x86.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #define CREATE_TRACE_POINTS
  39. #include "trace.h"
  40. #include <asm/uaccess.h>
  41. #include <asm/msr.h>
  42. #include <asm/desc.h>
  43. #include <asm/mtrr.h>
  44. #include <asm/mce.h>
  45. #define MAX_IO_MSRS 256
  46. #define CR0_RESERVED_BITS \
  47. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  48. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  49. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  50. #define CR4_RESERVED_BITS \
  51. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  52. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  53. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  54. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  55. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  56. #define KVM_MAX_MCE_BANKS 32
  57. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  58. /* EFER defaults:
  59. * - enable syscall per default because its emulated by KVM
  60. * - enable LME and LMA per default on 64 bit KVM
  61. */
  62. #ifdef CONFIG_X86_64
  63. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  64. #else
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  66. #endif
  67. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  68. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  69. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  70. struct kvm_cpuid_entry2 __user *entries);
  71. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  72. u32 function, u32 index);
  73. struct kvm_x86_ops *kvm_x86_ops;
  74. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  75. struct kvm_stats_debugfs_item debugfs_entries[] = {
  76. { "pf_fixed", VCPU_STAT(pf_fixed) },
  77. { "pf_guest", VCPU_STAT(pf_guest) },
  78. { "tlb_flush", VCPU_STAT(tlb_flush) },
  79. { "invlpg", VCPU_STAT(invlpg) },
  80. { "exits", VCPU_STAT(exits) },
  81. { "io_exits", VCPU_STAT(io_exits) },
  82. { "mmio_exits", VCPU_STAT(mmio_exits) },
  83. { "signal_exits", VCPU_STAT(signal_exits) },
  84. { "irq_window", VCPU_STAT(irq_window_exits) },
  85. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  86. { "halt_exits", VCPU_STAT(halt_exits) },
  87. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  88. { "hypercalls", VCPU_STAT(hypercalls) },
  89. { "request_irq", VCPU_STAT(request_irq_exits) },
  90. { "irq_exits", VCPU_STAT(irq_exits) },
  91. { "host_state_reload", VCPU_STAT(host_state_reload) },
  92. { "efer_reload", VCPU_STAT(efer_reload) },
  93. { "fpu_reload", VCPU_STAT(fpu_reload) },
  94. { "insn_emulation", VCPU_STAT(insn_emulation) },
  95. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  96. { "irq_injections", VCPU_STAT(irq_injections) },
  97. { "nmi_injections", VCPU_STAT(nmi_injections) },
  98. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  99. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  100. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  101. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  102. { "mmu_flooded", VM_STAT(mmu_flooded) },
  103. { "mmu_recycled", VM_STAT(mmu_recycled) },
  104. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  105. { "mmu_unsync", VM_STAT(mmu_unsync) },
  106. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  107. { "largepages", VM_STAT(lpages) },
  108. { NULL }
  109. };
  110. unsigned long segment_base(u16 selector)
  111. {
  112. struct descriptor_table gdt;
  113. struct desc_struct *d;
  114. unsigned long table_base;
  115. unsigned long v;
  116. if (selector == 0)
  117. return 0;
  118. asm("sgdt %0" : "=m"(gdt));
  119. table_base = gdt.base;
  120. if (selector & 4) { /* from ldt */
  121. u16 ldt_selector;
  122. asm("sldt %0" : "=g"(ldt_selector));
  123. table_base = segment_base(ldt_selector);
  124. }
  125. d = (struct desc_struct *)(table_base + (selector & ~7));
  126. v = d->base0 | ((unsigned long)d->base1 << 16) |
  127. ((unsigned long)d->base2 << 24);
  128. #ifdef CONFIG_X86_64
  129. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  130. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  131. #endif
  132. return v;
  133. }
  134. EXPORT_SYMBOL_GPL(segment_base);
  135. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  136. {
  137. if (irqchip_in_kernel(vcpu->kvm))
  138. return vcpu->arch.apic_base;
  139. else
  140. return vcpu->arch.apic_base;
  141. }
  142. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  143. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  144. {
  145. /* TODO: reserve bits check */
  146. if (irqchip_in_kernel(vcpu->kvm))
  147. kvm_lapic_set_base(vcpu, data);
  148. else
  149. vcpu->arch.apic_base = data;
  150. }
  151. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  152. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  153. {
  154. WARN_ON(vcpu->arch.exception.pending);
  155. vcpu->arch.exception.pending = true;
  156. vcpu->arch.exception.has_error_code = false;
  157. vcpu->arch.exception.nr = nr;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  160. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  161. u32 error_code)
  162. {
  163. ++vcpu->stat.pf_guest;
  164. if (vcpu->arch.exception.pending) {
  165. switch(vcpu->arch.exception.nr) {
  166. case DF_VECTOR:
  167. /* triple fault -> shutdown */
  168. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  169. return;
  170. case PF_VECTOR:
  171. vcpu->arch.exception.nr = DF_VECTOR;
  172. vcpu->arch.exception.error_code = 0;
  173. return;
  174. default:
  175. /* replace previous exception with a new one in a hope
  176. that instruction re-execution will regenerate lost
  177. exception */
  178. vcpu->arch.exception.pending = false;
  179. break;
  180. }
  181. }
  182. vcpu->arch.cr2 = addr;
  183. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  184. }
  185. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  186. {
  187. vcpu->arch.nmi_pending = 1;
  188. }
  189. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  190. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  191. {
  192. WARN_ON(vcpu->arch.exception.pending);
  193. vcpu->arch.exception.pending = true;
  194. vcpu->arch.exception.has_error_code = true;
  195. vcpu->arch.exception.nr = nr;
  196. vcpu->arch.exception.error_code = error_code;
  197. }
  198. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  199. static void __queue_exception(struct kvm_vcpu *vcpu)
  200. {
  201. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  202. vcpu->arch.exception.has_error_code,
  203. vcpu->arch.exception.error_code);
  204. }
  205. /*
  206. * Load the pae pdptrs. Return true is they are all valid.
  207. */
  208. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  209. {
  210. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  211. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  212. int i;
  213. int ret;
  214. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  215. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  216. offset * sizeof(u64), sizeof(pdpte));
  217. if (ret < 0) {
  218. ret = 0;
  219. goto out;
  220. }
  221. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  222. if (is_present_gpte(pdpte[i]) &&
  223. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  224. ret = 0;
  225. goto out;
  226. }
  227. }
  228. ret = 1;
  229. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  230. __set_bit(VCPU_EXREG_PDPTR,
  231. (unsigned long *)&vcpu->arch.regs_avail);
  232. __set_bit(VCPU_EXREG_PDPTR,
  233. (unsigned long *)&vcpu->arch.regs_dirty);
  234. out:
  235. return ret;
  236. }
  237. EXPORT_SYMBOL_GPL(load_pdptrs);
  238. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  239. {
  240. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  241. bool changed = true;
  242. int r;
  243. if (is_long_mode(vcpu) || !is_pae(vcpu))
  244. return false;
  245. if (!test_bit(VCPU_EXREG_PDPTR,
  246. (unsigned long *)&vcpu->arch.regs_avail))
  247. return true;
  248. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  249. if (r < 0)
  250. goto out;
  251. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  252. out:
  253. return changed;
  254. }
  255. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  256. {
  257. if (cr0 & CR0_RESERVED_BITS) {
  258. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  259. cr0, vcpu->arch.cr0);
  260. kvm_inject_gp(vcpu, 0);
  261. return;
  262. }
  263. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  264. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  265. kvm_inject_gp(vcpu, 0);
  266. return;
  267. }
  268. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  269. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  270. "and a clear PE flag\n");
  271. kvm_inject_gp(vcpu, 0);
  272. return;
  273. }
  274. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  275. #ifdef CONFIG_X86_64
  276. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  277. int cs_db, cs_l;
  278. if (!is_pae(vcpu)) {
  279. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  280. "in long mode while PAE is disabled\n");
  281. kvm_inject_gp(vcpu, 0);
  282. return;
  283. }
  284. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  285. if (cs_l) {
  286. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  287. "in long mode while CS.L == 1\n");
  288. kvm_inject_gp(vcpu, 0);
  289. return;
  290. }
  291. } else
  292. #endif
  293. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  294. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  295. "reserved bits\n");
  296. kvm_inject_gp(vcpu, 0);
  297. return;
  298. }
  299. }
  300. kvm_x86_ops->set_cr0(vcpu, cr0);
  301. vcpu->arch.cr0 = cr0;
  302. kvm_mmu_reset_context(vcpu);
  303. return;
  304. }
  305. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  306. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  307. {
  308. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  309. }
  310. EXPORT_SYMBOL_GPL(kvm_lmsw);
  311. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  312. {
  313. unsigned long old_cr4 = vcpu->arch.cr4;
  314. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  315. if (cr4 & CR4_RESERVED_BITS) {
  316. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  317. kvm_inject_gp(vcpu, 0);
  318. return;
  319. }
  320. if (is_long_mode(vcpu)) {
  321. if (!(cr4 & X86_CR4_PAE)) {
  322. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  323. "in long mode\n");
  324. kvm_inject_gp(vcpu, 0);
  325. return;
  326. }
  327. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  328. && ((cr4 ^ old_cr4) & pdptr_bits)
  329. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  330. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  331. kvm_inject_gp(vcpu, 0);
  332. return;
  333. }
  334. if (cr4 & X86_CR4_VMXE) {
  335. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  336. kvm_inject_gp(vcpu, 0);
  337. return;
  338. }
  339. kvm_x86_ops->set_cr4(vcpu, cr4);
  340. vcpu->arch.cr4 = cr4;
  341. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  342. kvm_mmu_reset_context(vcpu);
  343. }
  344. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  345. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  346. {
  347. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  348. kvm_mmu_sync_roots(vcpu);
  349. kvm_mmu_flush_tlb(vcpu);
  350. return;
  351. }
  352. if (is_long_mode(vcpu)) {
  353. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  354. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  355. kvm_inject_gp(vcpu, 0);
  356. return;
  357. }
  358. } else {
  359. if (is_pae(vcpu)) {
  360. if (cr3 & CR3_PAE_RESERVED_BITS) {
  361. printk(KERN_DEBUG
  362. "set_cr3: #GP, reserved bits\n");
  363. kvm_inject_gp(vcpu, 0);
  364. return;
  365. }
  366. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  367. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  368. "reserved bits\n");
  369. kvm_inject_gp(vcpu, 0);
  370. return;
  371. }
  372. }
  373. /*
  374. * We don't check reserved bits in nonpae mode, because
  375. * this isn't enforced, and VMware depends on this.
  376. */
  377. }
  378. /*
  379. * Does the new cr3 value map to physical memory? (Note, we
  380. * catch an invalid cr3 even in real-mode, because it would
  381. * cause trouble later on when we turn on paging anyway.)
  382. *
  383. * A real CPU would silently accept an invalid cr3 and would
  384. * attempt to use it - with largely undefined (and often hard
  385. * to debug) behavior on the guest side.
  386. */
  387. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  388. kvm_inject_gp(vcpu, 0);
  389. else {
  390. vcpu->arch.cr3 = cr3;
  391. vcpu->arch.mmu.new_cr3(vcpu);
  392. }
  393. }
  394. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  395. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  396. {
  397. if (cr8 & CR8_RESERVED_BITS) {
  398. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  399. kvm_inject_gp(vcpu, 0);
  400. return;
  401. }
  402. if (irqchip_in_kernel(vcpu->kvm))
  403. kvm_lapic_set_tpr(vcpu, cr8);
  404. else
  405. vcpu->arch.cr8 = cr8;
  406. }
  407. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  408. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  409. {
  410. if (irqchip_in_kernel(vcpu->kvm))
  411. return kvm_lapic_get_cr8(vcpu);
  412. else
  413. return vcpu->arch.cr8;
  414. }
  415. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  416. static inline u32 bit(int bitno)
  417. {
  418. return 1 << (bitno & 31);
  419. }
  420. /*
  421. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  422. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  423. *
  424. * This list is modified at module load time to reflect the
  425. * capabilities of the host cpu.
  426. */
  427. static u32 msrs_to_save[] = {
  428. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  429. MSR_K6_STAR,
  430. #ifdef CONFIG_X86_64
  431. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  432. #endif
  433. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  434. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  435. };
  436. static unsigned num_msrs_to_save;
  437. static u32 emulated_msrs[] = {
  438. MSR_IA32_MISC_ENABLE,
  439. };
  440. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  441. {
  442. if (efer & efer_reserved_bits) {
  443. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  444. efer);
  445. kvm_inject_gp(vcpu, 0);
  446. return;
  447. }
  448. if (is_paging(vcpu)
  449. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  450. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  451. kvm_inject_gp(vcpu, 0);
  452. return;
  453. }
  454. if (efer & EFER_FFXSR) {
  455. struct kvm_cpuid_entry2 *feat;
  456. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  457. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  458. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  459. kvm_inject_gp(vcpu, 0);
  460. return;
  461. }
  462. }
  463. if (efer & EFER_SVME) {
  464. struct kvm_cpuid_entry2 *feat;
  465. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  466. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  467. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  468. kvm_inject_gp(vcpu, 0);
  469. return;
  470. }
  471. }
  472. kvm_x86_ops->set_efer(vcpu, efer);
  473. efer &= ~EFER_LMA;
  474. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  475. vcpu->arch.shadow_efer = efer;
  476. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  477. kvm_mmu_reset_context(vcpu);
  478. }
  479. void kvm_enable_efer_bits(u64 mask)
  480. {
  481. efer_reserved_bits &= ~mask;
  482. }
  483. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  484. /*
  485. * Writes msr value into into the appropriate "register".
  486. * Returns 0 on success, non-0 otherwise.
  487. * Assumes vcpu_load() was already called.
  488. */
  489. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  490. {
  491. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  492. }
  493. /*
  494. * Adapt set_msr() to msr_io()'s calling convention
  495. */
  496. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  497. {
  498. return kvm_set_msr(vcpu, index, *data);
  499. }
  500. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  501. {
  502. static int version;
  503. struct pvclock_wall_clock wc;
  504. struct timespec now, sys, boot;
  505. if (!wall_clock)
  506. return;
  507. version++;
  508. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  509. /*
  510. * The guest calculates current wall clock time by adding
  511. * system time (updated by kvm_write_guest_time below) to the
  512. * wall clock specified here. guest system time equals host
  513. * system time for us, thus we must fill in host boot time here.
  514. */
  515. now = current_kernel_time();
  516. ktime_get_ts(&sys);
  517. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  518. wc.sec = boot.tv_sec;
  519. wc.nsec = boot.tv_nsec;
  520. wc.version = version;
  521. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  522. version++;
  523. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  524. }
  525. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  526. {
  527. uint32_t quotient, remainder;
  528. /* Don't try to replace with do_div(), this one calculates
  529. * "(dividend << 32) / divisor" */
  530. __asm__ ( "divl %4"
  531. : "=a" (quotient), "=d" (remainder)
  532. : "0" (0), "1" (dividend), "r" (divisor) );
  533. return quotient;
  534. }
  535. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  536. {
  537. uint64_t nsecs = 1000000000LL;
  538. int32_t shift = 0;
  539. uint64_t tps64;
  540. uint32_t tps32;
  541. tps64 = tsc_khz * 1000LL;
  542. while (tps64 > nsecs*2) {
  543. tps64 >>= 1;
  544. shift--;
  545. }
  546. tps32 = (uint32_t)tps64;
  547. while (tps32 <= (uint32_t)nsecs) {
  548. tps32 <<= 1;
  549. shift++;
  550. }
  551. hv_clock->tsc_shift = shift;
  552. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  553. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  554. __func__, tsc_khz, hv_clock->tsc_shift,
  555. hv_clock->tsc_to_system_mul);
  556. }
  557. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  558. static void kvm_write_guest_time(struct kvm_vcpu *v)
  559. {
  560. struct timespec ts;
  561. unsigned long flags;
  562. struct kvm_vcpu_arch *vcpu = &v->arch;
  563. void *shared_kaddr;
  564. unsigned long this_tsc_khz;
  565. if ((!vcpu->time_page))
  566. return;
  567. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  568. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  569. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  570. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  571. }
  572. put_cpu_var(cpu_tsc_khz);
  573. /* Keep irq disabled to prevent changes to the clock */
  574. local_irq_save(flags);
  575. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  576. ktime_get_ts(&ts);
  577. local_irq_restore(flags);
  578. /* With all the info we got, fill in the values */
  579. vcpu->hv_clock.system_time = ts.tv_nsec +
  580. (NSEC_PER_SEC * (u64)ts.tv_sec);
  581. /*
  582. * The interface expects us to write an even number signaling that the
  583. * update is finished. Since the guest won't see the intermediate
  584. * state, we just increase by 2 at the end.
