cpu_buffer.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /**
  2. * @file cpu_buffer.c
  3. *
  4. * @remark Copyright 2002 OProfile authors
  5. * @remark Read the file COPYING
  6. *
  7. * @author John Levon <levon@movementarian.org>
  8. * @author Barry Kasindorf <barry.kasindorf@amd.com>
  9. *
  10. * Each CPU has a local buffer that stores PC value/event
  11. * pairs. We also log context switches when we notice them.
  12. * Eventually each CPU's buffer is processed into the global
  13. * event buffer by sync_buffer().
  14. *
  15. * We use a local buffer for two reasons: an NMI or similar
  16. * interrupt cannot synchronise, and high sampling rates
  17. * would lead to catastrophic global synchronisation if
  18. * a global buffer was used.
  19. */
  20. #include <linux/sched.h>
  21. #include <linux/oprofile.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/errno.h>
  24. #include "event_buffer.h"
  25. #include "cpu_buffer.h"
  26. #include "buffer_sync.h"
  27. #include "oprof.h"
  28. DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
  29. static void wq_sync_buffer(struct work_struct *work);
  30. #define DEFAULT_TIMER_EXPIRE (HZ / 10)
  31. static int work_enabled;
  32. void free_cpu_buffers(void)
  33. {
  34. int i;
  35. for_each_possible_cpu(i) {
  36. vfree(per_cpu(cpu_buffer, i).buffer);
  37. per_cpu(cpu_buffer, i).buffer = NULL;
  38. }
  39. }
  40. unsigned long oprofile_get_cpu_buffer_size(void)
  41. {
  42. return fs_cpu_buffer_size;
  43. }
  44. void oprofile_cpu_buffer_inc_smpl_lost(void)
  45. {
  46. struct oprofile_cpu_buffer *cpu_buf
  47. = &__get_cpu_var(cpu_buffer);
  48. cpu_buf->sample_lost_overflow++;
  49. }
  50. int alloc_cpu_buffers(void)
  51. {
  52. int i;
  53. unsigned long buffer_size = fs_cpu_buffer_size;
  54. for_each_possible_cpu(i) {
  55. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  56. b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size,
  57. cpu_to_node(i));
  58. if (!b->buffer)
  59. goto fail;
  60. b->last_task = NULL;
  61. b->last_is_kernel = -1;
  62. b->tracing = 0;
  63. b->buffer_size = buffer_size;
  64. b->tail_pos = 0;
  65. b->head_pos = 0;
  66. b->sample_received = 0;
  67. b->sample_lost_overflow = 0;
  68. b->backtrace_aborted = 0;
  69. b->sample_invalid_eip = 0;
  70. b->cpu = i;
  71. INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
  72. }
  73. return 0;
  74. fail:
  75. free_cpu_buffers();
  76. return -ENOMEM;
  77. }
  78. void start_cpu_work(void)
  79. {
  80. int i;
  81. work_enabled = 1;
  82. for_each_online_cpu(i) {
  83. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  84. /*
  85. * Spread the work by 1 jiffy per cpu so they dont all
  86. * fire at once.
  87. */
  88. schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
  89. }
  90. }
  91. void end_cpu_work(void)
  92. {
  93. int i;
  94. work_enabled = 0;
  95. for_each_online_cpu(i) {
  96. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  97. cancel_delayed_work(&b->work);
  98. }
  99. flush_scheduled_work();
  100. }
  101. /* Resets the cpu buffer to a sane state. */
  102. void cpu_buffer_reset(struct oprofile_cpu_buffer *cpu_buf)
  103. {
  104. /*
  105. * reset these to invalid values; the next sample collected
  106. * will populate the buffer with proper values to initialize
  107. * the buffer
  108. */
  109. cpu_buf->last_is_kernel = -1;
  110. cpu_buf->last_task = NULL;
  111. }
  112. /* compute number of available slots in cpu_buffer queue */
  113. static unsigned long nr_available_slots(struct oprofile_cpu_buffer const *b)
  114. {
  115. unsigned long head = b->head_pos;
  116. unsigned long tail = b->tail_pos;
  117. if (tail > head)
  118. return (tail - head) - 1;
  119. return tail + (b->buffer_size - head) - 1;
  120. }
  121. static inline void
  122. add_sample(struct oprofile_cpu_buffer *cpu_buf,
  123. unsigned long pc, unsigned long event)
  124. {
  125. struct op_sample *entry = cpu_buffer_write_entry(cpu_buf);
  126. entry->eip = pc;
  127. entry->event = event;
  128. cpu_buffer_write_commit(cpu_buf);
  129. }
  130. static inline void
  131. add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
  132. {
  133. add_sample(buffer, ESCAPE_CODE, value);
  134. }
  135. /* This must be safe from any context. It's safe writing here
  136. * because of the head/tail separation of the writer and reader
  137. * of the CPU buffer.
