ip6_fib.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478
  1. /*
  2. * Linux INET6 implementation
  3. * Forwarding Information Database
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. /*
  16. * Changes:
  17. * Yuji SEKIYA @USAGI: Support default route on router node;
  18. * remove ip6_null_entry from the top of
  19. * routing table.
  20. */
  21. #include <linux/errno.h>
  22. #include <linux/types.h>
  23. #include <linux/net.h>
  24. #include <linux/route.h>
  25. #include <linux/netdevice.h>
  26. #include <linux/in6.h>
  27. #include <linux/init.h>
  28. #include <linux/list.h>
  29. #ifdef CONFIG_PROC_FS
  30. #include <linux/proc_fs.h>
  31. #endif
  32. #include <net/ipv6.h>
  33. #include <net/ndisc.h>
  34. #include <net/addrconf.h>
  35. #include <net/ip6_fib.h>
  36. #include <net/ip6_route.h>
  37. #define RT6_DEBUG 2
  38. #if RT6_DEBUG >= 3
  39. #define RT6_TRACE(x...) printk(KERN_DEBUG x)
  40. #else
  41. #define RT6_TRACE(x...) do { ; } while (0)
  42. #endif
  43. struct rt6_statistics rt6_stats;
  44. static kmem_cache_t * fib6_node_kmem __read_mostly;
  45. enum fib_walk_state_t
  46. {
  47. #ifdef CONFIG_IPV6_SUBTREES
  48. FWS_S,
  49. #endif
  50. FWS_L,
  51. FWS_R,
  52. FWS_C,
  53. FWS_U
  54. };
  55. struct fib6_cleaner_t
  56. {
  57. struct fib6_walker_t w;
  58. int (*func)(struct rt6_info *, void *arg);
  59. void *arg;
  60. };
  61. static DEFINE_RWLOCK(fib6_walker_lock);
  62. #ifdef CONFIG_IPV6_SUBTREES
  63. #define FWS_INIT FWS_S
  64. #define SUBTREE(fn) ((fn)->subtree)
  65. #else
  66. #define FWS_INIT FWS_L
  67. #define SUBTREE(fn) NULL
  68. #endif
  69. static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
  70. static struct rt6_info * fib6_find_prefix(struct fib6_node *fn);
  71. static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
  72. static int fib6_walk(struct fib6_walker_t *w);
  73. static int fib6_walk_continue(struct fib6_walker_t *w);
  74. /*
  75. * A routing update causes an increase of the serial number on the
  76. * affected subtree. This allows for cached routes to be asynchronously
  77. * tested when modifications are made to the destination cache as a
  78. * result of redirects, path MTU changes, etc.
  79. */
  80. static __u32 rt_sernum;
  81. static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0);
  82. static struct fib6_walker_t fib6_walker_list = {
  83. .prev = &fib6_walker_list,
  84. .next = &fib6_walker_list,
  85. };
  86. #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
  87. static inline void fib6_walker_link(struct fib6_walker_t *w)
  88. {
  89. write_lock_bh(&fib6_walker_lock);
  90. w->next = fib6_walker_list.next;
  91. w->prev = &fib6_walker_list;
  92. w->next->prev = w;
  93. w->prev->next = w;
  94. write_unlock_bh(&fib6_walker_lock);
  95. }
  96. static inline void fib6_walker_unlink(struct fib6_walker_t *w)
  97. {
  98. write_lock_bh(&fib6_walker_lock);
  99. w->next->prev = w->prev;
  100. w->prev->next = w->next;
  101. w->prev = w->next = w;
  102. write_unlock_bh(&fib6_walker_lock);
  103. }
  104. static __inline__ u32 fib6_new_sernum(void)
  105. {
  106. u32 n = ++rt_sernum;
  107. if ((__s32)n <= 0)
  108. rt_sernum = n = 1;
  109. return n;
  110. }
  111. /*
  112. * Auxiliary address test functions for the radix tree.
  113. *
  114. * These assume a 32bit processor (although it will work on
  115. * 64bit processors)
  116. */
  117. /*
  118. * test bit
  119. */
  120. static __inline__ int addr_bit_set(void *token, int fn_bit)
  121. {
  122. __u32 *addr = token;
  123. return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
  124. }
  125. static __inline__ struct fib6_node * node_alloc(void)
  126. {
  127. struct fib6_node *fn;
  128. if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
  129. memset(fn, 0, sizeof(struct fib6_node));
  130. return fn;
  131. }
  132. static __inline__ void node_free(struct fib6_node * fn)
  133. {
  134. kmem_cache_free(fib6_node_kmem, fn);
  135. }
  136. static __inline__ void rt6_release(struct rt6_info *rt)
  137. {
  138. if (atomic_dec_and_test(&rt->rt6i_ref))
  139. dst_free(&rt->u.dst);
  140. }
  141. static struct fib6_table fib6_main_tbl = {
  142. .tb6_id = RT6_TABLE_MAIN,
  143. .tb6_lock = RW_LOCK_UNLOCKED,
  144. .tb6_root = {
  145. .leaf = &ip6_null_entry,
  146. .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
  147. },
  148. };
  149. #ifdef CONFIG_IPV6_MULTIPLE_TABLES
  150. #define FIB_TABLE_HASHSZ 256
  151. #else
  152. #define FIB_TABLE_HASHSZ 1
  153. #endif
  154. static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
  155. static void fib6_link_table(struct fib6_table *tb)
  156. {
  157. unsigned int h;
  158. h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
  159. /*
  160. * No protection necessary, this is the only list mutatation
  161. * operation, tables never disappear once they exist.