  585. */
  586. vcpu->hv_clock.version += 2;
  587. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  588. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  589. sizeof(vcpu->hv_clock));
  590. kunmap_atomic(shared_kaddr, KM_USER0);
  591. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  592. }
  593. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  594. {
  595. struct kvm_vcpu_arch *vcpu = &v->arch;
  596. if (!vcpu->time_page)
  597. return 0;
  598. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  599. return 1;
  600. }
  601. static bool msr_mtrr_valid(unsigned msr)
  602. {
  603. switch (msr) {
  604. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  605. case MSR_MTRRfix64K_00000:
  606. case MSR_MTRRfix16K_80000:
  607. case MSR_MTRRfix16K_A0000:
  608. case MSR_MTRRfix4K_C0000:
  609. case MSR_MTRRfix4K_C8000:
  610. case MSR_MTRRfix4K_D0000:
  611. case MSR_MTRRfix4K_D8000:
  612. case MSR_MTRRfix4K_E0000:
  613. case MSR_MTRRfix4K_E8000:
  614. case MSR_MTRRfix4K_F0000:
  615. case MSR_MTRRfix4K_F8000:
  616. case MSR_MTRRdefType:
  617. case MSR_IA32_CR_PAT:
  618. return true;
  619. case 0x2f8:
  620. return true;
  621. }
  622. return false;
  623. }
  624. static bool valid_pat_type(unsigned t)
  625. {
  626. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  627. }
  628. static bool valid_mtrr_type(unsigned t)
  629. {
  630. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  631. }
  632. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  633. {
  634. int i;
  635. if (!msr_mtrr_valid(msr))
  636. return false;
  637. if (msr == MSR_IA32_CR_PAT) {
  638. for (i = 0; i < 8; i++)
  639. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  640. return false;
  641. return true;
  642. } else if (msr == MSR_MTRRdefType) {
  643. if (data & ~0xcff)
  644. return false;
  645. return valid_mtrr_type(data & 0xff);
  646. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  647. for (i = 0; i < 8 ; i++)
  648. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  649. return false;
  650. return true;
  651. }
  652. /* variable MTRRs */
  653. return valid_mtrr_type(data & 0xff);
  654. }
  655. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  656. {
  657. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  658. if (!mtrr_valid(vcpu, msr, data))
  659. return 1;
  660. if (msr == MSR_MTRRdefType) {
  661. vcpu->arch.mtrr_state.def_type = data;
  662. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  663. } else if (msr == MSR_MTRRfix64K_00000)
  664. p[0] = data;
  665. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  666. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  667. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  668. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  669. else if (msr == MSR_IA32_CR_PAT)
  670. vcpu->arch.pat = data;
  671. else { /* Variable MTRRs */
  672. int idx, is_mtrr_mask;
  673. u64 *pt;
  674. idx = (msr - 0x200) / 2;
  675. is_mtrr_mask = msr - 0x200 - 2 * idx;
  676. if (!is_mtrr_mask)
  677. pt =
  678. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  679. else
  680. pt =
  681. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  682. *pt = data;
  683. }
  684. kvm_mmu_reset_context(vcpu);
  685. return 0;
  686. }
  687. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  688. {
  689. u64 mcg_cap = vcpu->arch.mcg_cap;
  690. unsigned bank_num = mcg_cap & 0xff;
  691. switch (msr) {
  692. case MSR_IA32_MCG_STATUS:
  693. vcpu->arch.mcg_status = data;
  694. break;
  695. case MSR_IA32_MCG_CTL:
  696. if (!(mcg_cap & MCG_CTL_P))
  697. return 1;
  698. if (data != 0 && data != ~(u64)0)
  699. return -1;
  700. vcpu->arch.mcg_ctl = data;
  701. break;
  702. default:
  703. if (msr >= MSR_IA32_MC0_CTL &&
  704. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  705. u32 offset = msr - MSR_IA32_MC0_CTL;
  706. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  707. if ((offset & 0x3) == 0 &&
  708. data != 0 && data != ~(u64)0)
  709. return -1;
  710. vcpu->arch.mce_banks[offset] = data;
  711. break;
  712. }
  713. return 1;
  714. }
  715. return 0;
  716. }
  717. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  718. {
  719. switch (msr) {
  720. case MSR_EFER:
  721. set_efer(vcpu, data);
  722. break;
  723. case MSR_IA32_DEBUGCTLMSR:
  724. if (!data) {
  725. /* We support the non-activated case already */
  726. break;
  727. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  728. /* Values other than LBR and BTF are vendor-specific,
  729. thus reserved and should throw a #GP */
  730. return 1;
  731. }
  732. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  733. __func__, data);
  734. break;
  735. case MSR_IA32_UCODE_REV:
  736. case MSR_IA32_UCODE_WRITE:
  737. case MSR_VM_HSAVE_PA:
  738. break;
  739. case 0x200 ... 0x2ff:
  740. return set_msr_mtrr(vcpu, msr, data);
  741. case MSR_IA32_APICBASE:
  742. kvm_set_apic_base(vcpu, data);
  743. break;
  744. case MSR_IA32_MISC_ENABLE:
  745. vcpu->arch.ia32_misc_enable_msr = data;
  746. break;
  747. case MSR_KVM_WALL_CLOCK:
  748. vcpu->kvm->arch.wall_clock = data;
  749. kvm_write_wall_clock(vcpu->kvm, data);
  750. break;
  751. case MSR_KVM_SYSTEM_TIME: {
  752. if (vcpu->arch.time_page) {
  753. kvm_release_page_dirty(vcpu->arch.time_page);
  754. vcpu->arch.time_page = NULL;
  755. }
  756. vcpu->arch.time = data;
  757. /* we verify if the enable bit is set... */
  758. if (!(data & 1))
  759. break;
  760. /* ...but clean it before doing the actual write */
  761. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  762. vcpu->arch.time_page =
  763. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  764. if (is_error_page(vcpu->arch.time_page)) {
  765. kvm_release_page_clean(vcpu->arch.time_page);
  766. vcpu->arch.time_page = NULL;
  767. }
  768. kvm_request_guest_time_update(vcpu);
  769. break;
  770. }
  771. case MSR_IA32_MCG_CTL:
  772. case MSR_IA32_MCG_STATUS:
  773. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  774. return set_msr_mce(vcpu, msr, data);
  775. /* Performance counters are not protected by a CPUID bit,
  776. * so we should check all of them in the generic path for the sake of
  777. * cross vendor migration.
  778. * Writing a zero into the event select MSRs disables them,
  779. * which we perfectly emulate ;-). Any other value should be at least
  780. * reported, some guests depend on them.
  781. */
  782. case MSR_P6_EVNTSEL0:
  783. case MSR_P6_EVNTSEL1:
  784. case MSR_K7_EVNTSEL0:
  785. case MSR_K7_EVNTSEL1:
  786. case MSR_K7_EVNTSEL2:
  787. case MSR_K7_EVNTSEL3:
  788. if (data != 0)
  789. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  790. "0x%x data 0x%llx\n", msr, data);
  791. break;
  792. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  793. * so we ignore writes to make it happy.
  794. */
  795. case MSR_P6_PERFCTR0:
  796. case MSR_P6_PERFCTR1:
  797. case MSR_K7_PERFCTR0:
  798. case MSR_K7_PERFCTR1:
  799. case MSR_K7_PERFCTR2:
  800. case MSR_K7_PERFCTR3:
  801. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  802. "0x%x data 0x%llx\n", msr, data);
  803. break;
  804. default:
  805. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  806. return 1;
  807. }
  808. return 0;
  809. }
  810. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  811. /*
  812. * Reads an msr value (of 'msr_index') into 'pdata'.
  813. * Returns 0 on success, non-0 otherwise.
  814. * Assumes vcpu_load() was already called.
  815. */
  816. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  817. {
  818. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  819. }
  820. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  821. {
  822. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  823. if (!msr_mtrr_valid(msr))
  824. return 1;
  825. if (msr == MSR_MTRRdefType)
  826. *pdata = vcpu->arch.mtrr_state.def_type +
  827. (vcpu->arch.mtrr_state.enabled << 10);
  828. else if (msr == MSR_MTRRfix64K_00000)
  829. *pdata = p[0];
  830. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  831. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  832. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  833. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  834. else if (msr == MSR_IA32_CR_PAT)
  835. *pdata = vcpu->arch.pat;
  836. else { /* Variable MTRRs */
  837. int idx, is_mtrr_mask;
  838. u64 *pt;
  839. idx = (msr - 0x200) / 2;
  840. is_mtrr_mask = msr - 0x200 - 2 * idx;
  841. if (!is_mtrr_mask)
  842. pt =
  843. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  844. else
  845. pt =
  846. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  847. *pdata = *pt;
  848. }
  849. return 0;
  850. }
  851. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  852. {
  853. u64 data;
  854. u64 mcg_cap = vcpu->arch.mcg_cap;
  855. unsigned bank_num = mcg_cap & 0xff;
  856. switch (msr) {
  857. case MSR_IA32_P5_MC_ADDR:
  858. case MSR_IA32_P5_MC_TYPE:
  859. data = 0;
  860. break;
  861. case MSR_IA32_MCG_CAP:
  862. data = vcpu->arch.mcg_cap;
  863. break;
  864. case MSR_IA32_MCG_CTL:
  865. if (!(mcg_cap & MCG_CTL_P))
  866. return 1;
  867. data = vcpu->arch.mcg_ctl;
  868. break;
  869. case MSR_IA32_MCG_STATUS:
  870. data = vcpu->arch.mcg_status;
  871. break;
  872. default:
  873. if (msr >= MSR_IA32_MC0_CTL &&
  874. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  875. u32 offset = msr - MSR_IA32_MC0_CTL;
  876. data = vcpu->arch.mce_banks[offset];
  877. break;
  878. }
  879. return 1;
  880. }
  881. *pdata = data;
  882. return 0;
  883. }
  884. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  885. {
  886. u64 data;
  887. switch (msr) {
  888. case MSR_IA32_PLATFORM_ID:
  889. case MSR_IA32_UCODE_REV:
  890. case MSR_IA32_EBL_CR_POWERON:
  891. case MSR_IA32_DEBUGCTLMSR:
  892. case MSR_IA32_LASTBRANCHFROMIP:
  893. case MSR_IA32_LASTBRANCHTOIP:
  894. case MSR_IA32_LASTINTFROMIP:
  895. case MSR_IA32_LASTINTTOIP:
  896. case MSR_K8_SYSCFG:
  897. case MSR_K7_HWCR:
  898. case MSR_VM_HSAVE_PA:
  899. case MSR_P6_EVNTSEL0:
  900. case MSR_P6_EVNTSEL1:
  901. case MSR_K7_EVNTSEL0:
  902. data = 0;
  903. break;
  904. case MSR_MTRRcap:
  905. data = 0x500 | KVM_NR_VAR_MTRR;
  906. break;
  907. case 0x200 ... 0x2ff:
  908. return get_msr_mtrr(vcpu, msr, pdata);
  909. case 0xcd: /* fsb frequency */
  910. data = 3;
  911. break;
  912. case MSR_IA32_APICBASE:
  913. data = kvm_get_apic_base(vcpu);
  914. break;
  915. case MSR_IA32_MISC_ENABLE:
  916. data = vcpu->arch.ia32_misc_enable_msr;
  917. break;
  918. case MSR_IA32_PERF_STATUS:
  919. /* TSC increment by tick */
  920. data = 1000ULL;
  921. /* CPU multiplier */
  922. data |= (((uint64_t)4ULL) << 40);
  923. break;
  924. case MSR_EFER:
  925. data = vcpu->arch.shadow_efer;
  926. break;
  927. case MSR_KVM_WALL_CLOCK:
  928. data = vcpu->kvm->arch.wall_clock;
  929. break;
  930. case MSR_KVM_SYSTEM_TIME:
  931. data = vcpu->arch.time;
  932. break;
  933. case MSR_IA32_P5_MC_ADDR:
  934. case MSR_IA32_P5_MC_TYPE:
  935. case MSR_IA32_MCG_CAP:
  936. case MSR_IA32_MCG_CTL:
  937. case MSR_IA32_MCG_STATUS:
  938. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  939. return get_msr_mce(vcpu, msr, pdata);
  940. default:
  941. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  942. return 1;
  943. }
  944. *pdata = data;
  945. return 0;
  946. }
  947. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  948. /*
  949. * Read or write a bunch of msrs. All parameters are kernel addresses.
  950. *
  951. * @return number of msrs set successfully.
  952. */
  953. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  954. struct kvm_msr_entry *entries,
  955. int (*do_msr)(struct kvm_vcpu *vcpu,
  956. unsigned index, u64 *data))
  957. {
  958. int i;
  959. vcpu_load(vcpu);
  960. down_read(&vcpu->kvm->slots_lock);
  961. for (i = 0; i < msrs->nmsrs; ++i)
  962. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  963. break;
  964. up_read(&vcpu->kvm->slots_lock);
  965. vcpu_put(vcpu);
  966. return i;
  967. }
  968. /*
  969. * Read or write a bunch of msrs. Parameters are user addresses.
  970. *
  971. * @return number of msrs set successfully.
