fsldma.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067
  1. /*
  2. * Freescale MPC85xx, MPC83xx DMA Engine support
  3. *
  4. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
  5. *
  6. * Author:
  7. * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
  8. * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  9. *
  10. * Description:
  11. * DMA engine driver for Freescale MPC8540 DMA controller, which is
  12. * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13. * The support for MPC8349 DMA contorller is also added.
  14. *
  15. * This is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. */
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/pci.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/of_platform.h>
  30. #include "fsldma.h"
  31. static void dma_init(struct fsl_dma_chan *fsl_chan)
  32. {
  33. /* Reset the channel */
  34. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
  35. switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
  36. case FSL_DMA_IP_85XX:
  37. /* Set the channel to below modes:
  38. * EIE - Error interrupt enable
  39. * EOSIE - End of segments interrupt enable (basic mode)
  40. * EOLNIE - End of links interrupt enable
  41. */
  42. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
  43. | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
  44. break;
  45. case FSL_DMA_IP_83XX:
  46. /* Set the channel to below modes:
  47. * EOTIE - End-of-transfer interrupt enable
  48. */
  49. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE,
  50. 32);
  51. break;
  52. }
  53. }
  54. static void set_sr(struct fsl_dma_chan *fsl_chan, dma_addr_t val)
  55. {
  56. DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
  57. }
  58. static dma_addr_t get_sr(struct fsl_dma_chan *fsl_chan)
  59. {
  60. return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
  61. }
  62. static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
  63. struct fsl_dma_ld_hw *hw, u32 count)
  64. {
  65. hw->count = CPU_TO_DMA(fsl_chan, count, 32);
  66. }
  67. static void set_desc_src(struct fsl_dma_chan *fsl_chan,
  68. struct fsl_dma_ld_hw *hw, dma_addr_t src)
  69. {
  70. u64 snoop_bits;
  71. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  72. ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  73. hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
  74. }
  75. static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
  76. struct fsl_dma_ld_hw *hw, dma_addr_t dest)
  77. {
  78. u64 snoop_bits;
  79. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  80. ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
  81. hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
  82. }
  83. static void set_desc_next(struct fsl_dma_chan *fsl_chan,
  84. struct fsl_dma_ld_hw *hw, dma_addr_t next)
  85. {
  86. u64 snoop_bits;
  87. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
  88. ? FSL_DMA_SNEN : 0;
  89. hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
  90. }
  91. static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
  92. {
  93. DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
  94. }
  95. static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
  96. {
  97. return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
  98. }
  99. static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
  100. {
  101. DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
  102. }
  103. static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
  104. {
  105. return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
  106. }
  107. static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
  108. {
  109. u32 sr = get_sr(fsl_chan);
  110. return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
  111. }
  112. static void dma_start(struct fsl_dma_chan *fsl_chan)
  113. {
  114. u32 mr_set = 0;;
  115. if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
  116. DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
  117. mr_set |= FSL_DMA_MR_EMP_EN;
  118. } else
  119. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  120. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  121. & ~FSL_DMA_MR_EMP_EN, 32);
  122. if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
  123. mr_set |= FSL_DMA_MR_EMS_EN;
  124. else
  125. mr_set |= FSL_DMA_MR_CS;
  126. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  127. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  128. | mr_set, 32);
  129. }
  130. static void dma_halt(struct fsl_dma_chan *fsl_chan)
  131. {
  132. int i = 0;
  133. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  134. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
  135. 32);
  136. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  137. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
  138. | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
  139. while (!dma_is_idle(fsl_chan) && (i++ < 100))
  140. udelay(10);
  141. if (i >= 100 && !dma_is_idle(fsl_chan))
  142. dev_err(fsl_chan->dev, "DMA halt timeout!\n");
  143. }
  144. static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
  145. struct fsl_desc_sw *desc)
  146. {
  147. desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
  148. DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL,
  149. 64);
  150. }
  151. static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
  152. struct fsl_desc_sw *new_desc)
  153. {
  154. struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
  155. if (list_empty(&fsl_chan->ld_queue))
  156. return;
  157. /* Link to the new descriptor physical address and
  158. * Enable End-of-segment interrupt for
  159. * the last link descriptor.