  162. */
  163. hlist_add_head_rcu(&tb->tb6_hlist, &fib_table_hash[h]);
  164. }
  165. #ifdef CONFIG_IPV6_MULTIPLE_TABLES
  166. static struct fib6_table fib6_local_tbl = {
  167. .tb6_id = RT6_TABLE_LOCAL,
  168. .tb6_lock = RW_LOCK_UNLOCKED,
  169. .tb6_root = {
  170. .leaf = &ip6_null_entry,
  171. .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
  172. },
  173. };
  174. static struct fib6_table *fib6_alloc_table(u32 id)
  175. {
  176. struct fib6_table *table;
  177. table = kzalloc(sizeof(*table), GFP_ATOMIC);
  178. if (table != NULL) {
  179. table->tb6_id = id;
  180. table->tb6_lock = RW_LOCK_UNLOCKED;
  181. table->tb6_root.leaf = &ip6_null_entry;
  182. table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
  183. }
  184. return table;
  185. }
  186. struct fib6_table *fib6_new_table(u32 id)
  187. {
  188. struct fib6_table *tb;
  189. if (id == 0)
  190. id = RT6_TABLE_MAIN;
  191. tb = fib6_get_table(id);
  192. if (tb)
  193. return tb;
  194. tb = fib6_alloc_table(id);
  195. if (tb != NULL)
  196. fib6_link_table(tb);
  197. return tb;
  198. }
  199. struct fib6_table *fib6_get_table(u32 id)
  200. {
  201. struct fib6_table *tb;
  202. struct hlist_node *node;
  203. unsigned int h;
  204. if (id == 0)
  205. id = RT6_TABLE_MAIN;
  206. h = id & (FIB_TABLE_HASHSZ - 1);
  207. rcu_read_lock();
  208. hlist_for_each_entry_rcu(tb, node, &fib_table_hash[h], tb6_hlist) {
  209. if (tb->tb6_id == id) {
  210. rcu_read_unlock();
  211. return tb;
  212. }
  213. }
  214. rcu_read_unlock();
  215. return NULL;
  216. }
  217. static void __init fib6_tables_init(void)
  218. {
  219. fib6_link_table(&fib6_main_tbl);
  220. fib6_link_table(&fib6_local_tbl);
  221. }
  222. #else
  223. struct fib6_table *fib6_new_table(u32 id)
  224. {
  225. return fib6_get_table(id);
  226. }
  227. struct fib6_table *fib6_get_table(u32 id)
  228. {
  229. return &fib6_main_tbl;
  230. }
  231. struct dst_entry *fib6_rule_lookup(struct flowi *fl, int flags,
  232. pol_lookup_t lookup)
  233. {
  234. return (struct dst_entry *) lookup(&fib6_main_tbl, fl, flags);
  235. }
  236. static void __init fib6_tables_init(void)
  237. {
  238. fib6_link_table(&fib6_main_tbl);
  239. }
  240. #endif
  241. static int fib6_dump_node(struct fib6_walker_t *w)
  242. {
  243. int res;
  244. struct rt6_info *rt;
  245. for (rt = w->leaf; rt; rt = rt->u.next) {
  246. res = rt6_dump_route(rt, w->args);
  247. if (res < 0) {
  248. /* Frame is full, suspend walking */
  249. w->leaf = rt;
  250. return 1;
  251. }
  252. BUG_TRAP(res!=0);
  253. }
  254. w->leaf = NULL;
  255. return 0;
  256. }
  257. static void fib6_dump_end(struct netlink_callback *cb)
  258. {
  259. struct fib6_walker_t *w = (void*)cb->args[2];
  260. if (w) {
  261. cb->args[2] = 0;
  262. kfree(w);
  263. }
  264. cb->done = (void*)cb->args[3];
  265. cb->args[1] = 3;
  266. }
  267. static int fib6_dump_done(struct netlink_callback *cb)
  268. {
  269. fib6_dump_end(cb);
  270. return cb->done ? cb->done(cb) : 0;
  271. }
  272. static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
  273. struct netlink_callback *cb)
  274. {
  275. struct fib6_walker_t *w;
  276. int res;
  277. w = (void *)cb->args[2];
  278. w->root = &table->tb6_root;
  279. if (cb->args[4] == 0) {
  280. read_lock_bh(&table->tb6_lock);
  281. res = fib6_walk(w);
  282. read_unlock_bh(&table->tb6_lock);
  283. if (res > 0)
  284. cb->args[4] = 1;
  285. } else {
  286. read_lock_bh(&table->tb6_lock);
  287. res = fib6_walk_continue(w);
  288. read_unlock_bh(&table->tb6_lock);
  289. if (res != 0) {
  290. if (res < 0)
  291. fib6_walker_unlink(w);
  292. goto end;
  293. }
  294. fib6_walker_unlink(w);
  295. cb->args[4] = 0;
  296. }
  297. end:
  298. return res;
  299. }
  300. int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
  301. {
  302. unsigned int h, s_h;
  303. unsigned int e = 0, s_e;
  304. struct rt6_rtnl_dump_arg arg;
  305. struct fib6_walker_t *w;
  306. struct fib6_table *tb;
  307. struct hlist_node *node;
  308. int res = 0;
  309. s_h = cb->args[0];
  310. s_e = cb->args[1];
  311. w = (void *)cb->args[2];
  312. if (w == NULL) {
  313. /* New dump:
  314. *
  315. * 1. hook callback destructor.
