO_ALL;
  191. break;
  192. }
  193. if (type != EV_SYN)
  194. dev->sync = 0;
  195. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  196. dev->event(dev, type, code, value);
  197. if (disposition & INPUT_PASS_TO_HANDLERS)
  198. input_pass_event(dev, type, code, value);
  199. }
  200. /**
  201. * input_event() - report new input event
  202. * @dev: device that generated the event
  203. * @type: type of the event
  204. * @code: event code
  205. * @value: value of the event
  206. *
  207. * This function should be used by drivers implementing various input
  208. * devices. See also input_inject_event().
  209. */
  210. void input_event(struct input_dev *dev,
  211. unsigned int type, unsigned int code, int value)
  212. {
  213. unsigned long flags;
  214. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  215. spin_lock_irqsave(&dev->event_lock, flags);
  216. add_input_randomness(type, code, value);
  217. input_handle_event(dev, type, code, value);
  218. spin_unlock_irqrestore(&dev->event_lock, flags);
  219. }
  220. }
  221. EXPORT_SYMBOL(input_event);
  222. /**
  223. * input_inject_event() - send input event from input handler
  224. * @handle: input handle to send event through
  225. * @type: type of the event
  226. * @code: event code
  227. * @value: value of the event
  228. *
  229. * Similar to input_event() but will ignore event if device is
  230. * "grabbed" and handle injecting event is not the one that owns
  231. * the device.
  232. */
  233. void input_inject_event(struct input_handle *handle,
  234. unsigned int type, unsigned int code, int value)
  235. {
  236. struct input_dev *dev = handle->dev;
  237. struct input_handle *grab;
  238. unsigned long flags;
  239. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  240. spin_lock_irqsave(&dev->event_lock, flags);
  241. rcu_read_lock();
  242. grab = rcu_dereference(dev->grab);
  243. if (!grab || grab == handle)
  244. input_handle_event(dev, type, code, value);
  245. rcu_read_unlock();
  246. spin_unlock_irqrestore(&dev->event_lock, flags);
  247. }
  248. }
  249. EXPORT_SYMBOL(input_inject_event);
  250. /**
  251. * input_grab_device - grabs device for exclusive use
  252. * @handle: input handle that wants to own the device
  253. *
  254. * When a device is grabbed by an input handle all events generated by
  255. * the device are delivered only to this handle. Also events injected
  256. * by other input handles are ignored while device is grabbed.
  257. */
  258. int input_grab_device(struct input_handle *handle)
  259. {
  260. struct input_dev *dev = handle->dev;
  261. int retval;
  262. retval = mutex_lock_interruptible(&dev->mutex);
  263. if (retval)
  264. return retval;
  265. if (dev->grab) {
  266. retval = -EBUSY;
  267. goto out;
  268. }
  269. rcu_assign_pointer(dev->grab, handle);
  270. synchronize_rcu();
  271. out:
  272. mutex_unlock(&dev->mutex);
  273. return retval;
  274. }
  275. EXPORT_SYMBOL(input_grab_device);
  276. static void __input_release_device(struct input_handle *handle)
  277. {
  278. struct input_dev *dev = handle->dev;
  279. if (dev->grab == handle) {
  280. rcu_assign_pointer(dev->grab, NULL);
  281. /* Make sure input_pass_event() notices that grab is gone */
  282. synchronize_rcu();
  283. list_for_each_entry(handle, &dev->h_list, d_node)
  284. if (handle->open && handle->handler->start)
  285. handle->handler->start(handle);
  286. }
  287. }
  288. /**
  289. * input_release_device - release previously grabbed device
  290. * @handle: input handle that owns the device
  291. *
  292. * Releases previously grabbed device so that other input handles can
  293. * start receiving input events. Upon release all handlers attached
  294. * to the device have their start() method called so they have a change
  295. * to synchronize device state with the rest of the system.
  296. */
  297. void input_release_device(struct input_handle *handle)
  298. {
  299. struct input_dev *dev = handle->dev;
  300. mutex_lock(&dev->mutex);
  301. __input_release_device(handle);
  302. mutex_unlock(&dev->mutex);
  303. }
  304. EXPORT_SYMBOL(input_release_device);
  305. /**
  306. * input_open_device - open input device
  307. * @handle: handle through which device is being accessed
  308. *
  309. * This function should be called by input handlers when they
  310. * want to start receive events from given input device.
