dm.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-bio-list.h"
  9. #include "dm-uevent.h"
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/mutex.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/blkpg.h>
  15. #include <linux/bio.h>
  16. #include <linux/buffer_head.h>
  17. #include <linux/mempool.h>
  18. #include <linux/slab.h>
  19. #include <linux/idr.h>
  20. #include <linux/hdreg.h>
  21. #include <linux/blktrace_api.h>
  22. #define DM_MSG_PREFIX "core"
  23. static const char *_name = DM_NAME;
  24. static unsigned int major = 0;
  25. static unsigned int _major = 0;
  26. static DEFINE_SPINLOCK(_minor_lock);
  27. /*
  28. * One of these is allocated per bio.
  29. */
  30. struct dm_io {
  31. struct mapped_device *md;
  32. int error;
  33. atomic_t io_count;
  34. struct bio *bio;
  35. unsigned long start_time;
  36. };
  37. /*
  38. * One of these is allocated per target within a bio. Hopefully
  39. * this will be simplified out one day.
  40. */
  41. struct dm_target_io {
  42. struct dm_io *io;
  43. struct dm_target *ti;
  44. union map_info info;
  45. };
  46. union map_info *dm_get_mapinfo(struct bio *bio)
  47. {
  48. if (bio && bio->bi_private)
  49. return &((struct dm_target_io *)bio->bi_private)->info;
  50. return NULL;
  51. }
  52. #define MINOR_ALLOCED ((void *)-1)
  53. /*
  54. * Bits for the md->flags field.
  55. */
  56. #define DMF_BLOCK_IO 0
  57. #define DMF_SUSPENDED 1
  58. #define DMF_FROZEN 2
  59. #define DMF_FREEING 3
  60. #define DMF_DELETING 4
  61. #define DMF_NOFLUSH_SUSPENDING 5
  62. /*
  63. * Work processed by per-device workqueue.
  64. */
  65. struct dm_wq_req {
  66. enum {
  67. DM_WQ_FLUSH_DEFERRED,
  68. } type;
  69. struct work_struct work;
  70. struct mapped_device *md;
  71. void *context;
  72. };
  73. struct mapped_device {
  74. struct rw_semaphore io_lock;
  75. struct mutex suspend_lock;
  76. spinlock_t pushback_lock;
  77. rwlock_t map_lock;
  78. atomic_t holders;
  79. atomic_t open_count;
  80. unsigned long flags;
  81. struct request_queue *queue;
  82. struct gendisk *disk;
  83. char name[16];
  84. void *interface_ptr;
  85. /*
  86. * A list of ios that arrived while we were suspended.
  87. */
  88. atomic_t pending;
  89. wait_queue_head_t wait;
  90. struct bio_list deferred;
  91. struct bio_list pushback;
  92. /*
  93. * Processing queue (flush/barriers)
  94. */
  95. struct workqueue_struct *wq;
  96. /*
  97. * The current mapping.
  98. */
  99. struct dm_table *map;
  100. /*
  101. * io objects are allocated from here.
  102. */
  103. mempool_t *io_pool;
  104. mempool_t *tio_pool;
  105. struct bio_set *bs;
  106. /*
  107. * Event handling.
  108. */
  109. atomic_t event_nr;
  110. wait_queue_head_t eventq;
  111. atomic_t uevent_seq;
  112. struct list_head uevent_list;
  113. spinlock_t uevent_lock; /* Protect access to uevent_list */
  114. /*
  115. * freeze/thaw support require holding onto a super block
  116. */
  117. struct super_block *frozen_sb;
  118. struct block_device *suspended_bdev;
  119. /* forced geometry settings */
  120. struct hd_geometry geometry;
  121. };
  122. #define MIN_IOS 256
  123. static struct kmem_cache *_io_cache;
  124. static struct kmem_cache *_tio_cache;
  125. static int __init local_init(void)
  126. {
  127. int r = -ENOMEM;
  128. /* allocate a slab for the dm_ios */
  129. _io_cache = KMEM_CACHE(dm_io, 0);
  130. if (!_io_cache)
  131. return r;
  132. /* allocate a slab for the target ios */
  133. _tio_cache = KMEM_CACHE(dm_target_io, 0);
  134. if (!_tio_cache)
  135. goto out_free_io_cache;
  136. r = dm_uevent_init();
  137. if (r)
  138. goto out_free_tio_cache;
  139. _major = major;
  140. r = register_blkdev(_major, _name);
  141. if (r < 0)
  142. goto out_uevent_exit;
  143. if (!_major)
  144. _major = r;
  145. return 0;
  146. out_uevent_exit:
  147. dm_uevent_exit();
  148. out_free_tio_cache:
  149. kmem_cache_destroy(_tio_cache);
  150. out_free_io_cache:
  151. kmem_cache_destroy(_io_cache);
  152. return r;
  153. }
  154. static void local_exit(void)
  155. {
  156. kmem_cache_destroy(_tio_cache);
  157. kmem_cache_destroy(_io_cache);
  158. unregister_blkdev(_major, _name);
  159. dm_uevent_exit();
  160. _major = 0;
  161. DMINFO("cleaned up");
  162. }
  163. static int (*_inits[])(void) __initdata = {
  164. local_init,
  165. dm_target_init,
  166. dm_linear_init,
  167. dm_stripe_init,
  168. dm_kcopyd_init,
  169. dm_interface_init,
  170. };
  171. static void (*_exits[])(void) = {
  172. local_exit,
  173. dm_target_exit,
  174. dm_linear_exit,
  175. dm_stripe_exit,
  176. dm_kcopyd_exit,
  177. dm_interface_exit,
  178. };
  179. static int __init dm_init(void)
  180. {
  181. const int count = ARRAY_SIZE(_inits);
  182. int r, i;
  183. for (i = 0; i < count; i++) {
  184. r = _inits[i]();
  185. if (r)
  186. goto bad;
  187. }
  188. return 0;
  189. bad:
  190. while (i--)
  191. _exits[i]();
  192. return r;
  193. }
  194. static void __exit dm_exit(void)
  195. {
  196. int i = ARRAY_SIZE(_exits);
  197. while (i--)
  198. _exits[i]();
  199. }
  200. /*
  201. * Block device functions
  202. */
  203. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  204. {
  205. struct mapped_device *md;
  206. spin_lock(&_minor_lock);
  207. md = bdev->bd_disk->private_data;
  208. if (!md)
  209. goto out;
  210. if (test_bit(DMF_FREEING, &md->flags) ||
  211. test_bit(DMF_DELETING, &md->flags)) {
  212. md = NULL;
  213. goto out;
  214. }
  215. dm_get(md);
  216. atomic_inc(&md->open_count);
  217. out:
  218. spin_unlock(&_minor_lock);
  219. return md ? 0 : -ENXIO;
  220. }
  221. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  222. {
  223. struct mapped_device *md = disk->private_data;
  224. atomic_dec(&md->open_count);
  225. dm_put(md);
  226. return 0;
  227. }
  228. int dm_open_count(struct mapped_device *md)
  229. {
  230. return atomic_read(&md->open_count);
  231. }
  232. /*
  233. * Guarantees nothing is using the device before it's deleted.
