init_64.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/dma.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/e820.h>
  39. #include <asm/apic.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/proto.h>
  43. #include <asm/smp.h>
  44. #include <asm/sections.h>
  45. #include <asm/kdebug.h>
  46. #include <asm/numa.h>
  47. #include <asm/cacheflush.h>
  48. /*
  49. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  50. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  51. * apertures, ACPI and other tables without having to play with fixmaps.
  52. */
  53. unsigned long max_pfn_mapped;
  54. static unsigned long dma_reserve __initdata;
  55. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  56. int direct_gbpages __meminitdata
  57. #ifdef CONFIG_DIRECT_GBPAGES
  58. = 1
  59. #endif
  60. ;
  61. static int __init parse_direct_gbpages_off(char *arg)
  62. {
  63. direct_gbpages = 0;
  64. return 0;
  65. }
  66. early_param("nogbpages", parse_direct_gbpages_off);
  67. static int __init parse_direct_gbpages_on(char *arg)
  68. {
  69. direct_gbpages = 1;
  70. return 0;
  71. }
  72. early_param("gbpages", parse_direct_gbpages_on);
  73. /*
  74. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  75. * physical space so we can cache the place of the first one and move
  76. * around without checking the pgd every time.
  77. */
  78. void show_mem(void)
  79. {
  80. long i, total = 0, reserved = 0;
  81. long shared = 0, cached = 0;
  82. struct page *page;
  83. pg_data_t *pgdat;
  84. printk(KERN_INFO "Mem-info:\n");
  85. show_free_areas();
  86. for_each_online_pgdat(pgdat) {
  87. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  88. /*
  89. * This loop can take a while with 256 GB and
  90. * 4k pages so defer the NMI watchdog:
  91. */
  92. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  93. touch_nmi_watchdog();
  94. if (!pfn_valid(pgdat->node_start_pfn + i))
  95. continue;
  96. page = pfn_to_page(pgdat->node_start_pfn + i);
  97. total++;
  98. if (PageReserved(page))
  99. reserved++;
  100. else if (PageSwapCache(page))
  101. cached++;
  102. else if (page_count(page))
  103. shared += page_count(page) - 1;
  104. }
  105. }
  106. printk(KERN_INFO "%lu pages of RAM\n", total);
  107. printk(KERN_INFO "%lu reserved pages\n", reserved);
  108. printk(KERN_INFO "%lu pages shared\n", shared);
  109. printk(KERN_INFO "%lu pages swap cached\n", cached);
  110. }
  111. int after_bootmem;
  112. static __init void *spp_getpage(void)
  113. {
  114. void *ptr;
  115. if (after_bootmem)
  116. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  117. else
  118. ptr = alloc_bootmem_pages(PAGE_SIZE);
  119. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  120. panic("set_pte_phys: cannot allocate page data %s\n",
  121. after_bootmem ? "after bootmem" : "");
  122. }
  123. pr_debug("spp_getpage %p\n", ptr);
  124. return ptr;
  125. }
  126. void
  127. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  128. {
  129. pud_t *pud;
  130. pmd_t *pmd;
  131. pte_t *pte;
  132. pud = pud_page + pud_index(vaddr);
  133. if (pud_none(*pud)) {
  134. pmd = (pmd_t *) spp_getpage();
  135. pud_populate(&init_mm, pud, pmd);
  136. if (pmd != pmd_offset(pud, 0)) {
  137. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  138. pmd, pmd_offset(pud, 0));
  139. return;
  140. }
  141. }
  142. pmd = pmd_offset(pud, vaddr);
  143. if (pmd_none(*pmd)) {
  144. pte = (pte_t *) spp_getpage();
  145. pmd_populate_kernel(&init_mm, pmd, pte);
  146. if (pte != pte_offset_kernel(pmd, 0)) {
  147. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  148. return;
  149. }
  150. }
  151. pte = pte_offset_kernel(pmd, vaddr);
  152. if (!pte_none(*pte) && pte_val(new_pte) &&
  153. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  154. pte_ERROR(*pte);
  155. set_pte(pte, new_pte);
  156. /*
  157. * It's enough to flush this one mapping.
