sched.c 251 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/bootmem.h>
  72. #include <linux/debugfs.h>
  73. #include <linux/ctype.h>
  74. #include <linux/ftrace.h>
  75. #include <trace/sched.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include "sched_cpupri.h"
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. DEFINE_TRACE(sched_wait_task);
  113. DEFINE_TRACE(sched_wakeup);
  114. DEFINE_TRACE(sched_wakeup_new);
  115. DEFINE_TRACE(sched_switch);
  116. DEFINE_TRACE(sched_migrate_task);
  117. #ifdef CONFIG_SMP
  118. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  119. /*
  120. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  121. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  122. */
  123. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  124. {
  125. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  126. }
  127. /*
  128. * Each time a sched group cpu_power is changed,
  129. * we must compute its reciprocal value
  130. */
  131. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  132. {
  133. sg->__cpu_power += val;
  134. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  135. }
  136. #endif
  137. static inline int rt_policy(int policy)
  138. {
  139. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  140. return 1;
  141. return 0;
  142. }
  143. static inline int task_has_rt_policy(struct task_struct *p)
  144. {
  145. return rt_policy(p->policy);
  146. }
  147. /*
  148. * This is the priority-queue data structure of the RT scheduling class:
  149. */
  150. struct rt_prio_array {
  151. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  152. struct list_head queue[MAX_RT_PRIO];
  153. };
  154. struct rt_bandwidth {
  155. /* nests inside the rq lock: */
  156. spinlock_t rt_runtime_lock;
  157. ktime_t rt_period;
  158. u64 rt_runtime;
  159. struct hrtimer rt_period_timer;
  160. };
  161. static struct rt_bandwidth def_rt_bandwidth;
  162. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  163. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  164. {
  165. struct rt_bandwidth *rt_b =
  166. container_of(timer, struct rt_bandwidth, rt_period_timer);
  167. ktime_t now;
  168. int overrun;
  169. int idle = 0;
  170. for (;;) {
  171. now = hrtimer_cb_get_time(timer);
  172. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  173. if (!overrun)
  174. break;
  175. idle = do_sched_rt_period_timer(rt_b, overrun);
  176. }
  177. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  178. }
  179. static
  180. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  181. {
  182. rt_b->rt_period = ns_to_ktime(period);
  183. rt_b->rt_runtime = runtime;
  184. spin_lock_init(&rt_b->rt_runtime_lock);
  185. hrtimer_init(&rt_b->rt_period_timer,
  186. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  187. rt_b->rt_period_timer.function = sched_rt_period_timer;
  188. }
  189. static inline int rt_bandwidth_enabled(void)
  190. {
  191. return sysctl_sched_rt_runtime >= 0;
  192. }
  193. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. ktime_t now;
  196. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  197. return;
  198. if (hrtimer_active(&rt_b->rt_period_timer))
  199. return;
  200. spin_lock(&rt_b->rt_runtime_lock);
  201. for (;;) {
  202. unsigned long delta;
  203. ktime_t soft, hard;
  204. if (hrtimer_active(&rt_b->rt_period_timer))
  205. break;
  206. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  207. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  208. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  209. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  210. delta = ktime_to_ns(ktime_sub(hard, soft));
  211. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  212. HRTIMER_MODE_ABS, 0);
  213. }
  214. spin_unlock(&rt_b->rt_runtime_lock);
  215. }
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  218. {
  219. hrtimer_cancel(&rt_b->rt_period_timer);
  220. }
  221. #endif
  222. /*
  223. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  224. * detach_destroy_domains and partition_sched_domains.
  225. */
  226. static DEFINE_MUTEX(sched_domains_mutex);
  227. #ifdef CONFIG_GROUP_SCHED
  228. #include <linux/cgroup.h>
  229. struct cfs_rq;
  230. static LIST_HEAD(task_groups);
  231. /* task group related information */
  232. struct task_group {
  233. #ifdef CONFIG_CGROUP_SCHED
  234. struct cgroup_subsys_state css;
  235. #endif
  236. #ifdef CONFIG_USER_SCHED
  237. uid_t uid;
  238. #endif
  239. #ifdef CONFIG_FAIR_GROUP_SCHED
  240. /* schedulable entities of this group on each cpu */
  241. struct sched_entity **se;
  242. /* runqueue "owned" by this group on each cpu */
  243. struct cfs_rq **cfs_rq;
  244. unsigned long shares;
  245. #endif
  246. #ifdef CONFIG_RT_GROUP_SCHED
  247. struct sched_rt_entity **rt_se;
  248. struct rt_rq **rt_rq;
  249. struct rt_bandwidth rt_bandwidth;
  250. #endif
  251. struct rcu_head rcu;
  252. struct list_head list;
  253. struct task_group *parent;
  254. struct list_head siblings;
  255. struct list_head children;
  256. };
  257. #ifdef CONFIG_USER_SCHED
  258. /* Helper function to pass uid information to create_sched_user() */
  259. void set_tg_uid(struct user_struct *user)
  260. {
  261. user->tg->uid = user->uid;
  262. }
  263. /*
  264. * Root task group.
  265. * Every UID task group (including init_task_group aka UID-0) will
  266. * be a child to this group.
  267. */
  268. struct task_group root_task_group;
  269. #ifdef CONFIG_FAIR_GROUP_SCHED
  270. /* Default task group's sched entity on each cpu */
  271. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  272. /* Default task group's cfs_rq on each cpu */
  273. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  274. #endif /* CONFIG_FAIR_GROUP_SCHED */
  275. #ifdef CONFIG_RT_GROUP_SCHED
  276. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  277. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  278. #endif /* CONFIG_RT_GROUP_SCHED */
  279. #else /* !CONFIG_USER_SCHED */
  280. #define root_task_group init_task_group
  281. #endif /* CONFIG_USER_SCHED */
  282. /* task_group_lock serializes add/remove of task groups and also changes to
  283. * a task group's cpu shares.
  284. */
  285. static DEFINE_SPINLOCK(task_group_lock);
  286. #ifdef CONFIG_SMP
  287. static int root_task_group_empty(void)
  288. {
  289. return list_empty(&root_task_group.children);
  290. }
  291. #endif
  292. #ifdef CONFIG_FAIR_GROUP_SCHED
  293. #ifdef CONFIG_USER_SCHED
  294. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  295. #else /* !CONFIG_USER_SCHED */
  296. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  297. #endif /* CONFIG_USER_SCHED */
  298. /*
  299. * A weight of 0 or 1 can cause arithmetics problems.
  300. * A weight of a cfs_rq is the sum of weights of which entities
  301. * are queued on this cfs_rq, so a weight of a entity should not be
  302. * too large, so as the shares value of a task group.
  303. * (The default weight is 1024 - so there's no practical
  304. * limitation from this.)
  305. */
  306. #define MIN_SHARES 2
  307. #define MAX_SHARES (1UL << 18)
  308. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  309. #endif
  310. /* Default task group.
  311. * Every task in system belong to this group at bootup.
  312. */
  313. struct task_group init_task_group;
  314. /* return group to which a task belongs */
  315. static inline struct task_group *task_group(struct task_struct *p)
  316. {
  317. struct task_group *tg;
  318. #ifdef CONFIG_USER_SCHED
  319. rcu_read_lock();
  320. tg = __task_cred(p)->user->tg;
  321. rcu_read_unlock();
  322. #elif defined(CONFIG_CGROUP_SCHED)
  323. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  324. struct task_group, css);
  325. #else
  326. tg = &init_task_group;
  327. #endif
  328. return tg;
  329. }
  330. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  331. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  332. {
  333. #ifdef CONFIG_FAIR_GROUP_SCHED
  334. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  335. p->se.parent = task_group(p)->se[cpu];
  336. #endif
  337. #ifdef CONFIG_RT_GROUP_SCHED
  338. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  339. p->rt.parent = task_group(p)->rt_se[cpu];
  340. #endif
  341. }
  342. #else
  343. #ifdef CONFIG_SMP
  344. static int root_task_group_empty(void)
  345. {
  346. return 1;
  347. }
  348. #endif
  349. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  350. static inline struct task_group *task_group(struct task_struct *p)
  351. {
  352. return NULL;
  353. }
  354. #endif /* CONFIG_GROUP_SCHED */
  355. /* CFS-related fields in a runqueue */
  356. struct cfs_rq {
  357. struct load_weight load;
  358. unsigned long nr_running;
  359. u64 exec_clock;
  360. u64 min_vruntime;
  361. struct rb_root tasks_timeline;
  362. struct rb_node *rb_leftmost;
  363. struct list_head tasks;
  364. struct list_head *balance_iterator;
  365. /*
  366. * 'curr' points to currently running entity on this cfs_rq.
  367. * It is set to NULL otherwise (i.e when none are currently running).
  368. */
  369. struct sched_entity *curr, *next, *last;
  370. unsigned int nr_spread_over;
  371. #ifdef CONFIG_FAIR_GROUP_SCHED
  372. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  373. /*
  374. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  375. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  376. * (like users, containers etc.)
  377. *
  378. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  379. * list is used during load balance.
  380. */
  381. struct list_head leaf_cfs_rq_list;
  382. struct task_group *tg; /* group that "owns" this runqueue */
  383. #ifdef CONFIG_SMP
  384. /*
  385. * the part of load.weight contributed by tasks
  386. */
  387. unsigned long task_weight;
  388. /*
  389. * h_load = weight * f(tg)
  390. *
  391. * Where f(tg) is the recursive weight fraction assigned to
  392. * this group.
  393. */
  394. unsigned long h_load;
  395. /*
  396. * this cpu's part of tg->shares
  397. */
  398. unsigned long shares;
  399. /*
  400. * load.weight at the time we set shares
  401. */
  402. unsigned long rq_weight;
  403. #endif
  404. #endif
  405. };
  406. /* Real-Time classes' related field in a runqueue: */
  407. struct rt_rq {
  408. struct rt_prio_array active;
  409. unsigned long rt_nr_running;
  410. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  411. struct {
  412. int curr; /* highest queued rt task prio */
  413. #ifdef CONFIG_SMP
  414. int next; /* next highest */
  415. #endif
  416. } highest_prio;
  417. #endif
  418. #ifdef CONFIG_SMP
  419. unsigned long rt_nr_migratory;
  420. int overloaded;
  421. struct plist_head pushable_tasks;
  422. #endif
  423. int rt_throttled;
  424. u64 rt_time;
  425. u64 rt_runtime;
  426. /* Nests inside the rq lock: */
  427. spinlock_t rt_runtime_lock;
  428. #ifdef CONFIG_RT_GROUP_SCHED
  429. unsigned long rt_nr_boosted;
  430. struct rq *rq;
  431. struct list_head leaf_rt_rq_list;
  432. struct task_group *tg;
  433. struct sched_rt_entity *rt_se;
  434. #endif
  435. };
  436. #ifdef CONFIG_SMP
  437. /*
  438. * We add the notion of a root-domain which will be used to define per-domain
  439. * variables. Each exclusive cpuset essentially defines an island domain by
  440. * fully partitioning the member cpus from any other cpuset. Whenever a new
  441. * exclusive cpuset is created, we also create and attach a new root-domain
  442. * object.
  443. *
  444. */
  445. struct root_domain {
  446. atomic_t refcount;
  447. cpumask_var_t span;
  448. cpumask_var_t online;
  449. /*
  450. * The "RT overload" flag: it gets set if a CPU has more than
  451. * one runnable RT task.
  452. */
  453. cpumask_var_t rto_mask;
  454. atomic_t rto_count;
  455. #ifdef CONFIG_SMP
  456. struct cpupri cpupri;
  457. #endif
  458. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  459. /*
  460. * Preferred wake up cpu nominated by sched_mc balance that will be
  461. * used when most cpus are idle in the system indicating overall very
  462. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  463. */
  464. unsigned int sched_mc_preferred_wakeup_cpu;
  465. #endif
  466. };
  467. /*
  468. * By default the system creates a single root-domain with all cpus as
  469. * members (mimicking the global state we have today).
  470. */
  471. static struct root_domain def_root_domain;
  472. #endif
  473. /*
  474. * This is the main, per-CPU runqueue data structure.
  475. *
  476. * Locking rule: those places that want to lock multiple runqueues
  477. * (such as the load balancing or the thread migration code), lock
  478. * acquire operations must be ordered by ascending &runqueue.
  479. */
  480. struct rq {
  481. /* runqueue lock: */
  482. spinlock_t lock;
  483. /*
  484. * nr_running and cpu_load should be in the same cacheline because
  485. * remote CPUs use both these fields when doing load calculation.
  486. */
  487. unsigned long nr_running;
  488. #define CPU_LOAD_IDX_MAX 5
  489. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  490. #ifdef CONFIG_NO_HZ
  491. unsigned long last_tick_seen;
  492. unsigned char in_nohz_recently;
  493. #endif
  494. /* capture load from *all* tasks on this cpu: */
  495. struct load_weight load;
  496. unsigned long nr_load_updates;
  497. u64 nr_switches;
  498. u64 nr_migrations_in;
  499. struct cfs_rq cfs;
  500. struct rt_rq rt;
  501. #ifdef CONFIG_FAIR_GROUP_SCHED
  502. /* list of leaf cfs_rq on this cpu: */
  503. struct list_head leaf_cfs_rq_list;
  504. #endif
  505. #ifdef CONFIG_RT_GROUP_SCHED
  506. struct list_head leaf_rt_rq_list;
  507. #endif
  508. /*
  509. * This is part of a global counter where only the total sum
  510. * over all CPUs matters. A task can increase this counter on
  511. * one CPU and if it got migrated afterwards it may decrease
  512. * it on another CPU. Always updated under the runqueue lock:
  513. */
  514. unsigned long nr_uninterruptible;
  515. struct task_struct *curr, *idle;
  516. unsigned long next_balance;
  517. struct mm_struct *prev_mm;
  518. u64 clock;
  519. atomic_t nr_iowait;
  520. #ifdef CONFIG_SMP
  521. struct root_domain *rd;
  522. struct sched_domain *sd;
  523. unsigned char idle_at_tick;
  524. /* For active balancing */
  525. int active_balance;
  526. int push_cpu;
  527. /* cpu of this runqueue: */
  528. int cpu;
  529. int online;
  530. unsigned long avg_load_per_task;
  531. struct task_struct *migration_thread;
  532. struct list_head migration_queue;
  533. #endif
  534. #ifdef CONFIG_SCHED_HRTICK
  535. #ifdef CONFIG_SMP
  536. int hrtick_csd_pending;
  537. struct call_single_data hrtick_csd;
  538. #endif
  539. struct hrtimer hrtick_timer;
  540. #endif
  541. #ifdef CONFIG_SCHEDSTATS
  542. /* latency stats */
  543. struct sched_info rq_sched_info;
  544. unsigned long long rq_cpu_time;
  545. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  546. /* sys_sched_yield() stats */
  547. unsigned int yld_count;
  548. /* schedule() stats */
  549. unsigned int sched_switch;
  550. unsigned int sched_count;
  551. unsigned int sched_goidle;
  552. /* try_to_wake_up() stats */
  553. unsigned int ttwu_count;
  554. unsigned int ttwu_local;
  555. /* BKL stats */
  556. unsigned int bkl_count;
  557. #endif
  558. };
  559. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  560. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  561. {
  562. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  563. }
  564. static inline int cpu_of(struct rq *rq)
  565. {
  566. #ifdef CONFIG_SMP
  567. return rq->cpu;
  568. #else
  569. return 0;
  570. #endif
  571. }
  572. /*
  573. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  574. * See detach_destroy_domains: synchronize_sched for details.
  575. *
  576. * The domain tree of any CPU may only be accessed from within
  577. * preempt-disabled sections.
  578. */
  579. #define for_each_domain(cpu, __sd) \
  580. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  581. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  582. #define this_rq() (&__get_cpu_var(runqueues))
  583. #define task_rq(p) cpu_rq(task_cpu(p))
  584. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  585. inline void update_rq_clock(struct rq *rq)
  586. {
  587. rq->clock = sched_clock_cpu(cpu_of(rq));
  588. }
  589. /*
  590. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  591. */
  592. #ifdef CONFIG_SCHED_DEBUG
  593. # define const_debug __read_mostly
  594. #else
  595. # define const_debug static const
  596. #endif
  597. /**
  598. * runqueue_is_locked
  599. *
  600. * Returns true if the current cpu runqueue is locked.
  601. * This interface allows printk to be called with the runqueue lock
  602. * held and know whether or not it is OK to wake up the klogd.
  603. */
  604. int runqueue_is_locked(void)
  605. {
  606. int cpu = get_cpu();
  607. struct rq *rq = cpu_rq(cpu);
  608. int ret;
  609. ret = spin_is_locked(&rq->lock);
  610. put_cpu();
  611. return ret;
  612. }
  613. /*
  614. * Debugging: various feature bits
  615. */
  616. #define SCHED_FEAT(name, enabled) \
  617. __SCHED_FEAT_##name ,
  618. enum {
  619. #include "sched_features.h"
  620. };
  621. #undef SCHED_FEAT
  622. #define SCHED_FEAT(name, enabled) \
  623. (1UL << __SCHED_FEAT_##name) * enabled |
  624. const_debug unsigned int sysctl_sched_features =
  625. #include "sched_features.h"
  626. 0;
  627. #undef SCHED_FEAT
  628. #ifdef CONFIG_SCHED_DEBUG
  629. #define SCHED_FEAT(name, enabled) \
  630. #name ,
  631. static __read_mostly char *sched_feat_names[] = {
  632. #include "sched_features.h"
  633. NULL
  634. };
  635. #undef SCHED_FEAT
  636. static int sched_feat_show(struct seq_file *m, void *v)
  637. {
  638. int i;
  639. for (i = 0; sched_feat_names[i]; i++) {
  640. if (!(sysctl_sched_features & (1UL << i)))
  641. seq_puts(m, "NO_");
  642. seq_printf(m, "%s ", sched_feat_names[i]);
  643. }
  644. seq_puts(m, "\n");
  645. return 0;
  646. }
  647. static ssize_t
  648. sched_feat_write(struct file *filp, const char __user *ubuf,
  649. size_t cnt, loff_t *ppos)
  650. {
  651. char buf[64];
  652. char *cmp = buf;
  653. int neg = 0;
  654. int i;
  655. if (cnt > 63)
  656. cnt = 63;
  657. if (copy_from_user(&buf, ubuf, cnt))
  658. return -EFAULT;
  659. buf[cnt] = 0;
  660. if (strncmp(buf, "NO_", 3) == 0) {
  661. neg = 1;
  662. cmp += 3;
  663. }
  664. for (i = 0; sched_feat_names[i]; i++) {
  665. int len = strlen(sched_feat_names[i]);
  666. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  667. if (neg)
  668. sysctl_sched_features &= ~(1UL << i);
  669. else
  670. sysctl_sched_features |= (1UL << i);
  671. break;
  672. }
  673. }
  674. if (!sched_feat_names[i])
  675. return -EINVAL;
  676. filp->f_pos += cnt;
  677. return cnt;
  678. }
  679. static int sched_feat_open(struct inode *inode, struct file *filp)
  680. {
  681. return single_open(filp, sched_feat_show, NULL);
  682. }
  683. static struct file_operations sched_feat_fops = {
  684. .open = sched_feat_open,
  685. .write = sched_feat_write,
  686. .read = seq_read,
  687. .llseek = seq_lseek,
  688. .release = single_release,
  689. };
  690. static __init int sched_init_debug(void)
  691. {
  692. debugfs_create_file("sched_features", 0644, NULL, NULL,
  693. &sched_feat_fops);
  694. return 0;
  695. }
  696. late_initcall(sched_init_debug);
  697. #endif
  698. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  699. /*
  700. * Number of tasks to iterate in a single balance run.
  701. * Limited because this is done with IRQs disabled.
  702. */
  703. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  704. /*
  705. * ratelimit for updating the group shares.
  706. * default: 0.25ms
  707. */
  708. unsigned int sysctl_sched_shares_ratelimit = 250000;
  709. /*
  710. * Inject some fuzzyness into changing the per-cpu group shares
  711. * this avoids remote rq-locks at the expense of fairness.
  712. * default: 4
  713. */
  714. unsigned int sysctl_sched_shares_thresh = 4;
  715. /*
  716. * period over which we measure -rt task cpu usage in us.
  717. * default: 1s
  718. */
  719. unsigned int sysctl_sched_rt_period = 1000000;
  720. static __read_mostly int scheduler_running;
  721. /*
  722. * part of the period that we allow rt tasks to run in us.
  723. * default: 0.95s
  724. */
  725. int sysctl_sched_rt_runtime = 950000;
  726. static inline u64 global_rt_period(void)
  727. {
  728. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  729. }
  730. static inline u64 global_rt_runtime(void)
  731. {
  732. if (sysctl_sched_rt_runtime < 0)
  733. return RUNTIME_INF;
  734. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  735. }
  736. #ifndef prepare_arch_switch
  737. # define prepare_arch_switch(next) do { } while (0)
  738. #endif
  739. #ifndef finish_arch_switch
  740. # define finish_arch_switch(prev) do { } while (0)
  741. #endif
  742. static inline int task_current(struct rq *rq, struct task_struct *p)
  743. {
  744. return rq->curr == p;
  745. }
  746. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  747. static inline int task_running(struct rq *rq, struct task_struct *p)
  748. {
  749. return task_current(rq, p);
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. }
  754. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  755. {
  756. #ifdef CONFIG_DEBUG_SPINLOCK
  757. /* this is a valid case when another task releases the spinlock */
  758. rq->lock.owner = current;
  759. #endif
  760. /*
  761. * If we are tracking spinlock dependencies then we have to
  762. * fix up the runqueue lock - which gets 'carried over' from
  763. * prev into current:
  764. */
  765. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  766. spin_unlock_irq(&rq->lock);
  767. }
  768. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  769. static inline int task_running(struct rq *rq, struct task_struct *p)
  770. {
  771. #ifdef CONFIG_SMP
  772. return p->oncpu;
  773. #else
  774. return task_current(rq, p);
  775. #endif
  776. }
  777. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  778. {
  779. #ifdef CONFIG_SMP
  780. /*
  781. * We can optimise this out completely for !SMP, because the
  782. * SMP rebalancing from interrupt is the only thing that cares
  783. * here.
  784. */
  785. next->oncpu = 1;
  786. #endif
  787. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  788. spin_unlock_irq(&rq->lock);
  789. #else
  790. spin_unlock(&rq->lock);
  791. #endif
  792. }
  793. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  794. {
  795. #ifdef CONFIG_SMP
  796. /*
  797. * After ->oncpu is cleared, the task can be moved to a different CPU.
  798. * We must ensure this doesn't happen until the switch is completely
  799. * finished.
  800. */
  801. smp_wmb();
  802. prev->oncpu = 0;
  803. #endif
  804. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  805. local_irq_enable();
  806. #endif
  807. }
  808. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  809. /*
  810. * __task_rq_lock - lock the runqueue a given task resides on.
  811. * Must be called interrupts disabled.
  812. */
  813. static inline struct rq *__task_rq_lock(struct task_struct *p)
  814. __acquires(rq->lock)
  815. {
  816. for (;;) {
  817. struct rq *rq = task_rq(p);
  818. spin_lock(&rq->lock);
  819. if (likely(rq == task_rq(p)))
  820. return rq;
  821. spin_unlock(&rq->lock);
  822. }
  823. }
  824. /*
  825. * task_rq_lock - lock the runqueue a given task resides on and disable
  826. * interrupts. Note the ordering: we can safely lookup the task_rq without
  827. * explicitly disabling preemption.
  828. */
  829. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  830. __acquires(rq->lock)
  831. {
  832. struct rq *rq;
  833. for (;;) {
  834. local_irq_save(*flags);
  835. rq = task_rq(p);
  836. spin_lock(&rq->lock);
  837. if (likely(rq == task_rq(p)))
  838. return rq;
  839. spin_unlock_irqrestore(&rq->lock, *flags);
  840. }
  841. }
  842. void task_rq_unlock_wait(struct task_struct *p)
  843. {
  844. struct rq *rq = task_rq(p);
  845. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  846. spin_unlock_wait(&rq->lock);
  847. }
  848. static void __task_rq_unlock(struct rq *rq)
  849. __releases(rq->lock)
  850. {
  851. spin_unlock(&rq->lock);
  852. }
  853. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  854. __releases(rq->lock)
  855. {
  856. spin_unlock_irqrestore(&rq->lock, *flags);
  857. }
  858. /*
  859. * this_rq_lock - lock this runqueue and disable interrupts.
  860. */
  861. static struct rq *this_rq_lock(void)
  862. __acquires(rq->lock)
  863. {
  864. struct rq *rq;
  865. local_irq_disable();
  866. rq = this_rq();
  867. spin_lock(&rq->lock);
  868. return rq;
  869. }
  870. #ifdef CONFIG_SCHED_HRTICK
  871. /*
  872. * Use HR-timers to deliver accurate preemption points.
  873. *
  874. * Its all a bit involved since we cannot program an hrt while holding the
  875. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  876. * reschedule event.
  877. *
  878. * When we get rescheduled we reprogram the hrtick_timer outside of the
  879. * rq->lock.
  880. */
  881. /*
  882. * Use hrtick when:
  883. * - enabled by features
  884. * - hrtimer is actually high res
  885. */
  886. static inline int hrtick_enabled(struct rq *rq)
  887. {
  888. if (!sched_feat(HRTICK))
  889. return 0;
  890. if (!cpu_active(cpu_of(rq)))
  891. return 0;
  892. return hrtimer_is_hres_active(&rq->hrtick_timer);
  893. }
  894. static void hrtick_clear(struct rq *rq)
  895. {
  896. if (hrtimer_active(&rq->hrtick_timer))
  897. hrtimer_cancel(&rq->hrtick_timer);
  898. }
  899. /*
  900. * High-resolution timer tick.
  901. * Runs from hardirq context with interrupts disabled.
  902. */
  903. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  904. {
  905. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  906. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  907. spin_lock(&rq->lock);
  908. update_rq_clock(rq);
  909. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  910. spin_unlock(&rq->lock);
  911. return HRTIMER_NORESTART;
  912. }
  913. #ifdef CONFIG_SMP
  914. /*
  915. * called from hardirq (IPI) context
  916. */
  917. static void __hrtick_start(void *arg)
  918. {
  919. struct rq *rq = arg;
  920. spin_lock(&rq->lock);
  921. hrtimer_restart(&rq->hrtick_timer);
  922. rq->hrtick_csd_pending = 0;
  923. spin_unlock(&rq->lock);
  924. }
  925. /*
  926. * Called to set the hrtick timer state.
  927. *
  928. * called with rq->lock held and irqs disabled
  929. */
  930. static void hrtick_start(struct rq *rq, u64 delay)
  931. {
  932. struct hrtimer *timer = &rq->hrtick_timer;
  933. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  934. hrtimer_set_expires(timer, time);
  935. if (rq == this_rq()) {
  936. hrtimer_restart(timer);
  937. } else if (!rq->hrtick_csd_pending) {
  938. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  939. rq->hrtick_csd_pending = 1;
  940. }
  941. }
  942. static int
  943. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  944. {
  945. int cpu = (int)(long)hcpu;
  946. switch (action) {
  947. case CPU_UP_CANCELED:
  948. case CPU_UP_CANCELED_FROZEN:
  949. case CPU_DOWN_PREPARE:
  950. case CPU_DOWN_PREPARE_FROZEN:
  951. case CPU_DEAD:
  952. case CPU_DEAD_FROZEN:
  953. hrtick_clear(cpu_rq(cpu));
  954. return NOTIFY_OK;
  955. }
  956. return NOTIFY_DONE;
  957. }
  958. static __init void init_hrtick(void)
  959. {
  960. hotcpu_notifier(hotplug_hrtick, 0);
  961. }
  962. #else
  963. /*
  964. * Called to set the hrtick timer state.
  965. *
  966. * called with rq->lock held and irqs disabled
  967. */
  968. static void hrtick_start(struct rq *rq, u64 delay)
  969. {
  970. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  971. HRTIMER_MODE_REL, 0);
  972. }
  973. static inline void init_hrtick(void)
  974. {
  975. }
  976. #endif /* CONFIG_SMP */
  977. static void init_rq_hrtick(struct rq *rq)
  978. {
  979. #ifdef CONFIG_SMP
  980. rq->hrtick_csd_pending = 0;
  981. rq->hrtick_csd.flags = 0;
  982. rq->hrtick_csd.func = __hrtick_start;
  983. rq->hrtick_csd.info = rq;
  984. #endif
  985. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  986. rq->hrtick_timer.function = hrtick;
  987. }
  988. #else /* CONFIG_SCHED_HRTICK */
  989. static inline void hrtick_clear(struct rq *rq)
  990. {
  991. }
  992. static inline void init_rq_hrtick(struct rq *rq)
  993. {
  994. }
  995. static inline void init_hrtick(void)
  996. {
  997. }
  998. #endif /* CONFIG_SCHED_HRTICK */
  999. /*
  1000. * resched_task - mark a task 'to be rescheduled now'.
  1001. *
  1002. * On UP this means the setting of the need_resched flag, on SMP it
  1003. * might also involve a cross-CPU call to trigger the scheduler on
  1004. * the target CPU.
  1005. */
  1006. #ifdef CONFIG_SMP
  1007. #ifndef tsk_is_polling
  1008. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1009. #endif
  1010. static void resched_task(struct task_struct *p)
  1011. {
  1012. int cpu;
  1013. assert_spin_locked(&task_rq(p)->lock);
  1014. if (test_tsk_need_resched(p))
  1015. return;
  1016. set_tsk_need_resched(p);
  1017. cpu = task_cpu(p);
  1018. if (cpu == smp_processor_id())
  1019. return;
  1020. /* NEED_RESCHED must be visible before we test polling */
  1021. smp_mb();
  1022. if (!tsk_is_polling(p))
  1023. smp_send_reschedule(cpu);
  1024. }
  1025. static void resched_cpu(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long flags;
  1029. if (!spin_trylock_irqsave(&rq->lock, flags))
  1030. return;
  1031. resched_task(cpu_curr(cpu));
  1032. spin_unlock_irqrestore(&rq->lock, flags);
  1033. }
  1034. #ifdef CONFIG_NO_HZ
  1035. /*
  1036. * When add_timer_on() enqueues a timer into the timer wheel of an
  1037. * idle CPU then this timer might expire before the next timer event
  1038. * which is scheduled to wake up that CPU. In case of a completely
  1039. * idle system the next event might even be infinite time into the
  1040. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1041. * leaves the inner idle loop so the newly added timer is taken into
  1042. * account when the CPU goes back to idle and evaluates the timer
  1043. * wheel for the next timer event.
  1044. */
  1045. void wake_up_idle_cpu(int cpu)
  1046. {
  1047. struct rq *rq = cpu_rq(cpu);
  1048. if (cpu == smp_processor_id())
  1049. return;
  1050. /*
  1051. * This is safe, as this function is called with the timer
  1052. * wheel base lock of (cpu) held. When the CPU is on the way
  1053. * to idle and has not yet set rq->curr to idle then it will
  1054. * be serialized on the timer wheel base lock and take the new
  1055. * timer into account automatically.
  1056. */
  1057. if (rq->curr != rq->idle)
  1058. return;
  1059. /*
  1060. * We can set TIF_RESCHED on the idle task of the other CPU
  1061. * lockless. The worst case is that the other CPU runs the
  1062. * idle task through an additional NOOP schedule()
  1063. */
  1064. set_tsk_need_resched(rq->idle);
  1065. /* NEED_RESCHED must be visible before we test polling */
  1066. smp_mb();
  1067. if (!tsk_is_polling(rq->idle))
  1068. smp_send_reschedule(cpu);
  1069. }
  1070. #endif /* CONFIG_NO_HZ */
  1071. #else /* !CONFIG_SMP */
  1072. static void resched_task(struct task_struct *p)
  1073. {
  1074. assert_spin_locked(&task_rq(p)->lock);
  1075. set_tsk_need_resched(p);
  1076. }
  1077. #endif /* CONFIG_SMP */
  1078. #if BITS_PER_LONG == 32
  1079. # define WMULT_CONST (~0UL)
  1080. #else
  1081. # define WMULT_CONST (1UL << 32)
  1082. #endif
  1083. #define WMULT_SHIFT 32
  1084. /*
  1085. * Shift right and round:
  1086. */
  1087. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1088. /*
  1089. * delta *= weight / lw
  1090. */
  1091. static unsigned long
  1092. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1093. struct load_weight *lw)
  1094. {
  1095. u64 tmp;
  1096. if (!lw->inv_weight) {
  1097. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1098. lw->inv_weight = 1;
  1099. else
  1100. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1101. / (lw->weight+1);
  1102. }
  1103. tmp = (u64)delta_exec * weight;
  1104. /*
  1105. * Check whether we'd overflow the 64-bit multiplication:
  1106. */
  1107. if (unlikely(tmp > WMULT_CONST))
  1108. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1109. WMULT_SHIFT/2);
  1110. else
  1111. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1112. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1113. }
  1114. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1115. {
  1116. lw->weight += inc;
  1117. lw->inv_weight = 0;
  1118. }
  1119. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1120. {
  1121. lw->weight -= dec;
  1122. lw->inv_weight = 0;
  1123. }
  1124. /*
  1125. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1126. * of tasks with abnormal "nice" values across CPUs the contribution that
  1127. * each task makes to its run queue's load is weighted according to its
  1128. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1129. * scaled version of the new time slice allocation that they receive on time
  1130. * slice expiry etc.
  1131. */
  1132. #define WEIGHT_IDLEPRIO 3
  1133. #define WMULT_IDLEPRIO 1431655765
  1134. /*
  1135. * Nice levels are multiplicative, with a gentle 10% change for every
  1136. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1137. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1138. * that remained on nice 0.
  1139. *
  1140. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1141. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1142. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1143. * If a task goes up by ~10% and another task goes down by ~10% then
  1144. * the relative distance between them is ~25%.)
  1145. */
  1146. static const int prio_to_weight[40] = {
  1147. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1148. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1149. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1150. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1151. /* 0 */ 1024, 820, 655, 526, 423,
  1152. /* 5 */ 335, 272, 215, 172, 137,
  1153. /* 10 */ 110, 87, 70, 56, 45,
  1154. /* 15 */ 36, 29, 23, 18, 15,
  1155. };
  1156. /*
  1157. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1158. *
  1159. * In cases where the weight does not change often, we can use the
  1160. * precalculated inverse to speed up arithmetics by turning divisions
  1161. * into multiplications:
  1162. */
  1163. static const u32 prio_to_wmult[40] = {
  1164. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1165. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1166. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1167. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1168. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1169. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1170. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1171. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1172. };
  1173. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1174. /*
  1175. * runqueue iterator, to support SMP load-balancing between different
  1176. * scheduling classes, without having to expose their internal data
  1177. * structures to the load-balancing proper:
  1178. */
  1179. struct rq_iterator {
  1180. void *arg;
  1181. struct task_struct *(*start)(void *);
  1182. struct task_struct *(*next)(void *);
  1183. };
  1184. #ifdef CONFIG_SMP
  1185. static unsigned long
  1186. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1187. unsigned long max_load_move, struct sched_domain *sd,
  1188. enum cpu_idle_type idle, int *all_pinned,
  1189. int *this_best_prio, struct rq_iterator *iterator);
  1190. static int
  1191. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1192. struct sched_domain *sd, enum cpu_idle_type idle,
  1193. struct rq_iterator *iterator);
  1194. #endif
  1195. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1196. enum cpuacct_stat_index {
  1197. CPUACCT_STAT_USER, /* ... user mode */
  1198. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1199. CPUACCT_STAT_NSTATS,
  1200. };
  1201. #ifdef CONFIG_CGROUP_CPUACCT
  1202. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1203. static void cpuacct_update_stats(struct task_struct *tsk,
  1204. enum cpuacct_stat_index idx, cputime_t val);
  1205. #else
  1206. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1207. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1208. enum cpuacct_stat_index idx, cputime_t val) {}
  1209. #endif
  1210. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1211. {
  1212. update_load_add(&rq->load, load);
  1213. }
  1214. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1215. {
  1216. update_load_sub(&rq->load, load);
  1217. }
  1218. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1219. typedef int (*tg_visitor)(struct task_group *, void *);
  1220. /*
  1221. * Iterate the full tree, calling @down when first entering a node and @up when
  1222. * leaving it for the final time.
  1223. */
  1224. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1225. {
  1226. struct task_group *parent, *child;
  1227. int ret;
  1228. rcu_read_lock();
  1229. parent = &root_task_group;
  1230. down:
  1231. ret = (*down)(parent, data);
  1232. if (ret)
  1233. goto out_unlock;
  1234. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1235. parent = child;
  1236. goto down;
  1237. up:
  1238. continue;
  1239. }
  1240. ret = (*up)(parent, data);
  1241. if (ret)
  1242. goto out_unlock;
  1243. child = parent;
  1244. parent = parent->parent;
  1245. if (parent)
  1246. goto up;
  1247. out_unlock:
  1248. rcu_read_unlock();
  1249. return ret;
  1250. }
  1251. static int tg_nop(struct task_group *tg, void *data)
  1252. {
  1253. return 0;
  1254. }
  1255. #endif
  1256. #ifdef CONFIG_SMP
  1257. static unsigned long source_load(int cpu, int type);
  1258. static unsigned long target_load(int cpu, int type);
  1259. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1260. static unsigned long cpu_avg_load_per_task(int cpu)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1264. if (nr_running)
  1265. rq->avg_load_per_task = rq->load.weight / nr_running;
  1266. else
  1267. rq->avg_load_per_task = 0;
  1268. return rq->avg_load_per_task;
  1269. }
  1270. #ifdef CONFIG_FAIR_GROUP_SCHED
  1271. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1272. /*
  1273. * Calculate and set the cpu's group shares.