  234. */
  235. int dm_lock_for_deletion(struct mapped_device *md)
  236. {
  237. int r = 0;
  238. spin_lock(&_minor_lock);
  239. if (dm_open_count(md))
  240. r = -EBUSY;
  241. else
  242. set_bit(DMF_DELETING, &md->flags);
  243. spin_unlock(&_minor_lock);
  244. return r;
  245. }
  246. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  247. {
  248. struct mapped_device *md = bdev->bd_disk->private_data;
  249. return dm_get_geometry(md, geo);
  250. }
  251. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  252. unsigned int cmd, unsigned long arg)
  253. {
  254. struct mapped_device *md = bdev->bd_disk->private_data;
  255. struct dm_table *map = dm_get_table(md);
  256. struct dm_target *tgt;
  257. int r = -ENOTTY;
  258. if (!map || !dm_table_get_size(map))
  259. goto out;
  260. /* We only support devices that have a single target */
  261. if (dm_table_get_num_targets(map) != 1)
  262. goto out;
  263. tgt = dm_table_get_target(map, 0);
  264. if (dm_suspended(md)) {
  265. r = -EAGAIN;
  266. goto out;
  267. }
  268. if (tgt->type->ioctl)
  269. r = tgt->type->ioctl(tgt, cmd, arg);
  270. out:
  271. dm_table_put(map);
  272. return r;
  273. }
  274. static struct dm_io *alloc_io(struct mapped_device *md)
  275. {
  276. return mempool_alloc(md->io_pool, GFP_NOIO);
  277. }
  278. static void free_io(struct mapped_device *md, struct dm_io *io)
  279. {
  280. mempool_free(io, md->io_pool);
  281. }
  282. static struct dm_target_io *alloc_tio(struct mapped_device *md)
  283. {
  284. return mempool_alloc(md->tio_pool, GFP_NOIO);
  285. }
  286. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  287. {
  288. mempool_free(tio, md->tio_pool);
  289. }
  290. static void start_io_acct(struct dm_io *io)
  291. {
  292. struct mapped_device *md = io->md;
  293. int cpu;
  294. io->start_time = jiffies;
  295. cpu = part_stat_lock();
  296. part_round_stats(cpu, &dm_disk(md)->part0);
  297. part_stat_unlock();
  298. dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
  299. }
  300. static int end_io_acct(struct dm_io *io)
  301. {
  302. struct mapped_device *md = io->md;
  303. struct bio *bio = io->bio;
  304. unsigned long duration = jiffies - io->start_time;
  305. int pending, cpu;
  306. int rw = bio_data_dir(bio);
  307. cpu = part_stat_lock();
  308. part_round_stats(cpu, &dm_disk(md)->part0);
  309. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  310. part_stat_unlock();
  311. dm_disk(md)->part0.in_flight = pending =
  312. atomic_dec_return(&md->pending);
  313. return !pending;
  314. }
  315. /*
  316. * Add the bio to the list of deferred io.
  317. */
  318. static int queue_io(struct mapped_device *md, struct bio *bio)
  319. {
  320. down_write(&md->io_lock);
  321. if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
  322. up_write(&md->io_lock);
  323. return 1;
  324. }
  325. bio_list_add(&md->deferred, bio);
  326. up_write(&md->io_lock);
  327. return 0; /* deferred successfully */
  328. }
  329. /*
  330. * Everyone (including functions in this file), should use this
  331. * function to access the md->map field, and make sure they call
  332. * dm_table_put() when finished.
  333. */
  334. struct dm_table *dm_get_table(struct mapped_device *md)
  335. {
  336. struct dm_table *t;
  337. read_lock(&md->map_lock);
  338. t = md->map;
  339. if (t)
  340. dm_table_get(t);
  341. read_unlock(&md->map_lock);
  342. return t;
  343. }
  344. /*
  345. * Get the geometry associated with a dm device
  346. */
  347. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  348. {
  349. *geo = md->geometry;
  350. return 0;
  351. }
  352. /*
  353. * Set the geometry of a device.
  354. */
  355. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  356. {
  357. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  358. if (geo->start > sz) {
  359. DMWARN("Start sector is beyond the geometry limits.");
  360. return -EINVAL;
  361. }
  362. md->geometry = *geo;
  363. return 0;
  364. }
  365. /*-----------------------------------------------------------------
  366. * CRUD START:
  367. * A more elegant soln is in the works that uses the queue
  368. * merge fn, unfortunately there are a couple of changes to
  369. * the block layer that I want to make for this. So in the
  370. * interests of getting something for people to use I give
  371. * you this clearly demarcated crap.
