md.c 203 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mutex.h>
  31. #include <linux/buffer_head.h> /* for invalidate_bdev */
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays(int part);
  51. #endif
  52. static LIST_HEAD(pers_list);
  53. static DEFINE_SPINLOCK(pers_lock);
  54. static void md_print_devices(void);
  55. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  56. static struct workqueue_struct *md_wq;
  57. static struct workqueue_struct *md_misc_wq;
  58. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  59. /*
  60. * Default number of read corrections we'll attempt on an rdev
  61. * before ejecting it from the array. We divide the read error
  62. * count by 2 for every hour elapsed between read errors.
  63. */
  64. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  65. /*
  66. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  67. * is 1000 KB/sec, so the extra system load does not show up that much.
  68. * Increase it if you want to have more _guaranteed_ speed. Note that
  69. * the RAID driver will use the maximum available bandwidth if the IO
  70. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  71. * speed limit - in case reconstruction slows down your system despite
  72. * idle IO detection.
  73. *
  74. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  75. * or /sys/block/mdX/md/sync_speed_{min,max}
  76. */
  77. static int sysctl_speed_limit_min = 1000;
  78. static int sysctl_speed_limit_max = 200000;
  79. static inline int speed_min(mddev_t *mddev)
  80. {
  81. return mddev->sync_speed_min ?
  82. mddev->sync_speed_min : sysctl_speed_limit_min;
  83. }
  84. static inline int speed_max(mddev_t *mddev)
  85. {
  86. return mddev->sync_speed_max ?
  87. mddev->sync_speed_max : sysctl_speed_limit_max;
  88. }
  89. static struct ctl_table_header *raid_table_header;
  90. static ctl_table raid_table[] = {
  91. {
  92. .procname = "speed_limit_min",
  93. .data = &sysctl_speed_limit_min,
  94. .maxlen = sizeof(int),
  95. .mode = S_IRUGO|S_IWUSR,
  96. .proc_handler = proc_dointvec,
  97. },
  98. {
  99. .procname = "speed_limit_max",
  100. .data = &sysctl_speed_limit_max,
  101. .maxlen = sizeof(int),
  102. .mode = S_IRUGO|S_IWUSR,
  103. .proc_handler = proc_dointvec,
  104. },
  105. { }
  106. };
  107. static ctl_table raid_dir_table[] = {
  108. {
  109. .procname = "raid",
  110. .maxlen = 0,
  111. .mode = S_IRUGO|S_IXUGO,
  112. .child = raid_table,
  113. },
  114. { }
  115. };
  116. static ctl_table raid_root_table[] = {
  117. {
  118. .procname = "dev",
  119. .maxlen = 0,
  120. .mode = 0555,
  121. .child = raid_dir_table,
  122. },
  123. { }
  124. };
  125. static const struct block_device_operations md_fops;
  126. static int start_readonly;
  127. /* bio_clone_mddev
  128. * like bio_clone, but with a local bio set
  129. */
  130. static void mddev_bio_destructor(struct bio *bio)
  131. {
  132. mddev_t *mddev, **mddevp;
  133. mddevp = (void*)bio;
  134. mddev = mddevp[-1];
  135. bio_free(bio, mddev->bio_set);
  136. }
  137. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  138. mddev_t *mddev)
  139. {
  140. struct bio *b;
  141. mddev_t **mddevp;
  142. if (!mddev || !mddev->bio_set)
  143. return bio_alloc(gfp_mask, nr_iovecs);
  144. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  145. mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. mddevp = (void*)b;
  149. mddevp[-1] = mddev;
  150. b->bi_destructor = mddev_bio_destructor;
  151. return b;
  152. }
  153. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  154. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  155. mddev_t *mddev)
  156. {
  157. struct bio *b;
  158. mddev_t **mddevp;
  159. if (!mddev || !mddev->bio_set)
  160. return bio_clone(bio, gfp_mask);
  161. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  162. mddev->bio_set);
  163. if (!b)
  164. return NULL;
  165. mddevp = (void*)b;
  166. mddevp[-1] = mddev;
  167. b->bi_destructor = mddev_bio_destructor;
  168. __bio_clone(b, bio);
  169. if (bio_integrity(bio)) {
  170. int ret;
  171. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  172. if (ret < 0) {
  173. bio_put(b);
  174. return NULL;
  175. }
  176. }
  177. return b;
  178. }
  179. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  180. /*
  181. * We have a system wide 'event count' that is incremented
  182. * on any 'interesting' event, and readers of /proc/mdstat
  183. * can use 'poll' or 'select' to find out when the event
  184. * count increases.
  185. *
  186. * Events are:
  187. * start array, stop array, error, add device, remove device,
  188. * start build, activate spare
  189. */
  190. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  191. static atomic_t md_event_count;
  192. void md_new_event(mddev_t *mddev)
  193. {
  194. atomic_inc(&md_event_count);
  195. wake_up(&md_event_waiters);
  196. }
  197. EXPORT_SYMBOL_GPL(md_new_event);
  198. /* Alternate version that can be called from interrupts
  199. * when calling sysfs_notify isn't needed.
  200. */
  201. static void md_new_event_inintr(mddev_t *mddev)
  202. {
  203. atomic_inc(&md_event_count);
  204. wake_up(&md_event_waiters);
  205. }
  206. /*
  207. * Enables to iterate over all existing md arrays
  208. * all_mddevs_lock protects this list.
  209. */
  210. static LIST_HEAD(all_mddevs);
  211. static DEFINE_SPINLOCK(all_mddevs_lock);
  212. /*
  213. * iterates through all used mddevs in the system.
  214. * We take care to grab the all_mddevs_lock whenever navigating
  215. * the list, and to always hold a refcount when unlocked.
  216. * Any code which breaks out of this loop while own
  217. * a reference to the current mddev and must mddev_put it.
  218. */
  219. #define for_each_mddev(mddev,tmp) \
  220. \
  221. for (({ spin_lock(&all_mddevs_lock); \
  222. tmp = all_mddevs.next; \
  223. mddev = NULL;}); \
  224. ({ if (tmp != &all_mddevs) \
  225. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  226. spin_unlock(&all_mddevs_lock); \
  227. if (mddev) mddev_put(mddev); \
  228. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  229. tmp != &all_mddevs;}); \
  230. ({ spin_lock(&all_mddevs_lock); \
  231. tmp = tmp->next;}) \
  232. )
  233. /* Rather than calling directly into the personality make_request function,
  234. * IO requests come here first so that we can check if the device is
  235. * being suspended pending a reconfiguration.
  236. * We hold a refcount over the call to ->make_request. By the time that
  237. * call has finished, the bio has been linked into some internal structure
  238. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  239. */
  240. static int md_make_request(struct request_queue *q, struct bio *bio)
  241. {
  242. const int rw = bio_data_dir(bio);
  243. mddev_t *mddev = q->queuedata;
  244. int rv;
  245. int cpu;
  246. unsigned int sectors;
  247. if (mddev == NULL || mddev->pers == NULL
  248. || !mddev->ready) {
  249. bio_io_error(bio);
  250. return 0;
  251. }
  252. smp_rmb(); /* Ensure implications of 'active' are visible */
  253. rcu_read_lock();
  254. if (mddev->suspended) {
  255. DEFINE_WAIT(__wait);
  256. for (;;) {
  257. prepare_to_wait(&mddev->sb_wait, &__wait,
  258. TASK_UNINTERRUPTIBLE);
  259. if (!mddev->suspended)
  260. break;
  261. rcu_read_unlock();
  262. schedule();
  263. rcu_read_lock();
  264. }
  265. finish_wait(&mddev->sb_wait, &__wait);
  266. }
  267. atomic_inc(&mddev->active_io);
  268. rcu_read_unlock();
  269. /*
  270. * save the sectors now since our bio can
  271. * go away inside make_request
  272. */
  273. sectors = bio_sectors(bio);
  274. rv = mddev->pers->make_request(mddev, bio);
  275. cpu = part_stat_lock();
  276. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  277. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  278. part_stat_unlock();
  279. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  280. wake_up(&mddev->sb_wait);
  281. return rv;
  282. }
  283. /* mddev_suspend makes sure no new requests are submitted
  284. * to the device, and that any requests that have been submitted
  285. * are completely handled.
  286. * Once ->stop is called and completes, the module will be completely
  287. * unused.
  288. */
  289. void mddev_suspend(mddev_t *mddev)
  290. {
  291. BUG_ON(mddev->suspended);
  292. mddev->suspended = 1;
  293. synchronize_rcu();
  294. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  295. mddev->pers->quiesce(mddev, 1);
  296. }
  297. EXPORT_SYMBOL_GPL(mddev_suspend);
  298. void mddev_resume(mddev_t *mddev)
  299. {
  300. mddev->suspended = 0;
  301. wake_up(&mddev->sb_wait);
  302. mddev->pers->quiesce(mddev, 0);
  303. md_wakeup_thread(mddev->thread);
  304. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  305. }
  306. EXPORT_SYMBOL_GPL(mddev_resume);
  307. int mddev_congested(mddev_t *mddev, int bits)
  308. {
  309. return mddev->suspended;
  310. }
  311. EXPORT_SYMBOL(mddev_congested);
  312. /*
  313. * Generic flush handling for md
  314. */
  315. static void md_end_flush(struct bio *bio, int err)
  316. {
  317. mdk_rdev_t *rdev = bio->bi_private;
  318. mddev_t *mddev = rdev->mddev;
  319. rdev_dec_pending(rdev, mddev);
  320. if (atomic_dec_and_test(&mddev->flush_pending)) {
  321. /* The pre-request flush has finished */
  322. queue_work(md_wq, &mddev->flush_work);
  323. }
  324. bio_put(bio);
  325. }
  326. static void md_submit_flush_data(struct work_struct *ws);
  327. static void submit_flushes(struct work_struct *ws)
  328. {
  329. mddev_t *mddev = container_of(ws, mddev_t, flush_work);
  330. mdk_rdev_t *rdev;
  331. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  332. atomic_set(&mddev->flush_pending, 1);
  333. rcu_read_lock();
  334. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  335. if (rdev->raid_disk >= 0 &&
  336. !test_bit(Faulty, &rdev->flags)) {
  337. /* Take two references, one is dropped
  338. * when request finishes, one after
  339. * we reclaim rcu_read_lock
  340. */
  341. struct bio *bi;
  342. atomic_inc(&rdev->nr_pending);
  343. atomic_inc(&rdev->nr_pending);
  344. rcu_read_unlock();
  345. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  346. bi->bi_end_io = md_end_flush;
  347. bi->bi_private = rdev;
  348. bi->bi_bdev = rdev->bdev;
  349. atomic_inc(&mddev->flush_pending);
  350. submit_bio(WRITE_FLUSH, bi);
  351. rcu_read_lock();
  352. rdev_dec_pending(rdev, mddev);
  353. }
  354. rcu_read_unlock();
  355. if (atomic_dec_and_test(&mddev->flush_pending))
  356. queue_work(md_wq, &mddev->flush_work);
  357. }
  358. static void md_submit_flush_data(struct work_struct *ws)
  359. {
  360. mddev_t *mddev = container_of(ws, mddev_t, flush_work);
  361. struct bio *bio = mddev->flush_bio;
  362. if (bio->bi_size == 0)
  363. /* an empty barrier - all done */
  364. bio_endio(bio, 0);
  365. else {
  366. bio->bi_rw &= ~REQ_FLUSH;
  367. if (mddev->pers->make_request(mddev, bio))
  368. generic_make_request(bio);
  369. }
  370. mddev->flush_bio = NULL;
  371. wake_up(&mddev->sb_wait);
  372. }
  373. void md_flush_request(mddev_t *mddev, struct bio *bio)
  374. {
  375. spin_lock_irq(&mddev->write_lock);
  376. wait_event_lock_irq(mddev->sb_wait,
  377. !mddev->flush_bio,
  378. mddev->write_lock, /*nothing*/);
  379. mddev->flush_bio = bio;
  380. spin_unlock_irq(&mddev->write_lock);
  381. INIT_WORK(&mddev->flush_work, submit_flushes);
  382. queue_work(md_wq, &mddev->flush_work);
  383. }
  384. EXPORT_SYMBOL(md_flush_request);
  385. /* Support for plugging.
  386. * This mirrors the plugging support in request_queue, but does not
  387. * require having a whole queue or request structures.
  388. * We allocate an md_plug_cb for each md device and each thread it gets
  389. * plugged on. This links tot the private plug_handle structure in the
  390. * personality data where we keep a count of the number of outstanding
  391. * plugs so other code can see if a plug is active.
  392. */
  393. struct md_plug_cb {
  394. struct blk_plug_cb cb;
  395. mddev_t *mddev;
  396. };
  397. static void plugger_unplug(struct blk_plug_cb *cb)
  398. {
  399. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  400. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  401. md_wakeup_thread(mdcb->mddev->thread);
  402. kfree(mdcb);
  403. }
  404. /* Check that an unplug wakeup will come shortly.
  405. * If not, wakeup the md thread immediately
  406. */
  407. int mddev_check_plugged(mddev_t *mddev)
  408. {
  409. struct blk_plug *plug = current->plug;
  410. struct md_plug_cb *mdcb;
  411. if (!plug)
  412. return 0;
  413. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  414. if (mdcb->cb.callback == plugger_unplug &&
  415. mdcb->mddev == mddev) {
  416. /* Already on the list, move to top */
  417. if (mdcb != list_first_entry(&plug->cb_list,
  418. struct md_plug_cb,
  419. cb.list))
  420. list_move(&mdcb->cb.list, &plug->cb_list);
  421. return 1;
  422. }
  423. }
  424. /* Not currently on the callback list */
  425. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  426. if (!mdcb)
  427. return 0;
  428. mdcb->mddev = mddev;
  429. mdcb->cb.callback = plugger_unplug;
  430. atomic_inc(&mddev->plug_cnt);
  431. list_add(&mdcb->cb.list, &plug->cb_list);
  432. return 1;
  433. }
  434. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  435. static inline mddev_t *mddev_get(mddev_t *mddev)
  436. {
  437. atomic_inc(&mddev->active);
  438. return mddev;
  439. }
  440. static void mddev_delayed_delete(struct work_struct *ws);
  441. static void mddev_put(mddev_t *mddev)
  442. {
  443. struct bio_set *bs = NULL;
  444. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  445. return;
  446. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  447. mddev->ctime == 0 && !mddev->hold_active) {
  448. /* Array is not configured at all, and not held active,
  449. * so destroy it */
  450. list_del(&mddev->all_mddevs);
  451. bs = mddev->bio_set;
  452. mddev->bio_set = NULL;
  453. if (mddev->gendisk) {
  454. /* We did a probe so need to clean up. Call
  455. * queue_work inside the spinlock so that
  456. * flush_workqueue() after mddev_find will
  457. * succeed in waiting for the work to be done.
  458. */
  459. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  460. queue_work(md_misc_wq, &mddev->del_work);
  461. } else
  462. kfree(mddev);
  463. }
  464. spin_unlock(&all_mddevs_lock);
  465. if (bs)
  466. bioset_free(bs);
  467. }
  468. void mddev_init(mddev_t *mddev)
  469. {
  470. mutex_init(&mddev->open_mutex);
  471. mutex_init(&mddev->reconfig_mutex);
  472. mutex_init(&mddev->bitmap_info.mutex);
  473. INIT_LIST_HEAD(&mddev->disks);
  474. INIT_LIST_HEAD(&mddev->all_mddevs);
  475. init_timer(&mddev->safemode_timer);
  476. atomic_set(&mddev->active, 1);
  477. atomic_set(&mddev->openers, 0);
  478. atomic_set(&mddev->active_io, 0);
  479. atomic_set(&mddev->plug_cnt, 0);
  480. spin_lock_init(&mddev->write_lock);
  481. atomic_set(&mddev->flush_pending, 0);
  482. init_waitqueue_head(&mddev->sb_wait);
  483. init_waitqueue_head(&mddev->recovery_wait);
  484. mddev->reshape_position = MaxSector;
  485. mddev->resync_min = 0;
  486. mddev->resync_max = MaxSector;
  487. mddev->level = LEVEL_NONE;
  488. }
  489. EXPORT_SYMBOL_GPL(mddev_init);
  490. static mddev_t * mddev_find(dev_t unit)
  491. {
  492. mddev_t *mddev, *new = NULL;
  493. if (unit && MAJOR(unit) != MD_MAJOR)
  494. unit &= ~((1<<MdpMinorShift)-1);
  495. retry:
  496. spin_lock(&all_mddevs_lock);
  497. if (unit) {
  498. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  499. if (mddev->unit == unit) {
  500. mddev_get(mddev);
  501. spin_unlock(&all_mddevs_lock);
  502. kfree(new);
  503. return mddev;
  504. }
  505. if (new) {
  506. list_add(&new->all_mddevs, &all_mddevs);
  507. spin_unlock(&all_mddevs_lock);
  508. new->hold_active = UNTIL_IOCTL;
  509. return new;
  510. }
  511. } else if (new) {
  512. /* find an unused unit number */
  513. static int next_minor = 512;
  514. int start = next_minor;
  515. int is_free = 0;
  516. int dev = 0;
  517. while (!is_free) {
  518. dev = MKDEV(MD_MAJOR, next_minor);
  519. next_minor++;
  520. if (next_minor > MINORMASK)
  521. next_minor = 0;
  522. if (next_minor == start) {
  523. /* Oh dear, all in use. */
  524. spin_unlock(&all_mddevs_lock);
  525. kfree(new);
  526. return NULL;
  527. }
  528. is_free = 1;
  529. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  530. if (mddev->unit == dev) {
  531. is_free = 0;
  532. break;
  533. }
  534. }
  535. new->unit = dev;
  536. new->md_minor = MINOR(dev);
  537. new->hold_active = UNTIL_STOP;
  538. list_add(&new->all_mddevs, &all_mddevs);
  539. spin_unlock(&all_mddevs_lock);
  540. return new;
  541. }
  542. spin_unlock(&all_mddevs_lock);
  543. new = kzalloc(sizeof(*new), GFP_KERNEL);
  544. if (!new)
  545. return NULL;
  546. new->unit = unit;
  547. if (MAJOR(unit) == MD_MAJOR)
  548. new->md_minor = MINOR(unit);
  549. else
  550. new->md_minor = MINOR(unit) >> MdpMinorShift;
  551. mddev_init(new);
  552. goto retry;
  553. }
  554. static inline int mddev_lock(mddev_t * mddev)
  555. {
  556. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  557. }
  558. static inline int mddev_is_locked(mddev_t *mddev)
  559. {
  560. return mutex_is_locked(&mddev->reconfig_mutex);
  561. }
  562. static inline int mddev_trylock(mddev_t * mddev)
  563. {
  564. return mutex_trylock(&mddev->reconfig_mutex);
  565. }
  566. static struct attribute_group md_redundancy_group;
  567. static void mddev_unlock(mddev_t * mddev)
  568. {
  569. if (mddev->to_remove) {
  570. /* These cannot be removed under reconfig_mutex as
  571. * an access to the files will try to take reconfig_mutex
  572. * while holding the file unremovable, which leads to
  573. * a deadlock.
  574. * So hold set sysfs_active while the remove in happeing,
  575. * and anything else which might set ->to_remove or my
  576. * otherwise change the sysfs namespace will fail with
  577. * -EBUSY if sysfs_active is still set.
  578. * We set sysfs_active under reconfig_mutex and elsewhere
  579. * test it under the same mutex to ensure its correct value
  580. * is seen.
  581. */
  582. struct attribute_group *to_remove = mddev->to_remove;
  583. mddev->to_remove = NULL;
  584. mddev->sysfs_active = 1;
  585. mutex_unlock(&mddev->reconfig_mutex);
  586. if (mddev->kobj.sd) {
  587. if (to_remove != &md_redundancy_group)
  588. sysfs_remove_group(&mddev->kobj, to_remove);
  589. if (mddev->pers == NULL ||
  590. mddev->pers->sync_request == NULL) {
  591. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  592. if (mddev->sysfs_action)
  593. sysfs_put(mddev->sysfs_action);
  594. mddev->sysfs_action = NULL;
  595. }
  596. }
  597. mddev->sysfs_active = 0;
  598. } else
  599. mutex_unlock(&mddev->reconfig_mutex);
  600. md_wakeup_thread(mddev->thread);
  601. }
  602. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  603. {
  604. mdk_rdev_t *rdev;
  605. list_for_each_entry(rdev, &mddev->disks, same_set)
  606. if (rdev->desc_nr == nr)
  607. return rdev;
  608. return NULL;
  609. }
  610. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  611. {
  612. mdk_rdev_t *rdev;
  613. list_for_each_entry(rdev, &mddev->disks, same_set)
  614. if (rdev->bdev->bd_dev == dev)
  615. return rdev;
  616. return NULL;
  617. }
  618. static struct mdk_personality *find_pers(int level, char *clevel)
  619. {
  620. struct mdk_personality *pers;
  621. list_for_each_entry(pers, &pers_list, list) {
  622. if (level != LEVEL_NONE && pers->level == level)
  623. return pers;
  624. if (strcmp(pers->name, clevel)==0)
  625. return pers;
  626. }
  627. return NULL;
  628. }
  629. /* return the offset of the super block in 512byte sectors */
  630. static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
  631. {
  632. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  633. return MD_NEW_SIZE_SECTORS(num_sectors);
  634. }
  635. static int alloc_disk_sb(mdk_rdev_t * rdev)
  636. {
  637. if (rdev->sb_page)
  638. MD_BUG();
  639. rdev->sb_page = alloc_page(GFP_KERNEL);
  640. if (!rdev->sb_page) {
  641. printk(KERN_ALERT "md: out of memory.\n");
  642. return -ENOMEM;
  643. }
  644. return 0;
  645. }
  646. static void free_disk_sb(mdk_rdev_t * rdev)
  647. {
  648. if (rdev->sb_page) {
  649. put_page(rdev->sb_page);
  650. rdev->sb_loaded = 0;
  651. rdev->sb_page = NULL;
  652. rdev->sb_start = 0;
  653. rdev->sectors = 0;
  654. }
  655. }
  656. static void super_written(struct bio *bio, int error)
  657. {
  658. mdk_rdev_t *rdev = bio->bi_private;
  659. mddev_t *mddev = rdev->mddev;
  660. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  661. printk("md: super_written gets error=%d, uptodate=%d\n",
  662. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  663. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  664. md_error(mddev, rdev);
  665. }
  666. if (atomic_dec_and_test(&mddev->pending_writes))
  667. wake_up(&mddev->sb_wait);
  668. bio_put(bio);
  669. }
  670. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  671. sector_t sector, int size, struct page *page)
  672. {
  673. /* write first size bytes of page to sector of rdev
  674. * Increment mddev->pending_writes before returning
  675. * and decrement it on completion, waking up sb_wait
  676. * if zero is reached.
  677. * If an error occurred, call md_error
  678. */
  679. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  680. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  681. bio->bi_sector = sector;
  682. bio_add_page(bio, page, size, 0);
  683. bio->bi_private = rdev;
  684. bio->bi_end_io = super_written;
  685. atomic_inc(&mddev->pending_writes);
  686. submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
  687. }
  688. void md_super_wait(mddev_t *mddev)
  689. {
  690. /* wait for all superblock writes that were scheduled to complete */
  691. DEFINE_WAIT(wq);
  692. for(;;) {
  693. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  694. if (atomic_read(&mddev->pending_writes)==0)
  695. break;
  696. schedule();
  697. }
  698. finish_wait(&mddev->sb_wait, &wq);
  699. }
  700. static void bi_complete(struct bio *bio, int error)
  701. {
  702. complete((struct completion*)bio->bi_private);
  703. }
  704. int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
  705. struct page *page, int rw, bool metadata_op)
  706. {
  707. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  708. struct completion event;
  709. int ret;
  710. rw |= REQ_SYNC;
  711. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  712. rdev->meta_bdev : rdev->bdev;
  713. if (metadata_op)
  714. bio->bi_sector = sector + rdev->sb_start;
  715. else
  716. bio->bi_sector = sector + rdev->data_offset;
  717. bio_add_page(bio, page, size, 0);
  718. init_completion(&event);
  719. bio->bi_private = &event;
  720. bio->bi_end_io = bi_complete;
  721. submit_bio(rw, bio);
  722. wait_for_completion(&event);
  723. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  724. bio_put(bio);
  725. return ret;
  726. }
  727. EXPORT_SYMBOL_GPL(sync_page_io);
  728. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  729. {
  730. char b[BDEVNAME_SIZE];
  731. if (!rdev->sb_page) {
  732. MD_BUG();
  733. return -EINVAL;
  734. }
  735. if (rdev->sb_loaded)
  736. return 0;
  737. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  738. goto fail;
  739. rdev->sb_loaded = 1;
  740. return 0;
  741. fail:
  742. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  743. bdevname(rdev->bdev,b));
  744. return -EINVAL;
  745. }
  746. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  747. {
  748. return sb1->set_uuid0 == sb2->set_uuid0 &&
  749. sb1->set_uuid1 == sb2->set_uuid1 &&
  750. sb1->set_uuid2 == sb2->set_uuid2 &&
  751. sb1->set_uuid3 == sb2->set_uuid3;
  752. }
  753. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  754. {
  755. int ret;
  756. mdp_super_t *tmp1, *tmp2;
  757. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  758. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  759. if (!tmp1 || !tmp2) {
  760. ret = 0;
  761. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  762. goto abort;
  763. }
  764. *tmp1 = *sb1;
  765. *tmp2 = *sb2;
  766. /*
  767. * nr_disks is not constant
  768. */
  769. tmp1->nr_disks = 0;
  770. tmp2->nr_disks = 0;
  771. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  772. abort:
  773. kfree(tmp1);
  774. kfree(tmp2);
  775. return ret;
  776. }
  777. static u32 md_csum_fold(u32 csum)
  778. {
  779. csum = (csum & 0xffff) + (csum >> 16);
  780. return (csum & 0xffff) + (csum >> 16);
  781. }
  782. static unsigned int calc_sb_csum(mdp_super_t * sb)
  783. {
  784. u64 newcsum = 0;
  785. u32 *sb32 = (u32*)sb;
  786. int i;
  787. unsigned int disk_csum, csum;
  788. disk_csum = sb->sb_csum;
  789. sb->sb_csum = 0;
  790. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  791. newcsum += sb32[i];
  792. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  793. #ifdef CONFIG_ALPHA
  794. /* This used to use csum_partial, which was wrong for several
  795. * reasons including that different results are returned on
  796. * different architectures. It isn't critical that we get exactly
  797. * the same return value as before (we always csum_fold before
  798. * testing, and that removes any differences). However as we
  799. * know that csum_partial always returned a 16bit value on
  800. * alphas, do a fold to maximise conformity to previous behaviour.
  801. */
  802. sb->sb_csum = md_csum_fold(disk_csum);
  803. #else
  804. sb->sb_csum = disk_csum;
  805. #endif
  806. return csum;
  807. }
  808. /*
  809. * Handle superblock details.
  810. * We want to be able to handle multiple superblock formats
  811. * so we have a common interface to them all, and an array of
  812. * different handlers.
  813. * We rely on user-space to write the initial superblock, and support
  814. * reading and updating of superblocks.
  815. * Interface methods are:
  816. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  817. * loads and validates a superblock on dev.
  818. * if refdev != NULL, compare superblocks on both devices
  819. * Return:
  820. * 0 - dev has a superblock that is compatible with refdev
  821. * 1 - dev has a superblock that is compatible and newer than refdev
  822. * so dev should be used as the refdev in future
  823. * -EINVAL superblock incompatible or invalid
  824. * -othererror e.g. -EIO
  825. *
  826. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  827. * Verify that dev is acceptable into mddev.
  828. * The first time, mddev->raid_disks will be 0, and data from
  829. * dev should be merged in. Subsequent calls check that dev
  830. * is new enough. Return 0 or -EINVAL
  831. *
  832. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  833. * Update the superblock for rdev with data in mddev
  834. * This does not write to disc.
  835. *
  836. */
  837. struct super_type {
  838. char *name;
  839. struct module *owner;
  840. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  841. int minor_version);
  842. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  843. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  844. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  845. sector_t num_sectors);
  846. };
  847. /*
  848. * Check that the given mddev has no bitmap.
  849. *
  850. * This function is called from the run method of all personalities that do not
  851. * support bitmaps. It prints an error message and returns non-zero if mddev
  852. * has a bitmap. Otherwise, it returns 0.
  853. *
  854. */
  855. int md_check_no_bitmap(mddev_t *mddev)
  856. {
  857. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  858. return 0;
  859. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  860. mdname(mddev), mddev->pers->name);
  861. return 1;
  862. }
  863. EXPORT_SYMBOL(md_check_no_bitmap);
  864. /*
  865. * load_super for 0.90.0
  866. */
  867. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  868. {
  869. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  870. mdp_super_t *sb;
  871. int ret;
  872. /*
  873. * Calculate the position of the superblock (512byte sectors),
  874. * it's at the end of the disk.
  875. *
  876. * It also happens to be a multiple of 4Kb.