  972. */
  973. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  974. int (*do_msr)(struct kvm_vcpu *vcpu,
  975. unsigned index, u64 *data),
  976. int writeback)
  977. {
  978. struct kvm_msrs msrs;
  979. struct kvm_msr_entry *entries;
  980. int r, n;
  981. unsigned size;
  982. r = -EFAULT;
  983. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  984. goto out;
  985. r = -E2BIG;
  986. if (msrs.nmsrs >= MAX_IO_MSRS)
  987. goto out;
  988. r = -ENOMEM;
  989. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  990. entries = vmalloc(size);
  991. if (!entries)
  992. goto out;
  993. r = -EFAULT;
  994. if (copy_from_user(entries, user_msrs->entries, size))
  995. goto out_free;
  996. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  997. if (r < 0)
  998. goto out_free;
  999. r = -EFAULT;
  1000. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1001. goto out_free;
  1002. r = n;
  1003. out_free:
  1004. vfree(entries);
  1005. out:
  1006. return r;
  1007. }
  1008. int kvm_dev_ioctl_check_extension(long ext)
  1009. {
  1010. int r;
  1011. switch (ext) {
  1012. case KVM_CAP_IRQCHIP:
  1013. case KVM_CAP_HLT:
  1014. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1015. case KVM_CAP_SET_TSS_ADDR:
  1016. case KVM_CAP_EXT_CPUID:
  1017. case KVM_CAP_CLOCKSOURCE:
  1018. case KVM_CAP_PIT:
  1019. case KVM_CAP_NOP_IO_DELAY:
  1020. case KVM_CAP_MP_STATE:
  1021. case KVM_CAP_SYNC_MMU:
  1022. case KVM_CAP_REINJECT_CONTROL:
  1023. case KVM_CAP_IRQ_INJECT_STATUS:
  1024. case KVM_CAP_ASSIGN_DEV_IRQ:
  1025. case KVM_CAP_IRQFD:
  1026. case KVM_CAP_PIT2:
  1027. r = 1;
  1028. break;
  1029. case KVM_CAP_COALESCED_MMIO:
  1030. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1031. break;
  1032. case KVM_CAP_VAPIC:
  1033. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1034. break;
  1035. case KVM_CAP_NR_VCPUS:
  1036. r = KVM_MAX_VCPUS;
  1037. break;
  1038. case KVM_CAP_NR_MEMSLOTS:
  1039. r = KVM_MEMORY_SLOTS;
  1040. break;
  1041. case KVM_CAP_PV_MMU:
  1042. r = !tdp_enabled;
  1043. break;
  1044. case KVM_CAP_IOMMU:
  1045. r = iommu_found();
  1046. break;
  1047. case KVM_CAP_MCE:
  1048. r = KVM_MAX_MCE_BANKS;
  1049. break;
  1050. default:
  1051. r = 0;
  1052. break;
  1053. }
  1054. return r;
  1055. }
  1056. long kvm_arch_dev_ioctl(struct file *filp,
  1057. unsigned int ioctl, unsigned long arg)
  1058. {
  1059. void __user *argp = (void __user *)arg;
  1060. long r;
  1061. switch (ioctl) {
  1062. case KVM_GET_MSR_INDEX_LIST: {
  1063. struct kvm_msr_list __user *user_msr_list = argp;
  1064. struct kvm_msr_list msr_list;
  1065. unsigned n;
  1066. r = -EFAULT;
  1067. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1068. goto out;
  1069. n = msr_list.nmsrs;
  1070. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1071. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1072. goto out;
  1073. r = -E2BIG;
  1074. if (n < msr_list.nmsrs)
  1075. goto out;
  1076. r = -EFAULT;
  1077. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1078. num_msrs_to_save * sizeof(u32)))
  1079. goto out;
  1080. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1081. &emulated_msrs,
  1082. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1083. goto out;
  1084. r = 0;
  1085. break;
  1086. }
  1087. case KVM_GET_SUPPORTED_CPUID: {
  1088. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1089. struct kvm_cpuid2 cpuid;
  1090. r = -EFAULT;
  1091. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1092. goto out;
  1093. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1094. cpuid_arg->entries);
  1095. if (r)
  1096. goto out;
  1097. r = -EFAULT;
  1098. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1099. goto out;
  1100. r = 0;
  1101. break;
  1102. }
  1103. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1104. u64 mce_cap;
  1105. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1106. r = -EFAULT;
  1107. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1108. goto out;
  1109. r = 0;
  1110. break;
  1111. }
  1112. default:
  1113. r = -EINVAL;
  1114. }
  1115. out:
  1116. return r;
  1117. }
  1118. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1119. {
  1120. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1121. kvm_request_guest_time_update(vcpu);
  1122. }
  1123. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1124. {
  1125. kvm_x86_ops->vcpu_put(vcpu);
  1126. kvm_put_guest_fpu(vcpu);
  1127. }
  1128. static int is_efer_nx(void)
  1129. {
  1130. unsigned long long efer = 0;
  1131. rdmsrl_safe(MSR_EFER, &efer);
  1132. return efer & EFER_NX;
  1133. }
  1134. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1135. {
  1136. int i;
  1137. struct kvm_cpuid_entry2 *e, *entry;
  1138. entry = NULL;
  1139. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1140. e = &vcpu->arch.cpuid_entries[i];
  1141. if (e->function == 0x80000001) {
  1142. entry = e;
  1143. break;
  1144. }
  1145. }
  1146. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1147. entry->edx &= ~(1 << 20);
  1148. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1149. }
  1150. }
  1151. /* when an old userspace process fills a new kernel module */
  1152. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1153. struct kvm_cpuid *cpuid,
  1154. struct kvm_cpuid_entry __user *entries)
  1155. {
  1156. int r, i;
  1157. struct kvm_cpuid_entry *cpuid_entries;
  1158. r = -E2BIG;
  1159. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1160. goto out;
  1161. r = -ENOMEM;
  1162. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1163. if (!cpuid_entries)
  1164. goto out;
  1165. r = -EFAULT;
  1166. if (copy_from_user(cpuid_entries, entries,
  1167. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1168. goto out_free;
  1169. for (i = 0; i < cpuid->nent; i++) {
  1170. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1171. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1172. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1173. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1174. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1175. vcpu->arch.cpuid_entries[i].index = 0;
  1176. vcpu->arch.cpuid_entries[i].flags = 0;
  1177. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1178. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1179. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1180. }
  1181. vcpu->arch.cpuid_nent = cpuid->nent;
  1182. cpuid_fix_nx_cap(vcpu);
  1183. r = 0;
  1184. out_free:
  1185. vfree(cpuid_entries);
  1186. out:
  1187. return r;
  1188. }
  1189. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1190. struct kvm_cpuid2 *cpuid,
  1191. struct kvm_cpuid_entry2 __user *entries)
  1192. {
  1193. int r;
  1194. r = -E2BIG;
  1195. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1196. goto out;
  1197. r = -EFAULT;
  1198. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1199. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1200. goto out;
  1201. vcpu->arch.cpuid_nent = cpuid->nent;
  1202. return 0;
  1203. out:
  1204. return r;
  1205. }
  1206. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1207. struct kvm_cpuid2 *cpuid,
  1208. struct kvm_cpuid_entry2 __user *entries)
  1209. {
  1210. int r;
  1211. r = -E2BIG;
  1212. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1213. goto out;
  1214. r = -EFAULT;
  1215. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1216. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1217. goto out;
  1218. return 0;
  1219. out:
  1220. cpuid->nent = vcpu->arch.cpuid_nent;
  1221. return r;
  1222. }
  1223. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1224. u32 index)
  1225. {
  1226. entry->function = function;
  1227. entry->index = index;
  1228. cpuid_count(entry->function, entry->index,
  1229. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1230. entry->flags = 0;
  1231. }
  1232. #define F(x) bit(X86_FEATURE_##x)
  1233. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1234. u32 index, int *nent, int maxnent)
  1235. {
  1236. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1237. #ifdef CONFIG_X86_64
  1238. unsigned f_lm = F(LM);
  1239. #else
  1240. unsigned f_lm = 0;
  1241. #endif
  1242. /* cpuid 1.edx */
  1243. const u32 kvm_supported_word0_x86_features =
  1244. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1245. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1246. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1247. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1248. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1249. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1250. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1251. 0 /* HTT, TM, Reserved, PBE */;
  1252. /* cpuid 0x80000001.edx */
  1253. const u32 kvm_supported_word1_x86_features =
  1254. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1255. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1256. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1257. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1258. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1259. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1260. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1261. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1262. /* cpuid 1.ecx */
  1263. const u32 kvm_supported_word4_x86_features =
  1264. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1265. 0 /* DS-CPL, VMX, SMX, EST */ |
  1266. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1267. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1268. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1269. F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
  1270. 0 /* Reserved, XSAVE, OSXSAVE */;
  1271. /* cpuid 0x80000001.ecx */
  1272. const u32 kvm_supported_word6_x86_features =
  1273. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1274. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1275. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1276. 0 /* SKINIT */ | 0 /* WDT */;
  1277. /* all calls to cpuid_count() should be made on the same cpu */
  1278. get_cpu();
  1279. do_cpuid_1_ent(entry, function, index);
  1280. ++*nent;
  1281. switch (function) {
  1282. case 0:
  1283. entry->eax = min(entry->eax, (u32)0xb);
  1284. break;
  1285. case 1:
  1286. entry->edx &= kvm_supported_word0_x86_features;
  1287. entry->ecx &= kvm_supported_word4_x86_features;
  1288. break;
  1289. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1290. * may return different values. This forces us to get_cpu() before
  1291. * issuing the first command, and also to emulate this annoying behavior
  1292. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1293. case 2: {
  1294. int t, times = entry->eax & 0xff;
  1295. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1296. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1297. for (t = 1; t < times && *nent < maxnent; ++t) {
  1298. do_cpuid_1_ent(&entry[t], function, 0);
  1299. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1300. ++*nent;
  1301. }
  1302. break;
  1303. }
  1304. /* function 4 and 0xb have additional index. */
  1305. case 4: {
  1306. int i, cache_type;
  1307. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1308. /* read more entries until cache_type is zero */
  1309. for (i = 1; *nent < maxnent; ++i) {
  1310. cache_type = entry[i - 1].eax & 0x1f;
  1311. if (!cache_type)
  1312. break;
  1313. do_cpuid_1_ent(&entry[i], function, i);
  1314. entry[i].flags |=
  1315. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1316. ++*nent;
  1317. }
  1318. break;
  1319. }
  1320. case 0xb: {
  1321. int i, level_type;
  1322. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1323. /* read more entries until level_type is zero */
  1324. for (i = 1; *nent < maxnent; ++i) {
  1325. level_type = entry[i - 1].ecx & 0xff00;
  1326. if (!level_type)
  1327. break;
  1328. do_cpuid_1_ent(&entry[i], function, i);
  1329. entry[i].flags |=
  1330. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1331. ++*nent;
  1332. }
  1333. break;
  1334. }
  1335. case 0x80000000:
  1336. entry->eax = min(entry->eax, 0x8000001a);
  1337. break;
  1338. case 0x80000001:
  1339. entry->edx &= kvm_supported_word1_x86_features;
  1340. entry->ecx &= kvm_supported_word6_x86_features;
  1341. break;
  1342. }
  1343. put_cpu();
  1344. }
  1345. #undef F
  1346. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1347. struct kvm_cpuid_entry2 __user *entries)
  1348. {
  1349. struct kvm_cpuid_entry2 *cpuid_entries;
  1350. int limit, nent = 0, r = -E2BIG;
  1351. u32 func;
  1352. if (cpuid->nent < 1)
  1353. goto out;
  1354. r = -ENOMEM;
  1355. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1356. if (!cpuid_entries)
  1357. goto out;
  1358. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1359. limit = cpuid_entries[0].eax;
  1360. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1361. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1362. &nent, cpuid->nent);
  1363. r = -E2BIG;
  1364. if (nent >= cpuid->nent)
  1365. goto out_free;
  1366. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1367. limit = cpuid_entries[nent - 1].eax;
  1368. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1369. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1370. &nent, cpuid->nent);
  1371. r = -E2BIG;
  1372. if (nent >= cpuid->nent)
  1373. goto out_free;
  1374. r = -EFAULT;
  1375. if (copy_to_user(entries, cpuid_entries,
  1376. nent * sizeof(struct kvm_cpuid_entry2)))
  1377. goto out_free;
  1378. cpuid->nent = nent;
  1379. r = 0;
  1380. out_free:
  1381. vfree(cpuid_entries);
  1382. out:
  1383. return r;
  1384. }
  1385. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1386. struct kvm_lapic_state *s)
  1387. {
  1388. vcpu_load(vcpu);
  1389. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1390. vcpu_put(vcpu);
  1391. return 0;
  1392. }
  1393. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1394. struct kvm_lapic_state *s)
  1395. {
  1396. vcpu_load(vcpu);
  1397. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1398. kvm_apic_post_state_restore(vcpu);
  1399. vcpu_put(vcpu);
  1400. return 0;
  1401. }
  1402. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1403. struct kvm_interrupt *irq)
  1404. {
  1405. if (irq->irq < 0 || irq->irq >= 256)
  1406. return -EINVAL;
  1407. if (irqchip_in_kernel(vcpu->kvm))
  1408. return -ENXIO;
  1409. vcpu_load(vcpu);
  1410. kvm_queue_interrupt(vcpu, irq->irq, false);
  1411. vcpu_put(vcpu);
  1412. return 0;
  1413. }
  1414. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1415. {
  1416. vcpu_load(vcpu);
  1417. kvm_inject_nmi(vcpu);
  1418. vcpu_put(vcpu);
  1419. return 0;
  1420. }
  1421. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1422. struct kvm_tpr_access_ctl *tac)
  1423. {
  1424. if (tac->flags)
  1425. return -EINVAL;
  1426. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1427. return 0;
  1428. }
  1429. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1430. u64 mcg_cap)
  1431. {
  1432. int r;
  1433. unsigned bank_num = mcg_cap & 0xff, bank;
  1434. r = -EINVAL;
  1435. if (!bank_num)
  1436. goto out;
  1437. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1438. goto out;
  1439. r = 0;
  1440. vcpu->arch.mcg_cap = mcg_cap;
  1441. /* Init IA32_MCG_CTL to all 1s */
  1442. if (mcg_cap & MCG_CTL_P)
  1443. vcpu->arch.mcg_ctl = ~(u64)0;
  1444. /* Init IA32_MCi_CTL to all 1s */
  1445. for (bank = 0; bank < bank_num; bank++)
  1446. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1447. out:
  1448. return r;
  1449. }
  1450. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1451. struct kvm_x86_mce *mce)
  1452. {
  1453. u64 mcg_cap = vcpu->arch.mcg_cap;
  1454. unsigned bank_num = mcg_cap & 0xff;
  1455. u64 *banks = vcpu->arch.mce_banks;
  1456. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1457. return -EINVAL;
  1458. /*
  1459. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1460. * reporting is disabled
  1461. */
  1462. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1463. vcpu->arch.mcg_ctl != ~(u64)0)
  1464. return 0;
  1465. banks += 4 * mce->bank;
  1466. /*
  1467. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1468. * reporting is disabled for the bank
  1469. */
  1470. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1471. return 0;
  1472. if (mce->status & MCI_STATUS_UC) {
  1473. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1474. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1475. printk(KERN_DEBUG "kvm: set_mce: "
  1476. "injects mce exception while "
  1477. "previous one is in progress!\n");
  1478. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1479. return 0;
  1480. }
  1481. if (banks[1] & MCI_STATUS_VAL)
  1482. mce->status |= MCI_STATUS_OVER;
  1483. banks[2] = mce->addr;
  1484. banks[3] = mce->misc;
  1485. vcpu->arch.mcg_status = mce->mcg_status;
  1486. banks[1] = mce->status;
  1487. kvm_queue_exception(vcpu, MC_VECTOR);
  1488. } else if (!(banks[1] & MCI_STATUS_VAL)
  1489. || !(banks[1] & MCI_STATUS_UC)) {
  1490. if (banks[1] & MCI_STATUS_VAL)
  1491. mce->status |= MCI_STATUS_OVER;
  1492. banks[2] = mce->addr;
  1493. banks[3] = mce->misc;
  1494. banks[1] = mce->status;
  1495. } else
  1496. banks[1] |= MCI_STATUS_OVER;
  1497. return 0;
  1498. }
  1499. long kvm_arch_vcpu_ioctl(struct file *filp,
  1500. unsigned int ioctl, unsigned long arg)
  1501. {
  1502. struct kvm_vcpu *vcpu = filp->private_data;
  1503. void __user *argp = (void __user *)arg;
  1504. int r;
  1505. struct kvm_lapic_state *lapic = NULL;
  1506. switch (ioctl) {
  1507. case KVM_GET_LAPIC: {
  1508. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1509. r = -ENOMEM;
  1510. if (!lapic)
  1511. goto out;
  1512. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1513. if (r)
  1514. goto out;
  1515. r = -EFAULT;
  1516. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1517. goto out;
  1518. r = 0;
  1519. break;
  1520. }
  1521. case KVM_SET_LAPIC: {
  1522. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1523. r = -ENOMEM;
  1524. if (!lapic)
  1525. goto out;
  1526. r = -EFAULT;
  1527. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1528. goto out;
  1529. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1530. if (r)
  1531. goto out;
  1532. r = 0;
  1533. break;
  1534. }
  1535. case KVM_INTERRUPT: {
  1536. struct kvm_interrupt irq;
  1537. r = -EFAULT;
  1538. if (copy_from_user(&irq, argp, sizeof irq))
  1539. goto out;
  1540. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1541. if (r)
  1542. goto out;
  1543. r = 0;
  1544. break;
  1545. }
  1546. case KVM_NMI: {
  1547. r = kvm_vcpu_ioctl_nmi(vcpu);
  1548. if (r)
  1549. goto out;
  1550. r = 0;
  1551. break;
  1552. }
  1553. case KVM_SET_CPUID: {
  1554. struct kvm_cpuid __user *cpuid_arg = argp;
  1555. struct kvm_cpuid cpuid;
  1556. r = -EFAULT;
  1557. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1558. goto out;
  1559. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1560. if (r)
  1561. goto out;
  1562. break;
  1563. }
  1564. case KVM_SET_CPUID2: {
  1565. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1566. struct kvm_cpuid2 cpuid;
  1567. r = -EFAULT;
  1568. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1569. goto out;
  1570. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1571. cpuid_arg->entries);
  1572. if (r)
  1573. goto out;
  1574. break;
  1575. }
  1576. case KVM_GET_CPUID2: {
  1577. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1578. struct kvm_cpuid2 cpuid;
  1579. r = -EFAULT;
  1580. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1581. goto out;
  1582. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1583. cpuid_arg->entries);
  1584. if (r)
  1585. goto out;
  1586. r = -EFAULT;
  1587. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1588. goto out;
  1589. r = 0;
  1590. break;
  1591. }
  1592. case KVM_GET_MSRS:
  1593. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1594. break;
  1595. case KVM_SET_MSRS:
  1596. r = msr_io(vcpu, argp, do_set_msr, 0);
  1597. break;
  1598. case KVM_TPR_ACCESS_REPORTING: {
  1599. struct kvm_tpr_access_ctl tac;
  1600. r = -EFAULT;
  1601. if (copy_from_user(&tac, argp, sizeof tac))
  1602. goto out;
  1603. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1604. if (r)
  1605. goto out;
  1606. r = -EFAULT;
  1607. if (copy_to_user(argp, &tac, sizeof tac))
  1608. goto out;
  1609. r = 0;
  1610. break;
  1611. };
  1612. case KVM_SET_VAPIC_ADDR: {
  1613. struct kvm_vapic_addr va;
  1614. r = -EINVAL;
  1615. if (!irqchip_in_kernel(vcpu->kvm))
  1616. goto out;
  1617. r = -EFAULT;
  1618. if (copy_from_user(&va, argp, sizeof va))
  1619. goto out;
  1620. r = 0;
  1621. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1622. break;
  1623. }
  1624. case KVM_X86_SETUP_MCE: {
  1625. u64 mcg_cap;
  1626. r = -EFAULT;
  1627. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1628. goto out;
  1629. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1630. break;
  1631. }
  1632. case KVM_X86_SET_MCE: {
  1633. struct kvm_x86_mce mce;
  1634. r = -EFAULT;
  1635. if (copy_from_user(&mce, argp, sizeof mce))
  1636. goto out;
  1637. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1638. break;
  1639. }
  1640. default:
  1641. r = -EINVAL;
  1642. }
  1643. out:
  1644. kfree(lapic);
  1645. return r;
  1646. }
  1647. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1648. {
  1649. int ret;
  1650. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1651. return -1;
  1652. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1653. return ret;
  1654. }
  1655. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1656. u32 kvm_nr_mmu_pages)
  1657. {
  1658. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1659. return -EINVAL;
  1660. down_write(&kvm->slots_lock);
  1661. spin_lock(&kvm->mmu_lock);
  1662. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1663. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1664. spin_unlock(&kvm->mmu_lock);
  1665. up_write(&kvm->slots_lock);
  1666. return 0;
  1667. }
  1668. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1669. {
  1670. return kvm->arch.n_alloc_mmu_pages;
  1671. }
  1672. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1673. {
  1674. int i;
  1675. struct kvm_mem_alias *alias;
  1676. for (i = 0; i < kvm->arch.naliases; ++i) {
  1677. alias = &kvm->arch.aliases[i];
  1678. if (gfn >= alias->base_gfn
  1679. && gfn < alias->base_gfn + alias->npages)
  1680. return alias->target_gfn + gfn - alias->base_gfn;
  1681. }
  1682. return gfn;
  1683. }
  1684. /*
  1685. * Set a new alias region. Aliases map a portion of physical memory into
  1686. * another portion. This is useful for memory windows, for example the PC
  1687. * VGA region.