  1274. */
  1275. static void
  1276. update_group_shares_cpu(struct task_group *tg, int cpu,
  1277. unsigned long sd_shares, unsigned long sd_rq_weight)
  1278. {
  1279. unsigned long shares;
  1280. unsigned long rq_weight;
  1281. if (!tg->se[cpu])
  1282. return;
  1283. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1284. /*
  1285. * \Sum shares * rq_weight
  1286. * shares = -----------------------
  1287. * \Sum rq_weight
  1288. *
  1289. */
  1290. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1291. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1292. if (abs(shares - tg->se[cpu]->load.weight) >
  1293. sysctl_sched_shares_thresh) {
  1294. struct rq *rq = cpu_rq(cpu);
  1295. unsigned long flags;
  1296. spin_lock_irqsave(&rq->lock, flags);
  1297. tg->cfs_rq[cpu]->shares = shares;
  1298. __set_se_shares(tg->se[cpu], shares);
  1299. spin_unlock_irqrestore(&rq->lock, flags);
  1300. }
  1301. }
  1302. /*
  1303. * Re-compute the task group their per cpu shares over the given domain.
  1304. * This needs to be done in a bottom-up fashion because the rq weight of a
  1305. * parent group depends on the shares of its child groups.
  1306. */
  1307. static int tg_shares_up(struct task_group *tg, void *data)
  1308. {
  1309. unsigned long weight, rq_weight = 0;
  1310. unsigned long shares = 0;
  1311. struct sched_domain *sd = data;
  1312. int i;
  1313. for_each_cpu(i, sched_domain_span(sd)) {
  1314. /*
  1315. * If there are currently no tasks on the cpu pretend there
  1316. * is one of average load so that when a new task gets to
  1317. * run here it will not get delayed by group starvation.
  1318. */
  1319. weight = tg->cfs_rq[i]->load.weight;
  1320. if (!weight)
  1321. weight = NICE_0_LOAD;
  1322. tg->cfs_rq[i]->rq_weight = weight;
  1323. rq_weight += weight;
  1324. shares += tg->cfs_rq[i]->shares;
  1325. }
  1326. if ((!shares && rq_weight) || shares > tg->shares)
  1327. shares = tg->shares;
  1328. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1329. shares = tg->shares;
  1330. for_each_cpu(i, sched_domain_span(sd))
  1331. update_group_shares_cpu(tg, i, shares, rq_weight);
  1332. return 0;
  1333. }
  1334. /*
  1335. * Compute the cpu's hierarchical load factor for each task group.
  1336. * This needs to be done in a top-down fashion because the load of a child
  1337. * group is a fraction of its parents load.
  1338. */
  1339. static int tg_load_down(struct task_group *tg, void *data)
  1340. {
  1341. unsigned long load;
  1342. long cpu = (long)data;
  1343. if (!tg->parent) {
  1344. load = cpu_rq(cpu)->load.weight;
  1345. } else {
  1346. load = tg->parent->cfs_rq[cpu]->h_load;
  1347. load *= tg->cfs_rq[cpu]->shares;
  1348. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1349. }
  1350. tg->cfs_rq[cpu]->h_load = load;
  1351. return 0;
  1352. }
  1353. static void update_shares(struct sched_domain *sd)
  1354. {
  1355. u64 now = cpu_clock(raw_smp_processor_id());
  1356. s64 elapsed = now - sd->last_update;
  1357. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1358. sd->last_update = now;
  1359. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1360. }
  1361. }
  1362. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1363. {
  1364. spin_unlock(&rq->lock);
  1365. update_shares(sd);
  1366. spin_lock(&rq->lock);
  1367. }
  1368. static void update_h_load(long cpu)
  1369. {
  1370. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1371. }
  1372. #else
  1373. static inline void update_shares(struct sched_domain *sd)
  1374. {
  1375. }
  1376. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1377. {
  1378. }
  1379. #endif
  1380. #ifdef CONFIG_PREEMPT
  1381. /*
  1382. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1383. * way at the expense of forcing extra atomic operations in all
  1384. * invocations. This assures that the double_lock is acquired using the
  1385. * same underlying policy as the spinlock_t on this architecture, which
  1386. * reduces latency compared to the unfair variant below. However, it
  1387. * also adds more overhead and therefore may reduce throughput.
  1388. */
  1389. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1390. __releases(this_rq->lock)
  1391. __acquires(busiest->lock)
  1392. __acquires(this_rq->lock)
  1393. {
  1394. spin_unlock(&this_rq->lock);
  1395. double_rq_lock(this_rq, busiest);
  1396. return 1;
  1397. }
  1398. #else
  1399. /*
  1400. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1401. * latency by eliminating extra atomic operations when the locks are
  1402. * already in proper order on entry. This favors lower cpu-ids and will
  1403. * grant the double lock to lower cpus over higher ids under contention,
  1404. * regardless of entry order into the function.
  1405. */
  1406. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1407. __releases(this_rq->lock)
  1408. __acquires(busiest->lock)
  1409. __acquires(this_rq->lock)
  1410. {
  1411. int ret = 0;
  1412. if (unlikely(!spin_trylock(&busiest->lock))) {
  1413. if (busiest < this_rq) {
  1414. spin_unlock(&this_rq->lock);
  1415. spin_lock(&busiest->lock);
  1416. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1417. ret = 1;
  1418. } else
  1419. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1420. }
  1421. return ret;
  1422. }
  1423. #endif /* CONFIG_PREEMPT */
  1424. /*
  1425. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1426. */
  1427. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1428. {
  1429. if (unlikely(!irqs_disabled())) {
  1430. /* printk() doesn't work good under rq->lock */
  1431. spin_unlock(&this_rq->lock);
  1432. BUG_ON(1);
  1433. }
  1434. return _double_lock_balance(this_rq, busiest);
  1435. }
  1436. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1437. __releases(busiest->lock)
  1438. {
  1439. spin_unlock(&busiest->lock);
  1440. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1441. }
  1442. #endif
  1443. #ifdef CONFIG_FAIR_GROUP_SCHED
  1444. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1445. {
  1446. #ifdef CONFIG_SMP
  1447. cfs_rq->shares = shares;
  1448. #endif
  1449. }
  1450. #endif
  1451. #include "sched_stats.h"
  1452. #include "sched_idletask.c"
  1453. #include "sched_fair.c"
  1454. #include "sched_rt.c"
  1455. #ifdef CONFIG_SCHED_DEBUG
  1456. # include "sched_debug.c"
  1457. #endif
  1458. #define sched_class_highest (&rt_sched_class)
  1459. #define for_each_class(class) \
  1460. for (class = sched_class_highest; class; class = class->next)
  1461. static void inc_nr_running(struct rq *rq)
  1462. {
  1463. rq->nr_running++;
  1464. }
  1465. static void dec_nr_running(struct rq *rq)
  1466. {
  1467. rq->nr_running--;
  1468. }
  1469. static void set_load_weight(struct task_struct *p)
  1470. {
  1471. if (task_has_rt_policy(p)) {
  1472. p->se.load.weight = prio_to_weight[0] * 2;
  1473. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1474. return;
  1475. }
  1476. /*
  1477. * SCHED_IDLE tasks get minimal weight:
  1478. */
  1479. if (p->policy == SCHED_IDLE) {
  1480. p->se.load.weight = WEIGHT_IDLEPRIO;
  1481. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1482. return;
  1483. }
  1484. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1485. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1486. }
  1487. static void update_avg(u64 *avg, u64 sample)
  1488. {
  1489. s64 diff = sample - *avg;
  1490. *avg += diff >> 3;
  1491. }
  1492. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1493. {
  1494. if (wakeup)
  1495. p->se.start_runtime = p->se.sum_exec_runtime;
  1496. sched_info_queued(p);
  1497. p->sched_class->enqueue_task(rq, p, wakeup);
  1498. p->se.on_rq = 1;
  1499. }
  1500. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1501. {
  1502. if (sleep) {
  1503. if (p->se.last_wakeup) {
  1504. update_avg(&p->se.avg_overlap,
  1505. p->se.sum_exec_runtime - p->se.last_wakeup);
  1506. p->se.last_wakeup = 0;
  1507. } else {
  1508. update_avg(&p->se.avg_wakeup,
  1509. sysctl_sched_wakeup_granularity);
  1510. }
  1511. }
  1512. sched_info_dequeued(p);
  1513. p->sched_class->dequeue_task(rq, p, sleep);
  1514. p->se.on_rq = 0;
  1515. }
  1516. /*
  1517. * __normal_prio - return the priority that is based on the static prio
  1518. */
  1519. static inline int __normal_prio(struct task_struct *p)
  1520. {
  1521. return p->static_prio;
  1522. }
  1523. /*
  1524. * Calculate the expected normal priority: i.e. priority
  1525. * without taking RT-inheritance into account. Might be
  1526. * boosted by interactivity modifiers. Changes upon fork,
  1527. * setprio syscalls, and whenever the interactivity
  1528. * estimator recalculates.
  1529. */
  1530. static inline int normal_prio(struct task_struct *p)
  1531. {
  1532. int prio;
  1533. if (task_has_rt_policy(p))
  1534. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1535. else
  1536. prio = __normal_prio(p);
  1537. return prio;
  1538. }
  1539. /*
  1540. * Calculate the current priority, i.e. the priority
  1541. * taken into account by the scheduler. This value might
  1542. * be boosted by RT tasks, or might be boosted by
  1543. * interactivity modifiers. Will be RT if the task got
  1544. * RT-boosted. If not then it returns p->normal_prio.
  1545. */
  1546. static int effective_prio(struct task_struct *p)
  1547. {
  1548. p->normal_prio = normal_prio(p);
  1549. /*
  1550. * If we are RT tasks or we were boosted to RT priority,
  1551. * keep the priority unchanged. Otherwise, update priority
  1552. * to the normal priority:
  1553. */
  1554. if (!rt_prio(p->prio))
  1555. return p->normal_prio;
  1556. return p->prio;
  1557. }
  1558. /*
  1559. * activate_task - move a task to the runqueue.
  1560. */
  1561. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1562. {
  1563. if (task_contributes_to_load(p))
  1564. rq->nr_uninterruptible--;
  1565. enqueue_task(rq, p, wakeup);
  1566. inc_nr_running(rq);
  1567. }
  1568. /*
  1569. * deactivate_task - remove a task from the runqueue.
  1570. */
  1571. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1572. {
  1573. if (task_contributes_to_load(p))
  1574. rq->nr_uninterruptible++;
  1575. dequeue_task(rq, p, sleep);
  1576. dec_nr_running(rq);
  1577. }
  1578. /**
  1579. * task_curr - is this task currently executing on a CPU?
  1580. * @p: the task in question.
  1581. */
  1582. inline int task_curr(const struct task_struct *p)
  1583. {
  1584. return cpu_curr(task_cpu(p)) == p;
  1585. }
  1586. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1587. {
  1588. set_task_rq(p, cpu);
  1589. #ifdef CONFIG_SMP
  1590. /*
  1591. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1592. * successfuly executed on another CPU. We must ensure that updates of
  1593. * per-task data have been completed by this moment.
  1594. */
  1595. smp_wmb();
  1596. task_thread_info(p)->cpu = cpu;
  1597. #endif
  1598. }
  1599. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1600. const struct sched_class *prev_class,
  1601. int oldprio, int running)
  1602. {
  1603. if (prev_class != p->sched_class) {
  1604. if (prev_class->switched_from)
  1605. prev_class->switched_from(rq, p, running);
  1606. p->sched_class->switched_to(rq, p, running);
  1607. } else
  1608. p->sched_class->prio_changed(rq, p, oldprio, running);
  1609. }
  1610. #ifdef CONFIG_SMP
  1611. /* Used instead of source_load when we know the type == 0 */
  1612. static unsigned long weighted_cpuload(const int cpu)
  1613. {
  1614. return cpu_rq(cpu)->load.weight;
  1615. }
  1616. /*
  1617. * Is this task likely cache-hot:
  1618. */
  1619. static int
  1620. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1621. {
  1622. s64 delta;
  1623. /*
  1624. * Buddy candidates are cache hot:
  1625. */
  1626. if (sched_feat(CACHE_HOT_BUDDY) &&
  1627. (&p->se == cfs_rq_of(&p->se)->next ||
  1628. &p->se == cfs_rq_of(&p->se)->last))
  1629. return 1;
  1630. if (p->sched_class != &fair_sched_class)
  1631. return 0;
  1632. if (sysctl_sched_migration_cost == -1)
  1633. return 1;
  1634. if (sysctl_sched_migration_cost == 0)
  1635. return 0;
  1636. delta = now - p->se.exec_start;
  1637. return delta < (s64)sysctl_sched_migration_cost;
  1638. }
  1639. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1640. {
  1641. int old_cpu = task_cpu(p);
  1642. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1643. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1644. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1645. u64 clock_offset;
  1646. clock_offset = old_rq->clock - new_rq->clock;
  1647. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1648. #ifdef CONFIG_SCHEDSTATS
  1649. if (p->se.wait_start)
  1650. p->se.wait_start -= clock_offset;
  1651. if (p->se.sleep_start)
  1652. p->se.sleep_start -= clock_offset;
  1653. if (p->se.block_start)
  1654. p->se.block_start -= clock_offset;
  1655. #endif
  1656. if (old_cpu != new_cpu) {
  1657. p->se.nr_migrations++;
  1658. new_rq->nr_migrations_in++;
  1659. #ifdef CONFIG_SCHEDSTATS
  1660. if (task_hot(p, old_rq->clock, NULL))
  1661. schedstat_inc(p, se.nr_forced2_migrations);
  1662. #endif
  1663. perf_counter_task_migration(p, new_cpu);
  1664. }
  1665. p->se.vruntime -= old_cfsrq->min_vruntime -
  1666. new_cfsrq->min_vruntime;
  1667. __set_task_cpu(p, new_cpu);
  1668. }
  1669. struct migration_req {
  1670. struct list_head list;
  1671. struct task_struct *task;
  1672. int dest_cpu;
  1673. struct completion done;
  1674. };
  1675. /*
  1676. * The task's runqueue lock must be held.
  1677. * Returns true if you have to wait for migration thread.
  1678. */
  1679. static int
  1680. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1681. {
  1682. struct rq *rq = task_rq(p);
  1683. /*
  1684. * If the task is not on a runqueue (and not running), then
  1685. * it is sufficient to simply update the task's cpu field.
  1686. */
  1687. if (!p->se.on_rq && !task_running(rq, p)) {
  1688. set_task_cpu(p, dest_cpu);
  1689. return 0;
  1690. }
  1691. init_completion(&req->done);
  1692. req->task = p;
  1693. req->dest_cpu = dest_cpu;
  1694. list_add(&req->list, &rq->migration_queue);
  1695. return 1;
  1696. }
  1697. /*
  1698. * wait_task_inactive - wait for a thread to unschedule.
  1699. *
  1700. * If @match_state is nonzero, it's the @p->state value just checked and
  1701. * not expected to change. If it changes, i.e. @p might have woken up,
  1702. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1703. * we return a positive number (its total switch count). If a second call
  1704. * a short while later returns the same number, the caller can be sure that
  1705. * @p has remained unscheduled the whole time.
  1706. *
  1707. * The caller must ensure that the task *will* unschedule sometime soon,
  1708. * else this function might spin for a *long* time. This function can't
  1709. * be called with interrupts off, or it may introduce deadlock with
  1710. * smp_call_function() if an IPI is sent by the same process we are
  1711. * waiting to become inactive.
  1712. */
  1713. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1714. {
  1715. unsigned long flags;
  1716. int running, on_rq;
  1717. unsigned long ncsw;
  1718. struct rq *rq;
  1719. for (;;) {
  1720. /*
  1721. * We do the initial early heuristics without holding
  1722. * any task-queue locks at all. We'll only try to get
  1723. * the runqueue lock when things look like they will
  1724. * work out!
  1725. */
  1726. rq = task_rq(p);
  1727. /*
  1728. * If the task is actively running on another CPU
  1729. * still, just relax and busy-wait without holding
  1730. * any locks.
  1731. *
  1732. * NOTE! Since we don't hold any locks, it's not
  1733. * even sure that "rq" stays as the right runqueue!
  1734. * But we don't care, since "task_running()" will
  1735. * return false if the runqueue has changed and p
  1736. * is actually now running somewhere else!
  1737. */
  1738. while (task_running(rq, p)) {
  1739. if (match_state && unlikely(p->state != match_state))
  1740. return 0;
  1741. cpu_relax();
  1742. }
  1743. /*
  1744. * Ok, time to look more closely! We need the rq
  1745. * lock now, to be *sure*. If we're wrong, we'll
  1746. * just go back and repeat.
  1747. */
  1748. rq = task_rq_lock(p, &flags);
  1749. trace_sched_wait_task(rq, p);
  1750. running = task_running(rq, p);
  1751. on_rq = p->se.on_rq;
  1752. ncsw = 0;
  1753. if (!match_state || p->state == match_state)
  1754. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1755. task_rq_unlock(rq, &flags);
  1756. /*
  1757. * If it changed from the expected state, bail out now.
  1758. */
  1759. if (unlikely(!ncsw))
  1760. break;
  1761. /*
  1762. * Was it really running after all now that we
  1763. * checked with the proper locks actually held?
  1764. *
  1765. * Oops. Go back and try again..
  1766. */
  1767. if (unlikely(running)) {
  1768. cpu_relax();
  1769. continue;
  1770. }
  1771. /*
  1772. * It's not enough that it's not actively running,
  1773. * it must be off the runqueue _entirely_, and not
  1774. * preempted!
  1775. *
  1776. * So if it was still runnable (but just not actively
  1777. * running right now), it's preempted, and we should
  1778. * yield - it could be a while.
  1779. */
  1780. if (unlikely(on_rq)) {
  1781. schedule_timeout_uninterruptible(1);
  1782. continue;
  1783. }
  1784. /*
  1785. * Ahh, all good. It wasn't running, and it wasn't
  1786. * runnable, which means that it will never become
  1787. * running in the future either. We're all done!
  1788. */
  1789. break;
  1790. }
  1791. return ncsw;
  1792. }
  1793. /***
  1794. * kick_process - kick a running thread to enter/exit the kernel
  1795. * @p: the to-be-kicked thread
  1796. *
  1797. * Cause a process which is running on another CPU to enter
  1798. * kernel-mode, without any delay. (to get signals handled.)
  1799. *
  1800. * NOTE: this function doesnt have to take the runqueue lock,
  1801. * because all it wants to ensure is that the remote task enters
  1802. * the kernel. If the IPI races and the task has been migrated
  1803. * to another CPU then no harm is done and the purpose has been
  1804. * achieved as well.
  1805. */
  1806. void kick_process(struct task_struct *p)
  1807. {
  1808. int cpu;
  1809. preempt_disable();
  1810. cpu = task_cpu(p);
  1811. if ((cpu != smp_processor_id()) && task_curr(p))
  1812. smp_send_reschedule(cpu);
  1813. preempt_enable();
  1814. }
  1815. /*
  1816. * Return a low guess at the load of a migration-source cpu weighted
  1817. * according to the scheduling class and "nice" value.
  1818. *
  1819. * We want to under-estimate the load of migration sources, to
  1820. * balance conservatively.
  1821. */
  1822. static unsigned long source_load(int cpu, int type)
  1823. {
  1824. struct rq *rq = cpu_rq(cpu);
  1825. unsigned long total = weighted_cpuload(cpu);
  1826. if (type == 0 || !sched_feat(LB_BIAS))
  1827. return total;
  1828. return min(rq->cpu_load[type-1], total);
  1829. }
  1830. /*
  1831. * Return a high guess at the load of a migration-target cpu weighted
  1832. * according to the scheduling class and "nice" value.
  1833. */
  1834. static unsigned long target_load(int cpu, int type)
  1835. {
  1836. struct rq *rq = cpu_rq(cpu);
  1837. unsigned long total = weighted_cpuload(cpu);
  1838. if (type == 0 || !sched_feat(LB_BIAS))
  1839. return total;
  1840. return max(rq->cpu_load[type-1], total);
  1841. }
  1842. /*
  1843. * find_idlest_group finds and returns the least busy CPU group within the
  1844. * domain.
  1845. */
  1846. static struct sched_group *
  1847. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1848. {
  1849. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1850. unsigned long min_load = ULONG_MAX, this_load = 0;
  1851. int load_idx = sd->forkexec_idx;
  1852. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1853. do {
  1854. unsigned long load, avg_load;
  1855. int local_group;
  1856. int i;
  1857. /* Skip over this group if it has no CPUs allowed */
  1858. if (!cpumask_intersects(sched_group_cpus(group),
  1859. &p->cpus_allowed))
  1860. continue;
  1861. local_group = cpumask_test_cpu(this_cpu,
  1862. sched_group_cpus(group));
  1863. /* Tally up the load of all CPUs in the group */
  1864. avg_load = 0;
  1865. for_each_cpu(i, sched_group_cpus(group)) {
  1866. /* Bias balancing toward cpus of our domain */
  1867. if (local_group)
  1868. load = source_load(i, load_idx);
  1869. else
  1870. load = target_load(i, load_idx);
  1871. avg_load += load;
  1872. }
  1873. /* Adjust by relative CPU power of the group */
  1874. avg_load = sg_div_cpu_power(group,
  1875. avg_load * SCHED_LOAD_SCALE);
  1876. if (local_group) {
  1877. this_load = avg_load;
  1878. this = group;
  1879. } else if (avg_load < min_load) {
  1880. min_load = avg_load;
  1881. idlest = group;
  1882. }
  1883. } while (group = group->next, group != sd->groups);
  1884. if (!idlest || 100*this_load < imbalance*min_load)
  1885. return NULL;
  1886. return idlest;
  1887. }
  1888. /*
  1889. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1890. */
  1891. static int
  1892. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1893. {
  1894. unsigned long load, min_load = ULONG_MAX;
  1895. int idlest = -1;
  1896. int i;
  1897. /* Traverse only the allowed CPUs */
  1898. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1899. load = weighted_cpuload(i);
  1900. if (load < min_load || (load == min_load && i == this_cpu)) {
  1901. min_load = load;
  1902. idlest = i;
  1903. }
  1904. }
  1905. return idlest;
  1906. }
  1907. /*
  1908. * sched_balance_self: balance the current task (running on cpu) in domains
  1909. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1910. * SD_BALANCE_EXEC.
  1911. *
  1912. * Balance, ie. select the least loaded group.
  1913. *
  1914. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1915. *
  1916. * preempt must be disabled.
  1917. */
  1918. static int sched_balance_self(int cpu, int flag)
  1919. {
  1920. struct task_struct *t = current;
  1921. struct sched_domain *tmp, *sd = NULL;
  1922. for_each_domain(cpu, tmp) {
  1923. /*
  1924. * If power savings logic is enabled for a domain, stop there.
  1925. */
  1926. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1927. break;
  1928. if (tmp->flags & flag)
  1929. sd = tmp;
  1930. }
  1931. if (sd)
  1932. update_shares(sd);
  1933. while (sd) {
  1934. struct sched_group *group;
  1935. int new_cpu, weight;
  1936. if (!(sd->flags & flag)) {
  1937. sd = sd->child;
  1938. continue;
  1939. }
  1940. group = find_idlest_group(sd, t, cpu);
  1941. if (!group) {
  1942. sd = sd->child;
  1943. continue;
  1944. }
  1945. new_cpu = find_idlest_cpu(group, t, cpu);
  1946. if (new_cpu == -1 || new_cpu == cpu) {
  1947. /* Now try balancing at a lower domain level of cpu */
  1948. sd = sd->child;
  1949. continue;
  1950. }
  1951. /* Now try balancing at a lower domain level of new_cpu */
  1952. cpu = new_cpu;
  1953. weight = cpumask_weight(sched_domain_span(sd));
  1954. sd = NULL;
  1955. for_each_domain(cpu, tmp) {
  1956. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1957. break;
  1958. if (tmp->flags & flag)
  1959. sd = tmp;
  1960. }
  1961. /* while loop will break here if sd == NULL */
  1962. }
  1963. return cpu;
  1964. }
  1965. #endif /* CONFIG_SMP */
  1966. /**
  1967. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1968. * @p: the task to evaluate
  1969. * @func: the function to be called
  1970. * @info: the function call argument
  1971. *
  1972. * Calls the function @func when the task is currently running. This might
  1973. * be on the current CPU, which just calls the function directly
  1974. */
  1975. void task_oncpu_function_call(struct task_struct *p,
  1976. void (*func) (void *info), void *info)
  1977. {
  1978. int cpu;
  1979. preempt_disable();
  1980. cpu = task_cpu(p);
  1981. if (task_curr(p))
  1982. smp_call_function_single(cpu, func, info, 1);
  1983. preempt_enable();
  1984. }
  1985. /***
  1986. * try_to_wake_up - wake up a thread
  1987. * @p: the to-be-woken-up thread
  1988. * @state: the mask of task states that can be woken
  1989. * @sync: do a synchronous wakeup?
  1990. *
  1991. * Put it on the run-queue if it's not already there. The "current"
  1992. * thread is always on the run-queue (except when the actual
  1993. * re-schedule is in progress), and as such you're allowed to do
  1994. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1995. * runnable without the overhead of this.
  1996. *
  1997. * returns failure only if the task is already active.
  1998. */
  1999. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2000. {
  2001. int cpu, orig_cpu, this_cpu, success = 0;
  2002. unsigned long flags;
  2003. long old_state;
  2004. struct rq *rq;
  2005. if (!sched_feat(SYNC_WAKEUPS))
  2006. sync = 0;
  2007. #ifdef CONFIG_SMP
  2008. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2009. struct sched_domain *sd;
  2010. this_cpu = raw_smp_processor_id();
  2011. cpu = task_cpu(p);
  2012. for_each_domain(this_cpu, sd) {
  2013. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2014. update_shares(sd);
  2015. break;
  2016. }
  2017. }
  2018. }
  2019. #endif
  2020. smp_wmb();
  2021. rq = task_rq_lock(p, &flags);
  2022. update_rq_clock(rq);
  2023. old_state = p->state;
  2024. if (!(old_state & state))
  2025. goto out;
  2026. if (p->se.on_rq)
  2027. goto out_running;
  2028. cpu = task_cpu(p);
  2029. orig_cpu = cpu;
  2030. this_cpu = smp_processor_id();
  2031. #ifdef CONFIG_SMP
  2032. if (unlikely(task_running(rq, p)))
  2033. goto out_activate;
  2034. cpu = p->sched_class->select_task_rq(p, sync);
  2035. if (cpu != orig_cpu) {
  2036. set_task_cpu(p, cpu);
  2037. task_rq_unlock(rq, &flags);
  2038. /* might preempt at this point */
  2039. rq = task_rq_lock(p, &flags);
  2040. old_state = p->state;
  2041. if (!(old_state & state))
  2042. goto out;
  2043. if (p->se.on_rq)
  2044. goto out_running;
  2045. this_cpu = smp_processor_id();
  2046. cpu = task_cpu(p);
  2047. }
  2048. #ifdef CONFIG_SCHEDSTATS
  2049. schedstat_inc(rq, ttwu_count);
  2050. if (cpu == this_cpu)
  2051. schedstat_inc(rq, ttwu_local);
  2052. else {
  2053. struct sched_domain *sd;
  2054. for_each_domain(this_cpu, sd) {
  2055. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2056. schedstat_inc(sd, ttwu_wake_remote);
  2057. break;
  2058. }
  2059. }
  2060. }
  2061. #endif /* CONFIG_SCHEDSTATS */
  2062. out_activate:
  2063. #endif /* CONFIG_SMP */
  2064. schedstat_inc(p, se.nr_wakeups);
  2065. if (sync)
  2066. schedstat_inc(p, se.nr_wakeups_sync);
  2067. if (orig_cpu != cpu)
  2068. schedstat_inc(p, se.nr_wakeups_migrate);
  2069. if (cpu == this_cpu)
  2070. schedstat_inc(p, se.nr_wakeups_local);
  2071. else
  2072. schedstat_inc(p, se.nr_wakeups_remote);
  2073. activate_task(rq, p, 1);
  2074. success = 1;
  2075. /*
  2076. * Only attribute actual wakeups done by this task.
  2077. */
  2078. if (!in_interrupt()) {
  2079. struct sched_entity *se = &current->se;
  2080. u64 sample = se->sum_exec_runtime;
  2081. if (se->last_wakeup)
  2082. sample -= se->last_wakeup;
  2083. else
  2084. sample -= se->start_runtime;
  2085. update_avg(&se->avg_wakeup, sample);
  2086. se->last_wakeup = se->sum_exec_runtime;
  2087. }
  2088. out_running:
  2089. trace_sched_wakeup(rq, p, success);
  2090. check_preempt_curr(rq, p, sync);
  2091. p->state = TASK_RUNNING;
  2092. #ifdef CONFIG_SMP
  2093. if (p->sched_class->task_wake_up)
  2094. p->sched_class->task_wake_up(rq, p);
  2095. #endif
  2096. out:
  2097. task_rq_unlock(rq, &flags);
  2098. return success;
  2099. }
  2100. int wake_up_process(struct task_struct *p)
  2101. {
  2102. return try_to_wake_up(p, TASK_ALL, 0);
  2103. }
  2104. EXPORT_SYMBOL(wake_up_process);
  2105. int wake_up_state(struct task_struct *p, unsigned int state)
  2106. {
  2107. return try_to_wake_up(p, state, 0);
  2108. }
  2109. /*
  2110. * Perform scheduler related setup for a newly forked process p.
  2111. * p is forked by current.
  2112. *
  2113. * __sched_fork() is basic setup used by init_idle() too:
  2114. */
  2115. static void __sched_fork(struct task_struct *p)
  2116. {
  2117. p->se.exec_start = 0;
  2118. p->se.sum_exec_runtime = 0;
  2119. p->se.prev_sum_exec_runtime = 0;
  2120. p->se.nr_migrations = 0;
  2121. p->se.last_wakeup = 0;
  2122. p->se.avg_overlap = 0;
  2123. p->se.start_runtime = 0;
  2124. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2125. #ifdef CONFIG_SCHEDSTATS
  2126. p->se.wait_start = 0;
  2127. p->se.sum_sleep_runtime = 0;
  2128. p->se.sleep_start = 0;
  2129. p->se.block_start = 0;
  2130. p->se.sleep_max = 0;
  2131. p->se.block_max = 0;
  2132. p->se.exec_max = 0;
  2133. p->se.slice_max = 0;
  2134. p->se.wait_max = 0;
  2135. #endif
  2136. INIT_LIST_HEAD(&p->rt.run_list);
  2137. p->se.on_rq = 0;
  2138. INIT_LIST_HEAD(&p->se.group_node);
  2139. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2140. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2141. #endif
  2142. /*
  2143. * We mark the process as running here, but have not actually
  2144. * inserted it onto the runqueue yet. This guarantees that
  2145. * nobody will actually run it, and a signal or other external
  2146. * event cannot wake it up and insert it on the runqueue either.
  2147. */
  2148. p->state = TASK_RUNNING;
  2149. }
  2150. /*
  2151. * fork()/clone()-time setup:
  2152. */
  2153. void sched_fork(struct task_struct *p, int clone_flags)
  2154. {
  2155. int cpu = get_cpu();
  2156. __sched_fork(p);
  2157. #ifdef CONFIG_SMP
  2158. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2159. #endif
  2160. set_task_cpu(p, cpu);
  2161. /*
  2162. * Make sure we do not leak PI boosting priority to the child:
  2163. */
  2164. p->prio = current->normal_prio;
  2165. if (!rt_prio(p->prio))
  2166. p->sched_class = &fair_sched_class;
  2167. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2168. if (likely(sched_info_on()))
  2169. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2170. #endif
  2171. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2172. p->oncpu = 0;
  2173. #endif
  2174. #ifdef CONFIG_PREEMPT
  2175. /* Want to start with kernel preemption disabled. */
  2176. task_thread_info(p)->preempt_count = 1;
  2177. #endif
  2178. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2179. put_cpu();
  2180. }
  2181. /*
  2182. * wake_up_new_task - wake up a newly created task for the first time.
  2183. *
  2184. * This function will do some initial scheduler statistics housekeeping
  2185. * that must be done for every newly created context, then puts the task
  2186. * on the runqueue and wakes it.
  2187. */
  2188. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2189. {
  2190. unsigned long flags;
  2191. struct rq *rq;
  2192. rq = task_rq_lock(p, &flags);
  2193. BUG_ON(p->state != TASK_RUNNING);
  2194. update_rq_clock(rq);
  2195. p->prio = effective_prio(p);
  2196. if (!p->sched_class->task_new || !current->se.on_rq) {
  2197. activate_task(rq, p, 0);
  2198. } else {
  2199. /*
  2200. * Let the scheduling class do new task startup
  2201. * management (if any):
  2202. */
  2203. p->sched_class->task_new(rq, p);
  2204. inc_nr_running(rq);
  2205. }
  2206. trace_sched_wakeup_new(rq, p, 1);
  2207. check_preempt_curr(rq, p, 0);
  2208. #ifdef CONFIG_SMP
  2209. if (p->sched_class->task_wake_up)
  2210. p->sched_class->task_wake_up(rq, p);
  2211. #endif
  2212. task_rq_unlock(rq, &flags);
  2213. }
  2214. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2215. /**
  2216. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2217. * @notifier: notifier struct to register
  2218. */
  2219. void preempt_notifier_register(struct preempt_notifier *notifier)
  2220. {
  2221. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2222. }
  2223. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2224. /**
  2225. * preempt_notifier_unregister - no longer interested in preemption notifications
  2226. * @notifier: notifier struct to unregister
  2227. *
  2228. * This is safe to call from within a preemption notifier.
  2229. */
  2230. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2231. {
  2232. hlist_del(&notifier->link);
  2233. }
  2234. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2235. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2236. {
  2237. struct preempt_notifier *notifier;
  2238. struct hlist_node *node;
  2239. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2240. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2241. }
  2242. static void
  2243. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2244. struct task_struct *next)
  2245. {
  2246. struct preempt_notifier *notifier;
  2247. struct hlist_node *node;
  2248. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2249. notifier->ops->sched_out(notifier, next);
  2250. }
  2251. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2252. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2253. {
  2254. }
  2255. static void
  2256. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2257. struct task_struct *next)
  2258. {
  2259. }
  2260. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2261. /**
  2262. * prepare_task_switch - prepare to switch tasks
  2263. * @rq: the runqueue preparing to switch
  2264. * @prev: the current task that is being switched out
  2265. * @next: the task we are going to switch to.
  2266. *
  2267. * This is called with the rq lock held and interrupts off. It must
  2268. * be paired with a subsequent finish_task_switch after the context
  2269. * switch.
  2270. *
  2271. * prepare_task_switch sets up locking and calls architecture specific
  2272. * hooks.
  2273. */
  2274. static inline void
  2275. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2276. struct task_struct *next)
  2277. {
  2278. fire_sched_out_preempt_notifiers(prev, next);
  2279. prepare_lock_switch(rq, next);
  2280. prepare_arch_switch(next);
  2281. }
  2282. /**
  2283. * finish_task_switch - clean up after a task-switch
  2284. * @rq: runqueue associated with task-switch
  2285. * @prev: the thread we just switched away from.
  2286. *
  2287. * finish_task_switch must be called after the context switch, paired
  2288. * with a prepare_task_switch call before the context switch.
  2289. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2290. * and do any other architecture-specific cleanup actions.
  2291. *
  2292. * Note that we may have delayed dropping an mm in context_switch(). If
  2293. * so, we finish that here outside of the runqueue lock. (Doing it
  2294. * with the lock held can cause deadlocks; see schedule() for
  2295. * details.)
  2296. */
  2297. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2298. __releases(rq->lock)
  2299. {
  2300. struct mm_struct *mm = rq->prev_mm;
  2301. long prev_state;
  2302. #ifdef CONFIG_SMP
  2303. int post_schedule = 0;
  2304. if (current->sched_class->needs_post_schedule)
  2305. post_schedule = current->sched_class->needs_post_schedule(rq);
  2306. #endif
  2307. rq->prev_mm = NULL;
  2308. /*
  2309. * A task struct has one reference for the use as "current".
  2310. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2311. * schedule one last time. The schedule call will never return, and
  2312. * the scheduled task must drop that reference.
  2313. * The test for TASK_DEAD must occur while the runqueue locks are
  2314. * still held, otherwise prev could be scheduled on another cpu, die
  2315. * there before we look at prev->state, and then the reference would
  2316. * be dropped twice.