  160. * (the previous node's next link descriptor)
  161. *
  162. * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
  163. */
  164. queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
  165. new_desc->async_tx.phys | FSL_DMA_EOSIE |
  166. (((fsl_chan->feature & FSL_DMA_IP_MASK)
  167. == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
  168. }
  169. /**
  170. * fsl_chan_set_src_loop_size - Set source address hold transfer size
  171. * @fsl_chan : Freescale DMA channel
  172. * @size : Address loop size, 0 for disable loop
  173. *
  174. * The set source address hold transfer size. The source
  175. * address hold or loop transfer size is when the DMA transfer
  176. * data from source address (SA), if the loop size is 4, the DMA will
  177. * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
  178. * SA + 1 ... and so on.
  179. */
  180. static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
  181. {
  182. switch (size) {
  183. case 0:
  184. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  185. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
  186. (~FSL_DMA_MR_SAHE), 32);
  187. break;
  188. case 1:
  189. case 2:
  190. case 4:
  191. case 8:
  192. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  193. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
  194. FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
  195. 32);
  196. break;
  197. }
  198. }
  199. /**
  200. * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
  201. * @fsl_chan : Freescale DMA channel
  202. * @size : Address loop size, 0 for disable loop
  203. *
  204. * The set destination address hold transfer size. The destination
  205. * address hold or loop transfer size is when the DMA transfer
  206. * data to destination address (TA), if the loop size is 4, the DMA will
  207. * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
  208. * TA + 1 ... and so on.
  209. */
  210. static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
  211. {
  212. switch (size) {
  213. case 0:
  214. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  215. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
  216. (~FSL_DMA_MR_DAHE), 32);
  217. break;
  218. case 1:
  219. case 2:
  220. case 4:
  221. case 8:
  222. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  223. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
  224. FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
  225. 32);
  226. break;
  227. }
  228. }
  229. /**
  230. * fsl_chan_toggle_ext_pause - Toggle channel external pause status
  231. * @fsl_chan : Freescale DMA channel
  232. * @size : Pause control size, 0 for disable external pause control.
  233. * The maximum is 1024.
  234. *
  235. * The Freescale DMA channel can be controlled by the external
  236. * signal DREQ#. The pause control size is how many bytes are allowed
  237. * to transfer before pausing the channel, after which a new assertion
  238. * of DREQ# resumes channel operation.
  239. */
  240. static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size)
  241. {
  242. if (size > 1024)
  243. return;
  244. if (size) {
  245. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  246. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  247. | ((__ilog2(size) << 24) & 0x0f000000),
  248. 32);
  249. fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
  250. } else
  251. fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
  252. }
  253. /**
  254. * fsl_chan_toggle_ext_start - Toggle channel external start status
  255. * @fsl_chan : Freescale DMA channel
  256. * @enable : 0 is disabled, 1 is enabled.
  257. *
  258. * If enable the external start, the channel can be started by an
  259. * external DMA start pin. So the dma_start() does not start the
  260. * transfer immediately. The DMA channel will wait for the
  261. * control pin asserted.
  262. */
  263. static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
  264. {
  265. if (enable)
  266. fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
  267. else
  268. fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
  269. }
  270. static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  271. {
  272. struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
  273. struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
  274. unsigned long flags;
  275. dma_cookie_t cookie;
  276. /* cookie increment and adding to ld_queue must be atomic */
  277. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  278. cookie = fsl_chan->common.cookie;
  279. cookie++;
  280. if (cookie < 0)
  281. cookie = 1;
  282. desc->async_tx.cookie = cookie;
  283. fsl_chan->common.cookie = desc->async_tx.cookie;
  284. append_ld_queue(fsl_chan, desc);
  285. list_splice_init(&desc->async_tx.tx_list, fsl_chan->ld_queue.prev);
  286. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  287. return cookie;
  288. }
  289. /**
  290. * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
  291. * @fsl_chan : Freescale DMA channel
  292. *
  293. * Return - The descriptor allocated. NULL for failed.