  158. * (PGE mappings get flushed as well)
  159. */
  160. __flush_tlb_one(vaddr);
  161. }
  162. void
  163. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  164. {
  165. pgd_t *pgd;
  166. pud_t *pud_page;
  167. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  168. pgd = pgd_offset_k(vaddr);
  169. if (pgd_none(*pgd)) {
  170. printk(KERN_ERR
  171. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  172. return;
  173. }
  174. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  175. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  176. }
  177. /*
  178. * The head.S code sets up the kernel high mapping:
  179. *
  180. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  181. *
  182. * phys_addr holds the negative offset to the kernel, which is added
  183. * to the compile time generated pmds. This results in invalid pmds up
  184. * to the point where we hit the physaddr 0 mapping.
  185. *
  186. * We limit the mappings to the region from _text to _end. _end is
  187. * rounded up to the 2MB boundary. This catches the invalid pmds as
  188. * well, as they are located before _text:
  189. */
  190. void __init cleanup_highmap(void)
  191. {
  192. unsigned long vaddr = __START_KERNEL_map;
  193. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  194. pmd_t *pmd = level2_kernel_pgt;
  195. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  196. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  197. if (pmd_none(*pmd))
  198. continue;
  199. if (vaddr < (unsigned long) _text || vaddr > end)
  200. set_pmd(pmd, __pmd(0));
  201. }
  202. }
  203. static unsigned long __initdata table_start;
  204. static unsigned long __meminitdata table_end;
  205. static unsigned long __meminitdata table_top;
  206. static __meminit void *alloc_low_page(unsigned long *phys)
  207. {
  208. unsigned long pfn = table_end++;
  209. void *adr;
  210. if (after_bootmem) {
  211. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  212. *phys = __pa(adr);
  213. return adr;
  214. }
  215. if (pfn >= table_top)
  216. panic("alloc_low_page: ran out of memory");
  217. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  218. memset(adr, 0, PAGE_SIZE);
  219. *phys = pfn * PAGE_SIZE;
  220. return adr;
  221. }
  222. static __meminit void unmap_low_page(void *adr)
  223. {
  224. if (after_bootmem)
  225. return;
  226. early_iounmap(adr, PAGE_SIZE);
  227. }
  228. static void __meminit
  229. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
  230. {
  231. unsigned pages = 0;
  232. int i;
  233. pte_t *pte = pte_page + pte_index(addr);
  234. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  235. if (addr >= end) {
  236. if (!after_bootmem) {
  237. for(; i < PTRS_PER_PTE; i++, pte++)
  238. set_pte(pte, __pte(0));
  239. }
  240. break;
  241. }
  242. if (pte_val(*pte))
  243. continue;
  244. if (0)
  245. printk(" pte=%p addr=%lx pte=%016lx\n",
  246. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  247. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
  248. pages++;
  249. }
  250. update_page_count(PG_LEVEL_4K, pages);
  251. }
  252. static void __meminit
  253. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
  254. {
  255. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  256. phys_pte_init(pte, address, end);
  257. }
  258. static unsigned long __meminit
  259. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
  260. {
  261. unsigned long pages = 0;
  262. int i = pmd_index(address);
  263. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  264. unsigned long pte_phys;
  265. pmd_t *pmd = pmd_page + pmd_index(address);
  266. pte_t *pte;
  267. if (address >= end) {
  268. if (!after_bootmem) {
  269. for (; i < PTRS_PER_PMD; i++, pmd++)