  372. *---------------------------------------------------------------*/
  373. static int __noflush_suspending(struct mapped_device *md)
  374. {
  375. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  376. }
  377. /*
  378. * Decrements the number of outstanding ios that a bio has been
  379. * cloned into, completing the original io if necc.
  380. */
  381. static void dec_pending(struct dm_io *io, int error)
  382. {
  383. unsigned long flags;
  384. /* Push-back supersedes any I/O errors */
  385. if (error && !(io->error > 0 && __noflush_suspending(io->md)))
  386. io->error = error;
  387. if (atomic_dec_and_test(&io->io_count)) {
  388. if (io->error == DM_ENDIO_REQUEUE) {
  389. /*
  390. * Target requested pushing back the I/O.
  391. * This must be handled before the sleeper on
  392. * suspend queue merges the pushback list.
  393. */
  394. spin_lock_irqsave(&io->md->pushback_lock, flags);
  395. if (__noflush_suspending(io->md))
  396. bio_list_add(&io->md->pushback, io->bio);
  397. else
  398. /* noflush suspend was interrupted. */
  399. io->error = -EIO;
  400. spin_unlock_irqrestore(&io->md->pushback_lock, flags);
  401. }
  402. if (end_io_acct(io))
  403. /* nudge anyone waiting on suspend queue */
  404. wake_up(&io->md->wait);
  405. if (io->error != DM_ENDIO_REQUEUE) {
  406. blk_add_trace_bio(io->md->queue, io->bio,
  407. BLK_TA_COMPLETE);
  408. bio_endio(io->bio, io->error);
  409. }
  410. free_io(io->md, io);
  411. }
  412. }
  413. static void clone_endio(struct bio *bio, int error)
  414. {
  415. int r = 0;
  416. struct dm_target_io *tio = bio->bi_private;
  417. struct mapped_device *md = tio->io->md;
  418. dm_endio_fn endio = tio->ti->type->end_io;
  419. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  420. error = -EIO;
  421. if (endio) {
  422. r = endio(tio->ti, bio, error, &tio->info);
  423. if (r < 0 || r == DM_ENDIO_REQUEUE)
  424. /*
  425. * error and requeue request are handled
  426. * in dec_pending().
  427. */
  428. error = r;
  429. else if (r == DM_ENDIO_INCOMPLETE)
  430. /* The target will handle the io */
  431. return;
  432. else if (r) {
  433. DMWARN("unimplemented target endio return value: %d", r);
  434. BUG();
  435. }
  436. }
  437. dec_pending(tio->io, error);
  438. /*
  439. * Store md for cleanup instead of tio which is about to get freed.
  440. */
  441. bio->bi_private = md->bs;
  442. bio_put(bio);
  443. free_tio(md, tio);
  444. }
  445. static sector_t max_io_len(struct mapped_device *md,
  446. sector_t sector, struct dm_target *ti)
  447. {
  448. sector_t offset = sector - ti->begin;
  449. sector_t len = ti->len - offset;
  450. /*
  451. * Does the target need to split even further ?
  452. */
  453. if (ti->split_io) {
  454. sector_t boundary;
  455. boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
  456. - offset;
  457. if (len > boundary)
  458. len = boundary;
  459. }
  460. return len;
  461. }
  462. static void __map_bio(struct dm_target *ti, struct bio *clone,
  463. struct dm_target_io *tio)
  464. {
  465. int r;
  466. sector_t sector;
  467. struct mapped_device *md;
  468. /*
  469. * Sanity checks.
  470. */
  471. BUG_ON(!clone->bi_size);
  472. clone->bi_end_io = clone_endio;
  473. clone->bi_private = tio;
  474. /*
  475. * Map the clone. If r == 0 we don't need to do
  476. * anything, the target has assumed ownership of
  477. * this io.
  478. */
  479. atomic_inc(&tio->io->io_count);
  480. sector = clone->bi_sector;
  481. r = ti->type->map(ti, clone, &tio->info);
  482. if (r == DM_MAPIO_REMAPPED) {
  483. /* the bio has been remapped so dispatch it */
  484. blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
  485. tio->io->bio->bi_bdev->bd_dev,
  486. clone->bi_sector, sector);
  487. generic_make_request(clone);
  488. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  489. /* error the io and bail out, or requeue it if needed */
  490. md = tio->io->md;
  491. dec_pending(tio->io, r);
  492. /*
  493. * Store bio_set for cleanup.
  494. */
  495. clone->bi_private = md->bs;
  496. bio_put(clone);
  497. free_tio(md, tio);
  498. } else if (r) {
  499. DMWARN("unimplemented target map return value: %d", r);
  500. BUG();
  501. }
  502. }
  503. struct clone_info {
  504. struct mapped_device *md;
  505. struct dm_table *map;
  506. struct bio *bio;
  507. struct dm_io *io;
  508. sector_t sector;
  509. sector_t sector_count;
  510. unsigned short idx;
  511. };
  512. static void dm_bio_destructor(struct bio *bio)
  513. {
  514. struct bio_set *bs = bio->bi_private;
  515. bio_free(bio, bs);
  516. }
  517. /*
  518. * Creates a little bio that is just does part of a bvec.
  519. */
  520. static struct bio *split_bvec(struct bio *bio, sector_t sector,
  521. unsigned short idx, unsigned int offset,
  522. unsigned int len, struct bio_set *bs)
  523. {
  524. struct bio *clone;
  525. struct bio_vec *bv = bio->bi_io_vec + idx;
  526. clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
  527. clone->bi_destructor = dm_bio_destructor;
  528. *clone->bi_io_vec = *bv;
  529. clone->bi_sector = sector;
  530. clone->bi_bdev = bio->bi_bdev;
  531. clone->bi_rw = bio->bi_rw;
  532. clone->bi_vcnt = 1;
  533. clone->bi_size = to_bytes(len);
  534. clone->bi_io_vec->bv_offset = offset;
  535. clone->bi_io_vec->bv_len = clone->bi_size;
  536. clone->bi_flags |= 1 << BIO_CLONED;
  537. return clone;
  538. }
  539. /*
  540. * Creates a bio that consists of range of complete bvecs.