  311. */
  312. int input_open_device(struct input_handle *handle)
  313. {
  314. struct input_dev *dev = handle->dev;
  315. int retval;
  316. retval = mutex_lock_interruptible(&dev->mutex);
  317. if (retval)
  318. return retval;
  319. if (dev->going_away) {
  320. retval = -ENODEV;
  321. goto out;
  322. }
  323. handle->open++;
  324. if (!dev->users++ && dev->open)
  325. retval = dev->open(dev);
  326. if (retval) {
  327. dev->users--;
  328. if (!--handle->open) {
  329. /*
  330. * Make sure we are not delivering any more events
  331. * through this handle
  332. */
  333. synchronize_rcu();
  334. }
  335. }
  336. out:
  337. mutex_unlock(&dev->mutex);
  338. return retval;
  339. }
  340. EXPORT_SYMBOL(input_open_device);
  341. int input_flush_device(struct input_handle *handle, struct file *file)
  342. {
  343. struct input_dev *dev = handle->dev;
  344. int retval;
  345. retval = mutex_lock_interruptible(&dev->mutex);
  346. if (retval)
  347. return retval;
  348. if (dev->flush)
  349. retval = dev->flush(dev, file);
  350. mutex_unlock(&dev->mutex);
  351. return retval;
  352. }
  353. EXPORT_SYMBOL(input_flush_device);
  354. /**
  355. * input_close_device - close input device
  356. * @handle: handle through which device is being accessed
  357. *
  358. * This function should be called by input handlers when they
  359. * want to stop receive events from given input device.
  360. */
  361. void input_close_device(struct input_handle *handle)
  362. {
  363. struct input_dev *dev = handle->dev;
  364. mutex_lock(&dev->mutex);
  365. __input_release_device(handle);
  366. if (!--dev->users && dev->close)
  367. dev->close(dev);
  368. if (!--handle->open) {
  369. /*
  370. * synchronize_rcu() makes sure that input_pass_event()
  371. * completed and that no more input events are delivered
  372. * through this handle
  373. */
  374. synchronize_rcu();
  375. }
  376. mutex_unlock(&dev->mutex);
  377. }
  378. EXPORT_SYMBOL(input_close_device);
  379. /*
  380. * Prepare device for unregistering
  381. */
  382. static void input_disconnect_device(struct input_dev *dev)
  383. {
  384. struct input_handle *handle;
  385. int code;
  386. /*
  387. * Mark device as going away. Note that we take dev->mutex here
  388. * not to protect access to dev->going_away but rather to ensure
  389. * that there are no threads in the middle of input_open_device()
  390. */
  391. mutex_lock(&dev->mutex);
  392. dev->going_away = 1;
  393. mutex_unlock(&dev->mutex);
  394. spin_lock_irq(&dev->event_lock);
  395. /*
  396. * Simulate keyup events for all pressed keys so that handlers
  397. * are not left with "stuck" keys. The driver may continue
  398. * generate events even after we done here but they will not
  399. * reach any handlers.
  400. */
  401. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  402. for (code = 0; code <= KEY_MAX; code++) {
  403. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  404. test_bit(code, dev->key)) {
  405. input_pass_event(dev, EV_KEY, code, 0);
  406. }
  407. }
  408. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  409. }
  410. list_for_each_entry(handle, &dev->h_list, d_node)
  411. handle->open = 0;
  412. spin_unlock_irq(&dev->event_lock);
  413. }
  414. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  415. {
  416. switch (dev->keycodesize) {
  417. case 1:
  418. return ((u8 *)dev->keycode)[scancode];
  419. case 2:
  420. return ((u16 *)dev->keycode)[scancode];
  421. default:
  422. return ((u32 *)dev->keycode)[scancode];
  423. }
  424. }
  425. static int input_default_getkeycode(struct input_dev *dev,
  426. int scancode, int *keycode)
  427. {
  428. if (!dev->keycodesize)
  429. return -EINVAL;
  430. if (scancode < 0 || scancode >= dev->keycodemax)
  431. return -EINVAL;
  432. *keycode = input_fetch_keycode(dev, scancode);
  433. return 0;
  434. }
  435. static int input_default_setkeycode(struct input_dev *dev,
  436. int scancode, int keycode)
  437. {
  438. int old_keycode;
  439. int i;
  440. if (scancode < 0 || scancode >= dev->keycodemax)
  441. return -EINVAL;
  442. if (keycode < 0 || keycode > KEY_MAX)
  443. return -EINVAL;
  444. if (!dev->keycodesize)
  445. return -EINVAL;
  446. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  447. return -EINVAL;
  448. switch (dev->keycodesize) {
  449. case 1: {
  450. u8 *k = (u8 *)dev->keycode;
  451. old_keycode = k[scancode];
  452. k[scancode] = keycode;
  453. break;
  454. }
  455. case 2: {
  456. u16 *k = (u16 *)dev->keycode;
  457. old_keycode = k[scancode];
  458. k[scancode] = keycode;
  459. break;
  460. }
  461. default: {
  462. u32 *k = (u32 *)dev->keycode;
  463. old_keycode = k[scancode];
  464. k[scancode] = keycode;
  465. break;
  466. }
  467. }
  468. clear_bit(old_keycode, dev->keybit);
  469. set_bit(keycode, dev->keybit);
