mem.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
  9. * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
  10. *
  11. * Derived from "arch/i386/mm/init.c"
  12. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License
  16. * as published by the Free Software Foundation; either version
  17. * 2 of the License, or (at your option) any later version.
  18. *
  19. */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/sched.h>
  23. #include <linux/kernel.h>
  24. #include <linux/errno.h>
  25. #include <linux/string.h>
  26. #include <linux/types.h>
  27. #include <linux/mm.h>
  28. #include <linux/stddef.h>
  29. #include <linux/init.h>
  30. #include <linux/bootmem.h>
  31. #include <linux/highmem.h>
  32. #include <linux/initrd.h>
  33. #include <linux/pagemap.h>
  34. #include <asm/pgalloc.h>
  35. #include <asm/prom.h>
  36. #include <asm/io.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/mmu.h>
  40. #include <asm/smp.h>
  41. #include <asm/machdep.h>
  42. #include <asm/btext.h>
  43. #include <asm/tlb.h>
  44. #include <asm/prom.h>
  45. #include <asm/lmb.h>
  46. #include <asm/sections.h>
  47. #include <asm/vdso.h>
  48. #include "mmu_decl.h"
  49. #ifndef CPU_FTR_COHERENT_ICACHE
  50. #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
  51. #define CPU_FTR_NOEXECUTE 0
  52. #endif
  53. int init_bootmem_done;
  54. int mem_init_done;
  55. unsigned long memory_limit;
  56. extern void hash_preload(struct mm_struct *mm, unsigned long ea,
  57. unsigned long access, unsigned long trap);
  58. /*
  59. * This is called by /dev/mem to know if a given address has to
  60. * be mapped non-cacheable or not
  61. */
  62. int page_is_ram(unsigned long pfn)
  63. {
  64. unsigned long paddr = (pfn << PAGE_SHIFT);
  65. #ifndef CONFIG_PPC64 /* XXX for now */
  66. return paddr < __pa(high_memory);
  67. #else
  68. int i;
  69. for (i=0; i < lmb.memory.cnt; i++) {
  70. unsigned long base;
  71. base = lmb.memory.region[i].base;
  72. if ((paddr >= base) &&
  73. (paddr < (base + lmb.memory.region[i].size))) {
  74. return 1;
  75. }
  76. }
  77. return 0;
  78. #endif
  79. }
  80. EXPORT_SYMBOL(page_is_ram);
  81. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  82. unsigned long size, pgprot_t vma_prot)
  83. {
  84. if (ppc_md.phys_mem_access_prot)
  85. return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
  86. if (!page_is_ram(pfn))
  87. vma_prot = __pgprot(pgprot_val(vma_prot)
  88. | _PAGE_GUARDED | _PAGE_NO_CACHE);
  89. return vma_prot;
  90. }
  91. EXPORT_SYMBOL(phys_mem_access_prot);
  92. #ifdef CONFIG_MEMORY_HOTPLUG
  93. void online_page(struct page *page)
  94. {
  95. ClearPageReserved(page);
  96. set_page_count(page, 0);
  97. free_cold_page(page);
  98. totalram_pages++;
  99. num_physpages++;
  100. }
  101. /*
  102. * This works only for the non-NUMA case. Later, we'll need a lookup
  103. * to convert from real physical addresses to nid, that doesn't use
  104. * pfn_to_nid().
  105. */
  106. int __devinit add_memory(u64 start, u64 size)
  107. {
  108. struct pglist_data *pgdata = NODE_DATA(0);
  109. struct zone *zone;
  110. unsigned long start_pfn = start >> PAGE_SHIFT;
  111. unsigned long nr_pages = size >> PAGE_SHIFT;
  112. start += KERNELBASE;
  113. create_section_mapping(start, start + size);
  114. /* this should work for most non-highmem platforms */
  115. zone = pgdata->node_zones;
  116. return __add_pages(zone, start_pfn, nr_pages);
  117. return 0;
  118. }
  119. /*
  120. * First pass at this code will check to determine if the remove
  121. * request is within the RMO. Do not allow removal within the RMO.