  877. */
  878. rdev->sb_start = calc_dev_sboffset(rdev);
  879. ret = read_disk_sb(rdev, MD_SB_BYTES);
  880. if (ret) return ret;
  881. ret = -EINVAL;
  882. bdevname(rdev->bdev, b);
  883. sb = page_address(rdev->sb_page);
  884. if (sb->md_magic != MD_SB_MAGIC) {
  885. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  886. b);
  887. goto abort;
  888. }
  889. if (sb->major_version != 0 ||
  890. sb->minor_version < 90 ||
  891. sb->minor_version > 91) {
  892. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  893. sb->major_version, sb->minor_version,
  894. b);
  895. goto abort;
  896. }
  897. if (sb->raid_disks <= 0)
  898. goto abort;
  899. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  900. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  901. b);
  902. goto abort;
  903. }
  904. rdev->preferred_minor = sb->md_minor;
  905. rdev->data_offset = 0;
  906. rdev->sb_size = MD_SB_BYTES;
  907. if (sb->level == LEVEL_MULTIPATH)
  908. rdev->desc_nr = -1;
  909. else
  910. rdev->desc_nr = sb->this_disk.number;
  911. if (!refdev) {
  912. ret = 1;
  913. } else {
  914. __u64 ev1, ev2;
  915. mdp_super_t *refsb = page_address(refdev->sb_page);
  916. if (!uuid_equal(refsb, sb)) {
  917. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  918. b, bdevname(refdev->bdev,b2));
  919. goto abort;
  920. }
  921. if (!sb_equal(refsb, sb)) {
  922. printk(KERN_WARNING "md: %s has same UUID"
  923. " but different superblock to %s\n",
  924. b, bdevname(refdev->bdev, b2));
  925. goto abort;
  926. }
  927. ev1 = md_event(sb);
  928. ev2 = md_event(refsb);
  929. if (ev1 > ev2)
  930. ret = 1;
  931. else
  932. ret = 0;
  933. }
  934. rdev->sectors = rdev->sb_start;
  935. if (rdev->sectors < sb->size * 2 && sb->level > 1)
  936. /* "this cannot possibly happen" ... */
  937. ret = -EINVAL;
  938. abort:
  939. return ret;
  940. }
  941. /*
  942. * validate_super for 0.90.0
  943. */
  944. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  945. {
  946. mdp_disk_t *desc;
  947. mdp_super_t *sb = page_address(rdev->sb_page);
  948. __u64 ev1 = md_event(sb);
  949. rdev->raid_disk = -1;
  950. clear_bit(Faulty, &rdev->flags);
  951. clear_bit(In_sync, &rdev->flags);
  952. clear_bit(WriteMostly, &rdev->flags);
  953. if (mddev->raid_disks == 0) {
  954. mddev->major_version = 0;
  955. mddev->minor_version = sb->minor_version;
  956. mddev->patch_version = sb->patch_version;
  957. mddev->external = 0;
  958. mddev->chunk_sectors = sb->chunk_size >> 9;
  959. mddev->ctime = sb->ctime;
  960. mddev->utime = sb->utime;
  961. mddev->level = sb->level;
  962. mddev->clevel[0] = 0;
  963. mddev->layout = sb->layout;
  964. mddev->raid_disks = sb->raid_disks;
  965. mddev->dev_sectors = sb->size * 2;
  966. mddev->events = ev1;
  967. mddev->bitmap_info.offset = 0;
  968. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  969. if (mddev->minor_version >= 91) {
  970. mddev->reshape_position = sb->reshape_position;
  971. mddev->delta_disks = sb->delta_disks;
  972. mddev->new_level = sb->new_level;
  973. mddev->new_layout = sb->new_layout;
  974. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  975. } else {
  976. mddev->reshape_position = MaxSector;
  977. mddev->delta_disks = 0;
  978. mddev->new_level = mddev->level;
  979. mddev->new_layout = mddev->layout;
  980. mddev->new_chunk_sectors = mddev->chunk_sectors;
  981. }
  982. if (sb->state & (1<<MD_SB_CLEAN))
  983. mddev->recovery_cp = MaxSector;
  984. else {
  985. if (sb->events_hi == sb->cp_events_hi &&
  986. sb->events_lo == sb->cp_events_lo) {
  987. mddev->recovery_cp = sb->recovery_cp;
  988. } else
  989. mddev->recovery_cp = 0;
  990. }
  991. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  992. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  993. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  994. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  995. mddev->max_disks = MD_SB_DISKS;
  996. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  997. mddev->bitmap_info.file == NULL)
  998. mddev->bitmap_info.offset =
  999. mddev->bitmap_info.default_offset;
  1000. } else if (mddev->pers == NULL) {
  1001. /* Insist on good event counter while assembling, except
  1002. * for spares (which don't need an event count) */
  1003. ++ev1;
  1004. if (sb->disks[rdev->desc_nr].state & (
  1005. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1006. if (ev1 < mddev->events)
  1007. return -EINVAL;
  1008. } else if (mddev->bitmap) {
  1009. /* if adding to array with a bitmap, then we can accept an
  1010. * older device ... but not too old.
  1011. */
  1012. if (ev1 < mddev->bitmap->events_cleared)
  1013. return 0;
  1014. } else {
  1015. if (ev1 < mddev->events)
  1016. /* just a hot-add of a new device, leave raid_disk at -1 */
  1017. return 0;
  1018. }
  1019. if (mddev->level != LEVEL_MULTIPATH) {
  1020. desc = sb->disks + rdev->desc_nr;
  1021. if (desc->state & (1<<MD_DISK_FAULTY))
  1022. set_bit(Faulty, &rdev->flags);
  1023. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1024. desc->raid_disk < mddev->raid_disks */) {
  1025. set_bit(In_sync, &rdev->flags);
  1026. rdev->raid_disk = desc->raid_disk;
  1027. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1028. /* active but not in sync implies recovery up to
  1029. * reshape position. We don't know exactly where
  1030. * that is, so set to zero for now */
  1031. if (mddev->minor_version >= 91) {
  1032. rdev->recovery_offset = 0;
  1033. rdev->raid_disk = desc->raid_disk;
  1034. }
  1035. }
  1036. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1037. set_bit(WriteMostly, &rdev->flags);
  1038. } else /* MULTIPATH are always insync */
  1039. set_bit(In_sync, &rdev->flags);
  1040. return 0;
  1041. }
  1042. /*
  1043. * sync_super for 0.90.0
  1044. */
  1045. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1046. {
  1047. mdp_super_t *sb;
  1048. mdk_rdev_t *rdev2;
  1049. int next_spare = mddev->raid_disks;
  1050. /* make rdev->sb match mddev data..
  1051. *
  1052. * 1/ zero out disks
  1053. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1054. * 3/ any empty disks < next_spare become removed
  1055. *
  1056. * disks[0] gets initialised to REMOVED because
  1057. * we cannot be sure from other fields if it has
  1058. * been initialised or not.
  1059. */
  1060. int i;
  1061. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1062. rdev->sb_size = MD_SB_BYTES;
  1063. sb = page_address(rdev->sb_page);
  1064. memset(sb, 0, sizeof(*sb));
  1065. sb->md_magic = MD_SB_MAGIC;
  1066. sb->major_version = mddev->major_version;
  1067. sb->patch_version = mddev->patch_version;
  1068. sb->gvalid_words = 0; /* ignored */
  1069. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1070. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1071. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1072. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1073. sb->ctime = mddev->ctime;
  1074. sb->level = mddev->level;
  1075. sb->size = mddev->dev_sectors / 2;
  1076. sb->raid_disks = mddev->raid_disks;
  1077. sb->md_minor = mddev->md_minor;
  1078. sb->not_persistent = 0;
  1079. sb->utime = mddev->utime;
  1080. sb->state = 0;
  1081. sb->events_hi = (mddev->events>>32);
  1082. sb->events_lo = (u32)mddev->events;
  1083. if (mddev->reshape_position == MaxSector)
  1084. sb->minor_version = 90;
  1085. else {
  1086. sb->minor_version = 91;
  1087. sb->reshape_position = mddev->reshape_position;
  1088. sb->new_level = mddev->new_level;
  1089. sb->delta_disks = mddev->delta_disks;
  1090. sb->new_layout = mddev->new_layout;
  1091. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1092. }
  1093. mddev->minor_version = sb->minor_version;
  1094. if (mddev->in_sync)
  1095. {
  1096. sb->recovery_cp = mddev->recovery_cp;
  1097. sb->cp_events_hi = (mddev->events>>32);
  1098. sb->cp_events_lo = (u32)mddev->events;
  1099. if (mddev->recovery_cp == MaxSector)
  1100. sb->state = (1<< MD_SB_CLEAN);
  1101. } else
  1102. sb->recovery_cp = 0;
  1103. sb->layout = mddev->layout;
  1104. sb->chunk_size = mddev->chunk_sectors << 9;
  1105. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1106. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1107. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1108. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1109. mdp_disk_t *d;
  1110. int desc_nr;
  1111. int is_active = test_bit(In_sync, &rdev2->flags);
  1112. if (rdev2->raid_disk >= 0 &&
  1113. sb->minor_version >= 91)
  1114. /* we have nowhere to store the recovery_offset,
  1115. * but if it is not below the reshape_position,
  1116. * we can piggy-back on that.
  1117. */
  1118. is_active = 1;
  1119. if (rdev2->raid_disk < 0 ||
  1120. test_bit(Faulty, &rdev2->flags))
  1121. is_active = 0;
  1122. if (is_active)
  1123. desc_nr = rdev2->raid_disk;
  1124. else
  1125. desc_nr = next_spare++;
  1126. rdev2->desc_nr = desc_nr;
  1127. d = &sb->disks[rdev2->desc_nr];
  1128. nr_disks++;
  1129. d->number = rdev2->desc_nr;
  1130. d->major = MAJOR(rdev2->bdev->bd_dev);
  1131. d->minor = MINOR(rdev2->bdev->bd_dev);
  1132. if (is_active)
  1133. d->raid_disk = rdev2->raid_disk;
  1134. else
  1135. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1136. if (test_bit(Faulty, &rdev2->flags))
  1137. d->state = (1<<MD_DISK_FAULTY);
  1138. else if (is_active) {
  1139. d->state = (1<<MD_DISK_ACTIVE);
  1140. if (test_bit(In_sync, &rdev2->flags))
  1141. d->state |= (1<<MD_DISK_SYNC);
  1142. active++;
  1143. working++;
  1144. } else {
  1145. d->state = 0;
  1146. spare++;
  1147. working++;
  1148. }
  1149. if (test_bit(WriteMostly, &rdev2->flags))
  1150. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1151. }
  1152. /* now set the "removed" and "faulty" bits on any missing devices */
  1153. for (i=0 ; i < mddev->raid_disks ; i++) {
  1154. mdp_disk_t *d = &sb->disks[i];
  1155. if (d->state == 0 && d->number == 0) {
  1156. d->number = i;
  1157. d->raid_disk = i;
  1158. d->state = (1<<MD_DISK_REMOVED);
  1159. d->state |= (1<<MD_DISK_FAULTY);
  1160. failed++;
  1161. }
  1162. }
  1163. sb->nr_disks = nr_disks;
  1164. sb->active_disks = active;
  1165. sb->working_disks = working;
  1166. sb->failed_disks = failed;
  1167. sb->spare_disks = spare;
  1168. sb->this_disk = sb->disks[rdev->desc_nr];
  1169. sb->sb_csum = calc_sb_csum(sb);
  1170. }
  1171. /*
  1172. * rdev_size_change for 0.90.0
  1173. */
  1174. static unsigned long long
  1175. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1176. {
  1177. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1178. return 0; /* component must fit device */
  1179. if (rdev->mddev->bitmap_info.offset)
  1180. return 0; /* can't move bitmap */
  1181. rdev->sb_start = calc_dev_sboffset(rdev);
  1182. if (!num_sectors || num_sectors > rdev->sb_start)
  1183. num_sectors = rdev->sb_start;
  1184. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1185. rdev->sb_page);
  1186. md_super_wait(rdev->mddev);
  1187. return num_sectors;
  1188. }
  1189. /*
  1190. * version 1 superblock
  1191. */
  1192. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1193. {
  1194. __le32 disk_csum;
  1195. u32 csum;
  1196. unsigned long long newcsum;
  1197. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1198. __le32 *isuper = (__le32*)sb;
  1199. int i;
  1200. disk_csum = sb->sb_csum;
  1201. sb->sb_csum = 0;
  1202. newcsum = 0;
  1203. for (i=0; size>=4; size -= 4 )
  1204. newcsum += le32_to_cpu(*isuper++);
  1205. if (size == 2)
  1206. newcsum += le16_to_cpu(*(__le16*) isuper);
  1207. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1208. sb->sb_csum = disk_csum;
  1209. return cpu_to_le32(csum);
  1210. }
  1211. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  1212. {
  1213. struct mdp_superblock_1 *sb;
  1214. int ret;
  1215. sector_t sb_start;
  1216. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1217. int bmask;
  1218. /*
  1219. * Calculate the position of the superblock in 512byte sectors.
  1220. * It is always aligned to a 4K boundary and
  1221. * depeding on minor_version, it can be:
  1222. * 0: At least 8K, but less than 12K, from end of device
  1223. * 1: At start of device
  1224. * 2: 4K from start of device.
  1225. */
  1226. switch(minor_version) {
  1227. case 0:
  1228. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1229. sb_start -= 8*2;
  1230. sb_start &= ~(sector_t)(4*2-1);
  1231. break;
  1232. case 1:
  1233. sb_start = 0;
  1234. break;
  1235. case 2:
  1236. sb_start = 8;
  1237. break;
  1238. default:
  1239. return -EINVAL;
  1240. }
  1241. rdev->sb_start = sb_start;
  1242. /* superblock is rarely larger than 1K, but it can be larger,
  1243. * and it is safe to read 4k, so we do that
  1244. */
  1245. ret = read_disk_sb(rdev, 4096);
  1246. if (ret) return ret;
  1247. sb = page_address(rdev->sb_page);
  1248. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1249. sb->major_version != cpu_to_le32(1) ||
  1250. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1251. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1252. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1253. return -EINVAL;
  1254. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1255. printk("md: invalid superblock checksum on %s\n",
  1256. bdevname(rdev->bdev,b));
  1257. return -EINVAL;
  1258. }
  1259. if (le64_to_cpu(sb->data_size) < 10) {
  1260. printk("md: data_size too small on %s\n",
  1261. bdevname(rdev->bdev,b));
  1262. return -EINVAL;
  1263. }
  1264. rdev->preferred_minor = 0xffff;
  1265. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1266. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1267. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1268. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1269. if (rdev->sb_size & bmask)
  1270. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1271. if (minor_version
  1272. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1273. return -EINVAL;
  1274. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1275. rdev->desc_nr = -1;
  1276. else
  1277. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1278. if (!refdev) {
  1279. ret = 1;
  1280. } else {
  1281. __u64 ev1, ev2;
  1282. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1283. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1284. sb->level != refsb->level ||
  1285. sb->layout != refsb->layout ||
  1286. sb->chunksize != refsb->chunksize) {
  1287. printk(KERN_WARNING "md: %s has strangely different"
  1288. " superblock to %s\n",
  1289. bdevname(rdev->bdev,b),
  1290. bdevname(refdev->bdev,b2));
  1291. return -EINVAL;
  1292. }
  1293. ev1 = le64_to_cpu(sb->events);
  1294. ev2 = le64_to_cpu(refsb->events);
  1295. if (ev1 > ev2)
  1296. ret = 1;
  1297. else
  1298. ret = 0;
  1299. }
  1300. if (minor_version)
  1301. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1302. le64_to_cpu(sb->data_offset);
  1303. else
  1304. rdev->sectors = rdev->sb_start;
  1305. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1306. return -EINVAL;
  1307. rdev->sectors = le64_to_cpu(sb->data_size);
  1308. if (le64_to_cpu(sb->size) > rdev->sectors)
  1309. return -EINVAL;
  1310. return ret;
  1311. }
  1312. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1313. {
  1314. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1315. __u64 ev1 = le64_to_cpu(sb->events);
  1316. rdev->raid_disk = -1;
  1317. clear_bit(Faulty, &rdev->flags);
  1318. clear_bit(In_sync, &rdev->flags);
  1319. clear_bit(WriteMostly, &rdev->flags);
  1320. if (mddev->raid_disks == 0) {
  1321. mddev->major_version = 1;
  1322. mddev->patch_version = 0;
  1323. mddev->external = 0;
  1324. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1325. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1326. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1327. mddev->level = le32_to_cpu(sb->level);
  1328. mddev->clevel[0] = 0;
  1329. mddev->layout = le32_to_cpu(sb->layout);
  1330. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1331. mddev->dev_sectors = le64_to_cpu(sb->size);
  1332. mddev->events = ev1;
  1333. mddev->bitmap_info.offset = 0;
  1334. mddev->bitmap_info.default_offset = 1024 >> 9;
  1335. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1336. memcpy(mddev->uuid, sb->set_uuid, 16);
  1337. mddev->max_disks = (4096-256)/2;
  1338. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1339. mddev->bitmap_info.file == NULL )
  1340. mddev->bitmap_info.offset =
  1341. (__s32)le32_to_cpu(sb->bitmap_offset);
  1342. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1343. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1344. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1345. mddev->new_level = le32_to_cpu(sb->new_level);
  1346. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1347. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1348. } else {
  1349. mddev->reshape_position = MaxSector;
  1350. mddev->delta_disks = 0;
  1351. mddev->new_level = mddev->level;
  1352. mddev->new_layout = mddev->layout;
  1353. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1354. }
  1355. } else if (mddev->pers == NULL) {
  1356. /* Insist of good event counter while assembling, except for
  1357. * spares (which don't need an event count) */
  1358. ++ev1;
  1359. if (rdev->desc_nr >= 0 &&
  1360. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1361. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1362. if (ev1 < mddev->events)
  1363. return -EINVAL;
  1364. } else if (mddev->bitmap) {
  1365. /* If adding to array with a bitmap, then we can accept an
  1366. * older device, but not too old.
  1367. */
  1368. if (ev1 < mddev->bitmap->events_cleared)
  1369. return 0;
  1370. } else {
  1371. if (ev1 < mddev->events)
  1372. /* just a hot-add of a new device, leave raid_disk at -1 */
  1373. return 0;
  1374. }
  1375. if (mddev->level != LEVEL_MULTIPATH) {
  1376. int role;
  1377. if (rdev->desc_nr < 0 ||
  1378. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1379. role = 0xffff;
  1380. rdev->desc_nr = -1;
  1381. } else
  1382. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1383. switch(role) {
  1384. case 0xffff: /* spare */
  1385. break;
  1386. case 0xfffe: /* faulty */
  1387. set_bit(Faulty, &rdev->flags);
  1388. break;
  1389. default:
  1390. if ((le32_to_cpu(sb->feature_map) &
  1391. MD_FEATURE_RECOVERY_OFFSET))
  1392. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1393. else
  1394. set_bit(In_sync, &rdev->flags);
  1395. rdev->raid_disk = role;
  1396. break;
  1397. }
  1398. if (sb->devflags & WriteMostly1)
  1399. set_bit(WriteMostly, &rdev->flags);
  1400. } else /* MULTIPATH are always insync */
  1401. set_bit(In_sync, &rdev->flags);
  1402. return 0;
  1403. }
  1404. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1405. {
  1406. struct mdp_superblock_1 *sb;
  1407. mdk_rdev_t *rdev2;
  1408. int max_dev, i;
  1409. /* make rdev->sb match mddev and rdev data. */
  1410. sb = page_address(rdev->sb_page);
  1411. sb->feature_map = 0;
  1412. sb->pad0 = 0;
  1413. sb->recovery_offset = cpu_to_le64(0);
  1414. memset(sb->pad1, 0, sizeof(sb->pad1));
  1415. memset(sb->pad2, 0, sizeof(sb->pad2));
  1416. memset(sb->pad3, 0, sizeof(sb->pad3));
  1417. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1418. sb->events = cpu_to_le64(mddev->events);
  1419. if (mddev->in_sync)
  1420. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1421. else
  1422. sb->resync_offset = cpu_to_le64(0);
  1423. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1424. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1425. sb->size = cpu_to_le64(mddev->dev_sectors);
  1426. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1427. sb->level = cpu_to_le32(mddev->level);
  1428. sb->layout = cpu_to_le32(mddev->layout);
  1429. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1430. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1431. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1432. }
  1433. if (rdev->raid_disk >= 0 &&
  1434. !test_bit(In_sync, &rdev->flags)) {
  1435. sb->feature_map |=
  1436. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1437. sb->recovery_offset =
  1438. cpu_to_le64(rdev->recovery_offset);
  1439. }
  1440. if (mddev->reshape_position != MaxSector) {
  1441. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1442. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1443. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1444. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1445. sb->new_level = cpu_to_le32(mddev->new_level);
  1446. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1447. }
  1448. max_dev = 0;
  1449. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1450. if (rdev2->desc_nr+1 > max_dev)
  1451. max_dev = rdev2->desc_nr+1;
  1452. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1453. int bmask;
  1454. sb->max_dev = cpu_to_le32(max_dev);
  1455. rdev->sb_size = max_dev * 2 + 256;
  1456. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1457. if (rdev->sb_size & bmask)
  1458. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1459. } else
  1460. max_dev = le32_to_cpu(sb->max_dev);
  1461. for (i=0; i<max_dev;i++)
  1462. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1463. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1464. i = rdev2->desc_nr;
  1465. if (test_bit(Faulty, &rdev2->flags))
  1466. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1467. else if (test_bit(In_sync, &rdev2->flags))
  1468. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1469. else if (rdev2->raid_disk >= 0)
  1470. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1471. else
  1472. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1473. }
  1474. sb->sb_csum = calc_sb_1_csum(sb);
  1475. }
  1476. static unsigned long long
  1477. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1478. {
  1479. struct mdp_superblock_1 *sb;
  1480. sector_t max_sectors;
  1481. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1482. return 0; /* component must fit device */
  1483. if (rdev->sb_start < rdev->data_offset) {
  1484. /* minor versions 1 and 2; superblock before data */
  1485. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1486. max_sectors -= rdev->data_offset;
  1487. if (!num_sectors || num_sectors > max_sectors)
  1488. num_sectors = max_sectors;
  1489. } else if (rdev->mddev->bitmap_info.offset) {
  1490. /* minor version 0 with bitmap we can't move */
  1491. return 0;
  1492. } else {
  1493. /* minor version 0; superblock after data */
  1494. sector_t sb_start;
  1495. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1496. sb_start &= ~(sector_t)(4*2 - 1);
  1497. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1498. if (!num_sectors || num_sectors > max_sectors)
  1499. num_sectors = max_sectors;
  1500. rdev->sb_start = sb_start;
  1501. }
  1502. sb = page_address(rdev->sb_page);
  1503. sb->data_size = cpu_to_le64(num_sectors);
  1504. sb->super_offset = rdev->sb_start;
  1505. sb->sb_csum = calc_sb_1_csum(sb);
  1506. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1507. rdev->sb_page);
  1508. md_super_wait(rdev->mddev);
  1509. return num_sectors;
  1510. }
  1511. static struct super_type super_types[] = {
  1512. [0] = {
  1513. .name = "0.90.0",
  1514. .owner = THIS_MODULE,
  1515. .load_super = super_90_load,
  1516. .validate_super = super_90_validate,
  1517. .sync_super = super_90_sync,
  1518. .rdev_size_change = super_90_rdev_size_change,
  1519. },
  1520. [1] = {
  1521. .name = "md-1",
  1522. .owner = THIS_MODULE,
  1523. .load_super = super_1_load,
  1524. .validate_super = super_1_validate,
  1525. .sync_super = super_1_sync,
  1526. .rdev_size_change = super_1_rdev_size_change,
  1527. },
  1528. };
  1529. static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
  1530. {
  1531. if (mddev->sync_super) {
  1532. mddev->sync_super(mddev, rdev);
  1533. return;
  1534. }
  1535. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1536. super_types[mddev->major_version].sync_super(mddev, rdev);
  1537. }
  1538. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1539. {
  1540. mdk_rdev_t *rdev, *rdev2;
  1541. rcu_read_lock();
  1542. rdev_for_each_rcu(rdev, mddev1)
  1543. rdev_for_each_rcu(rdev2, mddev2)
  1544. if (rdev->bdev->bd_contains ==
  1545. rdev2->bdev->bd_contains) {
  1546. rcu_read_unlock();
  1547. return 1;
  1548. }
  1549. rcu_read_unlock();
  1550. return 0;
  1551. }
  1552. static LIST_HEAD(pending_raid_disks);
  1553. /*
  1554. * Try to register data integrity profile for an mddev
  1555. *
  1556. * This is called when an array is started and after a disk has been kicked
  1557. * from the array. It only succeeds if all working and active component devices
  1558. * are integrity capable with matching profiles.
  1559. */
  1560. int md_integrity_register(mddev_t *mddev)
  1561. {
  1562. mdk_rdev_t *rdev, *reference = NULL;
  1563. if (list_empty(&mddev->disks))
  1564. return 0; /* nothing to do */
  1565. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1566. return 0; /* shouldn't register, or already is */
  1567. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1568. /* skip spares and non-functional disks */
  1569. if (test_bit(Faulty, &rdev->flags))
  1570. continue;
  1571. if (rdev->raid_disk < 0)
  1572. continue;
  1573. if (!reference) {
  1574. /* Use the first rdev as the reference */
  1575. reference = rdev;
  1576. continue;
  1577. }
  1578. /* does this rdev's profile match the reference profile? */
  1579. if (blk_integrity_compare(reference->bdev->bd_disk,
  1580. rdev->bdev->bd_disk) < 0)
  1581. return -EINVAL;
  1582. }
  1583. if (!reference || !bdev_get_integrity(reference->bdev))
  1584. return 0;
  1585. /*
  1586. * All component devices are integrity capable and have matching
  1587. * profiles, register the common profile for the md device.
  1588. */
  1589. if (blk_integrity_register(mddev->gendisk,
  1590. bdev_get_integrity(reference->bdev)) != 0) {
  1591. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1592. mdname(mddev));
  1593. return -EINVAL;
  1594. }
  1595. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1596. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1597. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1598. mdname(mddev));
  1599. return -EINVAL;
  1600. }
  1601. return 0;
  1602. }
  1603. EXPORT_SYMBOL(md_integrity_register);
  1604. /* Disable data integrity if non-capable/non-matching disk is being added */
  1605. void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  1606. {
  1607. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1608. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1609. if (!bi_mddev) /* nothing to do */
  1610. return;
  1611. if (rdev->raid_disk < 0) /* skip spares */
  1612. return;
  1613. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1614. rdev->bdev->bd_disk) >= 0)
  1615. return;
  1616. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1617. blk_integrity_unregister(mddev->gendisk);
  1618. }
  1619. EXPORT_SYMBOL(md_integrity_add_rdev);
  1620. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1621. {
  1622. char b[BDEVNAME_SIZE];
  1623. struct kobject *ko;
  1624. char *s;
  1625. int err;
  1626. if (rdev->mddev) {
  1627. MD_BUG();
  1628. return -EINVAL;
  1629. }
  1630. /* prevent duplicates */
  1631. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1632. return -EEXIST;
  1633. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1634. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1635. rdev->sectors < mddev->dev_sectors)) {
  1636. if (mddev->pers) {
  1637. /* Cannot change size, so fail
  1638. * If mddev->level <= 0, then we don't care
  1639. * about aligning sizes (e.g. linear)
  1640. */
  1641. if (mddev->level > 0)
  1642. return -ENOSPC;
  1643. } else
  1644. mddev->dev_sectors = rdev->sectors;
  1645. }
  1646. /* Verify rdev->desc_nr is unique.
  1647. * If it is -1, assign a free number, else
  1648. * check number is not in use
  1649. */
  1650. if (rdev->desc_nr < 0) {
  1651. int choice = 0;
  1652. if (mddev->pers) choice = mddev->raid_disks;
  1653. while (find_rdev_nr(mddev, choice))
  1654. choice++;
  1655. rdev->desc_nr = choice;
  1656. } else {
  1657. if (find_rdev_nr(mddev, rdev->desc_nr))
  1658. return -EBUSY;
  1659. }
  1660. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1661. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1662. mdname(mddev), mddev->max_disks);
  1663. return -EBUSY;
  1664. }
  1665. bdevname(rdev->bdev,b);
  1666. while ( (s=strchr(b, '/')) != NULL)
  1667. *s = '!';
  1668. rdev->mddev = mddev;
  1669. printk(KERN_INFO "md: bind<%s>\n", b);
  1670. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1671. goto fail;
  1672. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1673. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1674. /* failure here is OK */;
  1675. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1676. list_add_rcu(&rdev->same_set, &mddev->disks);
  1677. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1678. /* May as well allow recovery to be retried once */
  1679. mddev->recovery_disabled++;
  1680. return 0;
  1681. fail:
  1682. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1683. b, mdname(mddev));
  1684. return err;
  1685. }
  1686. static void md_delayed_delete(struct work_struct *ws)
  1687. {
  1688. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1689. kobject_del(&rdev->kobj);
  1690. kobject_put(&rdev->kobj);
  1691. }
  1692. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1693. {
  1694. char b[BDEVNAME_SIZE];
  1695. if (!rdev->mddev) {
  1696. MD_BUG();
  1697. return;
  1698. }
  1699. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1700. list_del_rcu(&rdev->same_set);
  1701. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1702. rdev->mddev = NULL;
  1703. sysfs_remove_link(&rdev->kobj, "block");
  1704. sysfs_put(rdev->sysfs_state);
  1705. rdev->sysfs_state = NULL;
  1706. kfree(rdev->badblocks.page);
  1707. rdev->badblocks.count = 0;
  1708. rdev->badblocks.page = NULL;
  1709. /* We need to delay this, otherwise we can deadlock when
  1710. * writing to 'remove' to "dev/state". We also need
  1711. * to delay it due to rcu usage.
  1712. */
  1713. synchronize_rcu();
  1714. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1715. kobject_get(&rdev->kobj);
  1716. queue_work(md_misc_wq, &rdev->del_work);
  1717. }
  1718. /*
  1719. * prevent the device from being mounted, repartitioned or
  1720. * otherwise reused by a RAID array (or any other kernel
  1721. * subsystem), by bd_claiming the device.
