menu.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. /*
  2. * menu.c - the menu idle governor
  3. *
  4. * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
  5. * Copyright (C) 2009 Intel Corporation
  6. * Author:
  7. * Arjan van de Ven <arjan@linux.intel.com>
  8. *
  9. * This code is licenced under the GPL version 2 as described
  10. * in the COPYING file that acompanies the Linux Kernel.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/cpuidle.h>
  14. #include <linux/pm_qos.h>
  15. #include <linux/time.h>
  16. #include <linux/ktime.h>
  17. #include <linux/hrtimer.h>
  18. #include <linux/tick.h>
  19. #include <linux/sched.h>
  20. #include <linux/math64.h>
  21. #include <linux/module.h>
  22. #define BUCKETS 12
  23. #define INTERVALS 8
  24. #define RESOLUTION 1024
  25. #define DECAY 8
  26. #define MAX_INTERESTING 50000
  27. #define STDDEV_THRESH 400
  28. /* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */
  29. #define MAX_DEVIATION 60
  30. static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer);
  31. static DEFINE_PER_CPU(int, hrtimer_status);
  32. /* menu hrtimer mode */
  33. enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT};
  34. /*
  35. * Concepts and ideas behind the menu governor
  36. *
  37. * For the menu governor, there are 3 decision factors for picking a C
  38. * state:
  39. * 1) Energy break even point
  40. * 2) Performance impact
  41. * 3) Latency tolerance (from pmqos infrastructure)
  42. * These these three factors are treated independently.
  43. *
  44. * Energy break even point
  45. * -----------------------
  46. * C state entry and exit have an energy cost, and a certain amount of time in
  47. * the C state is required to actually break even on this cost. CPUIDLE
  48. * provides us this duration in the "target_residency" field. So all that we
  49. * need is a good prediction of how long we'll be idle. Like the traditional
  50. * menu governor, we start with the actual known "next timer event" time.
  51. *
  52. * Since there are other source of wakeups (interrupts for example) than
  53. * the next timer event, this estimation is rather optimistic. To get a
  54. * more realistic estimate, a correction factor is applied to the estimate,
  55. * that is based on historic behavior. For example, if in the past the actual
  56. * duration always was 50% of the next timer tick, the correction factor will
  57. * be 0.5.
  58. *
  59. * menu uses a running average for this correction factor, however it uses a
  60. * set of factors, not just a single factor. This stems from the realization
  61. * that the ratio is dependent on the order of magnitude of the expected
  62. * duration; if we expect 500 milliseconds of idle time the likelihood of
  63. * getting an interrupt very early is much higher than if we expect 50 micro
  64. * seconds of idle time. A second independent factor that has big impact on
  65. * the actual factor is if there is (disk) IO outstanding or not.
  66. * (as a special twist, we consider every sleep longer than 50 milliseconds
  67. * as perfect; there are no power gains for sleeping longer than this)
  68. *
  69. * For these two reasons we keep an array of 12 independent factors, that gets
  70. * indexed based on the magnitude of the expected duration as well as the
  71. * "is IO outstanding" property.
  72. *
  73. * Repeatable-interval-detector
  74. * ----------------------------
  75. * There are some cases where "next timer" is a completely unusable predictor:
  76. * Those cases where the interval is fixed, for example due to hardware
  77. * interrupt mitigation, but also due to fixed transfer rate devices such as
  78. * mice.
  79. * For this, we use a different predictor: We track the duration of the last 8
  80. * intervals and if the stand deviation of these 8 intervals is below a
  81. * threshold value, we use the average of these intervals as prediction.
  82. *
  83. * Limiting Performance Impact
  84. * ---------------------------
  85. * C states, especially those with large exit latencies, can have a real
  86. * noticeable impact on workloads, which is not acceptable for most sysadmins,
  87. * and in addition, less performance has a power price of its own.
  88. *
  89. * As a general rule of thumb, menu assumes that the following heuristic
  90. * holds:
  91. * The busier the system, the less impact of C states is acceptable
  92. *
  93. * This rule-of-thumb is implemented using a performance-multiplier:
  94. * If the exit latency times the performance multiplier is longer than
  95. * the predicted duration, the C state is not considered a candidate
  96. * for selection due to a too high performance impact. So the higher
  97. * this multiplier is, the longer we need to be idle to pick a deep C
  98. * state, and thus the less likely a busy CPU will hit such a deep
  99. * C state.