  470. for (i = 0; i < dev->keycodemax; i++) {
  471. if (input_fetch_keycode(dev, i) == old_keycode) {
  472. set_bit(old_keycode, dev->keybit);
  473. break; /* Setting the bit twice is useless, so break */
  474. }
  475. }
  476. return 0;
  477. }
  478. #define MATCH_BIT(bit, max) \
  479. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  480. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  481. break; \
  482. if (i != BITS_TO_LONGS(max)) \
  483. continue;
  484. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  485. struct input_dev *dev)
  486. {
  487. int i;
  488. for (; id->flags || id->driver_info; id++) {
  489. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  490. if (id->bustype != dev->id.bustype)
  491. continue;
  492. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  493. if (id->vendor != dev->id.vendor)
  494. continue;
  495. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  496. if (id->product != dev->id.product)
  497. continue;
  498. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  499. if (id->version != dev->id.version)
  500. continue;
  501. MATCH_BIT(evbit, EV_MAX);
  502. MATCH_BIT(keybit, KEY_MAX);
  503. MATCH_BIT(relbit, REL_MAX);
  504. MATCH_BIT(absbit, ABS_MAX);
  505. MATCH_BIT(mscbit, MSC_MAX);
  506. MATCH_BIT(ledbit, LED_MAX);
  507. MATCH_BIT(sndbit, SND_MAX);
  508. MATCH_BIT(ffbit, FF_MAX);
  509. MATCH_BIT(swbit, SW_MAX);
  510. return id;
  511. }
  512. return NULL;
  513. }
  514. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  515. {
  516. const struct input_device_id *id;
  517. int error;
  518. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  519. return -ENODEV;
  520. id = input_match_device(handler->id_table, dev);
  521. if (!id)
  522. return -ENODEV;
  523. error = handler->connect(handler, dev, id);
  524. if (error && error != -ENODEV)
  525. printk(KERN_ERR
  526. "input: failed to attach handler %s to device %s, "
  527. "error: %d\n",
  528. handler->name, kobject_name(&dev->dev.kobj), error);
  529. return error;
  530. }
  531. #ifdef CONFIG_PROC_FS
  532. static struct proc_dir_entry *proc_bus_input_dir;
  533. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  534. static int input_devices_state;
  535. static inline void input_wakeup_procfs_readers(void)
  536. {
  537. input_devices_state++;
  538. wake_up(&input_devices_poll_wait);
  539. }
  540. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  541. {
  542. int state = input_devices_state;
  543. poll_wait(file, &input_devices_poll_wait, wait);
  544. if (state != input_devices_state)
  545. return POLLIN | POLLRDNORM;
  546. return 0;
  547. }
  548. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  549. {
  550. if (mutex_lock_interruptible(&input_mutex))
  551. return NULL;
  552. return seq_list_start(&input_dev_list, *pos);
  553. }
  554. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  555. {
  556. return seq_list_next(v, &input_dev_list, pos);
  557. }
  558. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  559. {
  560. mutex_unlock(&input_mutex);
  561. }
  562. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  563. unsigned long *bitmap, int max)
  564. {
  565. int i;
  566. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  567. if (bitmap[i])
  568. break;
  569. seq_printf(seq, "B: %s=", name);
  570. for (; i >= 0; i--)
  571. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  572. seq_putc(seq, '\n');
  573. }
  574. static int input_devices_seq_show(struct seq_file *seq, void *v)
  575. {
  576. struct input_dev *dev = container_of(v, struct input_dev, node);
  577. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  578. struct input_handle *handle;
  579. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  580. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  581. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  582. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  583. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  584. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  585. seq_printf(seq, "H: Handlers=");
  586. list_for_each_entry(handle, &dev->h_list, d_node)
  587. seq_printf(seq, "%s ", handle->name);
  588. seq_putc(seq, '\n');
  589. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  590. if (test_bit(EV_KEY, dev->evbit))
  591. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  592. if (test_bit(EV_REL, dev->evbit))
  593. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  594. if (test_bit(EV_ABS, dev->evbit))
  595. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  596. if (test_bit(EV_MSC, dev->evbit))
  597. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  598. if (test_bit(EV_LED, dev->evbit))
  599. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  600. if (test_bit(EV_SND, dev->evbit))