  1722. */
  1723. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1724. {
  1725. int err = 0;
  1726. struct block_device *bdev;
  1727. char b[BDEVNAME_SIZE];
  1728. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1729. shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1730. if (IS_ERR(bdev)) {
  1731. printk(KERN_ERR "md: could not open %s.\n",
  1732. __bdevname(dev, b));
  1733. return PTR_ERR(bdev);
  1734. }
  1735. rdev->bdev = bdev;
  1736. return err;
  1737. }
  1738. static void unlock_rdev(mdk_rdev_t *rdev)
  1739. {
  1740. struct block_device *bdev = rdev->bdev;
  1741. rdev->bdev = NULL;
  1742. if (!bdev)
  1743. MD_BUG();
  1744. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1745. }
  1746. void md_autodetect_dev(dev_t dev);
  1747. static void export_rdev(mdk_rdev_t * rdev)
  1748. {
  1749. char b[BDEVNAME_SIZE];
  1750. printk(KERN_INFO "md: export_rdev(%s)\n",
  1751. bdevname(rdev->bdev,b));
  1752. if (rdev->mddev)
  1753. MD_BUG();
  1754. free_disk_sb(rdev);
  1755. #ifndef MODULE
  1756. if (test_bit(AutoDetected, &rdev->flags))
  1757. md_autodetect_dev(rdev->bdev->bd_dev);
  1758. #endif
  1759. unlock_rdev(rdev);
  1760. kobject_put(&rdev->kobj);
  1761. }
  1762. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1763. {
  1764. unbind_rdev_from_array(rdev);
  1765. export_rdev(rdev);
  1766. }
  1767. static void export_array(mddev_t *mddev)
  1768. {
  1769. mdk_rdev_t *rdev, *tmp;
  1770. rdev_for_each(rdev, tmp, mddev) {
  1771. if (!rdev->mddev) {
  1772. MD_BUG();
  1773. continue;
  1774. }
  1775. kick_rdev_from_array(rdev);
  1776. }
  1777. if (!list_empty(&mddev->disks))
  1778. MD_BUG();
  1779. mddev->raid_disks = 0;
  1780. mddev->major_version = 0;
  1781. }
  1782. static void print_desc(mdp_disk_t *desc)
  1783. {
  1784. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1785. desc->major,desc->minor,desc->raid_disk,desc->state);
  1786. }
  1787. static void print_sb_90(mdp_super_t *sb)
  1788. {
  1789. int i;
  1790. printk(KERN_INFO
  1791. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1792. sb->major_version, sb->minor_version, sb->patch_version,
  1793. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1794. sb->ctime);
  1795. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1796. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1797. sb->md_minor, sb->layout, sb->chunk_size);
  1798. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1799. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1800. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1801. sb->failed_disks, sb->spare_disks,
  1802. sb->sb_csum, (unsigned long)sb->events_lo);
  1803. printk(KERN_INFO);
  1804. for (i = 0; i < MD_SB_DISKS; i++) {
  1805. mdp_disk_t *desc;
  1806. desc = sb->disks + i;
  1807. if (desc->number || desc->major || desc->minor ||
  1808. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1809. printk(" D %2d: ", i);
  1810. print_desc(desc);
  1811. }
  1812. }
  1813. printk(KERN_INFO "md: THIS: ");
  1814. print_desc(&sb->this_disk);
  1815. }
  1816. static void print_sb_1(struct mdp_superblock_1 *sb)
  1817. {
  1818. __u8 *uuid;
  1819. uuid = sb->set_uuid;
  1820. printk(KERN_INFO
  1821. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1822. "md: Name: \"%s\" CT:%llu\n",
  1823. le32_to_cpu(sb->major_version),
  1824. le32_to_cpu(sb->feature_map),
  1825. uuid,
  1826. sb->set_name,
  1827. (unsigned long long)le64_to_cpu(sb->ctime)
  1828. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1829. uuid = sb->device_uuid;
  1830. printk(KERN_INFO
  1831. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1832. " RO:%llu\n"
  1833. "md: Dev:%08x UUID: %pU\n"
  1834. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1835. "md: (MaxDev:%u) \n",
  1836. le32_to_cpu(sb->level),
  1837. (unsigned long long)le64_to_cpu(sb->size),
  1838. le32_to_cpu(sb->raid_disks),
  1839. le32_to_cpu(sb->layout),
  1840. le32_to_cpu(sb->chunksize),
  1841. (unsigned long long)le64_to_cpu(sb->data_offset),
  1842. (unsigned long long)le64_to_cpu(sb->data_size),
  1843. (unsigned long long)le64_to_cpu(sb->super_offset),
  1844. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1845. le32_to_cpu(sb->dev_number),
  1846. uuid,
  1847. sb->devflags,
  1848. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1849. (unsigned long long)le64_to_cpu(sb->events),
  1850. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1851. le32_to_cpu(sb->sb_csum),
  1852. le32_to_cpu(sb->max_dev)
  1853. );
  1854. }
  1855. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1856. {
  1857. char b[BDEVNAME_SIZE];
  1858. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1859. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1860. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1861. rdev->desc_nr);
  1862. if (rdev->sb_loaded) {
  1863. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1864. switch (major_version) {
  1865. case 0:
  1866. print_sb_90(page_address(rdev->sb_page));
  1867. break;
  1868. case 1:
  1869. print_sb_1(page_address(rdev->sb_page));
  1870. break;
  1871. }
  1872. } else
  1873. printk(KERN_INFO "md: no rdev superblock!\n");
  1874. }
  1875. static void md_print_devices(void)
  1876. {
  1877. struct list_head *tmp;
  1878. mdk_rdev_t *rdev;
  1879. mddev_t *mddev;
  1880. char b[BDEVNAME_SIZE];
  1881. printk("\n");
  1882. printk("md: **********************************\n");
  1883. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1884. printk("md: **********************************\n");
  1885. for_each_mddev(mddev, tmp) {
  1886. if (mddev->bitmap)
  1887. bitmap_print_sb(mddev->bitmap);
  1888. else
  1889. printk("%s: ", mdname(mddev));
  1890. list_for_each_entry(rdev, &mddev->disks, same_set)
  1891. printk("<%s>", bdevname(rdev->bdev,b));
  1892. printk("\n");
  1893. list_for_each_entry(rdev, &mddev->disks, same_set)
  1894. print_rdev(rdev, mddev->major_version);
  1895. }
  1896. printk("md: **********************************\n");
  1897. printk("\n");
  1898. }
  1899. static void sync_sbs(mddev_t * mddev, int nospares)
  1900. {
  1901. /* Update each superblock (in-memory image), but
  1902. * if we are allowed to, skip spares which already
  1903. * have the right event counter, or have one earlier
  1904. * (which would mean they aren't being marked as dirty
  1905. * with the rest of the array)
  1906. */
  1907. mdk_rdev_t *rdev;
  1908. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1909. if (rdev->sb_events == mddev->events ||
  1910. (nospares &&
  1911. rdev->raid_disk < 0 &&
  1912. rdev->sb_events+1 == mddev->events)) {
  1913. /* Don't update this superblock */
  1914. rdev->sb_loaded = 2;
  1915. } else {
  1916. sync_super(mddev, rdev);
  1917. rdev->sb_loaded = 1;
  1918. }
  1919. }
  1920. }
  1921. static void md_update_sb(mddev_t * mddev, int force_change)
  1922. {
  1923. mdk_rdev_t *rdev;
  1924. int sync_req;
  1925. int nospares = 0;
  1926. repeat:
  1927. /* First make sure individual recovery_offsets are correct */
  1928. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1929. if (rdev->raid_disk >= 0 &&
  1930. mddev->delta_disks >= 0 &&
  1931. !test_bit(In_sync, &rdev->flags) &&
  1932. mddev->curr_resync_completed > rdev->recovery_offset)
  1933. rdev->recovery_offset = mddev->curr_resync_completed;
  1934. }
  1935. if (!mddev->persistent) {
  1936. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1937. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1938. if (!mddev->external)
  1939. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1940. wake_up(&mddev->sb_wait);
  1941. return;
  1942. }
  1943. spin_lock_irq(&mddev->write_lock);
  1944. mddev->utime = get_seconds();
  1945. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1946. force_change = 1;
  1947. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1948. /* just a clean<-> dirty transition, possibly leave spares alone,
  1949. * though if events isn't the right even/odd, we will have to do
  1950. * spares after all
  1951. */
  1952. nospares = 1;
  1953. if (force_change)
  1954. nospares = 0;
  1955. if (mddev->degraded)
  1956. /* If the array is degraded, then skipping spares is both
  1957. * dangerous and fairly pointless.
  1958. * Dangerous because a device that was removed from the array
  1959. * might have a event_count that still looks up-to-date,
  1960. * so it can be re-added without a resync.
  1961. * Pointless because if there are any spares to skip,
  1962. * then a recovery will happen and soon that array won't
  1963. * be degraded any more and the spare can go back to sleep then.
  1964. */
  1965. nospares = 0;
  1966. sync_req = mddev->in_sync;
  1967. /* If this is just a dirty<->clean transition, and the array is clean
  1968. * and 'events' is odd, we can roll back to the previous clean state */
  1969. if (nospares
  1970. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1971. && mddev->can_decrease_events
  1972. && mddev->events != 1) {
  1973. mddev->events--;
  1974. mddev->can_decrease_events = 0;
  1975. } else {
  1976. /* otherwise we have to go forward and ... */
  1977. mddev->events ++;
  1978. mddev->can_decrease_events = nospares;
  1979. }
  1980. if (!mddev->events) {
  1981. /*
  1982. * oops, this 64-bit counter should never wrap.
  1983. * Either we are in around ~1 trillion A.C., assuming
  1984. * 1 reboot per second, or we have a bug:
  1985. */
  1986. MD_BUG();
  1987. mddev->events --;
  1988. }
  1989. sync_sbs(mddev, nospares);
  1990. spin_unlock_irq(&mddev->write_lock);
  1991. dprintk(KERN_INFO
  1992. "md: updating %s RAID superblock on device (in sync %d)\n",
  1993. mdname(mddev),mddev->in_sync);
  1994. bitmap_update_sb(mddev->bitmap);
  1995. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1996. char b[BDEVNAME_SIZE];
  1997. dprintk(KERN_INFO "md: ");
  1998. if (rdev->sb_loaded != 1)
  1999. continue; /* no noise on spare devices */
  2000. if (test_bit(Faulty, &rdev->flags))
  2001. dprintk("(skipping faulty ");
  2002. dprintk("%s ", bdevname(rdev->bdev,b));
  2003. if (!test_bit(Faulty, &rdev->flags)) {
  2004. md_super_write(mddev,rdev,
  2005. rdev->sb_start, rdev->sb_size,
  2006. rdev->sb_page);
  2007. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  2008. bdevname(rdev->bdev,b),
  2009. (unsigned long long)rdev->sb_start);
  2010. rdev->sb_events = mddev->events;
  2011. } else
  2012. dprintk(")\n");
  2013. if (mddev->level == LEVEL_MULTIPATH)
  2014. /* only need to write one superblock... */
  2015. break;
  2016. }
  2017. md_super_wait(mddev);
  2018. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2019. spin_lock_irq(&mddev->write_lock);
  2020. if (mddev->in_sync != sync_req ||
  2021. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2022. /* have to write it out again */
  2023. spin_unlock_irq(&mddev->write_lock);
  2024. goto repeat;
  2025. }
  2026. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2027. spin_unlock_irq(&mddev->write_lock);
  2028. wake_up(&mddev->sb_wait);
  2029. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2030. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2031. }
  2032. /* words written to sysfs files may, or may not, be \n terminated.
  2033. * We want to accept with case. For this we use cmd_match.
  2034. */
  2035. static int cmd_match(const char *cmd, const char *str)
  2036. {
  2037. /* See if cmd, written into a sysfs file, matches
  2038. * str. They must either be the same, or cmd can
  2039. * have a trailing newline
  2040. */
  2041. while (*cmd && *str && *cmd == *str) {
  2042. cmd++;
  2043. str++;
  2044. }
  2045. if (*cmd == '\n')
  2046. cmd++;
  2047. if (*str || *cmd)
  2048. return 0;
  2049. return 1;
  2050. }
  2051. struct rdev_sysfs_entry {
  2052. struct attribute attr;
  2053. ssize_t (*show)(mdk_rdev_t *, char *);
  2054. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  2055. };
  2056. static ssize_t
  2057. state_show(mdk_rdev_t *rdev, char *page)
  2058. {
  2059. char *sep = "";
  2060. size_t len = 0;
  2061. if (test_bit(Faulty, &rdev->flags)) {
  2062. len+= sprintf(page+len, "%sfaulty",sep);
  2063. sep = ",";
  2064. }
  2065. if (test_bit(In_sync, &rdev->flags)) {
  2066. len += sprintf(page+len, "%sin_sync",sep);
  2067. sep = ",";
  2068. }
  2069. if (test_bit(WriteMostly, &rdev->flags)) {
  2070. len += sprintf(page+len, "%swrite_mostly",sep);
  2071. sep = ",";
  2072. }
  2073. if (test_bit(Blocked, &rdev->flags)) {
  2074. len += sprintf(page+len, "%sblocked", sep);
  2075. sep = ",";
  2076. }
  2077. if (!test_bit(Faulty, &rdev->flags) &&
  2078. !test_bit(In_sync, &rdev->flags)) {
  2079. len += sprintf(page+len, "%sspare", sep);
  2080. sep = ",";
  2081. }
  2082. return len+sprintf(page+len, "\n");
  2083. }
  2084. static ssize_t
  2085. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2086. {
  2087. /* can write
  2088. * faulty - simulates and error
  2089. * remove - disconnects the device
  2090. * writemostly - sets write_mostly
  2091. * -writemostly - clears write_mostly
  2092. * blocked - sets the Blocked flag
  2093. * -blocked - clears the Blocked flag
  2094. * insync - sets Insync providing device isn't active
  2095. */
  2096. int err = -EINVAL;
  2097. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2098. md_error(rdev->mddev, rdev);
  2099. err = 0;
  2100. } else if (cmd_match(buf, "remove")) {
  2101. if (rdev->raid_disk >= 0)
  2102. err = -EBUSY;
  2103. else {
  2104. mddev_t *mddev = rdev->mddev;
  2105. kick_rdev_from_array(rdev);
  2106. if (mddev->pers)
  2107. md_update_sb(mddev, 1);
  2108. md_new_event(mddev);
  2109. err = 0;
  2110. }
  2111. } else if (cmd_match(buf, "writemostly")) {
  2112. set_bit(WriteMostly, &rdev->flags);
  2113. err = 0;
  2114. } else if (cmd_match(buf, "-writemostly")) {
  2115. clear_bit(WriteMostly, &rdev->flags);
  2116. err = 0;
  2117. } else if (cmd_match(buf, "blocked")) {
  2118. set_bit(Blocked, &rdev->flags);
  2119. err = 0;
  2120. } else if (cmd_match(buf, "-blocked")) {
  2121. clear_bit(Blocked, &rdev->flags);
  2122. wake_up(&rdev->blocked_wait);
  2123. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2124. md_wakeup_thread(rdev->mddev->thread);
  2125. err = 0;
  2126. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2127. set_bit(In_sync, &rdev->flags);
  2128. err = 0;
  2129. }
  2130. if (!err)
  2131. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2132. return err ? err : len;
  2133. }
  2134. static struct rdev_sysfs_entry rdev_state =
  2135. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2136. static ssize_t
  2137. errors_show(mdk_rdev_t *rdev, char *page)
  2138. {
  2139. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2140. }
  2141. static ssize_t
  2142. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2143. {
  2144. char *e;
  2145. unsigned long n = simple_strtoul(buf, &e, 10);
  2146. if (*buf && (*e == 0 || *e == '\n')) {
  2147. atomic_set(&rdev->corrected_errors, n);
  2148. return len;
  2149. }
  2150. return -EINVAL;
  2151. }
  2152. static struct rdev_sysfs_entry rdev_errors =
  2153. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2154. static ssize_t
  2155. slot_show(mdk_rdev_t *rdev, char *page)
  2156. {
  2157. if (rdev->raid_disk < 0)
  2158. return sprintf(page, "none\n");
  2159. else
  2160. return sprintf(page, "%d\n", rdev->raid_disk);
  2161. }
  2162. static ssize_t
  2163. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2164. {
  2165. char *e;
  2166. int err;
  2167. int slot = simple_strtoul(buf, &e, 10);
  2168. if (strncmp(buf, "none", 4)==0)
  2169. slot = -1;
  2170. else if (e==buf || (*e && *e!= '\n'))
  2171. return -EINVAL;
  2172. if (rdev->mddev->pers && slot == -1) {
  2173. /* Setting 'slot' on an active array requires also
  2174. * updating the 'rd%d' link, and communicating
  2175. * with the personality with ->hot_*_disk.
  2176. * For now we only support removing
  2177. * failed/spare devices. This normally happens automatically,
  2178. * but not when the metadata is externally managed.
  2179. */
  2180. if (rdev->raid_disk == -1)
  2181. return -EEXIST;
  2182. /* personality does all needed checks */
  2183. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2184. return -EINVAL;
  2185. err = rdev->mddev->pers->
  2186. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2187. if (err)
  2188. return err;
  2189. sysfs_unlink_rdev(rdev->mddev, rdev);
  2190. rdev->raid_disk = -1;
  2191. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2192. md_wakeup_thread(rdev->mddev->thread);
  2193. } else if (rdev->mddev->pers) {
  2194. mdk_rdev_t *rdev2;
  2195. /* Activating a spare .. or possibly reactivating
  2196. * if we ever get bitmaps working here.
  2197. */
  2198. if (rdev->raid_disk != -1)
  2199. return -EBUSY;
  2200. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2201. return -EBUSY;
  2202. if (rdev->mddev->pers->hot_add_disk == NULL)
  2203. return -EINVAL;
  2204. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2205. if (rdev2->raid_disk == slot)
  2206. return -EEXIST;
  2207. if (slot >= rdev->mddev->raid_disks &&
  2208. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2209. return -ENOSPC;
  2210. rdev->raid_disk = slot;
  2211. if (test_bit(In_sync, &rdev->flags))
  2212. rdev->saved_raid_disk = slot;
  2213. else
  2214. rdev->saved_raid_disk = -1;
  2215. err = rdev->mddev->pers->
  2216. hot_add_disk(rdev->mddev, rdev);
  2217. if (err) {
  2218. rdev->raid_disk = -1;
  2219. return err;
  2220. } else
  2221. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2222. if (sysfs_link_rdev(rdev->mddev, rdev))
  2223. /* failure here is OK */;
  2224. /* don't wakeup anyone, leave that to userspace. */
  2225. } else {
  2226. if (slot >= rdev->mddev->raid_disks &&
  2227. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2228. return -ENOSPC;
  2229. rdev->raid_disk = slot;
  2230. /* assume it is working */
  2231. clear_bit(Faulty, &rdev->flags);
  2232. clear_bit(WriteMostly, &rdev->flags);
  2233. set_bit(In_sync, &rdev->flags);
  2234. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2235. }
  2236. return len;
  2237. }
  2238. static struct rdev_sysfs_entry rdev_slot =
  2239. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2240. static ssize_t
  2241. offset_show(mdk_rdev_t *rdev, char *page)
  2242. {
  2243. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2244. }
  2245. static ssize_t
  2246. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2247. {
  2248. char *e;
  2249. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2250. if (e==buf || (*e && *e != '\n'))
  2251. return -EINVAL;
  2252. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2253. return -EBUSY;
  2254. if (rdev->sectors && rdev->mddev->external)
  2255. /* Must set offset before size, so overlap checks
  2256. * can be sane */
  2257. return -EBUSY;
  2258. rdev->data_offset = offset;
  2259. return len;
  2260. }
  2261. static struct rdev_sysfs_entry rdev_offset =
  2262. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2263. static ssize_t
  2264. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2265. {
  2266. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2267. }
  2268. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2269. {
  2270. /* check if two start/length pairs overlap */
  2271. if (s1+l1 <= s2)
  2272. return 0;
  2273. if (s2+l2 <= s1)
  2274. return 0;
  2275. return 1;
  2276. }
  2277. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2278. {
  2279. unsigned long long blocks;
  2280. sector_t new;
  2281. if (strict_strtoull(buf, 10, &blocks) < 0)
  2282. return -EINVAL;
  2283. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2284. return -EINVAL; /* sector conversion overflow */
  2285. new = blocks * 2;
  2286. if (new != blocks * 2)
  2287. return -EINVAL; /* unsigned long long to sector_t overflow */
  2288. *sectors = new;
  2289. return 0;
  2290. }
  2291. static ssize_t
  2292. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2293. {
  2294. mddev_t *my_mddev = rdev->mddev;
  2295. sector_t oldsectors = rdev->sectors;
  2296. sector_t sectors;
  2297. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2298. return -EINVAL;
  2299. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2300. if (my_mddev->persistent) {
  2301. sectors = super_types[my_mddev->major_version].
  2302. rdev_size_change(rdev, sectors);
  2303. if (!sectors)
  2304. return -EBUSY;
  2305. } else if (!sectors)
  2306. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2307. rdev->data_offset;
  2308. }
  2309. if (sectors < my_mddev->dev_sectors)
  2310. return -EINVAL; /* component must fit device */
  2311. rdev->sectors = sectors;
  2312. if (sectors > oldsectors && my_mddev->external) {
  2313. /* need to check that all other rdevs with the same ->bdev
  2314. * do not overlap. We need to unlock the mddev to avoid
  2315. * a deadlock. We have already changed rdev->sectors, and if
  2316. * we have to change it back, we will have the lock again.
  2317. */
  2318. mddev_t *mddev;
  2319. int overlap = 0;
  2320. struct list_head *tmp;
  2321. mddev_unlock(my_mddev);
  2322. for_each_mddev(mddev, tmp) {
  2323. mdk_rdev_t *rdev2;
  2324. mddev_lock(mddev);
  2325. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2326. if (rdev->bdev == rdev2->bdev &&
  2327. rdev != rdev2 &&
  2328. overlaps(rdev->data_offset, rdev->sectors,
  2329. rdev2->data_offset,
  2330. rdev2->sectors)) {
  2331. overlap = 1;
  2332. break;
  2333. }
  2334. mddev_unlock(mddev);
  2335. if (overlap) {
  2336. mddev_put(mddev);
  2337. break;
  2338. }
  2339. }
  2340. mddev_lock(my_mddev);
  2341. if (overlap) {
  2342. /* Someone else could have slipped in a size
  2343. * change here, but doing so is just silly.
  2344. * We put oldsectors back because we *know* it is
  2345. * safe, and trust userspace not to race with
  2346. * itself
  2347. */
  2348. rdev->sectors = oldsectors;
  2349. return -EBUSY;
  2350. }
  2351. }
  2352. return len;
  2353. }
  2354. static struct rdev_sysfs_entry rdev_size =
  2355. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2356. static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
  2357. {
  2358. unsigned long long recovery_start = rdev->recovery_offset;
  2359. if (test_bit(In_sync, &rdev->flags) ||
  2360. recovery_start == MaxSector)
  2361. return sprintf(page, "none\n");
  2362. return sprintf(page, "%llu\n", recovery_start);
  2363. }
  2364. static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2365. {
  2366. unsigned long long recovery_start;
  2367. if (cmd_match(buf, "none"))
  2368. recovery_start = MaxSector;
  2369. else if (strict_strtoull(buf, 10, &recovery_start))
  2370. return -EINVAL;
  2371. if (rdev->mddev->pers &&
  2372. rdev->raid_disk >= 0)
  2373. return -EBUSY;
  2374. rdev->recovery_offset = recovery_start;
  2375. if (recovery_start == MaxSector)
  2376. set_bit(In_sync, &rdev->flags);
  2377. else
  2378. clear_bit(In_sync, &rdev->flags);
  2379. return len;
  2380. }
  2381. static struct rdev_sysfs_entry rdev_recovery_start =
  2382. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2383. static struct attribute *rdev_default_attrs[] = {
  2384. &rdev_state.attr,
  2385. &rdev_errors.attr,
  2386. &rdev_slot.attr,
  2387. &rdev_offset.attr,
  2388. &rdev_size.attr,
  2389. &rdev_recovery_start.attr,
  2390. NULL,
  2391. };
  2392. static ssize_t
  2393. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2394. {
  2395. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2396. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2397. mddev_t *mddev = rdev->mddev;
  2398. ssize_t rv;
  2399. if (!entry->show)
  2400. return -EIO;
  2401. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2402. if (!rv) {
  2403. if (rdev->mddev == NULL)
  2404. rv = -EBUSY;
  2405. else
  2406. rv = entry->show(rdev, page);
  2407. mddev_unlock(mddev);
  2408. }
  2409. return rv;
  2410. }
  2411. static ssize_t
  2412. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2413. const char *page, size_t length)
  2414. {
  2415. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2416. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2417. ssize_t rv;
  2418. mddev_t *mddev = rdev->mddev;
  2419. if (!entry->store)
  2420. return -EIO;
  2421. if (!capable(CAP_SYS_ADMIN))
  2422. return -EACCES;
  2423. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2424. if (!rv) {
  2425. if (rdev->mddev == NULL)
  2426. rv = -EBUSY;
  2427. else
  2428. rv = entry->store(rdev, page, length);
  2429. mddev_unlock(mddev);
  2430. }
  2431. return rv;
  2432. }
  2433. static void rdev_free(struct kobject *ko)
  2434. {
  2435. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2436. kfree(rdev);
  2437. }
  2438. static const struct sysfs_ops rdev_sysfs_ops = {
  2439. .show = rdev_attr_show,
  2440. .store = rdev_attr_store,
  2441. };
  2442. static struct kobj_type rdev_ktype = {
  2443. .release = rdev_free,
  2444. .sysfs_ops = &rdev_sysfs_ops,
  2445. .default_attrs = rdev_default_attrs,
  2446. };
  2447. int md_rdev_init(mdk_rdev_t *rdev)
  2448. {
  2449. rdev->desc_nr = -1;
  2450. rdev->saved_raid_disk = -1;
  2451. rdev->raid_disk = -1;
  2452. rdev->flags = 0;
  2453. rdev->data_offset = 0;
  2454. rdev->sb_events = 0;
  2455. rdev->last_read_error.tv_sec = 0;
  2456. rdev->last_read_error.tv_nsec = 0;
  2457. atomic_set(&rdev->nr_pending, 0);
  2458. atomic_set(&rdev->read_errors, 0);
  2459. atomic_set(&rdev->corrected_errors, 0);
  2460. INIT_LIST_HEAD(&rdev->same_set);
  2461. init_waitqueue_head(&rdev->blocked_wait);
  2462. /* Add space to store bad block list.
  2463. * This reserves the space even on arrays where it cannot
  2464. * be used - I wonder if that matters
  2465. */
  2466. rdev->badblocks.count = 0;
  2467. rdev->badblocks.shift = 0;
  2468. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2469. seqlock_init(&rdev->badblocks.lock);
  2470. if (rdev->badblocks.page == NULL)
  2471. return -ENOMEM;
  2472. return 0;
  2473. }
  2474. EXPORT_SYMBOL_GPL(md_rdev_init);
  2475. /*
  2476. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2477. *
  2478. * mark the device faulty if:
  2479. *
  2480. * - the device is nonexistent (zero size)
  2481. * - the device has no valid superblock
  2482. *
  2483. * a faulty rdev _never_ has rdev->sb set.
  2484. */
  2485. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2486. {
  2487. char b[BDEVNAME_SIZE];
  2488. int err;
  2489. mdk_rdev_t *rdev;
  2490. sector_t size;
  2491. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2492. if (!rdev) {
  2493. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2494. return ERR_PTR(-ENOMEM);
  2495. }
  2496. err = md_rdev_init(rdev);
  2497. if (err)
  2498. goto abort_free;
  2499. err = alloc_disk_sb(rdev);
  2500. if (err)
  2501. goto abort_free;
  2502. err = lock_rdev(rdev, newdev, super_format == -2);
  2503. if (err)
  2504. goto abort_free;
  2505. kobject_init(&rdev->kobj, &rdev_ktype);
  2506. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2507. if (!size) {
  2508. printk(KERN_WARNING
  2509. "md: %s has zero or unknown size, marking faulty!\n",
  2510. bdevname(rdev->bdev,b));
  2511. err = -EINVAL;
  2512. goto abort_free;
  2513. }
  2514. if (super_format >= 0) {
  2515. err = super_types[super_format].
  2516. load_super(rdev, NULL, super_minor);
  2517. if (err == -EINVAL) {
  2518. printk(KERN_WARNING
  2519. "md: %s does not have a valid v%d.%d "
  2520. "superblock, not importing!\n",
  2521. bdevname(rdev->bdev,b),
  2522. super_format, super_minor);
  2523. goto abort_free;
  2524. }
  2525. if (err < 0) {
  2526. printk(KERN_WARNING
  2527. "md: could not read %s's sb, not importing!\n",
  2528. bdevname(rdev->bdev,b));
  2529. goto abort_free;
  2530. }
  2531. }
  2532. return rdev;
  2533. abort_free:
  2534. if (rdev->sb_page) {
  2535. if (rdev->bdev)
  2536. unlock_rdev(rdev);
  2537. free_disk_sb(rdev);
  2538. }
  2539. kfree(rdev->badblocks.page);
  2540. kfree(rdev);
  2541. return ERR_PTR(err);
  2542. }
  2543. /*
  2544. * Check a full RAID array for plausibility
  2545. */
  2546. static void analyze_sbs(mddev_t * mddev)
  2547. {
  2548. int i;
  2549. mdk_rdev_t *rdev, *freshest, *tmp;
  2550. char b[BDEVNAME_SIZE];
  2551. freshest = NULL;
  2552. rdev_for_each(rdev, tmp, mddev)
  2553. switch (super_types[mddev->major_version].
  2554. load_super(rdev, freshest, mddev->minor_version)) {
  2555. case 1:
  2556. freshest = rdev;
  2557. break;
  2558. case 0:
  2559. break;
  2560. default:
  2561. printk( KERN_ERR \
  2562. "md: fatal superblock inconsistency in %s"
  2563. " -- removing from array\n",
  2564. bdevname(rdev->bdev,b));
  2565. kick_rdev_from_array(rdev);
  2566. }
  2567. super_types[mddev->major_version].
  2568. validate_super(mddev, freshest);
  2569. i = 0;
  2570. rdev_for_each(rdev, tmp, mddev) {
  2571. if (mddev->max_disks &&
  2572. (rdev->desc_nr >= mddev->max_disks ||
  2573. i > mddev->max_disks)) {
  2574. printk(KERN_WARNING
  2575. "md: %s: %s: only %d devices permitted\n",
  2576. mdname(mddev), bdevname(rdev->bdev, b),
  2577. mddev->max_disks);
  2578. kick_rdev_from_array(rdev);
  2579. continue;
  2580. }
  2581. if (rdev != freshest)
  2582. if (super_types[mddev->major_version].
  2583. validate_super(mddev, rdev)) {
  2584. printk(KERN_WARNING "md: kicking non-fresh %s"
  2585. " from array!\n",
  2586. bdevname(rdev->bdev,b));
  2587. kick_rdev_from_array(rdev);
  2588. continue;
  2589. }
  2590. if (mddev->level == LEVEL_MULTIPATH) {
  2591. rdev->desc_nr = i++;
  2592. rdev->raid_disk = rdev->desc_nr;
  2593. set_bit(In_sync, &rdev->flags);
  2594. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2595. rdev->raid_disk = -1;
  2596. clear_bit(In_sync, &rdev->flags);
  2597. }
  2598. }
  2599. }
  2600. /* Read a fixed-point number.
  2601. * Numbers in sysfs attributes should be in "standard" units where
  2602. * possible, so time should be in seconds.
  2603. * However we internally use a a much smaller unit such as
  2604. * milliseconds or jiffies.
  2605. * This function takes a decimal number with a possible fractional
  2606. * component, and produces an integer which is the result of
  2607. * multiplying that number by 10^'scale'.
  2608. * all without any floating-point arithmetic.
  2609. */
  2610. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2611. {
  2612. unsigned long result = 0;
  2613. long decimals = -1;
  2614. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2615. if (*cp == '.')