  2317. * Manfred Spraul <manfred@colorfullife.com>
  2318. */
  2319. prev_state = prev->state;
  2320. finish_arch_switch(prev);
  2321. perf_counter_task_sched_in(current, cpu_of(rq));
  2322. finish_lock_switch(rq, prev);
  2323. #ifdef CONFIG_SMP
  2324. if (post_schedule)
  2325. current->sched_class->post_schedule(rq);
  2326. #endif
  2327. fire_sched_in_preempt_notifiers(current);
  2328. if (mm)
  2329. mmdrop(mm);
  2330. if (unlikely(prev_state == TASK_DEAD)) {
  2331. /*
  2332. * Remove function-return probe instances associated with this
  2333. * task and put them back on the free list.
  2334. */
  2335. kprobe_flush_task(prev);
  2336. put_task_struct(prev);
  2337. }
  2338. }
  2339. /**
  2340. * schedule_tail - first thing a freshly forked thread must call.
  2341. * @prev: the thread we just switched away from.
  2342. */
  2343. asmlinkage void schedule_tail(struct task_struct *prev)
  2344. __releases(rq->lock)
  2345. {
  2346. struct rq *rq = this_rq();
  2347. finish_task_switch(rq, prev);
  2348. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2349. /* In this case, finish_task_switch does not reenable preemption */
  2350. preempt_enable();
  2351. #endif
  2352. if (current->set_child_tid)
  2353. put_user(task_pid_vnr(current), current->set_child_tid);
  2354. }
  2355. /*
  2356. * context_switch - switch to the new MM and the new
  2357. * thread's register state.
  2358. */
  2359. static inline void
  2360. context_switch(struct rq *rq, struct task_struct *prev,
  2361. struct task_struct *next)
  2362. {
  2363. struct mm_struct *mm, *oldmm;
  2364. prepare_task_switch(rq, prev, next);
  2365. trace_sched_switch(rq, prev, next);
  2366. mm = next->mm;
  2367. oldmm = prev->active_mm;
  2368. /*
  2369. * For paravirt, this is coupled with an exit in switch_to to
  2370. * combine the page table reload and the switch backend into
  2371. * one hypercall.
  2372. */
  2373. arch_enter_lazy_cpu_mode();
  2374. if (unlikely(!mm)) {
  2375. next->active_mm = oldmm;
  2376. atomic_inc(&oldmm->mm_count);
  2377. enter_lazy_tlb(oldmm, next);
  2378. } else
  2379. switch_mm(oldmm, mm, next);
  2380. if (unlikely(!prev->mm)) {
  2381. prev->active_mm = NULL;
  2382. rq->prev_mm = oldmm;
  2383. }
  2384. /*
  2385. * Since the runqueue lock will be released by the next
  2386. * task (which is an invalid locking op but in the case
  2387. * of the scheduler it's an obvious special-case), so we
  2388. * do an early lockdep release here:
  2389. */
  2390. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2391. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2392. #endif
  2393. /* Here we just switch the register state and the stack. */
  2394. switch_to(prev, next, prev);
  2395. barrier();
  2396. /*
  2397. * this_rq must be evaluated again because prev may have moved
  2398. * CPUs since it called schedule(), thus the 'rq' on its stack
  2399. * frame will be invalid.
  2400. */
  2401. finish_task_switch(this_rq(), prev);
  2402. }
  2403. /*
  2404. * nr_running, nr_uninterruptible and nr_context_switches:
  2405. *
  2406. * externally visible scheduler statistics: current number of runnable
  2407. * threads, current number of uninterruptible-sleeping threads, total
  2408. * number of context switches performed since bootup.
  2409. */
  2410. unsigned long nr_running(void)
  2411. {
  2412. unsigned long i, sum = 0;
  2413. for_each_online_cpu(i)
  2414. sum += cpu_rq(i)->nr_running;
  2415. return sum;
  2416. }
  2417. unsigned long nr_uninterruptible(void)
  2418. {
  2419. unsigned long i, sum = 0;
  2420. for_each_possible_cpu(i)
  2421. sum += cpu_rq(i)->nr_uninterruptible;
  2422. /*
  2423. * Since we read the counters lockless, it might be slightly
  2424. * inaccurate. Do not allow it to go below zero though:
  2425. */
  2426. if (unlikely((long)sum < 0))
  2427. sum = 0;
  2428. return sum;
  2429. }
  2430. unsigned long long nr_context_switches(void)
  2431. {
  2432. int i;
  2433. unsigned long long sum = 0;
  2434. for_each_possible_cpu(i)
  2435. sum += cpu_rq(i)->nr_switches;
  2436. return sum;
  2437. }
  2438. unsigned long nr_iowait(void)
  2439. {
  2440. unsigned long i, sum = 0;
  2441. for_each_possible_cpu(i)
  2442. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2443. return sum;
  2444. }
  2445. unsigned long nr_active(void)
  2446. {
  2447. unsigned long i, running = 0, uninterruptible = 0;
  2448. for_each_online_cpu(i) {
  2449. running += cpu_rq(i)->nr_running;
  2450. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2451. }
  2452. if (unlikely((long)uninterruptible < 0))
  2453. uninterruptible = 0;
  2454. return running + uninterruptible;
  2455. }
  2456. /*
  2457. * Externally visible per-cpu scheduler statistics:
  2458. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2459. */
  2460. u64 cpu_nr_migrations(int cpu)
  2461. {
  2462. return cpu_rq(cpu)->nr_migrations_in;
  2463. }
  2464. /*
  2465. * Update rq->cpu_load[] statistics. This function is usually called every
  2466. * scheduler tick (TICK_NSEC).
  2467. */
  2468. static void update_cpu_load(struct rq *this_rq)
  2469. {
  2470. unsigned long this_load = this_rq->load.weight;
  2471. int i, scale;
  2472. this_rq->nr_load_updates++;
  2473. /* Update our load: */
  2474. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2475. unsigned long old_load, new_load;
  2476. /* scale is effectively 1 << i now, and >> i divides by scale */
  2477. old_load = this_rq->cpu_load[i];
  2478. new_load = this_load;
  2479. /*
  2480. * Round up the averaging division if load is increasing. This
  2481. * prevents us from getting stuck on 9 if the load is 10, for
  2482. * example.
  2483. */
  2484. if (new_load > old_load)
  2485. new_load += scale-1;
  2486. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2487. }
  2488. }
  2489. #ifdef CONFIG_SMP
  2490. /*
  2491. * double_rq_lock - safely lock two runqueues
  2492. *
  2493. * Note this does not disable interrupts like task_rq_lock,
  2494. * you need to do so manually before calling.
  2495. */
  2496. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2497. __acquires(rq1->lock)
  2498. __acquires(rq2->lock)
  2499. {
  2500. BUG_ON(!irqs_disabled());
  2501. if (rq1 == rq2) {
  2502. spin_lock(&rq1->lock);
  2503. __acquire(rq2->lock); /* Fake it out ;) */
  2504. } else {
  2505. if (rq1 < rq2) {
  2506. spin_lock(&rq1->lock);
  2507. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2508. } else {
  2509. spin_lock(&rq2->lock);
  2510. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2511. }
  2512. }
  2513. update_rq_clock(rq1);
  2514. update_rq_clock(rq2);
  2515. }
  2516. /*
  2517. * double_rq_unlock - safely unlock two runqueues
  2518. *
  2519. * Note this does not restore interrupts like task_rq_unlock,
  2520. * you need to do so manually after calling.
  2521. */
  2522. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2523. __releases(rq1->lock)
  2524. __releases(rq2->lock)
  2525. {
  2526. spin_unlock(&rq1->lock);
  2527. if (rq1 != rq2)
  2528. spin_unlock(&rq2->lock);
  2529. else
  2530. __release(rq2->lock);
  2531. }
  2532. /*
  2533. * If dest_cpu is allowed for this process, migrate the task to it.
  2534. * This is accomplished by forcing the cpu_allowed mask to only
  2535. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2536. * the cpu_allowed mask is restored.
  2537. */
  2538. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2539. {
  2540. struct migration_req req;
  2541. unsigned long flags;
  2542. struct rq *rq;
  2543. rq = task_rq_lock(p, &flags);
  2544. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2545. || unlikely(!cpu_active(dest_cpu)))
  2546. goto out;
  2547. /* force the process onto the specified CPU */
  2548. if (migrate_task(p, dest_cpu, &req)) {
  2549. /* Need to wait for migration thread (might exit: take ref). */
  2550. struct task_struct *mt = rq->migration_thread;
  2551. get_task_struct(mt);
  2552. task_rq_unlock(rq, &flags);
  2553. wake_up_process(mt);
  2554. put_task_struct(mt);
  2555. wait_for_completion(&req.done);
  2556. return;
  2557. }
  2558. out:
  2559. task_rq_unlock(rq, &flags);
  2560. }
  2561. /*
  2562. * sched_exec - execve() is a valuable balancing opportunity, because at
  2563. * this point the task has the smallest effective memory and cache footprint.
  2564. */
  2565. void sched_exec(void)
  2566. {
  2567. int new_cpu, this_cpu = get_cpu();
  2568. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2569. put_cpu();
  2570. if (new_cpu != this_cpu)
  2571. sched_migrate_task(current, new_cpu);
  2572. }
  2573. /*
  2574. * pull_task - move a task from a remote runqueue to the local runqueue.
  2575. * Both runqueues must be locked.
  2576. */
  2577. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2578. struct rq *this_rq, int this_cpu)
  2579. {
  2580. deactivate_task(src_rq, p, 0);
  2581. set_task_cpu(p, this_cpu);
  2582. activate_task(this_rq, p, 0);
  2583. /*
  2584. * Note that idle threads have a prio of MAX_PRIO, for this test
  2585. * to be always true for them.
  2586. */
  2587. check_preempt_curr(this_rq, p, 0);
  2588. }
  2589. /*
  2590. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2591. */
  2592. static
  2593. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2594. struct sched_domain *sd, enum cpu_idle_type idle,
  2595. int *all_pinned)
  2596. {
  2597. int tsk_cache_hot = 0;
  2598. /*
  2599. * We do not migrate tasks that are:
  2600. * 1) running (obviously), or
  2601. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2602. * 3) are cache-hot on their current CPU.
  2603. */
  2604. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2605. schedstat_inc(p, se.nr_failed_migrations_affine);
  2606. return 0;
  2607. }
  2608. *all_pinned = 0;
  2609. if (task_running(rq, p)) {
  2610. schedstat_inc(p, se.nr_failed_migrations_running);
  2611. return 0;
  2612. }
  2613. /*
  2614. * Aggressive migration if:
  2615. * 1) task is cache cold, or
  2616. * 2) too many balance attempts have failed.
  2617. */
  2618. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2619. if (!tsk_cache_hot ||
  2620. sd->nr_balance_failed > sd->cache_nice_tries) {
  2621. #ifdef CONFIG_SCHEDSTATS
  2622. if (tsk_cache_hot) {
  2623. schedstat_inc(sd, lb_hot_gained[idle]);
  2624. schedstat_inc(p, se.nr_forced_migrations);
  2625. }
  2626. #endif
  2627. return 1;
  2628. }
  2629. if (tsk_cache_hot) {
  2630. schedstat_inc(p, se.nr_failed_migrations_hot);
  2631. return 0;
  2632. }
  2633. return 1;
  2634. }
  2635. static unsigned long
  2636. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2637. unsigned long max_load_move, struct sched_domain *sd,
  2638. enum cpu_idle_type idle, int *all_pinned,
  2639. int *this_best_prio, struct rq_iterator *iterator)
  2640. {
  2641. int loops = 0, pulled = 0, pinned = 0;
  2642. struct task_struct *p;
  2643. long rem_load_move = max_load_move;
  2644. if (max_load_move == 0)
  2645. goto out;
  2646. pinned = 1;
  2647. /*
  2648. * Start the load-balancing iterator:
  2649. */
  2650. p = iterator->start(iterator->arg);
  2651. next:
  2652. if (!p || loops++ > sysctl_sched_nr_migrate)
  2653. goto out;
  2654. if ((p->se.load.weight >> 1) > rem_load_move ||
  2655. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2656. p = iterator->next(iterator->arg);
  2657. goto next;
  2658. }
  2659. pull_task(busiest, p, this_rq, this_cpu);
  2660. pulled++;
  2661. rem_load_move -= p->se.load.weight;
  2662. #ifdef CONFIG_PREEMPT
  2663. /*
  2664. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2665. * will stop after the first task is pulled to minimize the critical
  2666. * section.
  2667. */
  2668. if (idle == CPU_NEWLY_IDLE)
  2669. goto out;
  2670. #endif
  2671. /*
  2672. * We only want to steal up to the prescribed amount of weighted load.
  2673. */
  2674. if (rem_load_move > 0) {
  2675. if (p->prio < *this_best_prio)
  2676. *this_best_prio = p->prio;
  2677. p = iterator->next(iterator->arg);
  2678. goto next;
  2679. }
  2680. out:
  2681. /*
  2682. * Right now, this is one of only two places pull_task() is called,
  2683. * so we can safely collect pull_task() stats here rather than
  2684. * inside pull_task().
  2685. */
  2686. schedstat_add(sd, lb_gained[idle], pulled);
  2687. if (all_pinned)
  2688. *all_pinned = pinned;
  2689. return max_load_move - rem_load_move;
  2690. }
  2691. /*
  2692. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2693. * this_rq, as part of a balancing operation within domain "sd".
  2694. * Returns 1 if successful and 0 otherwise.
  2695. *
  2696. * Called with both runqueues locked.
  2697. */
  2698. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2699. unsigned long max_load_move,
  2700. struct sched_domain *sd, enum cpu_idle_type idle,
  2701. int *all_pinned)
  2702. {
  2703. const struct sched_class *class = sched_class_highest;
  2704. unsigned long total_load_moved = 0;
  2705. int this_best_prio = this_rq->curr->prio;
  2706. do {
  2707. total_load_moved +=
  2708. class->load_balance(this_rq, this_cpu, busiest,
  2709. max_load_move - total_load_moved,
  2710. sd, idle, all_pinned, &this_best_prio);
  2711. class = class->next;
  2712. #ifdef CONFIG_PREEMPT
  2713. /*
  2714. * NEWIDLE balancing is a source of latency, so preemptible
  2715. * kernels will stop after the first task is pulled to minimize
  2716. * the critical section.
  2717. */
  2718. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2719. break;
  2720. #endif
  2721. } while (class && max_load_move > total_load_moved);
  2722. return total_load_moved > 0;
  2723. }
  2724. static int
  2725. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2726. struct sched_domain *sd, enum cpu_idle_type idle,
  2727. struct rq_iterator *iterator)
  2728. {
  2729. struct task_struct *p = iterator->start(iterator->arg);
  2730. int pinned = 0;
  2731. while (p) {
  2732. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2733. pull_task(busiest, p, this_rq, this_cpu);
  2734. /*
  2735. * Right now, this is only the second place pull_task()
  2736. * is called, so we can safely collect pull_task()
  2737. * stats here rather than inside pull_task().
  2738. */
  2739. schedstat_inc(sd, lb_gained[idle]);
  2740. return 1;
  2741. }
  2742. p = iterator->next(iterator->arg);
  2743. }
  2744. return 0;
  2745. }
  2746. /*
  2747. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2748. * part of active balancing operations within "domain".
  2749. * Returns 1 if successful and 0 otherwise.
  2750. *
  2751. * Called with both runqueues locked.
  2752. */
  2753. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2754. struct sched_domain *sd, enum cpu_idle_type idle)
  2755. {
  2756. const struct sched_class *class;
  2757. for (class = sched_class_highest; class; class = class->next)
  2758. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2759. return 1;
  2760. return 0;
  2761. }
  2762. /********** Helpers for find_busiest_group ************************/
  2763. /*
  2764. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2765. * during load balancing.
  2766. */
  2767. struct sd_lb_stats {
  2768. struct sched_group *busiest; /* Busiest group in this sd */
  2769. struct sched_group *this; /* Local group in this sd */
  2770. unsigned long total_load; /* Total load of all groups in sd */
  2771. unsigned long total_pwr; /* Total power of all groups in sd */
  2772. unsigned long avg_load; /* Average load across all groups in sd */
  2773. /** Statistics of this group */
  2774. unsigned long this_load;
  2775. unsigned long this_load_per_task;
  2776. unsigned long this_nr_running;
  2777. /* Statistics of the busiest group */
  2778. unsigned long max_load;
  2779. unsigned long busiest_load_per_task;
  2780. unsigned long busiest_nr_running;
  2781. int group_imb; /* Is there imbalance in this sd */
  2782. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2783. int power_savings_balance; /* Is powersave balance needed for this sd */
  2784. struct sched_group *group_min; /* Least loaded group in sd */
  2785. struct sched_group *group_leader; /* Group which relieves group_min */
  2786. unsigned long min_load_per_task; /* load_per_task in group_min */
  2787. unsigned long leader_nr_running; /* Nr running of group_leader */
  2788. unsigned long min_nr_running; /* Nr running of group_min */
  2789. #endif
  2790. };
  2791. /*
  2792. * sg_lb_stats - stats of a sched_group required for load_balancing
  2793. */
  2794. struct sg_lb_stats {
  2795. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2796. unsigned long group_load; /* Total load over the CPUs of the group */
  2797. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2798. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2799. unsigned long group_capacity;
  2800. int group_imb; /* Is there an imbalance in the group ? */
  2801. };
  2802. /**
  2803. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2804. * @group: The group whose first cpu is to be returned.
  2805. */
  2806. static inline unsigned int group_first_cpu(struct sched_group *group)
  2807. {
  2808. return cpumask_first(sched_group_cpus(group));
  2809. }
  2810. /**
  2811. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2812. * @sd: The sched_domain whose load_idx is to be obtained.
  2813. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2814. */
  2815. static inline int get_sd_load_idx(struct sched_domain *sd,
  2816. enum cpu_idle_type idle)
  2817. {
  2818. int load_idx;
  2819. switch (idle) {
  2820. case CPU_NOT_IDLE:
  2821. load_idx = sd->busy_idx;
  2822. break;
  2823. case CPU_NEWLY_IDLE:
  2824. load_idx = sd->newidle_idx;
  2825. break;
  2826. default:
  2827. load_idx = sd->idle_idx;
  2828. break;
  2829. }
  2830. return load_idx;
  2831. }
  2832. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2833. /**
  2834. * init_sd_power_savings_stats - Initialize power savings statistics for
  2835. * the given sched_domain, during load balancing.
  2836. *
  2837. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2838. * @sds: Variable containing the statistics for sd.
  2839. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2840. */
  2841. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2842. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2843. {
  2844. /*
  2845. * Busy processors will not participate in power savings
  2846. * balance.
  2847. */
  2848. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2849. sds->power_savings_balance = 0;
  2850. else {
  2851. sds->power_savings_balance = 1;
  2852. sds->min_nr_running = ULONG_MAX;
  2853. sds->leader_nr_running = 0;
  2854. }
  2855. }
  2856. /**
  2857. * update_sd_power_savings_stats - Update the power saving stats for a
  2858. * sched_domain while performing load balancing.
  2859. *
  2860. * @group: sched_group belonging to the sched_domain under consideration.
  2861. * @sds: Variable containing the statistics of the sched_domain
  2862. * @local_group: Does group contain the CPU for which we're performing
  2863. * load balancing ?
  2864. * @sgs: Variable containing the statistics of the group.
  2865. */
  2866. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2867. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2868. {
  2869. if (!sds->power_savings_balance)
  2870. return;
  2871. /*
  2872. * If the local group is idle or completely loaded
  2873. * no need to do power savings balance at this domain
  2874. */
  2875. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2876. !sds->this_nr_running))
  2877. sds->power_savings_balance = 0;
  2878. /*
  2879. * If a group is already running at full capacity or idle,
  2880. * don't include that group in power savings calculations
  2881. */
  2882. if (!sds->power_savings_balance ||
  2883. sgs->sum_nr_running >= sgs->group_capacity ||
  2884. !sgs->sum_nr_running)
  2885. return;
  2886. /*
  2887. * Calculate the group which has the least non-idle load.
  2888. * This is the group from where we need to pick up the load
  2889. * for saving power
  2890. */
  2891. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2892. (sgs->sum_nr_running == sds->min_nr_running &&
  2893. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2894. sds->group_min = group;
  2895. sds->min_nr_running = sgs->sum_nr_running;
  2896. sds->min_load_per_task = sgs->sum_weighted_load /
  2897. sgs->sum_nr_running;
  2898. }
  2899. /*
  2900. * Calculate the group which is almost near its
  2901. * capacity but still has some space to pick up some load
  2902. * from other group and save more power
  2903. */
  2904. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2905. return;
  2906. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2907. (sgs->sum_nr_running == sds->leader_nr_running &&
  2908. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2909. sds->group_leader = group;
  2910. sds->leader_nr_running = sgs->sum_nr_running;
  2911. }
  2912. }
  2913. /**
  2914. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2915. * @sds: Variable containing the statistics of the sched_domain
  2916. * under consideration.
  2917. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2918. * @imbalance: Variable to store the imbalance.
  2919. *
  2920. * Description:
  2921. * Check if we have potential to perform some power-savings balance.
  2922. * If yes, set the busiest group to be the least loaded group in the
  2923. * sched_domain, so that it's CPUs can be put to idle.
  2924. *
  2925. * Returns 1 if there is potential to perform power-savings balance.
  2926. * Else returns 0.
  2927. */
  2928. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2929. int this_cpu, unsigned long *imbalance)
  2930. {
  2931. if (!sds->power_savings_balance)
  2932. return 0;
  2933. if (sds->this != sds->group_leader ||
  2934. sds->group_leader == sds->group_min)
  2935. return 0;
  2936. *imbalance = sds->min_load_per_task;
  2937. sds->busiest = sds->group_min;
  2938. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2939. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2940. group_first_cpu(sds->group_leader);
  2941. }
  2942. return 1;
  2943. }
  2944. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2945. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2946. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2947. {
  2948. return;
  2949. }
  2950. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2951. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2952. {
  2953. return;
  2954. }
  2955. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2956. int this_cpu, unsigned long *imbalance)
  2957. {
  2958. return 0;
  2959. }
  2960. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2961. /**
  2962. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2963. * @group: sched_group whose statistics are to be updated.
  2964. * @this_cpu: Cpu for which load balance is currently performed.
  2965. * @idle: Idle status of this_cpu
  2966. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2967. * @sd_idle: Idle status of the sched_domain containing group.
  2968. * @local_group: Does group contain this_cpu.
  2969. * @cpus: Set of cpus considered for load balancing.
  2970. * @balance: Should we balance.
  2971. * @sgs: variable to hold the statistics for this group.
  2972. */
  2973. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2974. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2975. int local_group, const struct cpumask *cpus,
  2976. int *balance, struct sg_lb_stats *sgs)
  2977. {
  2978. unsigned long load, max_cpu_load, min_cpu_load;
  2979. int i;
  2980. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2981. unsigned long sum_avg_load_per_task;
  2982. unsigned long avg_load_per_task;
  2983. if (local_group)
  2984. balance_cpu = group_first_cpu(group);
  2985. /* Tally up the load of all CPUs in the group */
  2986. sum_avg_load_per_task = avg_load_per_task = 0;
  2987. max_cpu_load = 0;
  2988. min_cpu_load = ~0UL;
  2989. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2990. struct rq *rq = cpu_rq(i);
  2991. if (*sd_idle && rq->nr_running)
  2992. *sd_idle = 0;
  2993. /* Bias balancing toward cpus of our domain */
  2994. if (local_group) {
  2995. if (idle_cpu(i) && !first_idle_cpu) {
  2996. first_idle_cpu = 1;
  2997. balance_cpu = i;
  2998. }
  2999. load = target_load(i, load_idx);
  3000. } else {
  3001. load = source_load(i, load_idx);
  3002. if (load > max_cpu_load)
  3003. max_cpu_load = load;
  3004. if (min_cpu_load > load)
  3005. min_cpu_load = load;
  3006. }
  3007. sgs->group_load += load;
  3008. sgs->sum_nr_running += rq->nr_running;
  3009. sgs->sum_weighted_load += weighted_cpuload(i);
  3010. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3011. }
  3012. /*
  3013. * First idle cpu or the first cpu(busiest) in this sched group
  3014. * is eligible for doing load balancing at this and above
  3015. * domains. In the newly idle case, we will allow all the cpu's
  3016. * to do the newly idle load balance.
  3017. */
  3018. if (idle != CPU_NEWLY_IDLE && local_group &&
  3019. balance_cpu != this_cpu && balance) {
  3020. *balance = 0;
  3021. return;
  3022. }
  3023. /* Adjust by relative CPU power of the group */
  3024. sgs->avg_load = sg_div_cpu_power(group,
  3025. sgs->group_load * SCHED_LOAD_SCALE);
  3026. /*
  3027. * Consider the group unbalanced when the imbalance is larger
  3028. * than the average weight of two tasks.
  3029. *
  3030. * APZ: with cgroup the avg task weight can vary wildly and
  3031. * might not be a suitable number - should we keep a
  3032. * normalized nr_running number somewhere that negates
  3033. * the hierarchy?
  3034. */
  3035. avg_load_per_task = sg_div_cpu_power(group,
  3036. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3037. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3038. sgs->group_imb = 1;
  3039. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3040. }
  3041. /**
  3042. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3043. * @sd: sched_domain whose statistics are to be updated.
  3044. * @this_cpu: Cpu for which load balance is currently performed.
  3045. * @idle: Idle status of this_cpu
  3046. * @sd_idle: Idle status of the sched_domain containing group.
  3047. * @cpus: Set of cpus considered for load balancing.
  3048. * @balance: Should we balance.
  3049. * @sds: variable to hold the statistics for this sched_domain.
  3050. */
  3051. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3052. enum cpu_idle_type idle, int *sd_idle,
  3053. const struct cpumask *cpus, int *balance,
  3054. struct sd_lb_stats *sds)
  3055. {
  3056. struct sched_group *group = sd->groups;
  3057. struct sg_lb_stats sgs;
  3058. int load_idx;
  3059. init_sd_power_savings_stats(sd, sds, idle);
  3060. load_idx = get_sd_load_idx(sd, idle);
  3061. do {
  3062. int local_group;
  3063. local_group = cpumask_test_cpu(this_cpu,
  3064. sched_group_cpus(group));
  3065. memset(&sgs, 0, sizeof(sgs));
  3066. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3067. local_group, cpus, balance, &sgs);
  3068. if (local_group && balance && !(*balance))
  3069. return;
  3070. sds->total_load += sgs.group_load;
  3071. sds->total_pwr += group->__cpu_power;
  3072. if (local_group) {
  3073. sds->this_load = sgs.avg_load;
  3074. sds->this = group;
  3075. sds->this_nr_running = sgs.sum_nr_running;
  3076. sds->this_load_per_task = sgs.sum_weighted_load;
  3077. } else if (sgs.avg_load > sds->max_load &&
  3078. (sgs.sum_nr_running > sgs.group_capacity ||
  3079. sgs.group_imb)) {
  3080. sds->max_load = sgs.avg_load;
  3081. sds->busiest = group;
  3082. sds->busiest_nr_running = sgs.sum_nr_running;
  3083. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3084. sds->group_imb = sgs.group_imb;
  3085. }
  3086. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3087. group = group->next;
  3088. } while (group != sd->groups);
  3089. }
  3090. /**
  3091. * fix_small_imbalance - Calculate the minor imbalance that exists
  3092. * amongst the groups of a sched_domain, during
  3093. * load balancing.
  3094. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3095. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3096. * @imbalance: Variable to store the imbalance.
  3097. */
  3098. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3099. int this_cpu, unsigned long *imbalance)
  3100. {
  3101. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3102. unsigned int imbn = 2;
  3103. if (sds->this_nr_running) {
  3104. sds->this_load_per_task /= sds->this_nr_running;
  3105. if (sds->busiest_load_per_task >
  3106. sds->this_load_per_task)
  3107. imbn = 1;
  3108. } else
  3109. sds->this_load_per_task =
  3110. cpu_avg_load_per_task(this_cpu);
  3111. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3112. sds->busiest_load_per_task * imbn) {
  3113. *imbalance = sds->busiest_load_per_task;
  3114. return;
  3115. }
  3116. /*
  3117. * OK, we don't have enough imbalance to justify moving tasks,
  3118. * however we may be able to increase total CPU power used by
  3119. * moving them.
  3120. */
  3121. pwr_now += sds->busiest->__cpu_power *
  3122. min(sds->busiest_load_per_task, sds->max_load);
  3123. pwr_now += sds->this->__cpu_power *
  3124. min(sds->this_load_per_task, sds->this_load);
  3125. pwr_now /= SCHED_LOAD_SCALE;
  3126. /* Amount of load we'd subtract */
  3127. tmp = sg_div_cpu_power(sds->busiest,
  3128. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3129. if (sds->max_load > tmp)
  3130. pwr_move += sds->busiest->__cpu_power *
  3131. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3132. /* Amount of load we'd add */
  3133. if (sds->max_load * sds->busiest->__cpu_power <
  3134. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3135. tmp = sg_div_cpu_power(sds->this,
  3136. sds->max_load * sds->busiest->__cpu_power);
  3137. else
  3138. tmp = sg_div_cpu_power(sds->this,
  3139. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3140. pwr_move += sds->this->__cpu_power *
  3141. min(sds->this_load_per_task, sds->this_load + tmp);
  3142. pwr_move /= SCHED_LOAD_SCALE;
  3143. /* Move if we gain throughput */
  3144. if (pwr_move > pwr_now)
  3145. *imbalance = sds->busiest_load_per_task;
  3146. }
  3147. /**
  3148. * calculate_imbalance - Calculate the amount of imbalance present within the
  3149. * groups of a given sched_domain during load balance.
  3150. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3151. * @this_cpu: Cpu for which currently load balance is being performed.
  3152. * @imbalance: The variable to store the imbalance.
  3153. */
  3154. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3155. unsigned long *imbalance)
  3156. {
  3157. unsigned long max_pull;
  3158. /*
  3159. * In the presence of smp nice balancing, certain scenarios can have
  3160. * max load less than avg load(as we skip the groups at or below
  3161. * its cpu_power, while calculating max_load..)
  3162. */
  3163. if (sds->max_load < sds->avg_load) {
  3164. *imbalance = 0;
  3165. return fix_small_imbalance(sds, this_cpu, imbalance);
  3166. }
  3167. /* Don't want to pull so many tasks that a group would go idle */
  3168. max_pull = min(sds->max_load - sds->avg_load,
  3169. sds->max_load - sds->busiest_load_per_task);
  3170. /* How much load to actually move to equalise the imbalance */
  3171. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3172. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3173. / SCHED_LOAD_SCALE;
  3174. /*
  3175. * if *imbalance is less than the average load per runnable task
  3176. * there is no gaurantee that any tasks will be moved so we'll have
  3177. * a think about bumping its value to force at least one task to be
  3178. * moved
  3179. */
  3180. if (*imbalance < sds->busiest_load_per_task)
  3181. return fix_small_imbalance(sds, this_cpu, imbalance);
  3182. }
  3183. /******* find_busiest_group() helpers end here *********************/
  3184. /**
  3185. * find_busiest_group - Returns the busiest group within the sched_domain
  3186. * if there is an imbalance. If there isn't an imbalance, and
  3187. * the user has opted for power-savings, it returns a group whose
  3188. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3189. * such a group exists.
  3190. *
  3191. * Also calculates the amount of weighted load which should be moved
  3192. * to restore balance.
  3193. *
  3194. * @sd: The sched_domain whose busiest group is to be returned.
  3195. * @this_cpu: The cpu for which load balancing is currently being performed.
  3196. * @imbalance: Variable which stores amount of weighted load which should
  3197. * be moved to restore balance/put a group to idle.
  3198. * @idle: The idle status of this_cpu.
  3199. * @sd_idle: The idleness of sd
  3200. * @cpus: The set of CPUs under consideration for load-balancing.
  3201. * @balance: Pointer to a variable indicating if this_cpu
  3202. * is the appropriate cpu to perform load balancing at this_level.
  3203. *
  3204. * Returns: - the busiest group if imbalance exists.
  3205. * - If no imbalance and user has opted for power-savings balance,
  3206. * return the least loaded group whose CPUs can be
  3207. * put to idle by rebalancing its tasks onto our group.
  3208. */
  3209. static struct sched_group *
  3210. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3211. unsigned long *imbalance, enum cpu_idle_type idle,
  3212. int *sd_idle, const struct cpumask *cpus, int *balance)
  3213. {
  3214. struct sd_lb_stats sds;
  3215. memset(&sds, 0, sizeof(sds));
  3216. /*
  3217. * Compute the various statistics relavent for load balancing at
  3218. * this level.
  3219. */
  3220. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3221. balance, &sds);
  3222. /* Cases where imbalance does not exist from POV of this_cpu */
  3223. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3224. * at this level.
  3225. * 2) There is no busy sibling group to pull from.
  3226. * 3) This group is the busiest group.
  3227. * 4) This group is more busy than the avg busieness at this
  3228. * sched_domain.
  3229. * 5) The imbalance is within the specified limit.
  3230. * 6) Any rebalance would lead to ping-pong
  3231. */
  3232. if (balance && !(*balance))
  3233. goto ret;
  3234. if (!sds.busiest || sds.busiest_nr_running == 0)
  3235. goto out_balanced;
  3236. if (sds.this_load >= sds.max_load)
  3237. goto out_balanced;
  3238. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3239. if (sds.this_load >= sds.avg_load)
  3240. goto out_balanced;
  3241. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3242. goto out_balanced;
  3243. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3244. if (sds.group_imb)
  3245. sds.busiest_load_per_task =
  3246. min(sds.busiest_load_per_task, sds.avg_load);
  3247. /*
  3248. * We're trying to get all the cpus to the average_load, so we don't
  3249. * want to push ourselves above the average load, nor do we wish to
  3250. * reduce the max loaded cpu below the average load, as either of these
  3251. * actions would just result in more rebalancing later, and ping-pong
  3252. * tasks around. Thus we look for the minimum possible imbalance.
  3253. * Negative imbalances (*we* are more loaded than anyone else) will
  3254. * be counted as no imbalance for these purposes -- we can't fix that
  3255. * by pulling tasks to us. Be careful of negative numbers as they'll
  3256. * appear as very large values with unsigned longs.
  3257. */
  3258. if (sds.max_load <= sds.busiest_load_per_task)
  3259. goto out_balanced;
  3260. /* Looks like there is an imbalance. Compute it */
  3261. calculate_imbalance(&sds, this_cpu, imbalance);
  3262. return sds.busiest;
  3263. out_balanced:
  3264. /*
  3265. * There is no obvious imbalance. But check if we can do some balancing
  3266. * to save power.
  3267. */
  3268. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3269. return sds.busiest;
  3270. ret:
  3271. *imbalance = 0;
  3272. return NULL;
  3273. }
  3274. /*
  3275. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3276. */
  3277. static struct rq *
  3278. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3279. unsigned long imbalance, const struct cpumask *cpus)
  3280. {
  3281. struct rq *busiest = NULL, *rq;
  3282. unsigned long max_load = 0;
  3283. int i;
  3284. for_each_cpu(i, sched_group_cpus(group)) {
  3285. unsigned long wl;
  3286. if (!cpumask_test_cpu(i, cpus))
  3287. continue;
  3288. rq = cpu_rq(i);
  3289. wl = weighted_cpuload(i);
  3290. if (rq->nr_running == 1 && wl > imbalance)
  3291. continue;
  3292. if (wl > max_load) {
  3293. max_load = wl;
  3294. busiest = rq;
  3295. }
  3296. }
  3297. return busiest;
  3298. }
  3299. /*
  3300. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3301. * so long as it is large enough.
  3302. */
  3303. #define MAX_PINNED_INTERVAL 512
  3304. /* Working cpumask for load_balance and load_balance_newidle. */
  3305. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3306. /*
  3307. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3308. * tasks if there is an imbalance.
  3309. */
  3310. static int load_balance(int this_cpu, struct rq *this_rq,
  3311. struct sched_domain *sd, enum cpu_idle_type idle,
  3312. int *balance)
  3313. {
  3314. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3315. struct sched_group *group;
  3316. unsigned long imbalance;
  3317. struct rq *busiest;
  3318. unsigned long flags;
  3319. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3320. cpumask_setall(cpus);
  3321. /*
  3322. * When power savings policy is enabled for the parent domain, idle
  3323. * sibling can pick up load irrespective of busy siblings. In this case,
  3324. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3325. * portraying it as CPU_NOT_IDLE.
  3326. */
  3327. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3328. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3329. sd_idle = 1;
  3330. schedstat_inc(sd, lb_count[idle]);
  3331. redo:
  3332. update_shares(sd);
  3333. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3334. cpus, balance);
  3335. if (*balance == 0)
  3336. goto out_balanced;
  3337. if (!group) {
  3338. schedstat_inc(sd, lb_nobusyg[idle]);
  3339. goto out_balanced;
  3340. }
  3341. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3342. if (!busiest) {
  3343. schedstat_inc(sd, lb_nobusyq[idle]);
  3344. goto out_balanced;
  3345. }
  3346. BUG_ON(busiest == this_rq);
  3347. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3348. ld_moved = 0;
  3349. if (busiest->nr_running > 1) {
  3350. /*
  3351. * Attempt to move tasks. If find_busiest_group has found
  3352. * an imbalance but busiest->nr_running <= 1, the group is
  3353. * still unbalanced. ld_moved simply stays zero, so it is
  3354. * correctly treated as an imbalance.