  541. */
  542. static struct bio *clone_bio(struct bio *bio, sector_t sector,
  543. unsigned short idx, unsigned short bv_count,
  544. unsigned int len, struct bio_set *bs)
  545. {
  546. struct bio *clone;
  547. clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
  548. __bio_clone(clone, bio);
  549. clone->bi_destructor = dm_bio_destructor;
  550. clone->bi_sector = sector;
  551. clone->bi_idx = idx;
  552. clone->bi_vcnt = idx + bv_count;
  553. clone->bi_size = to_bytes(len);
  554. clone->bi_flags &= ~(1 << BIO_SEG_VALID);
  555. return clone;
  556. }
  557. static int __clone_and_map(struct clone_info *ci)
  558. {
  559. struct bio *clone, *bio = ci->bio;
  560. struct dm_target *ti;
  561. sector_t len = 0, max;
  562. struct dm_target_io *tio;
  563. ti = dm_table_find_target(ci->map, ci->sector);
  564. if (!dm_target_is_valid(ti))
  565. return -EIO;
  566. max = max_io_len(ci->md, ci->sector, ti);
  567. /*
  568. * Allocate a target io object.
  569. */
  570. tio = alloc_tio(ci->md);
  571. tio->io = ci->io;
  572. tio->ti = ti;
  573. memset(&tio->info, 0, sizeof(tio->info));
  574. if (ci->sector_count <= max) {
  575. /*
  576. * Optimise for the simple case where we can do all of
  577. * the remaining io with a single clone.
  578. */
  579. clone = clone_bio(bio, ci->sector, ci->idx,
  580. bio->bi_vcnt - ci->idx, ci->sector_count,
  581. ci->md->bs);
  582. __map_bio(ti, clone, tio);
  583. ci->sector_count = 0;
  584. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  585. /*
  586. * There are some bvecs that don't span targets.
  587. * Do as many of these as possible.
  588. */
  589. int i;
  590. sector_t remaining = max;
  591. sector_t bv_len;
  592. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  593. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  594. if (bv_len > remaining)
  595. break;
  596. remaining -= bv_len;
  597. len += bv_len;
  598. }
  599. clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
  600. ci->md->bs);
  601. __map_bio(ti, clone, tio);
  602. ci->sector += len;
  603. ci->sector_count -= len;
  604. ci->idx = i;
  605. } else {
  606. /*
  607. * Handle a bvec that must be split between two or more targets.
  608. */
  609. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  610. sector_t remaining = to_sector(bv->bv_len);
  611. unsigned int offset = 0;
  612. do {
  613. if (offset) {
  614. ti = dm_table_find_target(ci->map, ci->sector);
  615. if (!dm_target_is_valid(ti))
  616. return -EIO;
  617. max = max_io_len(ci->md, ci->sector, ti);
  618. tio = alloc_tio(ci->md);
  619. tio->io = ci->io;
  620. tio->ti = ti;
  621. memset(&tio->info, 0, sizeof(tio->info));
  622. }
  623. len = min(remaining, max);
  624. clone = split_bvec(bio, ci->sector, ci->idx,
  625. bv->bv_offset + offset, len,
  626. ci->md->bs);
  627. __map_bio(ti, clone, tio);
  628. ci->sector += len;
  629. ci->sector_count -= len;
  630. offset += to_bytes(len);
  631. } while (remaining -= len);
  632. ci->idx++;
  633. }
  634. return 0;
  635. }
  636. /*
  637. * Split the bio into several clones.
  638. */
  639. static int __split_bio(struct mapped_device *md, struct bio *bio)
  640. {
  641. struct clone_info ci;
  642. int error = 0;
  643. ci.map = dm_get_table(md);
  644. if (unlikely(!ci.map))
  645. return -EIO;
  646. ci.md = md;
  647. ci.bio = bio;
  648. ci.io = alloc_io(md);
  649. ci.io->error = 0;
  650. atomic_set(&ci.io->io_count, 1);
  651. ci.io->bio = bio;
  652. ci.io->md = md;
  653. ci.sector = bio->bi_sector;
  654. ci.sector_count = bio_sectors(bio);
  655. ci.idx = bio->bi_idx;
  656. start_io_acct(ci.io);
  657. while (ci.sector_count && !error)
  658. error = __clone_and_map(&ci);
  659. /* drop the extra reference count */
  660. dec_pending(ci.io, error);
  661. dm_table_put(ci.map);
  662. return 0;
  663. }
  664. /*-----------------------------------------------------------------
  665. * CRUD END
  666. *---------------------------------------------------------------*/
  667. static int dm_merge_bvec(struct request_queue *q,
  668. struct bvec_merge_data *bvm,
  669. struct bio_vec *biovec)
  670. {
  671. struct mapped_device *md = q->queuedata;
  672. struct dm_table *map = dm_get_table(md);
  673. struct dm_target *ti;
  674. sector_t max_sectors;
  675. int max_size = 0;
  676. if (unlikely(!map))
  677. goto out;
  678. ti = dm_table_find_target(map, bvm->bi_sector);
  679. if (!dm_target_is_valid(ti))
  680. goto out_table;
  681. /*
  682. * Find maximum amount of I/O that won't need splitting
  683. */
  684. max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
  685. (sector_t) BIO_MAX_SECTORS);
  686. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  687. if (max_size < 0)
  688. max_size = 0;
  689. /*
  690. * merge_bvec_fn() returns number of bytes
  691. * it can accept at this offset
  692. * max is precomputed maximal io size
  693. */
  694. if (max_size && ti->type->merge)
  695. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  696. out_table:
  697. dm_table_put(map);
  698. out:
  699. /*
  700. * Always allow an entire first page
  701. */
  702. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  703. max_size = biovec->bv_len;
  704. return max_size;
  705. }
  706. /*
  707. * The request function that just remaps the bio built up by
  708. * dm_merge_bvec.