  2616. decimals = 0;
  2617. else if (decimals < scale) {
  2618. unsigned int value;
  2619. value = *cp - '0';
  2620. result = result * 10 + value;
  2621. if (decimals >= 0)
  2622. decimals++;
  2623. }
  2624. cp++;
  2625. }
  2626. if (*cp == '\n')
  2627. cp++;
  2628. if (*cp)
  2629. return -EINVAL;
  2630. if (decimals < 0)
  2631. decimals = 0;
  2632. while (decimals < scale) {
  2633. result *= 10;
  2634. decimals ++;
  2635. }
  2636. *res = result;
  2637. return 0;
  2638. }
  2639. static void md_safemode_timeout(unsigned long data);
  2640. static ssize_t
  2641. safe_delay_show(mddev_t *mddev, char *page)
  2642. {
  2643. int msec = (mddev->safemode_delay*1000)/HZ;
  2644. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2645. }
  2646. static ssize_t
  2647. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2648. {
  2649. unsigned long msec;
  2650. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2651. return -EINVAL;
  2652. if (msec == 0)
  2653. mddev->safemode_delay = 0;
  2654. else {
  2655. unsigned long old_delay = mddev->safemode_delay;
  2656. mddev->safemode_delay = (msec*HZ)/1000;
  2657. if (mddev->safemode_delay == 0)
  2658. mddev->safemode_delay = 1;
  2659. if (mddev->safemode_delay < old_delay)
  2660. md_safemode_timeout((unsigned long)mddev);
  2661. }
  2662. return len;
  2663. }
  2664. static struct md_sysfs_entry md_safe_delay =
  2665. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2666. static ssize_t
  2667. level_show(mddev_t *mddev, char *page)
  2668. {
  2669. struct mdk_personality *p = mddev->pers;
  2670. if (p)
  2671. return sprintf(page, "%s\n", p->name);
  2672. else if (mddev->clevel[0])
  2673. return sprintf(page, "%s\n", mddev->clevel);
  2674. else if (mddev->level != LEVEL_NONE)
  2675. return sprintf(page, "%d\n", mddev->level);
  2676. else
  2677. return 0;
  2678. }
  2679. static ssize_t
  2680. level_store(mddev_t *mddev, const char *buf, size_t len)
  2681. {
  2682. char clevel[16];
  2683. ssize_t rv = len;
  2684. struct mdk_personality *pers;
  2685. long level;
  2686. void *priv;
  2687. mdk_rdev_t *rdev;
  2688. if (mddev->pers == NULL) {
  2689. if (len == 0)
  2690. return 0;
  2691. if (len >= sizeof(mddev->clevel))
  2692. return -ENOSPC;
  2693. strncpy(mddev->clevel, buf, len);
  2694. if (mddev->clevel[len-1] == '\n')
  2695. len--;
  2696. mddev->clevel[len] = 0;
  2697. mddev->level = LEVEL_NONE;
  2698. return rv;
  2699. }
  2700. /* request to change the personality. Need to ensure:
  2701. * - array is not engaged in resync/recovery/reshape
  2702. * - old personality can be suspended
  2703. * - new personality will access other array.
  2704. */
  2705. if (mddev->sync_thread ||
  2706. mddev->reshape_position != MaxSector ||
  2707. mddev->sysfs_active)
  2708. return -EBUSY;
  2709. if (!mddev->pers->quiesce) {
  2710. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2711. mdname(mddev), mddev->pers->name);
  2712. return -EINVAL;
  2713. }
  2714. /* Now find the new personality */
  2715. if (len == 0 || len >= sizeof(clevel))
  2716. return -EINVAL;
  2717. strncpy(clevel, buf, len);
  2718. if (clevel[len-1] == '\n')
  2719. len--;
  2720. clevel[len] = 0;
  2721. if (strict_strtol(clevel, 10, &level))
  2722. level = LEVEL_NONE;
  2723. if (request_module("md-%s", clevel) != 0)
  2724. request_module("md-level-%s", clevel);
  2725. spin_lock(&pers_lock);
  2726. pers = find_pers(level, clevel);
  2727. if (!pers || !try_module_get(pers->owner)) {
  2728. spin_unlock(&pers_lock);
  2729. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2730. return -EINVAL;
  2731. }
  2732. spin_unlock(&pers_lock);
  2733. if (pers == mddev->pers) {
  2734. /* Nothing to do! */
  2735. module_put(pers->owner);
  2736. return rv;
  2737. }
  2738. if (!pers->takeover) {
  2739. module_put(pers->owner);
  2740. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2741. mdname(mddev), clevel);
  2742. return -EINVAL;
  2743. }
  2744. list_for_each_entry(rdev, &mddev->disks, same_set)
  2745. rdev->new_raid_disk = rdev->raid_disk;
  2746. /* ->takeover must set new_* and/or delta_disks
  2747. * if it succeeds, and may set them when it fails.
  2748. */
  2749. priv = pers->takeover(mddev);
  2750. if (IS_ERR(priv)) {
  2751. mddev->new_level = mddev->level;
  2752. mddev->new_layout = mddev->layout;
  2753. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2754. mddev->raid_disks -= mddev->delta_disks;
  2755. mddev->delta_disks = 0;
  2756. module_put(pers->owner);
  2757. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2758. mdname(mddev), clevel);
  2759. return PTR_ERR(priv);
  2760. }
  2761. /* Looks like we have a winner */
  2762. mddev_suspend(mddev);
  2763. mddev->pers->stop(mddev);
  2764. if (mddev->pers->sync_request == NULL &&
  2765. pers->sync_request != NULL) {
  2766. /* need to add the md_redundancy_group */
  2767. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2768. printk(KERN_WARNING
  2769. "md: cannot register extra attributes for %s\n",
  2770. mdname(mddev));
  2771. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  2772. }
  2773. if (mddev->pers->sync_request != NULL &&
  2774. pers->sync_request == NULL) {
  2775. /* need to remove the md_redundancy_group */
  2776. if (mddev->to_remove == NULL)
  2777. mddev->to_remove = &md_redundancy_group;
  2778. }
  2779. if (mddev->pers->sync_request == NULL &&
  2780. mddev->external) {
  2781. /* We are converting from a no-redundancy array
  2782. * to a redundancy array and metadata is managed
  2783. * externally so we need to be sure that writes
  2784. * won't block due to a need to transition
  2785. * clean->dirty
  2786. * until external management is started.
  2787. */
  2788. mddev->in_sync = 0;
  2789. mddev->safemode_delay = 0;
  2790. mddev->safemode = 0;
  2791. }
  2792. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2793. if (rdev->raid_disk < 0)
  2794. continue;
  2795. if (rdev->new_raid_disk >= mddev->raid_disks)
  2796. rdev->new_raid_disk = -1;
  2797. if (rdev->new_raid_disk == rdev->raid_disk)
  2798. continue;
  2799. sysfs_unlink_rdev(mddev, rdev);
  2800. }
  2801. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2802. if (rdev->raid_disk < 0)
  2803. continue;
  2804. if (rdev->new_raid_disk == rdev->raid_disk)
  2805. continue;
  2806. rdev->raid_disk = rdev->new_raid_disk;
  2807. if (rdev->raid_disk < 0)
  2808. clear_bit(In_sync, &rdev->flags);
  2809. else {
  2810. if (sysfs_link_rdev(mddev, rdev))
  2811. printk(KERN_WARNING "md: cannot register rd%d"
  2812. " for %s after level change\n",
  2813. rdev->raid_disk, mdname(mddev));
  2814. }
  2815. }
  2816. module_put(mddev->pers->owner);
  2817. mddev->pers = pers;
  2818. mddev->private = priv;
  2819. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2820. mddev->level = mddev->new_level;
  2821. mddev->layout = mddev->new_layout;
  2822. mddev->chunk_sectors = mddev->new_chunk_sectors;
  2823. mddev->delta_disks = 0;
  2824. mddev->degraded = 0;
  2825. if (mddev->pers->sync_request == NULL) {
  2826. /* this is now an array without redundancy, so
  2827. * it must always be in_sync
  2828. */
  2829. mddev->in_sync = 1;
  2830. del_timer_sync(&mddev->safemode_timer);
  2831. }
  2832. pers->run(mddev);
  2833. mddev_resume(mddev);
  2834. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2835. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2836. md_wakeup_thread(mddev->thread);
  2837. sysfs_notify(&mddev->kobj, NULL, "level");
  2838. md_new_event(mddev);
  2839. return rv;
  2840. }
  2841. static struct md_sysfs_entry md_level =
  2842. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2843. static ssize_t
  2844. layout_show(mddev_t *mddev, char *page)
  2845. {
  2846. /* just a number, not meaningful for all levels */
  2847. if (mddev->reshape_position != MaxSector &&
  2848. mddev->layout != mddev->new_layout)
  2849. return sprintf(page, "%d (%d)\n",
  2850. mddev->new_layout, mddev->layout);
  2851. return sprintf(page, "%d\n", mddev->layout);
  2852. }
  2853. static ssize_t
  2854. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2855. {
  2856. char *e;
  2857. unsigned long n = simple_strtoul(buf, &e, 10);
  2858. if (!*buf || (*e && *e != '\n'))
  2859. return -EINVAL;
  2860. if (mddev->pers) {
  2861. int err;
  2862. if (mddev->pers->check_reshape == NULL)
  2863. return -EBUSY;
  2864. mddev->new_layout = n;
  2865. err = mddev->pers->check_reshape(mddev);
  2866. if (err) {
  2867. mddev->new_layout = mddev->layout;
  2868. return err;
  2869. }
  2870. } else {
  2871. mddev->new_layout = n;
  2872. if (mddev->reshape_position == MaxSector)
  2873. mddev->layout = n;
  2874. }
  2875. return len;
  2876. }
  2877. static struct md_sysfs_entry md_layout =
  2878. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2879. static ssize_t
  2880. raid_disks_show(mddev_t *mddev, char *page)
  2881. {
  2882. if (mddev->raid_disks == 0)
  2883. return 0;
  2884. if (mddev->reshape_position != MaxSector &&
  2885. mddev->delta_disks != 0)
  2886. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2887. mddev->raid_disks - mddev->delta_disks);
  2888. return sprintf(page, "%d\n", mddev->raid_disks);
  2889. }
  2890. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2891. static ssize_t
  2892. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2893. {
  2894. char *e;
  2895. int rv = 0;
  2896. unsigned long n = simple_strtoul(buf, &e, 10);
  2897. if (!*buf || (*e && *e != '\n'))
  2898. return -EINVAL;
  2899. if (mddev->pers)
  2900. rv = update_raid_disks(mddev, n);
  2901. else if (mddev->reshape_position != MaxSector) {
  2902. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2903. mddev->delta_disks = n - olddisks;
  2904. mddev->raid_disks = n;
  2905. } else
  2906. mddev->raid_disks = n;
  2907. return rv ? rv : len;
  2908. }
  2909. static struct md_sysfs_entry md_raid_disks =
  2910. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2911. static ssize_t
  2912. chunk_size_show(mddev_t *mddev, char *page)
  2913. {
  2914. if (mddev->reshape_position != MaxSector &&
  2915. mddev->chunk_sectors != mddev->new_chunk_sectors)
  2916. return sprintf(page, "%d (%d)\n",
  2917. mddev->new_chunk_sectors << 9,
  2918. mddev->chunk_sectors << 9);
  2919. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  2920. }
  2921. static ssize_t
  2922. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2923. {
  2924. char *e;
  2925. unsigned long n = simple_strtoul(buf, &e, 10);
  2926. if (!*buf || (*e && *e != '\n'))
  2927. return -EINVAL;
  2928. if (mddev->pers) {
  2929. int err;
  2930. if (mddev->pers->check_reshape == NULL)
  2931. return -EBUSY;
  2932. mddev->new_chunk_sectors = n >> 9;
  2933. err = mddev->pers->check_reshape(mddev);
  2934. if (err) {
  2935. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2936. return err;
  2937. }
  2938. } else {
  2939. mddev->new_chunk_sectors = n >> 9;
  2940. if (mddev->reshape_position == MaxSector)
  2941. mddev->chunk_sectors = n >> 9;
  2942. }
  2943. return len;
  2944. }
  2945. static struct md_sysfs_entry md_chunk_size =
  2946. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2947. static ssize_t
  2948. resync_start_show(mddev_t *mddev, char *page)
  2949. {
  2950. if (mddev->recovery_cp == MaxSector)
  2951. return sprintf(page, "none\n");
  2952. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2953. }
  2954. static ssize_t
  2955. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2956. {
  2957. char *e;
  2958. unsigned long long n = simple_strtoull(buf, &e, 10);
  2959. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  2960. return -EBUSY;
  2961. if (cmd_match(buf, "none"))
  2962. n = MaxSector;
  2963. else if (!*buf || (*e && *e != '\n'))
  2964. return -EINVAL;
  2965. mddev->recovery_cp = n;
  2966. return len;
  2967. }
  2968. static struct md_sysfs_entry md_resync_start =
  2969. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2970. /*
  2971. * The array state can be:
  2972. *
  2973. * clear
  2974. * No devices, no size, no level
  2975. * Equivalent to STOP_ARRAY ioctl
  2976. * inactive
  2977. * May have some settings, but array is not active
  2978. * all IO results in error
  2979. * When written, doesn't tear down array, but just stops it
  2980. * suspended (not supported yet)
  2981. * All IO requests will block. The array can be reconfigured.
  2982. * Writing this, if accepted, will block until array is quiescent
  2983. * readonly
  2984. * no resync can happen. no superblocks get written.
  2985. * write requests fail
  2986. * read-auto
  2987. * like readonly, but behaves like 'clean' on a write request.
  2988. *
  2989. * clean - no pending writes, but otherwise active.
  2990. * When written to inactive array, starts without resync
  2991. * If a write request arrives then
  2992. * if metadata is known, mark 'dirty' and switch to 'active'.
  2993. * if not known, block and switch to write-pending
  2994. * If written to an active array that has pending writes, then fails.
  2995. * active
  2996. * fully active: IO and resync can be happening.
  2997. * When written to inactive array, starts with resync
  2998. *
  2999. * write-pending
  3000. * clean, but writes are blocked waiting for 'active' to be written.
  3001. *
  3002. * active-idle
  3003. * like active, but no writes have been seen for a while (100msec).
  3004. *
  3005. */
  3006. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3007. write_pending, active_idle, bad_word};
  3008. static char *array_states[] = {
  3009. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3010. "write-pending", "active-idle", NULL };
  3011. static int match_word(const char *word, char **list)
  3012. {
  3013. int n;
  3014. for (n=0; list[n]; n++)
  3015. if (cmd_match(word, list[n]))
  3016. break;
  3017. return n;
  3018. }
  3019. static ssize_t
  3020. array_state_show(mddev_t *mddev, char *page)
  3021. {
  3022. enum array_state st = inactive;
  3023. if (mddev->pers)
  3024. switch(mddev->ro) {
  3025. case 1:
  3026. st = readonly;
  3027. break;
  3028. case 2:
  3029. st = read_auto;
  3030. break;
  3031. case 0:
  3032. if (mddev->in_sync)
  3033. st = clean;
  3034. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3035. st = write_pending;
  3036. else if (mddev->safemode)
  3037. st = active_idle;
  3038. else
  3039. st = active;
  3040. }
  3041. else {
  3042. if (list_empty(&mddev->disks) &&
  3043. mddev->raid_disks == 0 &&
  3044. mddev->dev_sectors == 0)
  3045. st = clear;
  3046. else
  3047. st = inactive;
  3048. }
  3049. return sprintf(page, "%s\n", array_states[st]);
  3050. }
  3051. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  3052. static int md_set_readonly(mddev_t * mddev, int is_open);
  3053. static int do_md_run(mddev_t * mddev);
  3054. static int restart_array(mddev_t *mddev);
  3055. static ssize_t
  3056. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  3057. {
  3058. int err = -EINVAL;
  3059. enum array_state st = match_word(buf, array_states);
  3060. switch(st) {
  3061. case bad_word:
  3062. break;
  3063. case clear:
  3064. /* stopping an active array */
  3065. if (atomic_read(&mddev->openers) > 0)
  3066. return -EBUSY;
  3067. err = do_md_stop(mddev, 0, 0);
  3068. break;
  3069. case inactive:
  3070. /* stopping an active array */
  3071. if (mddev->pers) {
  3072. if (atomic_read(&mddev->openers) > 0)
  3073. return -EBUSY;
  3074. err = do_md_stop(mddev, 2, 0);
  3075. } else
  3076. err = 0; /* already inactive */
  3077. break;
  3078. case suspended:
  3079. break; /* not supported yet */
  3080. case readonly:
  3081. if (mddev->pers)
  3082. err = md_set_readonly(mddev, 0);
  3083. else {
  3084. mddev->ro = 1;
  3085. set_disk_ro(mddev->gendisk, 1);
  3086. err = do_md_run(mddev);
  3087. }
  3088. break;
  3089. case read_auto:
  3090. if (mddev->pers) {
  3091. if (mddev->ro == 0)
  3092. err = md_set_readonly(mddev, 0);
  3093. else if (mddev->ro == 1)
  3094. err = restart_array(mddev);
  3095. if (err == 0) {
  3096. mddev->ro = 2;
  3097. set_disk_ro(mddev->gendisk, 0);
  3098. }
  3099. } else {
  3100. mddev->ro = 2;
  3101. err = do_md_run(mddev);
  3102. }
  3103. break;
  3104. case clean:
  3105. if (mddev->pers) {
  3106. restart_array(mddev);
  3107. spin_lock_irq(&mddev->write_lock);
  3108. if (atomic_read(&mddev->writes_pending) == 0) {
  3109. if (mddev->in_sync == 0) {
  3110. mddev->in_sync = 1;
  3111. if (mddev->safemode == 1)
  3112. mddev->safemode = 0;
  3113. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3114. }
  3115. err = 0;
  3116. } else
  3117. err = -EBUSY;
  3118. spin_unlock_irq(&mddev->write_lock);
  3119. } else
  3120. err = -EINVAL;
  3121. break;
  3122. case active:
  3123. if (mddev->pers) {
  3124. restart_array(mddev);
  3125. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3126. wake_up(&mddev->sb_wait);
  3127. err = 0;
  3128. } else {
  3129. mddev->ro = 0;
  3130. set_disk_ro(mddev->gendisk, 0);
  3131. err = do_md_run(mddev);
  3132. }
  3133. break;
  3134. case write_pending:
  3135. case active_idle:
  3136. /* these cannot be set */
  3137. break;
  3138. }
  3139. if (err)
  3140. return err;
  3141. else {
  3142. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3143. return len;
  3144. }
  3145. }
  3146. static struct md_sysfs_entry md_array_state =
  3147. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3148. static ssize_t
  3149. max_corrected_read_errors_show(mddev_t *mddev, char *page) {
  3150. return sprintf(page, "%d\n",
  3151. atomic_read(&mddev->max_corr_read_errors));
  3152. }
  3153. static ssize_t
  3154. max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
  3155. {
  3156. char *e;
  3157. unsigned long n = simple_strtoul(buf, &e, 10);
  3158. if (*buf && (*e == 0 || *e == '\n')) {
  3159. atomic_set(&mddev->max_corr_read_errors, n);
  3160. return len;
  3161. }
  3162. return -EINVAL;
  3163. }
  3164. static struct md_sysfs_entry max_corr_read_errors =
  3165. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3166. max_corrected_read_errors_store);
  3167. static ssize_t
  3168. null_show(mddev_t *mddev, char *page)
  3169. {
  3170. return -EINVAL;
  3171. }
  3172. static ssize_t
  3173. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  3174. {
  3175. /* buf must be %d:%d\n? giving major and minor numbers */
  3176. /* The new device is added to the array.
  3177. * If the array has a persistent superblock, we read the
  3178. * superblock to initialise info and check validity.
  3179. * Otherwise, only checking done is that in bind_rdev_to_array,
  3180. * which mainly checks size.
  3181. */
  3182. char *e;
  3183. int major = simple_strtoul(buf, &e, 10);
  3184. int minor;
  3185. dev_t dev;
  3186. mdk_rdev_t *rdev;
  3187. int err;
  3188. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3189. return -EINVAL;
  3190. minor = simple_strtoul(e+1, &e, 10);
  3191. if (*e && *e != '\n')
  3192. return -EINVAL;
  3193. dev = MKDEV(major, minor);
  3194. if (major != MAJOR(dev) ||
  3195. minor != MINOR(dev))
  3196. return -EOVERFLOW;
  3197. if (mddev->persistent) {
  3198. rdev = md_import_device(dev, mddev->major_version,
  3199. mddev->minor_version);
  3200. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3201. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3202. mdk_rdev_t, same_set);
  3203. err = super_types[mddev->major_version]
  3204. .load_super(rdev, rdev0, mddev->minor_version);
  3205. if (err < 0)
  3206. goto out;
  3207. }
  3208. } else if (mddev->external)
  3209. rdev = md_import_device(dev, -2, -1);
  3210. else
  3211. rdev = md_import_device(dev, -1, -1);
  3212. if (IS_ERR(rdev))
  3213. return PTR_ERR(rdev);
  3214. err = bind_rdev_to_array(rdev, mddev);
  3215. out:
  3216. if (err)
  3217. export_rdev(rdev);
  3218. return err ? err : len;
  3219. }
  3220. static struct md_sysfs_entry md_new_device =
  3221. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3222. static ssize_t
  3223. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  3224. {
  3225. char *end;
  3226. unsigned long chunk, end_chunk;
  3227. if (!mddev->bitmap)
  3228. goto out;
  3229. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3230. while (*buf) {
  3231. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3232. if (buf == end) break;
  3233. if (*end == '-') { /* range */
  3234. buf = end + 1;
  3235. end_chunk = simple_strtoul(buf, &end, 0);
  3236. if (buf == end) break;
  3237. }
  3238. if (*end && !isspace(*end)) break;
  3239. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3240. buf = skip_spaces(end);
  3241. }
  3242. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3243. out:
  3244. return len;
  3245. }
  3246. static struct md_sysfs_entry md_bitmap =
  3247. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3248. static ssize_t
  3249. size_show(mddev_t *mddev, char *page)
  3250. {
  3251. return sprintf(page, "%llu\n",
  3252. (unsigned long long)mddev->dev_sectors / 2);
  3253. }
  3254. static int update_size(mddev_t *mddev, sector_t num_sectors);
  3255. static ssize_t
  3256. size_store(mddev_t *mddev, const char *buf, size_t len)
  3257. {
  3258. /* If array is inactive, we can reduce the component size, but
  3259. * not increase it (except from 0).
  3260. * If array is active, we can try an on-line resize
  3261. */
  3262. sector_t sectors;
  3263. int err = strict_blocks_to_sectors(buf, &sectors);
  3264. if (err < 0)
  3265. return err;
  3266. if (mddev->pers) {
  3267. err = update_size(mddev, sectors);
  3268. md_update_sb(mddev, 1);
  3269. } else {
  3270. if (mddev->dev_sectors == 0 ||
  3271. mddev->dev_sectors > sectors)
  3272. mddev->dev_sectors = sectors;
  3273. else
  3274. err = -ENOSPC;
  3275. }
  3276. return err ? err : len;
  3277. }
  3278. static struct md_sysfs_entry md_size =
  3279. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3280. /* Metdata version.
  3281. * This is one of
  3282. * 'none' for arrays with no metadata (good luck...)
  3283. * 'external' for arrays with externally managed metadata,
  3284. * or N.M for internally known formats
  3285. */
  3286. static ssize_t
  3287. metadata_show(mddev_t *mddev, char *page)
  3288. {
  3289. if (mddev->persistent)
  3290. return sprintf(page, "%d.%d\n",
  3291. mddev->major_version, mddev->minor_version);
  3292. else if (mddev->external)
  3293. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3294. else
  3295. return sprintf(page, "none\n");
  3296. }
  3297. static ssize_t
  3298. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  3299. {
  3300. int major, minor;
  3301. char *e;
  3302. /* Changing the details of 'external' metadata is
  3303. * always permitted. Otherwise there must be
  3304. * no devices attached to the array.
  3305. */
  3306. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3307. ;
  3308. else if (!list_empty(&mddev->disks))
  3309. return -EBUSY;
  3310. if (cmd_match(buf, "none")) {
  3311. mddev->persistent = 0;
  3312. mddev->external = 0;
  3313. mddev->major_version = 0;
  3314. mddev->minor_version = 90;
  3315. return len;
  3316. }
  3317. if (strncmp(buf, "external:", 9) == 0) {
  3318. size_t namelen = len-9;
  3319. if (namelen >= sizeof(mddev->metadata_type))
  3320. namelen = sizeof(mddev->metadata_type)-1;
  3321. strncpy(mddev->metadata_type, buf+9, namelen);
  3322. mddev->metadata_type[namelen] = 0;
  3323. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3324. mddev->metadata_type[--namelen] = 0;
  3325. mddev->persistent = 0;
  3326. mddev->external = 1;
  3327. mddev->major_version = 0;
  3328. mddev->minor_version = 90;
  3329. return len;
  3330. }
  3331. major = simple_strtoul(buf, &e, 10);
  3332. if (e==buf || *e != '.')