  270. set_pmd(pmd, __pmd(0));
  271. }
  272. break;
  273. }
  274. if (pmd_val(*pmd)) {
  275. if (!pmd_large(*pmd))
  276. phys_pte_update(pmd, address, end);
  277. continue;
  278. }
  279. if (cpu_has_pse) {
  280. pages++;
  281. set_pte((pte_t *)pmd,
  282. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  283. continue;
  284. }
  285. pte = alloc_low_page(&pte_phys);
  286. phys_pte_init(pte, address, end);
  287. unmap_low_page(pte);
  288. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  289. }
  290. update_page_count(PG_LEVEL_2M, pages);
  291. return address;
  292. }
  293. static unsigned long __meminit
  294. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
  295. {
  296. pmd_t *pmd = pmd_offset(pud, 0);
  297. unsigned long last_map_addr;
  298. spin_lock(&init_mm.page_table_lock);
  299. last_map_addr = phys_pmd_init(pmd, address, end);
  300. spin_unlock(&init_mm.page_table_lock);
  301. __flush_tlb_all();
  302. return last_map_addr;
  303. }
  304. static unsigned long __meminit
  305. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
  306. {
  307. unsigned long pages = 0;
  308. unsigned long last_map_addr = end;
  309. int i = pud_index(addr);
  310. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  311. unsigned long pmd_phys;
  312. pud_t *pud = pud_page + pud_index(addr);
  313. pmd_t *pmd;
  314. if (addr >= end)
  315. break;
  316. if (!after_bootmem &&
  317. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  318. set_pud(pud, __pud(0));
  319. continue;
  320. }
  321. if (pud_val(*pud)) {
  322. if (!pud_large(*pud))
  323. last_map_addr = phys_pmd_update(pud, addr, end);
  324. continue;
  325. }
  326. if (direct_gbpages) {
  327. pages++;
  328. set_pte((pte_t *)pud,
  329. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  330. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  331. continue;
  332. }
  333. pmd = alloc_low_page(&pmd_phys);
  334. spin_lock(&init_mm.page_table_lock);
  335. last_map_addr = phys_pmd_init(pmd, addr, end);
  336. unmap_low_page(pmd);
  337. pud_populate(&init_mm, pud, __va(pmd_phys));
  338. spin_unlock(&init_mm.page_table_lock);
  339. }
  340. __flush_tlb_all();
  341. update_page_count(PG_LEVEL_1G, pages);
  342. return last_map_addr;
  343. }
  344. static unsigned long __meminit
  345. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end)
  346. {
  347. pud_t *pud;
  348. pud = (pud_t *)pgd_page_vaddr(*pgd);
  349. return phys_pud_init(pud, addr, end);
  350. }
  351. static void __init find_early_table_space(unsigned long end)
  352. {
  353. unsigned long puds, tables, start;
  354. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  355. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  356. if (!direct_gbpages) {
  357. unsigned long pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  358. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  359. }
  360. if (!cpu_has_pse) {
  361. unsigned long ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  362. tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
  363. }
  364. /*
  365. * RED-PEN putting page tables only on node 0 could
  366. * cause a hotspot and fill up ZONE_DMA. The page tables
  367. * need roughly 0.5KB per GB.
  368. */
  369. start = 0x8000;
  370. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  371. if (table_start == -1UL)
  372. panic("Cannot find space for the kernel page tables");
  373. table_start >>= PAGE_SHIFT;
  374. table_end = table_start;
  375. table_top = table_start + (tables >> PAGE_SHIFT);
  376. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  377. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  378. }
  379. static void __init init_gbpages(void)
  380. {