  316. */
  317. cb->args[3] = (long)cb->done;
  318. cb->done = fib6_dump_done;
  319. /*
  320. * 2. allocate and initialize walker.
  321. */
  322. w = kzalloc(sizeof(*w), GFP_ATOMIC);
  323. if (w == NULL)
  324. return -ENOMEM;
  325. w->func = fib6_dump_node;
  326. cb->args[2] = (long)w;
  327. }
  328. arg.skb = skb;
  329. arg.cb = cb;
  330. w->args = &arg;
  331. for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
  332. e = 0;
  333. hlist_for_each_entry(tb, node, &fib_table_hash[h], tb6_hlist) {
  334. if (e < s_e)
  335. goto next;
  336. res = fib6_dump_table(tb, skb, cb);
  337. if (res != 0)
  338. goto out;
  339. next:
  340. e++;
  341. }
  342. }
  343. out:
  344. cb->args[1] = e;
  345. cb->args[0] = h;
  346. res = res < 0 ? res : skb->len;
  347. if (res <= 0)
  348. fib6_dump_end(cb);
  349. return res;
  350. }
  351. /*
  352. * Routing Table
  353. *
  354. * return the appropriate node for a routing tree "add" operation
  355. * by either creating and inserting or by returning an existing
  356. * node.
  357. */
  358. static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
  359. int addrlen, int plen,
  360. int offset)
  361. {
  362. struct fib6_node *fn, *in, *ln;
  363. struct fib6_node *pn = NULL;
  364. struct rt6key *key;
  365. int bit;
  366. int dir = 0;
  367. __u32 sernum = fib6_new_sernum();
  368. RT6_TRACE("fib6_add_1\n");
  369. /* insert node in tree */
  370. fn = root;
  371. do {
  372. key = (struct rt6key *)((u8 *)fn->leaf + offset);
  373. /*
  374. * Prefix match
  375. */
  376. if (plen < fn->fn_bit ||
  377. !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
  378. goto insert_above;
  379. /*
  380. * Exact match ?
  381. */
  382. if (plen == fn->fn_bit) {
  383. /* clean up an intermediate node */
  384. if ((fn->fn_flags & RTN_RTINFO) == 0) {
  385. rt6_release(fn->leaf);
  386. fn->leaf = NULL;
  387. }
  388. fn->fn_sernum = sernum;
  389. return fn;
  390. }
  391. /*
  392. * We have more bits to go
  393. */
  394. /* Try to walk down on tree. */
  395. fn->fn_sernum = sernum;
  396. dir = addr_bit_set(addr, fn->fn_bit);
  397. pn = fn;
  398. fn = dir ? fn->right: fn->left;
  399. } while (fn);
  400. /*
  401. * We walked to the bottom of tree.
  402. * Create new leaf node without children.
  403. */
  404. ln = node_alloc();
  405. if (ln == NULL)
  406. return NULL;
  407. ln->fn_bit = plen;
  408. ln->parent = pn;
  409. ln->fn_sernum = sernum;
  410. if (dir)
  411. pn->right = ln;
  412. else
  413. pn->left = ln;
  414. return ln;
  415. insert_above:
  416. /*
  417. * split since we don't have a common prefix anymore or
  418. * we have a less significant route.
  419. * we've to insert an intermediate node on the list
  420. * this new node will point to the one we need to create
  421. * and the current
  422. */
  423. pn = fn->parent;
  424. /* find 1st bit in difference between the 2 addrs.
  425. See comment in __ipv6_addr_diff: bit may be an invalid value,
  426. but if it is >= plen, the value is ignored in any case.
  427. */
  428. bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
  429. /*
  430. * (intermediate)[in]
  431. * / \
  432. * (new leaf node)[ln] (old node)[fn]
  433. */
  434. if (plen > bit) {
  435. in = node_alloc();
  436. ln = node_alloc();
  437. if (in == NULL || ln == NULL) {
  438. if (in)
  439. node_free(in);
  440. if (ln)
  441. node_free(ln);
  442. return NULL;
  443. }
  444. /*
  445. * new intermediate node.
  446. * RTN_RTINFO will
  447. * be off since that an address that chooses one of
  448. * the branches would not match less specific routes
  449. * in the other branch
  450. */
  451. in->fn_bit = bit;
  452. in->parent = pn;
  453. in->leaf = fn->leaf;
  454. atomic_inc(&in->leaf->rt6i_ref);
  455. in->fn_sernum = sernum;
  456. /* update parent pointer */
  457. if (dir)
  458. pn->right = in;
  459. else
  460. pn->left = in;
  461. ln->fn_bit = plen;
  462. ln->parent = in;
  463. fn->parent = in;
  464. ln->fn_sernum = sernum;
  465. if (addr_bit_set(addr, bit)) {
  466. in->right = ln;
  467. in->left = fn;
  468. } else {
  469. in->left = ln;
  470. in->right = fn;
  471. }
  472. } else { /* plen <= bit */
  473. /*
  474. * (new leaf node)[ln]
  475. * / \
  476. * (old node)[fn] NULL
  477. */
  478. ln = node_alloc();
  479. if (ln == NULL)
  480. return NULL;
  481. ln->fn_bit = plen;
  482. ln->parent = pn;
  483. ln->fn_sernum = sernum;
  484. if (dir)
  485. pn->right = ln;
  486. else
  487. pn->left = ln;
  488. if (addr_bit_set(&key->addr, plen))
  489. ln->right = fn;
  490. else
  491. ln->left = fn;
  492. fn->parent = ln;
  493. }
  494. return ln;
  495. }
  496. /*
  497. * Insert routing information in a node.
