huge_memory.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!khugepaged_enabled())
  96. return 0;
  97. for_each_populated_zone(zone)
  98. nr_zones++;
  99. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  100. recommended_min = pageblock_nr_pages * nr_zones * 2;
  101. /*
  102. * Make sure that on average at least two pageblocks are almost free
  103. * of another type, one for a migratetype to fall back to and a
  104. * second to avoid subsequent fallbacks of other types There are 3
  105. * MIGRATE_TYPES we care about.
  106. */
  107. recommended_min += pageblock_nr_pages * nr_zones *
  108. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  109. /* don't ever allow to reserve more than 5% of the lowmem */
  110. recommended_min = min(recommended_min,
  111. (unsigned long) nr_free_buffer_pages() / 20);
  112. recommended_min <<= (PAGE_SHIFT-10);
  113. if (recommended_min > min_free_kbytes)
  114. min_free_kbytes = recommended_min;
  115. setup_per_zone_wmarks();
  116. return 0;
  117. }
  118. late_initcall(set_recommended_min_free_kbytes);
  119. static int start_khugepaged(void)
  120. {
  121. int err = 0;
  122. if (khugepaged_enabled()) {
  123. if (!khugepaged_thread)
  124. khugepaged_thread = kthread_run(khugepaged, NULL,
  125. "khugepaged");
  126. if (unlikely(IS_ERR(khugepaged_thread))) {
  127. printk(KERN_ERR
  128. "khugepaged: kthread_run(khugepaged) failed\n");
  129. err = PTR_ERR(khugepaged_thread);
  130. khugepaged_thread = NULL;
  131. }
  132. if (!list_empty(&khugepaged_scan.mm_head))
  133. wake_up_interruptible(&khugepaged_wait);
  134. set_recommended_min_free_kbytes();
  135. } else if (khugepaged_thread) {
  136. kthread_stop(khugepaged_thread);
  137. khugepaged_thread = NULL;
  138. }
  139. return err;
  140. }
  141. #ifdef CONFIG_SYSFS
  142. static ssize_t double_flag_show(struct kobject *kobj,
  143. struct kobj_attribute *attr, char *buf,
  144. enum transparent_hugepage_flag enabled,
  145. enum transparent_hugepage_flag req_madv)
  146. {
  147. if (test_bit(enabled, &transparent_hugepage_flags)) {
  148. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  149. return sprintf(buf, "[always] madvise never\n");
  150. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  151. return sprintf(buf, "always [madvise] never\n");
  152. else
  153. return sprintf(buf, "always madvise [never]\n");
  154. }
  155. static ssize_t double_flag_store(struct kobject *kobj,
  156. struct kobj_attribute *attr,
  157. const char *buf, size_t count,
  158. enum transparent_hugepage_flag enabled,
  159. enum transparent_hugepage_flag req_madv)
  160. {
  161. if (!memcmp("always", buf,
  162. min(sizeof("always")-1, count))) {
  163. set_bit(enabled, &transparent_hugepage_flags);
  164. clear_bit(req_madv, &transparent_hugepage_flags);
  165. } else if (!memcmp("madvise", buf,
  166. min(sizeof("madvise")-1, count))) {
  167. clear_bit(enabled, &transparent_hugepage_flags);
  168. set_bit(req_madv, &transparent_hugepage_flags);
  169. } else if (!memcmp("never", buf,
  170. min(sizeof("never")-1, count))) {
  171. clear_bit(enabled, &transparent_hugepage_flags);
  172. clear_bit(req_madv, &transparent_hugepage_flags);
  173. } else
  174. return -EINVAL;
  175. return count;
  176. }
  177. static ssize_t enabled_show(struct kobject *kobj,
  178. struct kobj_attribute *attr, char *buf)
  179. {
  180. return double_flag_show(kobj, attr, buf,
  181. TRANSPARENT_HUGEPAGE_FLAG,
  182. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  183. }
  184. static ssize_t enabled_store(struct kobject *kobj,
  185. struct kobj_attribute *attr,
  186. const char *buf, size_t count)
  187. {
  188. ssize_t ret;
  189. ret = double_flag_store(kobj, attr, buf, count,
  190. TRANSPARENT_HUGEPAGE_FLAG,
  191. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  192. if (ret > 0) {
  193. int err;
  194. mutex_lock(&khugepaged_mutex);
  195. err = start_khugepaged();
  196. mutex_unlock(&khugepaged_mutex);
  197. if (err)
  198. ret = err;
  199. }
  200. return ret;
  201. }
  202. static struct kobj_attribute enabled_attr =
  203. __ATTR(enabled, 0644, enabled_show, enabled_store);
  204. static ssize_t single_flag_show(struct kobject *kobj,
  205. struct kobj_attribute *attr, char *buf,
  206. enum transparent_hugepage_flag flag)
  207. {
  208. return sprintf(buf, "%d\n",
  209. !!test_bit(flag, &transparent_hugepage_flags));
  210. }
  211. static ssize_t single_flag_store(struct kobject *kobj,
  212. struct kobj_attribute *attr,
  213. const char *buf, size_t count,
  214. enum transparent_hugepage_flag flag)
  215. {
  216. unsigned long value;
  217. int ret;
  218. ret = kstrtoul(buf, 10, &value);
  219. if (ret < 0)
  220. return ret;
  221. if (value > 1)
  222. return -EINVAL;
  223. if (value)
  224. set_bit(flag, &transparent_hugepage_flags);
  225. else
  226. clear_bit(flag, &transparent_hugepage_flags);
  227. return count;
  228. }
  229. /*
  230. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  231. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  232. * memory just to allocate one more hugepage.
  233. */
  234. static ssize_t defrag_show(struct kobject *kobj,
  235. struct kobj_attribute *attr, char *buf)
  236. {
  237. return double_flag_show(kobj, attr, buf,
  238. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  239. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  240. }
  241. static ssize_t defrag_store(struct kobject *kobj,
  242. struct kobj_attribute *attr,
  243. const char *buf, size_t count)
  244. {
  245. return double_flag_store(kobj, attr, buf, count,
  246. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  247. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  248. }
  249. static struct kobj_attribute defrag_attr =
  250. __ATTR(defrag, 0644, defrag_show, defrag_store);
  251. #ifdef CONFIG_DEBUG_VM
  252. static ssize_t debug_cow_show(struct kobject *kobj,
  253. struct kobj_attribute *attr, char *buf)
  254. {
  255. return single_flag_show(kobj, attr, buf,
  256. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  257. }
  258. static ssize_t debug_cow_store(struct kobject *kobj,
  259. struct kobj_attribute *attr,
  260. const char *buf, size_t count)
  261. {
  262. return single_flag_store(kobj, attr, buf, count,
  263. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  264. }
  265. static struct kobj_attribute debug_cow_attr =
  266. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  267. #endif /* CONFIG_DEBUG_VM */
  268. static struct attribute *hugepage_attr[] = {
  269. &enabled_attr.attr,
  270. &defrag_attr.attr,
  271. #ifdef CONFIG_DEBUG_VM
  272. &debug_cow_attr.attr,
  273. #endif
  274. NULL,
  275. };
  276. static struct attribute_group hugepage_attr_group = {
  277. .attrs = hugepage_attr,
  278. };
  279. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  280. struct kobj_attribute *attr,
  281. char *buf)
  282. {
  283. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  284. }
  285. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  286. struct kobj_attribute *attr,
  287. const char *buf, size_t count)
  288. {
  289. unsigned long msecs;
  290. int err;
  291. err = strict_strtoul(buf, 10, &msecs);
  292. if (err || msecs > UINT_MAX)
  293. return -EINVAL;
  294. khugepaged_scan_sleep_millisecs = msecs;
  295. wake_up_interruptible(&khugepaged_wait);
  296. return count;
  297. }
  298. static struct kobj_attribute scan_sleep_millisecs_attr =
  299. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  300. scan_sleep_millisecs_store);
  301. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  302. struct kobj_attribute *attr,
  303. char *buf)
  304. {
  305. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  306. }
  307. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. unsigned long msecs;
  312. int err;
  313. err = strict_strtoul(buf, 10, &msecs);
  314. if (err || msecs > UINT_MAX)
  315. return -EINVAL;
  316. khugepaged_alloc_sleep_millisecs = msecs;
  317. wake_up_interruptible(&khugepaged_wait);
  318. return count;
  319. }
  320. static struct kobj_attribute alloc_sleep_millisecs_attr =
  321. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  322. alloc_sleep_millisecs_store);
  323. static ssize_t pages_to_scan_show(struct kobject *kobj,
  324. struct kobj_attribute *attr,
  325. char *buf)
  326. {
  327. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  328. }
  329. static ssize_t pages_to_scan_store(struct kobject *kobj,
  330. struct kobj_attribute *attr,
  331. const char *buf, size_t count)
  332. {
  333. int err;
  334. unsigned long pages;
  335. err = strict_strtoul(buf, 10, &pages);
  336. if (err || !pages || pages > UINT_MAX)
  337. return -EINVAL;
  338. khugepaged_pages_to_scan = pages;
  339. return count;
  340. }
  341. static struct kobj_attribute pages_to_scan_attr =
  342. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  343. pages_to_scan_store);
  344. static ssize_t pages_collapsed_show(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. char *buf)
  347. {
  348. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  349. }
  350. static struct kobj_attribute pages_collapsed_attr =
  351. __ATTR_RO(pages_collapsed);
  352. static ssize_t full_scans_show(struct kobject *kobj,
  353. struct kobj_attribute *attr,
  354. char *buf)
  355. {
  356. return sprintf(buf, "%u\n", khugepaged_full_scans);
  357. }
  358. static struct kobj_attribute full_scans_attr =
  359. __ATTR_RO(full_scans);
  360. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  361. struct kobj_attribute *attr, char *buf)
  362. {
  363. return single_flag_show(kobj, attr, buf,
  364. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  365. }
  366. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. return single_flag_store(kobj, attr, buf, count,
  371. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  372. }
  373. static struct kobj_attribute khugepaged_defrag_attr =
  374. __ATTR(defrag, 0644, khugepaged_defrag_show,
  375. khugepaged_defrag_store);
  376. /*
  377. * max_ptes_none controls if khugepaged should collapse hugepages over
  378. * any unmapped ptes in turn potentially increasing the memory
  379. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  380. * reduce the available free memory in the system as it
  381. * runs. Increasing max_ptes_none will instead potentially reduce the
  382. * free memory in the system during the khugepaged scan.