  3355. */
  3356. local_irq_save(flags);
  3357. double_rq_lock(this_rq, busiest);
  3358. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3359. imbalance, sd, idle, &all_pinned);
  3360. double_rq_unlock(this_rq, busiest);
  3361. local_irq_restore(flags);
  3362. /*
  3363. * some other cpu did the load balance for us.
  3364. */
  3365. if (ld_moved && this_cpu != smp_processor_id())
  3366. resched_cpu(this_cpu);
  3367. /* All tasks on this runqueue were pinned by CPU affinity */
  3368. if (unlikely(all_pinned)) {
  3369. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3370. if (!cpumask_empty(cpus))
  3371. goto redo;
  3372. goto out_balanced;
  3373. }
  3374. }
  3375. if (!ld_moved) {
  3376. schedstat_inc(sd, lb_failed[idle]);
  3377. sd->nr_balance_failed++;
  3378. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3379. spin_lock_irqsave(&busiest->lock, flags);
  3380. /* don't kick the migration_thread, if the curr
  3381. * task on busiest cpu can't be moved to this_cpu
  3382. */
  3383. if (!cpumask_test_cpu(this_cpu,
  3384. &busiest->curr->cpus_allowed)) {
  3385. spin_unlock_irqrestore(&busiest->lock, flags);
  3386. all_pinned = 1;
  3387. goto out_one_pinned;
  3388. }
  3389. if (!busiest->active_balance) {
  3390. busiest->active_balance = 1;
  3391. busiest->push_cpu = this_cpu;
  3392. active_balance = 1;
  3393. }
  3394. spin_unlock_irqrestore(&busiest->lock, flags);
  3395. if (active_balance)
  3396. wake_up_process(busiest->migration_thread);
  3397. /*
  3398. * We've kicked active balancing, reset the failure
  3399. * counter.
  3400. */
  3401. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3402. }
  3403. } else
  3404. sd->nr_balance_failed = 0;
  3405. if (likely(!active_balance)) {
  3406. /* We were unbalanced, so reset the balancing interval */
  3407. sd->balance_interval = sd->min_interval;
  3408. } else {
  3409. /*
  3410. * If we've begun active balancing, start to back off. This
  3411. * case may not be covered by the all_pinned logic if there
  3412. * is only 1 task on the busy runqueue (because we don't call
  3413. * move_tasks).
  3414. */
  3415. if (sd->balance_interval < sd->max_interval)
  3416. sd->balance_interval *= 2;
  3417. }
  3418. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3419. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3420. ld_moved = -1;
  3421. goto out;
  3422. out_balanced:
  3423. schedstat_inc(sd, lb_balanced[idle]);
  3424. sd->nr_balance_failed = 0;
  3425. out_one_pinned:
  3426. /* tune up the balancing interval */
  3427. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3428. (sd->balance_interval < sd->max_interval))
  3429. sd->balance_interval *= 2;
  3430. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3431. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3432. ld_moved = -1;
  3433. else
  3434. ld_moved = 0;
  3435. out:
  3436. if (ld_moved)
  3437. update_shares(sd);
  3438. return ld_moved;
  3439. }
  3440. /*
  3441. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3442. * tasks if there is an imbalance.
  3443. *
  3444. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3445. * this_rq is locked.
  3446. */
  3447. static int
  3448. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3449. {
  3450. struct sched_group *group;
  3451. struct rq *busiest = NULL;
  3452. unsigned long imbalance;
  3453. int ld_moved = 0;
  3454. int sd_idle = 0;
  3455. int all_pinned = 0;
  3456. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3457. cpumask_setall(cpus);
  3458. /*
  3459. * When power savings policy is enabled for the parent domain, idle
  3460. * sibling can pick up load irrespective of busy siblings. In this case,
  3461. * let the state of idle sibling percolate up as IDLE, instead of
  3462. * portraying it as CPU_NOT_IDLE.
  3463. */
  3464. if (sd->flags & SD_SHARE_CPUPOWER &&
  3465. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3466. sd_idle = 1;
  3467. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3468. redo:
  3469. update_shares_locked(this_rq, sd);
  3470. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3471. &sd_idle, cpus, NULL);
  3472. if (!group) {
  3473. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3474. goto out_balanced;
  3475. }
  3476. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3477. if (!busiest) {
  3478. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3479. goto out_balanced;
  3480. }
  3481. BUG_ON(busiest == this_rq);
  3482. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3483. ld_moved = 0;
  3484. if (busiest->nr_running > 1) {
  3485. /* Attempt to move tasks */
  3486. double_lock_balance(this_rq, busiest);
  3487. /* this_rq->clock is already updated */
  3488. update_rq_clock(busiest);
  3489. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3490. imbalance, sd, CPU_NEWLY_IDLE,
  3491. &all_pinned);
  3492. double_unlock_balance(this_rq, busiest);
  3493. if (unlikely(all_pinned)) {
  3494. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3495. if (!cpumask_empty(cpus))
  3496. goto redo;
  3497. }
  3498. }
  3499. if (!ld_moved) {
  3500. int active_balance = 0;
  3501. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3502. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3503. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3504. return -1;
  3505. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3506. return -1;
  3507. if (sd->nr_balance_failed++ < 2)
  3508. return -1;
  3509. /*
  3510. * The only task running in a non-idle cpu can be moved to this
  3511. * cpu in an attempt to completely freeup the other CPU
  3512. * package. The same method used to move task in load_balance()
  3513. * have been extended for load_balance_newidle() to speedup
  3514. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3515. *
  3516. * The package power saving logic comes from
  3517. * find_busiest_group(). If there are no imbalance, then
  3518. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3519. * f_b_g() will select a group from which a running task may be
  3520. * pulled to this cpu in order to make the other package idle.
  3521. * If there is no opportunity to make a package idle and if
  3522. * there are no imbalance, then f_b_g() will return NULL and no
  3523. * action will be taken in load_balance_newidle().
  3524. *
  3525. * Under normal task pull operation due to imbalance, there
  3526. * will be more than one task in the source run queue and
  3527. * move_tasks() will succeed. ld_moved will be true and this
  3528. * active balance code will not be triggered.
  3529. */
  3530. /* Lock busiest in correct order while this_rq is held */
  3531. double_lock_balance(this_rq, busiest);
  3532. /*
  3533. * don't kick the migration_thread, if the curr
  3534. * task on busiest cpu can't be moved to this_cpu
  3535. */
  3536. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3537. double_unlock_balance(this_rq, busiest);
  3538. all_pinned = 1;
  3539. return ld_moved;
  3540. }
  3541. if (!busiest->active_balance) {
  3542. busiest->active_balance = 1;
  3543. busiest->push_cpu = this_cpu;
  3544. active_balance = 1;
  3545. }
  3546. double_unlock_balance(this_rq, busiest);
  3547. /*
  3548. * Should not call ttwu while holding a rq->lock
  3549. */
  3550. spin_unlock(&this_rq->lock);
  3551. if (active_balance)
  3552. wake_up_process(busiest->migration_thread);
  3553. spin_lock(&this_rq->lock);
  3554. } else
  3555. sd->nr_balance_failed = 0;
  3556. update_shares_locked(this_rq, sd);
  3557. return ld_moved;
  3558. out_balanced:
  3559. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3560. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3561. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3562. return -1;
  3563. sd->nr_balance_failed = 0;
  3564. return 0;
  3565. }
  3566. /*
  3567. * idle_balance is called by schedule() if this_cpu is about to become
  3568. * idle. Attempts to pull tasks from other CPUs.
  3569. */
  3570. static void idle_balance(int this_cpu, struct rq *this_rq)
  3571. {
  3572. struct sched_domain *sd;
  3573. int pulled_task = 0;
  3574. unsigned long next_balance = jiffies + HZ;
  3575. for_each_domain(this_cpu, sd) {
  3576. unsigned long interval;
  3577. if (!(sd->flags & SD_LOAD_BALANCE))
  3578. continue;
  3579. if (sd->flags & SD_BALANCE_NEWIDLE)
  3580. /* If we've pulled tasks over stop searching: */
  3581. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3582. sd);
  3583. interval = msecs_to_jiffies(sd->balance_interval);
  3584. if (time_after(next_balance, sd->last_balance + interval))
  3585. next_balance = sd->last_balance + interval;
  3586. if (pulled_task)
  3587. break;
  3588. }
  3589. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3590. /*
  3591. * We are going idle. next_balance may be set based on
  3592. * a busy processor. So reset next_balance.
  3593. */
  3594. this_rq->next_balance = next_balance;
  3595. }
  3596. }
  3597. /*
  3598. * active_load_balance is run by migration threads. It pushes running tasks
  3599. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3600. * running on each physical CPU where possible, and avoids physical /
  3601. * logical imbalances.
  3602. *
  3603. * Called with busiest_rq locked.
  3604. */
  3605. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3606. {
  3607. int target_cpu = busiest_rq->push_cpu;
  3608. struct sched_domain *sd;
  3609. struct rq *target_rq;
  3610. /* Is there any task to move? */
  3611. if (busiest_rq->nr_running <= 1)
  3612. return;
  3613. target_rq = cpu_rq(target_cpu);
  3614. /*
  3615. * This condition is "impossible", if it occurs
  3616. * we need to fix it. Originally reported by
  3617. * Bjorn Helgaas on a 128-cpu setup.
  3618. */
  3619. BUG_ON(busiest_rq == target_rq);
  3620. /* move a task from busiest_rq to target_rq */
  3621. double_lock_balance(busiest_rq, target_rq);
  3622. update_rq_clock(busiest_rq);
  3623. update_rq_clock(target_rq);
  3624. /* Search for an sd spanning us and the target CPU. */
  3625. for_each_domain(target_cpu, sd) {
  3626. if ((sd->flags & SD_LOAD_BALANCE) &&
  3627. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3628. break;
  3629. }
  3630. if (likely(sd)) {
  3631. schedstat_inc(sd, alb_count);
  3632. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3633. sd, CPU_IDLE))
  3634. schedstat_inc(sd, alb_pushed);
  3635. else
  3636. schedstat_inc(sd, alb_failed);
  3637. }
  3638. double_unlock_balance(busiest_rq, target_rq);
  3639. }
  3640. #ifdef CONFIG_NO_HZ
  3641. static struct {
  3642. atomic_t load_balancer;
  3643. cpumask_var_t cpu_mask;
  3644. } nohz ____cacheline_aligned = {
  3645. .load_balancer = ATOMIC_INIT(-1),
  3646. };
  3647. /*
  3648. * This routine will try to nominate the ilb (idle load balancing)
  3649. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3650. * load balancing on behalf of all those cpus. If all the cpus in the system
  3651. * go into this tickless mode, then there will be no ilb owner (as there is
  3652. * no need for one) and all the cpus will sleep till the next wakeup event
  3653. * arrives...
  3654. *
  3655. * For the ilb owner, tick is not stopped. And this tick will be used
  3656. * for idle load balancing. ilb owner will still be part of
  3657. * nohz.cpu_mask..
  3658. *
  3659. * While stopping the tick, this cpu will become the ilb owner if there
  3660. * is no other owner. And will be the owner till that cpu becomes busy
  3661. * or if all cpus in the system stop their ticks at which point
  3662. * there is no need for ilb owner.
  3663. *
  3664. * When the ilb owner becomes busy, it nominates another owner, during the
  3665. * next busy scheduler_tick()
  3666. */
  3667. int select_nohz_load_balancer(int stop_tick)
  3668. {
  3669. int cpu = smp_processor_id();
  3670. if (stop_tick) {
  3671. cpu_rq(cpu)->in_nohz_recently = 1;
  3672. if (!cpu_active(cpu)) {
  3673. if (atomic_read(&nohz.load_balancer) != cpu)
  3674. return 0;
  3675. /*
  3676. * If we are going offline and still the leader,
  3677. * give up!
  3678. */
  3679. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3680. BUG();
  3681. return 0;
  3682. }
  3683. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3684. /* time for ilb owner also to sleep */
  3685. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3686. if (atomic_read(&nohz.load_balancer) == cpu)
  3687. atomic_set(&nohz.load_balancer, -1);
  3688. return 0;
  3689. }
  3690. if (atomic_read(&nohz.load_balancer) == -1) {
  3691. /* make me the ilb owner */
  3692. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3693. return 1;
  3694. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3695. return 1;
  3696. } else {
  3697. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3698. return 0;
  3699. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3700. if (atomic_read(&nohz.load_balancer) == cpu)
  3701. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3702. BUG();
  3703. }
  3704. return 0;
  3705. }
  3706. #endif
  3707. static DEFINE_SPINLOCK(balancing);
  3708. /*
  3709. * It checks each scheduling domain to see if it is due to be balanced,
  3710. * and initiates a balancing operation if so.
  3711. *
  3712. * Balancing parameters are set up in arch_init_sched_domains.
  3713. */
  3714. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3715. {
  3716. int balance = 1;
  3717. struct rq *rq = cpu_rq(cpu);
  3718. unsigned long interval;
  3719. struct sched_domain *sd;
  3720. /* Earliest time when we have to do rebalance again */
  3721. unsigned long next_balance = jiffies + 60*HZ;
  3722. int update_next_balance = 0;
  3723. int need_serialize;
  3724. for_each_domain(cpu, sd) {
  3725. if (!(sd->flags & SD_LOAD_BALANCE))
  3726. continue;
  3727. interval = sd->balance_interval;
  3728. if (idle != CPU_IDLE)
  3729. interval *= sd->busy_factor;
  3730. /* scale ms to jiffies */
  3731. interval = msecs_to_jiffies(interval);
  3732. if (unlikely(!interval))
  3733. interval = 1;
  3734. if (interval > HZ*NR_CPUS/10)
  3735. interval = HZ*NR_CPUS/10;
  3736. need_serialize = sd->flags & SD_SERIALIZE;
  3737. if (need_serialize) {
  3738. if (!spin_trylock(&balancing))
  3739. goto out;
  3740. }
  3741. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3742. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3743. /*
  3744. * We've pulled tasks over so either we're no
  3745. * longer idle, or one of our SMT siblings is
  3746. * not idle.
  3747. */
  3748. idle = CPU_NOT_IDLE;
  3749. }
  3750. sd->last_balance = jiffies;
  3751. }
  3752. if (need_serialize)
  3753. spin_unlock(&balancing);
  3754. out:
  3755. if (time_after(next_balance, sd->last_balance + interval)) {
  3756. next_balance = sd->last_balance + interval;
  3757. update_next_balance = 1;
  3758. }
  3759. /*
  3760. * Stop the load balance at this level. There is another
  3761. * CPU in our sched group which is doing load balancing more
  3762. * actively.
  3763. */
  3764. if (!balance)
  3765. break;
  3766. }
  3767. /*
  3768. * next_balance will be updated only when there is a need.
  3769. * When the cpu is attached to null domain for ex, it will not be
  3770. * updated.
  3771. */
  3772. if (likely(update_next_balance))
  3773. rq->next_balance = next_balance;
  3774. }
  3775. /*
  3776. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3777. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3778. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3779. */
  3780. static void run_rebalance_domains(struct softirq_action *h)
  3781. {
  3782. int this_cpu = smp_processor_id();
  3783. struct rq *this_rq = cpu_rq(this_cpu);
  3784. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3785. CPU_IDLE : CPU_NOT_IDLE;
  3786. rebalance_domains(this_cpu, idle);
  3787. #ifdef CONFIG_NO_HZ
  3788. /*
  3789. * If this cpu is the owner for idle load balancing, then do the
  3790. * balancing on behalf of the other idle cpus whose ticks are
  3791. * stopped.
  3792. */
  3793. if (this_rq->idle_at_tick &&
  3794. atomic_read(&nohz.load_balancer) == this_cpu) {
  3795. struct rq *rq;
  3796. int balance_cpu;
  3797. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3798. if (balance_cpu == this_cpu)
  3799. continue;
  3800. /*
  3801. * If this cpu gets work to do, stop the load balancing
  3802. * work being done for other cpus. Next load
  3803. * balancing owner will pick it up.
  3804. */
  3805. if (need_resched())
  3806. break;
  3807. rebalance_domains(balance_cpu, CPU_IDLE);
  3808. rq = cpu_rq(balance_cpu);
  3809. if (time_after(this_rq->next_balance, rq->next_balance))
  3810. this_rq->next_balance = rq->next_balance;
  3811. }
  3812. }
  3813. #endif
  3814. }
  3815. static inline int on_null_domain(int cpu)
  3816. {
  3817. return !rcu_dereference(cpu_rq(cpu)->sd);
  3818. }
  3819. /*
  3820. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3821. *
  3822. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3823. * idle load balancing owner or decide to stop the periodic load balancing,
  3824. * if the whole system is idle.
  3825. */
  3826. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3827. {
  3828. #ifdef CONFIG_NO_HZ
  3829. /*
  3830. * If we were in the nohz mode recently and busy at the current
  3831. * scheduler tick, then check if we need to nominate new idle
  3832. * load balancer.
  3833. */
  3834. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3835. rq->in_nohz_recently = 0;
  3836. if (atomic_read(&nohz.load_balancer) == cpu) {
  3837. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3838. atomic_set(&nohz.load_balancer, -1);
  3839. }
  3840. if (atomic_read(&nohz.load_balancer) == -1) {
  3841. /*
  3842. * simple selection for now: Nominate the
  3843. * first cpu in the nohz list to be the next
  3844. * ilb owner.
  3845. *
  3846. * TBD: Traverse the sched domains and nominate
  3847. * the nearest cpu in the nohz.cpu_mask.
  3848. */
  3849. int ilb = cpumask_first(nohz.cpu_mask);
  3850. if (ilb < nr_cpu_ids)
  3851. resched_cpu(ilb);
  3852. }
  3853. }
  3854. /*
  3855. * If this cpu is idle and doing idle load balancing for all the
  3856. * cpus with ticks stopped, is it time for that to stop?
  3857. */
  3858. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3859. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3860. resched_cpu(cpu);
  3861. return;
  3862. }
  3863. /*
  3864. * If this cpu is idle and the idle load balancing is done by
  3865. * someone else, then no need raise the SCHED_SOFTIRQ
  3866. */
  3867. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3868. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3869. return;
  3870. #endif
  3871. /* Don't need to rebalance while attached to NULL domain */
  3872. if (time_after_eq(jiffies, rq->next_balance) &&
  3873. likely(!on_null_domain(cpu)))
  3874. raise_softirq(SCHED_SOFTIRQ);
  3875. }
  3876. #else /* CONFIG_SMP */
  3877. /*
  3878. * on UP we do not need to balance between CPUs:
  3879. */
  3880. static inline void idle_balance(int cpu, struct rq *rq)
  3881. {
  3882. }
  3883. #endif
  3884. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3885. EXPORT_PER_CPU_SYMBOL(kstat);
  3886. /*
  3887. * Return any ns on the sched_clock that have not yet been accounted in
  3888. * @p in case that task is currently running.
  3889. *
  3890. * Called with task_rq_lock() held on @rq.
  3891. */
  3892. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3893. {
  3894. u64 ns = 0;
  3895. if (task_current(rq, p)) {
  3896. update_rq_clock(rq);
  3897. ns = rq->clock - p->se.exec_start;
  3898. if ((s64)ns < 0)
  3899. ns = 0;
  3900. }
  3901. return ns;
  3902. }
  3903. unsigned long long task_delta_exec(struct task_struct *p)
  3904. {
  3905. unsigned long flags;
  3906. struct rq *rq;
  3907. u64 ns = 0;
  3908. rq = task_rq_lock(p, &flags);
  3909. ns = do_task_delta_exec(p, rq);
  3910. task_rq_unlock(rq, &flags);
  3911. return ns;
  3912. }
  3913. /*
  3914. * Return accounted runtime for the task.
  3915. * In case the task is currently running, return the runtime plus current's
  3916. * pending runtime that have not been accounted yet.
  3917. */
  3918. unsigned long long task_sched_runtime(struct task_struct *p)
  3919. {
  3920. unsigned long flags;
  3921. struct rq *rq;
  3922. u64 ns = 0;
  3923. rq = task_rq_lock(p, &flags);
  3924. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3925. task_rq_unlock(rq, &flags);
  3926. return ns;
  3927. }
  3928. /*
  3929. * Return sum_exec_runtime for the thread group.
  3930. * In case the task is currently running, return the sum plus current's
  3931. * pending runtime that have not been accounted yet.
  3932. *
  3933. * Note that the thread group might have other running tasks as well,
  3934. * so the return value not includes other pending runtime that other
  3935. * running tasks might have.
  3936. */
  3937. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3938. {
  3939. struct task_cputime totals;
  3940. unsigned long flags;
  3941. struct rq *rq;
  3942. u64 ns;
  3943. rq = task_rq_lock(p, &flags);
  3944. thread_group_cputime(p, &totals);
  3945. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3946. task_rq_unlock(rq, &flags);
  3947. return ns;
  3948. }
  3949. /*
  3950. * Account user cpu time to a process.
  3951. * @p: the process that the cpu time gets accounted to
  3952. * @cputime: the cpu time spent in user space since the last update
  3953. * @cputime_scaled: cputime scaled by cpu frequency
  3954. */
  3955. void account_user_time(struct task_struct *p, cputime_t cputime,
  3956. cputime_t cputime_scaled)
  3957. {
  3958. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3959. cputime64_t tmp;
  3960. /* Add user time to process. */
  3961. p->utime = cputime_add(p->utime, cputime);
  3962. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3963. account_group_user_time(p, cputime);
  3964. /* Add user time to cpustat. */
  3965. tmp = cputime_to_cputime64(cputime);
  3966. if (TASK_NICE(p) > 0)
  3967. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3968. else
  3969. cpustat->user = cputime64_add(cpustat->user, tmp);
  3970. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3971. /* Account for user time used */
  3972. acct_update_integrals(p);
  3973. }
  3974. /*
  3975. * Account guest cpu time to a process.
  3976. * @p: the process that the cpu time gets accounted to
  3977. * @cputime: the cpu time spent in virtual machine since the last update
  3978. * @cputime_scaled: cputime scaled by cpu frequency
  3979. */
  3980. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3981. cputime_t cputime_scaled)
  3982. {
  3983. cputime64_t tmp;
  3984. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3985. tmp = cputime_to_cputime64(cputime);
  3986. /* Add guest time to process. */
  3987. p->utime = cputime_add(p->utime, cputime);
  3988. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3989. account_group_user_time(p, cputime);
  3990. p->gtime = cputime_add(p->gtime, cputime);
  3991. /* Add guest time to cpustat. */
  3992. cpustat->user = cputime64_add(cpustat->user, tmp);
  3993. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3994. }
  3995. /*
  3996. * Account system cpu time to a process.
  3997. * @p: the process that the cpu time gets accounted to
  3998. * @hardirq_offset: the offset to subtract from hardirq_count()
  3999. * @cputime: the cpu time spent in kernel space since the last update
  4000. * @cputime_scaled: cputime scaled by cpu frequency
  4001. */
  4002. void account_system_time(struct task_struct *p, int hardirq_offset,
  4003. cputime_t cputime, cputime_t cputime_scaled)
  4004. {
  4005. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4006. cputime64_t tmp;
  4007. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4008. account_guest_time(p, cputime, cputime_scaled);
  4009. return;
  4010. }
  4011. /* Add system time to process. */
  4012. p->stime = cputime_add(p->stime, cputime);
  4013. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4014. account_group_system_time(p, cputime);
  4015. /* Add system time to cpustat. */
  4016. tmp = cputime_to_cputime64(cputime);
  4017. if (hardirq_count() - hardirq_offset)
  4018. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4019. else if (softirq_count())
  4020. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4021. else
  4022. cpustat->system = cputime64_add(cpustat->system, tmp);
  4023. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4024. /* Account for system time used */
  4025. acct_update_integrals(p);
  4026. }
  4027. /*
  4028. * Account for involuntary wait time.
  4029. * @steal: the cpu time spent in involuntary wait
  4030. */
  4031. void account_steal_time(cputime_t cputime)
  4032. {
  4033. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4034. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4035. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4036. }
  4037. /*
  4038. * Account for idle time.
  4039. * @cputime: the cpu time spent in idle wait
  4040. */
  4041. void account_idle_time(cputime_t cputime)
  4042. {
  4043. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4044. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4045. struct rq *rq = this_rq();
  4046. if (atomic_read(&rq->nr_iowait) > 0)
  4047. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4048. else
  4049. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4050. }
  4051. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4052. /*
  4053. * Account a single tick of cpu time.
  4054. * @p: the process that the cpu time gets accounted to
  4055. * @user_tick: indicates if the tick is a user or a system tick
  4056. */
  4057. void account_process_tick(struct task_struct *p, int user_tick)
  4058. {
  4059. cputime_t one_jiffy = jiffies_to_cputime(1);
  4060. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4061. struct rq *rq = this_rq();
  4062. if (user_tick)
  4063. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4064. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4065. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4066. one_jiffy_scaled);
  4067. else
  4068. account_idle_time(one_jiffy);
  4069. }
  4070. /*
  4071. * Account multiple ticks of steal time.
  4072. * @p: the process from which the cpu time has been stolen
  4073. * @ticks: number of stolen ticks
  4074. */
  4075. void account_steal_ticks(unsigned long ticks)
  4076. {
  4077. account_steal_time(jiffies_to_cputime(ticks));
  4078. }
  4079. /*
  4080. * Account multiple ticks of idle time.
  4081. * @ticks: number of stolen ticks
  4082. */
  4083. void account_idle_ticks(unsigned long ticks)
  4084. {
  4085. account_idle_time(jiffies_to_cputime(ticks));
  4086. }
  4087. #endif
  4088. /*
  4089. * Use precise platform statistics if available:
  4090. */
  4091. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4092. cputime_t task_utime(struct task_struct *p)
  4093. {
  4094. return p->utime;
  4095. }
  4096. cputime_t task_stime(struct task_struct *p)
  4097. {
  4098. return p->stime;
  4099. }
  4100. #else
  4101. cputime_t task_utime(struct task_struct *p)
  4102. {
  4103. clock_t utime = cputime_to_clock_t(p->utime),
  4104. total = utime + cputime_to_clock_t(p->stime);
  4105. u64 temp;
  4106. /*
  4107. * Use CFS's precise accounting:
  4108. */
  4109. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4110. if (total) {
  4111. temp *= utime;
  4112. do_div(temp, total);
  4113. }
  4114. utime = (clock_t)temp;
  4115. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4116. return p->prev_utime;
  4117. }
  4118. cputime_t task_stime(struct task_struct *p)
  4119. {
  4120. clock_t stime;
  4121. /*
  4122. * Use CFS's precise accounting. (we subtract utime from
  4123. * the total, to make sure the total observed by userspace
  4124. * grows monotonically - apps rely on that):
  4125. */
  4126. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4127. cputime_to_clock_t(task_utime(p));
  4128. if (stime >= 0)
  4129. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4130. return p->prev_stime;
  4131. }
  4132. #endif
  4133. inline cputime_t task_gtime(struct task_struct *p)
  4134. {
  4135. return p->gtime;
  4136. }
  4137. /*
  4138. * This function gets called by the timer code, with HZ frequency.
  4139. * We call it with interrupts disabled.
  4140. *
  4141. * It also gets called by the fork code, when changing the parent's
  4142. * timeslices.
  4143. */
  4144. void scheduler_tick(void)
  4145. {
  4146. int cpu = smp_processor_id();
  4147. struct rq *rq = cpu_rq(cpu);
  4148. struct task_struct *curr = rq->curr;
  4149. sched_clock_tick();
  4150. spin_lock(&rq->lock);
  4151. update_rq_clock(rq);
  4152. update_cpu_load(rq);
  4153. curr->sched_class->task_tick(rq, curr, 0);
  4154. spin_unlock(&rq->lock);
  4155. perf_counter_task_tick(curr, cpu);
  4156. #ifdef CONFIG_SMP
  4157. rq->idle_at_tick = idle_cpu(cpu);
  4158. trigger_load_balance(rq, cpu);
  4159. #endif
  4160. }
  4161. notrace unsigned long get_parent_ip(unsigned long addr)
  4162. {
  4163. if (in_lock_functions(addr)) {
  4164. addr = CALLER_ADDR2;
  4165. if (in_lock_functions(addr))
  4166. addr = CALLER_ADDR3;
  4167. }
  4168. return addr;
  4169. }
  4170. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4171. defined(CONFIG_PREEMPT_TRACER))
  4172. void __kprobes add_preempt_count(int val)
  4173. {
  4174. #ifdef CONFIG_DEBUG_PREEMPT
  4175. /*
  4176. * Underflow?
  4177. */
  4178. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4179. return;
  4180. #endif
  4181. preempt_count() += val;
  4182. #ifdef CONFIG_DEBUG_PREEMPT
  4183. /*
  4184. * Spinlock count overflowing soon?
  4185. */
  4186. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4187. PREEMPT_MASK - 10);
  4188. #endif
  4189. if (preempt_count() == val)
  4190. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4191. }
  4192. EXPORT_SYMBOL(add_preempt_count);
  4193. void __kprobes sub_preempt_count(int val)
  4194. {
  4195. #ifdef CONFIG_DEBUG_PREEMPT
  4196. /*
  4197. * Underflow?
  4198. */
  4199. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4200. return;
  4201. /*
  4202. * Is the spinlock portion underflowing?
  4203. */
  4204. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4205. !(preempt_count() & PREEMPT_MASK)))
  4206. return;
  4207. #endif
  4208. if (preempt_count() == val)
  4209. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4210. preempt_count() -= val;
  4211. }
  4212. EXPORT_SYMBOL(sub_preempt_count);
  4213. #endif
  4214. /*
  4215. * Print scheduling while atomic bug:
  4216. */
  4217. static noinline void __schedule_bug(struct task_struct *prev)
  4218. {
  4219. struct pt_regs *regs = get_irq_regs();
  4220. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4221. prev->comm, prev->pid, preempt_count());
  4222. debug_show_held_locks(prev);
  4223. print_modules();
  4224. if (irqs_disabled())
  4225. print_irqtrace_events(prev);
  4226. if (regs)
  4227. show_regs(regs);
  4228. else
  4229. dump_stack();
  4230. }
  4231. /*
  4232. * Various schedule()-time debugging checks and statistics:
  4233. */
  4234. static inline void schedule_debug(struct task_struct *prev)
  4235. {
  4236. /*
  4237. * Test if we are atomic. Since do_exit() needs to call into
  4238. * schedule() atomically, we ignore that path for now.
  4239. * Otherwise, whine if we are scheduling when we should not be.
  4240. */
  4241. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4242. __schedule_bug(prev);
  4243. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4244. schedstat_inc(this_rq(), sched_count);
  4245. #ifdef CONFIG_SCHEDSTATS
  4246. if (unlikely(prev->lock_depth >= 0)) {
  4247. schedstat_inc(this_rq(), bkl_count);
  4248. schedstat_inc(prev, sched_info.bkl_count);
  4249. }
  4250. #endif
  4251. }
  4252. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4253. {
  4254. if (prev->state == TASK_RUNNING) {
  4255. u64 runtime = prev->se.sum_exec_runtime;
  4256. runtime -= prev->se.prev_sum_exec_runtime;
  4257. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4258. /*
  4259. * In order to avoid avg_overlap growing stale when we are
  4260. * indeed overlapping and hence not getting put to sleep, grow
  4261. * the avg_overlap on preemption.
  4262. *
  4263. * We use the average preemption runtime because that
  4264. * correlates to the amount of cache footprint a task can
  4265. * build up.
  4266. */
  4267. update_avg(&prev->se.avg_overlap, runtime);
  4268. }
  4269. prev->sched_class->put_prev_task(rq, prev);
  4270. }
  4271. /*
  4272. * Pick up the highest-prio task:
  4273. */
  4274. static inline struct task_struct *
  4275. pick_next_task(struct rq *rq)
  4276. {
  4277. const struct sched_class *class;
  4278. struct task_struct *p;
  4279. /*
  4280. * Optimization: we know that if all tasks are in
  4281. * the fair class we can call that function directly:
  4282. */
  4283. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4284. p = fair_sched_class.pick_next_task(rq);
  4285. if (likely(p))
  4286. return p;
  4287. }
  4288. class = sched_class_highest;
  4289. for ( ; ; ) {
  4290. p = class->pick_next_task(rq);
  4291. if (p)
  4292. return p;
  4293. /*
  4294. * Will never be NULL as the idle class always
  4295. * returns a non-NULL p:
  4296. */
  4297. class = class->next;
  4298. }
  4299. }
  4300. /*
  4301. * schedule() is the main scheduler function.
  4302. */
  4303. asmlinkage void __sched __schedule(void)
  4304. {
  4305. struct task_struct *prev, *next;
  4306. unsigned long *switch_count;
  4307. struct rq *rq;
  4308. int cpu;
  4309. cpu = smp_processor_id();
  4310. rq = cpu_rq(cpu);
  4311. rcu_qsctr_inc(cpu);
  4312. prev = rq->curr;
  4313. switch_count = &prev->nivcsw;
  4314. release_kernel_lock(prev);
  4315. need_resched_nonpreemptible:
  4316. schedule_debug(prev);
  4317. if (sched_feat(HRTICK))
  4318. hrtick_clear(rq);
  4319. spin_lock_irq(&rq->lock);
  4320. update_rq_clock(rq);
  4321. clear_tsk_need_resched(prev);
  4322. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4323. if (unlikely(signal_pending_state(prev->state, prev)))
  4324. prev->state = TASK_RUNNING;
  4325. else
  4326. deactivate_task(rq, prev, 1);
  4327. switch_count = &prev->nvcsw;
  4328. }
  4329. #ifdef CONFIG_SMP
  4330. if (prev->sched_class->pre_schedule)
  4331. prev->sched_class->pre_schedule(rq, prev);
  4332. #endif
  4333. if (unlikely(!rq->nr_running))
  4334. idle_balance(cpu, rq);
  4335. put_prev_task(rq, prev);
  4336. next = pick_next_task(rq);
  4337. if (likely(prev != next)) {
  4338. sched_info_switch(prev, next);
  4339. perf_counter_task_sched_out(prev, next, cpu);
  4340. rq->nr_switches++;
  4341. rq->curr = next;
  4342. ++*switch_count;
  4343. context_switch(rq, prev, next); /* unlocks the rq */
  4344. /*
  4345. * the context switch might have flipped the stack from under
  4346. * us, hence refresh the local variables.
  4347. */
  4348. cpu = smp_processor_id();
  4349. rq = cpu_rq(cpu);
  4350. } else
  4351. spin_unlock_irq(&rq->lock);
  4352. if (unlikely(reacquire_kernel_lock(current) < 0))
  4353. goto need_resched_nonpreemptible;
  4354. }
  4355. asmlinkage void __sched schedule(void)
  4356. {
  4357. need_resched:
  4358. preempt_disable();
  4359. __schedule();
  4360. preempt_enable_no_resched();
  4361. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4362. goto need_resched;
  4363. }
  4364. EXPORT_SYMBOL(schedule);
  4365. #ifdef CONFIG_SMP
  4366. /*
  4367. * Look out! "owner" is an entirely speculative pointer
  4368. * access and not reliable.
  4369. */
  4370. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4371. {
  4372. unsigned int cpu;
  4373. struct rq *rq;
  4374. if (!sched_feat(OWNER_SPIN))
  4375. return 0;
  4376. #ifdef CONFIG_DEBUG_PAGEALLOC
  4377. /*
  4378. * Need to access the cpu field knowing that
  4379. * DEBUG_PAGEALLOC could have unmapped it if
  4380. * the mutex owner just released it and exited.
  4381. */
  4382. if (probe_kernel_address(&owner->cpu, cpu))
  4383. goto out;
  4384. #else
  4385. cpu = owner->cpu;
  4386. #endif
  4387. /*
  4388. * Even if the access succeeded (likely case),
  4389. * the cpu field may no longer be valid.
  4390. */
  4391. if (cpu >= nr_cpumask_bits)
  4392. goto out;
  4393. /*
  4394. * We need to validate that we can do a
  4395. * get_cpu() and that we have the percpu area.
  4396. */
  4397. if (!cpu_online(cpu))
  4398. goto out;
  4399. rq = cpu_rq(cpu);
  4400. for (;;) {
  4401. /*
  4402. * Owner changed, break to re-assess state.
  4403. */
  4404. if (lock->owner != owner)
  4405. break;
  4406. /*
  4407. * Is that owner really running on that cpu?
  4408. */
  4409. if (task_thread_info(rq->curr) != owner || need_resched())
  4410. return 0;
  4411. cpu_relax();
  4412. }
  4413. out:
  4414. return 1;
  4415. }
  4416. #endif
  4417. #ifdef CONFIG_PREEMPT
  4418. /*
  4419. * this is the entry point to schedule() from in-kernel preemption
  4420. * off of preempt_enable. Kernel preemptions off return from interrupt
  4421. * occur there and call schedule directly.