  709. */
  710. static int dm_request(struct request_queue *q, struct bio *bio)
  711. {
  712. int r = -EIO;
  713. int rw = bio_data_dir(bio);
  714. struct mapped_device *md = q->queuedata;
  715. int cpu;
  716. /*
  717. * There is no use in forwarding any barrier request since we can't
  718. * guarantee it is (or can be) handled by the targets correctly.
  719. */
  720. if (unlikely(bio_barrier(bio))) {
  721. bio_endio(bio, -EOPNOTSUPP);
  722. return 0;
  723. }
  724. down_read(&md->io_lock);
  725. cpu = part_stat_lock();
  726. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  727. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  728. part_stat_unlock();
  729. /*
  730. * If we're suspended we have to queue
  731. * this io for later.
  732. */
  733. while (test_bit(DMF_BLOCK_IO, &md->flags)) {
  734. up_read(&md->io_lock);
  735. if (bio_rw(bio) != READA)
  736. r = queue_io(md, bio);
  737. if (r <= 0)
  738. goto out_req;
  739. /*
  740. * We're in a while loop, because someone could suspend
  741. * before we get to the following read lock.
  742. */
  743. down_read(&md->io_lock);
  744. }
  745. r = __split_bio(md, bio);
  746. up_read(&md->io_lock);
  747. out_req:
  748. if (r < 0)
  749. bio_io_error(bio);
  750. return 0;
  751. }
  752. static void dm_unplug_all(struct request_queue *q)
  753. {
  754. struct mapped_device *md = q->queuedata;
  755. struct dm_table *map = dm_get_table(md);
  756. if (map) {
  757. dm_table_unplug_all(map);
  758. dm_table_put(map);
  759. }
  760. }
  761. static int dm_any_congested(void *congested_data, int bdi_bits)
  762. {
  763. int r;
  764. struct mapped_device *md = (struct mapped_device *) congested_data;
  765. struct dm_table *map = dm_get_table(md);
  766. if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
  767. r = bdi_bits;
  768. else
  769. r = dm_table_any_congested(map, bdi_bits);
  770. dm_table_put(map);
  771. return r;
  772. }
  773. /*-----------------------------------------------------------------
  774. * An IDR is used to keep track of allocated minor numbers.
  775. *---------------------------------------------------------------*/
  776. static DEFINE_IDR(_minor_idr);
  777. static void free_minor(int minor)
  778. {
  779. spin_lock(&_minor_lock);
  780. idr_remove(&_minor_idr, minor);
  781. spin_unlock(&_minor_lock);
  782. }
  783. /*
  784. * See if the device with a specific minor # is free.
  785. */
  786. static int specific_minor(int minor)
  787. {
  788. int r, m;
  789. if (minor >= (1 << MINORBITS))
  790. return -EINVAL;
  791. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  792. if (!r)
  793. return -ENOMEM;
  794. spin_lock(&_minor_lock);
  795. if (idr_find(&_minor_idr, minor)) {
  796. r = -EBUSY;
  797. goto out;
  798. }
  799. r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
  800. if (r)
  801. goto out;
  802. if (m != minor) {
  803. idr_remove(&_minor_idr, m);
  804. r = -EBUSY;
  805. goto out;
  806. }
  807. out:
  808. spin_unlock(&_minor_lock);
  809. return r;
  810. }
  811. static int next_free_minor(int *minor)
  812. {
  813. int r, m;
  814. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  815. if (!r)
  816. return -ENOMEM;
  817. spin_lock(&_minor_lock);
  818. r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
  819. if (r)
  820. goto out;
  821. if (m >= (1 << MINORBITS)) {
  822. idr_remove(&_minor_idr, m);
  823. r = -ENOSPC;
  824. goto out;
  825. }
  826. *minor = m;
  827. out:
  828. spin_unlock(&_minor_lock);
  829. return r;
  830. }
  831. static struct block_device_operations dm_blk_dops;
  832. /*
  833. * Allocate and initialise a blank device with a given minor.
  834. */
  835. static struct mapped_device *alloc_dev(int minor)
  836. {
  837. int r;
  838. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  839. void *old_md;
  840. if (!md) {
  841. DMWARN("unable to allocate device, out of memory.");
  842. return NULL;
  843. }
  844. if (!try_module_get(THIS_MODULE))
  845. goto bad_module_get;
  846. /* get a minor number for the dev */
  847. if (minor == DM_ANY_MINOR)
  848. r = next_free_minor(&minor);
  849. else
  850. r = specific_minor(minor);
  851. if (r < 0)
  852. goto bad_minor;
  853. init_rwsem(&md->io_lock);
  854. mutex_init(&md->suspend_lock);
  855. spin_lock_init(&md->pushback_lock);
  856. rwlock_init(&md->map_lock);
  857. atomic_set(&md->holders, 1);
  858. atomic_set(&md->open_count, 0);
  859. atomic_set(&md->event_nr, 0);
  860. atomic_set(&md->uevent_seq, 0);
  861. INIT_LIST_HEAD(&md->uevent_list);
  862. spin_lock_init(&md->uevent_lock);