  498. */
  499. static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
  500. struct nl_info *info)
  501. {
  502. struct rt6_info *iter = NULL;
  503. struct rt6_info **ins;
  504. ins = &fn->leaf;
  505. if (fn->fn_flags&RTN_TL_ROOT &&
  506. fn->leaf == &ip6_null_entry &&
  507. !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) ){
  508. fn->leaf = rt;
  509. rt->u.next = NULL;
  510. goto out;
  511. }
  512. for (iter = fn->leaf; iter; iter=iter->u.next) {
  513. /*
  514. * Search for duplicates
  515. */
  516. if (iter->rt6i_metric == rt->rt6i_metric) {
  517. /*
  518. * Same priority level
  519. */
  520. if (iter->rt6i_dev == rt->rt6i_dev &&
  521. iter->rt6i_idev == rt->rt6i_idev &&
  522. ipv6_addr_equal(&iter->rt6i_gateway,
  523. &rt->rt6i_gateway)) {
  524. if (!(iter->rt6i_flags&RTF_EXPIRES))
  525. return -EEXIST;
  526. iter->rt6i_expires = rt->rt6i_expires;
  527. if (!(rt->rt6i_flags&RTF_EXPIRES)) {
  528. iter->rt6i_flags &= ~RTF_EXPIRES;
  529. iter->rt6i_expires = 0;
  530. }
  531. return -EEXIST;
  532. }
  533. }
  534. if (iter->rt6i_metric > rt->rt6i_metric)
  535. break;
  536. ins = &iter->u.next;
  537. }
  538. /*
  539. * insert node
  540. */
  541. out:
  542. rt->u.next = iter;
  543. *ins = rt;
  544. rt->rt6i_node = fn;
  545. atomic_inc(&rt->rt6i_ref);
  546. inet6_rt_notify(RTM_NEWROUTE, rt, info);
  547. rt6_stats.fib_rt_entries++;
  548. if ((fn->fn_flags & RTN_RTINFO) == 0) {
  549. rt6_stats.fib_route_nodes++;
  550. fn->fn_flags |= RTN_RTINFO;
  551. }
  552. return 0;
  553. }
  554. static __inline__ void fib6_start_gc(struct rt6_info *rt)
  555. {
  556. if (ip6_fib_timer.expires == 0 &&
  557. (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
  558. mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
  559. }
  560. void fib6_force_start_gc(void)
  561. {
  562. if (ip6_fib_timer.expires == 0)
  563. mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
  564. }
  565. /*
  566. * Add routing information to the routing tree.
  567. * <destination addr>/<source addr>
  568. * with source addr info in sub-trees
  569. */
  570. int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
  571. {
  572. struct fib6_node *fn, *pn = NULL;
  573. int err = -ENOMEM;
  574. fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
  575. rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
  576. if (fn == NULL)
  577. goto out;
  578. pn = fn;
  579. #ifdef CONFIG_IPV6_SUBTREES
  580. if (rt->rt6i_src.plen) {
  581. struct fib6_node *sn;
  582. if (fn->subtree == NULL) {
  583. struct fib6_node *sfn;
  584. /*
  585. * Create subtree.
  586. *
  587. * fn[main tree]
  588. * |
  589. * sfn[subtree root]
  590. * \
  591. * sn[new leaf node]
  592. */
  593. /* Create subtree root node */
  594. sfn = node_alloc();
  595. if (sfn == NULL)
  596. goto st_failure;
  597. sfn->leaf = &ip6_null_entry;
  598. atomic_inc(&ip6_null_entry.rt6i_ref);
  599. sfn->fn_flags = RTN_ROOT;
  600. sfn->fn_sernum = fib6_new_sernum();
  601. /* Now add the first leaf node to new subtree */
  602. sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
  603. sizeof(struct in6_addr), rt->rt6i_src.plen,
  604. offsetof(struct rt6_info, rt6i_src));
  605. if (sn == NULL) {
  606. /* If it is failed, discard just allocated
  607. root, and then (in st_failure) stale node
  608. in main tree.