  383. */
  384. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  385. struct kobj_attribute *attr,
  386. char *buf)
  387. {
  388. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  389. }
  390. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  391. struct kobj_attribute *attr,
  392. const char *buf, size_t count)
  393. {
  394. int err;
  395. unsigned long max_ptes_none;
  396. err = strict_strtoul(buf, 10, &max_ptes_none);
  397. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  398. return -EINVAL;
  399. khugepaged_max_ptes_none = max_ptes_none;
  400. return count;
  401. }
  402. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  403. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  404. khugepaged_max_ptes_none_store);
  405. static struct attribute *khugepaged_attr[] = {
  406. &khugepaged_defrag_attr.attr,
  407. &khugepaged_max_ptes_none_attr.attr,
  408. &pages_to_scan_attr.attr,
  409. &pages_collapsed_attr.attr,
  410. &full_scans_attr.attr,
  411. &scan_sleep_millisecs_attr.attr,
  412. &alloc_sleep_millisecs_attr.attr,
  413. NULL,
  414. };
  415. static struct attribute_group khugepaged_attr_group = {
  416. .attrs = khugepaged_attr,
  417. .name = "khugepaged",
  418. };
  419. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  420. {
  421. int err;
  422. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  423. if (unlikely(!*hugepage_kobj)) {
  424. printk(KERN_ERR "hugepage: failed kobject create\n");
  425. return -ENOMEM;
  426. }
  427. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  428. if (err) {
  429. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  430. goto delete_obj;
  431. }
  432. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  433. if (err) {
  434. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  435. goto remove_hp_group;
  436. }
  437. return 0;
  438. remove_hp_group:
  439. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  440. delete_obj:
  441. kobject_put(*hugepage_kobj);
  442. return err;
  443. }
  444. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  445. {
  446. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  447. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  448. kobject_put(hugepage_kobj);
  449. }
  450. #else
  451. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  452. {
  453. return 0;
  454. }
  455. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  456. {
  457. }
  458. #endif /* CONFIG_SYSFS */
  459. static int __init hugepage_init(void)
  460. {
  461. int err;
  462. struct kobject *hugepage_kobj;
  463. if (!has_transparent_hugepage()) {
  464. transparent_hugepage_flags = 0;
  465. return -EINVAL;
  466. }
  467. err = hugepage_init_sysfs(&hugepage_kobj);
  468. if (err)
  469. return err;
  470. err = khugepaged_slab_init();
  471. if (err)
  472. goto out;
  473. err = mm_slots_hash_init();
  474. if (err) {
  475. khugepaged_slab_free();
  476. goto out;
  477. }
  478. /*
  479. * By default disable transparent hugepages on smaller systems,
  480. * where the extra memory used could hurt more than TLB overhead
  481. * is likely to save. The admin can still enable it through /sys.
  482. */
  483. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  484. transparent_hugepage_flags = 0;
  485. start_khugepaged();
  486. return 0;
  487. out:
  488. hugepage_exit_sysfs(hugepage_kobj);
  489. return err;
  490. }
  491. module_init(hugepage_init)
  492. static int __init setup_transparent_hugepage(char *str)
  493. {
  494. int ret = 0;
  495. if (!str)
  496. goto out;
  497. if (!strcmp(str, "always")) {
  498. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  499. &transparent_hugepage_flags);
  500. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  501. &transparent_hugepage_flags);
  502. ret = 1;
  503. } else if (!strcmp(str, "madvise")) {
  504. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  505. &transparent_hugepage_flags);
  506. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  507. &transparent_hugepage_flags);
  508. ret = 1;
  509. } else if (!strcmp(str, "never")) {
  510. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  511. &transparent_hugepage_flags);
  512. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  513. &transparent_hugepage_flags);
  514. ret = 1;
  515. }
  516. out:
  517. if (!ret)
  518. printk(KERN_WARNING
  519. "transparent_hugepage= cannot parse, ignored\n");
  520. return ret;
  521. }
  522. __setup("transparent_hugepage=", setup_transparent_hugepage);
  523. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  524. struct mm_struct *mm)
  525. {
  526. assert_spin_locked(&mm->page_table_lock);
  527. /* FIFO */
  528. if (!mm->pmd_huge_pte)
  529. INIT_LIST_HEAD(&pgtable->lru);
  530. else
  531. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  532. mm->pmd_huge_pte = pgtable;
  533. }
  534. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  535. {
  536. if (likely(vma->vm_flags & VM_WRITE))
  537. pmd = pmd_mkwrite(pmd);
  538. return pmd;
  539. }
  540. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  541. struct vm_area_struct *vma,
  542. unsigned long haddr, pmd_t *pmd,
  543. struct page *page)
  544. {
  545. pgtable_t pgtable;
  546. VM_BUG_ON(!PageCompound(page));
  547. pgtable = pte_alloc_one(mm, haddr);
  548. if (unlikely(!pgtable))
  549. return VM_FAULT_OOM;
  550. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  551. __SetPageUptodate(page);
  552. spin_lock(&mm->page_table_lock);
  553. if (unlikely(!pmd_none(*pmd))) {
  554. spin_unlock(&mm->page_table_lock);
  555. mem_cgroup_uncharge_page(page);
  556. put_page(page);
  557. pte_free(mm, pgtable);
  558. } else {
  559. pmd_t entry;
  560. entry = mk_pmd(page, vma->vm_page_prot);
  561. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  562. entry = pmd_mkhuge(entry);
  563. /*
  564. * The spinlocking to take the lru_lock inside
  565. * page_add_new_anon_rmap() acts as a full memory
  566. * barrier to be sure clear_huge_page writes become
  567. * visible after the set_pmd_at() write.
  568. */
  569. page_add_new_anon_rmap(page, vma, haddr);
  570. set_pmd_at(mm, haddr, pmd, entry);
  571. prepare_pmd_huge_pte(pgtable, mm);
  572. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  573. mm->nr_ptes++;
  574. spin_unlock(&mm->page_table_lock);
  575. }
  576. return 0;
  577. }
  578. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  579. {
  580. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  581. }
  582. static inline struct page *alloc_hugepage_vma(int defrag,
  583. struct vm_area_struct *vma,
  584. unsigned long haddr, int nd,
  585. gfp_t extra_gfp)
  586. {
  587. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  588. HPAGE_PMD_ORDER, vma, haddr, nd);
  589. }
  590. #ifndef CONFIG_NUMA
  591. static inline struct page *alloc_hugepage(int defrag)
  592. {
  593. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  594. HPAGE_PMD_ORDER);
  595. }
  596. #endif
  597. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  598. unsigned long address, pmd_t *pmd,
  599. unsigned int flags)
  600. {
  601. struct page *page;
  602. unsigned long haddr = address & HPAGE_PMD_MASK;
  603. pte_t *pte;
  604. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  605. if (unlikely(anon_vma_prepare(vma)))
  606. return VM_FAULT_OOM;
  607. if (unlikely(khugepaged_enter(vma)))
  608. return VM_FAULT_OOM;
  609. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  610. vma, haddr, numa_node_id(), 0);
  611. if (unlikely(!page)) {
  612. count_vm_event(THP_FAULT_FALLBACK);
  613. goto out;
  614. }
  615. count_vm_event(THP_FAULT_ALLOC);
  616. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  617. put_page(page);
  618. goto out;
  619. }
  620. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  621. page))) {
  622. mem_cgroup_uncharge_page(page);
  623. put_page(page);
  624. goto out;
  625. }
  626. return 0;
  627. }
  628. out:
  629. /*
  630. * Use __pte_alloc instead of pte_alloc_map, because we can't
  631. * run pte_offset_map on the pmd, if an huge pmd could
  632. * materialize from under us from a different thread.