  381. if (direct_gbpages && cpu_has_gbpages)
  382. printk(KERN_INFO "Using GB pages for direct mapping\n");
  383. else
  384. direct_gbpages = 0;
  385. }
  386. #ifdef CONFIG_MEMTEST
  387. static void __init memtest(unsigned long start_phys, unsigned long size,
  388. unsigned pattern)
  389. {
  390. unsigned long i;
  391. unsigned long *start;
  392. unsigned long start_bad;
  393. unsigned long last_bad;
  394. unsigned long val;
  395. unsigned long start_phys_aligned;
  396. unsigned long count;
  397. unsigned long incr;
  398. switch (pattern) {
  399. case 0:
  400. val = 0UL;
  401. break;
  402. case 1:
  403. val = -1UL;
  404. break;
  405. case 2:
  406. val = 0x5555555555555555UL;
  407. break;
  408. case 3:
  409. val = 0xaaaaaaaaaaaaaaaaUL;
  410. break;
  411. default:
  412. return;
  413. }
  414. incr = sizeof(unsigned long);
  415. start_phys_aligned = ALIGN(start_phys, incr);
  416. count = (size - (start_phys_aligned - start_phys))/incr;
  417. start = __va(start_phys_aligned);
  418. start_bad = 0;
  419. last_bad = 0;
  420. for (i = 0; i < count; i++)
  421. start[i] = val;
  422. for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
  423. if (*start != val) {
  424. if (start_phys_aligned == last_bad + incr) {
  425. last_bad += incr;
  426. } else {
  427. if (start_bad) {
  428. printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
  429. val, start_bad, last_bad + incr);
  430. reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
  431. }
  432. start_bad = last_bad = start_phys_aligned;
  433. }
  434. }
  435. }
  436. if (start_bad) {
  437. printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
  438. val, start_bad, last_bad + incr);
  439. reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
  440. }
  441. }
  442. /* default is disabled */
  443. static int memtest_pattern __initdata;
  444. static int __init parse_memtest(char *arg)
  445. {
  446. if (arg)
  447. memtest_pattern = simple_strtoul(arg, NULL, 0);
  448. return 0;
  449. }
  450. early_param("memtest", parse_memtest);
  451. static void __init early_memtest(unsigned long start, unsigned long end)
  452. {
  453. u64 t_start, t_size;
  454. unsigned pattern;
  455. if (!memtest_pattern)
  456. return;
  457. printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
  458. for (pattern = 0; pattern < memtest_pattern; pattern++) {
  459. t_start = start;
  460. t_size = 0;
  461. while (t_start < end) {
  462. t_start = find_e820_area_size(t_start, &t_size, 1);
  463. /* done ? */
  464. if (t_start >= end)
  465. break;
  466. if (t_start + t_size > end)
  467. t_size = end - t_start;
  468. printk(KERN_CONT "\n %016llx - %016llx pattern %d",
  469. (unsigned long long)t_start,
  470. (unsigned long long)t_start + t_size, pattern);
  471. memtest(t_start, t_size, pattern);
  472. t_start += t_size;
  473. }
  474. }
  475. printk(KERN_CONT "\n");
  476. }
  477. #else
  478. static void __init early_memtest(unsigned long start, unsigned long end)
  479. {
  480. }
  481. #endif
  482. /*
  483. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  484. * This runs before bootmem is initialized and gets pages directly from
  485. * the physical memory. To access them they are temporarily mapped.
  486. */
  487. unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
  488. {
  489. unsigned long next, last_map_addr = end;
  490. unsigned long start_phys = start, end_phys = end;
  491. printk(KERN_INFO "init_memory_mapping\n");
  492. /*
  493. * Find space for the kernel direct mapping tables.
  494. *
  495. * Later we should allocate these tables in the local node of the
  496. * memory mapped. Unfortunately this is done currently before the
  497. * nodes are discovered.