  1688. */
  1689. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1690. struct kvm_memory_alias *alias)
  1691. {
  1692. int r, n;
  1693. struct kvm_mem_alias *p;
  1694. r = -EINVAL;
  1695. /* General sanity checks */
  1696. if (alias->memory_size & (PAGE_SIZE - 1))
  1697. goto out;
  1698. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1699. goto out;
  1700. if (alias->slot >= KVM_ALIAS_SLOTS)
  1701. goto out;
  1702. if (alias->guest_phys_addr + alias->memory_size
  1703. < alias->guest_phys_addr)
  1704. goto out;
  1705. if (alias->target_phys_addr + alias->memory_size
  1706. < alias->target_phys_addr)
  1707. goto out;
  1708. down_write(&kvm->slots_lock);
  1709. spin_lock(&kvm->mmu_lock);
  1710. p = &kvm->arch.aliases[alias->slot];
  1711. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1712. p->npages = alias->memory_size >> PAGE_SHIFT;
  1713. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1714. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1715. if (kvm->arch.aliases[n - 1].npages)
  1716. break;
  1717. kvm->arch.naliases = n;
  1718. spin_unlock(&kvm->mmu_lock);
  1719. kvm_mmu_zap_all(kvm);
  1720. up_write(&kvm->slots_lock);
  1721. return 0;
  1722. out:
  1723. return r;
  1724. }
  1725. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1726. {
  1727. int r;
  1728. r = 0;
  1729. switch (chip->chip_id) {
  1730. case KVM_IRQCHIP_PIC_MASTER:
  1731. memcpy(&chip->chip.pic,
  1732. &pic_irqchip(kvm)->pics[0],
  1733. sizeof(struct kvm_pic_state));
  1734. break;
  1735. case KVM_IRQCHIP_PIC_SLAVE:
  1736. memcpy(&chip->chip.pic,
  1737. &pic_irqchip(kvm)->pics[1],
  1738. sizeof(struct kvm_pic_state));
  1739. break;
  1740. case KVM_IRQCHIP_IOAPIC:
  1741. memcpy(&chip->chip.ioapic,
  1742. ioapic_irqchip(kvm),
  1743. sizeof(struct kvm_ioapic_state));
  1744. break;
  1745. default:
  1746. r = -EINVAL;
  1747. break;
  1748. }
  1749. return r;
  1750. }
  1751. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1752. {
  1753. int r;
  1754. r = 0;
  1755. switch (chip->chip_id) {
  1756. case KVM_IRQCHIP_PIC_MASTER:
  1757. memcpy(&pic_irqchip(kvm)->pics[0],
  1758. &chip->chip.pic,
  1759. sizeof(struct kvm_pic_state));
  1760. break;
  1761. case KVM_IRQCHIP_PIC_SLAVE:
  1762. memcpy(&pic_irqchip(kvm)->pics[1],
  1763. &chip->chip.pic,
  1764. sizeof(struct kvm_pic_state));
  1765. break;
  1766. case KVM_IRQCHIP_IOAPIC:
  1767. memcpy(ioapic_irqchip(kvm),
  1768. &chip->chip.ioapic,
  1769. sizeof(struct kvm_ioapic_state));
  1770. break;
  1771. default:
  1772. r = -EINVAL;
  1773. break;
  1774. }
  1775. kvm_pic_update_irq(pic_irqchip(kvm));
  1776. return r;
  1777. }
  1778. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1779. {
  1780. int r = 0;
  1781. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1782. return r;
  1783. }
  1784. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1785. {
  1786. int r = 0;
  1787. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1788. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1789. return r;
  1790. }
  1791. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1792. struct kvm_reinject_control *control)
  1793. {
  1794. if (!kvm->arch.vpit)
  1795. return -ENXIO;
  1796. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1797. return 0;
  1798. }
  1799. /*
  1800. * Get (and clear) the dirty memory log for a memory slot.
  1801. */
  1802. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1803. struct kvm_dirty_log *log)
  1804. {
  1805. int r;
  1806. int n;
  1807. struct kvm_memory_slot *memslot;
  1808. int is_dirty = 0;
  1809. down_write(&kvm->slots_lock);
  1810. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1811. if (r)
  1812. goto out;
  1813. /* If nothing is dirty, don't bother messing with page tables. */
  1814. if (is_dirty) {
  1815. spin_lock(&kvm->mmu_lock);
  1816. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1817. spin_unlock(&kvm->mmu_lock);
  1818. kvm_flush_remote_tlbs(kvm);
  1819. memslot = &kvm->memslots[log->slot];
  1820. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1821. memset(memslot->dirty_bitmap, 0, n);
  1822. }
  1823. r = 0;
  1824. out:
  1825. up_write(&kvm->slots_lock);
  1826. return r;
  1827. }
  1828. long kvm_arch_vm_ioctl(struct file *filp,
  1829. unsigned int ioctl, unsigned long arg)
  1830. {
  1831. struct kvm *kvm = filp->private_data;
  1832. void __user *argp = (void __user *)arg;
  1833. int r = -EINVAL;
  1834. /*
  1835. * This union makes it completely explicit to gcc-3.x
  1836. * that these two variables' stack usage should be
  1837. * combined, not added together.
  1838. */
  1839. union {
  1840. struct kvm_pit_state ps;
  1841. struct kvm_memory_alias alias;
  1842. struct kvm_pit_config pit_config;
  1843. } u;
  1844. switch (ioctl) {
  1845. case KVM_SET_TSS_ADDR:
  1846. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1847. if (r < 0)
  1848. goto out;
  1849. break;
  1850. case KVM_SET_MEMORY_REGION: {
  1851. struct kvm_memory_region kvm_mem;
  1852. struct kvm_userspace_memory_region kvm_userspace_mem;
  1853. r = -EFAULT;
  1854. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1855. goto out;
  1856. kvm_userspace_mem.slot = kvm_mem.slot;
  1857. kvm_userspace_mem.flags = kvm_mem.flags;
  1858. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1859. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1860. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1861. if (r)
  1862. goto out;
  1863. break;
  1864. }
  1865. case KVM_SET_NR_MMU_PAGES:
  1866. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1867. if (r)
  1868. goto out;
  1869. break;
  1870. case KVM_GET_NR_MMU_PAGES:
  1871. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1872. break;
  1873. case KVM_SET_MEMORY_ALIAS:
  1874. r = -EFAULT;
  1875. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1876. goto out;
  1877. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1878. if (r)
  1879. goto out;
  1880. break;
  1881. case KVM_CREATE_IRQCHIP:
  1882. r = -ENOMEM;
  1883. kvm->arch.vpic = kvm_create_pic(kvm);
  1884. if (kvm->arch.vpic) {
  1885. r = kvm_ioapic_init(kvm);
  1886. if (r) {
  1887. kfree(kvm->arch.vpic);
  1888. kvm->arch.vpic = NULL;
  1889. goto out;
  1890. }
  1891. } else
  1892. goto out;
  1893. r = kvm_setup_default_irq_routing(kvm);
  1894. if (r) {
  1895. kfree(kvm->arch.vpic);
  1896. kfree(kvm->arch.vioapic);
  1897. goto out;
  1898. }
  1899. break;
  1900. case KVM_CREATE_PIT:
  1901. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  1902. goto create_pit;
  1903. case KVM_CREATE_PIT2:
  1904. r = -EFAULT;
  1905. if (copy_from_user(&u.pit_config, argp,
  1906. sizeof(struct kvm_pit_config)))
  1907. goto out;
  1908. create_pit:
  1909. mutex_lock(&kvm->lock);
  1910. r = -EEXIST;
  1911. if (kvm->arch.vpit)
  1912. goto create_pit_unlock;
  1913. r = -ENOMEM;
  1914. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  1915. if (kvm->arch.vpit)
  1916. r = 0;
  1917. create_pit_unlock:
  1918. mutex_unlock(&kvm->lock);
  1919. break;
  1920. case KVM_IRQ_LINE_STATUS:
  1921. case KVM_IRQ_LINE: {
  1922. struct kvm_irq_level irq_event;
  1923. r = -EFAULT;
  1924. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1925. goto out;
  1926. if (irqchip_in_kernel(kvm)) {
  1927. __s32 status;
  1928. mutex_lock(&kvm->irq_lock);
  1929. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1930. irq_event.irq, irq_event.level);
  1931. mutex_unlock(&kvm->irq_lock);
  1932. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1933. irq_event.status = status;
  1934. if (copy_to_user(argp, &irq_event,
  1935. sizeof irq_event))
  1936. goto out;
  1937. }
  1938. r = 0;
  1939. }
  1940. break;
  1941. }
  1942. case KVM_GET_IRQCHIP: {
  1943. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1944. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1945. r = -ENOMEM;
  1946. if (!chip)
  1947. goto out;
  1948. r = -EFAULT;
  1949. if (copy_from_user(chip, argp, sizeof *chip))
  1950. goto get_irqchip_out;
  1951. r = -ENXIO;
  1952. if (!irqchip_in_kernel(kvm))
  1953. goto get_irqchip_out;
  1954. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1955. if (r)
  1956. goto get_irqchip_out;
  1957. r = -EFAULT;
  1958. if (copy_to_user(argp, chip, sizeof *chip))
  1959. goto get_irqchip_out;
  1960. r = 0;
  1961. get_irqchip_out:
  1962. kfree(chip);
  1963. if (r)
  1964. goto out;
  1965. break;
  1966. }
  1967. case KVM_SET_IRQCHIP: {
  1968. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1969. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1970. r = -ENOMEM;
  1971. if (!chip)
  1972. goto out;
  1973. r = -EFAULT;
  1974. if (copy_from_user(chip, argp, sizeof *chip))
  1975. goto set_irqchip_out;
  1976. r = -ENXIO;
  1977. if (!irqchip_in_kernel(kvm))
  1978. goto set_irqchip_out;
  1979. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1980. if (r)
  1981. goto set_irqchip_out;
  1982. r = 0;
  1983. set_irqchip_out:
  1984. kfree(chip);
  1985. if (r)
  1986. goto out;
  1987. break;
  1988. }
  1989. case KVM_GET_PIT: {
  1990. r = -EFAULT;
  1991. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1992. goto out;
  1993. r = -ENXIO;
  1994. if (!kvm->arch.vpit)
  1995. goto out;
  1996. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1997. if (r)
  1998. goto out;
  1999. r = -EFAULT;
  2000. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2001. goto out;
  2002. r = 0;
  2003. break;
  2004. }
  2005. case KVM_SET_PIT: {
  2006. r = -EFAULT;
  2007. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2008. goto out;
  2009. r = -ENXIO;
  2010. if (!kvm->arch.vpit)
  2011. goto out;
  2012. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2013. if (r)
  2014. goto out;
  2015. r = 0;
  2016. break;
  2017. }
  2018. case KVM_REINJECT_CONTROL: {
  2019. struct kvm_reinject_control control;
  2020. r = -EFAULT;
  2021. if (copy_from_user(&control, argp, sizeof(control)))
  2022. goto out;
  2023. r = kvm_vm_ioctl_reinject(kvm, &control);
  2024. if (r)
  2025. goto out;
  2026. r = 0;
  2027. break;
  2028. }
  2029. default:
  2030. ;
  2031. }
  2032. out:
  2033. return r;
  2034. }
  2035. static void kvm_init_msr_list(void)
  2036. {
  2037. u32 dummy[2];
  2038. unsigned i, j;
  2039. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2040. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2041. continue;
  2042. if (j < i)
  2043. msrs_to_save[j] = msrs_to_save[i];
  2044. j++;
  2045. }
  2046. num_msrs_to_save = j;
  2047. }
  2048. /*
  2049. * Only apic need an MMIO device hook, so shortcut now..