  3333. return -EINVAL;
  3334. buf = e+1;
  3335. minor = simple_strtoul(buf, &e, 10);
  3336. if (e==buf || (*e && *e != '\n') )
  3337. return -EINVAL;
  3338. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3339. return -ENOENT;
  3340. mddev->major_version = major;
  3341. mddev->minor_version = minor;
  3342. mddev->persistent = 1;
  3343. mddev->external = 0;
  3344. return len;
  3345. }
  3346. static struct md_sysfs_entry md_metadata =
  3347. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3348. static ssize_t
  3349. action_show(mddev_t *mddev, char *page)
  3350. {
  3351. char *type = "idle";
  3352. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3353. type = "frozen";
  3354. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3355. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3356. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3357. type = "reshape";
  3358. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3359. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3360. type = "resync";
  3361. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3362. type = "check";
  3363. else
  3364. type = "repair";
  3365. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3366. type = "recover";
  3367. }
  3368. return sprintf(page, "%s\n", type);
  3369. }
  3370. static void reap_sync_thread(mddev_t *mddev);
  3371. static ssize_t
  3372. action_store(mddev_t *mddev, const char *page, size_t len)
  3373. {
  3374. if (!mddev->pers || !mddev->pers->sync_request)
  3375. return -EINVAL;
  3376. if (cmd_match(page, "frozen"))
  3377. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3378. else
  3379. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3380. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3381. if (mddev->sync_thread) {
  3382. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3383. reap_sync_thread(mddev);
  3384. }
  3385. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3386. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3387. return -EBUSY;
  3388. else if (cmd_match(page, "resync"))
  3389. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3390. else if (cmd_match(page, "recover")) {
  3391. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3392. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3393. } else if (cmd_match(page, "reshape")) {
  3394. int err;
  3395. if (mddev->pers->start_reshape == NULL)
  3396. return -EINVAL;
  3397. err = mddev->pers->start_reshape(mddev);
  3398. if (err)
  3399. return err;
  3400. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3401. } else {
  3402. if (cmd_match(page, "check"))
  3403. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3404. else if (!cmd_match(page, "repair"))
  3405. return -EINVAL;
  3406. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3407. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3408. }
  3409. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3410. md_wakeup_thread(mddev->thread);
  3411. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3412. return len;
  3413. }
  3414. static ssize_t
  3415. mismatch_cnt_show(mddev_t *mddev, char *page)
  3416. {
  3417. return sprintf(page, "%llu\n",
  3418. (unsigned long long) mddev->resync_mismatches);
  3419. }
  3420. static struct md_sysfs_entry md_scan_mode =
  3421. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3422. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3423. static ssize_t
  3424. sync_min_show(mddev_t *mddev, char *page)
  3425. {
  3426. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3427. mddev->sync_speed_min ? "local": "system");
  3428. }
  3429. static ssize_t
  3430. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3431. {
  3432. int min;
  3433. char *e;
  3434. if (strncmp(buf, "system", 6)==0) {
  3435. mddev->sync_speed_min = 0;
  3436. return len;
  3437. }
  3438. min = simple_strtoul(buf, &e, 10);
  3439. if (buf == e || (*e && *e != '\n') || min <= 0)
  3440. return -EINVAL;
  3441. mddev->sync_speed_min = min;
  3442. return len;
  3443. }
  3444. static struct md_sysfs_entry md_sync_min =
  3445. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3446. static ssize_t
  3447. sync_max_show(mddev_t *mddev, char *page)
  3448. {
  3449. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3450. mddev->sync_speed_max ? "local": "system");
  3451. }
  3452. static ssize_t
  3453. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3454. {
  3455. int max;
  3456. char *e;
  3457. if (strncmp(buf, "system", 6)==0) {
  3458. mddev->sync_speed_max = 0;
  3459. return len;
  3460. }
  3461. max = simple_strtoul(buf, &e, 10);
  3462. if (buf == e || (*e && *e != '\n') || max <= 0)
  3463. return -EINVAL;
  3464. mddev->sync_speed_max = max;
  3465. return len;
  3466. }
  3467. static struct md_sysfs_entry md_sync_max =
  3468. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3469. static ssize_t
  3470. degraded_show(mddev_t *mddev, char *page)
  3471. {
  3472. return sprintf(page, "%d\n", mddev->degraded);
  3473. }
  3474. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3475. static ssize_t
  3476. sync_force_parallel_show(mddev_t *mddev, char *page)
  3477. {
  3478. return sprintf(page, "%d\n", mddev->parallel_resync);
  3479. }
  3480. static ssize_t
  3481. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3482. {
  3483. long n;
  3484. if (strict_strtol(buf, 10, &n))
  3485. return -EINVAL;
  3486. if (n != 0 && n != 1)
  3487. return -EINVAL;
  3488. mddev->parallel_resync = n;
  3489. if (mddev->sync_thread)
  3490. wake_up(&resync_wait);
  3491. return len;
  3492. }
  3493. /* force parallel resync, even with shared block devices */
  3494. static struct md_sysfs_entry md_sync_force_parallel =
  3495. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3496. sync_force_parallel_show, sync_force_parallel_store);
  3497. static ssize_t
  3498. sync_speed_show(mddev_t *mddev, char *page)
  3499. {
  3500. unsigned long resync, dt, db;
  3501. if (mddev->curr_resync == 0)
  3502. return sprintf(page, "none\n");
  3503. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3504. dt = (jiffies - mddev->resync_mark) / HZ;
  3505. if (!dt) dt++;
  3506. db = resync - mddev->resync_mark_cnt;
  3507. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3508. }
  3509. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3510. static ssize_t
  3511. sync_completed_show(mddev_t *mddev, char *page)
  3512. {
  3513. unsigned long long max_sectors, resync;
  3514. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3515. return sprintf(page, "none\n");
  3516. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3517. max_sectors = mddev->resync_max_sectors;
  3518. else
  3519. max_sectors = mddev->dev_sectors;
  3520. resync = mddev->curr_resync_completed;
  3521. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3522. }
  3523. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3524. static ssize_t
  3525. min_sync_show(mddev_t *mddev, char *page)
  3526. {
  3527. return sprintf(page, "%llu\n",
  3528. (unsigned long long)mddev->resync_min);
  3529. }
  3530. static ssize_t
  3531. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3532. {
  3533. unsigned long long min;
  3534. if (strict_strtoull(buf, 10, &min))
  3535. return -EINVAL;
  3536. if (min > mddev->resync_max)
  3537. return -EINVAL;
  3538. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3539. return -EBUSY;
  3540. /* Must be a multiple of chunk_size */
  3541. if (mddev->chunk_sectors) {
  3542. sector_t temp = min;
  3543. if (sector_div(temp, mddev->chunk_sectors))
  3544. return -EINVAL;
  3545. }
  3546. mddev->resync_min = min;
  3547. return len;
  3548. }
  3549. static struct md_sysfs_entry md_min_sync =
  3550. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3551. static ssize_t
  3552. max_sync_show(mddev_t *mddev, char *page)
  3553. {
  3554. if (mddev->resync_max == MaxSector)
  3555. return sprintf(page, "max\n");
  3556. else
  3557. return sprintf(page, "%llu\n",
  3558. (unsigned long long)mddev->resync_max);
  3559. }
  3560. static ssize_t
  3561. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3562. {
  3563. if (strncmp(buf, "max", 3) == 0)
  3564. mddev->resync_max = MaxSector;
  3565. else {
  3566. unsigned long long max;
  3567. if (strict_strtoull(buf, 10, &max))
  3568. return -EINVAL;
  3569. if (max < mddev->resync_min)
  3570. return -EINVAL;
  3571. if (max < mddev->resync_max &&
  3572. mddev->ro == 0 &&
  3573. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3574. return -EBUSY;
  3575. /* Must be a multiple of chunk_size */
  3576. if (mddev->chunk_sectors) {
  3577. sector_t temp = max;
  3578. if (sector_div(temp, mddev->chunk_sectors))
  3579. return -EINVAL;
  3580. }
  3581. mddev->resync_max = max;
  3582. }
  3583. wake_up(&mddev->recovery_wait);
  3584. return len;
  3585. }
  3586. static struct md_sysfs_entry md_max_sync =
  3587. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3588. static ssize_t
  3589. suspend_lo_show(mddev_t *mddev, char *page)
  3590. {
  3591. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3592. }
  3593. static ssize_t
  3594. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3595. {
  3596. char *e;
  3597. unsigned long long new = simple_strtoull(buf, &e, 10);
  3598. unsigned long long old = mddev->suspend_lo;
  3599. if (mddev->pers == NULL ||
  3600. mddev->pers->quiesce == NULL)
  3601. return -EINVAL;
  3602. if (buf == e || (*e && *e != '\n'))
  3603. return -EINVAL;
  3604. mddev->suspend_lo = new;
  3605. if (new >= old)
  3606. /* Shrinking suspended region */
  3607. mddev->pers->quiesce(mddev, 2);
  3608. else {
  3609. /* Expanding suspended region - need to wait */
  3610. mddev->pers->quiesce(mddev, 1);
  3611. mddev->pers->quiesce(mddev, 0);
  3612. }
  3613. return len;
  3614. }
  3615. static struct md_sysfs_entry md_suspend_lo =
  3616. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3617. static ssize_t
  3618. suspend_hi_show(mddev_t *mddev, char *page)
  3619. {
  3620. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3621. }
  3622. static ssize_t
  3623. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3624. {
  3625. char *e;
  3626. unsigned long long new = simple_strtoull(buf, &e, 10);
  3627. unsigned long long old = mddev->suspend_hi;
  3628. if (mddev->pers == NULL ||
  3629. mddev->pers->quiesce == NULL)
  3630. return -EINVAL;
  3631. if (buf == e || (*e && *e != '\n'))
  3632. return -EINVAL;
  3633. mddev->suspend_hi = new;
  3634. if (new <= old)
  3635. /* Shrinking suspended region */
  3636. mddev->pers->quiesce(mddev, 2);
  3637. else {
  3638. /* Expanding suspended region - need to wait */
  3639. mddev->pers->quiesce(mddev, 1);
  3640. mddev->pers->quiesce(mddev, 0);
  3641. }
  3642. return len;
  3643. }
  3644. static struct md_sysfs_entry md_suspend_hi =
  3645. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3646. static ssize_t
  3647. reshape_position_show(mddev_t *mddev, char *page)
  3648. {
  3649. if (mddev->reshape_position != MaxSector)
  3650. return sprintf(page, "%llu\n",
  3651. (unsigned long long)mddev->reshape_position);
  3652. strcpy(page, "none\n");
  3653. return 5;
  3654. }
  3655. static ssize_t
  3656. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3657. {
  3658. char *e;
  3659. unsigned long long new = simple_strtoull(buf, &e, 10);
  3660. if (mddev->pers)
  3661. return -EBUSY;
  3662. if (buf == e || (*e && *e != '\n'))
  3663. return -EINVAL;
  3664. mddev->reshape_position = new;
  3665. mddev->delta_disks = 0;
  3666. mddev->new_level = mddev->level;
  3667. mddev->new_layout = mddev->layout;
  3668. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3669. return len;
  3670. }
  3671. static struct md_sysfs_entry md_reshape_position =
  3672. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3673. reshape_position_store);
  3674. static ssize_t
  3675. array_size_show(mddev_t *mddev, char *page)
  3676. {
  3677. if (mddev->external_size)
  3678. return sprintf(page, "%llu\n",
  3679. (unsigned long long)mddev->array_sectors/2);
  3680. else
  3681. return sprintf(page, "default\n");
  3682. }
  3683. static ssize_t
  3684. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3685. {
  3686. sector_t sectors;
  3687. if (strncmp(buf, "default", 7) == 0) {
  3688. if (mddev->pers)
  3689. sectors = mddev->pers->size(mddev, 0, 0);
  3690. else
  3691. sectors = mddev->array_sectors;
  3692. mddev->external_size = 0;
  3693. } else {
  3694. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3695. return -EINVAL;
  3696. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3697. return -E2BIG;
  3698. mddev->external_size = 1;
  3699. }
  3700. mddev->array_sectors = sectors;
  3701. if (mddev->pers) {
  3702. set_capacity(mddev->gendisk, mddev->array_sectors);
  3703. revalidate_disk(mddev->gendisk);
  3704. }
  3705. return len;
  3706. }
  3707. static struct md_sysfs_entry md_array_size =
  3708. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3709. array_size_store);
  3710. static struct attribute *md_default_attrs[] = {
  3711. &md_level.attr,
  3712. &md_layout.attr,
  3713. &md_raid_disks.attr,
  3714. &md_chunk_size.attr,
  3715. &md_size.attr,
  3716. &md_resync_start.attr,
  3717. &md_metadata.attr,
  3718. &md_new_device.attr,
  3719. &md_safe_delay.attr,
  3720. &md_array_state.attr,
  3721. &md_reshape_position.attr,
  3722. &md_array_size.attr,
  3723. &max_corr_read_errors.attr,
  3724. NULL,
  3725. };
  3726. static struct attribute *md_redundancy_attrs[] = {
  3727. &md_scan_mode.attr,
  3728. &md_mismatches.attr,
  3729. &md_sync_min.attr,
  3730. &md_sync_max.attr,
  3731. &md_sync_speed.attr,
  3732. &md_sync_force_parallel.attr,
  3733. &md_sync_completed.attr,
  3734. &md_min_sync.attr,
  3735. &md_max_sync.attr,
  3736. &md_suspend_lo.attr,
  3737. &md_suspend_hi.attr,
  3738. &md_bitmap.attr,
  3739. &md_degraded.attr,
  3740. NULL,
  3741. };
  3742. static struct attribute_group md_redundancy_group = {
  3743. .name = NULL,
  3744. .attrs = md_redundancy_attrs,
  3745. };
  3746. static ssize_t
  3747. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3748. {
  3749. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3750. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3751. ssize_t rv;
  3752. if (!entry->show)
  3753. return -EIO;
  3754. rv = mddev_lock(mddev);
  3755. if (!rv) {
  3756. rv = entry->show(mddev, page);
  3757. mddev_unlock(mddev);
  3758. }
  3759. return rv;
  3760. }
  3761. static ssize_t
  3762. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3763. const char *page, size_t length)
  3764. {
  3765. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3766. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3767. ssize_t rv;
  3768. if (!entry->store)
  3769. return -EIO;
  3770. if (!capable(CAP_SYS_ADMIN))
  3771. return -EACCES;
  3772. rv = mddev_lock(mddev);
  3773. if (mddev->hold_active == UNTIL_IOCTL)
  3774. mddev->hold_active = 0;
  3775. if (!rv) {
  3776. rv = entry->store(mddev, page, length);
  3777. mddev_unlock(mddev);
  3778. }
  3779. return rv;
  3780. }
  3781. static void md_free(struct kobject *ko)
  3782. {
  3783. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3784. if (mddev->sysfs_state)
  3785. sysfs_put(mddev->sysfs_state);
  3786. if (mddev->gendisk) {
  3787. del_gendisk(mddev->gendisk);
  3788. put_disk(mddev->gendisk);
  3789. }
  3790. if (mddev->queue)
  3791. blk_cleanup_queue(mddev->queue);
  3792. kfree(mddev);
  3793. }
  3794. static const struct sysfs_ops md_sysfs_ops = {
  3795. .show = md_attr_show,
  3796. .store = md_attr_store,
  3797. };
  3798. static struct kobj_type md_ktype = {
  3799. .release = md_free,
  3800. .sysfs_ops = &md_sysfs_ops,
  3801. .default_attrs = md_default_attrs,
  3802. };
  3803. int mdp_major = 0;
  3804. static void mddev_delayed_delete(struct work_struct *ws)
  3805. {
  3806. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  3807. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  3808. kobject_del(&mddev->kobj);
  3809. kobject_put(&mddev->kobj);
  3810. }
  3811. static int md_alloc(dev_t dev, char *name)
  3812. {
  3813. static DEFINE_MUTEX(disks_mutex);
  3814. mddev_t *mddev = mddev_find(dev);
  3815. struct gendisk *disk;
  3816. int partitioned;
  3817. int shift;
  3818. int unit;
  3819. int error;
  3820. if (!mddev)
  3821. return -ENODEV;
  3822. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  3823. shift = partitioned ? MdpMinorShift : 0;
  3824. unit = MINOR(mddev->unit) >> shift;
  3825. /* wait for any previous instance of this device to be
  3826. * completely removed (mddev_delayed_delete).
  3827. */
  3828. flush_workqueue(md_misc_wq);
  3829. mutex_lock(&disks_mutex);
  3830. error = -EEXIST;
  3831. if (mddev->gendisk)
  3832. goto abort;
  3833. if (name) {
  3834. /* Need to ensure that 'name' is not a duplicate.
  3835. */
  3836. mddev_t *mddev2;
  3837. spin_lock(&all_mddevs_lock);
  3838. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  3839. if (mddev2->gendisk &&
  3840. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  3841. spin_unlock(&all_mddevs_lock);
  3842. goto abort;
  3843. }
  3844. spin_unlock(&all_mddevs_lock);
  3845. }
  3846. error = -ENOMEM;
  3847. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  3848. if (!mddev->queue)
  3849. goto abort;
  3850. mddev->queue->queuedata = mddev;
  3851. blk_queue_make_request(mddev->queue, md_make_request);
  3852. disk = alloc_disk(1 << shift);
  3853. if (!disk) {
  3854. blk_cleanup_queue(mddev->queue);
  3855. mddev->queue = NULL;
  3856. goto abort;
  3857. }
  3858. disk->major = MAJOR(mddev->unit);
  3859. disk->first_minor = unit << shift;
  3860. if (name)
  3861. strcpy(disk->disk_name, name);
  3862. else if (partitioned)
  3863. sprintf(disk->disk_name, "md_d%d", unit);
  3864. else
  3865. sprintf(disk->disk_name, "md%d", unit);
  3866. disk->fops = &md_fops;
  3867. disk->private_data = mddev;
  3868. disk->queue = mddev->queue;
  3869. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  3870. /* Allow extended partitions. This makes the
  3871. * 'mdp' device redundant, but we can't really
  3872. * remove it now.
  3873. */
  3874. disk->flags |= GENHD_FL_EXT_DEVT;
  3875. mddev->gendisk = disk;
  3876. /* As soon as we call add_disk(), another thread could get
  3877. * through to md_open, so make sure it doesn't get too far
  3878. */
  3879. mutex_lock(&mddev->open_mutex);
  3880. add_disk(disk);
  3881. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  3882. &disk_to_dev(disk)->kobj, "%s", "md");
  3883. if (error) {
  3884. /* This isn't possible, but as kobject_init_and_add is marked
  3885. * __must_check, we must do something with the result
  3886. */
  3887. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  3888. disk->disk_name);
  3889. error = 0;
  3890. }
  3891. if (mddev->kobj.sd &&
  3892. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  3893. printk(KERN_DEBUG "pointless warning\n");
  3894. mutex_unlock(&mddev->open_mutex);
  3895. abort:
  3896. mutex_unlock(&disks_mutex);
  3897. if (!error && mddev->kobj.sd) {
  3898. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  3899. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  3900. }
  3901. mddev_put(mddev);
  3902. return error;
  3903. }
  3904. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  3905. {
  3906. md_alloc(dev, NULL);
  3907. return NULL;
  3908. }
  3909. static int add_named_array(const char *val, struct kernel_param *kp)
  3910. {
  3911. /* val must be "md_*" where * is not all digits.
  3912. * We allocate an array with a large free minor number, and
  3913. * set the name to val. val must not already be an active name.
  3914. */
  3915. int len = strlen(val);
  3916. char buf[DISK_NAME_LEN];
  3917. while (len && val[len-1] == '\n')
  3918. len--;
  3919. if (len >= DISK_NAME_LEN)
  3920. return -E2BIG;
  3921. strlcpy(buf, val, len+1);
  3922. if (strncmp(buf, "md_", 3) != 0)
  3923. return -EINVAL;
  3924. return md_alloc(0, buf);
  3925. }
  3926. static void md_safemode_timeout(unsigned long data)
  3927. {
  3928. mddev_t *mddev = (mddev_t *) data;
  3929. if (!atomic_read(&mddev->writes_pending)) {
  3930. mddev->safemode = 1;
  3931. if (mddev->external)
  3932. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3933. }
  3934. md_wakeup_thread(mddev->thread);
  3935. }
  3936. static int start_dirty_degraded;
  3937. int md_run(mddev_t *mddev)
  3938. {
  3939. int err;
  3940. mdk_rdev_t *rdev;
  3941. struct mdk_personality *pers;
  3942. if (list_empty(&mddev->disks))
  3943. /* cannot run an array with no devices.. */
  3944. return -EINVAL;
  3945. if (mddev->pers)
  3946. return -EBUSY;
  3947. /* Cannot run until previous stop completes properly */
  3948. if (mddev->sysfs_active)
  3949. return -EBUSY;
  3950. /*
  3951. * Analyze all RAID superblock(s)
  3952. */
  3953. if (!mddev->raid_disks) {
  3954. if (!mddev->persistent)
  3955. return -EINVAL;
  3956. analyze_sbs(mddev);
  3957. }
  3958. if (mddev->level != LEVEL_NONE)
  3959. request_module("md-level-%d", mddev->level);
  3960. else if (mddev->clevel[0])
  3961. request_module("md-%s", mddev->clevel);
  3962. /*
  3963. * Drop all container device buffers, from now on
  3964. * the only valid external interface is through the md
  3965. * device.
  3966. */
  3967. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3968. if (test_bit(Faulty, &rdev->flags))
  3969. continue;
  3970. sync_blockdev(rdev->bdev);
  3971. invalidate_bdev(rdev->bdev);
  3972. /* perform some consistency tests on the device.
  3973. * We don't want the data to overlap the metadata,
  3974. * Internal Bitmap issues have been handled elsewhere.
  3975. */
  3976. if (rdev->meta_bdev) {
  3977. /* Nothing to check */;
  3978. } else if (rdev->data_offset < rdev->sb_start) {
  3979. if (mddev->dev_sectors &&
  3980. rdev->data_offset + mddev->dev_sectors
  3981. > rdev->sb_start) {
  3982. printk("md: %s: data overlaps metadata\n",
  3983. mdname(mddev));
  3984. return -EINVAL;
  3985. }
  3986. } else {
  3987. if (rdev->sb_start + rdev->sb_size/512
  3988. > rdev->data_offset) {
  3989. printk("md: %s: metadata overlaps data\n",
  3990. mdname(mddev));
  3991. return -EINVAL;
  3992. }
  3993. }
  3994. sysfs_notify_dirent_safe(rdev->sysfs_state);
  3995. }
  3996. if (mddev->bio_set == NULL)
  3997. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  3998. sizeof(mddev_t *));
  3999. spin_lock(&pers_lock);
  4000. pers = find_pers(mddev->level, mddev->clevel);
  4001. if (!pers || !try_module_get(pers->owner)) {
  4002. spin_unlock(&pers_lock);
  4003. if (mddev->level != LEVEL_NONE)
  4004. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4005. mddev->level);
  4006. else
  4007. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4008. mddev->clevel);
  4009. return -EINVAL;
  4010. }
  4011. mddev->pers = pers;
  4012. spin_unlock(&pers_lock);
  4013. if (mddev->level != pers->level) {
  4014. mddev->level = pers->level;
  4015. mddev->new_level = pers->level;
  4016. }
  4017. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4018. if (mddev->reshape_position != MaxSector &&
  4019. pers->start_reshape == NULL) {
  4020. /* This personality cannot handle reshaping... */
  4021. mddev->pers = NULL;
  4022. module_put(pers->owner);
  4023. return -EINVAL;
  4024. }
  4025. if (pers->sync_request) {
  4026. /* Warn if this is a potentially silly
  4027. * configuration.
  4028. */
  4029. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4030. mdk_rdev_t *rdev2;
  4031. int warned = 0;
  4032. list_for_each_entry(rdev, &mddev->disks, same_set)
  4033. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4034. if (rdev < rdev2 &&
  4035. rdev->bdev->bd_contains ==
  4036. rdev2->bdev->bd_contains) {
  4037. printk(KERN_WARNING
  4038. "%s: WARNING: %s appears to be"
  4039. " on the same physical disk as"
  4040. " %s.\n",
  4041. mdname(mddev),
  4042. bdevname(rdev->bdev,b),
  4043. bdevname(rdev2->bdev,b2));
  4044. warned = 1;
  4045. }
  4046. }
  4047. if (warned)
  4048. printk(KERN_WARNING
  4049. "True protection against single-disk"
  4050. " failure might be compromised.\n");
  4051. }
  4052. mddev->recovery = 0;
  4053. /* may be over-ridden by personality */
  4054. mddev->resync_max_sectors = mddev->dev_sectors;
  4055. mddev->ok_start_degraded = start_dirty_degraded;
  4056. if (start_readonly && mddev->ro == 0)
  4057. mddev->ro = 2; /* read-only, but switch on first write */
  4058. err = mddev->pers->run(mddev);
  4059. if (err)
  4060. printk(KERN_ERR "md: pers->run() failed ...\n");
  4061. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4062. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4063. " but 'external_size' not in effect?\n", __func__);
  4064. printk(KERN_ERR
  4065. "md: invalid array_size %llu > default size %llu\n",
  4066. (unsigned long long)mddev->array_sectors / 2,
  4067. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4068. err = -EINVAL;
  4069. mddev->pers->stop(mddev);
  4070. }
  4071. if (err == 0 && mddev->pers->sync_request) {
  4072. err = bitmap_create(mddev);
  4073. if (err) {
  4074. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4075. mdname(mddev), err);
  4076. mddev->pers->stop(mddev);
  4077. }
  4078. }
  4079. if (err) {
  4080. module_put(mddev->pers->owner);
  4081. mddev->pers = NULL;
  4082. bitmap_destroy(mddev);
  4083. return err;
  4084. }
  4085. if (mddev->pers->sync_request) {
  4086. if (mddev->kobj.sd &&
  4087. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4088. printk(KERN_WARNING
  4089. "md: cannot register extra attributes for %s\n",
  4090. mdname(mddev));
  4091. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4092. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4093. mddev->ro = 0;
  4094. atomic_set(&mddev->writes_pending,0);
  4095. atomic_set(&mddev->max_corr_read_errors,
  4096. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4097. mddev->safemode = 0;
  4098. mddev->safemode_timer.function = md_safemode_timeout;
  4099. mddev->safemode_timer.data = (unsigned long) mddev;
  4100. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4101. mddev->in_sync = 1;
  4102. smp_wmb();
  4103. mddev->ready = 1;
  4104. list_for_each_entry(rdev, &mddev->disks, same_set)
  4105. if (rdev->raid_disk >= 0)
  4106. if (sysfs_link_rdev(mddev, rdev))
  4107. /* failure here is OK */;
  4108. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4109. if (mddev->flags)
  4110. md_update_sb(mddev, 0);
  4111. md_new_event(mddev);
  4112. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4113. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4114. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4115. return 0;
  4116. }
  4117. EXPORT_SYMBOL_GPL(md_run);
  4118. static int do_md_run(mddev_t *mddev)
  4119. {
  4120. int err;
  4121. err = md_run(mddev);
  4122. if (err)
  4123. goto out;
  4124. err = bitmap_load(mddev);
  4125. if (err) {
  4126. bitmap_destroy(mddev);
  4127. goto out;
  4128. }
  4129. md_wakeup_thread(mddev->thread);
  4130. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4131. set_capacity(mddev->gendisk, mddev->array_sectors);
  4132. revalidate_disk(mddev->gendisk);
  4133. mddev->changed = 1;
  4134. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4135. out:
  4136. return err;
  4137. }
  4138. static int restart_array(mddev_t *mddev)
  4139. {
  4140. struct gendisk *disk = mddev->gendisk;
  4141. /* Complain if it has no devices */
  4142. if (list_empty(&mddev->disks))
  4143. return -ENXIO;
  4144. if (!mddev->pers)
  4145. return -EINVAL;
  4146. if (!mddev->ro)
  4147. return -EBUSY;
  4148. mddev->safemode = 0;
  4149. mddev->ro = 0;
  4150. set_disk_ro(disk, 0);
  4151. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4152. mdname(mddev));
  4153. /* Kick recovery or resync if necessary */
  4154. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4155. md_wakeup_thread(mddev->thread);
  4156. md_wakeup_thread(mddev->sync_thread);
  4157. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4158. return 0;
  4159. }
  4160. /* similar to deny_write_access, but accounts for our holding a reference
  4161. * to the file ourselves */
  4162. static int deny_bitmap_write_access(struct file * file)
  4163. {
  4164. struct inode *inode = file->f_mapping->host;
  4165. spin_lock(&inode->i_lock);
  4166. if (atomic_read(&inode->i_writecount) > 1) {
  4167. spin_unlock(&inode->i_lock);
  4168. return -ETXTBSY;
  4169. }
  4170. atomic_set(&inode->i_writecount, -1);
  4171. spin_unlock(&inode->i_lock);
  4172. return 0;
  4173. }
  4174. void restore_bitmap_write_access(struct file *file)
  4175. {
  4176. struct inode *inode = file->f_mapping->host;
  4177. spin_lock(&inode->i_lock);
  4178. atomic_set(&inode->i_writecount, 1);
  4179. spin_unlock(&inode->i_lock);
  4180. }
  4181. static void md_clean(mddev_t *mddev)
  4182. {
  4183. mddev->array_sectors = 0;
  4184. mddev->external_size = 0;
  4185. mddev->dev_sectors = 0;
  4186. mddev->raid_disks = 0;
  4187. mddev->recovery_cp = 0;
  4188. mddev->resync_min = 0;
  4189. mddev->resync_max = MaxSector;
  4190. mddev->reshape_position = MaxSector;
  4191. mddev->external = 0;
  4192. mddev->persistent = 0;
  4193. mddev->level = LEVEL_NONE;
  4194. mddev->clevel[0] = 0;
  4195. mddev->flags = 0;
  4196. mddev->ro = 0;
  4197. mddev->metadata_type[0] = 0;
  4198. mddev->chunk_sectors = 0;
  4199. mddev->ctime = mddev->utime = 0;
  4200. mddev->layout = 0;
  4201. mddev->max_disks = 0;
  4202. mddev->events = 0;
  4203. mddev->can_decrease_events = 0;
  4204. mddev->delta_disks = 0;
  4205. mddev->new_level = LEVEL_NONE;
  4206. mddev->new_layout = 0;
  4207. mddev->new_chunk_sectors = 0;
  4208. mddev->curr_resync = 0;
  4209. mddev->resync_mismatches = 0;
  4210. mddev->suspend_lo = mddev->suspend_hi = 0;
  4211. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4212. mddev->recovery = 0;
  4213. mddev->in_sync = 0;
  4214. mddev->changed = 0;
  4215. mddev->degraded = 0;
  4216. mddev->safemode = 0;
  4217. mddev->bitmap_info.offset = 0;
  4218. mddev->bitmap_info.default_offset = 0;
  4219. mddev->bitmap_info.chunksize = 0;
  4220. mddev->bitmap_info.daemon_sleep = 0;
  4221. mddev->bitmap_info.max_write_behind = 0;
  4222. }
  4223. static void __md_stop_writes(mddev_t *mddev)
  4224. {
  4225. if (mddev->sync_thread) {
  4226. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4227. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4228. reap_sync_thread(mddev);
  4229. }
  4230. del_timer_sync(&mddev->safemode_timer);
  4231. bitmap_flush(mddev);
  4232. md_super_wait(mddev);
  4233. if (!mddev->in_sync || mddev->flags) {
  4234. /* mark array as shutdown cleanly */
  4235. mddev->in_sync = 1;
  4236. md_update_sb(mddev, 1);
  4237. }
  4238. }
  4239. void md_stop_writes(mddev_t *mddev)
  4240. {
  4241. mddev_lock(mddev);
  4242. __md_stop_writes(mddev);
  4243. mddev_unlock(mddev);
  4244. }
  4245. EXPORT_SYMBOL_GPL(md_stop_writes);
  4246. void md_stop(mddev_t *mddev)
  4247. {
  4248. mddev->ready = 0;
  4249. mddev->pers->stop(mddev);
  4250. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4251. mddev->to_remove = &md_redundancy_group;
  4252. module_put(mddev->pers->owner);
  4253. mddev->pers = NULL;
  4254. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4255. }
  4256. EXPORT_SYMBOL_GPL(md_stop);
  4257. static int md_set_readonly(mddev_t *mddev, int is_open)
  4258. {
  4259. int err = 0;
  4260. mutex_lock(&mddev->open_mutex);
  4261. if (atomic_read(&mddev->openers) > is_open) {
  4262. printk("md: %s still in use.\n",mdname(mddev));
  4263. err = -EBUSY;
  4264. goto out;
  4265. }
  4266. if (mddev->pers) {
  4267. __md_stop_writes(mddev);
  4268. err = -ENXIO;
  4269. if (mddev->ro==1)
  4270. goto out;
  4271. mddev->ro = 1;
  4272. set_disk_ro(mddev->gendisk, 1);
  4273. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4274. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4275. err = 0;
  4276. }
  4277. out:
  4278. mutex_unlock(&mddev->open_mutex);
  4279. return err;
  4280. }
  4281. /* mode:
  4282. * 0 - completely stop and dis-assemble array
  4283. * 2 - stop but do not disassemble array
  4284. */
  4285. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  4286. {
  4287. struct gendisk *disk = mddev->gendisk;
  4288. mdk_rdev_t *rdev;
  4289. mutex_lock(&mddev->open_mutex);
  4290. if (atomic_read(&mddev->openers) > is_open ||
  4291. mddev->sysfs_active) {
  4292. printk("md: %s still in use.\n",mdname(mddev));
  4293. mutex_unlock(&mddev->open_mutex);
  4294. return -EBUSY;
  4295. }
  4296. if (mddev->pers) {
  4297. if (mddev->ro)
  4298. set_disk_ro(disk, 0);
  4299. __md_stop_writes(mddev);
  4300. md_stop(mddev);
  4301. mddev->queue->merge_bvec_fn = NULL;
  4302. mddev->queue->backing_dev_info.congested_fn = NULL;
  4303. /* tell userspace to handle 'inactive' */
  4304. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4305. list_for_each_entry(rdev, &mddev->disks, same_set)
  4306. if (rdev->raid_disk >= 0)
  4307. sysfs_unlink_rdev(mddev, rdev);
  4308. set_capacity(disk, 0);
  4309. mutex_unlock(&mddev->open_mutex);
  4310. mddev->changed = 1;
  4311. revalidate_disk(disk);
  4312. if (mddev->ro)
  4313. mddev->ro = 0;
  4314. } else
  4315. mutex_unlock(&mddev->open_mutex);
  4316. /*
  4317. * Free resources if final stop
  4318. */
  4319. if (mode == 0) {
  4320. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4321. bitmap_destroy(mddev);
  4322. if (mddev->bitmap_info.file) {
  4323. restore_bitmap_write_access(mddev->bitmap_info.file);
  4324. fput(mddev->bitmap_info.file);
  4325. mddev->bitmap_info.file = NULL;
  4326. }
  4327. mddev->bitmap_info.offset = 0;
  4328. export_array(mddev);
  4329. md_clean(mddev);
  4330. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4331. if (mddev->hold_active == UNTIL_STOP)
  4332. mddev->hold_active = 0;
  4333. }
  4334. blk_integrity_unregister(disk);
  4335. md_new_event(mddev);
  4336. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4337. return 0;
  4338. }
  4339. #ifndef MODULE
  4340. static void autorun_array(mddev_t *mddev)
  4341. {
  4342. mdk_rdev_t *rdev;
  4343. int err;
  4344. if (list_empty(&mddev->disks))
  4345. return;
  4346. printk(KERN_INFO "md: running: ");
  4347. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4348. char b[BDEVNAME_SIZE];
  4349. printk("<%s>", bdevname(rdev->bdev,b));
  4350. }
  4351. printk("\n");
  4352. err = do_md_run(mddev);
  4353. if (err) {
  4354. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4355. do_md_stop(mddev, 0, 0);
  4356. }
  4357. }
  4358. /*
  4359. * lets try to run arrays based on all disks that have arrived
  4360. * until now. (those are in pending_raid_disks)
  4361. *
  4362. * the method: pick the first pending disk, collect all disks with
  4363. * the same UUID, remove all from the pending list and put them into
  4364. * the 'same_array' list. Then order this list based on superblock
  4365. * update time (freshest comes first), kick out 'old' disks and
  4366. * compare superblocks. If everything's fine then run it.
  4367. *
  4368. * If "unit" is allocated, then bump its reference count
  4369. */
  4370. static void autorun_devices(int part)
  4371. {
  4372. mdk_rdev_t *rdev0, *rdev, *tmp;
  4373. mddev_t *mddev;
  4374. char b[BDEVNAME_SIZE];
  4375. printk(KERN_INFO "md: autorun ...\n");
  4376. while (!list_empty(&pending_raid_disks)) {
  4377. int unit;
  4378. dev_t dev;
  4379. LIST_HEAD(candidates);
  4380. rdev0 = list_entry(pending_raid_disks.next,
  4381. mdk_rdev_t, same_set);
  4382. printk(KERN_INFO "md: considering %s ...\n",
  4383. bdevname(rdev0->bdev,b));
  4384. INIT_LIST_HEAD(&candidates);
  4385. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4386. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4387. printk(KERN_INFO "md: adding %s ...\n",
  4388. bdevname(rdev->bdev,b));
  4389. list_move(&rdev->same_set, &candidates);
  4390. }
  4391. /*
  4392. * now we have a set of devices, with all of them having
  4393. * mostly sane superblocks. It's time to allocate the
  4394. * mddev.