  601. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  602. if (test_bit(EV_FF, dev->evbit))
  603. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  604. if (test_bit(EV_SW, dev->evbit))
  605. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  606. seq_putc(seq, '\n');
  607. kfree(path);
  608. return 0;
  609. }
  610. static struct seq_operations input_devices_seq_ops = {
  611. .start = input_devices_seq_start,
  612. .next = input_devices_seq_next,
  613. .stop = input_devices_seq_stop,
  614. .show = input_devices_seq_show,
  615. };
  616. static int input_proc_devices_open(struct inode *inode, struct file *file)
  617. {
  618. return seq_open(file, &input_devices_seq_ops);
  619. }
  620. static const struct file_operations input_devices_fileops = {
  621. .owner = THIS_MODULE,
  622. .open = input_proc_devices_open,
  623. .poll = input_proc_devices_poll,
  624. .read = seq_read,
  625. .llseek = seq_lseek,
  626. .release = seq_release,
  627. };
  628. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  629. {
  630. if (mutex_lock_interruptible(&input_mutex))
  631. return NULL;
  632. seq->private = (void *)(unsigned long)*pos;
  633. return seq_list_start(&input_handler_list, *pos);
  634. }
  635. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  636. {
  637. seq->private = (void *)(unsigned long)(*pos + 1);
  638. return seq_list_next(v, &input_handler_list, pos);
  639. }
  640. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  641. {
  642. mutex_unlock(&input_mutex);
  643. }
  644. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  645. {
  646. struct input_handler *handler = container_of(v, struct input_handler, node);
  647. seq_printf(seq, "N: Number=%ld Name=%s",
  648. (unsigned long)seq->private, handler->name);
  649. if (handler->fops)
  650. seq_printf(seq, " Minor=%d", handler->minor);
  651. seq_putc(seq, '\n');
  652. return 0;
  653. }
  654. static struct seq_operations input_handlers_seq_ops = {
  655. .start = input_handlers_seq_start,
  656. .next = input_handlers_seq_next,
  657. .stop = input_handlers_seq_stop,
  658. .show = input_handlers_seq_show,
  659. };
  660. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  661. {
  662. return seq_open(file, &input_handlers_seq_ops);
  663. }
  664. static const struct file_operations input_handlers_fileops = {
  665. .owner = THIS_MODULE,
  666. .open = input_proc_handlers_open,
  667. .read = seq_read,
  668. .llseek = seq_lseek,
  669. .release = seq_release,
  670. };
  671. static int __init input_proc_init(void)
  672. {
  673. struct proc_dir_entry *entry;
  674. proc_bus_input_dir = proc_mkdir("input", proc_bus);
  675. if (!proc_bus_input_dir)
  676. return -ENOMEM;
  677. proc_bus_input_dir->owner = THIS_MODULE;
  678. entry = create_proc_entry("devices", 0, proc_bus_input_dir);
  679. if (!entry)
  680. goto fail1;
  681. entry->owner = THIS_MODULE;
  682. entry->proc_fops = &input_devices_fileops;
  683. entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
  684. if (!entry)
  685. goto fail2;
  686. entry->owner = THIS_MODULE;
  687. entry->proc_fops = &input_handlers_fileops;
  688. return 0;
  689. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  690. fail1: remove_proc_entry("input", proc_bus);
  691. return -ENOMEM;
  692. }
  693. static void input_proc_exit(void)
  694. {
  695. remove_proc_entry("devices", proc_bus_input_dir);
  696. remove_proc_entry("handlers", proc_bus_input_dir);
  697. remove_proc_entry("input", proc_bus);
  698. }
  699. #else /* !CONFIG_PROC_FS */
  700. static inline void input_wakeup_procfs_readers(void) { }
  701. static inline int input_proc_init(void) { return 0; }
  702. static inline void input_proc_exit(void) { }
  703. #endif
  704. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  705. static ssize_t input_dev_show_##name(struct device *dev, \
  706. struct device_attribute *attr, \
  707. char *buf) \
  708. { \
  709. struct input_dev *input_dev = to_input_dev(dev); \
  710. \
  711. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  712. input_dev->name ? input_dev->name : ""); \
  713. } \
  714. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  715. INPUT_DEV_STRING_ATTR_SHOW(name);
  716. INPUT_DEV_STRING_ATTR_SHOW(phys);
  717. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  718. static int input_print_modalias_bits(char *buf, int size,
  719. char name, unsigned long *bm,
  720. unsigned int min_bit, unsigned int max_bit)
  721. {
  722. int len = 0, i;
  723. len += snprintf(buf, max(size, 0), "%c", name);
  724. for (i = min_bit; i < max_bit; i++)
  725. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  726. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  727. return len;
  728. }
  729. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  730. int add_cr)
  731. {
  732. int len;