  2050. */
  2051. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  2052. gpa_t addr, int len,
  2053. int is_write)
  2054. {
  2055. struct kvm_io_device *dev;
  2056. if (vcpu->arch.apic) {
  2057. dev = &vcpu->arch.apic->dev;
  2058. if (kvm_iodevice_in_range(dev, addr, len, is_write))
  2059. return dev;
  2060. }
  2061. return NULL;
  2062. }
  2063. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  2064. gpa_t addr, int len,
  2065. int is_write)
  2066. {
  2067. struct kvm_io_device *dev;
  2068. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  2069. if (dev == NULL)
  2070. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  2071. is_write);
  2072. return dev;
  2073. }
  2074. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2075. struct kvm_vcpu *vcpu)
  2076. {
  2077. void *data = val;
  2078. int r = X86EMUL_CONTINUE;
  2079. while (bytes) {
  2080. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2081. unsigned offset = addr & (PAGE_SIZE-1);
  2082. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2083. int ret;
  2084. if (gpa == UNMAPPED_GVA) {
  2085. r = X86EMUL_PROPAGATE_FAULT;
  2086. goto out;
  2087. }
  2088. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2089. if (ret < 0) {
  2090. r = X86EMUL_UNHANDLEABLE;
  2091. goto out;
  2092. }
  2093. bytes -= toread;
  2094. data += toread;
  2095. addr += toread;
  2096. }
  2097. out:
  2098. return r;
  2099. }
  2100. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2101. struct kvm_vcpu *vcpu)
  2102. {
  2103. void *data = val;
  2104. int r = X86EMUL_CONTINUE;
  2105. while (bytes) {
  2106. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2107. unsigned offset = addr & (PAGE_SIZE-1);
  2108. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2109. int ret;
  2110. if (gpa == UNMAPPED_GVA) {
  2111. r = X86EMUL_PROPAGATE_FAULT;
  2112. goto out;
  2113. }
  2114. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2115. if (ret < 0) {
  2116. r = X86EMUL_UNHANDLEABLE;
  2117. goto out;
  2118. }
  2119. bytes -= towrite;
  2120. data += towrite;
  2121. addr += towrite;
  2122. }
  2123. out:
  2124. return r;
  2125. }
  2126. static int emulator_read_emulated(unsigned long addr,
  2127. void *val,
  2128. unsigned int bytes,
  2129. struct kvm_vcpu *vcpu)
  2130. {
  2131. struct kvm_io_device *mmio_dev;
  2132. gpa_t gpa;
  2133. if (vcpu->mmio_read_completed) {
  2134. memcpy(val, vcpu->mmio_data, bytes);
  2135. vcpu->mmio_read_completed = 0;
  2136. return X86EMUL_CONTINUE;
  2137. }
  2138. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2139. /* For APIC access vmexit */
  2140. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2141. goto mmio;
  2142. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2143. == X86EMUL_CONTINUE)
  2144. return X86EMUL_CONTINUE;
  2145. if (gpa == UNMAPPED_GVA)
  2146. return X86EMUL_PROPAGATE_FAULT;
  2147. mmio:
  2148. /*
  2149. * Is this MMIO handled locally?
  2150. */
  2151. mutex_lock(&vcpu->kvm->lock);
  2152. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  2153. mutex_unlock(&vcpu->kvm->lock);
  2154. if (mmio_dev) {
  2155. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  2156. return X86EMUL_CONTINUE;
  2157. }
  2158. vcpu->mmio_needed = 1;
  2159. vcpu->mmio_phys_addr = gpa;
  2160. vcpu->mmio_size = bytes;
  2161. vcpu->mmio_is_write = 0;
  2162. return X86EMUL_UNHANDLEABLE;
  2163. }
  2164. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2165. const void *val, int bytes)
  2166. {
  2167. int ret;
  2168. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2169. if (ret < 0)
  2170. return 0;
  2171. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2172. return 1;
  2173. }
  2174. static int emulator_write_emulated_onepage(unsigned long addr,
  2175. const void *val,
  2176. unsigned int bytes,
  2177. struct kvm_vcpu *vcpu)
  2178. {
  2179. struct kvm_io_device *mmio_dev;
  2180. gpa_t gpa;
  2181. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2182. if (gpa == UNMAPPED_GVA) {
  2183. kvm_inject_page_fault(vcpu, addr, 2);
  2184. return X86EMUL_PROPAGATE_FAULT;
  2185. }
  2186. /* For APIC access vmexit */
  2187. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2188. goto mmio;
  2189. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2190. return X86EMUL_CONTINUE;
  2191. mmio:
  2192. /*
  2193. * Is this MMIO handled locally?
  2194. */
  2195. mutex_lock(&vcpu->kvm->lock);
  2196. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  2197. mutex_unlock(&vcpu->kvm->lock);
  2198. if (mmio_dev) {
  2199. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  2200. return X86EMUL_CONTINUE;
  2201. }
  2202. vcpu->mmio_needed = 1;
  2203. vcpu->mmio_phys_addr = gpa;
  2204. vcpu->mmio_size = bytes;
  2205. vcpu->mmio_is_write = 1;
  2206. memcpy(vcpu->mmio_data, val, bytes);
  2207. return X86EMUL_CONTINUE;
  2208. }
  2209. int emulator_write_emulated(unsigned long addr,
  2210. const void *val,
  2211. unsigned int bytes,
  2212. struct kvm_vcpu *vcpu)
  2213. {
  2214. /* Crossing a page boundary? */
  2215. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2216. int rc, now;
  2217. now = -addr & ~PAGE_MASK;
  2218. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2219. if (rc != X86EMUL_CONTINUE)
  2220. return rc;
  2221. addr += now;
  2222. val += now;
  2223. bytes -= now;
  2224. }
  2225. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2226. }
  2227. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2228. static int emulator_cmpxchg_emulated(unsigned long addr,
  2229. const void *old,
  2230. const void *new,
  2231. unsigned int bytes,
  2232. struct kvm_vcpu *vcpu)
  2233. {
  2234. static int reported;
  2235. if (!reported) {
  2236. reported = 1;
  2237. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2238. }
  2239. #ifndef CONFIG_X86_64
  2240. /* guests cmpxchg8b have to be emulated atomically */
  2241. if (bytes == 8) {
  2242. gpa_t gpa;
  2243. struct page *page;
  2244. char *kaddr;
  2245. u64 val;
  2246. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2247. if (gpa == UNMAPPED_GVA ||
  2248. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2249. goto emul_write;
  2250. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2251. goto emul_write;
  2252. val = *(u64 *)new;
  2253. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2254. kaddr = kmap_atomic(page, KM_USER0);
  2255. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2256. kunmap_atomic(kaddr, KM_USER0);
  2257. kvm_release_page_dirty(page);
  2258. }
  2259. emul_write:
  2260. #endif
  2261. return emulator_write_emulated(addr, new, bytes, vcpu);
  2262. }
  2263. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2264. {
  2265. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2266. }
  2267. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2268. {
  2269. kvm_mmu_invlpg(vcpu, address);
  2270. return X86EMUL_CONTINUE;
  2271. }
  2272. int emulate_clts(struct kvm_vcpu *vcpu)
  2273. {
  2274. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2275. return X86EMUL_CONTINUE;
  2276. }
  2277. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2278. {
  2279. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2280. switch (dr) {
  2281. case 0 ... 3:
  2282. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2283. return X86EMUL_CONTINUE;
  2284. default:
  2285. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2286. return X86EMUL_UNHANDLEABLE;
  2287. }
  2288. }
  2289. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2290. {
  2291. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2292. int exception;
  2293. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2294. if (exception) {
  2295. /* FIXME: better handling */
  2296. return X86EMUL_UNHANDLEABLE;
  2297. }
  2298. return X86EMUL_CONTINUE;
  2299. }
  2300. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2301. {
  2302. u8 opcodes[4];
  2303. unsigned long rip = kvm_rip_read(vcpu);
  2304. unsigned long rip_linear;
  2305. if (!printk_ratelimit())
  2306. return;
  2307. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2308. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2309. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2310. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2311. }
  2312. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2313. static struct x86_emulate_ops emulate_ops = {
  2314. .read_std = kvm_read_guest_virt,
  2315. .read_emulated = emulator_read_emulated,
  2316. .write_emulated = emulator_write_emulated,
  2317. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2318. };
  2319. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2320. {
  2321. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2322. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2323. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2324. vcpu->arch.regs_dirty = ~0;
  2325. }
  2326. int emulate_instruction(struct kvm_vcpu *vcpu,
  2327. struct kvm_run *run,
  2328. unsigned long cr2,
  2329. u16 error_code,
  2330. int emulation_type)
  2331. {
  2332. int r, shadow_mask;
  2333. struct decode_cache *c;
  2334. kvm_clear_exception_queue(vcpu);
  2335. vcpu->arch.mmio_fault_cr2 = cr2;
  2336. /*
  2337. * TODO: fix x86_emulate.c to use guest_read/write_register
  2338. * instead of direct ->regs accesses, can save hundred cycles
  2339. * on Intel for instructions that don't read/change RSP, for
  2340. * for example.
  2341. */
  2342. cache_all_regs(vcpu);
  2343. vcpu->mmio_is_write = 0;
  2344. vcpu->arch.pio.string = 0;
  2345. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2346. int cs_db, cs_l;
  2347. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2348. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2349. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2350. vcpu->arch.emulate_ctxt.mode =
  2351. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2352. ? X86EMUL_MODE_REAL : cs_l
  2353. ? X86EMUL_MODE_PROT64 : cs_db
  2354. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2355. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2356. /* Reject the instructions other than VMCALL/VMMCALL when
  2357. * try to emulate invalid opcode */
  2358. c = &vcpu->arch.emulate_ctxt.decode;
  2359. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2360. (!(c->twobyte && c->b == 0x01 &&
  2361. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2362. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2363. return EMULATE_FAIL;
  2364. ++vcpu->stat.insn_emulation;
  2365. if (r) {
  2366. ++vcpu->stat.insn_emulation_fail;
  2367. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2368. return EMULATE_DONE;
  2369. return EMULATE_FAIL;
  2370. }
  2371. }
  2372. if (emulation_type & EMULTYPE_SKIP) {
  2373. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2374. return EMULATE_DONE;
  2375. }
  2376. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2377. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2378. if (r == 0)
  2379. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2380. if (vcpu->arch.pio.string)
  2381. return EMULATE_DO_MMIO;
  2382. if ((r || vcpu->mmio_is_write) && run) {
  2383. run->exit_reason = KVM_EXIT_MMIO;
  2384. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2385. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2386. run->mmio.len = vcpu->mmio_size;
  2387. run->mmio.is_write = vcpu->mmio_is_write;
  2388. }
  2389. if (r) {
  2390. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2391. return EMULATE_DONE;
  2392. if (!vcpu->mmio_needed) {
  2393. kvm_report_emulation_failure(vcpu, "mmio");
  2394. return EMULATE_FAIL;
  2395. }
  2396. return EMULATE_DO_MMIO;
  2397. }
  2398. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2399. if (vcpu->mmio_is_write) {
  2400. vcpu->mmio_needed = 0;
  2401. return EMULATE_DO_MMIO;
  2402. }
  2403. return EMULATE_DONE;
  2404. }
  2405. EXPORT_SYMBOL_GPL(emulate_instruction);
  2406. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2407. {
  2408. void *p = vcpu->arch.pio_data;
  2409. gva_t q = vcpu->arch.pio.guest_gva;
  2410. unsigned bytes;
  2411. int ret;
  2412. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2413. if (vcpu->arch.pio.in)
  2414. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2415. else
  2416. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2417. return ret;
  2418. }
  2419. int complete_pio(struct kvm_vcpu *vcpu)
  2420. {
  2421. struct kvm_pio_request *io = &vcpu->arch.pio;
  2422. long delta;
  2423. int r;
  2424. unsigned long val;
  2425. if (!io->string) {
  2426. if (io->in) {
  2427. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2428. memcpy(&val, vcpu->arch.pio_data, io->size);
  2429. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2430. }
  2431. } else {
  2432. if (io->in) {
  2433. r = pio_copy_data(vcpu);
  2434. if (r)
  2435. return r;
  2436. }
  2437. delta = 1;
  2438. if (io->rep) {
  2439. delta *= io->cur_count;
  2440. /*
  2441. * The size of the register should really depend on
  2442. * current address size.
  2443. */
  2444. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2445. val -= delta;
  2446. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2447. }
  2448. if (io->down)
  2449. delta = -delta;
  2450. delta *= io->size;
  2451. if (io->in) {
  2452. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2453. val += delta;
  2454. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2455. } else {
  2456. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2457. val += delta;
  2458. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2459. }
  2460. }
  2461. io->count -= io->cur_count;
  2462. io->cur_count = 0;
  2463. return 0;
  2464. }
  2465. static void kernel_pio(struct kvm_io_device *pio_dev,
  2466. struct kvm_vcpu *vcpu,
  2467. void *pd)
  2468. {
  2469. /* TODO: String I/O for in kernel device */
  2470. if (vcpu->arch.pio.in)
  2471. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2472. vcpu->arch.pio.size,
  2473. pd);
  2474. else
  2475. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2476. vcpu->arch.pio.size,
  2477. pd);
  2478. }
  2479. static void pio_string_write(struct kvm_io_device *pio_dev,
  2480. struct kvm_vcpu *vcpu)
  2481. {
  2482. struct kvm_pio_request *io = &vcpu->arch.pio;
  2483. void *pd = vcpu->arch.pio_data;
  2484. int i;
  2485. for (i = 0; i < io->cur_count; i++) {
  2486. kvm_iodevice_write(pio_dev, io->port,
  2487. io->size,
  2488. pd);
  2489. pd += io->size;
  2490. }
  2491. }
  2492. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2493. gpa_t addr, int len,
  2494. int is_write)
  2495. {
  2496. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2497. }
  2498. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2499. int size, unsigned port)
  2500. {
  2501. struct kvm_io_device *pio_dev;
  2502. unsigned long val;
  2503. vcpu->run->exit_reason = KVM_EXIT_IO;
  2504. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2505. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2506. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2507. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2508. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2509. vcpu->arch.pio.in = in;
  2510. vcpu->arch.pio.string = 0;
  2511. vcpu->arch.pio.down = 0;
  2512. vcpu->arch.pio.rep = 0;
  2513. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2514. size, 1);
  2515. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2516. memcpy(vcpu->arch.pio_data, &val, 4);
  2517. mutex_lock(&vcpu->kvm->lock);
  2518. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2519. mutex_unlock(&vcpu->kvm->lock);
  2520. if (pio_dev) {
  2521. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2522. complete_pio(vcpu);
  2523. return 1;
  2524. }
  2525. return 0;
  2526. }
  2527. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2528. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2529. int size, unsigned long count, int down,
  2530. gva_t address, int rep, unsigned port)
  2531. {
  2532. unsigned now, in_page;
  2533. int ret = 0;
  2534. struct kvm_io_device *pio_dev;
  2535. vcpu->run->exit_reason = KVM_EXIT_IO;
  2536. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2537. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2538. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2539. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2540. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2541. vcpu->arch.pio.in = in;
  2542. vcpu->arch.pio.string = 1;
  2543. vcpu->arch.pio.down = down;
  2544. vcpu->arch.pio.rep = rep;
  2545. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2546. size, count);
  2547. if (!count) {
  2548. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2549. return 1;
  2550. }
  2551. if (!down)
  2552. in_page = PAGE_SIZE - offset_in_page(address);
  2553. else
  2554. in_page = offset_in_page(address) + size;
  2555. now = min(count, (unsigned long)in_page / size);
  2556. if (!now)
  2557. now = 1;
  2558. if (down) {
  2559. /*
  2560. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2561. */
  2562. pr_unimpl(vcpu, "guest string pio down\n");
  2563. kvm_inject_gp(vcpu, 0);
  2564. return 1;
  2565. }
  2566. vcpu->run->io.count = now;
  2567. vcpu->arch.pio.cur_count = now;
  2568. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2569. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2570. vcpu->arch.pio.guest_gva = address;
  2571. mutex_lock(&vcpu->kvm->lock);
  2572. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2573. vcpu->arch.pio.cur_count,
  2574. !vcpu->arch.pio.in);
  2575. mutex_unlock(&vcpu->kvm->lock);
  2576. if (!vcpu->arch.pio.in) {
  2577. /* string PIO write */
  2578. ret = pio_copy_data(vcpu);
  2579. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2580. kvm_inject_gp(vcpu, 0);
  2581. return 1;
  2582. }
  2583. if (ret == 0 && pio_dev) {
  2584. pio_string_write(pio_dev, vcpu);
  2585. complete_pio(vcpu);
  2586. if (vcpu->arch.pio.count == 0)
  2587. ret = 1;
  2588. }
  2589. } else if (pio_dev)
  2590. pr_unimpl(vcpu, "no string pio read support yet, "
  2591. "port %x size %d count %ld\n",
  2592. port, size, count);
  2593. return ret;
  2594. }
  2595. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2596. static void bounce_off(void *info)
  2597. {
  2598. /* nothing */
  2599. }
  2600. static unsigned int ref_freq;
  2601. static unsigned long tsc_khz_ref;
  2602. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2603. void *data)
  2604. {
  2605. struct cpufreq_freqs *freq = data;
  2606. struct kvm *kvm;
  2607. struct kvm_vcpu *vcpu;
  2608. int i, send_ipi = 0;
  2609. if (!ref_freq)
  2610. ref_freq = freq->old;
  2611. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2612. return 0;
  2613. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2614. return 0;
  2615. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2616. spin_lock(&kvm_lock);
  2617. list_for_each_entry(kvm, &vm_list, vm_list) {
  2618. kvm_for_each_vcpu(i, vcpu, kvm) {
  2619. if (vcpu->cpu != freq->cpu)
  2620. continue;
  2621. if (!kvm_request_guest_time_update(vcpu))
  2622. continue;
  2623. if (vcpu->cpu != smp_processor_id())
  2624. send_ipi++;
  2625. }
  2626. }
  2627. spin_unlock(&kvm_lock);
  2628. if (freq->old < freq->new && send_ipi) {
  2629. /*
  2630. * We upscale the frequency. Must make the guest
  2631. * doesn't see old kvmclock values while running with
  2632. * the new frequency, otherwise we risk the guest sees
  2633. * time go backwards.