  498. */
  499. if (!after_bootmem) {
  500. init_gbpages();
  501. find_early_table_space(end);
  502. }
  503. start = (unsigned long)__va(start);
  504. end = (unsigned long)__va(end);
  505. for (; start < end; start = next) {
  506. pgd_t *pgd = pgd_offset_k(start);
  507. unsigned long pud_phys;
  508. pud_t *pud;
  509. next = start + PGDIR_SIZE;
  510. if (next > end)
  511. next = end;
  512. if (pgd_val(*pgd)) {
  513. last_map_addr = phys_pud_update(pgd, __pa(start), __pa(end));
  514. continue;
  515. }
  516. if (after_bootmem)
  517. pud = pud_offset(pgd, start & PGDIR_MASK);
  518. else
  519. pud = alloc_low_page(&pud_phys);
  520. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
  521. unmap_low_page(pud);
  522. if (!after_bootmem)
  523. pgd_populate(&init_mm, pgd_offset_k(start),
  524. __va(pud_phys));
  525. }
  526. if (!after_bootmem)
  527. mmu_cr4_features = read_cr4();
  528. __flush_tlb_all();
  529. if (!after_bootmem)
  530. reserve_early(table_start << PAGE_SHIFT,
  531. table_end << PAGE_SHIFT, "PGTABLE");
  532. if (!after_bootmem)
  533. early_memtest(start_phys, end_phys);
  534. return last_map_addr >> PAGE_SHIFT;
  535. }
  536. #ifndef CONFIG_NUMA
  537. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  538. {
  539. unsigned long bootmap_size, bootmap;
  540. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  541. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  542. PAGE_SIZE);
  543. if (bootmap == -1L)
  544. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  545. /* don't touch min_low_pfn */
  546. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  547. 0, end_pfn);
  548. e820_register_active_regions(0, start_pfn, end_pfn);
  549. free_bootmem_with_active_regions(0, end_pfn);
  550. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  551. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  552. }
  553. void __init paging_init(void)
  554. {
  555. unsigned long max_zone_pfns[MAX_NR_ZONES];
  556. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  557. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  558. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  559. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  560. memory_present(0, 0, max_pfn);
  561. sparse_init();
  562. free_area_init_nodes(max_zone_pfns);
  563. }
  564. #endif
  565. /*
  566. * Memory hotplug specific functions
  567. */
  568. #ifdef CONFIG_MEMORY_HOTPLUG
  569. /*
  570. * Memory is added always to NORMAL zone. This means you will never get
  571. * additional DMA/DMA32 memory.
  572. */
  573. int arch_add_memory(int nid, u64 start, u64 size)
  574. {
  575. struct pglist_data *pgdat = NODE_DATA(nid);
  576. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  577. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  578. unsigned long nr_pages = size >> PAGE_SHIFT;
  579. int ret;
  580. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  581. if (last_mapped_pfn > max_pfn_mapped)
  582. max_pfn_mapped = last_mapped_pfn;
  583. ret = __add_pages(zone, start_pfn, nr_pages);
  584. WARN_ON(1);
  585. return ret;
  586. }
  587. EXPORT_SYMBOL_GPL(arch_add_memory);
  588. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  589. int memory_add_physaddr_to_nid(u64 start)
  590. {
  591. return 0;
  592. }
  593. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  594. #endif
  595. #endif /* CONFIG_MEMORY_HOTPLUG */
  596. /*
  597. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  598. * is valid. The argument is a physical page number.
  599. *
  600. *
  601. * On x86, access has to be given to the first megabyte of ram because that area
  602. * contains bios code and data regions used by X and dosemu and similar apps.
  603. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  604. * mmio resources as well as potential bios/acpi data regions.
  605. */
  606. int devmem_is_allowed(unsigned long pagenr)
  607. {
  608. if (pagenr <= 256)
  609. return 1;
  610. if (!page_is_ram(pagenr))
  611. return 1;
  612. return 0;
  613. }
  614. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  615. kcore_modules, kcore_vsyscall;
  616. void __init mem_init(void)
  617. {
  618. long codesize, reservedpages, datasize, initsize;
  619. pci_iommu_alloc();
  620. /* clear_bss() already clear the empty_zero_page */
  621. reservedpages = 0;
  622. /* this will put all low memory onto the freelists */
  623. #ifdef CONFIG_NUMA