  609. */
  610. node_free(sfn);
  611. goto st_failure;
  612. }
  613. /* Now link new subtree to main tree */
  614. sfn->parent = fn;
  615. fn->subtree = sfn;
  616. } else {
  617. sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
  618. sizeof(struct in6_addr), rt->rt6i_src.plen,
  619. offsetof(struct rt6_info, rt6i_src));
  620. if (sn == NULL)
  621. goto st_failure;
  622. }
  623. if (fn->leaf == NULL) {
  624. fn->leaf = rt;
  625. atomic_inc(&rt->rt6i_ref);
  626. }
  627. fn = sn;
  628. }
  629. #endif
  630. err = fib6_add_rt2node(fn, rt, info);
  631. if (err == 0) {
  632. fib6_start_gc(rt);
  633. if (!(rt->rt6i_flags&RTF_CACHE))
  634. fib6_prune_clones(pn, rt);
  635. }
  636. out:
  637. if (err) {
  638. #ifdef CONFIG_IPV6_SUBTREES
  639. /*
  640. * If fib6_add_1 has cleared the old leaf pointer in the
  641. * super-tree leaf node we have to find a new one for it.
  642. */
  643. if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
  644. pn->leaf = fib6_find_prefix(pn);
  645. #if RT6_DEBUG >= 2
  646. if (!pn->leaf) {
  647. BUG_TRAP(pn->leaf != NULL);
  648. pn->leaf = &ip6_null_entry;
  649. }
  650. #endif
  651. atomic_inc(&pn->leaf->rt6i_ref);
  652. }
  653. #endif
  654. dst_free(&rt->u.dst);
  655. }
  656. return err;
  657. #ifdef CONFIG_IPV6_SUBTREES
  658. /* Subtree creation failed, probably main tree node
  659. is orphan. If it is, shoot it.
  660. */
  661. st_failure:
  662. if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
  663. fib6_repair_tree(fn);
  664. dst_free(&rt->u.dst);
  665. return err;
  666. #endif
  667. }
  668. /*
  669. * Routing tree lookup
  670. *
  671. */
  672. struct lookup_args {
  673. int offset; /* key offset on rt6_info */
  674. struct in6_addr *addr; /* search key */
  675. };
  676. static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
  677. struct lookup_args *args)
  678. {
  679. struct fib6_node *fn;
  680. int dir;
  681. /*
  682. * Descend on a tree
  683. */
  684. fn = root;
  685. for (;;) {
  686. struct fib6_node *next;
  687. dir = addr_bit_set(args->addr, fn->fn_bit);
  688. next = dir ? fn->right : fn->left;
  689. if (next) {
  690. fn = next;
  691. continue;
  692. }
  693. break;
  694. }
  695. while ((fn->fn_flags & RTN_ROOT) == 0) {
  696. #ifdef CONFIG_IPV6_SUBTREES
  697. if (fn->subtree) {
  698. struct fib6_node *st;
  699. struct lookup_args *narg;
  700. narg = args + 1;
  701. if (narg->addr) {
  702. st = fib6_lookup_1(fn->subtree, narg);
  703. if (st && !(st->fn_flags & RTN_ROOT))
  704. return st;
  705. }
  706. }
  707. #endif
  708. if (fn->fn_flags & RTN_RTINFO) {
  709. struct rt6key *key;
  710. key = (struct rt6key *) ((u8 *) fn->leaf +
  711. args->offset);
  712. if (ipv6_prefix_equal(&key->addr, args->addr, key->plen))
  713. return fn;
  714. }
  715. fn = fn->parent;
  716. }
  717. return NULL;
  718. }
  719. struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
  720. struct in6_addr *saddr)
  721. {
  722. struct lookup_args args[2];
  723. struct fib6_node *fn;
  724. args[0].offset = offsetof(struct rt6_info, rt6i_dst);
  725. args[0].addr = daddr;
  726. #ifdef CONFIG_IPV6_SUBTREES
  727. args[1].offset = offsetof(struct rt6_info, rt6i_src);
  728. args[1].addr = saddr;
  729. #endif
  730. fn = fib6_lookup_1(root, args);
  731. if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
  732. fn = root;
  733. return fn;
  734. }
  735. /*
  736. * Get node with specified destination prefix (and source prefix,
  737. * if subtrees are used)
  738. */
  739. static struct fib6_node * fib6_locate_1(struct fib6_node *root,
  740. struct in6_addr *addr,
  741. int plen, int offset)
  742. {
  743. struct fib6_node *fn;
  744. for (fn = root; fn ; ) {
  745. struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
  746. /*
  747. * Prefix match
  748. */
  749. if (plen < fn->fn_bit ||
  750. !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
  751. return NULL;
  752. if (plen == fn->fn_bit)
  753. return fn;
  754. /*
  755. * We have more bits to go
  756. */
  757. if (addr_bit_set(addr, fn->fn_bit))
  758. fn = fn->right;
  759. else
  760. fn = fn->left;
  761. }
  762. return NULL;
  763. }
  764. struct fib6_node * fib6_locate(struct fib6_node *root,
  765. struct in6_addr *daddr, int dst_len,
  766. struct in6_addr *saddr, int src_len)
  767. {
  768. struct fib6_node *fn;
  769. fn = fib6_locate_1(root, daddr, dst_len,
  770. offsetof(struct rt6_info, rt6i_dst));
  771. #ifdef CONFIG_IPV6_SUBTREES
  772. if (src_len) {
  773. BUG_TRAP(saddr!=NULL);
  774. if (fn == NULL)
  775. fn = fn->subtree;
  776. if (fn)
  777. fn = fib6_locate_1(fn, saddr, src_len,
  778. offsetof(struct rt6_info, rt6i_src));
  779. }
  780. #endif
  781. if (fn && fn->fn_flags&RTN_RTINFO)
  782. return fn;
  783. return NULL;
  784. }
  785. /*
  786. * Deletion
  787. *
  788. */
  789. static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
  790. {
  791. if (fn->fn_flags&RTN_ROOT)
  792. return &ip6_null_entry;
  793. while(fn) {
  794. if(fn->left)
  795. return fn->left->leaf;
  796. if(fn->right)
  797. return fn->right->leaf;
  798. fn = SUBTREE(fn);
  799. }
  800. return NULL;
  801. }
  802. /*
  803. * Called to trim the tree of intermediate nodes when possible. "fn"
  804. * is the node we want to try and remove.