  2634. *
  2635. * In case we update the frequency for another cpu
  2636. * (which might be in guest context) send an interrupt
  2637. * to kick the cpu out of guest context. Next time
  2638. * guest context is entered kvmclock will be updated,
  2639. * so the guest will not see stale values.
  2640. */
  2641. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2642. }
  2643. return 0;
  2644. }
  2645. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2646. .notifier_call = kvmclock_cpufreq_notifier
  2647. };
  2648. int kvm_arch_init(void *opaque)
  2649. {
  2650. int r, cpu;
  2651. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2652. if (kvm_x86_ops) {
  2653. printk(KERN_ERR "kvm: already loaded the other module\n");
  2654. r = -EEXIST;
  2655. goto out;
  2656. }
  2657. if (!ops->cpu_has_kvm_support()) {
  2658. printk(KERN_ERR "kvm: no hardware support\n");
  2659. r = -EOPNOTSUPP;
  2660. goto out;
  2661. }
  2662. if (ops->disabled_by_bios()) {
  2663. printk(KERN_ERR "kvm: disabled by bios\n");
  2664. r = -EOPNOTSUPP;
  2665. goto out;
  2666. }
  2667. r = kvm_mmu_module_init();
  2668. if (r)
  2669. goto out;
  2670. kvm_init_msr_list();
  2671. kvm_x86_ops = ops;
  2672. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2673. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2674. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2675. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2676. for_each_possible_cpu(cpu)
  2677. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2678. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2679. tsc_khz_ref = tsc_khz;
  2680. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2681. CPUFREQ_TRANSITION_NOTIFIER);
  2682. }
  2683. return 0;
  2684. out:
  2685. return r;
  2686. }
  2687. void kvm_arch_exit(void)
  2688. {
  2689. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2690. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2691. CPUFREQ_TRANSITION_NOTIFIER);
  2692. kvm_x86_ops = NULL;
  2693. kvm_mmu_module_exit();
  2694. }
  2695. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2696. {
  2697. ++vcpu->stat.halt_exits;
  2698. if (irqchip_in_kernel(vcpu->kvm)) {
  2699. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2700. return 1;
  2701. } else {
  2702. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2703. return 0;
  2704. }
  2705. }
  2706. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2707. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2708. unsigned long a1)
  2709. {
  2710. if (is_long_mode(vcpu))
  2711. return a0;
  2712. else
  2713. return a0 | ((gpa_t)a1 << 32);
  2714. }
  2715. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2716. {
  2717. unsigned long nr, a0, a1, a2, a3, ret;
  2718. int r = 1;
  2719. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2720. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2721. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2722. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2723. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2724. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2725. if (!is_long_mode(vcpu)) {
  2726. nr &= 0xFFFFFFFF;
  2727. a0 &= 0xFFFFFFFF;
  2728. a1 &= 0xFFFFFFFF;
  2729. a2 &= 0xFFFFFFFF;
  2730. a3 &= 0xFFFFFFFF;
  2731. }
  2732. switch (nr) {
  2733. case KVM_HC_VAPIC_POLL_IRQ:
  2734. ret = 0;
  2735. break;
  2736. case KVM_HC_MMU_OP:
  2737. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2738. break;
  2739. default:
  2740. ret = -KVM_ENOSYS;
  2741. break;
  2742. }
  2743. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2744. ++vcpu->stat.hypercalls;
  2745. return r;
  2746. }
  2747. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2748. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2749. {
  2750. char instruction[3];
  2751. int ret = 0;
  2752. unsigned long rip = kvm_rip_read(vcpu);
  2753. /*
  2754. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2755. * to ensure that the updated hypercall appears atomically across all
  2756. * VCPUs.
  2757. */
  2758. kvm_mmu_zap_all(vcpu->kvm);
  2759. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2760. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2761. != X86EMUL_CONTINUE)
  2762. ret = -EFAULT;
  2763. return ret;
  2764. }
  2765. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2766. {
  2767. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2768. }
  2769. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2770. {
  2771. struct descriptor_table dt = { limit, base };
  2772. kvm_x86_ops->set_gdt(vcpu, &dt);
  2773. }
  2774. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2775. {
  2776. struct descriptor_table dt = { limit, base };
  2777. kvm_x86_ops->set_idt(vcpu, &dt);
  2778. }
  2779. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2780. unsigned long *rflags)
  2781. {
  2782. kvm_lmsw(vcpu, msw);
  2783. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2784. }
  2785. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2786. {
  2787. unsigned long value;
  2788. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2789. switch (cr) {
  2790. case 0:
  2791. value = vcpu->arch.cr0;
  2792. break;
  2793. case 2:
  2794. value = vcpu->arch.cr2;
  2795. break;
  2796. case 3:
  2797. value = vcpu->arch.cr3;
  2798. break;
  2799. case 4:
  2800. value = vcpu->arch.cr4;
  2801. break;
  2802. case 8:
  2803. value = kvm_get_cr8(vcpu);
  2804. break;
  2805. default:
  2806. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2807. return 0;
  2808. }
  2809. return value;
  2810. }
  2811. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2812. unsigned long *rflags)
  2813. {
  2814. switch (cr) {
  2815. case 0:
  2816. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2817. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2818. break;
  2819. case 2:
  2820. vcpu->arch.cr2 = val;
  2821. break;
  2822. case 3:
  2823. kvm_set_cr3(vcpu, val);
  2824. break;
  2825. case 4:
  2826. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2827. break;
  2828. case 8:
  2829. kvm_set_cr8(vcpu, val & 0xfUL);
  2830. break;
  2831. default:
  2832. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2833. }
  2834. }
  2835. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2836. {
  2837. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2838. int j, nent = vcpu->arch.cpuid_nent;
  2839. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2840. /* when no next entry is found, the current entry[i] is reselected */
  2841. for (j = i + 1; ; j = (j + 1) % nent) {
  2842. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2843. if (ej->function == e->function) {
  2844. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2845. return j;
  2846. }
  2847. }
  2848. return 0; /* silence gcc, even though control never reaches here */
  2849. }
  2850. /* find an entry with matching function, matching index (if needed), and that
  2851. * should be read next (if it's stateful) */
  2852. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2853. u32 function, u32 index)
  2854. {
  2855. if (e->function != function)
  2856. return 0;
  2857. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2858. return 0;
  2859. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2860. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2861. return 0;
  2862. return 1;
  2863. }
  2864. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2865. u32 function, u32 index)
  2866. {
  2867. int i;
  2868. struct kvm_cpuid_entry2 *best = NULL;
  2869. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2870. struct kvm_cpuid_entry2 *e;
  2871. e = &vcpu->arch.cpuid_entries[i];
  2872. if (is_matching_cpuid_entry(e, function, index)) {
  2873. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2874. move_to_next_stateful_cpuid_entry(vcpu, i);
  2875. best = e;
  2876. break;
  2877. }
  2878. /*
  2879. * Both basic or both extended?
  2880. */
  2881. if (((e->function ^ function) & 0x80000000) == 0)
  2882. if (!best || e->function > best->function)
  2883. best = e;
  2884. }
  2885. return best;
  2886. }
  2887. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2888. {
  2889. struct kvm_cpuid_entry2 *best;
  2890. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2891. if (best)
  2892. return best->eax & 0xff;
  2893. return 36;
  2894. }
  2895. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2896. {
  2897. u32 function, index;
  2898. struct kvm_cpuid_entry2 *best;
  2899. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2900. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2901. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2902. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2903. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2904. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2905. best = kvm_find_cpuid_entry(vcpu, function, index);
  2906. if (best) {
  2907. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2908. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2909. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2910. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2911. }
  2912. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2913. trace_kvm_cpuid(function,
  2914. kvm_register_read(vcpu, VCPU_REGS_RAX),
  2915. kvm_register_read(vcpu, VCPU_REGS_RBX),
  2916. kvm_register_read(vcpu, VCPU_REGS_RCX),
  2917. kvm_register_read(vcpu, VCPU_REGS_RDX));
  2918. }
  2919. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2920. /*
  2921. * Check if userspace requested an interrupt window, and that the
  2922. * interrupt window is open.
  2923. *
  2924. * No need to exit to userspace if we already have an interrupt queued.
  2925. */
  2926. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2927. struct kvm_run *kvm_run)
  2928. {
  2929. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2930. kvm_run->request_interrupt_window &&
  2931. kvm_arch_interrupt_allowed(vcpu));
  2932. }
  2933. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2934. struct kvm_run *kvm_run)
  2935. {
  2936. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2937. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2938. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2939. if (irqchip_in_kernel(vcpu->kvm))
  2940. kvm_run->ready_for_interrupt_injection = 1;
  2941. else
  2942. kvm_run->ready_for_interrupt_injection =
  2943. kvm_arch_interrupt_allowed(vcpu) &&
  2944. !kvm_cpu_has_interrupt(vcpu) &&
  2945. !kvm_event_needs_reinjection(vcpu);
  2946. }
  2947. static void vapic_enter(struct kvm_vcpu *vcpu)
  2948. {
  2949. struct kvm_lapic *apic = vcpu->arch.apic;
  2950. struct page *page;
  2951. if (!apic || !apic->vapic_addr)
  2952. return;
  2953. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2954. vcpu->arch.apic->vapic_page = page;
  2955. }
  2956. static void vapic_exit(struct kvm_vcpu *vcpu)
  2957. {
  2958. struct kvm_lapic *apic = vcpu->arch.apic;
  2959. if (!apic || !apic->vapic_addr)
  2960. return;
  2961. down_read(&vcpu->kvm->slots_lock);
  2962. kvm_release_page_dirty(apic->vapic_page);
  2963. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2964. up_read(&vcpu->kvm->slots_lock);
  2965. }
  2966. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2967. {
  2968. int max_irr, tpr;
  2969. if (!kvm_x86_ops->update_cr8_intercept)
  2970. return;
  2971. if (!vcpu->arch.apic->vapic_addr)
  2972. max_irr = kvm_lapic_find_highest_irr(vcpu);
  2973. else
  2974. max_irr = -1;
  2975. if (max_irr != -1)
  2976. max_irr >>= 4;
  2977. tpr = kvm_lapic_get_cr8(vcpu);
  2978. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  2979. }
  2980. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2981. {
  2982. /* try to reinject previous events if any */
  2983. if (vcpu->arch.nmi_injected) {
  2984. kvm_x86_ops->set_nmi(vcpu);
  2985. return;
  2986. }
  2987. if (vcpu->arch.interrupt.pending) {
  2988. kvm_x86_ops->set_irq(vcpu);
  2989. return;
  2990. }
  2991. /* try to inject new event if pending */
  2992. if (vcpu->arch.nmi_pending) {
  2993. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  2994. vcpu->arch.nmi_pending = false;
  2995. vcpu->arch.nmi_injected = true;
  2996. kvm_x86_ops->set_nmi(vcpu);
  2997. }
  2998. } else if (kvm_cpu_has_interrupt(vcpu)) {
  2999. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3000. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3001. false);
  3002. kvm_x86_ops->set_irq(vcpu);
  3003. }
  3004. }
  3005. }
  3006. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3007. {
  3008. int r;
  3009. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3010. kvm_run->request_interrupt_window;
  3011. if (vcpu->requests)
  3012. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3013. kvm_mmu_unload(vcpu);
  3014. r = kvm_mmu_reload(vcpu);
  3015. if (unlikely(r))
  3016. goto out;
  3017. if (vcpu->requests) {
  3018. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3019. __kvm_migrate_timers(vcpu);
  3020. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3021. kvm_write_guest_time(vcpu);
  3022. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3023. kvm_mmu_sync_roots(vcpu);
  3024. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3025. kvm_x86_ops->tlb_flush(vcpu);
  3026. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3027. &vcpu->requests)) {
  3028. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3029. r = 0;
  3030. goto out;
  3031. }
  3032. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3033. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3034. r = 0;
  3035. goto out;
  3036. }
  3037. }
  3038. preempt_disable();
  3039. kvm_x86_ops->prepare_guest_switch(vcpu);
  3040. kvm_load_guest_fpu(vcpu);
  3041. local_irq_disable();
  3042. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3043. smp_mb__after_clear_bit();
  3044. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3045. local_irq_enable();
  3046. preempt_enable();
  3047. r = 1;
  3048. goto out;
  3049. }
  3050. if (vcpu->arch.exception.pending)
  3051. __queue_exception(vcpu);
  3052. else
  3053. inject_pending_irq(vcpu, kvm_run);
  3054. /* enable NMI/IRQ window open exits if needed */
  3055. if (vcpu->arch.nmi_pending)
  3056. kvm_x86_ops->enable_nmi_window(vcpu);
  3057. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3058. kvm_x86_ops->enable_irq_window(vcpu);
  3059. if (kvm_lapic_enabled(vcpu)) {
  3060. update_cr8_intercept(vcpu);
  3061. kvm_lapic_sync_to_vapic(vcpu);
  3062. }
  3063. up_read(&vcpu->kvm->slots_lock);
  3064. kvm_guest_enter();
  3065. get_debugreg(vcpu->arch.host_dr6, 6);
  3066. get_debugreg(vcpu->arch.host_dr7, 7);
  3067. if (unlikely(vcpu->arch.switch_db_regs)) {
  3068. get_debugreg(vcpu->arch.host_db[0], 0);
  3069. get_debugreg(vcpu->arch.host_db[1], 1);
  3070. get_debugreg(vcpu->arch.host_db[2], 2);
  3071. get_debugreg(vcpu->arch.host_db[3], 3);
  3072. set_debugreg(0, 7);
  3073. set_debugreg(vcpu->arch.eff_db[0], 0);
  3074. set_debugreg(vcpu->arch.eff_db[1], 1);
  3075. set_debugreg(vcpu->arch.eff_db[2], 2);
  3076. set_debugreg(vcpu->arch.eff_db[3], 3);
  3077. }
  3078. trace_kvm_entry(vcpu->vcpu_id);
  3079. kvm_x86_ops->run(vcpu, kvm_run);
  3080. if (unlikely(vcpu->arch.switch_db_regs)) {
  3081. set_debugreg(0, 7);
  3082. set_debugreg(vcpu->arch.host_db[0], 0);
  3083. set_debugreg(vcpu->arch.host_db[1], 1);
  3084. set_debugreg(vcpu->arch.host_db[2], 2);
  3085. set_debugreg(vcpu->arch.host_db[3], 3);
  3086. }
  3087. set_debugreg(vcpu->arch.host_dr6, 6);
  3088. set_debugreg(vcpu->arch.host_dr7, 7);
  3089. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3090. local_irq_enable();
  3091. ++vcpu->stat.exits;
  3092. /*
  3093. * We must have an instruction between local_irq_enable() and
  3094. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3095. * the interrupt shadow. The stat.exits increment will do nicely.