  733. len = snprintf(buf, max(size, 0),
  734. "input:b%04Xv%04Xp%04Xe%04X-",
  735. id->id.bustype, id->id.vendor,
  736. id->id.product, id->id.version);
  737. len += input_print_modalias_bits(buf + len, size - len,
  738. 'e', id->evbit, 0, EV_MAX);
  739. len += input_print_modalias_bits(buf + len, size - len,
  740. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  741. len += input_print_modalias_bits(buf + len, size - len,
  742. 'r', id->relbit, 0, REL_MAX);
  743. len += input_print_modalias_bits(buf + len, size - len,
  744. 'a', id->absbit, 0, ABS_MAX);
  745. len += input_print_modalias_bits(buf + len, size - len,
  746. 'm', id->mscbit, 0, MSC_MAX);
  747. len += input_print_modalias_bits(buf + len, size - len,
  748. 'l', id->ledbit, 0, LED_MAX);
  749. len += input_print_modalias_bits(buf + len, size - len,
  750. 's', id->sndbit, 0, SND_MAX);
  751. len += input_print_modalias_bits(buf + len, size - len,
  752. 'f', id->ffbit, 0, FF_MAX);
  753. len += input_print_modalias_bits(buf + len, size - len,
  754. 'w', id->swbit, 0, SW_MAX);
  755. if (add_cr)
  756. len += snprintf(buf + len, max(size - len, 0), "\n");
  757. return len;
  758. }
  759. static ssize_t input_dev_show_modalias(struct device *dev,
  760. struct device_attribute *attr,
  761. char *buf)
  762. {
  763. struct input_dev *id = to_input_dev(dev);
  764. ssize_t len;
  765. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  766. return min_t(int, len, PAGE_SIZE);
  767. }
  768. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  769. static struct attribute *input_dev_attrs[] = {
  770. &dev_attr_name.attr,
  771. &dev_attr_phys.attr,
  772. &dev_attr_uniq.attr,
  773. &dev_attr_modalias.attr,
  774. NULL
  775. };
  776. static struct attribute_group input_dev_attr_group = {
  777. .attrs = input_dev_attrs,
  778. };
  779. #define INPUT_DEV_ID_ATTR(name) \
  780. static ssize_t input_dev_show_id_##name(struct device *dev, \
  781. struct device_attribute *attr, \
  782. char *buf) \
  783. { \
  784. struct input_dev *input_dev = to_input_dev(dev); \
  785. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  786. } \
  787. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  788. INPUT_DEV_ID_ATTR(bustype);
  789. INPUT_DEV_ID_ATTR(vendor);
  790. INPUT_DEV_ID_ATTR(product);
  791. INPUT_DEV_ID_ATTR(version);
  792. static struct attribute *input_dev_id_attrs[] = {
  793. &dev_attr_bustype.attr,
  794. &dev_attr_vendor.attr,
  795. &dev_attr_product.attr,
  796. &dev_attr_version.attr,
  797. NULL
  798. };
  799. static struct attribute_group input_dev_id_attr_group = {
  800. .name = "id",
  801. .attrs = input_dev_id_attrs,
  802. };
  803. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  804. int max, int add_cr)
  805. {
  806. int i;
  807. int len = 0;
  808. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  809. if (bitmap[i])
  810. break;
  811. for (; i >= 0; i--)
  812. len += snprintf(buf + len, max(buf_size - len, 0),
  813. "%lx%s", bitmap[i], i > 0 ? " " : "");
  814. if (add_cr)
  815. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  816. return len;
  817. }
  818. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  819. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  820. struct device_attribute *attr, \
  821. char *buf) \
  822. { \
  823. struct input_dev *input_dev = to_input_dev(dev); \
  824. int len = input_print_bitmap(buf, PAGE_SIZE, \
  825. input_dev->bm##bit, ev##_MAX, 1); \
  826. return min_t(int, len, PAGE_SIZE); \
  827. } \
  828. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  829. INPUT_DEV_CAP_ATTR(EV, ev);
  830. INPUT_DEV_CAP_ATTR(KEY, key);
  831. INPUT_DEV_CAP_ATTR(REL, rel);
  832. INPUT_DEV_CAP_ATTR(ABS, abs);
  833. INPUT_DEV_CAP_ATTR(MSC, msc);
  834. INPUT_DEV_CAP_ATTR(LED, led);
  835. INPUT_DEV_CAP_ATTR(SND, snd);
  836. INPUT_DEV_CAP_ATTR(FF, ff);
  837. INPUT_DEV_CAP_ATTR(SW, sw);
  838. static struct attribute *input_dev_caps_attrs[] = {
  839. &dev_attr_ev.attr,
  840. &dev_attr_key.attr,
  841. &dev_attr_rel.attr,
  842. &dev_attr_abs.attr,
  843. &dev_attr_msc.attr,
  844. &dev_attr_led.attr,
  845. &dev_attr_snd.attr,
  846. &dev_attr_ff.attr,
  847. &dev_attr_sw.attr,
  848. NULL
  849. };
  850. static struct attribute_group input_dev_caps_attr_group = {
  851. .name = "capabilities",
  852. .attrs = input_dev_caps_attrs,
  853. };
  854. static struct attribute_group *input_dev_attr_groups[] = {
  855. &input_dev_attr_group,
  856. &input_dev_id_attr_group,
  857. &input_dev_caps_attr_group,
  858. NULL
  859. };
  860. static void input_dev_release(struct device *device)
  861. {
  862. struct input_dev *dev = to_input_dev(device);
  863. input_ff_destroy(dev);
  864. kfree(dev);
  865. module_put(THIS_MODULE);
  866. }
  867. /*
  868. * Input uevent interface - loading event handlers based on
  869. * device bitfields.