  633. */
  634. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  635. return VM_FAULT_OOM;
  636. /* if an huge pmd materialized from under us just retry later */
  637. if (unlikely(pmd_trans_huge(*pmd)))
  638. return 0;
  639. /*
  640. * A regular pmd is established and it can't morph into a huge pmd
  641. * from under us anymore at this point because we hold the mmap_sem
  642. * read mode and khugepaged takes it in write mode. So now it's
  643. * safe to run pte_offset_map().
  644. */
  645. pte = pte_offset_map(pmd, address);
  646. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  647. }
  648. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  649. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  650. struct vm_area_struct *vma)
  651. {
  652. struct page *src_page;
  653. pmd_t pmd;
  654. pgtable_t pgtable;
  655. int ret;
  656. ret = -ENOMEM;
  657. pgtable = pte_alloc_one(dst_mm, addr);
  658. if (unlikely(!pgtable))
  659. goto out;
  660. spin_lock(&dst_mm->page_table_lock);
  661. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  662. ret = -EAGAIN;
  663. pmd = *src_pmd;
  664. if (unlikely(!pmd_trans_huge(pmd))) {
  665. pte_free(dst_mm, pgtable);
  666. goto out_unlock;
  667. }
  668. if (unlikely(pmd_trans_splitting(pmd))) {
  669. /* split huge page running from under us */
  670. spin_unlock(&src_mm->page_table_lock);
  671. spin_unlock(&dst_mm->page_table_lock);
  672. pte_free(dst_mm, pgtable);
  673. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  674. goto out;
  675. }
  676. src_page = pmd_page(pmd);
  677. VM_BUG_ON(!PageHead(src_page));
  678. get_page(src_page);
  679. page_dup_rmap(src_page);
  680. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  681. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  682. pmd = pmd_mkold(pmd_wrprotect(pmd));
  683. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  684. prepare_pmd_huge_pte(pgtable, dst_mm);
  685. dst_mm->nr_ptes++;
  686. ret = 0;
  687. out_unlock:
  688. spin_unlock(&src_mm->page_table_lock);
  689. spin_unlock(&dst_mm->page_table_lock);
  690. out:
  691. return ret;
  692. }
  693. /* no "address" argument so destroys page coloring of some arch */
  694. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  695. {
  696. pgtable_t pgtable;
  697. assert_spin_locked(&mm->page_table_lock);
  698. /* FIFO */
  699. pgtable = mm->pmd_huge_pte;
  700. if (list_empty(&pgtable->lru))
  701. mm->pmd_huge_pte = NULL;
  702. else {
  703. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  704. struct page, lru);
  705. list_del(&pgtable->lru);
  706. }
  707. return pgtable;
  708. }
  709. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  710. struct vm_area_struct *vma,
  711. unsigned long address,
  712. pmd_t *pmd, pmd_t orig_pmd,
  713. struct page *page,
  714. unsigned long haddr)
  715. {
  716. pgtable_t pgtable;
  717. pmd_t _pmd;
  718. int ret = 0, i;
  719. struct page **pages;
  720. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  721. GFP_KERNEL);
  722. if (unlikely(!pages)) {
  723. ret |= VM_FAULT_OOM;
  724. goto out;
  725. }
  726. for (i = 0; i < HPAGE_PMD_NR; i++) {
  727. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  728. __GFP_OTHER_NODE,
  729. vma, address, page_to_nid(page));
  730. if (unlikely(!pages[i] ||
  731. mem_cgroup_newpage_charge(pages[i], mm,
  732. GFP_KERNEL))) {
  733. if (pages[i])
  734. put_page(pages[i]);
  735. mem_cgroup_uncharge_start();
  736. while (--i >= 0) {
  737. mem_cgroup_uncharge_page(pages[i]);
  738. put_page(pages[i]);
  739. }
  740. mem_cgroup_uncharge_end();
  741. kfree(pages);
  742. ret |= VM_FAULT_OOM;
  743. goto out;
  744. }
  745. }
  746. for (i = 0; i < HPAGE_PMD_NR; i++) {
  747. copy_user_highpage(pages[i], page + i,
  748. haddr + PAGE_SIZE * i, vma);
  749. __SetPageUptodate(pages[i]);
  750. cond_resched();
  751. }
  752. spin_lock(&mm->page_table_lock);
  753. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  754. goto out_free_pages;
  755. VM_BUG_ON(!PageHead(page));
  756. pmdp_clear_flush_notify(vma, haddr, pmd);
  757. /* leave pmd empty until pte is filled */
  758. pgtable = get_pmd_huge_pte(mm);
  759. pmd_populate(mm, &_pmd, pgtable);
  760. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  761. pte_t *pte, entry;
  762. entry = mk_pte(pages[i], vma->vm_page_prot);
  763. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  764. page_add_new_anon_rmap(pages[i], vma, haddr);
  765. pte = pte_offset_map(&_pmd, haddr);
  766. VM_BUG_ON(!pte_none(*pte));
  767. set_pte_at(mm, haddr, pte, entry);
  768. pte_unmap(pte);
  769. }
  770. kfree(pages);
  771. smp_wmb(); /* make pte visible before pmd */
  772. pmd_populate(mm, pmd, pgtable);
  773. page_remove_rmap(page);
  774. spin_unlock(&mm->page_table_lock);
  775. ret |= VM_FAULT_WRITE;
  776. put_page(page);
  777. out:
  778. return ret;
  779. out_free_pages:
  780. spin_unlock(&mm->page_table_lock);
  781. mem_cgroup_uncharge_start();
  782. for (i = 0; i < HPAGE_PMD_NR; i++) {
  783. mem_cgroup_uncharge_page(pages[i]);
  784. put_page(pages[i]);
  785. }
  786. mem_cgroup_uncharge_end();
  787. kfree(pages);
  788. goto out;
  789. }
  790. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  791. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  792. {
  793. int ret = 0;
  794. struct page *page, *new_page;
  795. unsigned long haddr;
  796. VM_BUG_ON(!vma->anon_vma);
  797. spin_lock(&mm->page_table_lock);
  798. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  799. goto out_unlock;
  800. page = pmd_page(orig_pmd);
  801. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  802. haddr = address & HPAGE_PMD_MASK;
  803. if (page_mapcount(page) == 1) {
  804. pmd_t entry;
  805. entry = pmd_mkyoung(orig_pmd);
  806. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  807. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  808. update_mmu_cache(vma, address, entry);
  809. ret |= VM_FAULT_WRITE;
  810. goto out_unlock;
  811. }
  812. get_page(page);
  813. spin_unlock(&mm->page_table_lock);
  814. if (transparent_hugepage_enabled(vma) &&
  815. !transparent_hugepage_debug_cow())
  816. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  817. vma, haddr, numa_node_id(), 0);
  818. else
  819. new_page = NULL;
  820. if (unlikely(!new_page)) {
  821. count_vm_event(THP_FAULT_FALLBACK);
  822. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  823. pmd, orig_pmd, page, haddr);
  824. if (ret & VM_FAULT_OOM)
  825. split_huge_page(page);
  826. put_page(page);
  827. goto out;
  828. }
  829. count_vm_event(THP_FAULT_ALLOC);
  830. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  831. put_page(new_page);
  832. split_huge_page(page);
  833. put_page(page);
  834. ret |= VM_FAULT_OOM;
  835. goto out;
  836. }
  837. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  838. __SetPageUptodate(new_page);
  839. spin_lock(&mm->page_table_lock);
  840. put_page(page);
  841. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  842. spin_unlock(&mm->page_table_lock);
  843. mem_cgroup_uncharge_page(new_page);
  844. put_page(new_page);
  845. goto out;
  846. } else {
  847. pmd_t entry;
  848. VM_BUG_ON(!PageHead(page));
  849. entry = mk_pmd(new_page, vma->vm_page_prot);
  850. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  851. entry = pmd_mkhuge(entry);
  852. pmdp_clear_flush_notify(vma, haddr, pmd);
  853. page_add_new_anon_rmap(new_page, vma, haddr);
  854. set_pmd_at(mm, haddr, pmd, entry);
  855. update_mmu_cache(vma, address, entry);
  856. page_remove_rmap(page);
  857. put_page(page);
  858. ret |= VM_FAULT_WRITE;
  859. }
  860. out_unlock:
  861. spin_unlock(&mm->page_table_lock);
  862. out:
  863. return ret;
  864. }
  865. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  866. unsigned long addr,
  867. pmd_t *pmd,
  868. unsigned int flags)
  869. {
  870. struct page *page = NULL;
  871. assert_spin_locked(&mm->page_table_lock);
  872. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  873. goto out;
  874. page = pmd_page(*pmd);
  875. VM_BUG_ON(!PageHead(page));
  876. if (flags & FOLL_TOUCH) {
  877. pmd_t _pmd;
  878. /*
  879. * We should set the dirty bit only for FOLL_WRITE but
  880. * for now the dirty bit in the pmd is meaningless.
  881. * And if the dirty bit will become meaningful and
  882. * we'll only set it with FOLL_WRITE, an atomic
  883. * set_bit will be required on the pmd to set the
  884. * young bit, instead of the current set_pmd_at.