  4422. */
  4423. asmlinkage void __sched preempt_schedule(void)
  4424. {
  4425. struct thread_info *ti = current_thread_info();
  4426. /*
  4427. * If there is a non-zero preempt_count or interrupts are disabled,
  4428. * we do not want to preempt the current task. Just return..
  4429. */
  4430. if (likely(ti->preempt_count || irqs_disabled()))
  4431. return;
  4432. do {
  4433. add_preempt_count(PREEMPT_ACTIVE);
  4434. schedule();
  4435. sub_preempt_count(PREEMPT_ACTIVE);
  4436. /*
  4437. * Check again in case we missed a preemption opportunity
  4438. * between schedule and now.
  4439. */
  4440. barrier();
  4441. } while (need_resched());
  4442. }
  4443. EXPORT_SYMBOL(preempt_schedule);
  4444. /*
  4445. * this is the entry point to schedule() from kernel preemption
  4446. * off of irq context.
  4447. * Note, that this is called and return with irqs disabled. This will
  4448. * protect us against recursive calling from irq.
  4449. */
  4450. asmlinkage void __sched preempt_schedule_irq(void)
  4451. {
  4452. struct thread_info *ti = current_thread_info();
  4453. /* Catch callers which need to be fixed */
  4454. BUG_ON(ti->preempt_count || !irqs_disabled());
  4455. do {
  4456. add_preempt_count(PREEMPT_ACTIVE);
  4457. local_irq_enable();
  4458. schedule();
  4459. local_irq_disable();
  4460. sub_preempt_count(PREEMPT_ACTIVE);
  4461. /*
  4462. * Check again in case we missed a preemption opportunity
  4463. * between schedule and now.
  4464. */
  4465. barrier();
  4466. } while (need_resched());
  4467. }
  4468. #endif /* CONFIG_PREEMPT */
  4469. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4470. void *key)
  4471. {
  4472. return try_to_wake_up(curr->private, mode, sync);
  4473. }
  4474. EXPORT_SYMBOL(default_wake_function);
  4475. /*
  4476. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4477. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4478. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4479. *
  4480. * There are circumstances in which we can try to wake a task which has already
  4481. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4482. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4483. */
  4484. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4485. int nr_exclusive, int sync, void *key)
  4486. {
  4487. wait_queue_t *curr, *next;
  4488. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4489. unsigned flags = curr->flags;
  4490. if (curr->func(curr, mode, sync, key) &&
  4491. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4492. break;
  4493. }
  4494. }
  4495. /**
  4496. * __wake_up - wake up threads blocked on a waitqueue.
  4497. * @q: the waitqueue
  4498. * @mode: which threads
  4499. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4500. * @key: is directly passed to the wakeup function
  4501. */
  4502. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4503. int nr_exclusive, void *key)
  4504. {
  4505. unsigned long flags;
  4506. spin_lock_irqsave(&q->lock, flags);
  4507. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4508. spin_unlock_irqrestore(&q->lock, flags);
  4509. }
  4510. EXPORT_SYMBOL(__wake_up);
  4511. /*
  4512. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4513. */
  4514. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4515. {
  4516. __wake_up_common(q, mode, 1, 0, NULL);
  4517. }
  4518. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4519. {
  4520. __wake_up_common(q, mode, 1, 0, key);
  4521. }
  4522. /**
  4523. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4524. * @q: the waitqueue
  4525. * @mode: which threads
  4526. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4527. * @key: opaque value to be passed to wakeup targets
  4528. *
  4529. * The sync wakeup differs that the waker knows that it will schedule
  4530. * away soon, so while the target thread will be woken up, it will not
  4531. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4532. * with each other. This can prevent needless bouncing between CPUs.
  4533. *
  4534. * On UP it can prevent extra preemption.
  4535. */
  4536. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4537. int nr_exclusive, void *key)
  4538. {
  4539. unsigned long flags;
  4540. int sync = 1;
  4541. if (unlikely(!q))
  4542. return;
  4543. if (unlikely(!nr_exclusive))
  4544. sync = 0;
  4545. spin_lock_irqsave(&q->lock, flags);
  4546. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4547. spin_unlock_irqrestore(&q->lock, flags);
  4548. }
  4549. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4550. /*
  4551. * __wake_up_sync - see __wake_up_sync_key()
  4552. */
  4553. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4554. {
  4555. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4556. }
  4557. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4558. /**
  4559. * complete: - signals a single thread waiting on this completion
  4560. * @x: holds the state of this particular completion
  4561. *
  4562. * This will wake up a single thread waiting on this completion. Threads will be
  4563. * awakened in the same order in which they were queued.
  4564. *
  4565. * See also complete_all(), wait_for_completion() and related routines.
  4566. */
  4567. void complete(struct completion *x)
  4568. {
  4569. unsigned long flags;
  4570. spin_lock_irqsave(&x->wait.lock, flags);
  4571. x->done++;
  4572. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4573. spin_unlock_irqrestore(&x->wait.lock, flags);
  4574. }
  4575. EXPORT_SYMBOL(complete);
  4576. /**
  4577. * complete_all: - signals all threads waiting on this completion
  4578. * @x: holds the state of this particular completion
  4579. *
  4580. * This will wake up all threads waiting on this particular completion event.
  4581. */
  4582. void complete_all(struct completion *x)
  4583. {
  4584. unsigned long flags;
  4585. spin_lock_irqsave(&x->wait.lock, flags);
  4586. x->done += UINT_MAX/2;
  4587. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4588. spin_unlock_irqrestore(&x->wait.lock, flags);
  4589. }
  4590. EXPORT_SYMBOL(complete_all);
  4591. static inline long __sched
  4592. do_wait_for_common(struct completion *x, long timeout, int state)
  4593. {
  4594. if (!x->done) {
  4595. DECLARE_WAITQUEUE(wait, current);
  4596. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4597. __add_wait_queue_tail(&x->wait, &wait);
  4598. do {
  4599. if (signal_pending_state(state, current)) {
  4600. timeout = -ERESTARTSYS;
  4601. break;
  4602. }
  4603. __set_current_state(state);
  4604. spin_unlock_irq(&x->wait.lock);
  4605. timeout = schedule_timeout(timeout);
  4606. spin_lock_irq(&x->wait.lock);
  4607. } while (!x->done && timeout);
  4608. __remove_wait_queue(&x->wait, &wait);
  4609. if (!x->done)
  4610. return timeout;
  4611. }
  4612. x->done--;
  4613. return timeout ?: 1;
  4614. }
  4615. static long __sched
  4616. wait_for_common(struct completion *x, long timeout, int state)
  4617. {
  4618. might_sleep();
  4619. spin_lock_irq(&x->wait.lock);
  4620. timeout = do_wait_for_common(x, timeout, state);
  4621. spin_unlock_irq(&x->wait.lock);
  4622. return timeout;
  4623. }
  4624. /**
  4625. * wait_for_completion: - waits for completion of a task
  4626. * @x: holds the state of this particular completion
  4627. *
  4628. * This waits to be signaled for completion of a specific task. It is NOT
  4629. * interruptible and there is no timeout.
  4630. *
  4631. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4632. * and interrupt capability. Also see complete().
  4633. */
  4634. void __sched wait_for_completion(struct completion *x)
  4635. {
  4636. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4637. }
  4638. EXPORT_SYMBOL(wait_for_completion);
  4639. /**
  4640. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4641. * @x: holds the state of this particular completion
  4642. * @timeout: timeout value in jiffies
  4643. *
  4644. * This waits for either a completion of a specific task to be signaled or for a
  4645. * specified timeout to expire. The timeout is in jiffies. It is not
  4646. * interruptible.
  4647. */
  4648. unsigned long __sched
  4649. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4650. {
  4651. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4652. }
  4653. EXPORT_SYMBOL(wait_for_completion_timeout);
  4654. /**
  4655. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4656. * @x: holds the state of this particular completion
  4657. *
  4658. * This waits for completion of a specific task to be signaled. It is
  4659. * interruptible.
  4660. */
  4661. int __sched wait_for_completion_interruptible(struct completion *x)
  4662. {
  4663. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4664. if (t == -ERESTARTSYS)
  4665. return t;
  4666. return 0;
  4667. }
  4668. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4669. /**
  4670. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4671. * @x: holds the state of this particular completion
  4672. * @timeout: timeout value in jiffies
  4673. *
  4674. * This waits for either a completion of a specific task to be signaled or for a
  4675. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4676. */
  4677. unsigned long __sched
  4678. wait_for_completion_interruptible_timeout(struct completion *x,
  4679. unsigned long timeout)
  4680. {
  4681. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4682. }
  4683. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4684. /**
  4685. * wait_for_completion_killable: - waits for completion of a task (killable)
  4686. * @x: holds the state of this particular completion
  4687. *
  4688. * This waits to be signaled for completion of a specific task. It can be
  4689. * interrupted by a kill signal.
  4690. */
  4691. int __sched wait_for_completion_killable(struct completion *x)
  4692. {
  4693. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4694. if (t == -ERESTARTSYS)
  4695. return t;
  4696. return 0;
  4697. }
  4698. EXPORT_SYMBOL(wait_for_completion_killable);
  4699. /**
  4700. * try_wait_for_completion - try to decrement a completion without blocking
  4701. * @x: completion structure
  4702. *
  4703. * Returns: 0 if a decrement cannot be done without blocking
  4704. * 1 if a decrement succeeded.
  4705. *
  4706. * If a completion is being used as a counting completion,
  4707. * attempt to decrement the counter without blocking. This
  4708. * enables us to avoid waiting if the resource the completion
  4709. * is protecting is not available.
  4710. */
  4711. bool try_wait_for_completion(struct completion *x)
  4712. {
  4713. int ret = 1;
  4714. spin_lock_irq(&x->wait.lock);
  4715. if (!x->done)
  4716. ret = 0;
  4717. else
  4718. x->done--;
  4719. spin_unlock_irq(&x->wait.lock);
  4720. return ret;
  4721. }
  4722. EXPORT_SYMBOL(try_wait_for_completion);
  4723. /**
  4724. * completion_done - Test to see if a completion has any waiters
  4725. * @x: completion structure
  4726. *
  4727. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4728. * 1 if there are no waiters.
  4729. *
  4730. */
  4731. bool completion_done(struct completion *x)
  4732. {
  4733. int ret = 1;
  4734. spin_lock_irq(&x->wait.lock);
  4735. if (!x->done)
  4736. ret = 0;
  4737. spin_unlock_irq(&x->wait.lock);
  4738. return ret;
  4739. }
  4740. EXPORT_SYMBOL(completion_done);
  4741. static long __sched
  4742. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4743. {
  4744. unsigned long flags;
  4745. wait_queue_t wait;
  4746. init_waitqueue_entry(&wait, current);
  4747. __set_current_state(state);
  4748. spin_lock_irqsave(&q->lock, flags);
  4749. __add_wait_queue(q, &wait);
  4750. spin_unlock(&q->lock);
  4751. timeout = schedule_timeout(timeout);
  4752. spin_lock_irq(&q->lock);
  4753. __remove_wait_queue(q, &wait);
  4754. spin_unlock_irqrestore(&q->lock, flags);
  4755. return timeout;
  4756. }
  4757. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4758. {
  4759. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4760. }
  4761. EXPORT_SYMBOL(interruptible_sleep_on);
  4762. long __sched
  4763. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4764. {
  4765. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4766. }
  4767. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4768. void __sched sleep_on(wait_queue_head_t *q)
  4769. {
  4770. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4771. }
  4772. EXPORT_SYMBOL(sleep_on);
  4773. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4774. {
  4775. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4776. }
  4777. EXPORT_SYMBOL(sleep_on_timeout);
  4778. #ifdef CONFIG_RT_MUTEXES
  4779. /*
  4780. * rt_mutex_setprio - set the current priority of a task
  4781. * @p: task
  4782. * @prio: prio value (kernel-internal form)
  4783. *
  4784. * This function changes the 'effective' priority of a task. It does
  4785. * not touch ->normal_prio like __setscheduler().
  4786. *
  4787. * Used by the rt_mutex code to implement priority inheritance logic.
  4788. */
  4789. void rt_mutex_setprio(struct task_struct *p, int prio)
  4790. {
  4791. unsigned long flags;
  4792. int oldprio, on_rq, running;
  4793. struct rq *rq;
  4794. const struct sched_class *prev_class = p->sched_class;
  4795. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4796. rq = task_rq_lock(p, &flags);
  4797. update_rq_clock(rq);
  4798. oldprio = p->prio;
  4799. on_rq = p->se.on_rq;
  4800. running = task_current(rq, p);
  4801. if (on_rq)
  4802. dequeue_task(rq, p, 0);
  4803. if (running)
  4804. p->sched_class->put_prev_task(rq, p);
  4805. if (rt_prio(prio))
  4806. p->sched_class = &rt_sched_class;
  4807. else
  4808. p->sched_class = &fair_sched_class;
  4809. p->prio = prio;
  4810. if (running)
  4811. p->sched_class->set_curr_task(rq);
  4812. if (on_rq) {
  4813. enqueue_task(rq, p, 0);
  4814. check_class_changed(rq, p, prev_class, oldprio, running);
  4815. }
  4816. task_rq_unlock(rq, &flags);
  4817. }
  4818. #endif
  4819. void set_user_nice(struct task_struct *p, long nice)
  4820. {
  4821. int old_prio, delta, on_rq;
  4822. unsigned long flags;
  4823. struct rq *rq;
  4824. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4825. return;
  4826. /*
  4827. * We have to be careful, if called from sys_setpriority(),
  4828. * the task might be in the middle of scheduling on another CPU.
  4829. */
  4830. rq = task_rq_lock(p, &flags);
  4831. update_rq_clock(rq);
  4832. /*
  4833. * The RT priorities are set via sched_setscheduler(), but we still
  4834. * allow the 'normal' nice value to be set - but as expected
  4835. * it wont have any effect on scheduling until the task is
  4836. * SCHED_FIFO/SCHED_RR:
  4837. */
  4838. if (task_has_rt_policy(p)) {
  4839. p->static_prio = NICE_TO_PRIO(nice);
  4840. goto out_unlock;
  4841. }
  4842. on_rq = p->se.on_rq;
  4843. if (on_rq)
  4844. dequeue_task(rq, p, 0);
  4845. p->static_prio = NICE_TO_PRIO(nice);
  4846. set_load_weight(p);
  4847. old_prio = p->prio;
  4848. p->prio = effective_prio(p);
  4849. delta = p->prio - old_prio;
  4850. if (on_rq) {
  4851. enqueue_task(rq, p, 0);
  4852. /*
  4853. * If the task increased its priority or is running and
  4854. * lowered its priority, then reschedule its CPU:
  4855. */
  4856. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4857. resched_task(rq->curr);
  4858. }
  4859. out_unlock:
  4860. task_rq_unlock(rq, &flags);
  4861. }
  4862. EXPORT_SYMBOL(set_user_nice);
  4863. /*
  4864. * can_nice - check if a task can reduce its nice value
  4865. * @p: task
  4866. * @nice: nice value
  4867. */
  4868. int can_nice(const struct task_struct *p, const int nice)
  4869. {
  4870. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4871. int nice_rlim = 20 - nice;
  4872. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4873. capable(CAP_SYS_NICE));
  4874. }
  4875. #ifdef __ARCH_WANT_SYS_NICE
  4876. /*
  4877. * sys_nice - change the priority of the current process.
  4878. * @increment: priority increment
  4879. *
  4880. * sys_setpriority is a more generic, but much slower function that
  4881. * does similar things.
  4882. */
  4883. SYSCALL_DEFINE1(nice, int, increment)
  4884. {
  4885. long nice, retval;
  4886. /*
  4887. * Setpriority might change our priority at the same moment.
  4888. * We don't have to worry. Conceptually one call occurs first
  4889. * and we have a single winner.
  4890. */
  4891. if (increment < -40)
  4892. increment = -40;
  4893. if (increment > 40)
  4894. increment = 40;
  4895. nice = TASK_NICE(current) + increment;
  4896. if (nice < -20)
  4897. nice = -20;
  4898. if (nice > 19)
  4899. nice = 19;
  4900. if (increment < 0 && !can_nice(current, nice))
  4901. return -EPERM;
  4902. retval = security_task_setnice(current, nice);
  4903. if (retval)
  4904. return retval;
  4905. set_user_nice(current, nice);
  4906. return 0;
  4907. }
  4908. #endif
  4909. /**
  4910. * task_prio - return the priority value of a given task.
  4911. * @p: the task in question.
  4912. *
  4913. * This is the priority value as seen by users in /proc.
  4914. * RT tasks are offset by -200. Normal tasks are centered
  4915. * around 0, value goes from -16 to +15.
  4916. */
  4917. int task_prio(const struct task_struct *p)
  4918. {
  4919. return p->prio - MAX_RT_PRIO;
  4920. }
  4921. /**
  4922. * task_nice - return the nice value of a given task.
  4923. * @p: the task in question.
  4924. */
  4925. int task_nice(const struct task_struct *p)
  4926. {
  4927. return TASK_NICE(p);
  4928. }
  4929. EXPORT_SYMBOL(task_nice);
  4930. /**
  4931. * idle_cpu - is a given cpu idle currently?
  4932. * @cpu: the processor in question.
  4933. */
  4934. int idle_cpu(int cpu)
  4935. {
  4936. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4937. }
  4938. /**
  4939. * idle_task - return the idle task for a given cpu.
  4940. * @cpu: the processor in question.
  4941. */
  4942. struct task_struct *idle_task(int cpu)
  4943. {
  4944. return cpu_rq(cpu)->idle;
  4945. }
  4946. /**
  4947. * find_process_by_pid - find a process with a matching PID value.
  4948. * @pid: the pid in question.
  4949. */
  4950. static struct task_struct *find_process_by_pid(pid_t pid)
  4951. {
  4952. return pid ? find_task_by_vpid(pid) : current;
  4953. }
  4954. /* Actually do priority change: must hold rq lock. */
  4955. static void
  4956. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4957. {
  4958. BUG_ON(p->se.on_rq);
  4959. p->policy = policy;
  4960. switch (p->policy) {
  4961. case SCHED_NORMAL:
  4962. case SCHED_BATCH:
  4963. case SCHED_IDLE:
  4964. p->sched_class = &fair_sched_class;
  4965. break;
  4966. case SCHED_FIFO:
  4967. case SCHED_RR:
  4968. p->sched_class = &rt_sched_class;
  4969. break;
  4970. }
  4971. p->rt_priority = prio;
  4972. p->normal_prio = normal_prio(p);
  4973. /* we are holding p->pi_lock already */
  4974. p->prio = rt_mutex_getprio(p);
  4975. set_load_weight(p);
  4976. }
  4977. /*
  4978. * check the target process has a UID that matches the current process's
  4979. */
  4980. static bool check_same_owner(struct task_struct *p)
  4981. {
  4982. const struct cred *cred = current_cred(), *pcred;
  4983. bool match;
  4984. rcu_read_lock();
  4985. pcred = __task_cred(p);
  4986. match = (cred->euid == pcred->euid ||
  4987. cred->euid == pcred->uid);
  4988. rcu_read_unlock();
  4989. return match;
  4990. }
  4991. static int __sched_setscheduler(struct task_struct *p, int policy,
  4992. struct sched_param *param, bool user)
  4993. {
  4994. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4995. unsigned long flags;
  4996. const struct sched_class *prev_class = p->sched_class;
  4997. struct rq *rq;
  4998. /* may grab non-irq protected spin_locks */
  4999. BUG_ON(in_interrupt());
  5000. recheck:
  5001. /* double check policy once rq lock held */
  5002. if (policy < 0)
  5003. policy = oldpolicy = p->policy;
  5004. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5005. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5006. policy != SCHED_IDLE)
  5007. return -EINVAL;
  5008. /*
  5009. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5010. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5011. * SCHED_BATCH and SCHED_IDLE is 0.
  5012. */
  5013. if (param->sched_priority < 0 ||
  5014. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5015. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5016. return -EINVAL;
  5017. if (rt_policy(policy) != (param->sched_priority != 0))
  5018. return -EINVAL;
  5019. /*
  5020. * Allow unprivileged RT tasks to decrease priority:
  5021. */
  5022. if (user && !capable(CAP_SYS_NICE)) {
  5023. if (rt_policy(policy)) {
  5024. unsigned long rlim_rtprio;
  5025. if (!lock_task_sighand(p, &flags))
  5026. return -ESRCH;
  5027. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5028. unlock_task_sighand(p, &flags);
  5029. /* can't set/change the rt policy */
  5030. if (policy != p->policy && !rlim_rtprio)
  5031. return -EPERM;
  5032. /* can't increase priority */
  5033. if (param->sched_priority > p->rt_priority &&
  5034. param->sched_priority > rlim_rtprio)
  5035. return -EPERM;
  5036. }
  5037. /*
  5038. * Like positive nice levels, dont allow tasks to
  5039. * move out of SCHED_IDLE either:
  5040. */
  5041. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5042. return -EPERM;
  5043. /* can't change other user's priorities */
  5044. if (!check_same_owner(p))
  5045. return -EPERM;
  5046. }
  5047. if (user) {
  5048. #ifdef CONFIG_RT_GROUP_SCHED
  5049. /*
  5050. * Do not allow realtime tasks into groups that have no runtime
  5051. * assigned.
  5052. */
  5053. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5054. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5055. return -EPERM;
  5056. #endif
  5057. retval = security_task_setscheduler(p, policy, param);
  5058. if (retval)
  5059. return retval;
  5060. }
  5061. /*
  5062. * make sure no PI-waiters arrive (or leave) while we are
  5063. * changing the priority of the task:
  5064. */
  5065. spin_lock_irqsave(&p->pi_lock, flags);
  5066. /*
  5067. * To be able to change p->policy safely, the apropriate
  5068. * runqueue lock must be held.
  5069. */
  5070. rq = __task_rq_lock(p);
  5071. /* recheck policy now with rq lock held */
  5072. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5073. policy = oldpolicy = -1;
  5074. __task_rq_unlock(rq);
  5075. spin_unlock_irqrestore(&p->pi_lock, flags);
  5076. goto recheck;
  5077. }
  5078. update_rq_clock(rq);
  5079. on_rq = p->se.on_rq;
  5080. running = task_current(rq, p);
  5081. if (on_rq)
  5082. deactivate_task(rq, p, 0);
  5083. if (running)
  5084. p->sched_class->put_prev_task(rq, p);
  5085. oldprio = p->prio;
  5086. __setscheduler(rq, p, policy, param->sched_priority);
  5087. if (running)
  5088. p->sched_class->set_curr_task(rq);
  5089. if (on_rq) {
  5090. activate_task(rq, p, 0);
  5091. check_class_changed(rq, p, prev_class, oldprio, running);
  5092. }
  5093. __task_rq_unlock(rq);
  5094. spin_unlock_irqrestore(&p->pi_lock, flags);
  5095. rt_mutex_adjust_pi(p);
  5096. return 0;
  5097. }
  5098. /**
  5099. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5100. * @p: the task in question.
  5101. * @policy: new policy.
  5102. * @param: structure containing the new RT priority.
  5103. *
  5104. * NOTE that the task may be already dead.
  5105. */
  5106. int sched_setscheduler(struct task_struct *p, int policy,
  5107. struct sched_param *param)
  5108. {
  5109. return __sched_setscheduler(p, policy, param, true);
  5110. }
  5111. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5112. /**
  5113. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5114. * @p: the task in question.
  5115. * @policy: new policy.
  5116. * @param: structure containing the new RT priority.
  5117. *
  5118. * Just like sched_setscheduler, only don't bother checking if the
  5119. * current context has permission. For example, this is needed in
  5120. * stop_machine(): we create temporary high priority worker threads,
  5121. * but our caller might not have that capability.
  5122. */
  5123. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5124. struct sched_param *param)
  5125. {
  5126. return __sched_setscheduler(p, policy, param, false);
  5127. }
  5128. static int
  5129. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5130. {
  5131. struct sched_param lparam;
  5132. struct task_struct *p;
  5133. int retval;
  5134. if (!param || pid < 0)
  5135. return -EINVAL;
  5136. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5137. return -EFAULT;
  5138. rcu_read_lock();
  5139. retval = -ESRCH;
  5140. p = find_process_by_pid(pid);
  5141. if (p != NULL)
  5142. retval = sched_setscheduler(p, policy, &lparam);
  5143. rcu_read_unlock();
  5144. return retval;
  5145. }
  5146. /**
  5147. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5148. * @pid: the pid in question.
  5149. * @policy: new policy.
  5150. * @param: structure containing the new RT priority.
  5151. */
  5152. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5153. struct sched_param __user *, param)
  5154. {
  5155. /* negative values for policy are not valid */
  5156. if (policy < 0)
  5157. return -EINVAL;
  5158. return do_sched_setscheduler(pid, policy, param);
  5159. }
  5160. /**
  5161. * sys_sched_setparam - set/change the RT priority of a thread
  5162. * @pid: the pid in question.
  5163. * @param: structure containing the new RT priority.
  5164. */
  5165. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5166. {
  5167. return do_sched_setscheduler(pid, -1, param);
  5168. }
  5169. /**
  5170. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5171. * @pid: the pid in question.
  5172. */
  5173. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5174. {
  5175. struct task_struct *p;
  5176. int retval;
  5177. if (pid < 0)
  5178. return -EINVAL;
  5179. retval = -ESRCH;
  5180. read_lock(&tasklist_lock);
  5181. p = find_process_by_pid(pid);
  5182. if (p) {
  5183. retval = security_task_getscheduler(p);
  5184. if (!retval)
  5185. retval = p->policy;
  5186. }
  5187. read_unlock(&tasklist_lock);
  5188. return retval;
  5189. }
  5190. /**
  5191. * sys_sched_getscheduler - get the RT priority of a thread
  5192. * @pid: the pid in question.
  5193. * @param: structure containing the RT priority.
  5194. */
  5195. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5196. {
  5197. struct sched_param lp;
  5198. struct task_struct *p;
  5199. int retval;
  5200. if (!param || pid < 0)
  5201. return -EINVAL;
  5202. read_lock(&tasklist_lock);
  5203. p = find_process_by_pid(pid);
  5204. retval = -ESRCH;
  5205. if (!p)
  5206. goto out_unlock;
  5207. retval = security_task_getscheduler(p);
  5208. if (retval)
  5209. goto out_unlock;
  5210. lp.sched_priority = p->rt_priority;
  5211. read_unlock(&tasklist_lock);
  5212. /*
  5213. * This one might sleep, we cannot do it with a spinlock held ...
  5214. */
  5215. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5216. return retval;
  5217. out_unlock:
  5218. read_unlock(&tasklist_lock);
  5219. return retval;
  5220. }
  5221. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5222. {
  5223. cpumask_var_t cpus_allowed, new_mask;
  5224. struct task_struct *p;
  5225. int retval;
  5226. get_online_cpus();
  5227. read_lock(&tasklist_lock);
  5228. p = find_process_by_pid(pid);
  5229. if (!p) {
  5230. read_unlock(&tasklist_lock);
  5231. put_online_cpus();
  5232. return -ESRCH;
  5233. }
  5234. /*
  5235. * It is not safe to call set_cpus_allowed with the
  5236. * tasklist_lock held. We will bump the task_struct's
  5237. * usage count and then drop tasklist_lock.
  5238. */
  5239. get_task_struct(p);
  5240. read_unlock(&tasklist_lock);
  5241. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5242. retval = -ENOMEM;
  5243. goto out_put_task;
  5244. }
  5245. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5246. retval = -ENOMEM;
  5247. goto out_free_cpus_allowed;
  5248. }
  5249. retval = -EPERM;
  5250. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5251. goto out_unlock;
  5252. retval = security_task_setscheduler(p, 0, NULL);
  5253. if (retval)
  5254. goto out_unlock;
  5255. cpuset_cpus_allowed(p, cpus_allowed);
  5256. cpumask_and(new_mask, in_mask, cpus_allowed);
  5257. again:
  5258. retval = set_cpus_allowed_ptr(p, new_mask);
  5259. if (!retval) {
  5260. cpuset_cpus_allowed(p, cpus_allowed);
  5261. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5262. /*
  5263. * We must have raced with a concurrent cpuset
  5264. * update. Just reset the cpus_allowed to the
  5265. * cpuset's cpus_allowed
  5266. */
  5267. cpumask_copy(new_mask, cpus_allowed);
  5268. goto again;
  5269. }
  5270. }
  5271. out_unlock:
  5272. free_cpumask_var(new_mask);
  5273. out_free_cpus_allowed:
  5274. free_cpumask_var(cpus_allowed);
  5275. out_put_task:
  5276. put_task_struct(p);
  5277. put_online_cpus();
  5278. return retval;
  5279. }
  5280. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5281. struct cpumask *new_mask)
  5282. {
  5283. if (len < cpumask_size())
  5284. cpumask_clear(new_mask);
  5285. else if (len > cpumask_size())
  5286. len = cpumask_size();
  5287. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5288. }
  5289. /**
  5290. * sys_sched_setaffinity - set the cpu affinity of a process
  5291. * @pid: pid of the process
  5292. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5293. * @user_mask_ptr: user-space pointer to the new cpu mask
  5294. */
  5295. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5296. unsigned long __user *, user_mask_ptr)
  5297. {
  5298. cpumask_var_t new_mask;
  5299. int retval;
  5300. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5301. return -ENOMEM;
  5302. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5303. if (retval == 0)
  5304. retval = sched_setaffinity(pid, new_mask);
  5305. free_cpumask_var(new_mask);
  5306. return retval;
  5307. }
  5308. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5309. {
  5310. struct task_struct *p;
  5311. int retval;
  5312. get_online_cpus();
  5313. read_lock(&tasklist_lock);
  5314. retval = -ESRCH;
  5315. p = find_process_by_pid(pid);
  5316. if (!p)
  5317. goto out_unlock;
  5318. retval = security_task_getscheduler(p);
  5319. if (retval)
  5320. goto out_unlock;
  5321. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5322. out_unlock:
  5323. read_unlock(&tasklist_lock);
  5324. put_online_cpus();
  5325. return retval;
  5326. }
  5327. /**
  5328. * sys_sched_getaffinity - get the cpu affinity of a process
  5329. * @pid: pid of the process
  5330. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5331. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5332. */
  5333. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5334. unsigned long __user *, user_mask_ptr)
  5335. {
  5336. int ret;
  5337. cpumask_var_t mask;
  5338. if (len < cpumask_size())
  5339. return -EINVAL;
  5340. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5341. return -ENOMEM;
  5342. ret = sched_getaffinity(pid, mask);
  5343. if (ret == 0) {
  5344. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5345. ret = -EFAULT;
  5346. else
  5347. ret = cpumask_size();
  5348. }
  5349. free_cpumask_var(mask);
  5350. return ret;
  5351. }
  5352. /**
  5353. * sys_sched_yield - yield the current processor to other threads.
  5354. *
  5355. * This function yields the current CPU to other tasks. If there are no
  5356. * other threads running on this CPU then this function will return.
  5357. */
  5358. SYSCALL_DEFINE0(sched_yield)
  5359. {
  5360. struct rq *rq = this_rq_lock();
  5361. schedstat_inc(rq, yld_count);
  5362. current->sched_class->yield_task(rq);
  5363. /*
  5364. * Since we are going to call schedule() anyway, there's
  5365. * no need to preempt or enable interrupts:
  5366. */
  5367. __release(rq->lock);
  5368. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5369. _raw_spin_unlock(&rq->lock);
  5370. preempt_enable_no_resched();
  5371. schedule();
  5372. return 0;
  5373. }
  5374. static void __cond_resched(void)
  5375. {
  5376. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5377. __might_sleep(__FILE__, __LINE__);
  5378. #endif
  5379. /*
  5380. * The BKS might be reacquired before we have dropped
  5381. * PREEMPT_ACTIVE, which could trigger a second
  5382. * cond_resched() call.
  5383. */
  5384. do {
  5385. add_preempt_count(PREEMPT_ACTIVE);
  5386. schedule();
  5387. sub_preempt_count(PREEMPT_ACTIVE);
  5388. } while (need_resched());
  5389. }
  5390. int __sched _cond_resched(void)
  5391. {
  5392. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5393. system_state == SYSTEM_RUNNING) {
  5394. __cond_resched();
  5395. return 1;
  5396. }
  5397. return 0;
  5398. }
  5399. EXPORT_SYMBOL(_cond_resched);
  5400. /*
  5401. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5402. * call schedule, and on return reacquire the lock.
  5403. *
  5404. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5405. * operations here to prevent schedule() from being called twice (once via
  5406. * spin_unlock(), once by hand).
  5407. */
  5408. int cond_resched_lock(spinlock_t *lock)
  5409. {
  5410. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5411. int ret = 0;
  5412. if (spin_needbreak(lock) || resched) {
  5413. spin_unlock(lock);
  5414. if (resched && need_resched())
  5415. __cond_resched();
  5416. else
  5417. cpu_relax();
  5418. ret = 1;
  5419. spin_lock(lock);
  5420. }
  5421. return ret;
  5422. }
  5423. EXPORT_SYMBOL(cond_resched_lock);
  5424. int __sched cond_resched_softirq(void)
  5425. {
  5426. BUG_ON(!in_softirq());
  5427. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5428. local_bh_enable();
  5429. __cond_resched();
  5430. local_bh_disable();
  5431. return 1;
  5432. }
  5433. return 0;
  5434. }
  5435. EXPORT_SYMBOL(cond_resched_softirq);
  5436. /**
  5437. * yield - yield the current processor to other threads.
  5438. *
  5439. * This is a shortcut for kernel-space yielding - it marks the
  5440. * thread runnable and calls sys_sched_yield().
  5441. */
  5442. void __sched yield(void)
  5443. {
  5444. set_current_state(TASK_RUNNING);
  5445. sys_sched_yield();
  5446. }
  5447. EXPORT_SYMBOL(yield);
  5448. /*
  5449. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5450. * that process accounting knows that this is a task in IO wait state.
  5451. *
  5452. * But don't do that if it is a deliberate, throttling IO wait (this task
  5453. * has set its backing_dev_info: the queue against which it should throttle)
  5454. */
  5455. void __sched io_schedule(void)
  5456. {
  5457. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5458. delayacct_blkio_start();
  5459. atomic_inc(&rq->nr_iowait);
  5460. schedule();
  5461. atomic_dec(&rq->nr_iowait);
  5462. delayacct_blkio_end();
  5463. }
  5464. EXPORT_SYMBOL(io_schedule);
  5465. long __sched io_schedule_timeout(long timeout)
  5466. {
  5467. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5468. long ret;
  5469. delayacct_blkio_start();
  5470. atomic_inc(&rq->nr_iowait);
  5471. ret = schedule_timeout(timeout);
  5472. atomic_dec(&rq->nr_iowait);
  5473. delayacct_blkio_end();
  5474. return ret;
  5475. }
  5476. /**
  5477. * sys_sched_get_priority_max - return maximum RT priority.
  5478. * @policy: scheduling class.
  5479. *
  5480. * this syscall returns the maximum rt_priority that can be used
  5481. * by a given scheduling class.
  5482. */
  5483. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5484. {
  5485. int ret = -EINVAL;
  5486. switch (policy) {
  5487. case SCHED_FIFO:
  5488. case SCHED_RR:
  5489. ret = MAX_USER_RT_PRIO-1;
  5490. break;
  5491. case SCHED_NORMAL:
  5492. case SCHED_BATCH:
  5493. case SCHED_IDLE:
  5494. ret = 0;
  5495. break;
  5496. }
  5497. return ret;
  5498. }
  5499. /**
  5500. * sys_sched_get_priority_min - return minimum RT priority.
  5501. * @policy: scheduling class.
  5502. *
  5503. * this syscall returns the minimum rt_priority that can be used
  5504. * by a given scheduling class.
  5505. */
  5506. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5507. {
  5508. int ret = -EINVAL;
  5509. switch (policy) {
  5510. case SCHED_FIFO:
  5511. case SCHED_RR:
  5512. ret = 1;
  5513. break;
  5514. case SCHED_NORMAL:
  5515. case SCHED_BATCH:
  5516. case SCHED_IDLE:
  5517. ret = 0;
  5518. }
  5519. return ret;
  5520. }
  5521. /**
  5522. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5523. * @pid: pid of the process.
  5524. * @interval: userspace pointer to the timeslice value.
  5525. *
  5526. * this syscall writes the default timeslice value of a given process
  5527. * into the user-space timespec buffer. A value of '0' means infinity.