  294. */
  295. static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
  296. struct fsl_dma_chan *fsl_chan)
  297. {
  298. dma_addr_t pdesc;
  299. struct fsl_desc_sw *desc_sw;
  300. desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
  301. if (desc_sw) {
  302. memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
  303. dma_async_tx_descriptor_init(&desc_sw->async_tx,
  304. &fsl_chan->common);
  305. desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
  306. INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
  307. desc_sw->async_tx.phys = pdesc;
  308. }
  309. return desc_sw;
  310. }
  311. /**
  312. * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
  313. * @fsl_chan : Freescale DMA channel
  314. *
  315. * This function will create a dma pool for descriptor allocation.
  316. *
  317. * Return - The number of descriptors allocated.
  318. */
  319. static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
  320. {
  321. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  322. LIST_HEAD(tmp_list);
  323. /* We need the descriptor to be aligned to 32bytes
  324. * for meeting FSL DMA specification requirement.
  325. */
  326. fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
  327. fsl_chan->dev, sizeof(struct fsl_desc_sw),
  328. 32, 0);
  329. if (!fsl_chan->desc_pool) {
  330. dev_err(fsl_chan->dev, "No memory for channel %d "
  331. "descriptor dma pool.\n", fsl_chan->id);
  332. return 0;
  333. }
  334. return 1;
  335. }
  336. /**
  337. * fsl_dma_free_chan_resources - Free all resources of the channel.
  338. * @fsl_chan : Freescale DMA channel
  339. */
  340. static void fsl_dma_free_chan_resources(struct dma_chan *chan)
  341. {
  342. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  343. struct fsl_desc_sw *desc, *_desc;
  344. unsigned long flags;
  345. dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
  346. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  347. list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
  348. #ifdef FSL_DMA_LD_DEBUG
  349. dev_dbg(fsl_chan->dev,
  350. "LD %p will be released.\n", desc);
  351. #endif
  352. list_del(&desc->node);
  353. /* free link descriptor */
  354. dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
  355. }
  356. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  357. dma_pool_destroy(fsl_chan->desc_pool);
  358. }
  359. static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
  360. struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
  361. size_t len, unsigned long flags)
  362. {
  363. struct fsl_dma_chan *fsl_chan;
  364. struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
  365. size_t copy;
  366. LIST_HEAD(link_chain);
  367. if (!chan)
  368. return NULL;
  369. if (!len)
  370. return NULL;
  371. fsl_chan = to_fsl_chan(chan);
  372. do {
  373. /* Allocate the link descriptor from DMA pool */
  374. new = fsl_dma_alloc_descriptor(fsl_chan);
  375. if (!new) {
  376. dev_err(fsl_chan->dev,
  377. "No free memory for link descriptor\n");
  378. return NULL;
  379. }
  380. #ifdef FSL_DMA_LD_DEBUG
  381. dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
  382. #endif
  383. copy = min(len, FSL_DMA_BCR_MAX_CNT);
  384. set_desc_cnt(fsl_chan, &new->hw, copy);
  385. set_desc_src(fsl_chan, &new->hw, dma_src);
  386. set_desc_dest(fsl_chan, &new->hw, dma_dest);
  387. if (!first)
  388. first = new;
  389. else
  390. set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
  391. new->async_tx.cookie = 0;
  392. new->async_tx.ack = 1;
  393. prev = new;
  394. len -= copy;
  395. dma_src += copy;
  396. dma_dest += copy;
  397. /* Insert the link descriptor to the LD ring */
  398. list_add_tail(&new->node, &first->async_tx.tx_list);
  399. } while (len);
  400. new->async_tx.ack = 0; /* client is in control of this ack */
  401. new->async_tx.cookie = -EBUSY;
  402. /* Set End-of-link to the last link descriptor of new list*/
  403. set_ld_eol(fsl_chan, new);
  404. return first ? &first->async_tx : NULL;
  405. }
  406. /**
  407. * fsl_dma_update_completed_cookie - Update the completed cookie.