  870. */
  871. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  872. const char *name, unsigned long *bitmap, int max)
  873. {
  874. int len;
  875. if (add_uevent_var(env, "%s=", name))
  876. return -ENOMEM;
  877. len = input_print_bitmap(&env->buf[env->buflen - 1],
  878. sizeof(env->buf) - env->buflen,
  879. bitmap, max, 0);
  880. if (len >= (sizeof(env->buf) - env->buflen))
  881. return -ENOMEM;
  882. env->buflen += len;
  883. return 0;
  884. }
  885. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  886. struct input_dev *dev)
  887. {
  888. int len;
  889. if (add_uevent_var(env, "MODALIAS="))
  890. return -ENOMEM;
  891. len = input_print_modalias(&env->buf[env->buflen - 1],
  892. sizeof(env->buf) - env->buflen,
  893. dev, 0);
  894. if (len >= (sizeof(env->buf) - env->buflen))
  895. return -ENOMEM;
  896. env->buflen += len;
  897. return 0;
  898. }
  899. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  900. do { \
  901. int err = add_uevent_var(env, fmt, val); \
  902. if (err) \
  903. return err; \
  904. } while (0)
  905. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  906. do { \
  907. int err = input_add_uevent_bm_var(env, name, bm, max); \
  908. if (err) \
  909. return err; \
  910. } while (0)
  911. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  912. do { \
  913. int err = input_add_uevent_modalias_var(env, dev); \
  914. if (err) \
  915. return err; \
  916. } while (0)
  917. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  918. {
  919. struct input_dev *dev = to_input_dev(device);
  920. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  921. dev->id.bustype, dev->id.vendor,
  922. dev->id.product, dev->id.version);
  923. if (dev->name)
  924. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  925. if (dev->phys)
  926. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  927. if (dev->uniq)
  928. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  929. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  930. if (test_bit(EV_KEY, dev->evbit))
  931. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  932. if (test_bit(EV_REL, dev->evbit))
  933. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  934. if (test_bit(EV_ABS, dev->evbit))
  935. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  936. if (test_bit(EV_MSC, dev->evbit))
  937. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  938. if (test_bit(EV_LED, dev->evbit))
  939. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  940. if (test_bit(EV_SND, dev->evbit))
  941. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  942. if (test_bit(EV_FF, dev->evbit))
  943. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  944. if (test_bit(EV_SW, dev->evbit))
  945. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  946. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  947. return 0;
  948. }
  949. static struct device_type input_dev_type = {
  950. .groups = input_dev_attr_groups,
  951. .release = input_dev_release,
  952. .uevent = input_dev_uevent,
  953. };
  954. struct class input_class = {
  955. .name = "input",
  956. };
  957. EXPORT_SYMBOL_GPL(input_class);
  958. /**
  959. * input_allocate_device - allocate memory for new input device
  960. *
  961. * Returns prepared struct input_dev or NULL.
  962. *
  963. * NOTE: Use input_free_device() to free devices that have not been
  964. * registered; input_unregister_device() should be used for already
  965. * registered devices.
  966. */
  967. struct input_dev *input_allocate_device(void)
  968. {
  969. struct input_dev *dev;
  970. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  971. if (dev) {
  972. dev->dev.type = &input_dev_type;
  973. dev->dev.class = &input_class;
  974. device_initialize(&dev->dev);
  975. mutex_init(&dev->mutex);
  976. spin_lock_init(&dev->event_lock);
  977. INIT_LIST_HEAD(&dev->h_list);
  978. INIT_LIST_HEAD(&dev->node);
  979. __module_get(THIS_MODULE);
  980. }
  981. return dev;
  982. }
  983. EXPORT_SYMBOL(input_allocate_device);
  984. /**
  985. * input_free_device - free memory occupied by input_dev structure
  986. * @dev: input device to free
  987. *
  988. * This function should only be used if input_register_device()
  989. * was not called yet or if it failed. Once device was registered
  990. * use input_unregister_device() and memory will be freed once last
  991. * reference to the device is dropped.
  992. *
  993. * Device should be allocated by input_allocate_device().
  994. *
  995. * NOTE: If there are references to the input device then memory
  996. * will not be freed until last reference is dropped.
  997. */
  998. void input_free_device(struct input_dev *dev)
  999. {
  1000. if (dev)
  1001. input_put_device(dev);
  1002. }
  1003. EXPORT_SYMBOL(input_free_device);
  1004. /**
  1005. * input_set_capability - mark device as capable of a certain event
  1006. * @dev: device that is capable of emitting or accepting event
  1007. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1008. * @code: event code
  1009. *
  1010. * In addition to setting up corresponding bit in appropriate capability
  1011. * bitmap the function also adjusts dev->evbit.
  1012. */
  1013. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1014. {
  1015. switch (type) {
  1016. case EV_KEY:
  1017. __set_bit(code, dev->keybit);
  1018. break;
  1019. case EV_REL:
  1020. __set_bit(code, dev->relbit);
  1021. break;
  1022. case EV_ABS:
  1023. __set_bit(code, dev->absbit);
  1024. break;
  1025. case EV_MSC:
  1026. __set_bit(code, dev->mscbit);
  1027. break;
  1028. case EV_SW:
  1029. __set_bit(code, dev->swbit);
  1030. break;
  1031. case EV_LED:
  1032. __set_bit(code, dev->ledbit);
  1033. break;
  1034. case EV_SND:
  1035. __set_bit(code, dev->sndbit);
  1036. break;
  1037. case EV_FF:
  1038. __set_bit(code, dev->ffbit);
  1039. break;
  1040. case EV_PWR:
  1041. /* do nothing */
  1042. break;
  1043. default:
  1044. printk(KERN_ERR
  1045. "input_set_capability: unknown type %u (code %u)\n",
  1046. type, code);
  1047. dump_stack();
  1048. return;
  1049. }
  1050. __set_bit(type, dev->evbit);
  1051. }
  1052. EXPORT_SYMBOL(input_set_capability);
  1053. /**
  1054. * input_register_device - register device with input core
  1055. * @dev: device to be registered
  1056. *
  1057. * This function registers device with input core. The device must be
  1058. * allocated with input_allocate_device() and all it's capabilities
  1059. * set up before registering.