  4395. */
  4396. if (part) {
  4397. dev = MKDEV(mdp_major,
  4398. rdev0->preferred_minor << MdpMinorShift);
  4399. unit = MINOR(dev) >> MdpMinorShift;
  4400. } else {
  4401. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4402. unit = MINOR(dev);
  4403. }
  4404. if (rdev0->preferred_minor != unit) {
  4405. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4406. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4407. break;
  4408. }
  4409. md_probe(dev, NULL, NULL);
  4410. mddev = mddev_find(dev);
  4411. if (!mddev || !mddev->gendisk) {
  4412. if (mddev)
  4413. mddev_put(mddev);
  4414. printk(KERN_ERR
  4415. "md: cannot allocate memory for md drive.\n");
  4416. break;
  4417. }
  4418. if (mddev_lock(mddev))
  4419. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4420. mdname(mddev));
  4421. else if (mddev->raid_disks || mddev->major_version
  4422. || !list_empty(&mddev->disks)) {
  4423. printk(KERN_WARNING
  4424. "md: %s already running, cannot run %s\n",
  4425. mdname(mddev), bdevname(rdev0->bdev,b));
  4426. mddev_unlock(mddev);
  4427. } else {
  4428. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4429. mddev->persistent = 1;
  4430. rdev_for_each_list(rdev, tmp, &candidates) {
  4431. list_del_init(&rdev->same_set);
  4432. if (bind_rdev_to_array(rdev, mddev))
  4433. export_rdev(rdev);
  4434. }
  4435. autorun_array(mddev);
  4436. mddev_unlock(mddev);
  4437. }
  4438. /* on success, candidates will be empty, on error
  4439. * it won't...
  4440. */
  4441. rdev_for_each_list(rdev, tmp, &candidates) {
  4442. list_del_init(&rdev->same_set);
  4443. export_rdev(rdev);
  4444. }
  4445. mddev_put(mddev);
  4446. }
  4447. printk(KERN_INFO "md: ... autorun DONE.\n");
  4448. }
  4449. #endif /* !MODULE */
  4450. static int get_version(void __user * arg)
  4451. {
  4452. mdu_version_t ver;
  4453. ver.major = MD_MAJOR_VERSION;
  4454. ver.minor = MD_MINOR_VERSION;
  4455. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4456. if (copy_to_user(arg, &ver, sizeof(ver)))
  4457. return -EFAULT;
  4458. return 0;
  4459. }
  4460. static int get_array_info(mddev_t * mddev, void __user * arg)
  4461. {
  4462. mdu_array_info_t info;
  4463. int nr,working,insync,failed,spare;
  4464. mdk_rdev_t *rdev;
  4465. nr=working=insync=failed=spare=0;
  4466. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4467. nr++;
  4468. if (test_bit(Faulty, &rdev->flags))
  4469. failed++;
  4470. else {
  4471. working++;
  4472. if (test_bit(In_sync, &rdev->flags))
  4473. insync++;
  4474. else
  4475. spare++;
  4476. }
  4477. }
  4478. info.major_version = mddev->major_version;
  4479. info.minor_version = mddev->minor_version;
  4480. info.patch_version = MD_PATCHLEVEL_VERSION;
  4481. info.ctime = mddev->ctime;
  4482. info.level = mddev->level;
  4483. info.size = mddev->dev_sectors / 2;
  4484. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4485. info.size = -1;
  4486. info.nr_disks = nr;
  4487. info.raid_disks = mddev->raid_disks;
  4488. info.md_minor = mddev->md_minor;
  4489. info.not_persistent= !mddev->persistent;
  4490. info.utime = mddev->utime;
  4491. info.state = 0;
  4492. if (mddev->in_sync)
  4493. info.state = (1<<MD_SB_CLEAN);
  4494. if (mddev->bitmap && mddev->bitmap_info.offset)
  4495. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4496. info.active_disks = insync;
  4497. info.working_disks = working;
  4498. info.failed_disks = failed;
  4499. info.spare_disks = spare;
  4500. info.layout = mddev->layout;
  4501. info.chunk_size = mddev->chunk_sectors << 9;
  4502. if (copy_to_user(arg, &info, sizeof(info)))
  4503. return -EFAULT;
  4504. return 0;
  4505. }
  4506. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4507. {
  4508. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4509. char *ptr, *buf = NULL;
  4510. int err = -ENOMEM;
  4511. if (md_allow_write(mddev))
  4512. file = kmalloc(sizeof(*file), GFP_NOIO);
  4513. else
  4514. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4515. if (!file)
  4516. goto out;
  4517. /* bitmap disabled, zero the first byte and copy out */
  4518. if (!mddev->bitmap || !mddev->bitmap->file) {
  4519. file->pathname[0] = '\0';
  4520. goto copy_out;
  4521. }
  4522. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4523. if (!buf)
  4524. goto out;
  4525. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4526. if (IS_ERR(ptr))
  4527. goto out;
  4528. strcpy(file->pathname, ptr);
  4529. copy_out:
  4530. err = 0;
  4531. if (copy_to_user(arg, file, sizeof(*file)))
  4532. err = -EFAULT;
  4533. out:
  4534. kfree(buf);
  4535. kfree(file);
  4536. return err;
  4537. }
  4538. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4539. {
  4540. mdu_disk_info_t info;
  4541. mdk_rdev_t *rdev;
  4542. if (copy_from_user(&info, arg, sizeof(info)))
  4543. return -EFAULT;
  4544. rdev = find_rdev_nr(mddev, info.number);
  4545. if (rdev) {
  4546. info.major = MAJOR(rdev->bdev->bd_dev);
  4547. info.minor = MINOR(rdev->bdev->bd_dev);
  4548. info.raid_disk = rdev->raid_disk;
  4549. info.state = 0;
  4550. if (test_bit(Faulty, &rdev->flags))
  4551. info.state |= (1<<MD_DISK_FAULTY);
  4552. else if (test_bit(In_sync, &rdev->flags)) {
  4553. info.state |= (1<<MD_DISK_ACTIVE);
  4554. info.state |= (1<<MD_DISK_SYNC);
  4555. }
  4556. if (test_bit(WriteMostly, &rdev->flags))
  4557. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4558. } else {
  4559. info.major = info.minor = 0;
  4560. info.raid_disk = -1;
  4561. info.state = (1<<MD_DISK_REMOVED);
  4562. }
  4563. if (copy_to_user(arg, &info, sizeof(info)))
  4564. return -EFAULT;
  4565. return 0;
  4566. }
  4567. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4568. {
  4569. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4570. mdk_rdev_t *rdev;
  4571. dev_t dev = MKDEV(info->major,info->minor);
  4572. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4573. return -EOVERFLOW;
  4574. if (!mddev->raid_disks) {
  4575. int err;
  4576. /* expecting a device which has a superblock */
  4577. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4578. if (IS_ERR(rdev)) {
  4579. printk(KERN_WARNING
  4580. "md: md_import_device returned %ld\n",
  4581. PTR_ERR(rdev));
  4582. return PTR_ERR(rdev);
  4583. }
  4584. if (!list_empty(&mddev->disks)) {
  4585. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4586. mdk_rdev_t, same_set);
  4587. err = super_types[mddev->major_version]
  4588. .load_super(rdev, rdev0, mddev->minor_version);
  4589. if (err < 0) {
  4590. printk(KERN_WARNING
  4591. "md: %s has different UUID to %s\n",
  4592. bdevname(rdev->bdev,b),
  4593. bdevname(rdev0->bdev,b2));
  4594. export_rdev(rdev);
  4595. return -EINVAL;
  4596. }
  4597. }
  4598. err = bind_rdev_to_array(rdev, mddev);
  4599. if (err)
  4600. export_rdev(rdev);
  4601. return err;
  4602. }
  4603. /*
  4604. * add_new_disk can be used once the array is assembled
  4605. * to add "hot spares". They must already have a superblock
  4606. * written
  4607. */
  4608. if (mddev->pers) {
  4609. int err;
  4610. if (!mddev->pers->hot_add_disk) {
  4611. printk(KERN_WARNING
  4612. "%s: personality does not support diskops!\n",
  4613. mdname(mddev));
  4614. return -EINVAL;
  4615. }
  4616. if (mddev->persistent)
  4617. rdev = md_import_device(dev, mddev->major_version,
  4618. mddev->minor_version);
  4619. else
  4620. rdev = md_import_device(dev, -1, -1);
  4621. if (IS_ERR(rdev)) {
  4622. printk(KERN_WARNING
  4623. "md: md_import_device returned %ld\n",
  4624. PTR_ERR(rdev));
  4625. return PTR_ERR(rdev);
  4626. }
  4627. /* set saved_raid_disk if appropriate */
  4628. if (!mddev->persistent) {
  4629. if (info->state & (1<<MD_DISK_SYNC) &&
  4630. info->raid_disk < mddev->raid_disks) {
  4631. rdev->raid_disk = info->raid_disk;
  4632. set_bit(In_sync, &rdev->flags);
  4633. } else
  4634. rdev->raid_disk = -1;
  4635. } else
  4636. super_types[mddev->major_version].
  4637. validate_super(mddev, rdev);
  4638. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4639. (!test_bit(In_sync, &rdev->flags) ||
  4640. rdev->raid_disk != info->raid_disk)) {
  4641. /* This was a hot-add request, but events doesn't
  4642. * match, so reject it.
  4643. */
  4644. export_rdev(rdev);
  4645. return -EINVAL;
  4646. }
  4647. if (test_bit(In_sync, &rdev->flags))
  4648. rdev->saved_raid_disk = rdev->raid_disk;
  4649. else
  4650. rdev->saved_raid_disk = -1;
  4651. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4652. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4653. set_bit(WriteMostly, &rdev->flags);
  4654. else
  4655. clear_bit(WriteMostly, &rdev->flags);
  4656. rdev->raid_disk = -1;
  4657. err = bind_rdev_to_array(rdev, mddev);
  4658. if (!err && !mddev->pers->hot_remove_disk) {
  4659. /* If there is hot_add_disk but no hot_remove_disk
  4660. * then added disks for geometry changes,
  4661. * and should be added immediately.
  4662. */
  4663. super_types[mddev->major_version].
  4664. validate_super(mddev, rdev);
  4665. err = mddev->pers->hot_add_disk(mddev, rdev);
  4666. if (err)
  4667. unbind_rdev_from_array(rdev);
  4668. }
  4669. if (err)
  4670. export_rdev(rdev);
  4671. else
  4672. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4673. md_update_sb(mddev, 1);
  4674. if (mddev->degraded)
  4675. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4676. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4677. if (!err)
  4678. md_new_event(mddev);
  4679. md_wakeup_thread(mddev->thread);
  4680. return err;
  4681. }
  4682. /* otherwise, add_new_disk is only allowed
  4683. * for major_version==0 superblocks
  4684. */
  4685. if (mddev->major_version != 0) {
  4686. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4687. mdname(mddev));
  4688. return -EINVAL;
  4689. }
  4690. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4691. int err;
  4692. rdev = md_import_device(dev, -1, 0);
  4693. if (IS_ERR(rdev)) {
  4694. printk(KERN_WARNING
  4695. "md: error, md_import_device() returned %ld\n",
  4696. PTR_ERR(rdev));
  4697. return PTR_ERR(rdev);
  4698. }
  4699. rdev->desc_nr = info->number;
  4700. if (info->raid_disk < mddev->raid_disks)
  4701. rdev->raid_disk = info->raid_disk;
  4702. else
  4703. rdev->raid_disk = -1;
  4704. if (rdev->raid_disk < mddev->raid_disks)
  4705. if (info->state & (1<<MD_DISK_SYNC))
  4706. set_bit(In_sync, &rdev->flags);
  4707. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4708. set_bit(WriteMostly, &rdev->flags);
  4709. if (!mddev->persistent) {
  4710. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4711. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4712. } else
  4713. rdev->sb_start = calc_dev_sboffset(rdev);
  4714. rdev->sectors = rdev->sb_start;
  4715. err = bind_rdev_to_array(rdev, mddev);
  4716. if (err) {
  4717. export_rdev(rdev);
  4718. return err;
  4719. }
  4720. }
  4721. return 0;
  4722. }
  4723. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4724. {
  4725. char b[BDEVNAME_SIZE];
  4726. mdk_rdev_t *rdev;
  4727. rdev = find_rdev(mddev, dev);
  4728. if (!rdev)
  4729. return -ENXIO;
  4730. if (rdev->raid_disk >= 0)
  4731. goto busy;
  4732. kick_rdev_from_array(rdev);
  4733. md_update_sb(mddev, 1);
  4734. md_new_event(mddev);
  4735. return 0;
  4736. busy:
  4737. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4738. bdevname(rdev->bdev,b), mdname(mddev));
  4739. return -EBUSY;
  4740. }
  4741. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4742. {
  4743. char b[BDEVNAME_SIZE];
  4744. int err;
  4745. mdk_rdev_t *rdev;
  4746. if (!mddev->pers)
  4747. return -ENODEV;
  4748. if (mddev->major_version != 0) {
  4749. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4750. " version-0 superblocks.\n",
  4751. mdname(mddev));
  4752. return -EINVAL;
  4753. }
  4754. if (!mddev->pers->hot_add_disk) {
  4755. printk(KERN_WARNING
  4756. "%s: personality does not support diskops!\n",
  4757. mdname(mddev));
  4758. return -EINVAL;
  4759. }
  4760. rdev = md_import_device(dev, -1, 0);
  4761. if (IS_ERR(rdev)) {
  4762. printk(KERN_WARNING
  4763. "md: error, md_import_device() returned %ld\n",
  4764. PTR_ERR(rdev));
  4765. return -EINVAL;
  4766. }
  4767. if (mddev->persistent)
  4768. rdev->sb_start = calc_dev_sboffset(rdev);
  4769. else
  4770. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4771. rdev->sectors = rdev->sb_start;
  4772. if (test_bit(Faulty, &rdev->flags)) {
  4773. printk(KERN_WARNING
  4774. "md: can not hot-add faulty %s disk to %s!\n",
  4775. bdevname(rdev->bdev,b), mdname(mddev));
  4776. err = -EINVAL;
  4777. goto abort_export;
  4778. }
  4779. clear_bit(In_sync, &rdev->flags);
  4780. rdev->desc_nr = -1;
  4781. rdev->saved_raid_disk = -1;
  4782. err = bind_rdev_to_array(rdev, mddev);
  4783. if (err)
  4784. goto abort_export;
  4785. /*
  4786. * The rest should better be atomic, we can have disk failures
  4787. * noticed in interrupt contexts ...
  4788. */
  4789. rdev->raid_disk = -1;
  4790. md_update_sb(mddev, 1);
  4791. /*
  4792. * Kick recovery, maybe this spare has to be added to the
  4793. * array immediately.
  4794. */
  4795. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4796. md_wakeup_thread(mddev->thread);
  4797. md_new_event(mddev);
  4798. return 0;
  4799. abort_export:
  4800. export_rdev(rdev);
  4801. return err;
  4802. }
  4803. static int set_bitmap_file(mddev_t *mddev, int fd)
  4804. {
  4805. int err;
  4806. if (mddev->pers) {
  4807. if (!mddev->pers->quiesce)
  4808. return -EBUSY;
  4809. if (mddev->recovery || mddev->sync_thread)
  4810. return -EBUSY;
  4811. /* we should be able to change the bitmap.. */
  4812. }
  4813. if (fd >= 0) {
  4814. if (mddev->bitmap)
  4815. return -EEXIST; /* cannot add when bitmap is present */
  4816. mddev->bitmap_info.file = fget(fd);
  4817. if (mddev->bitmap_info.file == NULL) {
  4818. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  4819. mdname(mddev));
  4820. return -EBADF;
  4821. }
  4822. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  4823. if (err) {
  4824. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  4825. mdname(mddev));
  4826. fput(mddev->bitmap_info.file);
  4827. mddev->bitmap_info.file = NULL;
  4828. return err;
  4829. }
  4830. mddev->bitmap_info.offset = 0; /* file overrides offset */
  4831. } else if (mddev->bitmap == NULL)
  4832. return -ENOENT; /* cannot remove what isn't there */
  4833. err = 0;
  4834. if (mddev->pers) {
  4835. mddev->pers->quiesce(mddev, 1);
  4836. if (fd >= 0) {
  4837. err = bitmap_create(mddev);
  4838. if (!err)
  4839. err = bitmap_load(mddev);
  4840. }
  4841. if (fd < 0 || err) {
  4842. bitmap_destroy(mddev);
  4843. fd = -1; /* make sure to put the file */
  4844. }
  4845. mddev->pers->quiesce(mddev, 0);
  4846. }
  4847. if (fd < 0) {
  4848. if (mddev->bitmap_info.file) {
  4849. restore_bitmap_write_access(mddev->bitmap_info.file);
  4850. fput(mddev->bitmap_info.file);
  4851. }
  4852. mddev->bitmap_info.file = NULL;
  4853. }
  4854. return err;
  4855. }
  4856. /*
  4857. * set_array_info is used two different ways
  4858. * The original usage is when creating a new array.
  4859. * In this usage, raid_disks is > 0 and it together with
  4860. * level, size, not_persistent,layout,chunksize determine the
  4861. * shape of the array.
  4862. * This will always create an array with a type-0.90.0 superblock.
  4863. * The newer usage is when assembling an array.
  4864. * In this case raid_disks will be 0, and the major_version field is
  4865. * use to determine which style super-blocks are to be found on the devices.
  4866. * The minor and patch _version numbers are also kept incase the
  4867. * super_block handler wishes to interpret them.
  4868. */
  4869. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  4870. {
  4871. if (info->raid_disks == 0) {
  4872. /* just setting version number for superblock loading */
  4873. if (info->major_version < 0 ||
  4874. info->major_version >= ARRAY_SIZE(super_types) ||
  4875. super_types[info->major_version].name == NULL) {
  4876. /* maybe try to auto-load a module? */
  4877. printk(KERN_INFO
  4878. "md: superblock version %d not known\n",
  4879. info->major_version);
  4880. return -EINVAL;
  4881. }
  4882. mddev->major_version = info->major_version;
  4883. mddev->minor_version = info->minor_version;
  4884. mddev->patch_version = info->patch_version;
  4885. mddev->persistent = !info->not_persistent;
  4886. /* ensure mddev_put doesn't delete this now that there
  4887. * is some minimal configuration.
  4888. */
  4889. mddev->ctime = get_seconds();
  4890. return 0;
  4891. }
  4892. mddev->major_version = MD_MAJOR_VERSION;
  4893. mddev->minor_version = MD_MINOR_VERSION;
  4894. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  4895. mddev->ctime = get_seconds();
  4896. mddev->level = info->level;
  4897. mddev->clevel[0] = 0;
  4898. mddev->dev_sectors = 2 * (sector_t)info->size;
  4899. mddev->raid_disks = info->raid_disks;
  4900. /* don't set md_minor, it is determined by which /dev/md* was
  4901. * openned
  4902. */
  4903. if (info->state & (1<<MD_SB_CLEAN))
  4904. mddev->recovery_cp = MaxSector;
  4905. else
  4906. mddev->recovery_cp = 0;
  4907. mddev->persistent = ! info->not_persistent;
  4908. mddev->external = 0;
  4909. mddev->layout = info->layout;
  4910. mddev->chunk_sectors = info->chunk_size >> 9;
  4911. mddev->max_disks = MD_SB_DISKS;
  4912. if (mddev->persistent)
  4913. mddev->flags = 0;
  4914. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4915. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  4916. mddev->bitmap_info.offset = 0;
  4917. mddev->reshape_position = MaxSector;
  4918. /*
  4919. * Generate a 128 bit UUID
  4920. */
  4921. get_random_bytes(mddev->uuid, 16);
  4922. mddev->new_level = mddev->level;
  4923. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4924. mddev->new_layout = mddev->layout;
  4925. mddev->delta_disks = 0;
  4926. return 0;
  4927. }
  4928. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  4929. {
  4930. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  4931. if (mddev->external_size)
  4932. return;
  4933. mddev->array_sectors = array_sectors;
  4934. }
  4935. EXPORT_SYMBOL(md_set_array_sectors);
  4936. static int update_size(mddev_t *mddev, sector_t num_sectors)
  4937. {
  4938. mdk_rdev_t *rdev;
  4939. int rv;
  4940. int fit = (num_sectors == 0);
  4941. if (mddev->pers->resize == NULL)
  4942. return -EINVAL;
  4943. /* The "num_sectors" is the number of sectors of each device that
  4944. * is used. This can only make sense for arrays with redundancy.
  4945. * linear and raid0 always use whatever space is available. We can only
  4946. * consider changing this number if no resync or reconstruction is
  4947. * happening, and if the new size is acceptable. It must fit before the
  4948. * sb_start or, if that is <data_offset, it must fit before the size
  4949. * of each device. If num_sectors is zero, we find the largest size
  4950. * that fits.
  4951. */
  4952. if (mddev->sync_thread)
  4953. return -EBUSY;
  4954. if (mddev->bitmap)
  4955. /* Sorry, cannot grow a bitmap yet, just remove it,
  4956. * grow, and re-add.
  4957. */
  4958. return -EBUSY;
  4959. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4960. sector_t avail = rdev->sectors;
  4961. if (fit && (num_sectors == 0 || num_sectors > avail))
  4962. num_sectors = avail;
  4963. if (avail < num_sectors)
  4964. return -ENOSPC;
  4965. }
  4966. rv = mddev->pers->resize(mddev, num_sectors);
  4967. if (!rv)
  4968. revalidate_disk(mddev->gendisk);
  4969. return rv;
  4970. }
  4971. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  4972. {
  4973. int rv;
  4974. /* change the number of raid disks */
  4975. if (mddev->pers->check_reshape == NULL)
  4976. return -EINVAL;
  4977. if (raid_disks <= 0 ||
  4978. (mddev->max_disks && raid_disks >= mddev->max_disks))
  4979. return -EINVAL;
  4980. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  4981. return -EBUSY;
  4982. mddev->delta_disks = raid_disks - mddev->raid_disks;
  4983. rv = mddev->pers->check_reshape(mddev);
  4984. if (rv < 0)
  4985. mddev->delta_disks = 0;
  4986. return rv;
  4987. }
  4988. /*
  4989. * update_array_info is used to change the configuration of an
  4990. * on-line array.
  4991. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  4992. * fields in the info are checked against the array.
  4993. * Any differences that cannot be handled will cause an error.
  4994. * Normally, only one change can be managed at a time.
  4995. */
  4996. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  4997. {
  4998. int rv = 0;
  4999. int cnt = 0;
  5000. int state = 0;
  5001. /* calculate expected state,ignoring low bits */
  5002. if (mddev->bitmap && mddev->bitmap_info.offset)
  5003. state |= (1 << MD_SB_BITMAP_PRESENT);
  5004. if (mddev->major_version != info->major_version ||
  5005. mddev->minor_version != info->minor_version ||
  5006. /* mddev->patch_version != info->patch_version || */
  5007. mddev->ctime != info->ctime ||
  5008. mddev->level != info->level ||
  5009. /* mddev->layout != info->layout || */
  5010. !mddev->persistent != info->not_persistent||
  5011. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5012. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5013. ((state^info->state) & 0xfffffe00)
  5014. )
  5015. return -EINVAL;
  5016. /* Check there is only one change */
  5017. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5018. cnt++;
  5019. if (mddev->raid_disks != info->raid_disks)
  5020. cnt++;
  5021. if (mddev->layout != info->layout)
  5022. cnt++;
  5023. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5024. cnt++;
  5025. if (cnt == 0)
  5026. return 0;
  5027. if (cnt > 1)
  5028. return -EINVAL;
  5029. if (mddev->layout != info->layout) {
  5030. /* Change layout
  5031. * we don't need to do anything at the md level, the
  5032. * personality will take care of it all.
  5033. */
  5034. if (mddev->pers->check_reshape == NULL)
  5035. return -EINVAL;
  5036. else {
  5037. mddev->new_layout = info->layout;
  5038. rv = mddev->pers->check_reshape(mddev);
  5039. if (rv)
  5040. mddev->new_layout = mddev->layout;
  5041. return rv;
  5042. }
  5043. }
  5044. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5045. rv = update_size(mddev, (sector_t)info->size * 2);
  5046. if (mddev->raid_disks != info->raid_disks)
  5047. rv = update_raid_disks(mddev, info->raid_disks);
  5048. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5049. if (mddev->pers->quiesce == NULL)
  5050. return -EINVAL;
  5051. if (mddev->recovery || mddev->sync_thread)
  5052. return -EBUSY;
  5053. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5054. /* add the bitmap */
  5055. if (mddev->bitmap)
  5056. return -EEXIST;
  5057. if (mddev->bitmap_info.default_offset == 0)
  5058. return -EINVAL;
  5059. mddev->bitmap_info.offset =
  5060. mddev->bitmap_info.default_offset;
  5061. mddev->pers->quiesce(mddev, 1);
  5062. rv = bitmap_create(mddev);
  5063. if (!rv)
  5064. rv = bitmap_load(mddev);
  5065. if (rv)
  5066. bitmap_destroy(mddev);
  5067. mddev->pers->quiesce(mddev, 0);
  5068. } else {
  5069. /* remove the bitmap */
  5070. if (!mddev->bitmap)
  5071. return -ENOENT;
  5072. if (mddev->bitmap->file)
  5073. return -EINVAL;
  5074. mddev->pers->quiesce(mddev, 1);
  5075. bitmap_destroy(mddev);
  5076. mddev->pers->quiesce(mddev, 0);
  5077. mddev->bitmap_info.offset = 0;
  5078. }
  5079. }
  5080. md_update_sb(mddev, 1);
  5081. return rv;
  5082. }
  5083. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  5084. {
  5085. mdk_rdev_t *rdev;
  5086. if (mddev->pers == NULL)
  5087. return -ENODEV;
  5088. rdev = find_rdev(mddev, dev);
  5089. if (!rdev)
  5090. return -ENODEV;
  5091. md_error(mddev, rdev);
  5092. return 0;
  5093. }
  5094. /*
  5095. * We have a problem here : there is no easy way to give a CHS
  5096. * virtual geometry. We currently pretend that we have a 2 heads
  5097. * 4 sectors (with a BIG number of cylinders...). This drives
  5098. * dosfs just mad... ;-)
  5099. */
  5100. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5101. {
  5102. mddev_t *mddev = bdev->bd_disk->private_data;
  5103. geo->heads = 2;
  5104. geo->sectors = 4;
  5105. geo->cylinders = mddev->array_sectors / 8;
  5106. return 0;
  5107. }
  5108. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5109. unsigned int cmd, unsigned long arg)
  5110. {
  5111. int err = 0;
  5112. void __user *argp = (void __user *)arg;
  5113. mddev_t *mddev = NULL;
  5114. int ro;
  5115. if (!capable(CAP_SYS_ADMIN))
  5116. return -EACCES;
  5117. /*
  5118. * Commands dealing with the RAID driver but not any
  5119. * particular array:
  5120. */
  5121. switch (cmd)
  5122. {
  5123. case RAID_VERSION:
  5124. err = get_version(argp);
  5125. goto done;
  5126. case PRINT_RAID_DEBUG:
  5127. err = 0;
  5128. md_print_devices();
  5129. goto done;
  5130. #ifndef MODULE
  5131. case RAID_AUTORUN:
  5132. err = 0;
  5133. autostart_arrays(arg);
  5134. goto done;
  5135. #endif
  5136. default:;
  5137. }
  5138. /*
  5139. * Commands creating/starting a new array:
  5140. */
  5141. mddev = bdev->bd_disk->private_data;
  5142. if (!mddev) {
  5143. BUG();
  5144. goto abort;
  5145. }
  5146. err = mddev_lock(mddev);
  5147. if (err) {
  5148. printk(KERN_INFO
  5149. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5150. err, cmd);
  5151. goto abort;
  5152. }
  5153. switch (cmd)
  5154. {
  5155. case SET_ARRAY_INFO:
  5156. {
  5157. mdu_array_info_t info;
  5158. if (!arg)
  5159. memset(&info, 0, sizeof(info));
  5160. else if (copy_from_user(&info, argp, sizeof(info))) {
  5161. err = -EFAULT;
  5162. goto abort_unlock;
  5163. }
  5164. if (mddev->pers) {
  5165. err = update_array_info(mddev, &info);
  5166. if (err) {
  5167. printk(KERN_WARNING "md: couldn't update"
  5168. " array info. %d\n", err);
  5169. goto abort_unlock;
  5170. }
  5171. goto done_unlock;
  5172. }
  5173. if (!list_empty(&mddev->disks)) {
  5174. printk(KERN_WARNING
  5175. "md: array %s already has disks!\n",
  5176. mdname(mddev));
  5177. err = -EBUSY;
  5178. goto abort_unlock;
  5179. }
  5180. if (mddev->raid_disks) {
  5181. printk(KERN_WARNING
  5182. "md: array %s already initialised!\n",
  5183. mdname(mddev));
  5184. err = -EBUSY;
  5185. goto abort_unlock;
  5186. }
  5187. err = set_array_info(mddev, &info);
  5188. if (err) {
  5189. printk(KERN_WARNING "md: couldn't set"
  5190. " array info. %d\n", err);
  5191. goto abort_unlock;
  5192. }
  5193. }
  5194. goto done_unlock;
  5195. default:;
  5196. }
  5197. /*
  5198. * Commands querying/configuring an existing array:
  5199. */
  5200. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5201. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5202. if ((!mddev->raid_disks && !mddev->external)
  5203. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5204. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5205. && cmd != GET_BITMAP_FILE) {
  5206. err = -ENODEV;
  5207. goto abort_unlock;
  5208. }
  5209. /*
  5210. * Commands even a read-only array can execute:
  5211. */
  5212. switch (cmd)
  5213. {
  5214. case GET_ARRAY_INFO:
  5215. err = get_array_info(mddev, argp);
  5216. goto done_unlock;
  5217. case GET_BITMAP_FILE:
  5218. err = get_bitmap_file(mddev, argp);
  5219. goto done_unlock;
  5220. case GET_DISK_INFO:
  5221. err = get_disk_info(mddev, argp);
  5222. goto done_unlock;
  5223. case RESTART_ARRAY_RW:
  5224. err = restart_array(mddev);
  5225. goto done_unlock;
  5226. case STOP_ARRAY:
  5227. err = do_md_stop(mddev, 0, 1);
  5228. goto done_unlock;
  5229. case STOP_ARRAY_RO:
  5230. err = md_set_readonly(mddev, 1);
  5231. goto done_unlock;
  5232. case BLKROSET:
  5233. if (get_user(ro, (int __user *)(arg))) {
  5234. err = -EFAULT;
  5235. goto done_unlock;
  5236. }
  5237. err = -EINVAL;
  5238. /* if the bdev is going readonly the value of mddev->ro
  5239. * does not matter, no writes are coming
  5240. */
  5241. if (ro)
  5242. goto done_unlock;
  5243. /* are we are already prepared for writes? */
  5244. if (mddev->ro != 1)
  5245. goto done_unlock;
  5246. /* transitioning to readauto need only happen for
  5247. * arrays that call md_write_start
  5248. */
  5249. if (mddev->pers) {
  5250. err = restart_array(mddev);
  5251. if (err == 0) {
  5252. mddev->ro = 2;
  5253. set_disk_ro(mddev->gendisk, 0);
  5254. }
  5255. }
  5256. goto done_unlock;
  5257. }
  5258. /*
  5259. * The remaining ioctls are changing the state of the
  5260. * superblock, so we do not allow them on read-only arrays.