  138. *
  139. * is_kernel is needed because on some architectures you cannot
  140. * tell if you are in kernel or user space simply by looking at
  141. * pc. We tag this in the buffer by generating kernel enter/exit
  142. * events whenever is_kernel changes
  143. */
  144. static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
  145. int is_kernel, unsigned long event)
  146. {
  147. struct task_struct *task;
  148. cpu_buf->sample_received++;
  149. if (pc == ESCAPE_CODE) {
  150. cpu_buf->sample_invalid_eip++;
  151. return 0;
  152. }
  153. if (nr_available_slots(cpu_buf) < 3) {
  154. cpu_buf->sample_lost_overflow++;
  155. return 0;
  156. }
  157. is_kernel = !!is_kernel;
  158. task = current;
  159. /* notice a switch from user->kernel or vice versa */
  160. if (cpu_buf->last_is_kernel != is_kernel) {
  161. cpu_buf->last_is_kernel = is_kernel;
  162. add_code(cpu_buf, is_kernel);
  163. }
  164. /* notice a task switch */
  165. if (cpu_buf->last_task != task) {
  166. cpu_buf->last_task = task;
  167. add_code(cpu_buf, (unsigned long)task);
  168. }
  169. add_sample(cpu_buf, pc, event);
  170. return 1;
  171. }
  172. static int oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
  173. {
  174. if (nr_available_slots(cpu_buf) < 4) {
  175. cpu_buf->sample_lost_overflow++;
  176. return 0;
  177. }
  178. add_code(cpu_buf, CPU_TRACE_BEGIN);
  179. cpu_buf->tracing = 1;
  180. return 1;
  181. }
  182. static void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
  183. {
  184. cpu_buf->tracing = 0;
  185. }
  186. void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
  187. unsigned long event, int is_kernel)
  188. {
  189. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  190. if (!backtrace_depth) {
  191. log_sample(cpu_buf, pc, is_kernel, event);
  192. return;
  193. }
  194. if (!oprofile_begin_trace(cpu_buf))
  195. return;
  196. /*
  197. * if log_sample() fail we can't backtrace since we lost the
  198. * source of this event
  199. */
  200. if (log_sample(cpu_buf, pc, is_kernel, event))
  201. oprofile_ops.backtrace(regs, backtrace_depth);
  202. oprofile_end_trace(cpu_buf);
  203. }
  204. void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
  205. {
  206. int is_kernel = !user_mode(regs);
  207. unsigned long pc = profile_pc(regs);
  208. oprofile_add_ext_sample(pc, regs, event, is_kernel);
  209. }
  210. #ifdef CONFIG_OPROFILE_IBS
  211. #define MAX_IBS_SAMPLE_SIZE 14
  212. void oprofile_add_ibs_sample(struct pt_regs * const regs,
  213. unsigned int * const ibs_sample, int ibs_code)
  214. {
  215. int is_kernel = !user_mode(regs);
  216. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  217. struct task_struct *task;
  218. cpu_buf->sample_received++;
  219. if (nr_available_slots(cpu_buf) < MAX_IBS_SAMPLE_SIZE) {
  220. /* we can't backtrace since we lost the source of this event */
  221. cpu_buf->sample_lost_overflow++;
  222. return;
  223. }
  224. /* notice a switch from user->kernel or vice versa */
  225. if (cpu_buf->last_is_kernel != is_kernel) {
  226. cpu_buf->last_is_kernel = is_kernel;
  227. add_code(cpu_buf, is_kernel);
  228. }
  229. /* notice a task switch */
  230. if (!is_kernel) {
  231. task = current;
  232. if (cpu_buf->last_task != task) {
  233. cpu_buf->last_task = task;
  234. add_code(cpu_buf, (unsigned long)task);
  235. }
  236. }
  237. add_code(cpu_buf, ibs_code);
  238. add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
  239. add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
  240. add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
  241. if (ibs_code == IBS_OP_BEGIN) {
  242. add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
  243. add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
  244. add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
  245. }
  246. if (backtrace_depth)
  247. oprofile_ops.backtrace(regs, backtrace_depth);
  248. }
  249. #endif
  250. void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
  251. {
  252. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  253. log_sample(cpu_buf, pc, is_kernel, event);
  254. }
  255. void oprofile_add_trace(unsigned long pc)
  256. {
  257. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  258. if (!cpu_buf->tracing)
  259. return;
  260. if (nr_available_slots(cpu_buf) < 1) {
  261. cpu_buf->tracing = 0;
  262. cpu_buf->sample_lost_overflow++;
  263. return;
  264. }
  265. /*
  266. * broken frame can give an eip with the same value as an
  267. * escape code, abort the trace if we get it
  268. */
  269. if (pc == ESCAPE_CODE) {
  270. cpu_buf->tracing = 0;
  271. cpu_buf->backtrace_aborted++;
  272. return;
  273. }
  274. add_sample(cpu_buf, pc, 0);
  275. }
  276. /*
  277. * This serves to avoid cpu buffer overflow, and makes sure
  278. * the task mortuary progresses
  279. *
  280. * By using schedule_delayed_work_on and then schedule_delayed_work
  281. * we guarantee this will stay on the correct cpu
  282. */
  283. static void wq_sync_buffer(struct work_struct *work)
  284. {
  285. struct oprofile_cpu_buffer *b =
  286. container_of(work, struct oprofile_cpu_buffer, work.work);
  287. if (b->cpu != smp_processor_id()) {
  288. printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
  289. smp_processor_id(), b->cpu);
  290. if (!cpu_online(b->cpu)) {
  291. cancel_delayed_work(&b->work);
  292. return;
  293. }
  294. }
  295. sync_buffer(b->cpu);
  296. /* don't re-add the work if we're shutting down */
  297. if (work_enabled)
  298. schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
  299. }