  3096. * But we need to prevent reordering, hence this barrier():
  3097. */
  3098. barrier();
  3099. kvm_guest_exit();
  3100. preempt_enable();
  3101. down_read(&vcpu->kvm->slots_lock);
  3102. /*
  3103. * Profile KVM exit RIPs:
  3104. */
  3105. if (unlikely(prof_on == KVM_PROFILING)) {
  3106. unsigned long rip = kvm_rip_read(vcpu);
  3107. profile_hit(KVM_PROFILING, (void *)rip);
  3108. }
  3109. kvm_lapic_sync_from_vapic(vcpu);
  3110. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3111. out:
  3112. return r;
  3113. }
  3114. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3115. {
  3116. int r;
  3117. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3118. pr_debug("vcpu %d received sipi with vector # %x\n",
  3119. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3120. kvm_lapic_reset(vcpu);
  3121. r = kvm_arch_vcpu_reset(vcpu);
  3122. if (r)
  3123. return r;
  3124. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3125. }
  3126. down_read(&vcpu->kvm->slots_lock);
  3127. vapic_enter(vcpu);
  3128. r = 1;
  3129. while (r > 0) {
  3130. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3131. r = vcpu_enter_guest(vcpu, kvm_run);
  3132. else {
  3133. up_read(&vcpu->kvm->slots_lock);
  3134. kvm_vcpu_block(vcpu);
  3135. down_read(&vcpu->kvm->slots_lock);
  3136. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3137. {
  3138. switch(vcpu->arch.mp_state) {
  3139. case KVM_MP_STATE_HALTED:
  3140. vcpu->arch.mp_state =
  3141. KVM_MP_STATE_RUNNABLE;
  3142. case KVM_MP_STATE_RUNNABLE:
  3143. break;
  3144. case KVM_MP_STATE_SIPI_RECEIVED:
  3145. default:
  3146. r = -EINTR;
  3147. break;
  3148. }
  3149. }
  3150. }
  3151. if (r <= 0)
  3152. break;
  3153. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3154. if (kvm_cpu_has_pending_timer(vcpu))
  3155. kvm_inject_pending_timer_irqs(vcpu);
  3156. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3157. r = -EINTR;
  3158. kvm_run->exit_reason = KVM_EXIT_INTR;
  3159. ++vcpu->stat.request_irq_exits;
  3160. }
  3161. if (signal_pending(current)) {
  3162. r = -EINTR;
  3163. kvm_run->exit_reason = KVM_EXIT_INTR;
  3164. ++vcpu->stat.signal_exits;
  3165. }
  3166. if (need_resched()) {
  3167. up_read(&vcpu->kvm->slots_lock);
  3168. kvm_resched(vcpu);
  3169. down_read(&vcpu->kvm->slots_lock);
  3170. }
  3171. }
  3172. up_read(&vcpu->kvm->slots_lock);
  3173. post_kvm_run_save(vcpu, kvm_run);
  3174. vapic_exit(vcpu);
  3175. return r;
  3176. }
  3177. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3178. {
  3179. int r;
  3180. sigset_t sigsaved;
  3181. vcpu_load(vcpu);
  3182. if (vcpu->sigset_active)
  3183. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3184. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3185. kvm_vcpu_block(vcpu);
  3186. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3187. r = -EAGAIN;
  3188. goto out;
  3189. }
  3190. /* re-sync apic's tpr */
  3191. if (!irqchip_in_kernel(vcpu->kvm))
  3192. kvm_set_cr8(vcpu, kvm_run->cr8);
  3193. if (vcpu->arch.pio.cur_count) {
  3194. r = complete_pio(vcpu);
  3195. if (r)
  3196. goto out;
  3197. }
  3198. #if CONFIG_HAS_IOMEM
  3199. if (vcpu->mmio_needed) {
  3200. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3201. vcpu->mmio_read_completed = 1;
  3202. vcpu->mmio_needed = 0;
  3203. down_read(&vcpu->kvm->slots_lock);
  3204. r = emulate_instruction(vcpu, kvm_run,
  3205. vcpu->arch.mmio_fault_cr2, 0,
  3206. EMULTYPE_NO_DECODE);
  3207. up_read(&vcpu->kvm->slots_lock);
  3208. if (r == EMULATE_DO_MMIO) {
  3209. /*
  3210. * Read-modify-write. Back to userspace.
  3211. */
  3212. r = 0;
  3213. goto out;
  3214. }
  3215. }
  3216. #endif
  3217. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3218. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3219. kvm_run->hypercall.ret);
  3220. r = __vcpu_run(vcpu, kvm_run);
  3221. out:
  3222. if (vcpu->sigset_active)
  3223. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3224. vcpu_put(vcpu);
  3225. return r;
  3226. }
  3227. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3228. {
  3229. vcpu_load(vcpu);
  3230. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3231. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3232. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3233. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3234. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3235. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3236. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3237. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3238. #ifdef CONFIG_X86_64
  3239. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3240. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3241. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3242. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3243. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3244. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3245. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3246. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3247. #endif
  3248. regs->rip = kvm_rip_read(vcpu);
  3249. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3250. /*
  3251. * Don't leak debug flags in case they were set for guest debugging
  3252. */
  3253. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3254. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3255. vcpu_put(vcpu);
  3256. return 0;
  3257. }
  3258. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3259. {
  3260. vcpu_load(vcpu);
  3261. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3262. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3263. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3264. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3265. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3266. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3267. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3268. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3269. #ifdef CONFIG_X86_64
  3270. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3271. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3272. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3273. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3274. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3275. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3276. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3277. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3278. #endif
  3279. kvm_rip_write(vcpu, regs->rip);
  3280. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3281. vcpu->arch.exception.pending = false;
  3282. vcpu_put(vcpu);
  3283. return 0;
  3284. }
  3285. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3286. struct kvm_segment *var, int seg)
  3287. {
  3288. kvm_x86_ops->get_segment(vcpu, var, seg);
  3289. }
  3290. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3291. {
  3292. struct kvm_segment cs;
  3293. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3294. *db = cs.db;
  3295. *l = cs.l;
  3296. }
  3297. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3298. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3299. struct kvm_sregs *sregs)
  3300. {
  3301. struct descriptor_table dt;
  3302. vcpu_load(vcpu);
  3303. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3304. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3305. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3306. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3307. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3308. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3309. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3310. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3311. kvm_x86_ops->get_idt(vcpu, &dt);
  3312. sregs->idt.limit = dt.limit;
  3313. sregs->idt.base = dt.base;
  3314. kvm_x86_ops->get_gdt(vcpu, &dt);
  3315. sregs->gdt.limit = dt.limit;
  3316. sregs->gdt.base = dt.base;
  3317. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3318. sregs->cr0 = vcpu->arch.cr0;
  3319. sregs->cr2 = vcpu->arch.cr2;
  3320. sregs->cr3 = vcpu->arch.cr3;
  3321. sregs->cr4 = vcpu->arch.cr4;
  3322. sregs->cr8 = kvm_get_cr8(vcpu);
  3323. sregs->efer = vcpu->arch.shadow_efer;
  3324. sregs->apic_base = kvm_get_apic_base(vcpu);
  3325. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3326. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3327. set_bit(vcpu->arch.interrupt.nr,
  3328. (unsigned long *)sregs->interrupt_bitmap);
  3329. vcpu_put(vcpu);
  3330. return 0;
  3331. }
  3332. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3333. struct kvm_mp_state *mp_state)
  3334. {
  3335. vcpu_load(vcpu);
  3336. mp_state->mp_state = vcpu->arch.mp_state;
  3337. vcpu_put(vcpu);
  3338. return 0;
  3339. }
  3340. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3341. struct kvm_mp_state *mp_state)
  3342. {
  3343. vcpu_load(vcpu);
  3344. vcpu->arch.mp_state = mp_state->mp_state;
  3345. vcpu_put(vcpu);
  3346. return 0;
  3347. }
  3348. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3349. struct kvm_segment *var, int seg)
  3350. {
  3351. kvm_x86_ops->set_segment(vcpu, var, seg);
  3352. }
  3353. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3354. struct kvm_segment *kvm_desct)
  3355. {
  3356. kvm_desct->base = seg_desc->base0;
  3357. kvm_desct->base |= seg_desc->base1 << 16;
  3358. kvm_desct->base |= seg_desc->base2 << 24;
  3359. kvm_desct->limit = seg_desc->limit0;
  3360. kvm_desct->limit |= seg_desc->limit << 16;
  3361. if (seg_desc->g) {
  3362. kvm_desct->limit <<= 12;
  3363. kvm_desct->limit |= 0xfff;
  3364. }
  3365. kvm_desct->selector = selector;
  3366. kvm_desct->type = seg_desc->type;
  3367. kvm_desct->present = seg_desc->p;
  3368. kvm_desct->dpl = seg_desc->dpl;
  3369. kvm_desct->db = seg_desc->d;
  3370. kvm_desct->s = seg_desc->s;
  3371. kvm_desct->l = seg_desc->l;
  3372. kvm_desct->g = seg_desc->g;
  3373. kvm_desct->avl = seg_desc->avl;
  3374. if (!selector)
  3375. kvm_desct->unusable = 1;
  3376. else
  3377. kvm_desct->unusable = 0;
  3378. kvm_desct->padding = 0;
  3379. }
  3380. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3381. u16 selector,
  3382. struct descriptor_table *dtable)
  3383. {
  3384. if (selector & 1 << 2) {
  3385. struct kvm_segment kvm_seg;
  3386. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3387. if (kvm_seg.unusable)
  3388. dtable->limit = 0;
  3389. else
  3390. dtable->limit = kvm_seg.limit;
  3391. dtable->base = kvm_seg.base;
  3392. }
  3393. else
  3394. kvm_x86_ops->get_gdt(vcpu, dtable);
  3395. }
  3396. /* allowed just for 8 bytes segments */
  3397. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3398. struct desc_struct *seg_desc)
  3399. {
  3400. gpa_t gpa;
  3401. struct descriptor_table dtable;
  3402. u16 index = selector >> 3;
  3403. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3404. if (dtable.limit < index * 8 + 7) {
  3405. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3406. return 1;
  3407. }
  3408. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3409. gpa += index * 8;
  3410. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3411. }
  3412. /* allowed just for 8 bytes segments */
  3413. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3414. struct desc_struct *seg_desc)
  3415. {
  3416. gpa_t gpa;
  3417. struct descriptor_table dtable;
  3418. u16 index = selector >> 3;
  3419. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3420. if (dtable.limit < index * 8 + 7)
  3421. return 1;
  3422. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3423. gpa += index * 8;
  3424. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3425. }
  3426. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3427. struct desc_struct *seg_desc)
  3428. {
  3429. u32 base_addr;
  3430. base_addr = seg_desc->base0;
  3431. base_addr |= (seg_desc->base1 << 16);
  3432. base_addr |= (seg_desc->base2 << 24);
  3433. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3434. }
  3435. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3436. {
  3437. struct kvm_segment kvm_seg;
  3438. kvm_get_segment(vcpu, &kvm_seg, seg);
  3439. return kvm_seg.selector;
  3440. }
  3441. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3442. u16 selector,
  3443. struct kvm_segment *kvm_seg)
  3444. {
  3445. struct desc_struct seg_desc;
  3446. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3447. return 1;
  3448. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3449. return 0;
  3450. }
  3451. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3452. {
  3453. struct kvm_segment segvar = {
  3454. .base = selector << 4,
  3455. .limit = 0xffff,
  3456. .selector = selector,
  3457. .type = 3,
  3458. .present = 1,
  3459. .dpl = 3,
  3460. .db = 0,
  3461. .s = 1,
  3462. .l = 0,
  3463. .g = 0,
  3464. .avl = 0,
  3465. .unusable = 0,
  3466. };
  3467. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3468. return 0;
  3469. }
  3470. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3471. int type_bits, int seg)
  3472. {
  3473. struct kvm_segment kvm_seg;
  3474. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3475. return kvm_load_realmode_segment(vcpu, selector, seg);
  3476. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3477. return 1;
  3478. kvm_seg.type |= type_bits;
  3479. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3480. seg != VCPU_SREG_LDTR)
  3481. if (!kvm_seg.s)
  3482. kvm_seg.unusable = 1;
  3483. kvm_set_segment(vcpu, &kvm_seg, seg);
  3484. return 0;
  3485. }
  3486. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3487. struct tss_segment_32 *tss)
  3488. {
  3489. tss->cr3 = vcpu->arch.cr3;
  3490. tss->eip = kvm_rip_read(vcpu);
  3491. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3492. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3493. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3494. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3495. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3496. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3497. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3498. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3499. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3500. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3501. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3502. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3503. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3504. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3505. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3506. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3507. }
  3508. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3509. struct tss_segment_32 *tss)
  3510. {
  3511. kvm_set_cr3(vcpu, tss->cr3);
  3512. kvm_rip_write(vcpu, tss->eip);
  3513. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3514. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3515. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3516. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3517. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3518. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3519. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3520. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3521. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3522. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3523. return 1;
  3524. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3525. return 1;
  3526. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3527. return 1;
  3528. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3529. return 1;
  3530. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3531. return 1;
  3532. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3533. return 1;
  3534. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3535. return 1;
  3536. return 0;
  3537. }
  3538. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3539. struct tss_segment_16 *tss)
  3540. {
  3541. tss->ip = kvm_rip_read(vcpu);
  3542. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3543. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3544. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3545. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3546. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3547. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3548. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3549. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3550. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3551. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3552. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3553. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3554. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3555. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3556. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3557. }
  3558. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3559. struct tss_segment_16 *tss)
  3560. {
  3561. kvm_rip_write(vcpu, tss->ip);
  3562. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3563. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3564. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3565. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3566. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3567. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3568. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3569. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3570. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3571. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3572. return 1;
  3573. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3574. return 1;
  3575. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3576. return 1;
  3577. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3578. return 1;
  3579. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3580. return 1;
  3581. return 0;
  3582. }
  3583. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3584. u16 old_tss_sel, u32 old_tss_base,
  3585. struct desc_struct *nseg_desc)
  3586. {
  3587. struct tss_segment_16 tss_segment_16;
  3588. int ret = 0;
  3589. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3590. sizeof tss_segment_16))
  3591. goto out;
  3592. save_state_to_tss16(vcpu, &tss_segment_16);
  3593. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3594. sizeof tss_segment_16))
  3595. goto out;
  3596. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3597. &tss_segment_16, sizeof tss_segment_16))
  3598. goto out;
  3599. if (old_tss_sel != 0xffff) {
  3600. tss_segment_16.prev_task_link = old_tss_sel;
  3601. if (kvm_write_guest(vcpu->kvm,
  3602. get_tss_base_addr(vcpu, nseg_desc),
  3603. &tss_segment_16.prev_task_link,
  3604. sizeof tss_segment_16.prev_task_link))
  3605. goto out;
  3606. }
  3607. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3608. goto out;
  3609. ret = 1;
  3610. out:
  3611. return ret;
  3612. }
  3613. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3614. u16 old_tss_sel, u32 old_tss_base,
  3615. struct desc_struct *nseg_desc)
  3616. {
  3617. struct tss_segment_32 tss_segment_32;
  3618. int ret = 0;
  3619. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3620. sizeof tss_segment_32))
  3621. goto out;
  3622. save_state_to_tss32(vcpu, &tss_segment_32);
  3623. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3624. sizeof tss_segment_32))
  3625. goto out;
  3626. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3627. &tss_segment_32, sizeof tss_segment_32))
  3628. goto out;
  3629. if (old_tss_sel != 0xffff) {
  3630. tss_segment_32.prev_task_link = old_tss_sel;
  3631. if (kvm_write_guest(vcpu->kvm,
  3632. get_tss_base_addr(vcpu, nseg_desc),
  3633. &tss_segment_32.prev_task_link,
  3634. sizeof tss_segment_32.prev_task_link))
  3635. goto out;
  3636. }
  3637. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3638. goto out;
  3639. ret = 1;
  3640. out:
  3641. return ret;
  3642. }
  3643. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3644. {
  3645. struct kvm_segment tr_seg;
  3646. struct desc_struct cseg_desc;
  3647. struct desc_struct nseg_desc;
  3648. int ret = 0;
  3649. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3650. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3651. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3652. /* FIXME: Handle errors. Failure to read either TSS or their
  3653. * descriptors should generate a pagefault.