  1060. * If function fails the device must be freed with input_free_device().
  1061. * Once device has been successfully registered it can be unregistered
  1062. * with input_unregister_device(); input_free_device() should not be
  1063. * called in this case.
  1064. */
  1065. int input_register_device(struct input_dev *dev)
  1066. {
  1067. static atomic_t input_no = ATOMIC_INIT(0);
  1068. struct input_handler *handler;
  1069. const char *path;
  1070. int error;
  1071. __set_bit(EV_SYN, dev->evbit);
  1072. /*
  1073. * If delay and period are pre-set by the driver, then autorepeating
  1074. * is handled by the driver itself and we don't do it in input.c.
  1075. */
  1076. init_timer(&dev->timer);
  1077. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1078. dev->timer.data = (long) dev;
  1079. dev->timer.function = input_repeat_key;
  1080. dev->rep[REP_DELAY] = 250;
  1081. dev->rep[REP_PERIOD] = 33;
  1082. }
  1083. if (!dev->getkeycode)
  1084. dev->getkeycode = input_default_getkeycode;
  1085. if (!dev->setkeycode)
  1086. dev->setkeycode = input_default_setkeycode;
  1087. snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
  1088. "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
  1089. if (dev->cdev.dev)
  1090. dev->dev.parent = dev->cdev.dev;
  1091. error = device_add(&dev->dev);
  1092. if (error)
  1093. return error;
  1094. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1095. printk(KERN_INFO "input: %s as %s\n",
  1096. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1097. kfree(path);
  1098. error = mutex_lock_interruptible(&input_mutex);
  1099. if (error) {
  1100. device_del(&dev->dev);
  1101. return error;
  1102. }
  1103. list_add_tail(&dev->node, &input_dev_list);
  1104. list_for_each_entry(handler, &input_handler_list, node)
  1105. input_attach_handler(dev, handler);
  1106. input_wakeup_procfs_readers();
  1107. mutex_unlock(&input_mutex);
  1108. return 0;
  1109. }
  1110. EXPORT_SYMBOL(input_register_device);
  1111. /**
  1112. * input_unregister_device - unregister previously registered device
  1113. * @dev: device to be unregistered
  1114. *
  1115. * This function unregisters an input device. Once device is unregistered
  1116. * the caller should not try to access it as it may get freed at any moment.
  1117. */
  1118. void input_unregister_device(struct input_dev *dev)
  1119. {
  1120. struct input_handle *handle, *next;
  1121. input_disconnect_device(dev);
  1122. mutex_lock(&input_mutex);
  1123. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1124. handle->handler->disconnect(handle);
  1125. WARN_ON(!list_empty(&dev->h_list));
  1126. del_timer_sync(&dev->timer);
  1127. list_del_init(&dev->node);
  1128. input_wakeup_procfs_readers();
  1129. mutex_unlock(&input_mutex);
  1130. device_unregister(&dev->dev);
  1131. }
  1132. EXPORT_SYMBOL(input_unregister_device);
  1133. /**
  1134. * input_register_handler - register a new input handler
  1135. * @handler: handler to be registered
  1136. *
  1137. * This function registers a new input handler (interface) for input
  1138. * devices in the system and attaches it to all input devices that
  1139. * are compatible with the handler.
  1140. */
  1141. int input_register_handler(struct input_handler *handler)
  1142. {
  1143. struct input_dev *dev;
  1144. int retval;
  1145. retval = mutex_lock_interruptible(&input_mutex);
  1146. if (retval)
  1147. return retval;
  1148. INIT_LIST_HEAD(&handler->h_list);
  1149. if (handler->fops != NULL) {
  1150. if (input_table[handler->minor >> 5]) {
  1151. retval = -EBUSY;
  1152. goto out;
  1153. }
  1154. input_table[handler->minor >> 5] = handler;
  1155. }
  1156. list_add_tail(&handler->node, &input_handler_list);
  1157. list_for_each_entry(dev, &input_dev_list, node)
  1158. input_attach_handler(dev, handler);
  1159. input_wakeup_procfs_readers();
  1160. out:
  1161. mutex_unlock(&input_mutex);
  1162. return retval;
  1163. }
  1164. EXPORT_SYMBOL(input_register_handler);
  1165. /**
  1166. * input_unregister_handler - unregisters an input handler
  1167. * @handler: handler to be unregistered
  1168. *
  1169. * This function disconnects a handler from its input devices and
  1170. * removes it from lists of known handlers.