  885. */
  886. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  887. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  888. }
  889. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  890. VM_BUG_ON(!PageCompound(page));
  891. if (flags & FOLL_GET)
  892. get_page_foll(page);
  893. out:
  894. return page;
  895. }
  896. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  897. pmd_t *pmd, unsigned long addr)
  898. {
  899. int ret = 0;
  900. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  901. struct page *page;
  902. pgtable_t pgtable;
  903. pgtable = get_pmd_huge_pte(tlb->mm);
  904. page = pmd_page(*pmd);
  905. pmd_clear(pmd);
  906. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  907. page_remove_rmap(page);
  908. VM_BUG_ON(page_mapcount(page) < 0);
  909. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  910. VM_BUG_ON(!PageHead(page));
  911. tlb->mm->nr_ptes--;
  912. spin_unlock(&tlb->mm->page_table_lock);
  913. tlb_remove_page(tlb, page);
  914. pte_free(tlb->mm, pgtable);
  915. ret = 1;
  916. }
  917. return ret;
  918. }
  919. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  920. unsigned long addr, unsigned long end,
  921. unsigned char *vec)
  922. {
  923. int ret = 0;
  924. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  925. /*
  926. * All logical pages in the range are present
  927. * if backed by a huge page.
  928. */
  929. spin_unlock(&vma->vm_mm->page_table_lock);
  930. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  931. ret = 1;
  932. }
  933. return ret;
  934. }
  935. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  936. unsigned long old_addr,
  937. unsigned long new_addr, unsigned long old_end,
  938. pmd_t *old_pmd, pmd_t *new_pmd)
  939. {
  940. int ret = 0;
  941. pmd_t pmd;
  942. struct mm_struct *mm = vma->vm_mm;
  943. if ((old_addr & ~HPAGE_PMD_MASK) ||
  944. (new_addr & ~HPAGE_PMD_MASK) ||
  945. old_end - old_addr < HPAGE_PMD_SIZE ||
  946. (new_vma->vm_flags & VM_NOHUGEPAGE))
  947. goto out;
  948. /*
  949. * The destination pmd shouldn't be established, free_pgtables()
  950. * should have release it.
  951. */
  952. if (WARN_ON(!pmd_none(*new_pmd))) {
  953. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  954. goto out;
  955. }
  956. ret = __pmd_trans_huge_lock(old_pmd, vma);
  957. if (ret == 1) {
  958. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  959. VM_BUG_ON(!pmd_none(*new_pmd));
  960. set_pmd_at(mm, new_addr, new_pmd, pmd);
  961. spin_unlock(&mm->page_table_lock);
  962. }
  963. out:
  964. return ret;
  965. }
  966. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  967. unsigned long addr, pgprot_t newprot)
  968. {
  969. struct mm_struct *mm = vma->vm_mm;
  970. int ret = 0;
  971. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  972. pmd_t entry;
  973. entry = pmdp_get_and_clear(mm, addr, pmd);
  974. entry = pmd_modify(entry, newprot);
  975. set_pmd_at(mm, addr, pmd, entry);
  976. spin_unlock(&vma->vm_mm->page_table_lock);
  977. ret = 1;
  978. }
  979. return ret;
  980. }
  981. /*
  982. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  983. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  984. *
  985. * Note that if it returns 1, this routine returns without unlocking page
  986. * table locks. So callers must unlock them.
  987. */
  988. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  989. {
  990. spin_lock(&vma->vm_mm->page_table_lock);
  991. if (likely(pmd_trans_huge(*pmd))) {
  992. if (unlikely(pmd_trans_splitting(*pmd))) {
  993. spin_unlock(&vma->vm_mm->page_table_lock);
  994. wait_split_huge_page(vma->anon_vma, pmd);
  995. return -1;
  996. } else {
  997. /* Thp mapped by 'pmd' is stable, so we can
  998. * handle it as it is. */
  999. return 1;
  1000. }
  1001. }
  1002. spin_unlock(&vma->vm_mm->page_table_lock);
  1003. return 0;
  1004. }
  1005. pmd_t *page_check_address_pmd(struct page *page,
  1006. struct mm_struct *mm,
  1007. unsigned long address,
  1008. enum page_check_address_pmd_flag flag)
  1009. {
  1010. pgd_t *pgd;
  1011. pud_t *pud;
  1012. pmd_t *pmd, *ret = NULL;
  1013. if (address & ~HPAGE_PMD_MASK)
  1014. goto out;
  1015. pgd = pgd_offset(mm, address);
  1016. if (!pgd_present(*pgd))
  1017. goto out;
  1018. pud = pud_offset(pgd, address);
  1019. if (!pud_present(*pud))
  1020. goto out;
  1021. pmd = pmd_offset(pud, address);
  1022. if (pmd_none(*pmd))
  1023. goto out;
  1024. if (pmd_page(*pmd) != page)
  1025. goto out;
  1026. /*
  1027. * split_vma() may create temporary aliased mappings. There is
  1028. * no risk as long as all huge pmd are found and have their
  1029. * splitting bit set before __split_huge_page_refcount
  1030. * runs. Finding the same huge pmd more than once during the
  1031. * same rmap walk is not a problem.
  1032. */
  1033. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1034. pmd_trans_splitting(*pmd))
  1035. goto out;
  1036. if (pmd_trans_huge(*pmd)) {
  1037. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1038. !pmd_trans_splitting(*pmd));
  1039. ret = pmd;
  1040. }
  1041. out:
  1042. return ret;
  1043. }
  1044. static int __split_huge_page_splitting(struct page *page,
  1045. struct vm_area_struct *vma,
  1046. unsigned long address)
  1047. {
  1048. struct mm_struct *mm = vma->vm_mm;
  1049. pmd_t *pmd;
  1050. int ret = 0;
  1051. spin_lock(&mm->page_table_lock);
  1052. pmd = page_check_address_pmd(page, mm, address,
  1053. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1054. if (pmd) {
  1055. /*
  1056. * We can't temporarily set the pmd to null in order
  1057. * to split it, the pmd must remain marked huge at all
  1058. * times or the VM won't take the pmd_trans_huge paths
  1059. * and it won't wait on the anon_vma->root->mutex to
  1060. * serialize against split_huge_page*.
  1061. */
  1062. pmdp_splitting_flush_notify(vma, address, pmd);
  1063. ret = 1;
  1064. }
  1065. spin_unlock(&mm->page_table_lock);
  1066. return ret;
  1067. }
  1068. static void __split_huge_page_refcount(struct page *page)
  1069. {
  1070. int i;
  1071. struct zone *zone = page_zone(page);
  1072. struct lruvec *lruvec;
  1073. int tail_count = 0;
  1074. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1075. spin_lock_irq(&zone->lru_lock);
  1076. lruvec = mem_cgroup_page_lruvec(page, zone);
  1077. compound_lock(page);
  1078. /* complete memcg works before add pages to LRU */
  1079. mem_cgroup_split_huge_fixup(page);
  1080. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1081. struct page *page_tail = page + i;
  1082. /* tail_page->_mapcount cannot change */
  1083. BUG_ON(page_mapcount(page_tail) < 0);
  1084. tail_count += page_mapcount(page_tail);
  1085. /* check for overflow */
  1086. BUG_ON(tail_count < 0);
  1087. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1088. /*
  1089. * tail_page->_count is zero and not changing from
  1090. * under us. But get_page_unless_zero() may be running
  1091. * from under us on the tail_page. If we used
  1092. * atomic_set() below instead of atomic_add(), we
  1093. * would then run atomic_set() concurrently with
  1094. * get_page_unless_zero(), and atomic_set() is
  1095. * implemented in C not using locked ops. spin_unlock
  1096. * on x86 sometime uses locked ops because of PPro
  1097. * errata 66, 92, so unless somebody can guarantee
  1098. * atomic_set() here would be safe on all archs (and
  1099. * not only on x86), it's safer to use atomic_add().
  1100. */
  1101. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1102. &page_tail->_count);
  1103. /* after clearing PageTail the gup refcount can be released */
  1104. smp_mb();
  1105. /*
  1106. * retain hwpoison flag of the poisoned tail page:
  1107. * fix for the unsuitable process killed on Guest Machine(KVM)
  1108. * by the memory-failure.
  1109. */
  1110. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1111. page_tail->flags |= (page->flags &
  1112. ((1L << PG_referenced) |
  1113. (1L << PG_swapbacked) |
  1114. (1L << PG_mlocked) |
  1115. (1L << PG_uptodate)));
  1116. page_tail->flags |= (1L << PG_dirty);
  1117. /* clear PageTail before overwriting first_page */
  1118. smp_wmb();
  1119. /*
  1120. * __split_huge_page_splitting() already set the
  1121. * splitting bit in all pmd that could map this
  1122. * hugepage, that will ensure no CPU can alter the
  1123. * mapcount on the head page. The mapcount is only
  1124. * accounted in the head page and it has to be
  1125. * transferred to all tail pages in the below code. So
  1126. * for this code to be safe, the split the mapcount
  1127. * can't change. But that doesn't mean userland can't
  1128. * keep changing and reading the page contents while
  1129. * we transfer the mapcount, so the pmd splitting
  1130. * status is achieved setting a reserved bit in the
  1131. * pmd, not by clearing the present bit.