  863. md->queue = blk_alloc_queue(GFP_KERNEL);
  864. if (!md->queue)
  865. goto bad_queue;
  866. md->queue->queuedata = md;
  867. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  868. md->queue->backing_dev_info.congested_data = md;
  869. blk_queue_make_request(md->queue, dm_request);
  870. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  871. md->queue->unplug_fn = dm_unplug_all;
  872. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  873. md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
  874. if (!md->io_pool)
  875. goto bad_io_pool;
  876. md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
  877. if (!md->tio_pool)
  878. goto bad_tio_pool;
  879. md->bs = bioset_create(16, 16);
  880. if (!md->bs)
  881. goto bad_no_bioset;
  882. md->disk = alloc_disk(1);
  883. if (!md->disk)
  884. goto bad_disk;
  885. atomic_set(&md->pending, 0);
  886. init_waitqueue_head(&md->wait);
  887. init_waitqueue_head(&md->eventq);
  888. md->disk->major = _major;
  889. md->disk->first_minor = minor;
  890. md->disk->fops = &dm_blk_dops;
  891. md->disk->queue = md->queue;
  892. md->disk->private_data = md;
  893. sprintf(md->disk->disk_name, "dm-%d", minor);
  894. add_disk(md->disk);
  895. format_dev_t(md->name, MKDEV(_major, minor));
  896. md->wq = create_singlethread_workqueue("kdmflush");
  897. if (!md->wq)
  898. goto bad_thread;
  899. /* Populate the mapping, nobody knows we exist yet */
  900. spin_lock(&_minor_lock);
  901. old_md = idr_replace(&_minor_idr, md, minor);
  902. spin_unlock(&_minor_lock);
  903. BUG_ON(old_md != MINOR_ALLOCED);
  904. return md;
  905. bad_thread:
  906. put_disk(md->disk);
  907. bad_disk:
  908. bioset_free(md->bs);
  909. bad_no_bioset:
  910. mempool_destroy(md->tio_pool);
  911. bad_tio_pool:
  912. mempool_destroy(md->io_pool);
  913. bad_io_pool:
  914. blk_cleanup_queue(md->queue);
  915. bad_queue:
  916. free_minor(minor);
  917. bad_minor:
  918. module_put(THIS_MODULE);
  919. bad_module_get:
  920. kfree(md);
  921. return NULL;
  922. }
  923. static void unlock_fs(struct mapped_device *md);
  924. static void free_dev(struct mapped_device *md)
  925. {
  926. int minor = MINOR(disk_devt(md->disk));
  927. if (md->suspended_bdev) {
  928. unlock_fs(md);
  929. bdput(md->suspended_bdev);
  930. }
  931. destroy_workqueue(md->wq);
  932. mempool_destroy(md->tio_pool);
  933. mempool_destroy(md->io_pool);
  934. bioset_free(md->bs);
  935. del_gendisk(md->disk);
  936. free_minor(minor);
  937. spin_lock(&_minor_lock);
  938. md->disk->private_data = NULL;
  939. spin_unlock(&_minor_lock);
  940. put_disk(md->disk);
  941. blk_cleanup_queue(md->queue);
  942. module_put(THIS_MODULE);
  943. kfree(md);
  944. }
  945. /*
  946. * Bind a table to the device.
  947. */
  948. static void event_callback(void *context)
  949. {
  950. unsigned long flags;
  951. LIST_HEAD(uevents);
  952. struct mapped_device *md = (struct mapped_device *) context;
  953. spin_lock_irqsave(&md->uevent_lock, flags);
  954. list_splice_init(&md->uevent_list, &uevents);
  955. spin_unlock_irqrestore(&md->uevent_lock, flags);
  956. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  957. atomic_inc(&md->event_nr);
  958. wake_up(&md->eventq);
  959. }
  960. static void __set_size(struct mapped_device *md, sector_t size)
  961. {
  962. set_capacity(md->disk, size);
  963. mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
  964. i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  965. mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
  966. }
  967. static int __bind(struct mapped_device *md, struct dm_table *t)
  968. {
  969. struct request_queue *q = md->queue;
  970. sector_t size;
  971. size = dm_table_get_size(t);
  972. /*
  973. * Wipe any geometry if the size of the table changed.
  974. */
  975. if (size != get_capacity(md->disk))
  976. memset(&md->geometry, 0, sizeof(md->geometry));
  977. if (md->suspended_bdev)
  978. __set_size(md, size);
  979. if (size == 0)
  980. return 0;
  981. dm_table_get(t);
  982. dm_table_event_callback(t, event_callback, md);
  983. write_lock(&md->map_lock);
  984. md->map = t;
  985. dm_table_set_restrictions(t, q);
  986. write_unlock(&md->map_lock);
  987. return 0;
  988. }
  989. static void __unbind(struct mapped_device *md)
  990. {
  991. struct dm_table *map = md->map;
  992. if (!map)
  993. return;
  994. dm_table_event_callback(map, NULL, NULL);
  995. write_lock(&md->map_lock);
  996. md->map = NULL;
  997. write_unlock(&md->map_lock);
  998. dm_table_put(map);
  999. }
  1000. /*
  1001. * Constructor for a new device.