  408. * @fsl_chan : Freescale DMA channel
  409. */
  410. static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
  411. {
  412. struct fsl_desc_sw *cur_desc, *desc;
  413. dma_addr_t ld_phy;
  414. ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
  415. if (ld_phy) {
  416. cur_desc = NULL;
  417. list_for_each_entry(desc, &fsl_chan->ld_queue, node)
  418. if (desc->async_tx.phys == ld_phy) {
  419. cur_desc = desc;
  420. break;
  421. }
  422. if (cur_desc && cur_desc->async_tx.cookie) {
  423. if (dma_is_idle(fsl_chan))
  424. fsl_chan->completed_cookie =
  425. cur_desc->async_tx.cookie;
  426. else
  427. fsl_chan->completed_cookie =
  428. cur_desc->async_tx.cookie - 1;
  429. }
  430. }
  431. }
  432. /**
  433. * fsl_chan_ld_cleanup - Clean up link descriptors
  434. * @fsl_chan : Freescale DMA channel
  435. *
  436. * This function clean up the ld_queue of DMA channel.
  437. * If 'in_intr' is set, the function will move the link descriptor to
  438. * the recycle list. Otherwise, free it directly.
  439. */
  440. static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
  441. {
  442. struct fsl_desc_sw *desc, *_desc;
  443. unsigned long flags;
  444. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  445. fsl_dma_update_completed_cookie(fsl_chan);
  446. dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
  447. fsl_chan->completed_cookie);
  448. list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
  449. dma_async_tx_callback callback;
  450. void *callback_param;
  451. if (dma_async_is_complete(desc->async_tx.cookie,
  452. fsl_chan->completed_cookie, fsl_chan->common.cookie)
  453. == DMA_IN_PROGRESS)
  454. break;
  455. callback = desc->async_tx.callback;
  456. callback_param = desc->async_tx.callback_param;
  457. /* Remove from ld_queue list */
  458. list_del(&desc->node);
  459. dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
  460. desc);
  461. dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
  462. /* Run the link descriptor callback function */
  463. if (callback) {
  464. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  465. dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
  466. desc);
  467. callback(callback_param);
  468. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  469. }
  470. }
  471. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  472. }
  473. /**
  474. * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
  475. * @fsl_chan : Freescale DMA channel
  476. */
  477. static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
  478. {
  479. struct list_head *ld_node;
  480. dma_addr_t next_dest_addr;
  481. unsigned long flags;
  482. if (!dma_is_idle(fsl_chan))
  483. return;
  484. dma_halt(fsl_chan);
  485. /* If there are some link descriptors
  486. * not transfered in queue. We need to start it.