  3654. */
  3655. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3656. goto out;
  3657. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3658. goto out;
  3659. if (reason != TASK_SWITCH_IRET) {
  3660. int cpl;
  3661. cpl = kvm_x86_ops->get_cpl(vcpu);
  3662. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3663. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3664. return 1;
  3665. }
  3666. }
  3667. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3668. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3669. return 1;
  3670. }
  3671. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3672. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3673. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3674. }
  3675. if (reason == TASK_SWITCH_IRET) {
  3676. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3677. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3678. }
  3679. /* set back link to prev task only if NT bit is set in eflags
  3680. note that old_tss_sel is not used afetr this point */
  3681. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3682. old_tss_sel = 0xffff;
  3683. /* set back link to prev task only if NT bit is set in eflags
  3684. note that old_tss_sel is not used afetr this point */
  3685. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3686. old_tss_sel = 0xffff;
  3687. if (nseg_desc.type & 8)
  3688. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3689. old_tss_base, &nseg_desc);
  3690. else
  3691. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3692. old_tss_base, &nseg_desc);
  3693. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3694. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3695. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3696. }
  3697. if (reason != TASK_SWITCH_IRET) {
  3698. nseg_desc.type |= (1 << 1);
  3699. save_guest_segment_descriptor(vcpu, tss_selector,
  3700. &nseg_desc);
  3701. }
  3702. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3703. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3704. tr_seg.type = 11;
  3705. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3706. out:
  3707. return ret;
  3708. }
  3709. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3710. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3711. struct kvm_sregs *sregs)
  3712. {
  3713. int mmu_reset_needed = 0;
  3714. int pending_vec, max_bits;
  3715. struct descriptor_table dt;
  3716. vcpu_load(vcpu);
  3717. dt.limit = sregs->idt.limit;
  3718. dt.base = sregs->idt.base;
  3719. kvm_x86_ops->set_idt(vcpu, &dt);
  3720. dt.limit = sregs->gdt.limit;
  3721. dt.base = sregs->gdt.base;
  3722. kvm_x86_ops->set_gdt(vcpu, &dt);
  3723. vcpu->arch.cr2 = sregs->cr2;
  3724. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3725. down_read(&vcpu->kvm->slots_lock);
  3726. if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
  3727. vcpu->arch.cr3 = sregs->cr3;
  3728. else
  3729. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  3730. up_read(&vcpu->kvm->slots_lock);
  3731. kvm_set_cr8(vcpu, sregs->cr8);
  3732. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3733. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3734. kvm_set_apic_base(vcpu, sregs->apic_base);
  3735. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3736. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3737. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3738. vcpu->arch.cr0 = sregs->cr0;
  3739. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3740. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3741. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3742. load_pdptrs(vcpu, vcpu->arch.cr3);
  3743. if (mmu_reset_needed)
  3744. kvm_mmu_reset_context(vcpu);
  3745. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3746. pending_vec = find_first_bit(
  3747. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3748. if (pending_vec < max_bits) {
  3749. kvm_queue_interrupt(vcpu, pending_vec, false);
  3750. pr_debug("Set back pending irq %d\n", pending_vec);
  3751. if (irqchip_in_kernel(vcpu->kvm))
  3752. kvm_pic_clear_isr_ack(vcpu->kvm);
  3753. }
  3754. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3755. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3756. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3757. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3758. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3759. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3760. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3761. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3762. /* Older userspace won't unhalt the vcpu on reset. */
  3763. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3764. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3765. !(vcpu->arch.cr0 & X86_CR0_PE))
  3766. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3767. vcpu_put(vcpu);
  3768. return 0;
  3769. }
  3770. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3771. struct kvm_guest_debug *dbg)
  3772. {
  3773. int i, r;
  3774. vcpu_load(vcpu);
  3775. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3776. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3777. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3778. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3779. vcpu->arch.switch_db_regs =
  3780. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3781. } else {
  3782. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3783. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3784. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3785. }
  3786. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3787. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3788. kvm_queue_exception(vcpu, DB_VECTOR);
  3789. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3790. kvm_queue_exception(vcpu, BP_VECTOR);
  3791. vcpu_put(vcpu);
  3792. return r;
  3793. }
  3794. /*
  3795. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3796. * we have asm/x86/processor.h
  3797. */
  3798. struct fxsave {
  3799. u16 cwd;
  3800. u16 swd;
  3801. u16 twd;
  3802. u16 fop;
  3803. u64 rip;
  3804. u64 rdp;
  3805. u32 mxcsr;
  3806. u32 mxcsr_mask;
  3807. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3808. #ifdef CONFIG_X86_64
  3809. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3810. #else
  3811. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3812. #endif
  3813. };
  3814. /*
  3815. * Translate a guest virtual address to a guest physical address.
  3816. */
  3817. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3818. struct kvm_translation *tr)
  3819. {
  3820. unsigned long vaddr = tr->linear_address;
  3821. gpa_t gpa;
  3822. vcpu_load(vcpu);
  3823. down_read(&vcpu->kvm->slots_lock);
  3824. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3825. up_read(&vcpu->kvm->slots_lock);
  3826. tr->physical_address = gpa;
  3827. tr->valid = gpa != UNMAPPED_GVA;
  3828. tr->writeable = 1;
  3829. tr->usermode = 0;
  3830. vcpu_put(vcpu);
  3831. return 0;
  3832. }
  3833. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3834. {
  3835. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3836. vcpu_load(vcpu);
  3837. memcpy(fpu->fpr, fxsave->st_space, 128);
  3838. fpu->fcw = fxsave->cwd;
  3839. fpu->fsw = fxsave->swd;
  3840. fpu->ftwx = fxsave->twd;
  3841. fpu->last_opcode = fxsave->fop;
  3842. fpu->last_ip = fxsave->rip;
  3843. fpu->last_dp = fxsave->rdp;
  3844. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3845. vcpu_put(vcpu);
  3846. return 0;
  3847. }
  3848. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3849. {
  3850. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3851. vcpu_load(vcpu);
  3852. memcpy(fxsave->st_space, fpu->fpr, 128);
  3853. fxsave->cwd = fpu->fcw;
  3854. fxsave->swd = fpu->fsw;
  3855. fxsave->twd = fpu->ftwx;
  3856. fxsave->fop = fpu->last_opcode;
  3857. fxsave->rip = fpu->last_ip;
  3858. fxsave->rdp = fpu->last_dp;
  3859. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3860. vcpu_put(vcpu);
  3861. return 0;
  3862. }
  3863. void fx_init(struct kvm_vcpu *vcpu)
  3864. {
  3865. unsigned after_mxcsr_mask;
  3866. /*
  3867. * Touch the fpu the first time in non atomic context as if
  3868. * this is the first fpu instruction the exception handler
  3869. * will fire before the instruction returns and it'll have to
  3870. * allocate ram with GFP_KERNEL.
  3871. */
  3872. if (!used_math())
  3873. kvm_fx_save(&vcpu->arch.host_fx_image);
  3874. /* Initialize guest FPU by resetting ours and saving into guest's */
  3875. preempt_disable();
  3876. kvm_fx_save(&vcpu->arch.host_fx_image);
  3877. kvm_fx_finit();
  3878. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3879. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3880. preempt_enable();
  3881. vcpu->arch.cr0 |= X86_CR0_ET;
  3882. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3883. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3884. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3885. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3886. }
  3887. EXPORT_SYMBOL_GPL(fx_init);
  3888. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3889. {
  3890. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3891. return;
  3892. vcpu->guest_fpu_loaded = 1;
  3893. kvm_fx_save(&vcpu->arch.host_fx_image);
  3894. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3895. }
  3896. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3897. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3898. {
  3899. if (!vcpu->guest_fpu_loaded)
  3900. return;
  3901. vcpu->guest_fpu_loaded = 0;
  3902. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3903. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3904. ++vcpu->stat.fpu_reload;
  3905. }
  3906. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3907. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3908. {
  3909. if (vcpu->arch.time_page) {
  3910. kvm_release_page_dirty(vcpu->arch.time_page);
  3911. vcpu->arch.time_page = NULL;
  3912. }
  3913. kvm_x86_ops->vcpu_free(vcpu);
  3914. }
  3915. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3916. unsigned int id)
  3917. {
  3918. return kvm_x86_ops->vcpu_create(kvm, id);
  3919. }
  3920. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3921. {
  3922. int r;
  3923. /* We do fxsave: this must be aligned. */
  3924. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3925. vcpu->arch.mtrr_state.have_fixed = 1;
  3926. vcpu_load(vcpu);
  3927. r = kvm_arch_vcpu_reset(vcpu);
  3928. if (r == 0)
  3929. r = kvm_mmu_setup(vcpu);
  3930. vcpu_put(vcpu);
  3931. if (r < 0)
  3932. goto free_vcpu;
  3933. return 0;
  3934. free_vcpu:
  3935. kvm_x86_ops->vcpu_free(vcpu);
  3936. return r;
  3937. }
  3938. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3939. {
  3940. vcpu_load(vcpu);
  3941. kvm_mmu_unload(vcpu);
  3942. vcpu_put(vcpu);
  3943. kvm_x86_ops->vcpu_free(vcpu);
  3944. }
  3945. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3946. {
  3947. vcpu->arch.nmi_pending = false;
  3948. vcpu->arch.nmi_injected = false;
  3949. vcpu->arch.switch_db_regs = 0;
  3950. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3951. vcpu->arch.dr6 = DR6_FIXED_1;
  3952. vcpu->arch.dr7 = DR7_FIXED_1;
  3953. return kvm_x86_ops->vcpu_reset(vcpu);
  3954. }
  3955. void kvm_arch_hardware_enable(void *garbage)
  3956. {
  3957. kvm_x86_ops->hardware_enable(garbage);
  3958. }
  3959. void kvm_arch_hardware_disable(void *garbage)
  3960. {
  3961. kvm_x86_ops->hardware_disable(garbage);
  3962. }
  3963. int kvm_arch_hardware_setup(void)
  3964. {
  3965. return kvm_x86_ops->hardware_setup();
  3966. }
  3967. void kvm_arch_hardware_unsetup(void)
  3968. {
  3969. kvm_x86_ops->hardware_unsetup();
  3970. }
  3971. void kvm_arch_check_processor_compat(void *rtn)
  3972. {
  3973. kvm_x86_ops->check_processor_compatibility(rtn);
  3974. }
  3975. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3976. {
  3977. struct page *page;
  3978. struct kvm *kvm;
  3979. int r;
  3980. BUG_ON(vcpu->kvm == NULL);
  3981. kvm = vcpu->kvm;
  3982. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3983. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  3984. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3985. else
  3986. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3987. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3988. if (!page) {
  3989. r = -ENOMEM;
  3990. goto fail;
  3991. }
  3992. vcpu->arch.pio_data = page_address(page);
  3993. r = kvm_mmu_create(vcpu);
  3994. if (r < 0)
  3995. goto fail_free_pio_data;
  3996. if (irqchip_in_kernel(kvm)) {
  3997. r = kvm_create_lapic(vcpu);
  3998. if (r < 0)
  3999. goto fail_mmu_destroy;
  4000. }
  4001. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4002. GFP_KERNEL);
  4003. if (!vcpu->arch.mce_banks) {
  4004. r = -ENOMEM;
  4005. goto fail_mmu_destroy;
  4006. }
  4007. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4008. return 0;
  4009. fail_mmu_destroy:
  4010. kvm_mmu_destroy(vcpu);
  4011. fail_free_pio_data:
  4012. free_page((unsigned long)vcpu->arch.pio_data);
  4013. fail:
  4014. return r;
  4015. }
  4016. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4017. {
  4018. kvm_free_lapic(vcpu);
  4019. down_read(&vcpu->kvm->slots_lock);
  4020. kvm_mmu_destroy(vcpu);
  4021. up_read(&vcpu->kvm->slots_lock);
  4022. free_page((unsigned long)vcpu->arch.pio_data);
  4023. }
  4024. struct kvm *kvm_arch_create_vm(void)
  4025. {
  4026. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4027. if (!kvm)
  4028. return ERR_PTR(-ENOMEM);
  4029. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4030. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4031. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4032. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4033. rdtscll(kvm->arch.vm_init_tsc);
  4034. return kvm;
  4035. }
  4036. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4037. {
  4038. vcpu_load(vcpu);
  4039. kvm_mmu_unload(vcpu);
  4040. vcpu_put(vcpu);
  4041. }
  4042. static void kvm_free_vcpus(struct kvm *kvm)
  4043. {
  4044. unsigned int i;
  4045. struct kvm_vcpu *vcpu;
  4046. /*
  4047. * Unpin any mmu pages first.
  4048. */
  4049. kvm_for_each_vcpu(i, vcpu, kvm)
  4050. kvm_unload_vcpu_mmu(vcpu);
  4051. kvm_for_each_vcpu(i, vcpu, kvm)
  4052. kvm_arch_vcpu_free(vcpu);
  4053. mutex_lock(&kvm->lock);
  4054. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4055. kvm->vcpus[i] = NULL;
  4056. atomic_set(&kvm->online_vcpus, 0);
  4057. mutex_unlock(&kvm->lock);
  4058. }
  4059. void kvm_arch_sync_events(struct kvm *kvm)
  4060. {
  4061. kvm_free_all_assigned_devices(kvm);
  4062. }
  4063. void kvm_arch_destroy_vm(struct kvm *kvm)
  4064. {
  4065. kvm_iommu_unmap_guest(kvm);
  4066. kvm_free_pit(kvm);
  4067. kfree(kvm->arch.vpic);
  4068. kfree(kvm->arch.vioapic);
  4069. kvm_free_vcpus(kvm);
  4070. kvm_free_physmem(kvm);
  4071. if (kvm->arch.apic_access_page)
  4072. put_page(kvm->arch.apic_access_page);
  4073. if (kvm->arch.ept_identity_pagetable)
  4074. put_page(kvm->arch.ept_identity_pagetable);
  4075. kfree(kvm);
  4076. }
  4077. int kvm_arch_set_memory_region(struct kvm *kvm,
  4078. struct kvm_userspace_memory_region *mem,
  4079. struct kvm_memory_slot old,
  4080. int user_alloc)
  4081. {
  4082. int npages = mem->memory_size >> PAGE_SHIFT;
  4083. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4084. /*To keep backward compatibility with older userspace,
  4085. *x86 needs to hanlde !user_alloc case.
  4086. */
  4087. if (!user_alloc) {
  4088. if (npages && !old.rmap) {
  4089. unsigned long userspace_addr;
  4090. down_write(&current->mm->mmap_sem);
  4091. userspace_addr = do_mmap(NULL, 0,
  4092. npages * PAGE_SIZE,
  4093. PROT_READ | PROT_WRITE,
  4094. MAP_PRIVATE | MAP_ANONYMOUS,
  4095. 0);
  4096. up_write(&current->mm->mmap_sem);
  4097. if (IS_ERR((void *)userspace_addr))
  4098. return PTR_ERR((void *)userspace_addr);
  4099. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4100. spin_lock(&kvm->mmu_lock);
  4101. memslot->userspace_addr = userspace_addr;
  4102. spin_unlock(&kvm->mmu_lock);
  4103. } else {
  4104. if (!old.user_alloc && old.rmap) {
  4105. int ret;
  4106. down_write(&current->mm->mmap_sem);
  4107. ret = do_munmap(current->mm, old.userspace_addr,
  4108. old.npages * PAGE_SIZE);
  4109. up_write(&current->mm->mmap_sem);
  4110. if (ret < 0)
  4111. printk(KERN_WARNING
  4112. "kvm_vm_ioctl_set_memory_region: "
  4113. "failed to munmap memory\n");
  4114. }
  4115. }
  4116. }
  4117. spin_lock(&kvm->mmu_lock);
  4118. if (!kvm->arch.n_requested_mmu_pages) {
  4119. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4120. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4121. }
  4122. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4123. spin_unlock(&kvm->mmu_lock);
  4124. kvm_flush_remote_tlbs(kvm);
  4125. return 0;
  4126. }
  4127. void kvm_arch_flush_shadow(struct kvm *kvm)
  4128. {
  4129. kvm_mmu_zap_all(kvm);
  4130. kvm_reload_remote_mmus(kvm);
  4131. }
  4132. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4133. {
  4134. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4135. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4136. || vcpu->arch.nmi_pending;
  4137. }
  4138. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4139. {
  4140. int me;
  4141. int cpu = vcpu->cpu;
  4142. if (waitqueue_active(&vcpu->wq)) {
  4143. wake_up_interruptible(&vcpu->wq);
  4144. ++vcpu->stat.halt_wakeup;
  4145. }
  4146. me = get_cpu();
  4147. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4148. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4149. smp_send_reschedule(cpu);
  4150. put_cpu();
  4151. }
  4152. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4153. {
  4154. return kvm_x86_ops->interrupt_allowed(vcpu);
  4155. }
  4156. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4157. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4158. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4159. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4160. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);