  5528. */
  5529. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5530. struct timespec __user *, interval)
  5531. {
  5532. struct task_struct *p;
  5533. unsigned int time_slice;
  5534. int retval;
  5535. struct timespec t;
  5536. if (pid < 0)
  5537. return -EINVAL;
  5538. retval = -ESRCH;
  5539. read_lock(&tasklist_lock);
  5540. p = find_process_by_pid(pid);
  5541. if (!p)
  5542. goto out_unlock;
  5543. retval = security_task_getscheduler(p);
  5544. if (retval)
  5545. goto out_unlock;
  5546. /*
  5547. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5548. * tasks that are on an otherwise idle runqueue:
  5549. */
  5550. time_slice = 0;
  5551. if (p->policy == SCHED_RR) {
  5552. time_slice = DEF_TIMESLICE;
  5553. } else if (p->policy != SCHED_FIFO) {
  5554. struct sched_entity *se = &p->se;
  5555. unsigned long flags;
  5556. struct rq *rq;
  5557. rq = task_rq_lock(p, &flags);
  5558. if (rq->cfs.load.weight)
  5559. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5560. task_rq_unlock(rq, &flags);
  5561. }
  5562. read_unlock(&tasklist_lock);
  5563. jiffies_to_timespec(time_slice, &t);
  5564. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5565. return retval;
  5566. out_unlock:
  5567. read_unlock(&tasklist_lock);
  5568. return retval;
  5569. }
  5570. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5571. void sched_show_task(struct task_struct *p)
  5572. {
  5573. unsigned long free = 0;
  5574. unsigned state;
  5575. state = p->state ? __ffs(p->state) + 1 : 0;
  5576. printk(KERN_INFO "%-13.13s %c", p->comm,
  5577. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5578. #if BITS_PER_LONG == 32
  5579. if (state == TASK_RUNNING)
  5580. printk(KERN_CONT " running ");
  5581. else
  5582. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5583. #else
  5584. if (state == TASK_RUNNING)
  5585. printk(KERN_CONT " running task ");
  5586. else
  5587. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5588. #endif
  5589. #ifdef CONFIG_DEBUG_STACK_USAGE
  5590. free = stack_not_used(p);
  5591. #endif
  5592. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5593. task_pid_nr(p), task_pid_nr(p->real_parent));
  5594. show_stack(p, NULL);
  5595. }
  5596. void show_state_filter(unsigned long state_filter)
  5597. {
  5598. struct task_struct *g, *p;
  5599. #if BITS_PER_LONG == 32
  5600. printk(KERN_INFO
  5601. " task PC stack pid father\n");
  5602. #else
  5603. printk(KERN_INFO
  5604. " task PC stack pid father\n");
  5605. #endif
  5606. read_lock(&tasklist_lock);
  5607. do_each_thread(g, p) {
  5608. /*
  5609. * reset the NMI-timeout, listing all files on a slow
  5610. * console might take alot of time:
  5611. */
  5612. touch_nmi_watchdog();
  5613. if (!state_filter || (p->state & state_filter))
  5614. sched_show_task(p);
  5615. } while_each_thread(g, p);
  5616. touch_all_softlockup_watchdogs();
  5617. #ifdef CONFIG_SCHED_DEBUG
  5618. sysrq_sched_debug_show();
  5619. #endif
  5620. read_unlock(&tasklist_lock);
  5621. /*
  5622. * Only show locks if all tasks are dumped:
  5623. */
  5624. if (state_filter == -1)
  5625. debug_show_all_locks();
  5626. }
  5627. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5628. {
  5629. idle->sched_class = &idle_sched_class;
  5630. }
  5631. /**
  5632. * init_idle - set up an idle thread for a given CPU
  5633. * @idle: task in question
  5634. * @cpu: cpu the idle task belongs to
  5635. *
  5636. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5637. * flag, to make booting more robust.
  5638. */
  5639. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5640. {
  5641. struct rq *rq = cpu_rq(cpu);
  5642. unsigned long flags;
  5643. spin_lock_irqsave(&rq->lock, flags);
  5644. __sched_fork(idle);
  5645. idle->se.exec_start = sched_clock();
  5646. idle->prio = idle->normal_prio = MAX_PRIO;
  5647. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5648. __set_task_cpu(idle, cpu);
  5649. rq->curr = rq->idle = idle;
  5650. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5651. idle->oncpu = 1;
  5652. #endif
  5653. spin_unlock_irqrestore(&rq->lock, flags);
  5654. /* Set the preempt count _outside_ the spinlocks! */
  5655. #if defined(CONFIG_PREEMPT)
  5656. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5657. #else
  5658. task_thread_info(idle)->preempt_count = 0;
  5659. #endif
  5660. /*
  5661. * The idle tasks have their own, simple scheduling class:
  5662. */
  5663. idle->sched_class = &idle_sched_class;
  5664. ftrace_graph_init_task(idle);
  5665. }
  5666. /*
  5667. * In a system that switches off the HZ timer nohz_cpu_mask
  5668. * indicates which cpus entered this state. This is used
  5669. * in the rcu update to wait only for active cpus. For system
  5670. * which do not switch off the HZ timer nohz_cpu_mask should
  5671. * always be CPU_BITS_NONE.
  5672. */
  5673. cpumask_var_t nohz_cpu_mask;
  5674. /*
  5675. * Increase the granularity value when there are more CPUs,
  5676. * because with more CPUs the 'effective latency' as visible
  5677. * to users decreases. But the relationship is not linear,
  5678. * so pick a second-best guess by going with the log2 of the
  5679. * number of CPUs.
  5680. *
  5681. * This idea comes from the SD scheduler of Con Kolivas:
  5682. */
  5683. static inline void sched_init_granularity(void)
  5684. {
  5685. unsigned int factor = 1 + ilog2(num_online_cpus());
  5686. const unsigned long limit = 200000000;
  5687. sysctl_sched_min_granularity *= factor;
  5688. if (sysctl_sched_min_granularity > limit)
  5689. sysctl_sched_min_granularity = limit;
  5690. sysctl_sched_latency *= factor;
  5691. if (sysctl_sched_latency > limit)
  5692. sysctl_sched_latency = limit;
  5693. sysctl_sched_wakeup_granularity *= factor;
  5694. sysctl_sched_shares_ratelimit *= factor;
  5695. }
  5696. #ifdef CONFIG_SMP
  5697. /*
  5698. * This is how migration works:
  5699. *
  5700. * 1) we queue a struct migration_req structure in the source CPU's
  5701. * runqueue and wake up that CPU's migration thread.
  5702. * 2) we down() the locked semaphore => thread blocks.
  5703. * 3) migration thread wakes up (implicitly it forces the migrated
  5704. * thread off the CPU)
  5705. * 4) it gets the migration request and checks whether the migrated
  5706. * task is still in the wrong runqueue.
  5707. * 5) if it's in the wrong runqueue then the migration thread removes
  5708. * it and puts it into the right queue.
  5709. * 6) migration thread up()s the semaphore.
  5710. * 7) we wake up and the migration is done.
  5711. */
  5712. /*
  5713. * Change a given task's CPU affinity. Migrate the thread to a
  5714. * proper CPU and schedule it away if the CPU it's executing on
  5715. * is removed from the allowed bitmask.
  5716. *
  5717. * NOTE: the caller must have a valid reference to the task, the
  5718. * task must not exit() & deallocate itself prematurely. The
  5719. * call is not atomic; no spinlocks may be held.
  5720. */
  5721. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5722. {
  5723. struct migration_req req;
  5724. unsigned long flags;
  5725. struct rq *rq;
  5726. int ret = 0;
  5727. rq = task_rq_lock(p, &flags);
  5728. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5729. ret = -EINVAL;
  5730. goto out;
  5731. }
  5732. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5733. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5734. ret = -EINVAL;
  5735. goto out;
  5736. }
  5737. if (p->sched_class->set_cpus_allowed)
  5738. p->sched_class->set_cpus_allowed(p, new_mask);
  5739. else {
  5740. cpumask_copy(&p->cpus_allowed, new_mask);
  5741. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5742. }
  5743. /* Can the task run on the task's current CPU? If so, we're done */
  5744. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5745. goto out;
  5746. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5747. /* Need help from migration thread: drop lock and wait. */
  5748. task_rq_unlock(rq, &flags);
  5749. wake_up_process(rq->migration_thread);
  5750. wait_for_completion(&req.done);
  5751. tlb_migrate_finish(p->mm);
  5752. return 0;
  5753. }
  5754. out:
  5755. task_rq_unlock(rq, &flags);
  5756. return ret;
  5757. }
  5758. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5759. /*
  5760. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5761. * this because either it can't run here any more (set_cpus_allowed()
  5762. * away from this CPU, or CPU going down), or because we're
  5763. * attempting to rebalance this task on exec (sched_exec).
  5764. *
  5765. * So we race with normal scheduler movements, but that's OK, as long
  5766. * as the task is no longer on this CPU.
  5767. *
  5768. * Returns non-zero if task was successfully migrated.
  5769. */
  5770. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5771. {
  5772. struct rq *rq_dest, *rq_src;
  5773. int ret = 0, on_rq;
  5774. if (unlikely(!cpu_active(dest_cpu)))
  5775. return ret;
  5776. rq_src = cpu_rq(src_cpu);
  5777. rq_dest = cpu_rq(dest_cpu);
  5778. double_rq_lock(rq_src, rq_dest);
  5779. /* Already moved. */
  5780. if (task_cpu(p) != src_cpu)
  5781. goto done;
  5782. /* Affinity changed (again). */
  5783. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5784. goto fail;
  5785. on_rq = p->se.on_rq;
  5786. if (on_rq)
  5787. deactivate_task(rq_src, p, 0);
  5788. set_task_cpu(p, dest_cpu);
  5789. if (on_rq) {
  5790. activate_task(rq_dest, p, 0);
  5791. check_preempt_curr(rq_dest, p, 0);
  5792. }
  5793. done:
  5794. ret = 1;
  5795. fail:
  5796. double_rq_unlock(rq_src, rq_dest);
  5797. return ret;
  5798. }
  5799. /*
  5800. * migration_thread - this is a highprio system thread that performs
  5801. * thread migration by bumping thread off CPU then 'pushing' onto
  5802. * another runqueue.
  5803. */
  5804. static int migration_thread(void *data)
  5805. {
  5806. int cpu = (long)data;
  5807. struct rq *rq;
  5808. rq = cpu_rq(cpu);
  5809. BUG_ON(rq->migration_thread != current);
  5810. set_current_state(TASK_INTERRUPTIBLE);
  5811. while (!kthread_should_stop()) {
  5812. struct migration_req *req;
  5813. struct list_head *head;
  5814. spin_lock_irq(&rq->lock);
  5815. if (cpu_is_offline(cpu)) {
  5816. spin_unlock_irq(&rq->lock);
  5817. goto wait_to_die;
  5818. }
  5819. if (rq->active_balance) {
  5820. active_load_balance(rq, cpu);
  5821. rq->active_balance = 0;
  5822. }
  5823. head = &rq->migration_queue;
  5824. if (list_empty(head)) {
  5825. spin_unlock_irq(&rq->lock);
  5826. schedule();
  5827. set_current_state(TASK_INTERRUPTIBLE);
  5828. continue;
  5829. }
  5830. req = list_entry(head->next, struct migration_req, list);
  5831. list_del_init(head->next);
  5832. spin_unlock(&rq->lock);
  5833. __migrate_task(req->task, cpu, req->dest_cpu);
  5834. local_irq_enable();
  5835. complete(&req->done);
  5836. }
  5837. __set_current_state(TASK_RUNNING);
  5838. return 0;
  5839. wait_to_die:
  5840. /* Wait for kthread_stop */
  5841. set_current_state(TASK_INTERRUPTIBLE);
  5842. while (!kthread_should_stop()) {
  5843. schedule();
  5844. set_current_state(TASK_INTERRUPTIBLE);
  5845. }
  5846. __set_current_state(TASK_RUNNING);
  5847. return 0;
  5848. }
  5849. #ifdef CONFIG_HOTPLUG_CPU
  5850. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5851. {
  5852. int ret;
  5853. local_irq_disable();
  5854. ret = __migrate_task(p, src_cpu, dest_cpu);
  5855. local_irq_enable();
  5856. return ret;
  5857. }
  5858. /*
  5859. * Figure out where task on dead CPU should go, use force if necessary.
  5860. */
  5861. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5862. {
  5863. int dest_cpu;
  5864. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5865. again:
  5866. /* Look for allowed, online CPU in same node. */
  5867. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5868. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5869. goto move;
  5870. /* Any allowed, online CPU? */
  5871. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5872. if (dest_cpu < nr_cpu_ids)
  5873. goto move;
  5874. /* No more Mr. Nice Guy. */
  5875. if (dest_cpu >= nr_cpu_ids) {
  5876. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5877. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5878. /*
  5879. * Don't tell them about moving exiting tasks or
  5880. * kernel threads (both mm NULL), since they never
  5881. * leave kernel.
  5882. */
  5883. if (p->mm && printk_ratelimit()) {
  5884. printk(KERN_INFO "process %d (%s) no "
  5885. "longer affine to cpu%d\n",
  5886. task_pid_nr(p), p->comm, dead_cpu);
  5887. }
  5888. }
  5889. move:
  5890. /* It can have affinity changed while we were choosing. */
  5891. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5892. goto again;
  5893. }
  5894. /*
  5895. * While a dead CPU has no uninterruptible tasks queued at this point,
  5896. * it might still have a nonzero ->nr_uninterruptible counter, because
  5897. * for performance reasons the counter is not stricly tracking tasks to
  5898. * their home CPUs. So we just add the counter to another CPU's counter,
  5899. * to keep the global sum constant after CPU-down:
  5900. */
  5901. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5902. {
  5903. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5904. unsigned long flags;
  5905. local_irq_save(flags);
  5906. double_rq_lock(rq_src, rq_dest);
  5907. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5908. rq_src->nr_uninterruptible = 0;
  5909. double_rq_unlock(rq_src, rq_dest);
  5910. local_irq_restore(flags);
  5911. }
  5912. /* Run through task list and migrate tasks from the dead cpu. */
  5913. static void migrate_live_tasks(int src_cpu)
  5914. {
  5915. struct task_struct *p, *t;
  5916. read_lock(&tasklist_lock);
  5917. do_each_thread(t, p) {
  5918. if (p == current)
  5919. continue;
  5920. if (task_cpu(p) == src_cpu)
  5921. move_task_off_dead_cpu(src_cpu, p);
  5922. } while_each_thread(t, p);
  5923. read_unlock(&tasklist_lock);
  5924. }
  5925. /*
  5926. * Schedules idle task to be the next runnable task on current CPU.
  5927. * It does so by boosting its priority to highest possible.
  5928. * Used by CPU offline code.
  5929. */
  5930. void sched_idle_next(void)
  5931. {
  5932. int this_cpu = smp_processor_id();
  5933. struct rq *rq = cpu_rq(this_cpu);
  5934. struct task_struct *p = rq->idle;
  5935. unsigned long flags;
  5936. /* cpu has to be offline */
  5937. BUG_ON(cpu_online(this_cpu));
  5938. /*
  5939. * Strictly not necessary since rest of the CPUs are stopped by now
  5940. * and interrupts disabled on the current cpu.
  5941. */
  5942. spin_lock_irqsave(&rq->lock, flags);
  5943. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5944. update_rq_clock(rq);
  5945. activate_task(rq, p, 0);
  5946. spin_unlock_irqrestore(&rq->lock, flags);
  5947. }
  5948. /*
  5949. * Ensures that the idle task is using init_mm right before its cpu goes
  5950. * offline.
  5951. */
  5952. void idle_task_exit(void)
  5953. {
  5954. struct mm_struct *mm = current->active_mm;
  5955. BUG_ON(cpu_online(smp_processor_id()));
  5956. if (mm != &init_mm)
  5957. switch_mm(mm, &init_mm, current);
  5958. mmdrop(mm);
  5959. }
  5960. /* called under rq->lock with disabled interrupts */
  5961. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5962. {
  5963. struct rq *rq = cpu_rq(dead_cpu);
  5964. /* Must be exiting, otherwise would be on tasklist. */
  5965. BUG_ON(!p->exit_state);
  5966. /* Cannot have done final schedule yet: would have vanished. */
  5967. BUG_ON(p->state == TASK_DEAD);
  5968. get_task_struct(p);
  5969. /*
  5970. * Drop lock around migration; if someone else moves it,
  5971. * that's OK. No task can be added to this CPU, so iteration is
  5972. * fine.
  5973. */
  5974. spin_unlock_irq(&rq->lock);
  5975. move_task_off_dead_cpu(dead_cpu, p);
  5976. spin_lock_irq(&rq->lock);
  5977. put_task_struct(p);
  5978. }
  5979. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5980. static void migrate_dead_tasks(unsigned int dead_cpu)
  5981. {
  5982. struct rq *rq = cpu_rq(dead_cpu);
  5983. struct task_struct *next;
  5984. for ( ; ; ) {
  5985. if (!rq->nr_running)
  5986. break;
  5987. update_rq_clock(rq);
  5988. next = pick_next_task(rq);
  5989. if (!next)
  5990. break;
  5991. next->sched_class->put_prev_task(rq, next);
  5992. migrate_dead(dead_cpu, next);
  5993. }
  5994. }
  5995. #endif /* CONFIG_HOTPLUG_CPU */
  5996. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5997. static struct ctl_table sd_ctl_dir[] = {
  5998. {
  5999. .procname = "sched_domain",
  6000. .mode = 0555,
  6001. },
  6002. {0, },
  6003. };
  6004. static struct ctl_table sd_ctl_root[] = {
  6005. {
  6006. .ctl_name = CTL_KERN,
  6007. .procname = "kernel",
  6008. .mode = 0555,
  6009. .child = sd_ctl_dir,
  6010. },
  6011. {0, },
  6012. };
  6013. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6014. {
  6015. struct ctl_table *entry =
  6016. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6017. return entry;
  6018. }
  6019. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6020. {
  6021. struct ctl_table *entry;
  6022. /*
  6023. * In the intermediate directories, both the child directory and
  6024. * procname are dynamically allocated and could fail but the mode
  6025. * will always be set. In the lowest directory the names are
  6026. * static strings and all have proc handlers.
  6027. */
  6028. for (entry = *tablep; entry->mode; entry++) {
  6029. if (entry->child)
  6030. sd_free_ctl_entry(&entry->child);
  6031. if (entry->proc_handler == NULL)
  6032. kfree(entry->procname);
  6033. }
  6034. kfree(*tablep);
  6035. *tablep = NULL;
  6036. }
  6037. static void
  6038. set_table_entry(struct ctl_table *entry,
  6039. const char *procname, void *data, int maxlen,
  6040. mode_t mode, proc_handler *proc_handler)
  6041. {
  6042. entry->procname = procname;
  6043. entry->data = data;
  6044. entry->maxlen = maxlen;
  6045. entry->mode = mode;
  6046. entry->proc_handler = proc_handler;
  6047. }
  6048. static struct ctl_table *
  6049. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6050. {
  6051. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6052. if (table == NULL)
  6053. return NULL;
  6054. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6055. sizeof(long), 0644, proc_doulongvec_minmax);
  6056. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6057. sizeof(long), 0644, proc_doulongvec_minmax);
  6058. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6059. sizeof(int), 0644, proc_dointvec_minmax);
  6060. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6061. sizeof(int), 0644, proc_dointvec_minmax);
  6062. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6063. sizeof(int), 0644, proc_dointvec_minmax);
  6064. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6065. sizeof(int), 0644, proc_dointvec_minmax);
  6066. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6067. sizeof(int), 0644, proc_dointvec_minmax);
  6068. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6069. sizeof(int), 0644, proc_dointvec_minmax);
  6070. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6071. sizeof(int), 0644, proc_dointvec_minmax);
  6072. set_table_entry(&table[9], "cache_nice_tries",
  6073. &sd->cache_nice_tries,
  6074. sizeof(int), 0644, proc_dointvec_minmax);
  6075. set_table_entry(&table[10], "flags", &sd->flags,
  6076. sizeof(int), 0644, proc_dointvec_minmax);
  6077. set_table_entry(&table[11], "name", sd->name,
  6078. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6079. /* &table[12] is terminator */
  6080. return table;
  6081. }
  6082. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6083. {
  6084. struct ctl_table *entry, *table;
  6085. struct sched_domain *sd;
  6086. int domain_num = 0, i;
  6087. char buf[32];
  6088. for_each_domain(cpu, sd)
  6089. domain_num++;
  6090. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6091. if (table == NULL)
  6092. return NULL;
  6093. i = 0;
  6094. for_each_domain(cpu, sd) {
  6095. snprintf(buf, 32, "domain%d", i);
  6096. entry->procname = kstrdup(buf, GFP_KERNEL);
  6097. entry->mode = 0555;
  6098. entry->child = sd_alloc_ctl_domain_table(sd);
  6099. entry++;
  6100. i++;
  6101. }
  6102. return table;
  6103. }
  6104. static struct ctl_table_header *sd_sysctl_header;
  6105. static void register_sched_domain_sysctl(void)
  6106. {
  6107. int i, cpu_num = num_online_cpus();
  6108. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6109. char buf[32];
  6110. WARN_ON(sd_ctl_dir[0].child);
  6111. sd_ctl_dir[0].child = entry;
  6112. if (entry == NULL)
  6113. return;
  6114. for_each_online_cpu(i) {
  6115. snprintf(buf, 32, "cpu%d", i);
  6116. entry->procname = kstrdup(buf, GFP_KERNEL);
  6117. entry->mode = 0555;
  6118. entry->child = sd_alloc_ctl_cpu_table(i);
  6119. entry++;
  6120. }
  6121. WARN_ON(sd_sysctl_header);
  6122. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6123. }
  6124. /* may be called multiple times per register */
  6125. static void unregister_sched_domain_sysctl(void)
  6126. {
  6127. if (sd_sysctl_header)
  6128. unregister_sysctl_table(sd_sysctl_header);
  6129. sd_sysctl_header = NULL;
  6130. if (sd_ctl_dir[0].child)
  6131. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6132. }
  6133. #else
  6134. static void register_sched_domain_sysctl(void)
  6135. {
  6136. }
  6137. static void unregister_sched_domain_sysctl(void)
  6138. {
  6139. }
  6140. #endif
  6141. static void set_rq_online(struct rq *rq)
  6142. {
  6143. if (!rq->online) {
  6144. const struct sched_class *class;
  6145. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6146. rq->online = 1;
  6147. for_each_class(class) {
  6148. if (class->rq_online)
  6149. class->rq_online(rq);
  6150. }
  6151. }
  6152. }
  6153. static void set_rq_offline(struct rq *rq)
  6154. {
  6155. if (rq->online) {
  6156. const struct sched_class *class;
  6157. for_each_class(class) {
  6158. if (class->rq_offline)
  6159. class->rq_offline(rq);
  6160. }
  6161. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6162. rq->online = 0;
  6163. }
  6164. }
  6165. /*
  6166. * migration_call - callback that gets triggered when a CPU is added.
  6167. * Here we can start up the necessary migration thread for the new CPU.
  6168. */
  6169. static int __cpuinit
  6170. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6171. {
  6172. struct task_struct *p;
  6173. int cpu = (long)hcpu;
  6174. unsigned long flags;
  6175. struct rq *rq;
  6176. switch (action) {
  6177. case CPU_UP_PREPARE:
  6178. case CPU_UP_PREPARE_FROZEN:
  6179. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6180. if (IS_ERR(p))
  6181. return NOTIFY_BAD;
  6182. kthread_bind(p, cpu);
  6183. /* Must be high prio: stop_machine expects to yield to it. */
  6184. rq = task_rq_lock(p, &flags);
  6185. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6186. task_rq_unlock(rq, &flags);
  6187. cpu_rq(cpu)->migration_thread = p;
  6188. break;
  6189. case CPU_ONLINE:
  6190. case CPU_ONLINE_FROZEN:
  6191. /* Strictly unnecessary, as first user will wake it. */
  6192. wake_up_process(cpu_rq(cpu)->migration_thread);
  6193. /* Update our root-domain */
  6194. rq = cpu_rq(cpu);
  6195. spin_lock_irqsave(&rq->lock, flags);
  6196. if (rq->rd) {
  6197. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6198. set_rq_online(rq);
  6199. }
  6200. spin_unlock_irqrestore(&rq->lock, flags);
  6201. break;
  6202. #ifdef CONFIG_HOTPLUG_CPU
  6203. case CPU_UP_CANCELED:
  6204. case CPU_UP_CANCELED_FROZEN:
  6205. if (!cpu_rq(cpu)->migration_thread)
  6206. break;
  6207. /* Unbind it from offline cpu so it can run. Fall thru. */
  6208. kthread_bind(cpu_rq(cpu)->migration_thread,
  6209. cpumask_any(cpu_online_mask));
  6210. kthread_stop(cpu_rq(cpu)->migration_thread);
  6211. cpu_rq(cpu)->migration_thread = NULL;
  6212. break;
  6213. case CPU_DEAD:
  6214. case CPU_DEAD_FROZEN:
  6215. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6216. migrate_live_tasks(cpu);
  6217. rq = cpu_rq(cpu);
  6218. kthread_stop(rq->migration_thread);
  6219. rq->migration_thread = NULL;
  6220. /* Idle task back to normal (off runqueue, low prio) */
  6221. spin_lock_irq(&rq->lock);
  6222. update_rq_clock(rq);
  6223. deactivate_task(rq, rq->idle, 0);
  6224. rq->idle->static_prio = MAX_PRIO;
  6225. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6226. rq->idle->sched_class = &idle_sched_class;
  6227. migrate_dead_tasks(cpu);
  6228. spin_unlock_irq(&rq->lock);
  6229. cpuset_unlock();
  6230. migrate_nr_uninterruptible(rq);
  6231. BUG_ON(rq->nr_running != 0);
  6232. /*
  6233. * No need to migrate the tasks: it was best-effort if
  6234. * they didn't take sched_hotcpu_mutex. Just wake up
  6235. * the requestors.
  6236. */
  6237. spin_lock_irq(&rq->lock);
  6238. while (!list_empty(&rq->migration_queue)) {
  6239. struct migration_req *req;
  6240. req = list_entry(rq->migration_queue.next,
  6241. struct migration_req, list);
  6242. list_del_init(&req->list);
  6243. spin_unlock_irq(&rq->lock);
  6244. complete(&req->done);
  6245. spin_lock_irq(&rq->lock);
  6246. }
  6247. spin_unlock_irq(&rq->lock);
  6248. break;
  6249. case CPU_DYING:
  6250. case CPU_DYING_FROZEN:
  6251. /* Update our root-domain */
  6252. rq = cpu_rq(cpu);
  6253. spin_lock_irqsave(&rq->lock, flags);
  6254. if (rq->rd) {
  6255. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6256. set_rq_offline(rq);
  6257. }
  6258. spin_unlock_irqrestore(&rq->lock, flags);
  6259. break;
  6260. #endif
  6261. }
  6262. return NOTIFY_OK;
  6263. }
  6264. /*
  6265. * Register at high priority so that task migration (migrate_all_tasks)
  6266. * happens before everything else. This has to be lower priority than
  6267. * the notifier in the perf_counter subsystem, though.
  6268. */
  6269. static struct notifier_block __cpuinitdata migration_notifier = {
  6270. .notifier_call = migration_call,
  6271. .priority = 10
  6272. };
  6273. static int __init migration_init(void)
  6274. {
  6275. void *cpu = (void *)(long)smp_processor_id();
  6276. int err;
  6277. /* Start one for the boot CPU: */
  6278. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6279. BUG_ON(err == NOTIFY_BAD);
  6280. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6281. register_cpu_notifier(&migration_notifier);
  6282. return err;
  6283. }
  6284. early_initcall(migration_init);
  6285. #endif
  6286. #ifdef CONFIG_SMP
  6287. #ifdef CONFIG_SCHED_DEBUG
  6288. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6289. struct cpumask *groupmask)
  6290. {
  6291. struct sched_group *group = sd->groups;
  6292. char str[256];
  6293. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6294. cpumask_clear(groupmask);
  6295. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6296. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6297. printk("does not load-balance\n");
  6298. if (sd->parent)
  6299. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6300. " has parent");
  6301. return -1;
  6302. }
  6303. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6304. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6305. printk(KERN_ERR "ERROR: domain->span does not contain "
  6306. "CPU%d\n", cpu);
  6307. }
  6308. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6309. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6310. " CPU%d\n", cpu);
  6311. }
  6312. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6313. do {
  6314. if (!group) {
  6315. printk("\n");
  6316. printk(KERN_ERR "ERROR: group is NULL\n");
  6317. break;
  6318. }
  6319. if (!group->__cpu_power) {
  6320. printk(KERN_CONT "\n");
  6321. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6322. "set\n");
  6323. break;
  6324. }
  6325. if (!cpumask_weight(sched_group_cpus(group))) {
  6326. printk(KERN_CONT "\n");
  6327. printk(KERN_ERR "ERROR: empty group\n");
  6328. break;
  6329. }
  6330. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6331. printk(KERN_CONT "\n");
  6332. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6333. break;
  6334. }
  6335. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6336. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6337. printk(KERN_CONT " %s", str);
  6338. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6339. printk(KERN_CONT " (__cpu_power = %d)",
  6340. group->__cpu_power);
  6341. }
  6342. group = group->next;
  6343. } while (group != sd->groups);
  6344. printk(KERN_CONT "\n");
  6345. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6346. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6347. if (sd->parent &&
  6348. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6349. printk(KERN_ERR "ERROR: parent span is not a superset "
  6350. "of domain->span\n");
  6351. return 0;
  6352. }
  6353. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6354. {
  6355. cpumask_var_t groupmask;
  6356. int level = 0;
  6357. if (!sd) {
  6358. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6359. return;
  6360. }
  6361. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6362. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6363. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6364. return;
  6365. }
  6366. for (;;) {
  6367. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6368. break;
  6369. level++;
  6370. sd = sd->parent;
  6371. if (!sd)
  6372. break;
  6373. }
  6374. free_cpumask_var(groupmask);
  6375. }
  6376. #else /* !CONFIG_SCHED_DEBUG */
  6377. # define sched_domain_debug(sd, cpu) do { } while (0)
  6378. #endif /* CONFIG_SCHED_DEBUG */
  6379. static int sd_degenerate(struct sched_domain *sd)
  6380. {
  6381. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6382. return 1;
  6383. /* Following flags need at least 2 groups */
  6384. if (sd->flags & (SD_LOAD_BALANCE |
  6385. SD_BALANCE_NEWIDLE |
  6386. SD_BALANCE_FORK |
  6387. SD_BALANCE_EXEC |
  6388. SD_SHARE_CPUPOWER |
  6389. SD_SHARE_PKG_RESOURCES)) {
  6390. if (sd->groups != sd->groups->next)
  6391. return 0;
  6392. }
  6393. /* Following flags don't use groups */
  6394. if (sd->flags & (SD_WAKE_IDLE |
  6395. SD_WAKE_AFFINE |
  6396. SD_WAKE_BALANCE))
  6397. return 0;
  6398. return 1;
  6399. }
  6400. static int
  6401. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6402. {
  6403. unsigned long cflags = sd->flags, pflags = parent->flags;
  6404. if (sd_degenerate(parent))
  6405. return 1;
  6406. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6407. return 0;
  6408. /* Does parent contain flags not in child? */
  6409. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6410. if (cflags & SD_WAKE_AFFINE)
  6411. pflags &= ~SD_WAKE_BALANCE;
  6412. /* Flags needing groups don't count if only 1 group in parent */
  6413. if (parent->groups == parent->groups->next) {
  6414. pflags &= ~(SD_LOAD_BALANCE |
  6415. SD_BALANCE_NEWIDLE |
  6416. SD_BALANCE_FORK |
  6417. SD_BALANCE_EXEC |
  6418. SD_SHARE_CPUPOWER |
  6419. SD_SHARE_PKG_RESOURCES);
  6420. if (nr_node_ids == 1)
  6421. pflags &= ~SD_SERIALIZE;
  6422. }
  6423. if (~cflags & pflags)
  6424. return 0;
  6425. return 1;
  6426. }
  6427. static void free_rootdomain(struct root_domain *rd)
  6428. {
  6429. cpupri_cleanup(&rd->cpupri);
  6430. free_cpumask_var(rd->rto_mask);
  6431. free_cpumask_var(rd->online);
  6432. free_cpumask_var(rd->span);
  6433. kfree(rd);
  6434. }
  6435. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6436. {
  6437. struct root_domain *old_rd = NULL;
  6438. unsigned long flags;
  6439. spin_lock_irqsave(&rq->lock, flags);
  6440. if (rq->rd) {
  6441. old_rd = rq->rd;
  6442. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6443. set_rq_offline(rq);
  6444. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6445. /*
  6446. * If we dont want to free the old_rt yet then
  6447. * set old_rd to NULL to skip the freeing later
  6448. * in this function:
  6449. */
  6450. if (!atomic_dec_and_test(&old_rd->refcount))
  6451. old_rd = NULL;
  6452. }
  6453. atomic_inc(&rd->refcount);
  6454. rq->rd = rd;
  6455. cpumask_set_cpu(rq->cpu, rd->span);
  6456. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6457. set_rq_online(rq);
  6458. spin_unlock_irqrestore(&rq->lock, flags);
  6459. if (old_rd)
  6460. free_rootdomain(old_rd);
  6461. }
  6462. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6463. {
  6464. memset(rd, 0, sizeof(*rd));
  6465. if (bootmem) {
  6466. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6467. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6468. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6469. cpupri_init(&rd->cpupri, true);
  6470. return 0;
  6471. }
  6472. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6473. goto out;
  6474. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6475. goto free_span;
  6476. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6477. goto free_online;
  6478. if (cpupri_init(&rd->cpupri, false) != 0)
  6479. goto free_rto_mask;
  6480. return 0;
  6481. free_rto_mask:
  6482. free_cpumask_var(rd->rto_mask);
  6483. free_online:
  6484. free_cpumask_var(rd->online);
  6485. free_span:
  6486. free_cpumask_var(rd->span);
  6487. out:
  6488. return -ENOMEM;
  6489. }
  6490. static void init_defrootdomain(void)
  6491. {
  6492. init_rootdomain(&def_root_domain, true);
  6493. atomic_set(&def_root_domain.refcount, 1);
  6494. }
  6495. static struct root_domain *alloc_rootdomain(void)
  6496. {
  6497. struct root_domain *rd;
  6498. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6499. if (!rd)
  6500. return NULL;
  6501. if (init_rootdomain(rd, false) != 0) {
  6502. kfree(rd);
  6503. return NULL;
  6504. }
  6505. return rd;
  6506. }
  6507. /*
  6508. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6509. * hold the hotplug lock.
  6510. */
  6511. static void
  6512. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6513. {
  6514. struct rq *rq = cpu_rq(cpu);
  6515. struct sched_domain *tmp;
  6516. /* Remove the sched domains which do not contribute to scheduling. */
  6517. for (tmp = sd; tmp; ) {
  6518. struct sched_domain *parent = tmp->parent;
  6519. if (!parent)
  6520. break;
  6521. if (sd_parent_degenerate(tmp, parent)) {
  6522. tmp->parent = parent->parent;
  6523. if (parent->parent)
  6524. parent->parent->child = tmp;
  6525. } else
  6526. tmp = tmp->parent;
  6527. }
  6528. if (sd && sd_degenerate(sd)) {
  6529. sd = sd->parent;
  6530. if (sd)
  6531. sd->child = NULL;
  6532. }
  6533. sched_domain_debug(sd, cpu);
  6534. rq_attach_root(rq, rd);
  6535. rcu_assign_pointer(rq->sd, sd);
  6536. }
  6537. /* cpus with isolated domains */
  6538. static cpumask_var_t cpu_isolated_map;
  6539. /* Setup the mask of cpus configured for isolated domains */
  6540. static int __init isolated_cpu_setup(char *str)
  6541. {
  6542. cpulist_parse(str, cpu_isolated_map);
  6543. return 1;
  6544. }
  6545. __setup("isolcpus=", isolated_cpu_setup);
  6546. /*
  6547. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6548. * to a function which identifies what group(along with sched group) a CPU
  6549. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6550. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6551. *
  6552. * init_sched_build_groups will build a circular linked list of the groups
  6553. * covered by the given span, and will set each group's ->cpumask correctly,
  6554. * and ->cpu_power to 0.
  6555. */
  6556. static void
  6557. init_sched_build_groups(const struct cpumask *span,
  6558. const struct cpumask *cpu_map,
  6559. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6560. struct sched_group **sg,
  6561. struct cpumask *tmpmask),
  6562. struct cpumask *covered, struct cpumask *tmpmask)
  6563. {
  6564. struct sched_group *first = NULL, *last = NULL;
  6565. int i;
  6566. cpumask_clear(covered);
  6567. for_each_cpu(i, span) {
  6568. struct sched_group *sg;
  6569. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6570. int j;
  6571. if (cpumask_test_cpu(i, covered))
  6572. continue;
  6573. cpumask_clear(sched_group_cpus(sg));
  6574. sg->__cpu_power = 0;
  6575. for_each_cpu(j, span) {
  6576. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6577. continue;
  6578. cpumask_set_cpu(j, covered);
  6579. cpumask_set_cpu(j, sched_group_cpus(sg));
  6580. }
  6581. if (!first)
  6582. first = sg;
  6583. if (last)
  6584. last->next = sg;
  6585. last = sg;
  6586. }
  6587. last->next = first;
  6588. }
  6589. #define SD_NODES_PER_DOMAIN 16
  6590. #ifdef CONFIG_NUMA
  6591. /**
  6592. * find_next_best_node - find the next node to include in a sched_domain
  6593. * @node: node whose sched_domain we're building
  6594. * @used_nodes: nodes already in the sched_domain
  6595. *
  6596. * Find the next node to include in a given scheduling domain. Simply
  6597. * finds the closest node not already in the @used_nodes map.