  487. */
  488. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  489. /* Find the first un-transfer desciptor */
  490. for (ld_node = fsl_chan->ld_queue.next;
  491. (ld_node != &fsl_chan->ld_queue)
  492. && (dma_async_is_complete(
  493. to_fsl_desc(ld_node)->async_tx.cookie,
  494. fsl_chan->completed_cookie,
  495. fsl_chan->common.cookie) == DMA_SUCCESS);
  496. ld_node = ld_node->next);
  497. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  498. if (ld_node != &fsl_chan->ld_queue) {
  499. /* Get the ld start address from ld_queue */
  500. next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
  501. dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%016llx\n",
  502. (u64)next_dest_addr);
  503. set_cdar(fsl_chan, next_dest_addr);
  504. dma_start(fsl_chan);
  505. } else {
  506. set_cdar(fsl_chan, 0);
  507. set_ndar(fsl_chan, 0);
  508. }
  509. }
  510. /**
  511. * fsl_dma_memcpy_issue_pending - Issue the DMA start command
  512. * @fsl_chan : Freescale DMA channel
  513. */
  514. static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
  515. {
  516. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  517. #ifdef FSL_DMA_LD_DEBUG
  518. struct fsl_desc_sw *ld;
  519. unsigned long flags;
  520. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  521. if (list_empty(&fsl_chan->ld_queue)) {
  522. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  523. return;
  524. }
  525. dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
  526. list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
  527. int i;
  528. dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
  529. fsl_chan->id, ld->async_tx.phys);
  530. for (i = 0; i < 8; i++)
  531. dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
  532. i, *(((u32 *)&ld->hw) + i));
  533. }
  534. dev_dbg(fsl_chan->dev, "----------------\n");
  535. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  536. #endif
  537. fsl_chan_xfer_ld_queue(fsl_chan);
  538. }
  539. static void fsl_dma_dependency_added(struct dma_chan *chan)
  540. {
  541. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  542. fsl_chan_ld_cleanup(fsl_chan);
  543. }
  544. /**
  545. * fsl_dma_is_complete - Determine the DMA status
  546. * @fsl_chan : Freescale DMA channel
  547. */
  548. static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
  549. dma_cookie_t cookie,
  550. dma_cookie_t *done,
  551. dma_cookie_t *used)
  552. {
  553. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  554. dma_cookie_t last_used;
  555. dma_cookie_t last_complete;
  556. fsl_chan_ld_cleanup(fsl_chan);
  557. last_used = chan->cookie;
  558. last_complete = fsl_chan->completed_cookie;
  559. if (done)
  560. *done = last_complete;
  561. if (used)
  562. *used = last_used;
  563. return dma_async_is_complete(cookie, last_complete, last_used);
  564. }
  565. static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
  566. {
  567. struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
  568. dma_addr_t stat;
  569. stat = get_sr(fsl_chan);
  570. dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
  571. fsl_chan->id, stat);
  572. set_sr(fsl_chan, stat); /* Clear the event register */
  573. stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
  574. if (!stat)
  575. return IRQ_NONE;
  576. if (stat & FSL_DMA_SR_TE)
  577. dev_err(fsl_chan->dev, "Transfer Error!\n");
  578. /* If the link descriptor segment transfer finishes,
  579. * we will recycle the used descriptor.
  580. */
  581. if (stat & FSL_DMA_SR_EOSI) {
  582. dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
  583. dev_dbg(fsl_chan->dev, "event: clndar 0x%016llx, "
  584. "nlndar 0x%016llx\n", (u64)get_cdar(fsl_chan),
  585. (u64)get_ndar(fsl_chan));
  586. stat &= ~FSL_DMA_SR_EOSI;
  587. }
  588. /* If it current transfer is the end-of-transfer,