  1002. */
  1003. int dm_create(int minor, struct mapped_device **result)
  1004. {
  1005. struct mapped_device *md;
  1006. md = alloc_dev(minor);
  1007. if (!md)
  1008. return -ENXIO;
  1009. *result = md;
  1010. return 0;
  1011. }
  1012. static struct mapped_device *dm_find_md(dev_t dev)
  1013. {
  1014. struct mapped_device *md;
  1015. unsigned minor = MINOR(dev);
  1016. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1017. return NULL;
  1018. spin_lock(&_minor_lock);
  1019. md = idr_find(&_minor_idr, minor);
  1020. if (md && (md == MINOR_ALLOCED ||
  1021. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1022. test_bit(DMF_FREEING, &md->flags))) {
  1023. md = NULL;
  1024. goto out;
  1025. }
  1026. out:
  1027. spin_unlock(&_minor_lock);
  1028. return md;
  1029. }
  1030. struct mapped_device *dm_get_md(dev_t dev)
  1031. {
  1032. struct mapped_device *md = dm_find_md(dev);
  1033. if (md)
  1034. dm_get(md);
  1035. return md;
  1036. }
  1037. void *dm_get_mdptr(struct mapped_device *md)
  1038. {
  1039. return md->interface_ptr;
  1040. }
  1041. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1042. {
  1043. md->interface_ptr = ptr;
  1044. }
  1045. void dm_get(struct mapped_device *md)
  1046. {
  1047. atomic_inc(&md->holders);
  1048. }
  1049. const char *dm_device_name(struct mapped_device *md)
  1050. {
  1051. return md->name;
  1052. }
  1053. EXPORT_SYMBOL_GPL(dm_device_name);
  1054. void dm_put(struct mapped_device *md)
  1055. {
  1056. struct dm_table *map;
  1057. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1058. if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
  1059. map = dm_get_table(md);
  1060. idr_replace(&_minor_idr, MINOR_ALLOCED,
  1061. MINOR(disk_devt(dm_disk(md))));
  1062. set_bit(DMF_FREEING, &md->flags);
  1063. spin_unlock(&_minor_lock);
  1064. if (!dm_suspended(md)) {
  1065. dm_table_presuspend_targets(map);
  1066. dm_table_postsuspend_targets(map);
  1067. }
  1068. __unbind(md);
  1069. dm_table_put(map);
  1070. free_dev(md);
  1071. }
  1072. }
  1073. EXPORT_SYMBOL_GPL(dm_put);
  1074. static int dm_wait_for_completion(struct mapped_device *md)
  1075. {
  1076. int r = 0;
  1077. while (1) {
  1078. set_current_state(TASK_INTERRUPTIBLE);
  1079. smp_mb();
  1080. if (!atomic_read(&md->pending))
  1081. break;
  1082. if (signal_pending(current)) {
  1083. r = -EINTR;
  1084. break;
  1085. }
  1086. io_schedule();
  1087. }
  1088. set_current_state(TASK_RUNNING);
  1089. return r;
  1090. }
  1091. /*
  1092. * Process the deferred bios
  1093. */
  1094. static void __flush_deferred_io(struct mapped_device *md)
  1095. {
  1096. struct bio *c;
  1097. while ((c = bio_list_pop(&md->deferred))) {
  1098. if (__split_bio(md, c))
  1099. bio_io_error(c);
  1100. }
  1101. clear_bit(DMF_BLOCK_IO, &md->flags);
  1102. }
  1103. static void __merge_pushback_list(struct mapped_device *md)
  1104. {
  1105. unsigned long flags;
  1106. spin_lock_irqsave(&md->pushback_lock, flags);
  1107. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1108. bio_list_merge_head(&md->deferred, &md->pushback);
  1109. bio_list_init(&md->pushback);
  1110. spin_unlock_irqrestore(&md->pushback_lock, flags);
  1111. }
  1112. static void dm_wq_work(struct work_struct *work)
  1113. {
  1114. struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
  1115. struct mapped_device *md = req->md;
  1116. down_write(&md->io_lock);
  1117. switch (req->type) {
  1118. case DM_WQ_FLUSH_DEFERRED:
  1119. __flush_deferred_io(md);
  1120. break;
  1121. default:
  1122. DMERR("dm_wq_work: unrecognised work type %d", req->type);
  1123. BUG();
  1124. }
  1125. up_write(&md->io_lock);
  1126. }
  1127. static void dm_wq_queue(struct mapped_device *md, int type, void *context,
  1128. struct dm_wq_req *req)
  1129. {
  1130. req->type = type;
  1131. req->md = md;
  1132. req->context = context;
  1133. INIT_WORK(&req->work, dm_wq_work);
  1134. queue_work(md->wq, &req->work);
  1135. }
  1136. static void dm_queue_flush(struct mapped_device *md, int type, void *context)
  1137. {
  1138. struct dm_wq_req req;
  1139. dm_wq_queue(md, type, context, &req);
  1140. flush_workqueue(md->wq);
  1141. }
  1142. /*
  1143. * Swap in a new table (destroying old one).
  1144. */
  1145. int dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1146. {
  1147. int r = -EINVAL;
  1148. mutex_lock(&md->suspend_lock);
  1149. /* device must be suspended */
  1150. if (!dm_suspended(md))
  1151. goto out;
  1152. /* without bdev, the device size cannot be changed */
  1153. if (!md->suspended_bdev)
  1154. if (get_capacity(md->disk) != dm_table_get_size(table))
  1155. goto out;
  1156. __unbind(md);
  1157. r = __bind(md, table);
  1158. out:
  1159. mutex_unlock(&md->suspend_lock);
  1160. return r;
  1161. }
  1162. /*
  1163. * Functions to lock and unlock any filesystem running on the
  1164. * device.
  1165. */
  1166. static int lock_fs(struct mapped_device *md)
  1167. {
  1168. int r;
  1169. WARN_ON(md->frozen_sb);
  1170. md->frozen_sb = freeze_bdev(md->suspended_bdev);
  1171. if (IS_ERR(md->frozen_sb)) {
  1172. r = PTR_ERR(md->frozen_sb);
  1173. md->frozen_sb = NULL;
  1174. return r;
  1175. }
  1176. set_bit(DMF_FROZEN, &md->flags);
  1177. /* don't bdput right now, we don't want the bdev
  1178. * to go away while it is locked.
  1179. */
  1180. return 0;
  1181. }
  1182. static void unlock_fs(struct mapped_device *md)
  1183. {
  1184. if (!test_bit(DMF_FROZEN, &md->flags))
  1185. return;
  1186. thaw_bdev(md->suspended_bdev, md->frozen_sb);
  1187. md->frozen_sb = NULL;
  1188. clear_bit(DMF_FROZEN, &md->flags);
  1189. }
  1190. /*
  1191. * We need to be able to change a mapping table under a mounted
  1192. * filesystem. For example we might want to move some data in
  1193. * the background. Before the table can be swapped with
  1194. * dm_bind_table, dm_suspend must be called to flush any in
  1195. * flight bios and ensure that any further io gets deferred.
  1196. */
  1197. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  1198. {
  1199. struct dm_table *map = NULL;
  1200. DECLARE_WAITQUEUE(wait, current);
  1201. int r = 0;
  1202. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  1203. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  1204. mutex_lock(&md->suspend_lock);
  1205. if (dm_suspended(md)) {
  1206. r = -EINVAL;
  1207. goto out_unlock;
  1208. }
  1209. map = dm_get_table(md);
  1210. /*
  1211. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  1212. * This flag is cleared before dm_suspend returns.