  100. *
  101. * Two factors are used in determing this multiplier:
  102. * a value of 10 is added for each point of "per cpu load average" we have.
  103. * a value of 5 points is added for each process that is waiting for
  104. * IO on this CPU.
  105. * (these values are experimentally determined)
  106. *
  107. * The load average factor gives a longer term (few seconds) input to the
  108. * decision, while the iowait value gives a cpu local instantanious input.
  109. * The iowait factor may look low, but realize that this is also already
  110. * represented in the system load average.
  111. *
  112. */
  113. struct menu_device {
  114. int last_state_idx;
  115. int needs_update;
  116. unsigned int expected_us;
  117. u64 predicted_us;
  118. unsigned int exit_us;
  119. unsigned int bucket;
  120. u64 correction_factor[BUCKETS];
  121. u32 intervals[INTERVALS];
  122. int interval_ptr;
  123. };
  124. #define LOAD_INT(x) ((x) >> FSHIFT)
  125. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  126. static int get_loadavg(void)
  127. {
  128. unsigned long this = this_cpu_load();
  129. return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
  130. }
  131. static inline int which_bucket(unsigned int duration)
  132. {
  133. int bucket = 0;
  134. /*
  135. * We keep two groups of stats; one with no
  136. * IO pending, one without.
  137. * This allows us to calculate
  138. * E(duration)|iowait
  139. */
  140. if (nr_iowait_cpu(smp_processor_id()))
  141. bucket = BUCKETS/2;
  142. if (duration < 10)
  143. return bucket;
  144. if (duration < 100)
  145. return bucket + 1;
  146. if (duration < 1000)
  147. return bucket + 2;
  148. if (duration < 10000)
  149. return bucket + 3;
  150. if (duration < 100000)
  151. return bucket + 4;
  152. return bucket + 5;
  153. }
  154. /*
  155. * Return a multiplier for the exit latency that is intended
  156. * to take performance requirements into account.
  157. * The more performance critical we estimate the system
  158. * to be, the higher this multiplier, and thus the higher
  159. * the barrier to go to an expensive C state.
  160. */
  161. static inline int performance_multiplier(void)
  162. {
  163. int mult = 1;
  164. /* for higher loadavg, we are more reluctant */
  165. mult += 2 * get_loadavg();
  166. /* for IO wait tasks (per cpu!) we add 5x each */
  167. mult += 10 * nr_iowait_cpu(smp_processor_id());
  168. return mult;
  169. }
  170. static DEFINE_PER_CPU(struct menu_device, menu_devices);
  171. static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
  172. /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
  173. static u64 div_round64(u64 dividend, u32 divisor)
  174. {
  175. return div_u64(dividend + (divisor / 2), divisor);
  176. }
  177. /* Cancel the hrtimer if it is not triggered yet */
  178. void menu_hrtimer_cancel(void)
  179. {
  180. int cpu = smp_processor_id();
  181. struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
  182. /* The timer is still not time out*/
  183. if (per_cpu(hrtimer_status, cpu)) {
  184. hrtimer_cancel(hrtmr);
  185. per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
  186. }
  187. }
  188. EXPORT_SYMBOL_GPL(menu_hrtimer_cancel);
  189. /* Call back for hrtimer is triggered */
  190. static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer)
  191. {
  192. int cpu = smp_processor_id();
  193. per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
  194. return HRTIMER_NORESTART;
  195. }
  196. /*
  197. * Try detecting repeating patterns by keeping track of the last 8
  198. * intervals, and checking if the standard deviation of that set
  199. * of points is below a threshold. If it is... then use the
  200. * average of these 8 points as the estimated value.