  1132. */
  1133. page_tail->_mapcount = page->_mapcount;
  1134. BUG_ON(page_tail->mapping);
  1135. page_tail->mapping = page->mapping;
  1136. page_tail->index = page->index + i;
  1137. BUG_ON(!PageAnon(page_tail));
  1138. BUG_ON(!PageUptodate(page_tail));
  1139. BUG_ON(!PageDirty(page_tail));
  1140. BUG_ON(!PageSwapBacked(page_tail));
  1141. lru_add_page_tail(page, page_tail, lruvec);
  1142. }
  1143. atomic_sub(tail_count, &page->_count);
  1144. BUG_ON(atomic_read(&page->_count) <= 0);
  1145. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1146. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1147. ClearPageCompound(page);
  1148. compound_unlock(page);
  1149. spin_unlock_irq(&zone->lru_lock);
  1150. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1151. struct page *page_tail = page + i;
  1152. BUG_ON(page_count(page_tail) <= 0);
  1153. /*
  1154. * Tail pages may be freed if there wasn't any mapping
  1155. * like if add_to_swap() is running on a lru page that
  1156. * had its mapping zapped. And freeing these pages
  1157. * requires taking the lru_lock so we do the put_page
  1158. * of the tail pages after the split is complete.
  1159. */
  1160. put_page(page_tail);
  1161. }
  1162. /*
  1163. * Only the head page (now become a regular page) is required
  1164. * to be pinned by the caller.
  1165. */
  1166. BUG_ON(page_count(page) <= 0);
  1167. }
  1168. static int __split_huge_page_map(struct page *page,
  1169. struct vm_area_struct *vma,
  1170. unsigned long address)
  1171. {
  1172. struct mm_struct *mm = vma->vm_mm;
  1173. pmd_t *pmd, _pmd;
  1174. int ret = 0, i;
  1175. pgtable_t pgtable;
  1176. unsigned long haddr;
  1177. spin_lock(&mm->page_table_lock);
  1178. pmd = page_check_address_pmd(page, mm, address,
  1179. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1180. if (pmd) {
  1181. pgtable = get_pmd_huge_pte(mm);
  1182. pmd_populate(mm, &_pmd, pgtable);
  1183. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1184. i++, haddr += PAGE_SIZE) {
  1185. pte_t *pte, entry;
  1186. BUG_ON(PageCompound(page+i));
  1187. entry = mk_pte(page + i, vma->vm_page_prot);
  1188. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1189. if (!pmd_write(*pmd))
  1190. entry = pte_wrprotect(entry);
  1191. else
  1192. BUG_ON(page_mapcount(page) != 1);
  1193. if (!pmd_young(*pmd))
  1194. entry = pte_mkold(entry);
  1195. pte = pte_offset_map(&_pmd, haddr);
  1196. BUG_ON(!pte_none(*pte));
  1197. set_pte_at(mm, haddr, pte, entry);
  1198. pte_unmap(pte);
  1199. }
  1200. smp_wmb(); /* make pte visible before pmd */
  1201. /*
  1202. * Up to this point the pmd is present and huge and
  1203. * userland has the whole access to the hugepage
  1204. * during the split (which happens in place). If we
  1205. * overwrite the pmd with the not-huge version
  1206. * pointing to the pte here (which of course we could
  1207. * if all CPUs were bug free), userland could trigger
  1208. * a small page size TLB miss on the small sized TLB
  1209. * while the hugepage TLB entry is still established
  1210. * in the huge TLB. Some CPU doesn't like that. See
  1211. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1212. * Erratum 383 on page 93. Intel should be safe but is
  1213. * also warns that it's only safe if the permission
  1214. * and cache attributes of the two entries loaded in
  1215. * the two TLB is identical (which should be the case
  1216. * here). But it is generally safer to never allow
  1217. * small and huge TLB entries for the same virtual
  1218. * address to be loaded simultaneously. So instead of
  1219. * doing "pmd_populate(); flush_tlb_range();" we first
  1220. * mark the current pmd notpresent (atomically because
  1221. * here the pmd_trans_huge and pmd_trans_splitting
  1222. * must remain set at all times on the pmd until the
  1223. * split is complete for this pmd), then we flush the
  1224. * SMP TLB and finally we write the non-huge version
  1225. * of the pmd entry with pmd_populate.
  1226. */
  1227. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1228. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1229. pmd_populate(mm, pmd, pgtable);
  1230. ret = 1;
  1231. }
  1232. spin_unlock(&mm->page_table_lock);
  1233. return ret;
  1234. }
  1235. /* must be called with anon_vma->root->mutex hold */
  1236. static void __split_huge_page(struct page *page,
  1237. struct anon_vma *anon_vma)
  1238. {
  1239. int mapcount, mapcount2;
  1240. struct anon_vma_chain *avc;
  1241. BUG_ON(!PageHead(page));
  1242. BUG_ON(PageTail(page));
  1243. mapcount = 0;
  1244. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1245. struct vm_area_struct *vma = avc->vma;
  1246. unsigned long addr = vma_address(page, vma);
  1247. BUG_ON(is_vma_temporary_stack(vma));
  1248. if (addr == -EFAULT)
  1249. continue;
  1250. mapcount += __split_huge_page_splitting(page, vma, addr);
  1251. }
  1252. /*
  1253. * It is critical that new vmas are added to the tail of the
  1254. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1255. * and establishes a child pmd before
  1256. * __split_huge_page_splitting() freezes the parent pmd (so if
  1257. * we fail to prevent copy_huge_pmd() from running until the
  1258. * whole __split_huge_page() is complete), we will still see
  1259. * the newly established pmd of the child later during the
  1260. * walk, to be able to set it as pmd_trans_splitting too.
  1261. */
  1262. if (mapcount != page_mapcount(page))
  1263. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1264. mapcount, page_mapcount(page));
  1265. BUG_ON(mapcount != page_mapcount(page));
  1266. __split_huge_page_refcount(page);
  1267. mapcount2 = 0;
  1268. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1269. struct vm_area_struct *vma = avc->vma;
  1270. unsigned long addr = vma_address(page, vma);
  1271. BUG_ON(is_vma_temporary_stack(vma));
  1272. if (addr == -EFAULT)
  1273. continue;
  1274. mapcount2 += __split_huge_page_map(page, vma, addr);
  1275. }
  1276. if (mapcount != mapcount2)
  1277. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1278. mapcount, mapcount2, page_mapcount(page));
  1279. BUG_ON(mapcount != mapcount2);
  1280. }
  1281. int split_huge_page(struct page *page)
  1282. {
  1283. struct anon_vma *anon_vma;
  1284. int ret = 1;
  1285. BUG_ON(!PageAnon(page));
  1286. anon_vma = page_lock_anon_vma(page);
  1287. if (!anon_vma)
  1288. goto out;
  1289. ret = 0;
  1290. if (!PageCompound(page))
  1291. goto out_unlock;
  1292. BUG_ON(!PageSwapBacked(page));
  1293. __split_huge_page(page, anon_vma);
  1294. count_vm_event(THP_SPLIT);
  1295. BUG_ON(PageCompound(page));
  1296. out_unlock:
  1297. page_unlock_anon_vma(anon_vma);
  1298. out:
  1299. return ret;
  1300. }
  1301. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1302. int hugepage_madvise(struct vm_area_struct *vma,
  1303. unsigned long *vm_flags, int advice)
  1304. {
  1305. switch (advice) {
  1306. case MADV_HUGEPAGE:
  1307. /*
  1308. * Be somewhat over-protective like KSM for now!
  1309. */
  1310. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1311. return -EINVAL;
  1312. *vm_flags &= ~VM_NOHUGEPAGE;
  1313. *vm_flags |= VM_HUGEPAGE;
  1314. /*
  1315. * If the vma become good for khugepaged to scan,
  1316. * register it here without waiting a page fault that
  1317. * may not happen any time soon.
  1318. */
  1319. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1320. return -ENOMEM;
  1321. break;
  1322. case MADV_NOHUGEPAGE:
  1323. /*
  1324. * Be somewhat over-protective like KSM for now!
  1325. */
  1326. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1327. return -EINVAL;
  1328. *vm_flags &= ~VM_HUGEPAGE;
  1329. *vm_flags |= VM_NOHUGEPAGE;
  1330. /*
  1331. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1332. * this vma even if we leave the mm registered in khugepaged if
  1333. * it got registered before VM_NOHUGEPAGE was set.