  805. */
  806. static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
  807. {
  808. int children;
  809. int nstate;
  810. struct fib6_node *child, *pn;
  811. struct fib6_walker_t *w;
  812. int iter = 0;
  813. for (;;) {
  814. RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
  815. iter++;
  816. BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
  817. BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
  818. BUG_TRAP(fn->leaf==NULL);
  819. children = 0;
  820. child = NULL;
  821. if (fn->right) child = fn->right, children |= 1;
  822. if (fn->left) child = fn->left, children |= 2;
  823. if (children == 3 || SUBTREE(fn)
  824. #ifdef CONFIG_IPV6_SUBTREES
  825. /* Subtree root (i.e. fn) may have one child */
  826. || (children && fn->fn_flags&RTN_ROOT)
  827. #endif
  828. ) {
  829. fn->leaf = fib6_find_prefix(fn);
  830. #if RT6_DEBUG >= 2
  831. if (fn->leaf==NULL) {
  832. BUG_TRAP(fn->leaf);
  833. fn->leaf = &ip6_null_entry;
  834. }
  835. #endif
  836. atomic_inc(&fn->leaf->rt6i_ref);
  837. return fn->parent;
  838. }
  839. pn = fn->parent;
  840. #ifdef CONFIG_IPV6_SUBTREES
  841. if (SUBTREE(pn) == fn) {
  842. BUG_TRAP(fn->fn_flags&RTN_ROOT);
  843. SUBTREE(pn) = NULL;
  844. nstate = FWS_L;
  845. } else {
  846. BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
  847. #endif
  848. if (pn->right == fn) pn->right = child;
  849. else if (pn->left == fn) pn->left = child;
  850. #if RT6_DEBUG >= 2
  851. else BUG_TRAP(0);
  852. #endif
  853. if (child)
  854. child->parent = pn;
  855. nstate = FWS_R;
  856. #ifdef CONFIG_IPV6_SUBTREES
  857. }
  858. #endif
  859. read_lock(&fib6_walker_lock);
  860. FOR_WALKERS(w) {
  861. if (child == NULL) {
  862. if (w->root == fn) {
  863. w->root = w->node = NULL;
  864. RT6_TRACE("W %p adjusted by delroot 1\n", w);
  865. } else if (w->node == fn) {
  866. RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
  867. w->node = pn;
  868. w->state = nstate;
  869. }
  870. } else {
  871. if (w->root == fn) {
  872. w->root = child;
  873. RT6_TRACE("W %p adjusted by delroot 2\n", w);
  874. }
  875. if (w->node == fn) {
  876. w->node = child;
  877. if (children&2) {
  878. RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
  879. w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
  880. } else {
  881. RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
  882. w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
  883. }
  884. }
  885. }
  886. }
  887. read_unlock(&fib6_walker_lock);
  888. node_free(fn);
  889. if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
  890. return pn;
  891. rt6_release(pn->leaf);
  892. pn->leaf = NULL;
  893. fn = pn;
  894. }
  895. }
  896. static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
  897. struct nl_info *info)
  898. {
  899. struct fib6_walker_t *w;
  900. struct rt6_info *rt = *rtp;
  901. RT6_TRACE("fib6_del_route\n");
  902. /* Unlink it */
  903. *rtp = rt->u.next;
  904. rt->rt6i_node = NULL;
  905. rt6_stats.fib_rt_entries--;
  906. rt6_stats.fib_discarded_routes++;
  907. /* Adjust walkers */
  908. read_lock(&fib6_walker_lock);
  909. FOR_WALKERS(w) {
  910. if (w->state == FWS_C && w->leaf == rt) {
  911. RT6_TRACE("walker %p adjusted by delroute\n", w);
  912. w->leaf = rt->u.next;
  913. if (w->leaf == NULL)
  914. w->state = FWS_U;
  915. }
  916. }
  917. read_unlock(&fib6_walker_lock);
  918. rt->u.next = NULL;
  919. if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
  920. fn->leaf = &ip6_null_entry;
  921. /* If it was last route, expunge its radix tree node */
  922. if (fn->leaf == NULL) {
  923. fn->fn_flags &= ~RTN_RTINFO;
  924. rt6_stats.fib_route_nodes--;
  925. fn = fib6_repair_tree(fn);
  926. }
  927. if (atomic_read(&rt->rt6i_ref) != 1) {
  928. /* This route is used as dummy address holder in some split
  929. * nodes. It is not leaked, but it still holds other resources,
  930. * which must be released in time. So, scan ascendant nodes
  931. * and replace dummy references to this route with references
  932. * to still alive ones.