  201. */
  202. static u32 get_typical_interval(struct menu_device *data)
  203. {
  204. int i = 0, divisor = 0;
  205. uint64_t max = 0, avg = 0, stddev = 0;
  206. int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */
  207. unsigned int ret = 0;
  208. again:
  209. /* first calculate average and standard deviation of the past */
  210. max = avg = divisor = stddev = 0;
  211. for (i = 0; i < INTERVALS; i++) {
  212. int64_t value = data->intervals[i];
  213. if (value <= thresh) {
  214. avg += value;
  215. divisor++;
  216. if (value > max)
  217. max = value;
  218. }
  219. }
  220. do_div(avg, divisor);
  221. for (i = 0; i < INTERVALS; i++) {
  222. int64_t value = data->intervals[i];
  223. if (value <= thresh) {
  224. int64_t diff = value - avg;
  225. stddev += diff * diff;
  226. }
  227. }
  228. do_div(stddev, divisor);
  229. stddev = int_sqrt(stddev);
  230. /*
  231. * If we have outliers to the upside in our distribution, discard
  232. * those by setting the threshold to exclude these outliers, then
  233. * calculate the average and standard deviation again. Once we get
  234. * down to the bottom 3/4 of our samples, stop excluding samples.
  235. *
  236. * This can deal with workloads that have long pauses interspersed
  237. * with sporadic activity with a bunch of short pauses.
  238. *
  239. * The typical interval is obtained when standard deviation is small
  240. * or standard deviation is small compared to the average interval.
  241. */
  242. if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
  243. || stddev <= 20) {
  244. data->predicted_us = avg;
  245. ret = 1;
  246. return ret;
  247. } else if ((divisor * 4) > INTERVALS * 3) {
  248. /* Exclude the max interval */
  249. thresh = max - 1;
  250. goto again;
  251. }
  252. return ret;
  253. }
  254. /**
  255. * menu_select - selects the next idle state to enter
  256. * @drv: cpuidle driver containing state data
  257. * @dev: the CPU
  258. */
  259. static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
  260. {
  261. struct menu_device *data = &__get_cpu_var(menu_devices);
  262. int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
  263. int i;
  264. int multiplier;
  265. struct timespec t;
  266. int repeat = 0, low_predicted = 0;
  267. int cpu = smp_processor_id();
  268. struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
  269. if (data->needs_update) {
  270. menu_update(drv, dev);
  271. data->needs_update = 0;
  272. }
  273. data->last_state_idx = 0;
  274. data->exit_us = 0;
  275. /* Special case when user has set very strict latency requirement */
  276. if (unlikely(latency_req == 0))
  277. return 0;
  278. /* determine the expected residency time, round up */
  279. t = ktime_to_timespec(tick_nohz_get_sleep_length());
  280. data->expected_us =
  281. t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
  282. data->bucket = which_bucket(data->expected_us);
  283. multiplier = performance_multiplier();
  284. /*
  285. * if the correction factor is 0 (eg first time init or cpu hotplug
  286. * etc), we actually want to start out with a unity factor.
  287. */
  288. if (data->correction_factor[data->bucket] == 0)
  289. data->correction_factor[data->bucket] = RESOLUTION * DECAY;
  290. /* Make sure to round up for half microseconds */
  291. data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
  292. RESOLUTION * DECAY);
  293. repeat = get_typical_interval(data);
  294. /*
  295. * We want to default to C1 (hlt), not to busy polling
  296. * unless the timer is happening really really soon.
  297. */
  298. if (data->expected_us > 5 &&
  299. !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
  300. dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
  301. data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
  302. /*
  303. * Find the idle state with the lowest power while satisfying
  304. * our constraints.
  305. */
  306. for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
  307. struct cpuidle_state *s = &drv->states[i];
  308. struct cpuidle_state_usage *su = &dev->states_usage[i];
  309. if (s->disabled || su->disable)
  310. continue;
  311. if (s->target_residency > data->predicted_us) {
  312. low_predicted = 1;
  313. continue;
  314. }
  315. if (s->exit_latency > latency_req)
  316. continue;
  317. if (s->exit_latency * multiplier > data->predicted_us)
  318. continue;
  319. data->last_state_idx = i;
  320. data->exit_us = s->exit_latency;
  321. }
  322. /* not deepest C-state chosen for low predicted residency */
  323. if (low_predicted) {
  324. unsigned int timer_us = 0;
  325. /*
  326. * Set a timer to detect whether this sleep is much
  327. * longer than repeat mode predicted. If the timer
  328. * triggers, the code will evaluate whether to put
  329. * the CPU into a deeper C-state.
  330. * The timer is cancelled on CPU wakeup.