  589. * we should clear the Channel Start bit for
  590. * prepare next transfer.
  591. */
  592. if (stat & (FSL_DMA_SR_EOLNI | FSL_DMA_SR_EOCDI)) {
  593. dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
  594. stat &= ~FSL_DMA_SR_EOLNI;
  595. fsl_chan_xfer_ld_queue(fsl_chan);
  596. }
  597. if (stat)
  598. dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
  599. stat);
  600. dev_dbg(fsl_chan->dev, "event: Exit\n");
  601. tasklet_schedule(&fsl_chan->tasklet);
  602. return IRQ_HANDLED;
  603. }
  604. static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
  605. {
  606. struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
  607. u32 gsr;
  608. int ch_nr;
  609. gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
  610. : in_le32(fdev->reg_base);
  611. ch_nr = (32 - ffs(gsr)) / 8;
  612. return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
  613. fdev->chan[ch_nr]) : IRQ_NONE;
  614. }
  615. static void dma_do_tasklet(unsigned long data)
  616. {
  617. struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
  618. fsl_chan_ld_cleanup(fsl_chan);
  619. }
  620. static void fsl_dma_callback_test(struct fsl_dma_chan *fsl_chan)
  621. {
  622. if (fsl_chan)
  623. dev_info(fsl_chan->dev, "selftest: callback is ok!\n");
  624. }
  625. static int fsl_dma_self_test(struct fsl_dma_chan *fsl_chan)
  626. {
  627. struct dma_chan *chan;
  628. int err = 0;
  629. dma_addr_t dma_dest, dma_src;
  630. dma_cookie_t cookie;
  631. u8 *src, *dest;
  632. int i;
  633. size_t test_size;
  634. struct dma_async_tx_descriptor *tx1, *tx2, *tx3;
  635. test_size = 4096;
  636. src = kmalloc(test_size * 2, GFP_KERNEL);
  637. if (!src) {
  638. dev_err(fsl_chan->dev,
  639. "selftest: Cannot alloc memory for test!\n");
  640. err = -ENOMEM;
  641. goto out;
  642. }
  643. dest = src + test_size;
  644. for (i = 0; i < test_size; i++)
  645. src[i] = (u8) i;
  646. chan = &fsl_chan->common;
  647. if (fsl_dma_alloc_chan_resources(chan) < 1) {
  648. dev_err(fsl_chan->dev,
  649. "selftest: Cannot alloc resources for DMA\n");
  650. err = -ENODEV;
  651. goto out;
  652. }
  653. /* TX 1 */
  654. dma_src = dma_map_single(fsl_chan->dev, src, test_size / 2,
  655. DMA_TO_DEVICE);
  656. dma_dest = dma_map_single(fsl_chan->dev, dest, test_size / 2,
  657. DMA_FROM_DEVICE);
  658. tx1 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 2, 0);
  659. async_tx_ack(tx1);
  660. cookie = fsl_dma_tx_submit(tx1);
  661. fsl_dma_memcpy_issue_pending(chan);
  662. msleep(2);
  663. if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  664. dev_err(fsl_chan->dev, "selftest: Time out!\n");
  665. err = -ENODEV;
  666. goto out;
  667. }
  668. /* Test free and re-alloc channel resources */
  669. fsl_dma_free_chan_resources(chan);
  670. if (fsl_dma_alloc_chan_resources(chan) < 1) {
  671. dev_err(fsl_chan->dev,
  672. "selftest: Cannot alloc resources for DMA\n");
  673. err = -ENODEV;
  674. goto free_resources;
  675. }
  676. /* Continue to test
  677. * TX 2
  678. */
  679. dma_src = dma_map_single(fsl_chan->dev, src + test_size / 2,
  680. test_size / 4, DMA_TO_DEVICE);
  681. dma_dest = dma_map_single(fsl_chan->dev, dest + test_size / 2,
  682. test_size / 4, DMA_FROM_DEVICE);
  683. tx2 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
  684. async_tx_ack(tx2);
  685. /* TX 3 */
  686. dma_src = dma_map_single(fsl_chan->dev, src + test_size * 3 / 4,
  687. test_size / 4, DMA_TO_DEVICE);
  688. dma_dest = dma_map_single(fsl_chan->dev, dest + test_size * 3 / 4,
  689. test_size / 4, DMA_FROM_DEVICE);
  690. tx3 = fsl_dma_prep_memcpy(chan, dma_dest, dma_src, test_size / 4, 0);
  691. async_tx_ack(tx3);
  692. /* Test exchanging the prepared tx sort */
  693. cookie = fsl_dma_tx_submit(tx3);
  694. cookie = fsl_dma_tx_submit(tx2);
  695. #ifdef FSL_DMA_CALLBACKTEST
  696. if (dma_has_cap(DMA_INTERRUPT, ((struct fsl_dma_device *)