  6598. *
  6599. * Should use nodemask_t.
  6600. */
  6601. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6602. {
  6603. int i, n, val, min_val, best_node = 0;
  6604. min_val = INT_MAX;
  6605. for (i = 0; i < nr_node_ids; i++) {
  6606. /* Start at @node */
  6607. n = (node + i) % nr_node_ids;
  6608. if (!nr_cpus_node(n))
  6609. continue;
  6610. /* Skip already used nodes */
  6611. if (node_isset(n, *used_nodes))
  6612. continue;
  6613. /* Simple min distance search */
  6614. val = node_distance(node, n);
  6615. if (val < min_val) {
  6616. min_val = val;
  6617. best_node = n;
  6618. }
  6619. }
  6620. node_set(best_node, *used_nodes);
  6621. return best_node;
  6622. }
  6623. /**
  6624. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6625. * @node: node whose cpumask we're constructing
  6626. * @span: resulting cpumask
  6627. *
  6628. * Given a node, construct a good cpumask for its sched_domain to span. It
  6629. * should be one that prevents unnecessary balancing, but also spreads tasks
  6630. * out optimally.
  6631. */
  6632. static void sched_domain_node_span(int node, struct cpumask *span)
  6633. {
  6634. nodemask_t used_nodes;
  6635. int i;
  6636. cpumask_clear(span);
  6637. nodes_clear(used_nodes);
  6638. cpumask_or(span, span, cpumask_of_node(node));
  6639. node_set(node, used_nodes);
  6640. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6641. int next_node = find_next_best_node(node, &used_nodes);
  6642. cpumask_or(span, span, cpumask_of_node(next_node));
  6643. }
  6644. }
  6645. #endif /* CONFIG_NUMA */
  6646. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6647. /*
  6648. * The cpus mask in sched_group and sched_domain hangs off the end.
  6649. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6650. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6651. */
  6652. struct static_sched_group {
  6653. struct sched_group sg;
  6654. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6655. };
  6656. struct static_sched_domain {
  6657. struct sched_domain sd;
  6658. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6659. };
  6660. /*
  6661. * SMT sched-domains:
  6662. */
  6663. #ifdef CONFIG_SCHED_SMT
  6664. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6665. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6666. static int
  6667. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6668. struct sched_group **sg, struct cpumask *unused)
  6669. {
  6670. if (sg)
  6671. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6672. return cpu;
  6673. }
  6674. #endif /* CONFIG_SCHED_SMT */
  6675. /*
  6676. * multi-core sched-domains:
  6677. */
  6678. #ifdef CONFIG_SCHED_MC
  6679. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6680. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6681. #endif /* CONFIG_SCHED_MC */
  6682. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6683. static int
  6684. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6685. struct sched_group **sg, struct cpumask *mask)
  6686. {
  6687. int group;
  6688. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6689. group = cpumask_first(mask);
  6690. if (sg)
  6691. *sg = &per_cpu(sched_group_core, group).sg;
  6692. return group;
  6693. }
  6694. #elif defined(CONFIG_SCHED_MC)
  6695. static int
  6696. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6697. struct sched_group **sg, struct cpumask *unused)
  6698. {
  6699. if (sg)
  6700. *sg = &per_cpu(sched_group_core, cpu).sg;
  6701. return cpu;
  6702. }
  6703. #endif
  6704. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6705. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6706. static int
  6707. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6708. struct sched_group **sg, struct cpumask *mask)
  6709. {
  6710. int group;
  6711. #ifdef CONFIG_SCHED_MC
  6712. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6713. group = cpumask_first(mask);
  6714. #elif defined(CONFIG_SCHED_SMT)
  6715. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6716. group = cpumask_first(mask);
  6717. #else
  6718. group = cpu;
  6719. #endif
  6720. if (sg)
  6721. *sg = &per_cpu(sched_group_phys, group).sg;
  6722. return group;
  6723. }
  6724. #ifdef CONFIG_NUMA
  6725. /*
  6726. * The init_sched_build_groups can't handle what we want to do with node
  6727. * groups, so roll our own. Now each node has its own list of groups which
  6728. * gets dynamically allocated.
  6729. */
  6730. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6731. static struct sched_group ***sched_group_nodes_bycpu;
  6732. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6733. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6734. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6735. struct sched_group **sg,
  6736. struct cpumask *nodemask)
  6737. {
  6738. int group;
  6739. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6740. group = cpumask_first(nodemask);
  6741. if (sg)
  6742. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6743. return group;
  6744. }
  6745. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6746. {
  6747. struct sched_group *sg = group_head;
  6748. int j;
  6749. if (!sg)
  6750. return;
  6751. do {
  6752. for_each_cpu(j, sched_group_cpus(sg)) {
  6753. struct sched_domain *sd;
  6754. sd = &per_cpu(phys_domains, j).sd;
  6755. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6756. /*
  6757. * Only add "power" once for each
  6758. * physical package.
  6759. */
  6760. continue;
  6761. }
  6762. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6763. }
  6764. sg = sg->next;
  6765. } while (sg != group_head);
  6766. }
  6767. #endif /* CONFIG_NUMA */
  6768. #ifdef CONFIG_NUMA
  6769. /* Free memory allocated for various sched_group structures */
  6770. static void free_sched_groups(const struct cpumask *cpu_map,
  6771. struct cpumask *nodemask)
  6772. {
  6773. int cpu, i;
  6774. for_each_cpu(cpu, cpu_map) {
  6775. struct sched_group **sched_group_nodes
  6776. = sched_group_nodes_bycpu[cpu];
  6777. if (!sched_group_nodes)
  6778. continue;
  6779. for (i = 0; i < nr_node_ids; i++) {
  6780. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6781. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6782. if (cpumask_empty(nodemask))
  6783. continue;
  6784. if (sg == NULL)
  6785. continue;
  6786. sg = sg->next;
  6787. next_sg:
  6788. oldsg = sg;
  6789. sg = sg->next;
  6790. kfree(oldsg);
  6791. if (oldsg != sched_group_nodes[i])
  6792. goto next_sg;
  6793. }
  6794. kfree(sched_group_nodes);
  6795. sched_group_nodes_bycpu[cpu] = NULL;
  6796. }
  6797. }
  6798. #else /* !CONFIG_NUMA */
  6799. static void free_sched_groups(const struct cpumask *cpu_map,
  6800. struct cpumask *nodemask)
  6801. {
  6802. }
  6803. #endif /* CONFIG_NUMA */
  6804. /*
  6805. * Initialize sched groups cpu_power.
  6806. *
  6807. * cpu_power indicates the capacity of sched group, which is used while
  6808. * distributing the load between different sched groups in a sched domain.
  6809. * Typically cpu_power for all the groups in a sched domain will be same unless
  6810. * there are asymmetries in the topology. If there are asymmetries, group
  6811. * having more cpu_power will pickup more load compared to the group having
  6812. * less cpu_power.
  6813. *
  6814. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6815. * the maximum number of tasks a group can handle in the presence of other idle
  6816. * or lightly loaded groups in the same sched domain.
  6817. */
  6818. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6819. {
  6820. struct sched_domain *child;
  6821. struct sched_group *group;
  6822. WARN_ON(!sd || !sd->groups);
  6823. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6824. return;
  6825. child = sd->child;
  6826. sd->groups->__cpu_power = 0;
  6827. /*
  6828. * For perf policy, if the groups in child domain share resources
  6829. * (for example cores sharing some portions of the cache hierarchy
  6830. * or SMT), then set this domain groups cpu_power such that each group
  6831. * can handle only one task, when there are other idle groups in the
  6832. * same sched domain.
  6833. */
  6834. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6835. (child->flags &
  6836. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6837. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6838. return;
  6839. }
  6840. /*
  6841. * add cpu_power of each child group to this groups cpu_power
  6842. */
  6843. group = child->groups;
  6844. do {
  6845. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6846. group = group->next;
  6847. } while (group != child->groups);
  6848. }
  6849. /*
  6850. * Initializers for schedule domains
  6851. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6852. */
  6853. #ifdef CONFIG_SCHED_DEBUG
  6854. # define SD_INIT_NAME(sd, type) sd->name = #type
  6855. #else
  6856. # define SD_INIT_NAME(sd, type) do { } while (0)
  6857. #endif
  6858. #define SD_INIT(sd, type) sd_init_##type(sd)
  6859. #define SD_INIT_FUNC(type) \
  6860. static noinline void sd_init_##type(struct sched_domain *sd) \
  6861. { \
  6862. memset(sd, 0, sizeof(*sd)); \
  6863. *sd = SD_##type##_INIT; \
  6864. sd->level = SD_LV_##type; \
  6865. SD_INIT_NAME(sd, type); \
  6866. }
  6867. SD_INIT_FUNC(CPU)
  6868. #ifdef CONFIG_NUMA
  6869. SD_INIT_FUNC(ALLNODES)
  6870. SD_INIT_FUNC(NODE)
  6871. #endif
  6872. #ifdef CONFIG_SCHED_SMT
  6873. SD_INIT_FUNC(SIBLING)
  6874. #endif
  6875. #ifdef CONFIG_SCHED_MC
  6876. SD_INIT_FUNC(MC)
  6877. #endif
  6878. static int default_relax_domain_level = -1;
  6879. static int __init setup_relax_domain_level(char *str)
  6880. {
  6881. unsigned long val;
  6882. val = simple_strtoul(str, NULL, 0);
  6883. if (val < SD_LV_MAX)
  6884. default_relax_domain_level = val;
  6885. return 1;
  6886. }
  6887. __setup("relax_domain_level=", setup_relax_domain_level);
  6888. static void set_domain_attribute(struct sched_domain *sd,
  6889. struct sched_domain_attr *attr)
  6890. {
  6891. int request;
  6892. if (!attr || attr->relax_domain_level < 0) {
  6893. if (default_relax_domain_level < 0)
  6894. return;
  6895. else
  6896. request = default_relax_domain_level;
  6897. } else
  6898. request = attr->relax_domain_level;
  6899. if (request < sd->level) {
  6900. /* turn off idle balance on this domain */
  6901. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6902. } else {
  6903. /* turn on idle balance on this domain */
  6904. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6905. }
  6906. }
  6907. /*
  6908. * Build sched domains for a given set of cpus and attach the sched domains
  6909. * to the individual cpus
  6910. */
  6911. static int __build_sched_domains(const struct cpumask *cpu_map,
  6912. struct sched_domain_attr *attr)
  6913. {
  6914. int i, err = -ENOMEM;
  6915. struct root_domain *rd;
  6916. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6917. tmpmask;
  6918. #ifdef CONFIG_NUMA
  6919. cpumask_var_t domainspan, covered, notcovered;
  6920. struct sched_group **sched_group_nodes = NULL;
  6921. int sd_allnodes = 0;
  6922. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6923. goto out;
  6924. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6925. goto free_domainspan;
  6926. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6927. goto free_covered;
  6928. #endif
  6929. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6930. goto free_notcovered;
  6931. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6932. goto free_nodemask;
  6933. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6934. goto free_this_sibling_map;
  6935. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6936. goto free_this_core_map;
  6937. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6938. goto free_send_covered;
  6939. #ifdef CONFIG_NUMA
  6940. /*
  6941. * Allocate the per-node list of sched groups
  6942. */
  6943. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6944. GFP_KERNEL);
  6945. if (!sched_group_nodes) {
  6946. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6947. goto free_tmpmask;
  6948. }
  6949. #endif
  6950. rd = alloc_rootdomain();
  6951. if (!rd) {
  6952. printk(KERN_WARNING "Cannot alloc root domain\n");
  6953. goto free_sched_groups;
  6954. }
  6955. #ifdef CONFIG_NUMA
  6956. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6957. #endif
  6958. /*
  6959. * Set up domains for cpus specified by the cpu_map.
  6960. */
  6961. for_each_cpu(i, cpu_map) {
  6962. struct sched_domain *sd = NULL, *p;
  6963. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6964. #ifdef CONFIG_NUMA
  6965. if (cpumask_weight(cpu_map) >
  6966. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6967. sd = &per_cpu(allnodes_domains, i).sd;
  6968. SD_INIT(sd, ALLNODES);
  6969. set_domain_attribute(sd, attr);
  6970. cpumask_copy(sched_domain_span(sd), cpu_map);
  6971. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6972. p = sd;
  6973. sd_allnodes = 1;
  6974. } else
  6975. p = NULL;
  6976. sd = &per_cpu(node_domains, i).sd;
  6977. SD_INIT(sd, NODE);
  6978. set_domain_attribute(sd, attr);
  6979. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6980. sd->parent = p;
  6981. if (p)
  6982. p->child = sd;
  6983. cpumask_and(sched_domain_span(sd),
  6984. sched_domain_span(sd), cpu_map);
  6985. #endif
  6986. p = sd;
  6987. sd = &per_cpu(phys_domains, i).sd;
  6988. SD_INIT(sd, CPU);
  6989. set_domain_attribute(sd, attr);
  6990. cpumask_copy(sched_domain_span(sd), nodemask);
  6991. sd->parent = p;
  6992. if (p)
  6993. p->child = sd;
  6994. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6995. #ifdef CONFIG_SCHED_MC
  6996. p = sd;
  6997. sd = &per_cpu(core_domains, i).sd;
  6998. SD_INIT(sd, MC);
  6999. set_domain_attribute(sd, attr);
  7000. cpumask_and(sched_domain_span(sd), cpu_map,
  7001. cpu_coregroup_mask(i));
  7002. sd->parent = p;
  7003. p->child = sd;
  7004. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7005. #endif
  7006. #ifdef CONFIG_SCHED_SMT
  7007. p = sd;
  7008. sd = &per_cpu(cpu_domains, i).sd;
  7009. SD_INIT(sd, SIBLING);
  7010. set_domain_attribute(sd, attr);
  7011. cpumask_and(sched_domain_span(sd),
  7012. topology_thread_cpumask(i), cpu_map);
  7013. sd->parent = p;
  7014. p->child = sd;
  7015. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7016. #endif
  7017. }
  7018. #ifdef CONFIG_SCHED_SMT
  7019. /* Set up CPU (sibling) groups */
  7020. for_each_cpu(i, cpu_map) {
  7021. cpumask_and(this_sibling_map,
  7022. topology_thread_cpumask(i), cpu_map);
  7023. if (i != cpumask_first(this_sibling_map))
  7024. continue;
  7025. init_sched_build_groups(this_sibling_map, cpu_map,
  7026. &cpu_to_cpu_group,
  7027. send_covered, tmpmask);
  7028. }
  7029. #endif
  7030. #ifdef CONFIG_SCHED_MC
  7031. /* Set up multi-core groups */
  7032. for_each_cpu(i, cpu_map) {
  7033. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7034. if (i != cpumask_first(this_core_map))
  7035. continue;
  7036. init_sched_build_groups(this_core_map, cpu_map,
  7037. &cpu_to_core_group,
  7038. send_covered, tmpmask);
  7039. }
  7040. #endif
  7041. /* Set up physical groups */
  7042. for (i = 0; i < nr_node_ids; i++) {
  7043. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7044. if (cpumask_empty(nodemask))
  7045. continue;
  7046. init_sched_build_groups(nodemask, cpu_map,
  7047. &cpu_to_phys_group,
  7048. send_covered, tmpmask);
  7049. }
  7050. #ifdef CONFIG_NUMA
  7051. /* Set up node groups */
  7052. if (sd_allnodes) {
  7053. init_sched_build_groups(cpu_map, cpu_map,
  7054. &cpu_to_allnodes_group,
  7055. send_covered, tmpmask);
  7056. }
  7057. for (i = 0; i < nr_node_ids; i++) {
  7058. /* Set up node groups */
  7059. struct sched_group *sg, *prev;
  7060. int j;
  7061. cpumask_clear(covered);
  7062. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7063. if (cpumask_empty(nodemask)) {
  7064. sched_group_nodes[i] = NULL;
  7065. continue;
  7066. }
  7067. sched_domain_node_span(i, domainspan);
  7068. cpumask_and(domainspan, domainspan, cpu_map);
  7069. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7070. GFP_KERNEL, i);
  7071. if (!sg) {
  7072. printk(KERN_WARNING "Can not alloc domain group for "
  7073. "node %d\n", i);
  7074. goto error;
  7075. }
  7076. sched_group_nodes[i] = sg;
  7077. for_each_cpu(j, nodemask) {
  7078. struct sched_domain *sd;
  7079. sd = &per_cpu(node_domains, j).sd;
  7080. sd->groups = sg;
  7081. }
  7082. sg->__cpu_power = 0;
  7083. cpumask_copy(sched_group_cpus(sg), nodemask);
  7084. sg->next = sg;
  7085. cpumask_or(covered, covered, nodemask);
  7086. prev = sg;
  7087. for (j = 0; j < nr_node_ids; j++) {
  7088. int n = (i + j) % nr_node_ids;
  7089. cpumask_complement(notcovered, covered);
  7090. cpumask_and(tmpmask, notcovered, cpu_map);
  7091. cpumask_and(tmpmask, tmpmask, domainspan);
  7092. if (cpumask_empty(tmpmask))
  7093. break;
  7094. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7095. if (cpumask_empty(tmpmask))
  7096. continue;
  7097. sg = kmalloc_node(sizeof(struct sched_group) +
  7098. cpumask_size(),
  7099. GFP_KERNEL, i);
  7100. if (!sg) {
  7101. printk(KERN_WARNING
  7102. "Can not alloc domain group for node %d\n", j);
  7103. goto error;
  7104. }
  7105. sg->__cpu_power = 0;
  7106. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7107. sg->next = prev->next;
  7108. cpumask_or(covered, covered, tmpmask);
  7109. prev->next = sg;
  7110. prev = sg;
  7111. }
  7112. }
  7113. #endif
  7114. /* Calculate CPU power for physical packages and nodes */
  7115. #ifdef CONFIG_SCHED_SMT
  7116. for_each_cpu(i, cpu_map) {
  7117. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7118. init_sched_groups_power(i, sd);
  7119. }
  7120. #endif
  7121. #ifdef CONFIG_SCHED_MC
  7122. for_each_cpu(i, cpu_map) {
  7123. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7124. init_sched_groups_power(i, sd);
  7125. }
  7126. #endif
  7127. for_each_cpu(i, cpu_map) {
  7128. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7129. init_sched_groups_power(i, sd);
  7130. }
  7131. #ifdef CONFIG_NUMA
  7132. for (i = 0; i < nr_node_ids; i++)
  7133. init_numa_sched_groups_power(sched_group_nodes[i]);
  7134. if (sd_allnodes) {
  7135. struct sched_group *sg;
  7136. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7137. tmpmask);
  7138. init_numa_sched_groups_power(sg);
  7139. }
  7140. #endif
  7141. /* Attach the domains */
  7142. for_each_cpu(i, cpu_map) {
  7143. struct sched_domain *sd;
  7144. #ifdef CONFIG_SCHED_SMT
  7145. sd = &per_cpu(cpu_domains, i).sd;
  7146. #elif defined(CONFIG_SCHED_MC)
  7147. sd = &per_cpu(core_domains, i).sd;
  7148. #else
  7149. sd = &per_cpu(phys_domains, i).sd;
  7150. #endif
  7151. cpu_attach_domain(sd, rd, i);
  7152. }
  7153. err = 0;
  7154. free_tmpmask:
  7155. free_cpumask_var(tmpmask);
  7156. free_send_covered:
  7157. free_cpumask_var(send_covered);
  7158. free_this_core_map:
  7159. free_cpumask_var(this_core_map);
  7160. free_this_sibling_map:
  7161. free_cpumask_var(this_sibling_map);
  7162. free_nodemask:
  7163. free_cpumask_var(nodemask);
  7164. free_notcovered:
  7165. #ifdef CONFIG_NUMA
  7166. free_cpumask_var(notcovered);
  7167. free_covered:
  7168. free_cpumask_var(covered);
  7169. free_domainspan:
  7170. free_cpumask_var(domainspan);
  7171. out:
  7172. #endif
  7173. return err;
  7174. free_sched_groups:
  7175. #ifdef CONFIG_NUMA
  7176. kfree(sched_group_nodes);
  7177. #endif
  7178. goto free_tmpmask;
  7179. #ifdef CONFIG_NUMA
  7180. error:
  7181. free_sched_groups(cpu_map, tmpmask);
  7182. free_rootdomain(rd);
  7183. goto free_tmpmask;
  7184. #endif
  7185. }
  7186. static int build_sched_domains(const struct cpumask *cpu_map)
  7187. {
  7188. return __build_sched_domains(cpu_map, NULL);
  7189. }
  7190. static struct cpumask *doms_cur; /* current sched domains */
  7191. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7192. static struct sched_domain_attr *dattr_cur;
  7193. /* attribues of custom domains in 'doms_cur' */
  7194. /*
  7195. * Special case: If a kmalloc of a doms_cur partition (array of
  7196. * cpumask) fails, then fallback to a single sched domain,
  7197. * as determined by the single cpumask fallback_doms.
  7198. */
  7199. static cpumask_var_t fallback_doms;
  7200. /*
  7201. * arch_update_cpu_topology lets virtualized architectures update the
  7202. * cpu core maps. It is supposed to return 1 if the topology changed
  7203. * or 0 if it stayed the same.
  7204. */
  7205. int __attribute__((weak)) arch_update_cpu_topology(void)
  7206. {
  7207. return 0;
  7208. }
  7209. /*
  7210. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7211. * For now this just excludes isolated cpus, but could be used to
  7212. * exclude other special cases in the future.
  7213. */
  7214. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7215. {
  7216. int err;
  7217. arch_update_cpu_topology();
  7218. ndoms_cur = 1;
  7219. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7220. if (!doms_cur)
  7221. doms_cur = fallback_doms;
  7222. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7223. dattr_cur = NULL;
  7224. err = build_sched_domains(doms_cur);
  7225. register_sched_domain_sysctl();
  7226. return err;
  7227. }
  7228. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7229. struct cpumask *tmpmask)
  7230. {
  7231. free_sched_groups(cpu_map, tmpmask);
  7232. }
  7233. /*
  7234. * Detach sched domains from a group of cpus specified in cpu_map
  7235. * These cpus will now be attached to the NULL domain
  7236. */
  7237. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7238. {
  7239. /* Save because hotplug lock held. */
  7240. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7241. int i;
  7242. for_each_cpu(i, cpu_map)
  7243. cpu_attach_domain(NULL, &def_root_domain, i);
  7244. synchronize_sched();
  7245. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7246. }
  7247. /* handle null as "default" */
  7248. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7249. struct sched_domain_attr *new, int idx_new)
  7250. {
  7251. struct sched_domain_attr tmp;
  7252. /* fast path */
  7253. if (!new && !cur)
  7254. return 1;
  7255. tmp = SD_ATTR_INIT;
  7256. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7257. new ? (new + idx_new) : &tmp,
  7258. sizeof(struct sched_domain_attr));
  7259. }
  7260. /*
  7261. * Partition sched domains as specified by the 'ndoms_new'
  7262. * cpumasks in the array doms_new[] of cpumasks. This compares
  7263. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7264. * It destroys each deleted domain and builds each new domain.
  7265. *
  7266. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7267. * The masks don't intersect (don't overlap.) We should setup one
  7268. * sched domain for each mask. CPUs not in any of the cpumasks will
  7269. * not be load balanced. If the same cpumask appears both in the
  7270. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7271. * it as it is.
  7272. *
  7273. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7274. * ownership of it and will kfree it when done with it. If the caller
  7275. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7276. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7277. * the single partition 'fallback_doms', it also forces the domains
  7278. * to be rebuilt.
  7279. *
  7280. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7281. * ndoms_new == 0 is a special case for destroying existing domains,
  7282. * and it will not create the default domain.
  7283. *
  7284. * Call with hotplug lock held
  7285. */
  7286. /* FIXME: Change to struct cpumask *doms_new[] */
  7287. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7288. struct sched_domain_attr *dattr_new)
  7289. {
  7290. int i, j, n;
  7291. int new_topology;
  7292. mutex_lock(&sched_domains_mutex);
  7293. /* always unregister in case we don't destroy any domains */
  7294. unregister_sched_domain_sysctl();
  7295. /* Let architecture update cpu core mappings. */
  7296. new_topology = arch_update_cpu_topology();
  7297. n = doms_new ? ndoms_new : 0;
  7298. /* Destroy deleted domains */
  7299. for (i = 0; i < ndoms_cur; i++) {
  7300. for (j = 0; j < n && !new_topology; j++) {
  7301. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7302. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7303. goto match1;
  7304. }
  7305. /* no match - a current sched domain not in new doms_new[] */
  7306. detach_destroy_domains(doms_cur + i);
  7307. match1:
  7308. ;
  7309. }
  7310. if (doms_new == NULL) {
  7311. ndoms_cur = 0;
  7312. doms_new = fallback_doms;
  7313. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7314. WARN_ON_ONCE(dattr_new);
  7315. }
  7316. /* Build new domains */
  7317. for (i = 0; i < ndoms_new; i++) {
  7318. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7319. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7320. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7321. goto match2;
  7322. }
  7323. /* no match - add a new doms_new */
  7324. __build_sched_domains(doms_new + i,
  7325. dattr_new ? dattr_new + i : NULL);
  7326. match2:
  7327. ;
  7328. }
  7329. /* Remember the new sched domains */
  7330. if (doms_cur != fallback_doms)
  7331. kfree(doms_cur);
  7332. kfree(dattr_cur); /* kfree(NULL) is safe */
  7333. doms_cur = doms_new;
  7334. dattr_cur = dattr_new;
  7335. ndoms_cur = ndoms_new;
  7336. register_sched_domain_sysctl();
  7337. mutex_unlock(&sched_domains_mutex);
  7338. }
  7339. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7340. static void arch_reinit_sched_domains(void)
  7341. {
  7342. get_online_cpus();
  7343. /* Destroy domains first to force the rebuild */
  7344. partition_sched_domains(0, NULL, NULL);
  7345. rebuild_sched_domains();
  7346. put_online_cpus();
  7347. }
  7348. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7349. {
  7350. unsigned int level = 0;
  7351. if (sscanf(buf, "%u", &level) != 1)
  7352. return -EINVAL;
  7353. /*
  7354. * level is always be positive so don't check for
  7355. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7356. * What happens on 0 or 1 byte write,
  7357. * need to check for count as well?
  7358. */
  7359. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7360. return -EINVAL;
  7361. if (smt)
  7362. sched_smt_power_savings = level;
  7363. else
  7364. sched_mc_power_savings = level;
  7365. arch_reinit_sched_domains();
  7366. return count;
  7367. }
  7368. #ifdef CONFIG_SCHED_MC
  7369. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7370. char *page)
  7371. {
  7372. return sprintf(page, "%u\n", sched_mc_power_savings);
  7373. }
  7374. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7375. const char *buf, size_t count)
  7376. {
  7377. return sched_power_savings_store(buf, count, 0);
  7378. }
  7379. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7380. sched_mc_power_savings_show,
  7381. sched_mc_power_savings_store);
  7382. #endif
  7383. #ifdef CONFIG_SCHED_SMT
  7384. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7385. char *page)
  7386. {
  7387. return sprintf(page, "%u\n", sched_smt_power_savings);
  7388. }
  7389. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7390. const char *buf, size_t count)
  7391. {
  7392. return sched_power_savings_store(buf, count, 1);
  7393. }
  7394. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7395. sched_smt_power_savings_show,
  7396. sched_smt_power_savings_store);
  7397. #endif
  7398. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7399. {
  7400. int err = 0;
  7401. #ifdef CONFIG_SCHED_SMT
  7402. if (smt_capable())
  7403. err = sysfs_create_file(&cls->kset.kobj,
  7404. &attr_sched_smt_power_savings.attr);
  7405. #endif
  7406. #ifdef CONFIG_SCHED_MC
  7407. if (!err && mc_capable())
  7408. err = sysfs_create_file(&cls->kset.kobj,
  7409. &attr_sched_mc_power_savings.attr);
  7410. #endif
  7411. return err;
  7412. }
  7413. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7414. #ifndef CONFIG_CPUSETS
  7415. /*
  7416. * Add online and remove offline CPUs from the scheduler domains.
  7417. * When cpusets are enabled they take over this function.
  7418. */
  7419. static int update_sched_domains(struct notifier_block *nfb,
  7420. unsigned long action, void *hcpu)
  7421. {
  7422. switch (action) {
  7423. case CPU_ONLINE:
  7424. case CPU_ONLINE_FROZEN:
  7425. case CPU_DEAD:
  7426. case CPU_DEAD_FROZEN:
  7427. partition_sched_domains(1, NULL, NULL);
  7428. return NOTIFY_OK;
  7429. default:
  7430. return NOTIFY_DONE;
  7431. }
  7432. }
  7433. #endif
  7434. static int update_runtime(struct notifier_block *nfb,
  7435. unsigned long action, void *hcpu)
  7436. {
  7437. int cpu = (int)(long)hcpu;
  7438. switch (action) {
  7439. case CPU_DOWN_PREPARE:
  7440. case CPU_DOWN_PREPARE_FROZEN:
  7441. disable_runtime(cpu_rq(cpu));
  7442. return NOTIFY_OK;
  7443. case CPU_DOWN_FAILED:
  7444. case CPU_DOWN_FAILED_FROZEN:
  7445. case CPU_ONLINE:
  7446. case CPU_ONLINE_FROZEN:
  7447. enable_runtime(cpu_rq(cpu));
  7448. return NOTIFY_OK;
  7449. default:
  7450. return NOTIFY_DONE;
  7451. }
  7452. }
  7453. void __init sched_init_smp(void)
  7454. {
  7455. cpumask_var_t non_isolated_cpus;
  7456. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7457. #if defined(CONFIG_NUMA)
  7458. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7459. GFP_KERNEL);
  7460. BUG_ON(sched_group_nodes_bycpu == NULL);
  7461. #endif
  7462. get_online_cpus();
  7463. mutex_lock(&sched_domains_mutex);
  7464. arch_init_sched_domains(cpu_online_mask);
  7465. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7466. if (cpumask_empty(non_isolated_cpus))
  7467. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7468. mutex_unlock(&sched_domains_mutex);
  7469. put_online_cpus();
  7470. #ifndef CONFIG_CPUSETS
  7471. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7472. hotcpu_notifier(update_sched_domains, 0);
  7473. #endif
  7474. /* RT runtime code needs to handle some hotplug events */
  7475. hotcpu_notifier(update_runtime, 0);
  7476. init_hrtick();
  7477. /* Move init over to a non-isolated CPU */
  7478. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7479. BUG();
  7480. sched_init_granularity();
  7481. free_cpumask_var(non_isolated_cpus);
  7482. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7483. init_sched_rt_class();
  7484. }
  7485. #else
  7486. void __init sched_init_smp(void)
  7487. {
  7488. sched_init_granularity();
  7489. }
  7490. #endif /* CONFIG_SMP */
  7491. int in_sched_functions(unsigned long addr)
  7492. {
  7493. return in_lock_functions(addr) ||
  7494. (addr >= (unsigned long)__sched_text_start
  7495. && addr < (unsigned long)__sched_text_end);
  7496. }
  7497. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7498. {
  7499. cfs_rq->tasks_timeline = RB_ROOT;
  7500. INIT_LIST_HEAD(&cfs_rq->tasks);
  7501. #ifdef CONFIG_FAIR_GROUP_SCHED
  7502. cfs_rq->rq = rq;
  7503. #endif
  7504. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7505. }
  7506. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7507. {
  7508. struct rt_prio_array *array;
  7509. int i;
  7510. array = &rt_rq->active;
  7511. for (i = 0; i < MAX_RT_PRIO; i++) {
  7512. INIT_LIST_HEAD(array->queue + i);
  7513. __clear_bit(i, array->bitmap);
  7514. }
  7515. /* delimiter for bitsearch: */
  7516. __set_bit(MAX_RT_PRIO, array->bitmap);
  7517. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7518. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7519. #ifdef CONFIG_SMP
  7520. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7521. #endif
  7522. #endif
  7523. #ifdef CONFIG_SMP
  7524. rt_rq->rt_nr_migratory = 0;
  7525. rt_rq->overloaded = 0;
  7526. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7527. #endif
  7528. rt_rq->rt_time = 0;
  7529. rt_rq->rt_throttled = 0;
  7530. rt_rq->rt_runtime = 0;
  7531. spin_lock_init(&rt_rq->rt_runtime_lock);
  7532. #ifdef CONFIG_RT_GROUP_SCHED
  7533. rt_rq->rt_nr_boosted = 0;
  7534. rt_rq->rq = rq;
  7535. #endif
  7536. }
  7537. #ifdef CONFIG_FAIR_GROUP_SCHED
  7538. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7539. struct sched_entity *se, int cpu, int add,
  7540. struct sched_entity *parent)
  7541. {
  7542. struct rq *rq = cpu_rq(cpu);
  7543. tg->cfs_rq[cpu] = cfs_rq;
  7544. init_cfs_rq(cfs_rq, rq);
  7545. cfs_rq->tg = tg;
  7546. if (add)
  7547. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7548. tg->se[cpu] = se;
  7549. /* se could be NULL for init_task_group */
  7550. if (!se)
  7551. return;
  7552. if (!parent)
  7553. se->cfs_rq = &rq->cfs;
  7554. else
  7555. se->cfs_rq = parent->my_q;
  7556. se->my_q = cfs_rq;
  7557. se->load.weight = tg->shares;
  7558. se->load.inv_weight = 0;
  7559. se->parent = parent;
  7560. }
  7561. #endif
  7562. #ifdef CONFIG_RT_GROUP_SCHED
  7563. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7564. struct sched_rt_entity *rt_se, int cpu, int add,
  7565. struct sched_rt_entity *parent)
  7566. {
  7567. struct rq *rq = cpu_rq(cpu);
  7568. tg->rt_rq[cpu] = rt_rq;
  7569. init_rt_rq(rt_rq, rq);
  7570. rt_rq->tg = tg;
  7571. rt_rq->rt_se = rt_se;
  7572. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7573. if (add)
  7574. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7575. tg->rt_se[cpu] = rt_se;
  7576. if (!rt_se)
  7577. return;
  7578. if (!parent)
  7579. rt_se->rt_rq = &rq->rt;
  7580. else
  7581. rt_se->rt_rq = parent->my_q;
  7582. rt_se->my_q = rt_rq;
  7583. rt_se->parent = parent;
  7584. INIT_LIST_HEAD(&rt_se->run_list);
  7585. }
  7586. #endif
  7587. void __init sched_init(void)
  7588. {
  7589. int i, j;
  7590. unsigned long alloc_size = 0, ptr;
  7591. #ifdef CONFIG_FAIR_GROUP_SCHED
  7592. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7593. #endif
  7594. #ifdef CONFIG_RT_GROUP_SCHED
  7595. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7596. #endif
  7597. #ifdef CONFIG_USER_SCHED
  7598. alloc_size *= 2;
  7599. #endif
  7600. #ifdef CONFIG_CPUMASK_OFFSTACK
  7601. alloc_size += num_possible_cpus() * cpumask_size();
  7602. #endif
  7603. /*
  7604. * As sched_init() is called before page_alloc is setup,
  7605. * we use alloc_bootmem().
  7606. */
  7607. if (alloc_size) {
  7608. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7609. #ifdef CONFIG_FAIR_GROUP_SCHED
  7610. init_task_group.se = (struct sched_entity **)ptr;
  7611. ptr += nr_cpu_ids * sizeof(void **);
  7612. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7613. ptr += nr_cpu_ids * sizeof(void **);
  7614. #ifdef CONFIG_USER_SCHED
  7615. root_task_group.se = (struct sched_entity **)ptr;
  7616. ptr += nr_cpu_ids * sizeof(void **);
  7617. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7618. ptr += nr_cpu_ids * sizeof(void **);
  7619. #endif /* CONFIG_USER_SCHED */
  7620. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7621. #ifdef CONFIG_RT_GROUP_SCHED
  7622. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7623. ptr += nr_cpu_ids * sizeof(void **);
  7624. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7625. ptr += nr_cpu_ids * sizeof(void **);
  7626. #ifdef CONFIG_USER_SCHED
  7627. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7628. ptr += nr_cpu_ids * sizeof(void **);
  7629. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7630. ptr += nr_cpu_ids * sizeof(void **);
  7631. #endif /* CONFIG_USER_SCHED */
  7632. #endif /* CONFIG_RT_GROUP_SCHED */
  7633. #ifdef CONFIG_CPUMASK_OFFSTACK
  7634. for_each_possible_cpu(i) {
  7635. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7636. ptr += cpumask_size();
  7637. }
  7638. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7639. }
  7640. #ifdef CONFIG_SMP
  7641. init_defrootdomain();
  7642. #endif
  7643. init_rt_bandwidth(&def_rt_bandwidth,
  7644. global_rt_period(), global_rt_runtime());
  7645. #ifdef CONFIG_RT_GROUP_SCHED
  7646. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7647. global_rt_period(), global_rt_runtime());
  7648. #ifdef CONFIG_USER_SCHED
  7649. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7650. global_rt_period(), RUNTIME_INF);
  7651. #endif /* CONFIG_USER_SCHED */
  7652. #endif /* CONFIG_RT_GROUP_SCHED */
  7653. #ifdef CONFIG_GROUP_SCHED
  7654. list_add(&init_task_group.list, &task_groups);
  7655. INIT_LIST_HEAD(&init_task_group.children);
  7656. #ifdef CONFIG_USER_SCHED
  7657. INIT_LIST_HEAD(&root_task_group.children);
  7658. init_task_group.parent = &root_task_group;
  7659. list_add(&init_task_group.siblings, &root_task_group.children);
  7660. #endif /* CONFIG_USER_SCHED */
  7661. #endif /* CONFIG_GROUP_SCHED */
  7662. for_each_possible_cpu(i) {
  7663. struct rq *rq;
  7664. rq = cpu_rq(i);
  7665. spin_lock_init(&rq->lock);
  7666. rq->nr_running = 0;
  7667. init_cfs_rq(&rq->cfs, rq);
  7668. init_rt_rq(&rq->rt, rq);
  7669. #ifdef CONFIG_FAIR_GROUP_SCHED
  7670. init_task_group.shares = init_task_group_load;
  7671. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7672. #ifdef CONFIG_CGROUP_SCHED
  7673. /*
  7674. * How much cpu bandwidth does init_task_group get?