  331. */
  332. timer_us = 2 * (data->predicted_us + MAX_DEVIATION);
  333. if (repeat && (4 * timer_us < data->expected_us)) {
  334. RCU_NONIDLE(hrtimer_start(hrtmr,
  335. ns_to_ktime(1000 * timer_us),
  336. HRTIMER_MODE_REL_PINNED));
  337. /* In repeat case, menu hrtimer is started */
  338. per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT;
  339. }
  340. }
  341. return data->last_state_idx;
  342. }
  343. /**
  344. * menu_reflect - records that data structures need update
  345. * @dev: the CPU
  346. * @index: the index of actual entered state
  347. *
  348. * NOTE: it's important to be fast here because this operation will add to
  349. * the overall exit latency.
  350. */
  351. static void menu_reflect(struct cpuidle_device *dev, int index)
  352. {
  353. struct menu_device *data = &__get_cpu_var(menu_devices);
  354. data->last_state_idx = index;
  355. if (index >= 0)
  356. data->needs_update = 1;
  357. }
  358. /**
  359. * menu_update - attempts to guess what happened after entry
  360. * @drv: cpuidle driver containing state data
  361. * @dev: the CPU
  362. */
  363. static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
  364. {
  365. struct menu_device *data = &__get_cpu_var(menu_devices);
  366. int last_idx = data->last_state_idx;
  367. unsigned int last_idle_us = cpuidle_get_last_residency(dev);
  368. struct cpuidle_state *target = &drv->states[last_idx];
  369. unsigned int measured_us;
  370. u64 new_factor;
  371. /*
  372. * Ugh, this idle state doesn't support residency measurements, so we
  373. * are basically lost in the dark. As a compromise, assume we slept
  374. * for the whole expected time.
  375. */
  376. if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
  377. last_idle_us = data->expected_us;
  378. measured_us = last_idle_us;
  379. /*
  380. * We correct for the exit latency; we are assuming here that the
  381. * exit latency happens after the event that we're interested in.
  382. */
  383. if (measured_us > data->exit_us)
  384. measured_us -= data->exit_us;
  385. /* update our correction ratio */
  386. new_factor = data->correction_factor[data->bucket]
  387. * (DECAY - 1) / DECAY;
  388. if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
  389. new_factor += RESOLUTION * measured_us / data->expected_us;
  390. else
  391. /*
  392. * we were idle so long that we count it as a perfect
  393. * prediction
  394. */
  395. new_factor += RESOLUTION;
  396. /*
  397. * We don't want 0 as factor; we always want at least
  398. * a tiny bit of estimated time.
  399. */
  400. if (new_factor == 0)
  401. new_factor = 1;
  402. data->correction_factor[data->bucket] = new_factor;
  403. /* update the repeating-pattern data */
  404. data->intervals[data->interval_ptr++] = last_idle_us;
  405. if (data->interval_ptr >= INTERVALS)
  406. data->interval_ptr = 0;
  407. }
  408. /**
  409. * menu_enable_device - scans a CPU's states and does setup
  410. * @drv: cpuidle driver
  411. * @dev: the CPU
  412. */
  413. static int menu_enable_device(struct cpuidle_driver *drv,
  414. struct cpuidle_device *dev)
  415. {
  416. struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
  417. struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu);
  418. hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  419. t->function = menu_hrtimer_notify;
  420. memset(data, 0, sizeof(struct menu_device));
  421. return 0;
  422. }
  423. static struct cpuidle_governor menu_governor = {
  424. .name = "menu",
  425. .rating = 20,
  426. .enable = menu_enable_device,
  427. .select = menu_select,
  428. .reflect = menu_reflect,
  429. .owner = THIS_MODULE,
  430. };
  431. /**
  432. * init_menu - initializes the governor
  433. */
  434. static int __init init_menu(void)
  435. {
  436. return cpuidle_register_governor(&menu_governor);
  437. }
  438. /**
  439. * exit_menu - exits the governor
  440. */
  441. static void __exit exit_menu(void)
  442. {
  443. cpuidle_unregister_governor(&menu_governor);
  444. }
  445. MODULE_LICENSE("GPL");
  446. module_init(init_menu);
  447. module_exit(exit_menu);