  624. totalram_pages = numa_free_all_bootmem();
  625. #else
  626. totalram_pages = free_all_bootmem();
  627. #endif
  628. reservedpages = max_pfn - totalram_pages -
  629. absent_pages_in_range(0, max_pfn);
  630. after_bootmem = 1;
  631. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  632. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  633. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  634. /* Register memory areas for /proc/kcore */
  635. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  636. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  637. VMALLOC_END-VMALLOC_START);
  638. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  639. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  640. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  641. VSYSCALL_END - VSYSCALL_START);
  642. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  643. "%ldk reserved, %ldk data, %ldk init)\n",
  644. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  645. max_pfn << (PAGE_SHIFT-10),
  646. codesize >> 10,
  647. reservedpages << (PAGE_SHIFT-10),
  648. datasize >> 10,
  649. initsize >> 10);
  650. cpa_init();
  651. }
  652. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  653. {
  654. unsigned long addr = begin;
  655. if (addr >= end)
  656. return;
  657. /*
  658. * If debugging page accesses then do not free this memory but
  659. * mark them not present - any buggy init-section access will
  660. * create a kernel page fault:
  661. */
  662. #ifdef CONFIG_DEBUG_PAGEALLOC
  663. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  664. begin, PAGE_ALIGN(end));
  665. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  666. #else
  667. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  668. for (; addr < end; addr += PAGE_SIZE) {
  669. ClearPageReserved(virt_to_page(addr));
  670. init_page_count(virt_to_page(addr));
  671. memset((void *)(addr & ~(PAGE_SIZE-1)),
  672. POISON_FREE_INITMEM, PAGE_SIZE);
  673. free_page(addr);
  674. totalram_pages++;
  675. }
  676. #endif
  677. }
  678. void free_initmem(void)
  679. {
  680. free_init_pages("unused kernel memory",
  681. (unsigned long)(&__init_begin),
  682. (unsigned long)(&__init_end));
  683. }
  684. #ifdef CONFIG_DEBUG_RODATA
  685. const int rodata_test_data = 0xC3;
  686. EXPORT_SYMBOL_GPL(rodata_test_data);
  687. void mark_rodata_ro(void)
  688. {
  689. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  690. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  691. (end - start) >> 10);
  692. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  693. /*
  694. * The rodata section (but not the kernel text!) should also be
  695. * not-executable.
  696. */
  697. start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  698. set_memory_nx(start, (end - start) >> PAGE_SHIFT);
  699. rodata_test();
  700. #ifdef CONFIG_CPA_DEBUG
  701. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  702. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  703. printk(KERN_INFO "Testing CPA: again\n");
  704. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  705. #endif
  706. }
  707. #endif
  708. #ifdef CONFIG_BLK_DEV_INITRD
  709. void free_initrd_mem(unsigned long start, unsigned long end)
  710. {
  711. free_init_pages("initrd memory", start, end);
  712. }
  713. #endif
  714. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  715. int flags)
  716. {
  717. #ifdef CONFIG_NUMA
  718. int nid, next_nid;
  719. int ret;
  720. #endif
  721. unsigned long pfn = phys >> PAGE_SHIFT;
  722. if (pfn >= max_pfn) {
  723. /*
  724. * This can happen with kdump kernels when accessing
  725. * firmware tables:
  726. */
  727. if (pfn < max_pfn_mapped)
  728. return -EFAULT;
  729. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  730. phys, len);
  731. return -EFAULT;
  732. }
  733. /* Should check here against the e820 map to avoid double free */
  734. #ifdef CONFIG_NUMA
  735. nid = phys_to_nid(phys);
  736. next_nid = phys_to_nid(phys + len - 1);
  737. if (nid == next_nid)
  738. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  739. else
  740. ret = reserve_bootmem(phys, len, flags);
  741. if (ret != 0)
  742. return ret;
  743. #else
  744. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  745. #endif
  746. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  747. dma_reserve += len / PAGE_SIZE;
  748. set_dma_reserve(dma_reserve);