  1171. */
  1172. void input_unregister_handler(struct input_handler *handler)
  1173. {
  1174. struct input_handle *handle, *next;
  1175. mutex_lock(&input_mutex);
  1176. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1177. handler->disconnect(handle);
  1178. WARN_ON(!list_empty(&handler->h_list));
  1179. list_del_init(&handler->node);
  1180. if (handler->fops != NULL)
  1181. input_table[handler->minor >> 5] = NULL;
  1182. input_wakeup_procfs_readers();
  1183. mutex_unlock(&input_mutex);
  1184. }
  1185. EXPORT_SYMBOL(input_unregister_handler);
  1186. /**
  1187. * input_register_handle - register a new input handle
  1188. * @handle: handle to register
  1189. *
  1190. * This function puts a new input handle onto device's
  1191. * and handler's lists so that events can flow through
  1192. * it once it is opened using input_open_device().
  1193. *
  1194. * This function is supposed to be called from handler's
  1195. * connect() method.
  1196. */
  1197. int input_register_handle(struct input_handle *handle)
  1198. {
  1199. struct input_handler *handler = handle->handler;
  1200. struct input_dev *dev = handle->dev;
  1201. int error;
  1202. /*
  1203. * We take dev->mutex here to prevent race with
  1204. * input_release_device().
  1205. */
  1206. error = mutex_lock_interruptible(&dev->mutex);
  1207. if (error)
  1208. return error;
  1209. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1210. mutex_unlock(&dev->mutex);
  1211. synchronize_rcu();
  1212. /*
  1213. * Since we are supposed to be called from ->connect()
  1214. * which is mutually exclusive with ->disconnect()
  1215. * we can't be racing with input_unregister_handle()
  1216. * and so separate lock is not needed here.
  1217. */
  1218. list_add_tail(&handle->h_node, &handler->h_list);
  1219. if (handler->start)
  1220. handler->start(handle);
  1221. return 0;
  1222. }
  1223. EXPORT_SYMBOL(input_register_handle);
  1224. /**
  1225. * input_unregister_handle - unregister an input handle
  1226. * @handle: handle to unregister
  1227. *
  1228. * This function removes input handle from device's
  1229. * and handler's lists.
  1230. *
  1231. * This function is supposed to be called from handler's
  1232. * disconnect() method.
  1233. */
  1234. void input_unregister_handle(struct input_handle *handle)
  1235. {
  1236. struct input_dev *dev = handle->dev;
  1237. list_del_init(&handle->h_node);
  1238. /*
  1239. * Take dev->mutex to prevent race with input_release_device().
  1240. */
  1241. mutex_lock(&dev->mutex);
  1242. list_del_rcu(&handle->d_node);
  1243. mutex_unlock(&dev->mutex);
  1244. synchronize_rcu();
  1245. }
  1246. EXPORT_SYMBOL(input_unregister_handle);
  1247. static int input_open_file(struct inode *inode, struct file *file)
  1248. {
  1249. struct input_handler *handler = input_table[iminor(inode) >> 5];
  1250. const struct file_operations *old_fops, *new_fops = NULL;
  1251. int err;
  1252. /* No load-on-demand here? */
  1253. if (!handler || !(new_fops = fops_get(handler->fops)))
  1254. return -ENODEV;
  1255. /*
  1256. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1257. * not "no device". Oh, well...
  1258. */
  1259. if (!new_fops->open) {
  1260. fops_put(new_fops);
  1261. return -ENODEV;
  1262. }
  1263. old_fops = file->f_op;
  1264. file->f_op = new_fops;
  1265. err = new_fops->open(inode, file);
  1266. if (err) {
  1267. fops_put(file->f_op);
  1268. file->f_op = fops_get(old_fops);
  1269. }
  1270. fops_put(old_fops);
  1271. return err;
  1272. }
  1273. static const struct file_operations input_fops = {
  1274. .owner = THIS_MODULE,
  1275. .open = input_open_file,
  1276. };
  1277. static int __init input_init(void)
  1278. {
  1279. int err;
  1280. err = class_register(&input_class);
  1281. if (err) {
  1282. printk(KERN_ERR "input: unable to register input_dev class\n");
  1283. return err;
  1284. }
  1285. err = input_proc_init();
  1286. if (err)
  1287. goto fail1;
  1288. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1289. if (err) {
  1290. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1291. goto fail2;
  1292. }
  1293. return 0;
  1294. fail2: input_proc_exit();
  1295. fail1: class_unregister(&input_class);
  1296. return err;
  1297. }
  1298. static void __exit input_exit(void)
  1299. {
  1300. input_proc_exit();
  1301. unregister_chrdev(INPUT_MAJOR, "input");
  1302. class_unregister(&input_class);
  1303. }
  1304. subsys_initcall(input_init);
  1305. module_exit(input_exit);