  5261. * However non-MD ioctls (e.g. get-size) will still come through
  5262. * here and hit the 'default' below, so only disallow
  5263. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5264. */
  5265. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5266. if (mddev->ro == 2) {
  5267. mddev->ro = 0;
  5268. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5269. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5270. md_wakeup_thread(mddev->thread);
  5271. } else {
  5272. err = -EROFS;
  5273. goto abort_unlock;
  5274. }
  5275. }
  5276. switch (cmd)
  5277. {
  5278. case ADD_NEW_DISK:
  5279. {
  5280. mdu_disk_info_t info;
  5281. if (copy_from_user(&info, argp, sizeof(info)))
  5282. err = -EFAULT;
  5283. else
  5284. err = add_new_disk(mddev, &info);
  5285. goto done_unlock;
  5286. }
  5287. case HOT_REMOVE_DISK:
  5288. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5289. goto done_unlock;
  5290. case HOT_ADD_DISK:
  5291. err = hot_add_disk(mddev, new_decode_dev(arg));
  5292. goto done_unlock;
  5293. case SET_DISK_FAULTY:
  5294. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5295. goto done_unlock;
  5296. case RUN_ARRAY:
  5297. err = do_md_run(mddev);
  5298. goto done_unlock;
  5299. case SET_BITMAP_FILE:
  5300. err = set_bitmap_file(mddev, (int)arg);
  5301. goto done_unlock;
  5302. default:
  5303. err = -EINVAL;
  5304. goto abort_unlock;
  5305. }
  5306. done_unlock:
  5307. abort_unlock:
  5308. if (mddev->hold_active == UNTIL_IOCTL &&
  5309. err != -EINVAL)
  5310. mddev->hold_active = 0;
  5311. mddev_unlock(mddev);
  5312. return err;
  5313. done:
  5314. if (err)
  5315. MD_BUG();
  5316. abort:
  5317. return err;
  5318. }
  5319. #ifdef CONFIG_COMPAT
  5320. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5321. unsigned int cmd, unsigned long arg)
  5322. {
  5323. switch (cmd) {
  5324. case HOT_REMOVE_DISK:
  5325. case HOT_ADD_DISK:
  5326. case SET_DISK_FAULTY:
  5327. case SET_BITMAP_FILE:
  5328. /* These take in integer arg, do not convert */
  5329. break;
  5330. default:
  5331. arg = (unsigned long)compat_ptr(arg);
  5332. break;
  5333. }
  5334. return md_ioctl(bdev, mode, cmd, arg);
  5335. }
  5336. #endif /* CONFIG_COMPAT */
  5337. static int md_open(struct block_device *bdev, fmode_t mode)
  5338. {
  5339. /*
  5340. * Succeed if we can lock the mddev, which confirms that
  5341. * it isn't being stopped right now.
  5342. */
  5343. mddev_t *mddev = mddev_find(bdev->bd_dev);
  5344. int err;
  5345. if (mddev->gendisk != bdev->bd_disk) {
  5346. /* we are racing with mddev_put which is discarding this
  5347. * bd_disk.
  5348. */
  5349. mddev_put(mddev);
  5350. /* Wait until bdev->bd_disk is definitely gone */
  5351. flush_workqueue(md_misc_wq);
  5352. /* Then retry the open from the top */
  5353. return -ERESTARTSYS;
  5354. }
  5355. BUG_ON(mddev != bdev->bd_disk->private_data);
  5356. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5357. goto out;
  5358. err = 0;
  5359. atomic_inc(&mddev->openers);
  5360. mutex_unlock(&mddev->open_mutex);
  5361. check_disk_change(bdev);
  5362. out:
  5363. return err;
  5364. }
  5365. static int md_release(struct gendisk *disk, fmode_t mode)
  5366. {
  5367. mddev_t *mddev = disk->private_data;
  5368. BUG_ON(!mddev);
  5369. atomic_dec(&mddev->openers);
  5370. mddev_put(mddev);
  5371. return 0;
  5372. }
  5373. static int md_media_changed(struct gendisk *disk)
  5374. {
  5375. mddev_t *mddev = disk->private_data;
  5376. return mddev->changed;
  5377. }
  5378. static int md_revalidate(struct gendisk *disk)
  5379. {
  5380. mddev_t *mddev = disk->private_data;
  5381. mddev->changed = 0;
  5382. return 0;
  5383. }
  5384. static const struct block_device_operations md_fops =
  5385. {
  5386. .owner = THIS_MODULE,
  5387. .open = md_open,
  5388. .release = md_release,
  5389. .ioctl = md_ioctl,
  5390. #ifdef CONFIG_COMPAT
  5391. .compat_ioctl = md_compat_ioctl,
  5392. #endif
  5393. .getgeo = md_getgeo,
  5394. .media_changed = md_media_changed,
  5395. .revalidate_disk= md_revalidate,
  5396. };
  5397. static int md_thread(void * arg)
  5398. {
  5399. mdk_thread_t *thread = arg;
  5400. /*
  5401. * md_thread is a 'system-thread', it's priority should be very
  5402. * high. We avoid resource deadlocks individually in each
  5403. * raid personality. (RAID5 does preallocation) We also use RR and
  5404. * the very same RT priority as kswapd, thus we will never get
  5405. * into a priority inversion deadlock.
  5406. *
  5407. * we definitely have to have equal or higher priority than
  5408. * bdflush, otherwise bdflush will deadlock if there are too
  5409. * many dirty RAID5 blocks.
  5410. */
  5411. allow_signal(SIGKILL);
  5412. while (!kthread_should_stop()) {
  5413. /* We need to wait INTERRUPTIBLE so that
  5414. * we don't add to the load-average.
  5415. * That means we need to be sure no signals are
  5416. * pending
  5417. */
  5418. if (signal_pending(current))
  5419. flush_signals(current);
  5420. wait_event_interruptible_timeout
  5421. (thread->wqueue,
  5422. test_bit(THREAD_WAKEUP, &thread->flags)
  5423. || kthread_should_stop(),
  5424. thread->timeout);
  5425. clear_bit(THREAD_WAKEUP, &thread->flags);
  5426. if (!kthread_should_stop())
  5427. thread->run(thread->mddev);
  5428. }
  5429. return 0;
  5430. }
  5431. void md_wakeup_thread(mdk_thread_t *thread)
  5432. {
  5433. if (thread) {
  5434. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  5435. set_bit(THREAD_WAKEUP, &thread->flags);
  5436. wake_up(&thread->wqueue);
  5437. }
  5438. }
  5439. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  5440. const char *name)
  5441. {
  5442. mdk_thread_t *thread;
  5443. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  5444. if (!thread)
  5445. return NULL;
  5446. init_waitqueue_head(&thread->wqueue);
  5447. thread->run = run;
  5448. thread->mddev = mddev;
  5449. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5450. thread->tsk = kthread_run(md_thread, thread,
  5451. "%s_%s",
  5452. mdname(thread->mddev),
  5453. name ?: mddev->pers->name);
  5454. if (IS_ERR(thread->tsk)) {
  5455. kfree(thread);
  5456. return NULL;
  5457. }
  5458. return thread;
  5459. }
  5460. void md_unregister_thread(mdk_thread_t *thread)
  5461. {
  5462. if (!thread)
  5463. return;
  5464. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5465. kthread_stop(thread->tsk);
  5466. kfree(thread);
  5467. }
  5468. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  5469. {
  5470. if (!mddev) {
  5471. MD_BUG();
  5472. return;
  5473. }
  5474. if (!rdev || test_bit(Faulty, &rdev->flags))
  5475. return;
  5476. if (mddev->external)
  5477. set_bit(Blocked, &rdev->flags);
  5478. /*
  5479. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  5480. mdname(mddev),
  5481. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  5482. __builtin_return_address(0),__builtin_return_address(1),
  5483. __builtin_return_address(2),__builtin_return_address(3));
  5484. */
  5485. if (!mddev->pers)
  5486. return;
  5487. if (!mddev->pers->error_handler)
  5488. return;
  5489. mddev->pers->error_handler(mddev,rdev);
  5490. if (mddev->degraded)
  5491. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5492. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5493. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5494. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5495. md_wakeup_thread(mddev->thread);
  5496. if (mddev->event_work.func)
  5497. queue_work(md_misc_wq, &mddev->event_work);
  5498. md_new_event_inintr(mddev);
  5499. }
  5500. /* seq_file implementation /proc/mdstat */
  5501. static void status_unused(struct seq_file *seq)
  5502. {
  5503. int i = 0;
  5504. mdk_rdev_t *rdev;
  5505. seq_printf(seq, "unused devices: ");
  5506. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5507. char b[BDEVNAME_SIZE];
  5508. i++;
  5509. seq_printf(seq, "%s ",
  5510. bdevname(rdev->bdev,b));
  5511. }
  5512. if (!i)
  5513. seq_printf(seq, "<none>");
  5514. seq_printf(seq, "\n");
  5515. }
  5516. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5517. {
  5518. sector_t max_sectors, resync, res;
  5519. unsigned long dt, db;
  5520. sector_t rt;
  5521. int scale;
  5522. unsigned int per_milli;
  5523. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5524. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5525. max_sectors = mddev->resync_max_sectors;
  5526. else
  5527. max_sectors = mddev->dev_sectors;
  5528. /*
  5529. * Should not happen.
  5530. */
  5531. if (!max_sectors) {
  5532. MD_BUG();
  5533. return;
  5534. }
  5535. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5536. * in a sector_t, and (max_sectors>>scale) will fit in a
  5537. * u32, as those are the requirements for sector_div.
  5538. * Thus 'scale' must be at least 10
  5539. */
  5540. scale = 10;
  5541. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5542. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5543. scale++;
  5544. }
  5545. res = (resync>>scale)*1000;
  5546. sector_div(res, (u32)((max_sectors>>scale)+1));
  5547. per_milli = res;
  5548. {
  5549. int i, x = per_milli/50, y = 20-x;
  5550. seq_printf(seq, "[");
  5551. for (i = 0; i < x; i++)
  5552. seq_printf(seq, "=");
  5553. seq_printf(seq, ">");
  5554. for (i = 0; i < y; i++)
  5555. seq_printf(seq, ".");
  5556. seq_printf(seq, "] ");
  5557. }
  5558. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5559. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5560. "reshape" :
  5561. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5562. "check" :
  5563. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5564. "resync" : "recovery"))),
  5565. per_milli/10, per_milli % 10,
  5566. (unsigned long long) resync/2,
  5567. (unsigned long long) max_sectors/2);
  5568. /*
  5569. * dt: time from mark until now
  5570. * db: blocks written from mark until now
  5571. * rt: remaining time
  5572. *
  5573. * rt is a sector_t, so could be 32bit or 64bit.
  5574. * So we divide before multiply in case it is 32bit and close
  5575. * to the limit.
  5576. * We scale the divisor (db) by 32 to avoid losing precision
  5577. * near the end of resync when the number of remaining sectors
  5578. * is close to 'db'.
  5579. * We then divide rt by 32 after multiplying by db to compensate.
  5580. * The '+1' avoids division by zero if db is very small.
  5581. */
  5582. dt = ((jiffies - mddev->resync_mark) / HZ);
  5583. if (!dt) dt++;
  5584. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5585. - mddev->resync_mark_cnt;
  5586. rt = max_sectors - resync; /* number of remaining sectors */
  5587. sector_div(rt, db/32+1);
  5588. rt *= dt;
  5589. rt >>= 5;
  5590. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5591. ((unsigned long)rt % 60)/6);
  5592. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5593. }
  5594. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5595. {
  5596. struct list_head *tmp;
  5597. loff_t l = *pos;
  5598. mddev_t *mddev;
  5599. if (l >= 0x10000)
  5600. return NULL;
  5601. if (!l--)
  5602. /* header */
  5603. return (void*)1;
  5604. spin_lock(&all_mddevs_lock);
  5605. list_for_each(tmp,&all_mddevs)
  5606. if (!l--) {
  5607. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5608. mddev_get(mddev);
  5609. spin_unlock(&all_mddevs_lock);
  5610. return mddev;
  5611. }
  5612. spin_unlock(&all_mddevs_lock);
  5613. if (!l--)
  5614. return (void*)2;/* tail */
  5615. return NULL;
  5616. }
  5617. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5618. {
  5619. struct list_head *tmp;
  5620. mddev_t *next_mddev, *mddev = v;
  5621. ++*pos;
  5622. if (v == (void*)2)
  5623. return NULL;
  5624. spin_lock(&all_mddevs_lock);
  5625. if (v == (void*)1)
  5626. tmp = all_mddevs.next;
  5627. else
  5628. tmp = mddev->all_mddevs.next;
  5629. if (tmp != &all_mddevs)
  5630. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5631. else {
  5632. next_mddev = (void*)2;
  5633. *pos = 0x10000;
  5634. }
  5635. spin_unlock(&all_mddevs_lock);
  5636. if (v != (void*)1)
  5637. mddev_put(mddev);
  5638. return next_mddev;
  5639. }
  5640. static void md_seq_stop(struct seq_file *seq, void *v)
  5641. {
  5642. mddev_t *mddev = v;
  5643. if (mddev && v != (void*)1 && v != (void*)2)
  5644. mddev_put(mddev);
  5645. }
  5646. struct mdstat_info {
  5647. int event;
  5648. };
  5649. static int md_seq_show(struct seq_file *seq, void *v)
  5650. {
  5651. mddev_t *mddev = v;
  5652. sector_t sectors;
  5653. mdk_rdev_t *rdev;
  5654. struct mdstat_info *mi = seq->private;
  5655. struct bitmap *bitmap;
  5656. if (v == (void*)1) {
  5657. struct mdk_personality *pers;
  5658. seq_printf(seq, "Personalities : ");
  5659. spin_lock(&pers_lock);
  5660. list_for_each_entry(pers, &pers_list, list)
  5661. seq_printf(seq, "[%s] ", pers->name);
  5662. spin_unlock(&pers_lock);
  5663. seq_printf(seq, "\n");
  5664. mi->event = atomic_read(&md_event_count);
  5665. return 0;
  5666. }
  5667. if (v == (void*)2) {
  5668. status_unused(seq);
  5669. return 0;
  5670. }
  5671. if (mddev_lock(mddev) < 0)
  5672. return -EINTR;
  5673. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5674. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5675. mddev->pers ? "" : "in");
  5676. if (mddev->pers) {
  5677. if (mddev->ro==1)
  5678. seq_printf(seq, " (read-only)");
  5679. if (mddev->ro==2)
  5680. seq_printf(seq, " (auto-read-only)");
  5681. seq_printf(seq, " %s", mddev->pers->name);
  5682. }
  5683. sectors = 0;
  5684. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5685. char b[BDEVNAME_SIZE];
  5686. seq_printf(seq, " %s[%d]",
  5687. bdevname(rdev->bdev,b), rdev->desc_nr);
  5688. if (test_bit(WriteMostly, &rdev->flags))
  5689. seq_printf(seq, "(W)");
  5690. if (test_bit(Faulty, &rdev->flags)) {
  5691. seq_printf(seq, "(F)");
  5692. continue;
  5693. } else if (rdev->raid_disk < 0)
  5694. seq_printf(seq, "(S)"); /* spare */
  5695. sectors += rdev->sectors;
  5696. }
  5697. if (!list_empty(&mddev->disks)) {
  5698. if (mddev->pers)
  5699. seq_printf(seq, "\n %llu blocks",
  5700. (unsigned long long)
  5701. mddev->array_sectors / 2);
  5702. else
  5703. seq_printf(seq, "\n %llu blocks",
  5704. (unsigned long long)sectors / 2);
  5705. }
  5706. if (mddev->persistent) {
  5707. if (mddev->major_version != 0 ||
  5708. mddev->minor_version != 90) {
  5709. seq_printf(seq," super %d.%d",
  5710. mddev->major_version,
  5711. mddev->minor_version);
  5712. }
  5713. } else if (mddev->external)
  5714. seq_printf(seq, " super external:%s",
  5715. mddev->metadata_type);
  5716. else
  5717. seq_printf(seq, " super non-persistent");
  5718. if (mddev->pers) {
  5719. mddev->pers->status(seq, mddev);
  5720. seq_printf(seq, "\n ");
  5721. if (mddev->pers->sync_request) {
  5722. if (mddev->curr_resync > 2) {
  5723. status_resync(seq, mddev);
  5724. seq_printf(seq, "\n ");
  5725. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5726. seq_printf(seq, "\tresync=DELAYED\n ");
  5727. else if (mddev->recovery_cp < MaxSector)
  5728. seq_printf(seq, "\tresync=PENDING\n ");
  5729. }
  5730. } else
  5731. seq_printf(seq, "\n ");
  5732. if ((bitmap = mddev->bitmap)) {
  5733. unsigned long chunk_kb;
  5734. unsigned long flags;
  5735. spin_lock_irqsave(&bitmap->lock, flags);
  5736. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5737. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5738. "%lu%s chunk",
  5739. bitmap->pages - bitmap->missing_pages,
  5740. bitmap->pages,
  5741. (bitmap->pages - bitmap->missing_pages)
  5742. << (PAGE_SHIFT - 10),
  5743. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5744. chunk_kb ? "KB" : "B");
  5745. if (bitmap->file) {
  5746. seq_printf(seq, ", file: ");
  5747. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5748. }
  5749. seq_printf(seq, "\n");
  5750. spin_unlock_irqrestore(&bitmap->lock, flags);
  5751. }
  5752. seq_printf(seq, "\n");
  5753. }
  5754. mddev_unlock(mddev);
  5755. return 0;
  5756. }
  5757. static const struct seq_operations md_seq_ops = {
  5758. .start = md_seq_start,
  5759. .next = md_seq_next,
  5760. .stop = md_seq_stop,
  5761. .show = md_seq_show,
  5762. };
  5763. static int md_seq_open(struct inode *inode, struct file *file)
  5764. {
  5765. int error;
  5766. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  5767. if (mi == NULL)
  5768. return -ENOMEM;
  5769. error = seq_open(file, &md_seq_ops);
  5770. if (error)
  5771. kfree(mi);
  5772. else {
  5773. struct seq_file *p = file->private_data;
  5774. p->private = mi;
  5775. mi->event = atomic_read(&md_event_count);
  5776. }
  5777. return error;
  5778. }
  5779. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5780. {
  5781. struct seq_file *m = filp->private_data;
  5782. struct mdstat_info *mi = m->private;
  5783. int mask;
  5784. poll_wait(filp, &md_event_waiters, wait);
  5785. /* always allow read */
  5786. mask = POLLIN | POLLRDNORM;
  5787. if (mi->event != atomic_read(&md_event_count))
  5788. mask |= POLLERR | POLLPRI;
  5789. return mask;
  5790. }
  5791. static const struct file_operations md_seq_fops = {
  5792. .owner = THIS_MODULE,
  5793. .open = md_seq_open,
  5794. .read = seq_read,
  5795. .llseek = seq_lseek,
  5796. .release = seq_release_private,
  5797. .poll = mdstat_poll,
  5798. };
  5799. int register_md_personality(struct mdk_personality *p)
  5800. {
  5801. spin_lock(&pers_lock);
  5802. list_add_tail(&p->list, &pers_list);
  5803. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5804. spin_unlock(&pers_lock);
  5805. return 0;
  5806. }
  5807. int unregister_md_personality(struct mdk_personality *p)
  5808. {
  5809. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5810. spin_lock(&pers_lock);
  5811. list_del_init(&p->list);
  5812. spin_unlock(&pers_lock);
  5813. return 0;
  5814. }
  5815. static int is_mddev_idle(mddev_t *mddev, int init)
  5816. {
  5817. mdk_rdev_t * rdev;
  5818. int idle;
  5819. int curr_events;
  5820. idle = 1;
  5821. rcu_read_lock();
  5822. rdev_for_each_rcu(rdev, mddev) {
  5823. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  5824. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  5825. (int)part_stat_read(&disk->part0, sectors[1]) -
  5826. atomic_read(&disk->sync_io);
  5827. /* sync IO will cause sync_io to increase before the disk_stats
  5828. * as sync_io is counted when a request starts, and
  5829. * disk_stats is counted when it completes.
  5830. * So resync activity will cause curr_events to be smaller than
  5831. * when there was no such activity.
  5832. * non-sync IO will cause disk_stat to increase without
  5833. * increasing sync_io so curr_events will (eventually)
  5834. * be larger than it was before. Once it becomes
  5835. * substantially larger, the test below will cause
  5836. * the array to appear non-idle, and resync will slow
  5837. * down.
  5838. * If there is a lot of outstanding resync activity when
  5839. * we set last_event to curr_events, then all that activity
  5840. * completing might cause the array to appear non-idle
  5841. * and resync will be slowed down even though there might
  5842. * not have been non-resync activity. This will only
  5843. * happen once though. 'last_events' will soon reflect
  5844. * the state where there is little or no outstanding
  5845. * resync requests, and further resync activity will
  5846. * always make curr_events less than last_events.
  5847. *
  5848. */
  5849. if (init || curr_events - rdev->last_events > 64) {
  5850. rdev->last_events = curr_events;
  5851. idle = 0;
  5852. }
  5853. }
  5854. rcu_read_unlock();
  5855. return idle;
  5856. }
  5857. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  5858. {
  5859. /* another "blocks" (512byte) blocks have been synced */
  5860. atomic_sub(blocks, &mddev->recovery_active);
  5861. wake_up(&mddev->recovery_wait);
  5862. if (!ok) {
  5863. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5864. md_wakeup_thread(mddev->thread);
  5865. // stop recovery, signal do_sync ....
  5866. }
  5867. }
  5868. /* md_write_start(mddev, bi)
  5869. * If we need to update some array metadata (e.g. 'active' flag
  5870. * in superblock) before writing, schedule a superblock update
  5871. * and wait for it to complete.
  5872. */
  5873. void md_write_start(mddev_t *mddev, struct bio *bi)
  5874. {
  5875. int did_change = 0;
  5876. if (bio_data_dir(bi) != WRITE)
  5877. return;
  5878. BUG_ON(mddev->ro == 1);
  5879. if (mddev->ro == 2) {
  5880. /* need to switch to read/write */
  5881. mddev->ro = 0;
  5882. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5883. md_wakeup_thread(mddev->thread);
  5884. md_wakeup_thread(mddev->sync_thread);
  5885. did_change = 1;
  5886. }
  5887. atomic_inc(&mddev->writes_pending);
  5888. if (mddev->safemode == 1)
  5889. mddev->safemode = 0;
  5890. if (mddev->in_sync) {
  5891. spin_lock_irq(&mddev->write_lock);
  5892. if (mddev->in_sync) {
  5893. mddev->in_sync = 0;
  5894. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5895. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  5896. md_wakeup_thread(mddev->thread);
  5897. did_change = 1;
  5898. }
  5899. spin_unlock_irq(&mddev->write_lock);
  5900. }
  5901. if (did_change)
  5902. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5903. wait_event(mddev->sb_wait,
  5904. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5905. }
  5906. void md_write_end(mddev_t *mddev)
  5907. {
  5908. if (atomic_dec_and_test(&mddev->writes_pending)) {
  5909. if (mddev->safemode == 2)
  5910. md_wakeup_thread(mddev->thread);
  5911. else if (mddev->safemode_delay)
  5912. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  5913. }
  5914. }
  5915. /* md_allow_write(mddev)
  5916. * Calling this ensures that the array is marked 'active' so that writes
  5917. * may proceed without blocking. It is important to call this before
  5918. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  5919. * Must be called with mddev_lock held.
  5920. *
  5921. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  5922. * is dropped, so return -EAGAIN after notifying userspace.
  5923. */
  5924. int md_allow_write(mddev_t *mddev)
  5925. {
  5926. if (!mddev->pers)
  5927. return 0;
  5928. if (mddev->ro)
  5929. return 0;
  5930. if (!mddev->pers->sync_request)
  5931. return 0;
  5932. spin_lock_irq(&mddev->write_lock);
  5933. if (mddev->in_sync) {
  5934. mddev->in_sync = 0;
  5935. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5936. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  5937. if (mddev->safemode_delay &&
  5938. mddev->safemode == 0)
  5939. mddev->safemode = 1;
  5940. spin_unlock_irq(&mddev->write_lock);
  5941. md_update_sb(mddev, 0);
  5942. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5943. } else
  5944. spin_unlock_irq(&mddev->write_lock);
  5945. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  5946. return -EAGAIN;
  5947. else
  5948. return 0;
  5949. }
  5950. EXPORT_SYMBOL_GPL(md_allow_write);
  5951. #define SYNC_MARKS 10
  5952. #define SYNC_MARK_STEP (3*HZ)
  5953. void md_do_sync(mddev_t *mddev)
  5954. {
  5955. mddev_t *mddev2;
  5956. unsigned int currspeed = 0,
  5957. window;
  5958. sector_t max_sectors,j, io_sectors;
  5959. unsigned long mark[SYNC_MARKS];
  5960. sector_t mark_cnt[SYNC_MARKS];
  5961. int last_mark,m;
  5962. struct list_head *tmp;
  5963. sector_t last_check;
  5964. int skipped = 0;
  5965. mdk_rdev_t *rdev;
  5966. char *desc;
  5967. /* just incase thread restarts... */
  5968. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  5969. return;
  5970. if (mddev->ro) /* never try to sync a read-only array */
  5971. return;
  5972. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5973. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  5974. desc = "data-check";
  5975. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5976. desc = "requested-resync";
  5977. else
  5978. desc = "resync";
  5979. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5980. desc = "reshape";
  5981. else
  5982. desc = "recovery";
  5983. /* we overload curr_resync somewhat here.
  5984. * 0 == not engaged in resync at all
  5985. * 2 == checking that there is no conflict with another sync
  5986. * 1 == like 2, but have yielded to allow conflicting resync to
  5987. * commense
  5988. * other == active in resync - this many blocks
  5989. *
  5990. * Before starting a resync we must have set curr_resync to
  5991. * 2, and then checked that every "conflicting" array has curr_resync
  5992. * less than ours. When we find one that is the same or higher
  5993. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  5994. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  5995. * This will mean we have to start checking from the beginning again.
  5996. *
  5997. */
  5998. do {
  5999. mddev->curr_resync = 2;
  6000. try_again:
  6001. if (kthread_should_stop())
  6002. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6003. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6004. goto skip;
  6005. for_each_mddev(mddev2, tmp) {
  6006. if (mddev2 == mddev)
  6007. continue;
  6008. if (!mddev->parallel_resync
  6009. && mddev2->curr_resync
  6010. && match_mddev_units(mddev, mddev2)) {
  6011. DEFINE_WAIT(wq);
  6012. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6013. /* arbitrarily yield */
  6014. mddev->curr_resync = 1;
  6015. wake_up(&resync_wait);
  6016. }
  6017. if (mddev > mddev2 && mddev->curr_resync == 1)
  6018. /* no need to wait here, we can wait the next
  6019. * time 'round when curr_resync == 2
  6020. */
  6021. continue;
  6022. /* We need to wait 'interruptible' so as not to
  6023. * contribute to the load average, and not to
  6024. * be caught by 'softlockup'
  6025. */
  6026. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6027. if (!kthread_should_stop() &&
  6028. mddev2->curr_resync >= mddev->curr_resync) {
  6029. printk(KERN_INFO "md: delaying %s of %s"
  6030. " until %s has finished (they"
  6031. " share one or more physical units)\n",
  6032. desc, mdname(mddev), mdname(mddev2));
  6033. mddev_put(mddev2);
  6034. if (signal_pending(current))
  6035. flush_signals(current);
  6036. schedule();
  6037. finish_wait(&resync_wait, &wq);
  6038. goto try_again;
  6039. }
  6040. finish_wait(&resync_wait, &wq);
  6041. }
  6042. }
  6043. } while (mddev->curr_resync < 2);
  6044. j = 0;
  6045. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6046. /* resync follows the size requested by the personality,
  6047. * which defaults to physical size, but can be virtual size
  6048. */
  6049. max_sectors = mddev->resync_max_sectors;
  6050. mddev->resync_mismatches = 0;
  6051. /* we don't use the checkpoint if there's a bitmap */
  6052. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6053. j = mddev->resync_min;
  6054. else if (!mddev->bitmap)
  6055. j = mddev->recovery_cp;
  6056. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6057. max_sectors = mddev->dev_sectors;
  6058. else {
  6059. /* recovery follows the physical size of devices */
  6060. max_sectors = mddev->dev_sectors;
  6061. j = MaxSector;
  6062. rcu_read_lock();
  6063. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6064. if (rdev->raid_disk >= 0 &&
  6065. !test_bit(Faulty, &rdev->flags) &&
  6066. !test_bit(In_sync, &rdev->flags) &&
  6067. rdev->recovery_offset < j)
  6068. j = rdev->recovery_offset;
  6069. rcu_read_unlock();
  6070. }
  6071. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6072. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6073. " %d KB/sec/disk.\n", speed_min(mddev));
  6074. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6075. "(but not more than %d KB/sec) for %s.\n",
  6076. speed_max(mddev), desc);
  6077. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6078. io_sectors = 0;
  6079. for (m = 0; m < SYNC_MARKS; m++) {
  6080. mark[m] = jiffies;
  6081. mark_cnt[m] = io_sectors;
  6082. }
  6083. last_mark = 0;
  6084. mddev->resync_mark = mark[last_mark];
  6085. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6086. /*
  6087. * Tune reconstruction:
  6088. */
  6089. window = 32*(PAGE_SIZE/512);
  6090. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6091. window/2, (unsigned long long)max_sectors/2);
  6092. atomic_set(&mddev->recovery_active, 0);
  6093. last_check = 0;
  6094. if (j>2) {
  6095. printk(KERN_INFO
  6096. "md: resuming %s of %s from checkpoint.\n",
  6097. desc, mdname(mddev));
  6098. mddev->curr_resync = j;
  6099. }
  6100. mddev->curr_resync_completed = j;
  6101. while (j < max_sectors) {
  6102. sector_t sectors;
  6103. skipped = 0;
  6104. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6105. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6106. (mddev->curr_resync - mddev->curr_resync_completed)
  6107. > (max_sectors >> 4)) ||
  6108. (j - mddev->curr_resync_completed)*2
  6109. >= mddev->resync_max - mddev->curr_resync_completed
  6110. )) {
  6111. /* time to update curr_resync_completed */
  6112. wait_event(mddev->recovery_wait,
  6113. atomic_read(&mddev->recovery_active) == 0);
  6114. mddev->curr_resync_completed = j;
  6115. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6116. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6117. }
  6118. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6119. /* As this condition is controlled by user-space,
  6120. * we can block indefinitely, so use '_interruptible'
  6121. * to avoid triggering warnings.