  749. }
  750. return 0;
  751. }
  752. int kern_addr_valid(unsigned long addr)
  753. {
  754. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  755. pgd_t *pgd;
  756. pud_t *pud;
  757. pmd_t *pmd;
  758. pte_t *pte;
  759. if (above != 0 && above != -1UL)
  760. return 0;
  761. pgd = pgd_offset_k(addr);
  762. if (pgd_none(*pgd))
  763. return 0;
  764. pud = pud_offset(pgd, addr);
  765. if (pud_none(*pud))
  766. return 0;
  767. pmd = pmd_offset(pud, addr);
  768. if (pmd_none(*pmd))
  769. return 0;
  770. if (pmd_large(*pmd))
  771. return pfn_valid(pmd_pfn(*pmd));
  772. pte = pte_offset_kernel(pmd, addr);
  773. if (pte_none(*pte))
  774. return 0;
  775. return pfn_valid(pte_pfn(*pte));
  776. }
  777. /*
  778. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  779. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  780. * not need special handling anymore:
  781. */
  782. static struct vm_area_struct gate_vma = {
  783. .vm_start = VSYSCALL_START,
  784. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  785. .vm_page_prot = PAGE_READONLY_EXEC,
  786. .vm_flags = VM_READ | VM_EXEC
  787. };
  788. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  789. {
  790. #ifdef CONFIG_IA32_EMULATION
  791. if (test_tsk_thread_flag(tsk, TIF_IA32))
  792. return NULL;
  793. #endif
  794. return &gate_vma;
  795. }
  796. int in_gate_area(struct task_struct *task, unsigned long addr)
  797. {
  798. struct vm_area_struct *vma = get_gate_vma(task);
  799. if (!vma)
  800. return 0;
  801. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  802. }
  803. /*
  804. * Use this when you have no reliable task/vma, typically from interrupt
  805. * context. It is less reliable than using the task's vma and may give
  806. * false positives:
  807. */
  808. int in_gate_area_no_task(unsigned long addr)
  809. {
  810. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  811. }
  812. const char *arch_vma_name(struct vm_area_struct *vma)
  813. {
  814. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  815. return "[vdso]";
  816. if (vma == &gate_vma)
  817. return "[vsyscall]";
  818. return NULL;
  819. }
  820. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  821. /*
  822. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  823. */
  824. static long __meminitdata addr_start, addr_end;
  825. static void __meminitdata *p_start, *p_end;
  826. static int __meminitdata node_start;
  827. int __meminit
  828. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  829. {
  830. unsigned long addr = (unsigned long)start_page;
  831. unsigned long end = (unsigned long)(start_page + size);
  832. unsigned long next;
  833. pgd_t *pgd;
  834. pud_t *pud;
  835. pmd_t *pmd;
  836. for (; addr < end; addr = next) {
  837. void *p = NULL;
  838. pgd = vmemmap_pgd_populate(addr, node);
  839. if (!pgd)
  840. return -ENOMEM;
  841. pud = vmemmap_pud_populate(pgd, addr, node);
  842. if (!pud)
  843. return -ENOMEM;
  844. if (!cpu_has_pse) {
  845. next = (addr + PAGE_SIZE) & PAGE_MASK;
  846. pmd = vmemmap_pmd_populate(pud, addr, node);
  847. if (!pmd)
  848. return -ENOMEM;
  849. p = vmemmap_pte_populate(pmd, addr, node);
  850. if (!p)
  851. return -ENOMEM;
  852. addr_end = addr + PAGE_SIZE;
  853. p_end = p + PAGE_SIZE;
  854. } else {
  855. next = pmd_addr_end(addr, end);
  856. pmd = pmd_offset(pud, addr);
  857. if (pmd_none(*pmd)) {
  858. pte_t entry;
  859. p = vmemmap_alloc_block(PMD_SIZE, node);
  860. if (!p)
  861. return -ENOMEM;
  862. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  863. PAGE_KERNEL_LARGE);
  864. set_pmd(pmd, __pmd(pte_val(entry)));
  865. addr_end = addr + PMD_SIZE;
  866. p_end = p + PMD_SIZE;
  867. /* check to see if we have contiguous blocks */
  868. if (p_end != p || node_start != node) {
  869. if (p_start)
  870. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  871. addr_start, addr_end-1, p_start, p_end-1, node_start);
  872. addr_start = addr;
  873. node_start = node;
  874. p_start = p;
  875. }
  876. } else
  877. vmemmap_verify((pte_t *)pmd, node, addr, next);
  878. }
  879. }
  880. return 0;
  881. }
  882. void __meminit vmemmap_populate_print_last(void)
  883. {
  884. if (p_start) {
  885. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  886. addr_start, addr_end-1, p_start, p_end-1, node_start);
  887. p_start = NULL;
  888. p_end = NULL;
  889. node_start = 0;
  890. }
  891. }
  892. #endif