  1213. */
  1214. if (noflush)
  1215. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1216. /* This does not get reverted if there's an error later. */
  1217. dm_table_presuspend_targets(map);
  1218. /* bdget() can stall if the pending I/Os are not flushed */
  1219. if (!noflush) {
  1220. md->suspended_bdev = bdget_disk(md->disk, 0);
  1221. if (!md->suspended_bdev) {
  1222. DMWARN("bdget failed in dm_suspend");
  1223. r = -ENOMEM;
  1224. goto out;
  1225. }
  1226. /*
  1227. * Flush I/O to the device. noflush supersedes do_lockfs,
  1228. * because lock_fs() needs to flush I/Os.
  1229. */
  1230. if (do_lockfs) {
  1231. r = lock_fs(md);
  1232. if (r)
  1233. goto out;
  1234. }
  1235. }
  1236. /*
  1237. * First we set the BLOCK_IO flag so no more ios will be mapped.
  1238. */
  1239. down_write(&md->io_lock);
  1240. set_bit(DMF_BLOCK_IO, &md->flags);
  1241. add_wait_queue(&md->wait, &wait);
  1242. up_write(&md->io_lock);
  1243. /* unplug */
  1244. if (map)
  1245. dm_table_unplug_all(map);
  1246. /*
  1247. * Wait for the already-mapped ios to complete.
  1248. */
  1249. r = dm_wait_for_completion(md);
  1250. down_write(&md->io_lock);
  1251. remove_wait_queue(&md->wait, &wait);
  1252. if (noflush)
  1253. __merge_pushback_list(md);
  1254. up_write(&md->io_lock);
  1255. /* were we interrupted ? */
  1256. if (r < 0) {
  1257. dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
  1258. unlock_fs(md);
  1259. goto out; /* pushback list is already flushed, so skip flush */
  1260. }
  1261. dm_table_postsuspend_targets(map);
  1262. set_bit(DMF_SUSPENDED, &md->flags);
  1263. out:
  1264. if (r && md->suspended_bdev) {
  1265. bdput(md->suspended_bdev);
  1266. md->suspended_bdev = NULL;
  1267. }
  1268. dm_table_put(map);
  1269. out_unlock:
  1270. mutex_unlock(&md->suspend_lock);
  1271. return r;
  1272. }
  1273. int dm_resume(struct mapped_device *md)
  1274. {
  1275. int r = -EINVAL;
  1276. struct dm_table *map = NULL;
  1277. mutex_lock(&md->suspend_lock);
  1278. if (!dm_suspended(md))
  1279. goto out;
  1280. map = dm_get_table(md);
  1281. if (!map || !dm_table_get_size(map))
  1282. goto out;
  1283. r = dm_table_resume_targets(map);
  1284. if (r)
  1285. goto out;
  1286. dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
  1287. unlock_fs(md);
  1288. if (md->suspended_bdev) {
  1289. bdput(md->suspended_bdev);
  1290. md->suspended_bdev = NULL;
  1291. }
  1292. clear_bit(DMF_SUSPENDED, &md->flags);
  1293. dm_table_unplug_all(map);
  1294. dm_kobject_uevent(md);
  1295. r = 0;
  1296. out:
  1297. dm_table_put(map);
  1298. mutex_unlock(&md->suspend_lock);
  1299. return r;
  1300. }
  1301. /*-----------------------------------------------------------------
  1302. * Event notification.
  1303. *---------------------------------------------------------------*/
  1304. void dm_kobject_uevent(struct mapped_device *md)
  1305. {
  1306. kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
  1307. }
  1308. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  1309. {
  1310. return atomic_add_return(1, &md->uevent_seq);
  1311. }
  1312. uint32_t dm_get_event_nr(struct mapped_device *md)
  1313. {
  1314. return atomic_read(&md->event_nr);
  1315. }
  1316. int dm_wait_event(struct mapped_device *md, int event_nr)
  1317. {
  1318. return wait_event_interruptible(md->eventq,
  1319. (event_nr != atomic_read(&md->event_nr)));
  1320. }
  1321. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  1322. {
  1323. unsigned long flags;
  1324. spin_lock_irqsave(&md->uevent_lock, flags);
  1325. list_add(elist, &md->uevent_list);
  1326. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1327. }
  1328. /*
  1329. * The gendisk is only valid as long as you have a reference
  1330. * count on 'md'.
  1331. */
  1332. struct gendisk *dm_disk(struct mapped_device *md)
  1333. {
  1334. return md->disk;
  1335. }
  1336. int dm_suspended(struct mapped_device *md)
  1337. {
  1338. return test_bit(DMF_SUSPENDED, &md->flags);
  1339. }
  1340. int dm_noflush_suspending(struct dm_target *ti)
  1341. {
  1342. struct mapped_device *md = dm_table_get_md(ti->table);
  1343. int r = __noflush_suspending(md);
  1344. dm_put(md);
  1345. return r;
  1346. }
  1347. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  1348. static struct block_device_operations dm_blk_dops = {
  1349. .open = dm_blk_open,
  1350. .release = dm_blk_close,
  1351. .ioctl = dm_blk_ioctl,
  1352. .getgeo = dm_blk_getgeo,
  1353. .owner = THIS_MODULE
  1354. };
  1355. EXPORT_SYMBOL(dm_get_mapinfo);
  1356. /*
  1357. * module hooks
  1358. */
  1359. module_init(dm_init);
  1360. module_exit(dm_exit);
  1361. module_param(major, uint, 0);
  1362. MODULE_PARM_DESC(major, "The major number of the device mapper");
  1363. MODULE_DESCRIPTION(DM_NAME " driver");
  1364. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  1365. MODULE_LICENSE("GPL");