  933. */
  934. while (fn) {
  935. if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
  936. fn->leaf = fib6_find_prefix(fn);
  937. atomic_inc(&fn->leaf->rt6i_ref);
  938. rt6_release(rt);
  939. }
  940. fn = fn->parent;
  941. }
  942. /* No more references are possible at this point. */
  943. if (atomic_read(&rt->rt6i_ref) != 1) BUG();
  944. }
  945. inet6_rt_notify(RTM_DELROUTE, rt, info);
  946. rt6_release(rt);
  947. }
  948. int fib6_del(struct rt6_info *rt, struct nl_info *info)
  949. {
  950. struct fib6_node *fn = rt->rt6i_node;
  951. struct rt6_info **rtp;
  952. #if RT6_DEBUG >= 2
  953. if (rt->u.dst.obsolete>0) {
  954. BUG_TRAP(fn==NULL);
  955. return -ENOENT;
  956. }
  957. #endif
  958. if (fn == NULL || rt == &ip6_null_entry)
  959. return -ENOENT;
  960. BUG_TRAP(fn->fn_flags&RTN_RTINFO);
  961. if (!(rt->rt6i_flags&RTF_CACHE))
  962. fib6_prune_clones(fn, rt);
  963. /*
  964. * Walk the leaf entries looking for ourself
  965. */
  966. for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
  967. if (*rtp == rt) {
  968. fib6_del_route(fn, rtp, info);
  969. return 0;
  970. }
  971. }
  972. return -ENOENT;
  973. }
  974. /*
  975. * Tree traversal function.
  976. *
  977. * Certainly, it is not interrupt safe.
  978. * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
  979. * It means, that we can modify tree during walking
  980. * and use this function for garbage collection, clone pruning,
  981. * cleaning tree when a device goes down etc. etc.
  982. *
  983. * It guarantees that every node will be traversed,
  984. * and that it will be traversed only once.
  985. *
  986. * Callback function w->func may return:
  987. * 0 -> continue walking.
  988. * positive value -> walking is suspended (used by tree dumps,
  989. * and probably by gc, if it will be split to several slices)
  990. * negative value -> terminate walking.
  991. *
  992. * The function itself returns:
  993. * 0 -> walk is complete.
  994. * >0 -> walk is incomplete (i.e. suspended)
  995. * <0 -> walk is terminated by an error.
  996. */
  997. static int fib6_walk_continue(struct fib6_walker_t *w)
  998. {
  999. struct fib6_node *fn, *pn;
  1000. for (;;) {
  1001. fn = w->node;
  1002. if (fn == NULL)
  1003. return 0;
  1004. if (w->prune && fn != w->root &&
  1005. fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
  1006. w->state = FWS_C;
  1007. w->leaf = fn->leaf;
  1008. }
  1009. switch (w->state) {
  1010. #ifdef CONFIG_IPV6_SUBTREES
  1011. case FWS_S:
  1012. if (SUBTREE(fn)) {
  1013. w->node = SUBTREE(fn);
  1014. continue;
  1015. }
  1016. w->state = FWS_L;
  1017. #endif
  1018. case FWS_L:
  1019. if (fn->left) {
  1020. w->node = fn->left;
  1021. w->state = FWS_INIT;
  1022. continue;
  1023. }
  1024. w->state = FWS_R;
  1025. case FWS_R:
  1026. if (fn->right) {
  1027. w->node = fn->right;
  1028. w->state = FWS_INIT;
  1029. continue;
  1030. }
  1031. w->state = FWS_C;
  1032. w->leaf = fn->leaf;
  1033. case FWS_C:
  1034. if (w->leaf && fn->fn_flags&RTN_RTINFO) {
  1035. int err = w->func(w);
  1036. if (err)
  1037. return err;
  1038. continue;
  1039. }
  1040. w->state = FWS_U;
  1041. case FWS_U:
  1042. if (fn == w->root)
  1043. return 0;
  1044. pn = fn->parent;
  1045. w->node = pn;
  1046. #ifdef CONFIG_IPV6_SUBTREES
  1047. if (SUBTREE(pn) == fn) {
  1048. BUG_TRAP(fn->fn_flags&RTN_ROOT);
  1049. w->state = FWS_L;
  1050. continue;
  1051. }
  1052. #endif
  1053. if (pn->left == fn) {
  1054. w->state = FWS_R;
  1055. continue;
  1056. }
  1057. if (pn->right == fn) {
  1058. w->state = FWS_C;
  1059. w->leaf = w->node->leaf;
  1060. continue;
  1061. }
  1062. #if RT6_DEBUG >= 2
  1063. BUG_TRAP(0);
  1064. #endif
  1065. }
  1066. }
  1067. }
  1068. static int fib6_walk(struct fib6_walker_t *w)
  1069. {
  1070. int res;
  1071. w->state = FWS_INIT;
  1072. w->node = w->root;
  1073. fib6_walker_link(w);
  1074. res = fib6_walk_continue(w);
  1075. if (res <= 0)
  1076. fib6_walker_unlink(w);
  1077. return res;
  1078. }
  1079. static int fib6_clean_node(struct fib6_walker_t *w)
  1080. {
  1081. int res;
  1082. struct rt6_info *rt;
  1083. struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
  1084. for (rt = w->leaf; rt; rt = rt->u.next) {
  1085. res = c->func(rt, c->arg);
  1086. if (res < 0) {
  1087. w->leaf = rt;
  1088. res = fib6_del(rt, NULL);
  1089. if (res) {
  1090. #if RT6_DEBUG >= 2
  1091. printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
  1092. #endif
  1093. continue;
  1094. }
  1095. return 0;
  1096. }
  1097. BUG_TRAP(res==0);
  1098. }
  1099. w->leaf = rt;
  1100. return 0;
  1101. }
  1102. /*
  1103. * Convenient frontend to tree walker.