  7675. *
  7676. * In case of task-groups formed thr' the cgroup filesystem, it
  7677. * gets 100% of the cpu resources in the system. This overall
  7678. * system cpu resource is divided among the tasks of
  7679. * init_task_group and its child task-groups in a fair manner,
  7680. * based on each entity's (task or task-group's) weight
  7681. * (se->load.weight).
  7682. *
  7683. * In other words, if init_task_group has 10 tasks of weight
  7684. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7685. * then A0's share of the cpu resource is:
  7686. *
  7687. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7688. *
  7689. * We achieve this by letting init_task_group's tasks sit
  7690. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7691. */
  7692. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7693. #elif defined CONFIG_USER_SCHED
  7694. root_task_group.shares = NICE_0_LOAD;
  7695. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7696. /*
  7697. * In case of task-groups formed thr' the user id of tasks,
  7698. * init_task_group represents tasks belonging to root user.
  7699. * Hence it forms a sibling of all subsequent groups formed.
  7700. * In this case, init_task_group gets only a fraction of overall
  7701. * system cpu resource, based on the weight assigned to root
  7702. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7703. * by letting tasks of init_task_group sit in a separate cfs_rq
  7704. * (init_cfs_rq) and having one entity represent this group of
  7705. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7706. */
  7707. init_tg_cfs_entry(&init_task_group,
  7708. &per_cpu(init_cfs_rq, i),
  7709. &per_cpu(init_sched_entity, i), i, 1,
  7710. root_task_group.se[i]);
  7711. #endif
  7712. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7713. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7714. #ifdef CONFIG_RT_GROUP_SCHED
  7715. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7716. #ifdef CONFIG_CGROUP_SCHED
  7717. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7718. #elif defined CONFIG_USER_SCHED
  7719. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7720. init_tg_rt_entry(&init_task_group,
  7721. &per_cpu(init_rt_rq, i),
  7722. &per_cpu(init_sched_rt_entity, i), i, 1,
  7723. root_task_group.rt_se[i]);
  7724. #endif
  7725. #endif
  7726. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7727. rq->cpu_load[j] = 0;
  7728. #ifdef CONFIG_SMP
  7729. rq->sd = NULL;
  7730. rq->rd = NULL;
  7731. rq->active_balance = 0;
  7732. rq->next_balance = jiffies;
  7733. rq->push_cpu = 0;
  7734. rq->cpu = i;
  7735. rq->online = 0;
  7736. rq->migration_thread = NULL;
  7737. INIT_LIST_HEAD(&rq->migration_queue);
  7738. rq_attach_root(rq, &def_root_domain);
  7739. #endif
  7740. init_rq_hrtick(rq);
  7741. atomic_set(&rq->nr_iowait, 0);
  7742. }
  7743. set_load_weight(&init_task);
  7744. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7745. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7746. #endif
  7747. #ifdef CONFIG_SMP
  7748. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7749. #endif
  7750. #ifdef CONFIG_RT_MUTEXES
  7751. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7752. #endif
  7753. /*
  7754. * The boot idle thread does lazy MMU switching as well:
  7755. */
  7756. atomic_inc(&init_mm.mm_count);
  7757. enter_lazy_tlb(&init_mm, current);
  7758. /*
  7759. * Make us the idle thread. Technically, schedule() should not be
  7760. * called from this thread, however somewhere below it might be,
  7761. * but because we are the idle thread, we just pick up running again
  7762. * when this runqueue becomes "idle".
  7763. */
  7764. init_idle(current, smp_processor_id());
  7765. /*
  7766. * During early bootup we pretend to be a normal task:
  7767. */
  7768. current->sched_class = &fair_sched_class;
  7769. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7770. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7771. #ifdef CONFIG_SMP
  7772. #ifdef CONFIG_NO_HZ
  7773. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7774. #endif
  7775. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7776. #endif /* SMP */
  7777. perf_counter_init();
  7778. scheduler_running = 1;
  7779. }
  7780. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7781. void __might_sleep(char *file, int line)
  7782. {
  7783. #ifdef in_atomic
  7784. static unsigned long prev_jiffy; /* ratelimiting */
  7785. if ((!in_atomic() && !irqs_disabled()) ||
  7786. system_state != SYSTEM_RUNNING || oops_in_progress)
  7787. return;
  7788. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7789. return;
  7790. prev_jiffy = jiffies;
  7791. printk(KERN_ERR
  7792. "BUG: sleeping function called from invalid context at %s:%d\n",
  7793. file, line);
  7794. printk(KERN_ERR
  7795. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7796. in_atomic(), irqs_disabled(),
  7797. current->pid, current->comm);
  7798. debug_show_held_locks(current);
  7799. if (irqs_disabled())
  7800. print_irqtrace_events(current);
  7801. dump_stack();
  7802. #endif
  7803. }
  7804. EXPORT_SYMBOL(__might_sleep);
  7805. #endif
  7806. #ifdef CONFIG_MAGIC_SYSRQ
  7807. static void normalize_task(struct rq *rq, struct task_struct *p)
  7808. {
  7809. int on_rq;
  7810. update_rq_clock(rq);
  7811. on_rq = p->se.on_rq;
  7812. if (on_rq)
  7813. deactivate_task(rq, p, 0);
  7814. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7815. if (on_rq) {
  7816. activate_task(rq, p, 0);
  7817. resched_task(rq->curr);
  7818. }
  7819. }
  7820. void normalize_rt_tasks(void)
  7821. {
  7822. struct task_struct *g, *p;
  7823. unsigned long flags;
  7824. struct rq *rq;
  7825. read_lock_irqsave(&tasklist_lock, flags);
  7826. do_each_thread(g, p) {
  7827. /*
  7828. * Only normalize user tasks:
  7829. */
  7830. if (!p->mm)
  7831. continue;
  7832. p->se.exec_start = 0;
  7833. #ifdef CONFIG_SCHEDSTATS
  7834. p->se.wait_start = 0;
  7835. p->se.sleep_start = 0;
  7836. p->se.block_start = 0;
  7837. #endif
  7838. if (!rt_task(p)) {
  7839. /*
  7840. * Renice negative nice level userspace
  7841. * tasks back to 0:
  7842. */
  7843. if (TASK_NICE(p) < 0 && p->mm)
  7844. set_user_nice(p, 0);
  7845. continue;
  7846. }
  7847. spin_lock(&p->pi_lock);
  7848. rq = __task_rq_lock(p);
  7849. normalize_task(rq, p);
  7850. __task_rq_unlock(rq);
  7851. spin_unlock(&p->pi_lock);
  7852. } while_each_thread(g, p);
  7853. read_unlock_irqrestore(&tasklist_lock, flags);
  7854. }
  7855. #endif /* CONFIG_MAGIC_SYSRQ */
  7856. #ifdef CONFIG_IA64
  7857. /*
  7858. * These functions are only useful for the IA64 MCA handling.
  7859. *
  7860. * They can only be called when the whole system has been
  7861. * stopped - every CPU needs to be quiescent, and no scheduling
  7862. * activity can take place. Using them for anything else would
  7863. * be a serious bug, and as a result, they aren't even visible
  7864. * under any other configuration.
  7865. */
  7866. /**
  7867. * curr_task - return the current task for a given cpu.
  7868. * @cpu: the processor in question.
  7869. *
  7870. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7871. */
  7872. struct task_struct *curr_task(int cpu)
  7873. {
  7874. return cpu_curr(cpu);
  7875. }
  7876. /**
  7877. * set_curr_task - set the current task for a given cpu.
  7878. * @cpu: the processor in question.
  7879. * @p: the task pointer to set.
  7880. *
  7881. * Description: This function must only be used when non-maskable interrupts
  7882. * are serviced on a separate stack. It allows the architecture to switch the
  7883. * notion of the current task on a cpu in a non-blocking manner. This function
  7884. * must be called with all CPU's synchronized, and interrupts disabled, the
  7885. * and caller must save the original value of the current task (see
  7886. * curr_task() above) and restore that value before reenabling interrupts and
  7887. * re-starting the system.
  7888. *
  7889. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7890. */
  7891. void set_curr_task(int cpu, struct task_struct *p)
  7892. {
  7893. cpu_curr(cpu) = p;
  7894. }
  7895. #endif
  7896. #ifdef CONFIG_FAIR_GROUP_SCHED
  7897. static void free_fair_sched_group(struct task_group *tg)
  7898. {
  7899. int i;
  7900. for_each_possible_cpu(i) {
  7901. if (tg->cfs_rq)
  7902. kfree(tg->cfs_rq[i]);
  7903. if (tg->se)
  7904. kfree(tg->se[i]);
  7905. }
  7906. kfree(tg->cfs_rq);
  7907. kfree(tg->se);
  7908. }
  7909. static
  7910. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7911. {
  7912. struct cfs_rq *cfs_rq;
  7913. struct sched_entity *se;
  7914. struct rq *rq;
  7915. int i;
  7916. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7917. if (!tg->cfs_rq)
  7918. goto err;
  7919. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7920. if (!tg->se)
  7921. goto err;
  7922. tg->shares = NICE_0_LOAD;
  7923. for_each_possible_cpu(i) {
  7924. rq = cpu_rq(i);
  7925. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7926. GFP_KERNEL, cpu_to_node(i));
  7927. if (!cfs_rq)
  7928. goto err;
  7929. se = kzalloc_node(sizeof(struct sched_entity),
  7930. GFP_KERNEL, cpu_to_node(i));
  7931. if (!se)
  7932. goto err;
  7933. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7934. }
  7935. return 1;
  7936. err:
  7937. return 0;
  7938. }
  7939. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7940. {
  7941. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7942. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7943. }
  7944. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7945. {
  7946. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7947. }
  7948. #else /* !CONFG_FAIR_GROUP_SCHED */
  7949. static inline void free_fair_sched_group(struct task_group *tg)
  7950. {
  7951. }
  7952. static inline
  7953. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7954. {
  7955. return 1;
  7956. }
  7957. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7958. {
  7959. }
  7960. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7961. {
  7962. }
  7963. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7964. #ifdef CONFIG_RT_GROUP_SCHED
  7965. static void free_rt_sched_group(struct task_group *tg)
  7966. {
  7967. int i;
  7968. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7969. for_each_possible_cpu(i) {
  7970. if (tg->rt_rq)
  7971. kfree(tg->rt_rq[i]);
  7972. if (tg->rt_se)
  7973. kfree(tg->rt_se[i]);
  7974. }
  7975. kfree(tg->rt_rq);
  7976. kfree(tg->rt_se);
  7977. }
  7978. static
  7979. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7980. {
  7981. struct rt_rq *rt_rq;
  7982. struct sched_rt_entity *rt_se;
  7983. struct rq *rq;
  7984. int i;
  7985. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7986. if (!tg->rt_rq)
  7987. goto err;
  7988. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7989. if (!tg->rt_se)
  7990. goto err;
  7991. init_rt_bandwidth(&tg->rt_bandwidth,
  7992. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7993. for_each_possible_cpu(i) {
  7994. rq = cpu_rq(i);
  7995. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7996. GFP_KERNEL, cpu_to_node(i));
  7997. if (!rt_rq)
  7998. goto err;
  7999. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8000. GFP_KERNEL, cpu_to_node(i));
  8001. if (!rt_se)
  8002. goto err;
  8003. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8004. }
  8005. return 1;
  8006. err:
  8007. return 0;
  8008. }
  8009. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8010. {
  8011. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8012. &cpu_rq(cpu)->leaf_rt_rq_list);
  8013. }
  8014. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8015. {
  8016. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8017. }
  8018. #else /* !CONFIG_RT_GROUP_SCHED */
  8019. static inline void free_rt_sched_group(struct task_group *tg)
  8020. {
  8021. }
  8022. static inline
  8023. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8024. {
  8025. return 1;
  8026. }
  8027. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8028. {
  8029. }
  8030. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8031. {
  8032. }
  8033. #endif /* CONFIG_RT_GROUP_SCHED */
  8034. #ifdef CONFIG_GROUP_SCHED
  8035. static void free_sched_group(struct task_group *tg)
  8036. {
  8037. free_fair_sched_group(tg);
  8038. free_rt_sched_group(tg);
  8039. kfree(tg);
  8040. }
  8041. /* allocate runqueue etc for a new task group */
  8042. struct task_group *sched_create_group(struct task_group *parent)
  8043. {
  8044. struct task_group *tg;
  8045. unsigned long flags;
  8046. int i;
  8047. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8048. if (!tg)
  8049. return ERR_PTR(-ENOMEM);
  8050. if (!alloc_fair_sched_group(tg, parent))
  8051. goto err;
  8052. if (!alloc_rt_sched_group(tg, parent))
  8053. goto err;
  8054. spin_lock_irqsave(&task_group_lock, flags);
  8055. for_each_possible_cpu(i) {
  8056. register_fair_sched_group(tg, i);
  8057. register_rt_sched_group(tg, i);
  8058. }
  8059. list_add_rcu(&tg->list, &task_groups);
  8060. WARN_ON(!parent); /* root should already exist */
  8061. tg->parent = parent;
  8062. INIT_LIST_HEAD(&tg->children);
  8063. list_add_rcu(&tg->siblings, &parent->children);
  8064. spin_unlock_irqrestore(&task_group_lock, flags);
  8065. return tg;
  8066. err:
  8067. free_sched_group(tg);
  8068. return ERR_PTR(-ENOMEM);
  8069. }
  8070. /* rcu callback to free various structures associated with a task group */
  8071. static void free_sched_group_rcu(struct rcu_head *rhp)
  8072. {
  8073. /* now it should be safe to free those cfs_rqs */
  8074. free_sched_group(container_of(rhp, struct task_group, rcu));
  8075. }
  8076. /* Destroy runqueue etc associated with a task group */
  8077. void sched_destroy_group(struct task_group *tg)
  8078. {
  8079. unsigned long flags;
  8080. int i;
  8081. spin_lock_irqsave(&task_group_lock, flags);
  8082. for_each_possible_cpu(i) {
  8083. unregister_fair_sched_group(tg, i);
  8084. unregister_rt_sched_group(tg, i);
  8085. }
  8086. list_del_rcu(&tg->list);
  8087. list_del_rcu(&tg->siblings);
  8088. spin_unlock_irqrestore(&task_group_lock, flags);
  8089. /* wait for possible concurrent references to cfs_rqs complete */
  8090. call_rcu(&tg->rcu, free_sched_group_rcu);
  8091. }
  8092. /* change task's runqueue when it moves between groups.
  8093. * The caller of this function should have put the task in its new group
  8094. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8095. * reflect its new group.
  8096. */
  8097. void sched_move_task(struct task_struct *tsk)
  8098. {
  8099. int on_rq, running;
  8100. unsigned long flags;
  8101. struct rq *rq;
  8102. rq = task_rq_lock(tsk, &flags);
  8103. update_rq_clock(rq);
  8104. running = task_current(rq, tsk);
  8105. on_rq = tsk->se.on_rq;
  8106. if (on_rq)
  8107. dequeue_task(rq, tsk, 0);
  8108. if (unlikely(running))
  8109. tsk->sched_class->put_prev_task(rq, tsk);
  8110. set_task_rq(tsk, task_cpu(tsk));
  8111. #ifdef CONFIG_FAIR_GROUP_SCHED
  8112. if (tsk->sched_class->moved_group)
  8113. tsk->sched_class->moved_group(tsk);
  8114. #endif
  8115. if (unlikely(running))
  8116. tsk->sched_class->set_curr_task(rq);
  8117. if (on_rq)
  8118. enqueue_task(rq, tsk, 0);
  8119. task_rq_unlock(rq, &flags);
  8120. }
  8121. #endif /* CONFIG_GROUP_SCHED */
  8122. #ifdef CONFIG_FAIR_GROUP_SCHED
  8123. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8124. {
  8125. struct cfs_rq *cfs_rq = se->cfs_rq;
  8126. int on_rq;
  8127. on_rq = se->on_rq;
  8128. if (on_rq)
  8129. dequeue_entity(cfs_rq, se, 0);
  8130. se->load.weight = shares;
  8131. se->load.inv_weight = 0;
  8132. if (on_rq)
  8133. enqueue_entity(cfs_rq, se, 0);
  8134. }
  8135. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8136. {
  8137. struct cfs_rq *cfs_rq = se->cfs_rq;
  8138. struct rq *rq = cfs_rq->rq;
  8139. unsigned long flags;
  8140. spin_lock_irqsave(&rq->lock, flags);
  8141. __set_se_shares(se, shares);
  8142. spin_unlock_irqrestore(&rq->lock, flags);
  8143. }
  8144. static DEFINE_MUTEX(shares_mutex);
  8145. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8146. {
  8147. int i;
  8148. unsigned long flags;
  8149. /*
  8150. * We can't change the weight of the root cgroup.
  8151. */
  8152. if (!tg->se[0])
  8153. return -EINVAL;
  8154. if (shares < MIN_SHARES)
  8155. shares = MIN_SHARES;
  8156. else if (shares > MAX_SHARES)
  8157. shares = MAX_SHARES;
  8158. mutex_lock(&shares_mutex);
  8159. if (tg->shares == shares)
  8160. goto done;
  8161. spin_lock_irqsave(&task_group_lock, flags);
  8162. for_each_possible_cpu(i)
  8163. unregister_fair_sched_group(tg, i);
  8164. list_del_rcu(&tg->siblings);
  8165. spin_unlock_irqrestore(&task_group_lock, flags);
  8166. /* wait for any ongoing reference to this group to finish */
  8167. synchronize_sched();
  8168. /*
  8169. * Now we are free to modify the group's share on each cpu
  8170. * w/o tripping rebalance_share or load_balance_fair.
  8171. */
  8172. tg->shares = shares;
  8173. for_each_possible_cpu(i) {
  8174. /*
  8175. * force a rebalance
  8176. */
  8177. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8178. set_se_shares(tg->se[i], shares);
  8179. }
  8180. /*
  8181. * Enable load balance activity on this group, by inserting it back on
  8182. * each cpu's rq->leaf_cfs_rq_list.
  8183. */
  8184. spin_lock_irqsave(&task_group_lock, flags);
  8185. for_each_possible_cpu(i)
  8186. register_fair_sched_group(tg, i);
  8187. list_add_rcu(&tg->siblings, &tg->parent->children);
  8188. spin_unlock_irqrestore(&task_group_lock, flags);
  8189. done:
  8190. mutex_unlock(&shares_mutex);
  8191. return 0;
  8192. }
  8193. unsigned long sched_group_shares(struct task_group *tg)
  8194. {
  8195. return tg->shares;
  8196. }
  8197. #endif
  8198. #ifdef CONFIG_RT_GROUP_SCHED
  8199. /*
  8200. * Ensure that the real time constraints are schedulable.
  8201. */
  8202. static DEFINE_MUTEX(rt_constraints_mutex);
  8203. static unsigned long to_ratio(u64 period, u64 runtime)
  8204. {
  8205. if (runtime == RUNTIME_INF)
  8206. return 1ULL << 20;
  8207. return div64_u64(runtime << 20, period);
  8208. }
  8209. /* Must be called with tasklist_lock held */
  8210. static inline int tg_has_rt_tasks(struct task_group *tg)
  8211. {
  8212. struct task_struct *g, *p;
  8213. do_each_thread(g, p) {
  8214. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8215. return 1;
  8216. } while_each_thread(g, p);
  8217. return 0;
  8218. }
  8219. struct rt_schedulable_data {
  8220. struct task_group *tg;
  8221. u64 rt_period;
  8222. u64 rt_runtime;
  8223. };
  8224. static int tg_schedulable(struct task_group *tg, void *data)
  8225. {
  8226. struct rt_schedulable_data *d = data;
  8227. struct task_group *child;
  8228. unsigned long total, sum = 0;
  8229. u64 period, runtime;
  8230. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8231. runtime = tg->rt_bandwidth.rt_runtime;
  8232. if (tg == d->tg) {
  8233. period = d->rt_period;
  8234. runtime = d->rt_runtime;
  8235. }
  8236. #ifdef CONFIG_USER_SCHED
  8237. if (tg == &root_task_group) {
  8238. period = global_rt_period();
  8239. runtime = global_rt_runtime();
  8240. }
  8241. #endif
  8242. /*
  8243. * Cannot have more runtime than the period.
  8244. */
  8245. if (runtime > period && runtime != RUNTIME_INF)
  8246. return -EINVAL;
  8247. /*
  8248. * Ensure we don't starve existing RT tasks.
  8249. */
  8250. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8251. return -EBUSY;
  8252. total = to_ratio(period, runtime);
  8253. /*
  8254. * Nobody can have more than the global setting allows.
  8255. */
  8256. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8257. return -EINVAL;
  8258. /*
  8259. * The sum of our children's runtime should not exceed our own.
  8260. */
  8261. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8262. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8263. runtime = child->rt_bandwidth.rt_runtime;
  8264. if (child == d->tg) {
  8265. period = d->rt_period;
  8266. runtime = d->rt_runtime;
  8267. }
  8268. sum += to_ratio(period, runtime);
  8269. }
  8270. if (sum > total)
  8271. return -EINVAL;
  8272. return 0;
  8273. }
  8274. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8275. {
  8276. struct rt_schedulable_data data = {
  8277. .tg = tg,
  8278. .rt_period = period,
  8279. .rt_runtime = runtime,
  8280. };
  8281. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8282. }
  8283. static int tg_set_bandwidth(struct task_group *tg,
  8284. u64 rt_period, u64 rt_runtime)
  8285. {
  8286. int i, err = 0;
  8287. mutex_lock(&rt_constraints_mutex);
  8288. read_lock(&tasklist_lock);
  8289. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8290. if (err)
  8291. goto unlock;
  8292. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8293. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8294. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8295. for_each_possible_cpu(i) {
  8296. struct rt_rq *rt_rq = tg->rt_rq[i];
  8297. spin_lock(&rt_rq->rt_runtime_lock);
  8298. rt_rq->rt_runtime = rt_runtime;
  8299. spin_unlock(&rt_rq->rt_runtime_lock);
  8300. }
  8301. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8302. unlock:
  8303. read_unlock(&tasklist_lock);
  8304. mutex_unlock(&rt_constraints_mutex);
  8305. return err;
  8306. }
  8307. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8308. {
  8309. u64 rt_runtime, rt_period;
  8310. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8311. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8312. if (rt_runtime_us < 0)
  8313. rt_runtime = RUNTIME_INF;
  8314. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8315. }
  8316. long sched_group_rt_runtime(struct task_group *tg)
  8317. {
  8318. u64 rt_runtime_us;
  8319. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8320. return -1;
  8321. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8322. do_div(rt_runtime_us, NSEC_PER_USEC);
  8323. return rt_runtime_us;
  8324. }
  8325. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8326. {
  8327. u64 rt_runtime, rt_period;
  8328. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8329. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8330. if (rt_period == 0)
  8331. return -EINVAL;
  8332. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8333. }
  8334. long sched_group_rt_period(struct task_group *tg)
  8335. {
  8336. u64 rt_period_us;
  8337. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8338. do_div(rt_period_us, NSEC_PER_USEC);
  8339. return rt_period_us;
  8340. }
  8341. static int sched_rt_global_constraints(void)
  8342. {
  8343. u64 runtime, period;
  8344. int ret = 0;
  8345. if (sysctl_sched_rt_period <= 0)
  8346. return -EINVAL;
  8347. runtime = global_rt_runtime();
  8348. period = global_rt_period();
  8349. /*
  8350. * Sanity check on the sysctl variables.
  8351. */
  8352. if (runtime > period && runtime != RUNTIME_INF)
  8353. return -EINVAL;
  8354. mutex_lock(&rt_constraints_mutex);
  8355. read_lock(&tasklist_lock);
  8356. ret = __rt_schedulable(NULL, 0, 0);
  8357. read_unlock(&tasklist_lock);
  8358. mutex_unlock(&rt_constraints_mutex);
  8359. return ret;
  8360. }
  8361. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8362. {
  8363. /* Don't accept realtime tasks when there is no way for them to run */
  8364. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8365. return 0;
  8366. return 1;
  8367. }
  8368. #else /* !CONFIG_RT_GROUP_SCHED */
  8369. static int sched_rt_global_constraints(void)
  8370. {
  8371. unsigned long flags;
  8372. int i;
  8373. if (sysctl_sched_rt_period <= 0)
  8374. return -EINVAL;
  8375. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8376. for_each_possible_cpu(i) {
  8377. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8378. spin_lock(&rt_rq->rt_runtime_lock);
  8379. rt_rq->rt_runtime = global_rt_runtime();
  8380. spin_unlock(&rt_rq->rt_runtime_lock);
  8381. }
  8382. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8383. return 0;
  8384. }
  8385. #endif /* CONFIG_RT_GROUP_SCHED */
  8386. int sched_rt_handler(struct ctl_table *table, int write,
  8387. struct file *filp, void __user *buffer, size_t *lenp,
  8388. loff_t *ppos)
  8389. {
  8390. int ret;
  8391. int old_period, old_runtime;
  8392. static DEFINE_MUTEX(mutex);
  8393. mutex_lock(&mutex);
  8394. old_period = sysctl_sched_rt_period;
  8395. old_runtime = sysctl_sched_rt_runtime;
  8396. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8397. if (!ret && write) {
  8398. ret = sched_rt_global_constraints();
  8399. if (ret) {
  8400. sysctl_sched_rt_period = old_period;
  8401. sysctl_sched_rt_runtime = old_runtime;
  8402. } else {
  8403. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8404. def_rt_bandwidth.rt_period =
  8405. ns_to_ktime(global_rt_period());
  8406. }
  8407. }
  8408. mutex_unlock(&mutex);
  8409. return ret;
  8410. }
  8411. #ifdef CONFIG_CGROUP_SCHED
  8412. /* return corresponding task_group object of a cgroup */
  8413. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8414. {
  8415. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8416. struct task_group, css);
  8417. }
  8418. static struct cgroup_subsys_state *
  8419. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8420. {
  8421. struct task_group *tg, *parent;
  8422. if (!cgrp->parent) {
  8423. /* This is early initialization for the top cgroup */
  8424. return &init_task_group.css;
  8425. }
  8426. parent = cgroup_tg(cgrp->parent);
  8427. tg = sched_create_group(parent);
  8428. if (IS_ERR(tg))
  8429. return ERR_PTR(-ENOMEM);
  8430. return &tg->css;
  8431. }
  8432. static void
  8433. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8434. {
  8435. struct task_group *tg = cgroup_tg(cgrp);
  8436. sched_destroy_group(tg);
  8437. }
  8438. static int
  8439. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8440. struct task_struct *tsk)
  8441. {
  8442. #ifdef CONFIG_RT_GROUP_SCHED
  8443. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8444. return -EINVAL;
  8445. #else
  8446. /* We don't support RT-tasks being in separate groups */
  8447. if (tsk->sched_class != &fair_sched_class)
  8448. return -EINVAL;
  8449. #endif
  8450. return 0;
  8451. }
  8452. static void
  8453. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8454. struct cgroup *old_cont, struct task_struct *tsk)
  8455. {
  8456. sched_move_task(tsk);
  8457. }
  8458. #ifdef CONFIG_FAIR_GROUP_SCHED
  8459. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8460. u64 shareval)
  8461. {
  8462. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8463. }
  8464. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8465. {
  8466. struct task_group *tg = cgroup_tg(cgrp);
  8467. return (u64) tg->shares;
  8468. }
  8469. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8470. #ifdef CONFIG_RT_GROUP_SCHED
  8471. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8472. s64 val)
  8473. {
  8474. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8475. }
  8476. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8477. {
  8478. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8479. }
  8480. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8481. u64 rt_period_us)
  8482. {
  8483. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8484. }
  8485. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8486. {
  8487. return sched_group_rt_period(cgroup_tg(cgrp));
  8488. }
  8489. #endif /* CONFIG_RT_GROUP_SCHED */
  8490. static struct cftype cpu_files[] = {
  8491. #ifdef CONFIG_FAIR_GROUP_SCHED
  8492. {
  8493. .name = "shares",
  8494. .read_u64 = cpu_shares_read_u64,
  8495. .write_u64 = cpu_shares_write_u64,
  8496. },
  8497. #endif
  8498. #ifdef CONFIG_RT_GROUP_SCHED
  8499. {
  8500. .name = "rt_runtime_us",
  8501. .read_s64 = cpu_rt_runtime_read,
  8502. .write_s64 = cpu_rt_runtime_write,
  8503. },
  8504. {
  8505. .name = "rt_period_us",
  8506. .read_u64 = cpu_rt_period_read_uint,
  8507. .write_u64 = cpu_rt_period_write_uint,
  8508. },
  8509. #endif
  8510. };
  8511. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8512. {
  8513. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8514. }
  8515. struct cgroup_subsys cpu_cgroup_subsys = {
  8516. .name = "cpu",
  8517. .create = cpu_cgroup_create,
  8518. .destroy = cpu_cgroup_destroy,
  8519. .can_attach = cpu_cgroup_can_attach,
  8520. .attach = cpu_cgroup_attach,
  8521. .populate = cpu_cgroup_populate,
  8522. .subsys_id = cpu_cgroup_subsys_id,
  8523. .early_init = 1,
  8524. };
  8525. #endif /* CONFIG_CGROUP_SCHED */
  8526. #ifdef CONFIG_CGROUP_CPUACCT
  8527. /*
  8528. * CPU accounting code for task groups.
  8529. *
  8530. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8531. * (balbir@in.ibm.com).
  8532. */
  8533. /* track cpu usage of a group of tasks and its child groups */
  8534. struct cpuacct {
  8535. struct cgroup_subsys_state css;
  8536. /* cpuusage holds pointer to a u64-type object on every cpu */
  8537. u64 *cpuusage;
  8538. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8539. struct cpuacct *parent;
  8540. };
  8541. struct cgroup_subsys cpuacct_subsys;
  8542. /* return cpu accounting group corresponding to this container */
  8543. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8544. {
  8545. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8546. struct cpuacct, css);
  8547. }
  8548. /* return cpu accounting group to which this task belongs */
  8549. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8550. {
  8551. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8552. struct cpuacct, css);
  8553. }
  8554. /* create a new cpu accounting group */
  8555. static struct cgroup_subsys_state *cpuacct_create(
  8556. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8557. {
  8558. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8559. int i;
  8560. if (!ca)
  8561. goto out;
  8562. ca->cpuusage = alloc_percpu(u64);
  8563. if (!ca->cpuusage)
  8564. goto out_free_ca;
  8565. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8566. if (percpu_counter_init(&ca->cpustat[i], 0))
  8567. goto out_free_counters;
  8568. if (cgrp->parent)
  8569. ca->parent = cgroup_ca(cgrp->parent);
  8570. return &ca->css;
  8571. out_free_counters:
  8572. while (--i >= 0)
  8573. percpu_counter_destroy(&ca->cpustat[i]);
  8574. free_percpu(ca->cpuusage);
  8575. out_free_ca:
  8576. kfree(ca);
  8577. out:
  8578. return ERR_PTR(-ENOMEM);
  8579. }
  8580. /* destroy an existing cpu accounting group */
  8581. static void
  8582. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8583. {
  8584. struct cpuacct *ca = cgroup_ca(cgrp);
  8585. int i;
  8586. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8587. percpu_counter_destroy(&ca->cpustat[i]);
  8588. free_percpu(ca->cpuusage);
  8589. kfree(ca);
  8590. }
  8591. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8592. {
  8593. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8594. u64 data;
  8595. #ifndef CONFIG_64BIT
  8596. /*
  8597. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8598. */
  8599. spin_lock_irq(&cpu_rq(cpu)->lock);
  8600. data = *cpuusage;
  8601. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8602. #else
  8603. data = *cpuusage;
  8604. #endif
  8605. return data;
  8606. }
  8607. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8608. {
  8609. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8610. #ifndef CONFIG_64BIT
  8611. /*
  8612. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8613. */
  8614. spin_lock_irq(&cpu_rq(cpu)->lock);
  8615. *cpuusage = val;
  8616. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8617. #else
  8618. *cpuusage = val;
  8619. #endif
  8620. }
  8621. /* return total cpu usage (in nanoseconds) of a group */
  8622. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8623. {
  8624. struct cpuacct *ca = cgroup_ca(cgrp);
  8625. u64 totalcpuusage = 0;
  8626. int i;
  8627. for_each_present_cpu(i)
  8628. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8629. return totalcpuusage;
  8630. }
  8631. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8632. u64 reset)
  8633. {
  8634. struct cpuacct *ca = cgroup_ca(cgrp);
  8635. int err = 0;
  8636. int i;
  8637. if (reset) {
  8638. err = -EINVAL;
  8639. goto out;
  8640. }
  8641. for_each_present_cpu(i)
  8642. cpuacct_cpuusage_write(ca, i, 0);
  8643. out:
  8644. return err;
  8645. }
  8646. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8647. struct seq_file *m)
  8648. {
  8649. struct cpuacct *ca = cgroup_ca(cgroup);
  8650. u64 percpu;
  8651. int i;
  8652. for_each_present_cpu(i) {
  8653. percpu = cpuacct_cpuusage_read(ca, i);
  8654. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8655. }
  8656. seq_printf(m, "\n");
  8657. return 0;
  8658. }
  8659. static const char *cpuacct_stat_desc[] = {
  8660. [CPUACCT_STAT_USER] = "user",
  8661. [CPUACCT_STAT_SYSTEM] = "system",
  8662. };
  8663. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8664. struct cgroup_map_cb *cb)
  8665. {
  8666. struct cpuacct *ca = cgroup_ca(cgrp);
  8667. int i;
  8668. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8669. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8670. val = cputime64_to_clock_t(val);
  8671. cb->fill(cb, cpuacct_stat_desc[i], val);
  8672. }
  8673. return 0;
  8674. }
  8675. static struct cftype files[] = {
  8676. {
  8677. .name = "usage",
  8678. .read_u64 = cpuusage_read,
  8679. .write_u64 = cpuusage_write,
  8680. },
  8681. {
  8682. .name = "usage_percpu",
  8683. .read_seq_string = cpuacct_percpu_seq_read,
  8684. },
  8685. {
  8686. .name = "stat",
  8687. .read_map = cpuacct_stats_show,
  8688. },
  8689. };
  8690. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8691. {
  8692. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8693. }
  8694. /*
  8695. * charge this task's execution time to its accounting group.
  8696. *
  8697. * called with rq->lock held.
  8698. */
  8699. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8700. {
  8701. struct cpuacct *ca;
  8702. int cpu;
  8703. if (unlikely(!cpuacct_subsys.active))
  8704. return;
  8705. cpu = task_cpu(tsk);
  8706. rcu_read_lock();
  8707. ca = task_ca(tsk);
  8708. for (; ca; ca = ca->parent) {
  8709. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8710. *cpuusage += cputime;
  8711. }
  8712. rcu_read_unlock();
  8713. }
  8714. /*
  8715. * Charge the system/user time to the task's accounting group.
  8716. */
  8717. static void cpuacct_update_stats(struct task_struct *tsk,
  8718. enum cpuacct_stat_index idx, cputime_t val)
  8719. {
  8720. struct cpuacct *ca;
  8721. if (unlikely(!cpuacct_subsys.active))
  8722. return;
  8723. rcu_read_lock();
  8724. ca = task_ca(tsk);
  8725. do {
  8726. percpu_counter_add(&ca->cpustat[idx], val);
  8727. ca = ca->parent;
  8728. } while (ca);
  8729. rcu_read_unlock();
  8730. }
  8731. struct cgroup_subsys cpuacct_subsys = {
  8732. .name = "cpuacct",
  8733. .create = cpuacct_create,
  8734. .destroy = cpuacct_destroy,
  8735. .populate = cpuacct_populate,
  8736. .subsys_id = cpuacct_subsys_id,
  8737. };
  8738. #endif /* CONFIG_CGROUP_CPUACCT */