  1334. */
  1335. break;
  1336. }
  1337. return 0;
  1338. }
  1339. static int __init khugepaged_slab_init(void)
  1340. {
  1341. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1342. sizeof(struct mm_slot),
  1343. __alignof__(struct mm_slot), 0, NULL);
  1344. if (!mm_slot_cache)
  1345. return -ENOMEM;
  1346. return 0;
  1347. }
  1348. static void __init khugepaged_slab_free(void)
  1349. {
  1350. kmem_cache_destroy(mm_slot_cache);
  1351. mm_slot_cache = NULL;
  1352. }
  1353. static inline struct mm_slot *alloc_mm_slot(void)
  1354. {
  1355. if (!mm_slot_cache) /* initialization failed */
  1356. return NULL;
  1357. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1358. }
  1359. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1360. {
  1361. kmem_cache_free(mm_slot_cache, mm_slot);
  1362. }
  1363. static int __init mm_slots_hash_init(void)
  1364. {
  1365. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1366. GFP_KERNEL);
  1367. if (!mm_slots_hash)
  1368. return -ENOMEM;
  1369. return 0;
  1370. }
  1371. #if 0
  1372. static void __init mm_slots_hash_free(void)
  1373. {
  1374. kfree(mm_slots_hash);
  1375. mm_slots_hash = NULL;
  1376. }
  1377. #endif
  1378. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1379. {
  1380. struct mm_slot *mm_slot;
  1381. struct hlist_head *bucket;
  1382. struct hlist_node *node;
  1383. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1384. % MM_SLOTS_HASH_HEADS];
  1385. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1386. if (mm == mm_slot->mm)
  1387. return mm_slot;
  1388. }
  1389. return NULL;
  1390. }
  1391. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1392. struct mm_slot *mm_slot)
  1393. {
  1394. struct hlist_head *bucket;
  1395. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1396. % MM_SLOTS_HASH_HEADS];
  1397. mm_slot->mm = mm;
  1398. hlist_add_head(&mm_slot->hash, bucket);
  1399. }
  1400. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1401. {
  1402. return atomic_read(&mm->mm_users) == 0;
  1403. }
  1404. int __khugepaged_enter(struct mm_struct *mm)
  1405. {
  1406. struct mm_slot *mm_slot;
  1407. int wakeup;
  1408. mm_slot = alloc_mm_slot();
  1409. if (!mm_slot)
  1410. return -ENOMEM;
  1411. /* __khugepaged_exit() must not run from under us */
  1412. VM_BUG_ON(khugepaged_test_exit(mm));
  1413. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1414. free_mm_slot(mm_slot);
  1415. return 0;
  1416. }
  1417. spin_lock(&khugepaged_mm_lock);
  1418. insert_to_mm_slots_hash(mm, mm_slot);
  1419. /*
  1420. * Insert just behind the scanning cursor, to let the area settle
  1421. * down a little.
  1422. */
  1423. wakeup = list_empty(&khugepaged_scan.mm_head);
  1424. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1425. spin_unlock(&khugepaged_mm_lock);
  1426. atomic_inc(&mm->mm_count);
  1427. if (wakeup)
  1428. wake_up_interruptible(&khugepaged_wait);
  1429. return 0;
  1430. }
  1431. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1432. {
  1433. unsigned long hstart, hend;
  1434. if (!vma->anon_vma)
  1435. /*
  1436. * Not yet faulted in so we will register later in the
  1437. * page fault if needed.
  1438. */
  1439. return 0;
  1440. if (vma->vm_ops)
  1441. /* khugepaged not yet working on file or special mappings */
  1442. return 0;
  1443. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1444. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1445. hend = vma->vm_end & HPAGE_PMD_MASK;
  1446. if (hstart < hend)
  1447. return khugepaged_enter(vma);
  1448. return 0;
  1449. }
  1450. void __khugepaged_exit(struct mm_struct *mm)
  1451. {
  1452. struct mm_slot *mm_slot;
  1453. int free = 0;
  1454. spin_lock(&khugepaged_mm_lock);
  1455. mm_slot = get_mm_slot(mm);
  1456. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1457. hlist_del(&mm_slot->hash);
  1458. list_del(&mm_slot->mm_node);
  1459. free = 1;
  1460. }
  1461. spin_unlock(&khugepaged_mm_lock);
  1462. if (free) {
  1463. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1464. free_mm_slot(mm_slot);
  1465. mmdrop(mm);
  1466. } else if (mm_slot) {
  1467. /*
  1468. * This is required to serialize against
  1469. * khugepaged_test_exit() (which is guaranteed to run
  1470. * under mmap sem read mode). Stop here (after we
  1471. * return all pagetables will be destroyed) until
  1472. * khugepaged has finished working on the pagetables
  1473. * under the mmap_sem.
  1474. */
  1475. down_write(&mm->mmap_sem);
  1476. up_write(&mm->mmap_sem);
  1477. }
  1478. }
  1479. static void release_pte_page(struct page *page)
  1480. {
  1481. /* 0 stands for page_is_file_cache(page) == false */
  1482. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1483. unlock_page(page);
  1484. putback_lru_page(page);
  1485. }
  1486. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1487. {
  1488. while (--_pte >= pte) {
  1489. pte_t pteval = *_pte;
  1490. if (!pte_none(pteval))
  1491. release_pte_page(pte_page(pteval));
  1492. }
  1493. }
  1494. static void release_all_pte_pages(pte_t *pte)
  1495. {
  1496. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1497. }
  1498. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1499. unsigned long address,
  1500. pte_t *pte)
  1501. {
  1502. struct page *page;
  1503. pte_t *_pte;
  1504. int referenced = 0, isolated = 0, none = 0;
  1505. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1506. _pte++, address += PAGE_SIZE) {
  1507. pte_t pteval = *_pte;
  1508. if (pte_none(pteval)) {
  1509. if (++none <= khugepaged_max_ptes_none)
  1510. continue;
  1511. else {
  1512. release_pte_pages(pte, _pte);
  1513. goto out;
  1514. }
  1515. }
  1516. if (!pte_present(pteval) || !pte_write(pteval)) {
  1517. release_pte_pages(pte, _pte);
  1518. goto out;
  1519. }
  1520. page = vm_normal_page(vma, address, pteval);
  1521. if (unlikely(!page)) {
  1522. release_pte_pages(pte, _pte);
  1523. goto out;
  1524. }
  1525. VM_BUG_ON(PageCompound(page));
  1526. BUG_ON(!PageAnon(page));
  1527. VM_BUG_ON(!PageSwapBacked(page));
  1528. /* cannot use mapcount: can't collapse if there's a gup pin */
  1529. if (page_count(page) != 1) {
  1530. release_pte_pages(pte, _pte);
  1531. goto out;
  1532. }
  1533. /*
  1534. * We can do it before isolate_lru_page because the
  1535. * page can't be freed from under us. NOTE: PG_lock
  1536. * is needed to serialize against split_huge_page
  1537. * when invoked from the VM.
  1538. */
  1539. if (!trylock_page(page)) {
  1540. release_pte_pages(pte, _pte);
  1541. goto out;
  1542. }
  1543. /*
  1544. * Isolate the page to avoid collapsing an hugepage
  1545. * currently in use by the VM.
  1546. */
  1547. if (isolate_lru_page(page)) {
  1548. unlock_page(page);
  1549. release_pte_pages(pte, _pte);
  1550. goto out;
  1551. }
  1552. /* 0 stands for page_is_file_cache(page) == false */
  1553. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1554. VM_BUG_ON(!PageLocked(page));
  1555. VM_BUG_ON(PageLRU(page));
  1556. /* If there is no mapped pte young don't collapse the page */
  1557. if (pte_young(pteval) || PageReferenced(page) ||
  1558. mmu_notifier_test_young(vma->vm_mm, address))
  1559. referenced = 1;
  1560. }
  1561. if (unlikely(!referenced))
  1562. release_all_pte_pages(pte);
  1563. else
  1564. isolated = 1;
  1565. out:
  1566. return isolated;
  1567. }
  1568. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1569. struct vm_area_struct *vma,
  1570. unsigned long address,
  1571. spinlock_t *ptl)
  1572. {
  1573. pte_t *_pte;
  1574. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1575. pte_t pteval = *_pte;
  1576. struct page *src_page;
  1577. if (pte_none(pteval)) {
  1578. clear_user_highpage(page, address);
  1579. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1580. } else {
  1581. src_page = pte_page(pteval);
  1582. copy_user_highpage(page, src_page, address, vma);
  1583. VM_BUG_ON(page_mapcount(src_page) != 1);
  1584. release_pte_page(src_page);
  1585. /*
  1586. * ptl mostly unnecessary, but preempt has to
  1587. * be disabled to update the per-cpu stats
  1588. * inside page_remove_rmap().
  1589. */
  1590. spin_lock(ptl);
  1591. /*
  1592. * paravirt calls inside pte_clear here are
  1593. * superfluous.
  1594. */
  1595. pte_clear(vma->vm_mm, address, _pte);
  1596. page_remove_rmap(src_page);
  1597. spin_unlock(ptl);
  1598. free_page_and_swap_cache(src_page);
  1599. }
  1600. address += PAGE_SIZE;
  1601. page++;
  1602. }
  1603. }
  1604. static void khugepaged_alloc_sleep(void)
  1605. {
  1606. wait_event_freezable_timeout(khugepaged_wait, false,
  1607. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1608. }
  1609. #ifdef CONFIG_NUMA
  1610. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1611. {
  1612. if (IS_ERR(*hpage)) {
  1613. if (!*wait)
  1614. return false;
  1615. *wait = false;
  1616. khugepaged_alloc_sleep();
  1617. } else if (*hpage) {
  1618. put_page(*hpage);
  1619. *hpage = NULL;
  1620. }
  1621. return true;
  1622. }
  1623. static struct page
  1624. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1625. struct vm_area_struct *vma, unsigned long address,
  1626. int node)
  1627. {
  1628. VM_BUG_ON(*hpage);
  1629. /*
  1630. * Allocate the page while the vma is still valid and under
  1631. * the mmap_sem read mode so there is no memory allocation
  1632. * later when we take the mmap_sem in write mode. This is more
  1633. * friendly behavior (OTOH it may actually hide bugs) to
  1634. * filesystems in userland with daemons allocating memory in
  1635. * the userland I/O paths. Allocating memory with the
  1636. * mmap_sem in read mode is good idea also to allow greater
  1637. * scalability.