  697. dev_get_drvdata(fsl_chan->dev->parent))->common.cap_mask)) {
  698. tx3->callback = fsl_dma_callback_test;
  699. tx3->callback_param = fsl_chan;
  700. }
  701. #endif
  702. fsl_dma_memcpy_issue_pending(chan);
  703. msleep(2);
  704. if (fsl_dma_is_complete(chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  705. dev_err(fsl_chan->dev, "selftest: Time out!\n");
  706. err = -ENODEV;
  707. goto free_resources;
  708. }
  709. err = memcmp(src, dest, test_size);
  710. if (err) {
  711. for (i = 0; (*(src + i) == *(dest + i)) && (i < test_size);
  712. i++);
  713. dev_err(fsl_chan->dev, "selftest: Test failed, data %d/%d is "
  714. "error! src 0x%x, dest 0x%x\n",
  715. i, test_size, *(src + i), *(dest + i));
  716. }
  717. free_resources:
  718. fsl_dma_free_chan_resources(chan);
  719. out:
  720. kfree(src);
  721. return err;
  722. }
  723. static int __devinit of_fsl_dma_chan_probe(struct of_device *dev,
  724. const struct of_device_id *match)
  725. {
  726. struct fsl_dma_device *fdev;
  727. struct fsl_dma_chan *new_fsl_chan;
  728. int err;
  729. fdev = dev_get_drvdata(dev->dev.parent);
  730. BUG_ON(!fdev);
  731. /* alloc channel */
  732. new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
  733. if (!new_fsl_chan) {
  734. dev_err(&dev->dev, "No free memory for allocating "
  735. "dma channels!\n");
  736. err = -ENOMEM;
  737. goto err;
  738. }
  739. /* get dma channel register base */
  740. err = of_address_to_resource(dev->node, 0, &new_fsl_chan->reg);
  741. if (err) {
  742. dev_err(&dev->dev, "Can't get %s property 'reg'\n",
  743. dev->node->full_name);
  744. goto err;
  745. }
  746. new_fsl_chan->feature = *(u32 *)match->data;
  747. if (!fdev->feature)
  748. fdev->feature = new_fsl_chan->feature;
  749. /* If the DMA device's feature is different than its channels',
  750. * report the bug.
  751. */
  752. WARN_ON(fdev->feature != new_fsl_chan->feature);
  753. new_fsl_chan->dev = &dev->dev;
  754. new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
  755. new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
  756. new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
  757. if (new_fsl_chan->id > FSL_DMA_MAX_CHANS_PER_DEVICE) {
  758. dev_err(&dev->dev, "There is no %d channel!\n",
  759. new_fsl_chan->id);
  760. err = -EINVAL;
  761. goto err;
  762. }
  763. fdev->chan[new_fsl_chan->id] = new_fsl_chan;
  764. tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
  765. (unsigned long)new_fsl_chan);
  766. /* Init the channel */
  767. dma_init(new_fsl_chan);
  768. /* Clear cdar registers */
  769. set_cdar(new_fsl_chan, 0);
  770. switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
  771. case FSL_DMA_IP_85XX:
  772. new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
  773. new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
  774. case FSL_DMA_IP_83XX:
  775. new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
  776. new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
  777. }
  778. spin_lock_init(&new_fsl_chan->desc_lock);
  779. INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
  780. new_fsl_chan->common.device = &fdev->common;
  781. /* Add the channel to DMA device channel list */
  782. list_add_tail(&new_fsl_chan->common.device_node,
  783. &fdev->common.channels);
  784. fdev->common.chancnt++;
  785. new_fsl_chan->irq = irq_of_parse_and_map(dev->node, 0);
  786. if (new_fsl_chan->irq != NO_IRQ) {
  787. err = request_irq(new_fsl_chan->irq,
  788. &fsl_dma_chan_do_interrupt, IRQF_SHARED,
  789. "fsldma-channel", new_fsl_chan);
  790. if (err) {
  791. dev_err(&dev->dev, "DMA channel %s request_irq error "
  792. "with return %d\n", dev->node->full_name, err);
  793. goto err;
  794. }
  795. }
  796. #ifdef CONFIG_FSL_DMA_SELFTEST
  797. err = fsl_dma_self_test(new_fsl_chan);