  6122. */
  6123. flush_signals(current); /* just in case */
  6124. wait_event_interruptible(mddev->recovery_wait,
  6125. mddev->resync_max > j
  6126. || kthread_should_stop());
  6127. }
  6128. if (kthread_should_stop())
  6129. goto interrupted;
  6130. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6131. currspeed < speed_min(mddev));
  6132. if (sectors == 0) {
  6133. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6134. goto out;
  6135. }
  6136. if (!skipped) { /* actual IO requested */
  6137. io_sectors += sectors;
  6138. atomic_add(sectors, &mddev->recovery_active);
  6139. }
  6140. j += sectors;
  6141. if (j>1) mddev->curr_resync = j;
  6142. mddev->curr_mark_cnt = io_sectors;
  6143. if (last_check == 0)
  6144. /* this is the earliers that rebuilt will be
  6145. * visible in /proc/mdstat
  6146. */
  6147. md_new_event(mddev);
  6148. if (last_check + window > io_sectors || j == max_sectors)
  6149. continue;
  6150. last_check = io_sectors;
  6151. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6152. break;
  6153. repeat:
  6154. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6155. /* step marks */
  6156. int next = (last_mark+1) % SYNC_MARKS;
  6157. mddev->resync_mark = mark[next];
  6158. mddev->resync_mark_cnt = mark_cnt[next];
  6159. mark[next] = jiffies;
  6160. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6161. last_mark = next;
  6162. }
  6163. if (kthread_should_stop())
  6164. goto interrupted;
  6165. /*
  6166. * this loop exits only if either when we are slower than
  6167. * the 'hard' speed limit, or the system was IO-idle for
  6168. * a jiffy.
  6169. * the system might be non-idle CPU-wise, but we only care
  6170. * about not overloading the IO subsystem. (things like an
  6171. * e2fsck being done on the RAID array should execute fast)
  6172. */
  6173. cond_resched();
  6174. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6175. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6176. if (currspeed > speed_min(mddev)) {
  6177. if ((currspeed > speed_max(mddev)) ||
  6178. !is_mddev_idle(mddev, 0)) {
  6179. msleep(500);
  6180. goto repeat;
  6181. }
  6182. }
  6183. }
  6184. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6185. /*
  6186. * this also signals 'finished resyncing' to md_stop
  6187. */
  6188. out:
  6189. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6190. /* tell personality that we are finished */
  6191. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6192. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6193. mddev->curr_resync > 2) {
  6194. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6195. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6196. if (mddev->curr_resync >= mddev->recovery_cp) {
  6197. printk(KERN_INFO
  6198. "md: checkpointing %s of %s.\n",
  6199. desc, mdname(mddev));
  6200. mddev->recovery_cp = mddev->curr_resync;
  6201. }
  6202. } else
  6203. mddev->recovery_cp = MaxSector;
  6204. } else {
  6205. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6206. mddev->curr_resync = MaxSector;
  6207. rcu_read_lock();
  6208. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6209. if (rdev->raid_disk >= 0 &&
  6210. mddev->delta_disks >= 0 &&
  6211. !test_bit(Faulty, &rdev->flags) &&
  6212. !test_bit(In_sync, &rdev->flags) &&
  6213. rdev->recovery_offset < mddev->curr_resync)
  6214. rdev->recovery_offset = mddev->curr_resync;
  6215. rcu_read_unlock();
  6216. }
  6217. }
  6218. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6219. skip:
  6220. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6221. /* We completed so min/max setting can be forgotten if used. */
  6222. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6223. mddev->resync_min = 0;
  6224. mddev->resync_max = MaxSector;
  6225. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6226. mddev->resync_min = mddev->curr_resync_completed;
  6227. mddev->curr_resync = 0;
  6228. wake_up(&resync_wait);
  6229. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6230. md_wakeup_thread(mddev->thread);
  6231. return;
  6232. interrupted:
  6233. /*
  6234. * got a signal, exit.
  6235. */
  6236. printk(KERN_INFO
  6237. "md: md_do_sync() got signal ... exiting\n");
  6238. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6239. goto out;
  6240. }
  6241. EXPORT_SYMBOL_GPL(md_do_sync);
  6242. static int remove_and_add_spares(mddev_t *mddev)
  6243. {
  6244. mdk_rdev_t *rdev;
  6245. int spares = 0;
  6246. mddev->curr_resync_completed = 0;
  6247. list_for_each_entry(rdev, &mddev->disks, same_set)
  6248. if (rdev->raid_disk >= 0 &&
  6249. !test_bit(Blocked, &rdev->flags) &&
  6250. (test_bit(Faulty, &rdev->flags) ||
  6251. ! test_bit(In_sync, &rdev->flags)) &&
  6252. atomic_read(&rdev->nr_pending)==0) {
  6253. if (mddev->pers->hot_remove_disk(
  6254. mddev, rdev->raid_disk)==0) {
  6255. sysfs_unlink_rdev(mddev, rdev);
  6256. rdev->raid_disk = -1;
  6257. }
  6258. }
  6259. if (mddev->degraded) {
  6260. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6261. if (rdev->raid_disk >= 0 &&
  6262. !test_bit(In_sync, &rdev->flags) &&
  6263. !test_bit(Faulty, &rdev->flags) &&
  6264. !test_bit(Blocked, &rdev->flags))
  6265. spares++;
  6266. if (rdev->raid_disk < 0
  6267. && !test_bit(Faulty, &rdev->flags)) {
  6268. rdev->recovery_offset = 0;
  6269. if (mddev->pers->
  6270. hot_add_disk(mddev, rdev) == 0) {
  6271. if (sysfs_link_rdev(mddev, rdev))
  6272. /* failure here is OK */;
  6273. spares++;
  6274. md_new_event(mddev);
  6275. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6276. } else
  6277. break;
  6278. }
  6279. }
  6280. }
  6281. return spares;
  6282. }
  6283. static void reap_sync_thread(mddev_t *mddev)
  6284. {
  6285. mdk_rdev_t *rdev;
  6286. /* resync has finished, collect result */
  6287. md_unregister_thread(mddev->sync_thread);
  6288. mddev->sync_thread = NULL;
  6289. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6290. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6291. /* success...*/
  6292. /* activate any spares */
  6293. if (mddev->pers->spare_active(mddev))
  6294. sysfs_notify(&mddev->kobj, NULL,
  6295. "degraded");
  6296. }
  6297. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6298. mddev->pers->finish_reshape)
  6299. mddev->pers->finish_reshape(mddev);
  6300. md_update_sb(mddev, 1);
  6301. /* if array is no-longer degraded, then any saved_raid_disk
  6302. * information must be scrapped
  6303. */
  6304. if (!mddev->degraded)
  6305. list_for_each_entry(rdev, &mddev->disks, same_set)
  6306. rdev->saved_raid_disk = -1;
  6307. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6308. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6309. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6310. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6311. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6312. /* flag recovery needed just to double check */
  6313. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6314. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6315. md_new_event(mddev);
  6316. if (mddev->event_work.func)
  6317. queue_work(md_misc_wq, &mddev->event_work);
  6318. }
  6319. /*
  6320. * This routine is regularly called by all per-raid-array threads to
  6321. * deal with generic issues like resync and super-block update.
  6322. * Raid personalities that don't have a thread (linear/raid0) do not
  6323. * need this as they never do any recovery or update the superblock.
  6324. *
  6325. * It does not do any resync itself, but rather "forks" off other threads
  6326. * to do that as needed.
  6327. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6328. * "->recovery" and create a thread at ->sync_thread.
  6329. * When the thread finishes it sets MD_RECOVERY_DONE
  6330. * and wakeups up this thread which will reap the thread and finish up.
  6331. * This thread also removes any faulty devices (with nr_pending == 0).
  6332. *
  6333. * The overall approach is:
  6334. * 1/ if the superblock needs updating, update it.
  6335. * 2/ If a recovery thread is running, don't do anything else.
  6336. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6337. * 4/ If there are any faulty devices, remove them.
  6338. * 5/ If array is degraded, try to add spares devices
  6339. * 6/ If array has spares or is not in-sync, start a resync thread.
  6340. */
  6341. void md_check_recovery(mddev_t *mddev)
  6342. {
  6343. if (mddev->suspended)
  6344. return;
  6345. if (mddev->bitmap)
  6346. bitmap_daemon_work(mddev);
  6347. if (signal_pending(current)) {
  6348. if (mddev->pers->sync_request && !mddev->external) {
  6349. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6350. mdname(mddev));
  6351. mddev->safemode = 2;
  6352. }
  6353. flush_signals(current);
  6354. }
  6355. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6356. return;
  6357. if ( ! (
  6358. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6359. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6360. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6361. (mddev->external == 0 && mddev->safemode == 1) ||
  6362. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6363. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6364. ))
  6365. return;
  6366. if (mddev_trylock(mddev)) {
  6367. int spares = 0;
  6368. if (mddev->ro) {
  6369. /* Only thing we do on a ro array is remove
  6370. * failed devices.
  6371. */
  6372. mdk_rdev_t *rdev;
  6373. list_for_each_entry(rdev, &mddev->disks, same_set)
  6374. if (rdev->raid_disk >= 0 &&
  6375. !test_bit(Blocked, &rdev->flags) &&
  6376. test_bit(Faulty, &rdev->flags) &&
  6377. atomic_read(&rdev->nr_pending)==0) {
  6378. if (mddev->pers->hot_remove_disk(
  6379. mddev, rdev->raid_disk)==0) {
  6380. sysfs_unlink_rdev(mddev, rdev);
  6381. rdev->raid_disk = -1;
  6382. }
  6383. }
  6384. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6385. goto unlock;
  6386. }
  6387. if (!mddev->external) {
  6388. int did_change = 0;
  6389. spin_lock_irq(&mddev->write_lock);
  6390. if (mddev->safemode &&
  6391. !atomic_read(&mddev->writes_pending) &&
  6392. !mddev->in_sync &&
  6393. mddev->recovery_cp == MaxSector) {
  6394. mddev->in_sync = 1;
  6395. did_change = 1;
  6396. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6397. }
  6398. if (mddev->safemode == 1)
  6399. mddev->safemode = 0;
  6400. spin_unlock_irq(&mddev->write_lock);
  6401. if (did_change)
  6402. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6403. }
  6404. if (mddev->flags)
  6405. md_update_sb(mddev, 0);
  6406. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6407. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6408. /* resync/recovery still happening */
  6409. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6410. goto unlock;
  6411. }
  6412. if (mddev->sync_thread) {
  6413. reap_sync_thread(mddev);
  6414. goto unlock;
  6415. }
  6416. /* Set RUNNING before clearing NEEDED to avoid
  6417. * any transients in the value of "sync_action".
  6418. */
  6419. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6420. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6421. /* Clear some bits that don't mean anything, but
  6422. * might be left set
  6423. */
  6424. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6425. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6426. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6427. goto unlock;
  6428. /* no recovery is running.
  6429. * remove any failed drives, then
  6430. * add spares if possible.
  6431. * Spare are also removed and re-added, to allow
  6432. * the personality to fail the re-add.
  6433. */
  6434. if (mddev->reshape_position != MaxSector) {
  6435. if (mddev->pers->check_reshape == NULL ||
  6436. mddev->pers->check_reshape(mddev) != 0)
  6437. /* Cannot proceed */
  6438. goto unlock;
  6439. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6440. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6441. } else if ((spares = remove_and_add_spares(mddev))) {
  6442. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6443. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6444. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6445. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6446. } else if (mddev->recovery_cp < MaxSector) {
  6447. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6448. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6449. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6450. /* nothing to be done ... */
  6451. goto unlock;
  6452. if (mddev->pers->sync_request) {
  6453. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6454. /* We are adding a device or devices to an array
  6455. * which has the bitmap stored on all devices.
  6456. * So make sure all bitmap pages get written
  6457. */
  6458. bitmap_write_all(mddev->bitmap);
  6459. }
  6460. mddev->sync_thread = md_register_thread(md_do_sync,
  6461. mddev,
  6462. "resync");
  6463. if (!mddev->sync_thread) {
  6464. printk(KERN_ERR "%s: could not start resync"
  6465. " thread...\n",
  6466. mdname(mddev));
  6467. /* leave the spares where they are, it shouldn't hurt */
  6468. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6469. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6470. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6471. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6472. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6473. } else
  6474. md_wakeup_thread(mddev->sync_thread);
  6475. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6476. md_new_event(mddev);
  6477. }
  6478. unlock:
  6479. if (!mddev->sync_thread) {
  6480. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6481. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6482. &mddev->recovery))
  6483. if (mddev->sysfs_action)
  6484. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6485. }
  6486. mddev_unlock(mddev);
  6487. }
  6488. }
  6489. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  6490. {
  6491. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6492. wait_event_timeout(rdev->blocked_wait,
  6493. !test_bit(Blocked, &rdev->flags),
  6494. msecs_to_jiffies(5000));
  6495. rdev_dec_pending(rdev, mddev);
  6496. }
  6497. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6498. /* Bad block management.
  6499. * We can record which blocks on each device are 'bad' and so just
  6500. * fail those blocks, or that stripe, rather than the whole device.
  6501. * Entries in the bad-block table are 64bits wide. This comprises:
  6502. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6503. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6504. * A 'shift' can be set so that larger blocks are tracked and
  6505. * consequently larger devices can be covered.
  6506. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6507. *
  6508. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6509. * might need to retry if it is very unlucky.
  6510. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6511. * so we use the write_seqlock_irq variant.
  6512. *
  6513. * When looking for a bad block we specify a range and want to
  6514. * know if any block in the range is bad. So we binary-search
  6515. * to the last range that starts at-or-before the given endpoint,
  6516. * (or "before the sector after the target range")
  6517. * then see if it ends after the given start.
  6518. * We return
  6519. * 0 if there are no known bad blocks in the range
  6520. * 1 if there are known bad block which are all acknowledged
  6521. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6522. * plus the start/length of the first bad section we overlap.
  6523. */
  6524. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6525. sector_t *first_bad, int *bad_sectors)
  6526. {
  6527. int hi;
  6528. int lo = 0;
  6529. u64 *p = bb->page;
  6530. int rv = 0;
  6531. sector_t target = s + sectors;
  6532. unsigned seq;
  6533. if (bb->shift > 0) {
  6534. /* round the start down, and the end up */
  6535. s >>= bb->shift;
  6536. target += (1<<bb->shift) - 1;
  6537. target >>= bb->shift;
  6538. sectors = target - s;
  6539. }
  6540. /* 'target' is now the first block after the bad range */
  6541. retry:
  6542. seq = read_seqbegin(&bb->lock);
  6543. hi = bb->count;
  6544. /* Binary search between lo and hi for 'target'
  6545. * i.e. for the last range that starts before 'target'
  6546. */
  6547. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6548. * are known not to be the last range before target.
  6549. * VARIANT: hi-lo is the number of possible
  6550. * ranges, and decreases until it reaches 1
  6551. */
  6552. while (hi - lo > 1) {
  6553. int mid = (lo + hi) / 2;
  6554. sector_t a = BB_OFFSET(p[mid]);
  6555. if (a < target)
  6556. /* This could still be the one, earlier ranges
  6557. * could not. */
  6558. lo = mid;
  6559. else
  6560. /* This and later ranges are definitely out. */
  6561. hi = mid;
  6562. }
  6563. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6564. if (hi > lo) {
  6565. /* need to check all range that end after 's' to see if
  6566. * any are unacknowledged.
  6567. */
  6568. while (lo >= 0 &&
  6569. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6570. if (BB_OFFSET(p[lo]) < target) {
  6571. /* starts before the end, and finishes after
  6572. * the start, so they must overlap
  6573. */
  6574. if (rv != -1 && BB_ACK(p[lo]))
  6575. rv = 1;
  6576. else
  6577. rv = -1;
  6578. *first_bad = BB_OFFSET(p[lo]);
  6579. *bad_sectors = BB_LEN(p[lo]);
  6580. }
  6581. lo--;
  6582. }
  6583. }
  6584. if (read_seqretry(&bb->lock, seq))
  6585. goto retry;
  6586. return rv;
  6587. }
  6588. EXPORT_SYMBOL_GPL(md_is_badblock);
  6589. /*
  6590. * Add a range of bad blocks to the table.
  6591. * This might extend the table, or might contract it
  6592. * if two adjacent ranges can be merged.
  6593. * We binary-search to find the 'insertion' point, then
  6594. * decide how best to handle it.
  6595. */
  6596. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6597. int acknowledged)
  6598. {
  6599. u64 *p;
  6600. int lo, hi;
  6601. int rv = 1;
  6602. if (bb->shift < 0)
  6603. /* badblocks are disabled */
  6604. return 0;
  6605. if (bb->shift) {
  6606. /* round the start down, and the end up */
  6607. sector_t next = s + sectors;
  6608. s >>= bb->shift;
  6609. next += (1<<bb->shift) - 1;
  6610. next >>= bb->shift;
  6611. sectors = next - s;
  6612. }
  6613. write_seqlock_irq(&bb->lock);
  6614. p = bb->page;
  6615. lo = 0;
  6616. hi = bb->count;
  6617. /* Find the last range that starts at-or-before 's' */
  6618. while (hi - lo > 1) {
  6619. int mid = (lo + hi) / 2;
  6620. sector_t a = BB_OFFSET(p[mid]);
  6621. if (a <= s)
  6622. lo = mid;
  6623. else
  6624. hi = mid;
  6625. }
  6626. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6627. hi = lo;
  6628. if (hi > lo) {
  6629. /* we found a range that might merge with the start
  6630. * of our new range
  6631. */
  6632. sector_t a = BB_OFFSET(p[lo]);
  6633. sector_t e = a + BB_LEN(p[lo]);
  6634. int ack = BB_ACK(p[lo]);
  6635. if (e >= s) {
  6636. /* Yes, we can merge with a previous range */
  6637. if (s == a && s + sectors >= e)
  6638. /* new range covers old */
  6639. ack = acknowledged;
  6640. else
  6641. ack = ack && acknowledged;
  6642. if (e < s + sectors)
  6643. e = s + sectors;
  6644. if (e - a <= BB_MAX_LEN) {
  6645. p[lo] = BB_MAKE(a, e-a, ack);
  6646. s = e;
  6647. } else {
  6648. /* does not all fit in one range,
  6649. * make p[lo] maximal
  6650. */
  6651. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6652. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6653. s = a + BB_MAX_LEN;
  6654. }
  6655. sectors = e - s;
  6656. }
  6657. }
  6658. if (sectors && hi < bb->count) {
  6659. /* 'hi' points to the first range that starts after 's'.
  6660. * Maybe we can merge with the start of that range */
  6661. sector_t a = BB_OFFSET(p[hi]);
  6662. sector_t e = a + BB_LEN(p[hi]);
  6663. int ack = BB_ACK(p[hi]);
  6664. if (a <= s + sectors) {
  6665. /* merging is possible */
  6666. if (e <= s + sectors) {
  6667. /* full overlap */
  6668. e = s + sectors;
  6669. ack = acknowledged;
  6670. } else
  6671. ack = ack && acknowledged;
  6672. a = s;
  6673. if (e - a <= BB_MAX_LEN) {
  6674. p[hi] = BB_MAKE(a, e-a, ack);
  6675. s = e;
  6676. } else {
  6677. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6678. s = a + BB_MAX_LEN;
  6679. }
  6680. sectors = e - s;
  6681. lo = hi;
  6682. hi++;
  6683. }
  6684. }
  6685. if (sectors == 0 && hi < bb->count) {
  6686. /* we might be able to combine lo and hi */
  6687. /* Note: 's' is at the end of 'lo' */
  6688. sector_t a = BB_OFFSET(p[hi]);
  6689. int lolen = BB_LEN(p[lo]);
  6690. int hilen = BB_LEN(p[hi]);
  6691. int newlen = lolen + hilen - (s - a);
  6692. if (s >= a && newlen < BB_MAX_LEN) {
  6693. /* yes, we can combine them */
  6694. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6695. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6696. memmove(p + hi, p + hi + 1,
  6697. (bb->count - hi - 1) * 8);
  6698. bb->count--;
  6699. }
  6700. }
  6701. while (sectors) {
  6702. /* didn't merge (it all).
  6703. * Need to add a range just before 'hi' */
  6704. if (bb->count >= MD_MAX_BADBLOCKS) {
  6705. /* No room for more */
  6706. rv = 0;
  6707. break;
  6708. } else {
  6709. int this_sectors = sectors;
  6710. memmove(p + hi + 1, p + hi,
  6711. (bb->count - hi) * 8);
  6712. bb->count++;
  6713. if (this_sectors > BB_MAX_LEN)
  6714. this_sectors = BB_MAX_LEN;
  6715. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  6716. sectors -= this_sectors;
  6717. s += this_sectors;
  6718. }
  6719. }
  6720. bb->changed = 1;
  6721. write_sequnlock_irq(&bb->lock);
  6722. return rv;
  6723. }
  6724. int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
  6725. int acknowledged)
  6726. {
  6727. int rv = md_set_badblocks(&rdev->badblocks,
  6728. s + rdev->data_offset, sectors, acknowledged);
  6729. if (rv) {
  6730. /* Make sure they get written out promptly */
  6731. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  6732. md_wakeup_thread(rdev->mddev->thread);
  6733. }
  6734. return rv;
  6735. }
  6736. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  6737. /*
  6738. * Remove a range of bad blocks from the table.
  6739. * This may involve extending the table if we spilt a region,
  6740. * but it must not fail. So if the table becomes full, we just
  6741. * drop the remove request.
  6742. */
  6743. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  6744. {
  6745. u64 *p;
  6746. int lo, hi;
  6747. sector_t target = s + sectors;
  6748. int rv = 0;
  6749. if (bb->shift > 0) {
  6750. /* When clearing we round the start up and the end down.
  6751. * This should not matter as the shift should align with
  6752. * the block size and no rounding should ever be needed.
  6753. * However it is better the think a block is bad when it
  6754. * isn't than to think a block is not bad when it is.
  6755. */
  6756. s += (1<<bb->shift) - 1;
  6757. s >>= bb->shift;
  6758. target >>= bb->shift;
  6759. sectors = target - s;
  6760. }
  6761. write_seqlock_irq(&bb->lock);
  6762. p = bb->page;
  6763. lo = 0;
  6764. hi = bb->count;
  6765. /* Find the last range that starts before 'target' */
  6766. while (hi - lo > 1) {
  6767. int mid = (lo + hi) / 2;
  6768. sector_t a = BB_OFFSET(p[mid]);
  6769. if (a < target)
  6770. lo = mid;
  6771. else
  6772. hi = mid;
  6773. }
  6774. if (hi > lo) {
  6775. /* p[lo] is the last range that could overlap the
  6776. * current range. Earlier ranges could also overlap,
  6777. * but only this one can overlap the end of the range.
  6778. */
  6779. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  6780. /* Partial overlap, leave the tail of this range */
  6781. int ack = BB_ACK(p[lo]);
  6782. sector_t a = BB_OFFSET(p[lo]);
  6783. sector_t end = a + BB_LEN(p[lo]);
  6784. if (a < s) {
  6785. /* we need to split this range */
  6786. if (bb->count >= MD_MAX_BADBLOCKS) {
  6787. rv = 0;
  6788. goto out;
  6789. }
  6790. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  6791. bb->count++;
  6792. p[lo] = BB_MAKE(a, s-a, ack);
  6793. lo++;
  6794. }
  6795. p[lo] = BB_MAKE(target, end - target, ack);
  6796. /* there is no longer an overlap */
  6797. hi = lo;
  6798. lo--;
  6799. }
  6800. while (lo >= 0 &&
  6801. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6802. /* This range does overlap */
  6803. if (BB_OFFSET(p[lo]) < s) {
  6804. /* Keep the early parts of this range. */
  6805. int ack = BB_ACK(p[lo]);
  6806. sector_t start = BB_OFFSET(p[lo]);
  6807. p[lo] = BB_MAKE(start, s - start, ack);
  6808. /* now low doesn't overlap, so.. */
  6809. break;
  6810. }
  6811. lo--;
  6812. }
  6813. /* 'lo' is strictly before, 'hi' is strictly after,
  6814. * anything between needs to be discarded
  6815. */
  6816. if (hi - lo > 1) {
  6817. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  6818. bb->count -= (hi - lo - 1);
  6819. }
  6820. }
  6821. bb->changed = 1;
  6822. out:
  6823. write_sequnlock_irq(&bb->lock);
  6824. return rv;
  6825. }
  6826. int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
  6827. {
  6828. return md_clear_badblocks(&rdev->badblocks,
  6829. s + rdev->data_offset,
  6830. sectors);
  6831. }
  6832. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  6833. /*
  6834. * Acknowledge all bad blocks in a list.
  6835. * This only succeeds if ->changed is clear. It is used by
  6836. * in-kernel metadata updates
  6837. */
  6838. void md_ack_all_badblocks(struct badblocks *bb)
  6839. {
  6840. if (bb->page == NULL || bb->changed)
  6841. /* no point even trying */
  6842. return;
  6843. write_seqlock_irq(&bb->lock);
  6844. if (bb->changed == 0) {
  6845. u64 *p = bb->page;
  6846. int i;
  6847. for (i = 0; i < bb->count ; i++) {
  6848. if (!BB_ACK(p[i])) {
  6849. sector_t start = BB_OFFSET(p[i]);
  6850. int len = BB_LEN(p[i]);
  6851. p[i] = BB_MAKE(start, len, 1);
  6852. }
  6853. }
  6854. }
  6855. write_sequnlock_irq(&bb->lock);
  6856. }
  6857. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  6858. static int md_notify_reboot(struct notifier_block *this,
  6859. unsigned long code, void *x)
  6860. {
  6861. struct list_head *tmp;
  6862. mddev_t *mddev;
  6863. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  6864. printk(KERN_INFO "md: stopping all md devices.\n");
  6865. for_each_mddev(mddev, tmp)
  6866. if (mddev_trylock(mddev)) {
  6867. /* Force a switch to readonly even array
  6868. * appears to still be in use. Hence
  6869. * the '100'.
  6870. */
  6871. md_set_readonly(mddev, 100);
  6872. mddev_unlock(mddev);
  6873. }
  6874. /*
  6875. * certain more exotic SCSI devices are known to be
  6876. * volatile wrt too early system reboots. While the
  6877. * right place to handle this issue is the given
  6878. * driver, we do want to have a safe RAID driver ...
  6879. */
  6880. mdelay(1000*1);
  6881. }
  6882. return NOTIFY_DONE;
  6883. }
  6884. static struct notifier_block md_notifier = {
  6885. .notifier_call = md_notify_reboot,
  6886. .next = NULL,
  6887. .priority = INT_MAX, /* before any real devices */
  6888. };
  6889. static void md_geninit(void)
  6890. {
  6891. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  6892. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  6893. }
  6894. static int __init md_init(void)
  6895. {
  6896. int ret = -ENOMEM;
  6897. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  6898. if (!md_wq)
  6899. goto err_wq;
  6900. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  6901. if (!md_misc_wq)
  6902. goto err_misc_wq;
  6903. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  6904. goto err_md;
  6905. if ((ret = register_blkdev(0, "mdp")) < 0)
  6906. goto err_mdp;
  6907. mdp_major = ret;
  6908. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  6909. md_probe, NULL, NULL);
  6910. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  6911. md_probe, NULL, NULL);
  6912. register_reboot_notifier(&md_notifier);
  6913. raid_table_header = register_sysctl_table(raid_root_table);
  6914. md_geninit();
  6915. return 0;
  6916. err_mdp:
  6917. unregister_blkdev(MD_MAJOR, "md");
  6918. err_md:
  6919. destroy_workqueue(md_misc_wq);
  6920. err_misc_wq:
  6921. destroy_workqueue(md_wq);
  6922. err_wq:
  6923. return ret;
  6924. }
  6925. #ifndef MODULE
  6926. /*
  6927. * Searches all registered partitions for autorun RAID arrays
  6928. * at boot time.
  6929. */
  6930. static LIST_HEAD(all_detected_devices);
  6931. struct detected_devices_node {
  6932. struct list_head list;
  6933. dev_t dev;
  6934. };
  6935. void md_autodetect_dev(dev_t dev)
  6936. {
  6937. struct detected_devices_node *node_detected_dev;
  6938. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  6939. if (node_detected_dev) {
  6940. node_detected_dev->dev = dev;
  6941. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  6942. } else {
  6943. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  6944. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  6945. }
  6946. }
  6947. static void autostart_arrays(int part)
  6948. {
  6949. mdk_rdev_t *rdev;
  6950. struct detected_devices_node *node_detected_dev;
  6951. dev_t dev;
  6952. int i_scanned, i_passed;
  6953. i_scanned = 0;
  6954. i_passed = 0;
  6955. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  6956. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  6957. i_scanned++;
  6958. node_detected_dev = list_entry(all_detected_devices.next,
  6959. struct detected_devices_node, list);
  6960. list_del(&node_detected_dev->list);
  6961. dev = node_detected_dev->dev;
  6962. kfree(node_detected_dev);
  6963. rdev = md_import_device(dev,0, 90);
  6964. if (IS_ERR(rdev))
  6965. continue;
  6966. if (test_bit(Faulty, &rdev->flags)) {
  6967. MD_BUG();
  6968. continue;
  6969. }
  6970. set_bit(AutoDetected, &rdev->flags);
  6971. list_add(&rdev->same_set, &pending_raid_disks);
  6972. i_passed++;
  6973. }
  6974. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  6975. i_scanned, i_passed);
  6976. autorun_devices(part);
  6977. }
  6978. #endif /* !MODULE */
  6979. static __exit void md_exit(void)
  6980. {
  6981. mddev_t *mddev;
  6982. struct list_head *tmp;
  6983. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  6984. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  6985. unregister_blkdev(MD_MAJOR,"md");
  6986. unregister_blkdev(mdp_major, "mdp");
  6987. unregister_reboot_notifier(&md_notifier);
  6988. unregister_sysctl_table(raid_table_header);
  6989. remove_proc_entry("mdstat", NULL);
  6990. for_each_mddev(mddev, tmp) {
  6991. export_array(mddev);
  6992. mddev->hold_active = 0;
  6993. }
  6994. destroy_workqueue(md_misc_wq);
  6995. destroy_workqueue(md_wq);
  6996. }
  6997. subsys_initcall(md_init);
  6998. module_exit(md_exit)
  6999. static int get_ro(char *buffer, struct kernel_param *kp)
  7000. {
  7001. return sprintf(buffer, "%d", start_readonly);
  7002. }
  7003. static int set_ro(const char *val, struct kernel_param *kp)
  7004. {
  7005. char *e;
  7006. int num = simple_strtoul(val, &e, 10);
  7007. if (*val && (*e == '\0' || *e == '\n')) {
  7008. start_readonly = num;
  7009. return 0;
  7010. }
  7011. return -EINVAL;
  7012. }
  7013. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7014. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7015. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7016. EXPORT_SYMBOL(register_md_personality);
  7017. EXPORT_SYMBOL(unregister_md_personality);
  7018. EXPORT_SYMBOL(md_error);
  7019. EXPORT_SYMBOL(md_done_sync);
  7020. EXPORT_SYMBOL(md_write_start);
  7021. EXPORT_SYMBOL(md_write_end);
  7022. EXPORT_SYMBOL(md_register_thread);
  7023. EXPORT_SYMBOL(md_unregister_thread);
  7024. EXPORT_SYMBOL(md_wakeup_thread);
  7025. EXPORT_SYMBOL(md_check_recovery);
  7026. MODULE_LICENSE("GPL");
  7027. MODULE_DESCRIPTION("MD RAID framework");
  7028. MODULE_ALIAS("md");
  7029. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);