  1104. *
  1105. * func is called on each route.
  1106. * It may return -1 -> delete this route.
  1107. * 0 -> continue walking
  1108. *
  1109. * prune==1 -> only immediate children of node (certainly,
  1110. * ignoring pure split nodes) will be scanned.
  1111. */
  1112. static void fib6_clean_tree(struct fib6_node *root,
  1113. int (*func)(struct rt6_info *, void *arg),
  1114. int prune, void *arg)
  1115. {
  1116. struct fib6_cleaner_t c;
  1117. c.w.root = root;
  1118. c.w.func = fib6_clean_node;
  1119. c.w.prune = prune;
  1120. c.func = func;
  1121. c.arg = arg;
  1122. fib6_walk(&c.w);
  1123. }
  1124. void fib6_clean_all(int (*func)(struct rt6_info *, void *arg),
  1125. int prune, void *arg)
  1126. {
  1127. struct fib6_table *table;
  1128. struct hlist_node *node;
  1129. unsigned int h;
  1130. rcu_read_lock();
  1131. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1132. hlist_for_each_entry_rcu(table, node, &fib_table_hash[h],
  1133. tb6_hlist) {
  1134. write_lock_bh(&table->tb6_lock);
  1135. fib6_clean_tree(&table->tb6_root, func, prune, arg);
  1136. write_unlock_bh(&table->tb6_lock);
  1137. }
  1138. }
  1139. rcu_read_unlock();
  1140. }
  1141. static int fib6_prune_clone(struct rt6_info *rt, void *arg)
  1142. {
  1143. if (rt->rt6i_flags & RTF_CACHE) {
  1144. RT6_TRACE("pruning clone %p\n", rt);
  1145. return -1;
  1146. }
  1147. return 0;
  1148. }
  1149. static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
  1150. {
  1151. fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
  1152. }
  1153. /*
  1154. * Garbage collection
  1155. */
  1156. static struct fib6_gc_args
  1157. {
  1158. int timeout;
  1159. int more;
  1160. } gc_args;
  1161. static int fib6_age(struct rt6_info *rt, void *arg)
  1162. {
  1163. unsigned long now = jiffies;
  1164. /*
  1165. * check addrconf expiration here.
  1166. * Routes are expired even if they are in use.
  1167. *
  1168. * Also age clones. Note, that clones are aged out
  1169. * only if they are not in use now.
  1170. */
  1171. if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
  1172. if (time_after(now, rt->rt6i_expires)) {
  1173. RT6_TRACE("expiring %p\n", rt);
  1174. return -1;
  1175. }
  1176. gc_args.more++;
  1177. } else if (rt->rt6i_flags & RTF_CACHE) {
  1178. if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
  1179. time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
  1180. RT6_TRACE("aging clone %p\n", rt);
  1181. return -1;
  1182. } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
  1183. (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
  1184. RT6_TRACE("purging route %p via non-router but gateway\n",
  1185. rt);
  1186. return -1;
  1187. }
  1188. gc_args.more++;
  1189. }
  1190. return 0;
  1191. }
  1192. static DEFINE_SPINLOCK(fib6_gc_lock);
  1193. void fib6_run_gc(unsigned long dummy)
  1194. {
  1195. if (dummy != ~0UL) {
  1196. spin_lock_bh(&fib6_gc_lock);
  1197. gc_args.timeout = dummy ? (int)dummy : ip6_rt_gc_interval;
  1198. } else {
  1199. local_bh_disable();
  1200. if (!spin_trylock(&fib6_gc_lock)) {
  1201. mod_timer(&ip6_fib_timer, jiffies + HZ);
  1202. local_bh_enable();
  1203. return;
  1204. }
  1205. gc_args.timeout = ip6_rt_gc_interval;
  1206. }
  1207. gc_args.more = 0;
  1208. ndisc_dst_gc(&gc_args.more);
  1209. fib6_clean_all(fib6_age, 0, NULL);
  1210. if (gc_args.more)
  1211. mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
  1212. else {
  1213. del_timer(&ip6_fib_timer);
  1214. ip6_fib_timer.expires = 0;
  1215. }
  1216. spin_unlock_bh(&fib6_gc_lock);
  1217. }
  1218. void __init fib6_init(void)
  1219. {
  1220. fib6_node_kmem = kmem_cache_create("fib6_nodes",
  1221. sizeof(struct fib6_node),
  1222. 0, SLAB_HWCACHE_ALIGN,
  1223. NULL, NULL);
  1224. if (!fib6_node_kmem)
  1225. panic("cannot create fib6_nodes cache");
  1226. fib6_tables_init();
  1227. }
  1228. void fib6_gc_cleanup(void)
  1229. {
  1230. del_timer(&ip6_fib_timer);
  1231. kmem_cache_destroy(fib6_node_kmem);
  1232. }