  798. if (err)
  799. goto err;
  800. #endif
  801. dev_info(&dev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
  802. match->compatible, new_fsl_chan->irq);
  803. return 0;
  804. err:
  805. dma_halt(new_fsl_chan);
  806. iounmap(new_fsl_chan->reg_base);
  807. free_irq(new_fsl_chan->irq, new_fsl_chan);
  808. list_del(&new_fsl_chan->common.device_node);
  809. kfree(new_fsl_chan);
  810. return err;
  811. }
  812. const u32 mpc8540_dma_ip_feature = FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN;
  813. const u32 mpc8349_dma_ip_feature = FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN;
  814. static struct of_device_id of_fsl_dma_chan_ids[] = {
  815. {
  816. .compatible = "fsl,mpc8540-dma-channel",
  817. .data = (void *)&mpc8540_dma_ip_feature,
  818. },
  819. {
  820. .compatible = "fsl,mpc8349-dma-channel",
  821. .data = (void *)&mpc8349_dma_ip_feature,
  822. },
  823. {}
  824. };
  825. static struct of_platform_driver of_fsl_dma_chan_driver = {
  826. .name = "of-fsl-dma-channel",
  827. .match_table = of_fsl_dma_chan_ids,
  828. .probe = of_fsl_dma_chan_probe,
  829. };
  830. static __init int of_fsl_dma_chan_init(void)
  831. {
  832. return of_register_platform_driver(&of_fsl_dma_chan_driver);
  833. }
  834. static int __devinit of_fsl_dma_probe(struct of_device *dev,
  835. const struct of_device_id *match)
  836. {
  837. int err;
  838. unsigned int irq;
  839. struct fsl_dma_device *fdev;
  840. fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
  841. if (!fdev) {
  842. dev_err(&dev->dev, "No enough memory for 'priv'\n");
  843. err = -ENOMEM;
  844. goto err;
  845. }
  846. fdev->dev = &dev->dev;
  847. INIT_LIST_HEAD(&fdev->common.channels);
  848. /* get DMA controller register base */
  849. err = of_address_to_resource(dev->node, 0, &fdev->reg);
  850. if (err) {
  851. dev_err(&dev->dev, "Can't get %s property 'reg'\n",
  852. dev->node->full_name);
  853. goto err;
  854. }
  855. dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
  856. "controller at 0x%08x...\n",
  857. match->compatible, fdev->reg.start);
  858. fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
  859. - fdev->reg.start + 1);
  860. dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
  861. dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
  862. fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
  863. fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
  864. fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
  865. fdev->common.device_is_tx_complete = fsl_dma_is_complete;
  866. fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
  867. fdev->common.device_dependency_added = fsl_dma_dependency_added;
  868. fdev->common.dev = &dev->dev;
  869. irq = irq_of_parse_and_map(dev->node, 0);
  870. if (irq != NO_IRQ) {
  871. err = request_irq(irq, &fsl_dma_do_interrupt, IRQF_SHARED,
  872. "fsldma-device", fdev);
  873. if (err) {
  874. dev_err(&dev->dev, "DMA device request_irq error "
  875. "with return %d\n", err);
  876. goto err;
  877. }
  878. }
  879. dev_set_drvdata(&(dev->dev), fdev);
  880. of_platform_bus_probe(dev->node, of_fsl_dma_chan_ids, &dev->dev);
  881. dma_async_device_register(&fdev->common);
  882. return 0;
  883. err:
  884. iounmap(fdev->reg_base);
  885. kfree(fdev);
  886. return err;
  887. }
  888. static struct of_device_id of_fsl_dma_ids[] = {
  889. { .compatible = "fsl,mpc8540-dma", },
  890. { .compatible = "fsl,mpc8349-dma", },
  891. {}
  892. };
  893. static struct of_platform_driver of_fsl_dma_driver = {
  894. .name = "of-fsl-dma",
  895. .match_table = of_fsl_dma_ids,
  896. .probe = of_fsl_dma_probe,
  897. };
  898. static __init int of_fsl_dma_init(void)
  899. {
  900. return of_register_platform_driver(&of_fsl_dma_driver);
  901. }
  902. subsys_initcall(of_fsl_dma_chan_init);
  903. subsys_initcall(of_fsl_dma_init);