  1638. */
  1639. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1640. node, __GFP_OTHER_NODE);
  1641. /*
  1642. * After allocating the hugepage, release the mmap_sem read lock in
  1643. * preparation for taking it in write mode.
  1644. */
  1645. up_read(&mm->mmap_sem);
  1646. if (unlikely(!*hpage)) {
  1647. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1648. *hpage = ERR_PTR(-ENOMEM);
  1649. return NULL;
  1650. }
  1651. count_vm_event(THP_COLLAPSE_ALLOC);
  1652. return *hpage;
  1653. }
  1654. #else
  1655. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1656. {
  1657. struct page *hpage;
  1658. do {
  1659. hpage = alloc_hugepage(khugepaged_defrag());
  1660. if (!hpage) {
  1661. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1662. if (!*wait)
  1663. return NULL;
  1664. *wait = false;
  1665. khugepaged_alloc_sleep();
  1666. } else
  1667. count_vm_event(THP_COLLAPSE_ALLOC);
  1668. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1669. return hpage;
  1670. }
  1671. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1672. {
  1673. if (!*hpage)
  1674. *hpage = khugepaged_alloc_hugepage(wait);
  1675. if (unlikely(!*hpage))
  1676. return false;
  1677. return true;
  1678. }
  1679. static struct page
  1680. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1681. struct vm_area_struct *vma, unsigned long address,
  1682. int node)
  1683. {
  1684. up_read(&mm->mmap_sem);
  1685. VM_BUG_ON(!*hpage);
  1686. return *hpage;
  1687. }
  1688. #endif
  1689. static void collapse_huge_page(struct mm_struct *mm,
  1690. unsigned long address,
  1691. struct page **hpage,
  1692. struct vm_area_struct *vma,
  1693. int node)
  1694. {
  1695. pgd_t *pgd;
  1696. pud_t *pud;
  1697. pmd_t *pmd, _pmd;
  1698. pte_t *pte;
  1699. pgtable_t pgtable;
  1700. struct page *new_page;
  1701. spinlock_t *ptl;
  1702. int isolated;
  1703. unsigned long hstart, hend;
  1704. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1705. /* release the mmap_sem read lock. */
  1706. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1707. if (!new_page)
  1708. return;
  1709. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1710. return;
  1711. /*
  1712. * Prevent all access to pagetables with the exception of
  1713. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1714. * handled by the anon_vma lock + PG_lock.
  1715. */
  1716. down_write(&mm->mmap_sem);
  1717. if (unlikely(khugepaged_test_exit(mm)))
  1718. goto out;
  1719. vma = find_vma(mm, address);
  1720. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1721. hend = vma->vm_end & HPAGE_PMD_MASK;
  1722. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1723. goto out;
  1724. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1725. (vma->vm_flags & VM_NOHUGEPAGE))
  1726. goto out;
  1727. if (!vma->anon_vma || vma->vm_ops)
  1728. goto out;
  1729. if (is_vma_temporary_stack(vma))
  1730. goto out;
  1731. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1732. pgd = pgd_offset(mm, address);
  1733. if (!pgd_present(*pgd))
  1734. goto out;
  1735. pud = pud_offset(pgd, address);
  1736. if (!pud_present(*pud))
  1737. goto out;
  1738. pmd = pmd_offset(pud, address);
  1739. /* pmd can't go away or become huge under us */
  1740. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1741. goto out;
  1742. anon_vma_lock(vma->anon_vma);
  1743. pte = pte_offset_map(pmd, address);
  1744. ptl = pte_lockptr(mm, pmd);
  1745. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1746. /*
  1747. * After this gup_fast can't run anymore. This also removes
  1748. * any huge TLB entry from the CPU so we won't allow
  1749. * huge and small TLB entries for the same virtual address
  1750. * to avoid the risk of CPU bugs in that area.
  1751. */
  1752. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1753. spin_unlock(&mm->page_table_lock);
  1754. spin_lock(ptl);
  1755. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1756. spin_unlock(ptl);
  1757. if (unlikely(!isolated)) {
  1758. pte_unmap(pte);
  1759. spin_lock(&mm->page_table_lock);
  1760. BUG_ON(!pmd_none(*pmd));
  1761. set_pmd_at(mm, address, pmd, _pmd);
  1762. spin_unlock(&mm->page_table_lock);
  1763. anon_vma_unlock(vma->anon_vma);
  1764. goto out;
  1765. }
  1766. /*
  1767. * All pages are isolated and locked so anon_vma rmap
  1768. * can't run anymore.
  1769. */
  1770. anon_vma_unlock(vma->anon_vma);
  1771. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1772. pte_unmap(pte);
  1773. __SetPageUptodate(new_page);
  1774. pgtable = pmd_pgtable(_pmd);
  1775. VM_BUG_ON(page_count(pgtable) != 1);
  1776. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1777. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1778. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1779. _pmd = pmd_mkhuge(_pmd);
  1780. /*
  1781. * spin_lock() below is not the equivalent of smp_wmb(), so
  1782. * this is needed to avoid the copy_huge_page writes to become
  1783. * visible after the set_pmd_at() write.
  1784. */
  1785. smp_wmb();
  1786. spin_lock(&mm->page_table_lock);
  1787. BUG_ON(!pmd_none(*pmd));
  1788. page_add_new_anon_rmap(new_page, vma, address);
  1789. set_pmd_at(mm, address, pmd, _pmd);
  1790. update_mmu_cache(vma, address, _pmd);
  1791. prepare_pmd_huge_pte(pgtable, mm);
  1792. spin_unlock(&mm->page_table_lock);
  1793. *hpage = NULL;
  1794. khugepaged_pages_collapsed++;
  1795. out_up_write:
  1796. up_write(&mm->mmap_sem);
  1797. return;
  1798. out:
  1799. mem_cgroup_uncharge_page(new_page);
  1800. goto out_up_write;
  1801. }
  1802. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1803. struct vm_area_struct *vma,
  1804. unsigned long address,
  1805. struct page **hpage)
  1806. {
  1807. pgd_t *pgd;
  1808. pud_t *pud;
  1809. pmd_t *pmd;
  1810. pte_t *pte, *_pte;
  1811. int ret = 0, referenced = 0, none = 0;
  1812. struct page *page;
  1813. unsigned long _address;
  1814. spinlock_t *ptl;
  1815. int node = -1;
  1816. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1817. pgd = pgd_offset(mm, address);
  1818. if (!pgd_present(*pgd))
  1819. goto out;
  1820. pud = pud_offset(pgd, address);
  1821. if (!pud_present(*pud))
  1822. goto out;
  1823. pmd = pmd_offset(pud, address);
  1824. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1825. goto out;
  1826. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1827. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1828. _pte++, _address += PAGE_SIZE) {
  1829. pte_t pteval = *_pte;
  1830. if (pte_none(pteval)) {
  1831. if (++none <= khugepaged_max_ptes_none)
  1832. continue;
  1833. else
  1834. goto out_unmap;
  1835. }
  1836. if (!pte_present(pteval) || !pte_write(pteval))
  1837. goto out_unmap;
  1838. page = vm_normal_page(vma, _address, pteval);
  1839. if (unlikely(!page))
  1840. goto out_unmap;
  1841. /*
  1842. * Chose the node of the first page. This could
  1843. * be more sophisticated and look at more pages,
  1844. * but isn't for now.
  1845. */
  1846. if (node == -1)
  1847. node = page_to_nid(page);
  1848. VM_BUG_ON(PageCompound(page));
  1849. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1850. goto out_unmap;
  1851. /* cannot use mapcount: can't collapse if there's a gup pin */
  1852. if (page_count(page) != 1)
  1853. goto out_unmap;
  1854. if (pte_young(pteval) || PageReferenced(page) ||
  1855. mmu_notifier_test_young(vma->vm_mm, address))
  1856. referenced = 1;
  1857. }
  1858. if (referenced)
  1859. ret = 1;
  1860. out_unmap:
  1861. pte_unmap_unlock(pte, ptl);
  1862. if (ret)
  1863. /* collapse_huge_page will return with the mmap_sem released */
  1864. collapse_huge_page(mm, address, hpage, vma, node);
  1865. out:
  1866. return ret;
  1867. }
  1868. static void collect_mm_slot(struct mm_slot *mm_slot)
  1869. {
  1870. struct mm_struct *mm = mm_slot->mm;
  1871. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1872. if (khugepaged_test_exit(mm)) {
  1873. /* free mm_slot */
  1874. hlist_del(&mm_slot->hash);
  1875. list_del(&mm_slot->mm_node);
  1876. /*
  1877. * Not strictly needed because the mm exited already.
  1878. *
  1879. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1880. */
  1881. /* khugepaged_mm_lock actually not necessary for the below */
  1882. free_mm_slot(mm_slot);
  1883. mmdrop(mm);
  1884. }
  1885. }
  1886. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1887. struct page **hpage)
  1888. __releases(&khugepaged_mm_lock)
  1889. __acquires(&khugepaged_mm_lock)
  1890. {
  1891. struct mm_slot *mm_slot;
  1892. struct mm_struct *mm;
  1893. struct vm_area_struct *vma;
  1894. int progress = 0;
  1895. VM_BUG_ON(!pages);
  1896. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1897. if (khugepaged_scan.mm_slot)
  1898. mm_slot = khugepaged_scan.mm_slot;
  1899. else {
  1900. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1901. struct mm_slot, mm_node);
  1902. khugepaged_scan.address = 0;
  1903. khugepaged_scan.mm_slot = mm_slot;
  1904. }
  1905. spin_unlock(&khugepaged_mm_lock);
  1906. mm = mm_slot->mm;
  1907. down_read(&mm->mmap_sem);
  1908. if (unlikely(khugepaged_test_exit(mm)))
  1909. vma = NULL;
  1910. else
  1911. vma = find_vma(mm, khugepaged_scan.address);
  1912. progress++;
  1913. for (; vma; vma = vma->vm_next) {
  1914. unsigned long hstart, hend;
  1915. cond_resched();
  1916. if (unlikely(khugepaged_test_exit(mm))) {
  1917. progress++;
  1918. break;
  1919. }
  1920. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1921. !khugepaged_always()) ||
  1922. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1923. skip:
  1924. progress++;
  1925. continue;
  1926. }
  1927. if (!vma->anon_vma || vma->vm_ops)
  1928. goto skip;
  1929. if (is_vma_temporary_stack(vma))
  1930. goto skip;
  1931. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1932. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1933. hend = vma->vm_end & HPAGE_PMD_MASK;
  1934. if (hstart >= hend)
  1935. goto skip;
  1936. if (khugepaged_scan.address > hend)
  1937. goto skip;
  1938. if (khugepaged_scan.address < hstart)
  1939. khugepaged_scan.address = hstart;
  1940. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1941. while (khugepaged_scan.address < hend) {
  1942. int ret;
  1943. cond_resched();
  1944. if (unlikely(khugepaged_test_exit(mm)))
  1945. goto breakouterloop;
  1946. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1947. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1948. hend);
  1949. ret = khugepaged_scan_pmd(mm, vma,
  1950. khugepaged_scan.address,
  1951. hpage);
  1952. /* move to next address */
  1953. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1954. progress += HPAGE_PMD_NR;
  1955. if (ret)
  1956. /* we released mmap_sem so break loop */
  1957. goto breakouterloop_mmap_sem;
  1958. if (progress >= pages)
  1959. goto breakouterloop;
  1960. }
  1961. }
  1962. breakouterloop:
  1963. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1964. breakouterloop_mmap_sem:
  1965. spin_lock(&khugepaged_mm_lock);
  1966. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1967. /*
  1968. * Release the current mm_slot if this mm is about to die, or
  1969. * if we scanned all vmas of this mm.
  1970. */
  1971. if (khugepaged_test_exit(mm) || !vma) {
  1972. /*
  1973. * Make sure that if mm_users is reaching zero while
  1974. * khugepaged runs here, khugepaged_exit will find
  1975. * mm_slot not pointing to the exiting mm.
  1976. */
  1977. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1978. khugepaged_scan.mm_slot = list_entry(
  1979. mm_slot->mm_node.next,
  1980. struct mm_slot, mm_node);
  1981. khugepaged_scan.address = 0;
  1982. } else {
  1983. khugepaged_scan.mm_slot = NULL;
  1984. khugepaged_full_scans++;
  1985. }
  1986. collect_mm_slot(mm_slot);
  1987. }
  1988. return progress;
  1989. }
  1990. static int khugepaged_has_work(void)
  1991. {
  1992. return !list_empty(&khugepaged_scan.mm_head) &&
  1993. khugepaged_enabled();
  1994. }
  1995. static int khugepaged_wait_event(void)
  1996. {
  1997. return !list_empty(&khugepaged_scan.mm_head) ||
  1998. kthread_should_stop();
  1999. }
  2000. static void khugepaged_do_scan(void)
  2001. {
  2002. struct page *hpage = NULL;
  2003. unsigned int progress = 0, pass_through_head = 0;
  2004. unsigned int pages = khugepaged_pages_to_scan;
  2005. bool wait = true;
  2006. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2007. while (progress < pages) {
  2008. if (!khugepaged_prealloc_page(&hpage, &wait))
  2009. break;
  2010. cond_resched();
  2011. if (unlikely(kthread_should_stop() || freezing(current)))
  2012. break;
  2013. spin_lock(&khugepaged_mm_lock);
  2014. if (!khugepaged_scan.mm_slot)
  2015. pass_through_head++;
  2016. if (khugepaged_has_work() &&
  2017. pass_through_head < 2)
  2018. progress += khugepaged_scan_mm_slot(pages - progress,
  2019. &hpage);
  2020. else
  2021. progress = pages;
  2022. spin_unlock(&khugepaged_mm_lock);
  2023. }
  2024. if (!IS_ERR_OR_NULL(hpage))
  2025. put_page(hpage);
  2026. }
  2027. static void khugepaged_wait_work(void)
  2028. {
  2029. try_to_freeze();
  2030. if (khugepaged_has_work()) {
  2031. if (!khugepaged_scan_sleep_millisecs)
  2032. return;
  2033. wait_event_freezable_timeout(khugepaged_wait,
  2034. kthread_should_stop(),
  2035. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2036. return;
  2037. }
  2038. if (khugepaged_enabled())
  2039. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2040. }
  2041. static int khugepaged(void *none)
  2042. {
  2043. struct mm_slot *mm_slot;
  2044. set_freezable();
  2045. set_user_nice(current, 19);
  2046. while (!kthread_should_stop()) {
  2047. khugepaged_do_scan();
  2048. khugepaged_wait_work();
  2049. }
  2050. spin_lock(&khugepaged_mm_lock);
  2051. mm_slot = khugepaged_scan.mm_slot;
  2052. khugepaged_scan.mm_slot = NULL;
  2053. if (mm_slot)
  2054. collect_mm_slot(mm_slot);
  2055. spin_unlock(&khugepaged_mm_lock);
  2056. return 0;
  2057. }
  2058. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2059. {
  2060. struct page *page;
  2061. spin_lock(&mm->page_table_lock);
  2062. if (unlikely(!pmd_trans_huge(*pmd))) {
  2063. spin_unlock(&mm->page_table_lock);
  2064. return;
  2065. }
  2066. page = pmd_page(*pmd);
  2067. VM_BUG_ON(!page_count(page));
  2068. get_page(page);
  2069. spin_unlock(&mm->page_table_lock);
  2070. split_huge_page(page);
  2071. put_page(page);
  2072. BUG_ON(pmd_trans_huge(*pmd));
  2073. }
  2074. static void split_huge_page_address(struct mm_struct *mm,
  2075. unsigned long address)
  2076. {
  2077. pgd_t *pgd;
  2078. pud_t *pud;
  2079. pmd_t *pmd;
  2080. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2081. pgd = pgd_offset(mm, address);
  2082. if (!pgd_present(*pgd))
  2083. return;
  2084. pud = pud_offset(pgd, address);
  2085. if (!pud_present(*pud))
  2086. return;
  2087. pmd = pmd_offset(pud, address);
  2088. if (!pmd_present(*pmd))
  2089. return;
  2090. /*
  2091. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2092. * materialize from under us.
  2093. */
  2094. split_huge_page_pmd(mm, pmd);
  2095. }
  2096. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2097. unsigned long start,
  2098. unsigned long end,
  2099. long adjust_next)
  2100. {
  2101. /*
  2102. * If the new start address isn't hpage aligned and it could
  2103. * previously contain an hugepage: check if we need to split
  2104. * an huge pmd.
  2105. */
  2106. if (start & ~HPAGE_PMD_MASK &&
  2107. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2108. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2109. split_huge_page_address(vma->vm_mm, start);
  2110. /*
  2111. * If the new end address isn't hpage aligned and it could
  2112. * previously contain an hugepage: check if we need to split
  2113. * an huge pmd.
  2114. */
  2115. if (end & ~HPAGE_PMD_MASK &&
  2116. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2117. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2118. split_huge_page_address(vma->vm_mm, end);
  2119. /*
  2120. * If we're also updating the vma->vm_next->vm_start, if the new
  2121. * vm_next->vm_start isn't page aligned and it could previously
  2122. * contain an hugepage: check if we need to split an huge pmd.
  2123. */
  2124. if (adjust_next > 0) {
  2125. struct vm_area_struct *next = vma->vm_next;
  2126. unsigned long nstart = next->vm_start;
  2127. nstart += adjust_next << PAGE_SHIFT;
  2128. if (nstart & ~HPAGE_PMD_MASK &&
  2129. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2130. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2131. split_huge_page_address(next->vm_mm, nstart);
  2132. }
  2133. }