  122. */
  123. int __devinit remove_memory(u64 start, u64 size)
  124. {
  125. struct zone *zone;
  126. unsigned long start_pfn, end_pfn, nr_pages;
  127. start_pfn = start >> PAGE_SHIFT;
  128. nr_pages = size >> PAGE_SHIFT;
  129. end_pfn = start_pfn + nr_pages;
  130. printk("%s(): Attempting to remove memoy in range "
  131. "%lx to %lx\n", __func__, start, start+size);
  132. /*
  133. * check for range within RMO
  134. */
  135. zone = page_zone(pfn_to_page(start_pfn));
  136. printk("%s(): memory will be removed from "
  137. "the %s zone\n", __func__, zone->name);
  138. /*
  139. * not handling removing memory ranges that
  140. * overlap multiple zones yet
  141. */
  142. if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
  143. goto overlap;
  144. /* make sure it is NOT in RMO */
  145. if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
  146. printk("%s(): range to be removed must NOT be in RMO!\n",
  147. __func__);
  148. goto in_rmo;
  149. }
  150. return __remove_pages(zone, start_pfn, nr_pages);
  151. overlap:
  152. printk("%s(): memory range to be removed overlaps "
  153. "multiple zones!!!\n", __func__);
  154. in_rmo:
  155. return -1;
  156. }
  157. #endif /* CONFIG_MEMORY_HOTPLUG */
  158. void show_mem(void)
  159. {
  160. unsigned long total = 0, reserved = 0;
  161. unsigned long shared = 0, cached = 0;
  162. unsigned long highmem = 0;
  163. struct page *page;
  164. pg_data_t *pgdat;
  165. unsigned long i;
  166. printk("Mem-info:\n");
  167. show_free_areas();
  168. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  169. for_each_pgdat(pgdat) {
  170. unsigned long flags;
  171. pgdat_resize_lock(pgdat, &flags);
  172. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  173. if (!pfn_valid(pgdat->node_start_pfn + i))
  174. continue;
  175. page = pgdat_page_nr(pgdat, i);
  176. total++;
  177. if (PageHighMem(page))
  178. highmem++;
  179. if (PageReserved(page))
  180. reserved++;
  181. else if (PageSwapCache(page))
  182. cached++;
  183. else if (page_count(page))
  184. shared += page_count(page) - 1;
  185. }
  186. pgdat_resize_unlock(pgdat, &flags);
  187. }
  188. printk("%ld pages of RAM\n", total);
  189. #ifdef CONFIG_HIGHMEM
  190. printk("%ld pages of HIGHMEM\n", highmem);
  191. #endif
  192. printk("%ld reserved pages\n", reserved);
  193. printk("%ld pages shared\n", shared);
  194. printk("%ld pages swap cached\n", cached);
  195. }
  196. /*
  197. * Initialize the bootmem system and give it all the memory we
  198. * have available. If we are using highmem, we only put the
  199. * lowmem into the bootmem system.
  200. */
  201. #ifndef CONFIG_NEED_MULTIPLE_NODES
  202. void __init do_init_bootmem(void)
  203. {
  204. unsigned long i;
  205. unsigned long start, bootmap_pages;
  206. unsigned long total_pages;
  207. int boot_mapsize;
  208. max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
  209. #ifdef CONFIG_HIGHMEM
  210. total_pages = total_lowmem >> PAGE_SHIFT;
  211. #endif
  212. /*
  213. * Find an area to use for the bootmem bitmap. Calculate the size of
  214. * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
  215. * Add 1 additional page in case the address isn't page-aligned.
  216. */
  217. bootmap_pages = bootmem_bootmap_pages(total_pages);
  218. start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
  219. BUG_ON(!start);
  220. boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
  221. /* Add all physical memory to the bootmem map, mark each area
  222. * present.
  223. */
  224. for (i = 0; i < lmb.memory.cnt; i++) {
  225. unsigned long base = lmb.memory.region[i].base;
  226. unsigned long size = lmb_size_bytes(&lmb.memory, i);
  227. #ifdef CONFIG_HIGHMEM
  228. if (base >= total_lowmem)
  229. continue;
  230. if (base + size > total_lowmem)
  231. size = total_lowmem - base;
  232. #endif
  233. free_bootmem(base, size);
  234. }
  235. /* reserve the sections we're already using */
  236. for (i = 0; i < lmb.reserved.cnt; i++)
  237. reserve_bootmem(lmb.reserved.region[i].base,
  238. lmb_size_bytes(&lmb.reserved, i));
  239. /* XXX need to clip this if using highmem? */
  240. for (i = 0; i < lmb.memory.cnt; i++)
  241. memory_present(0, lmb_start_pfn(&lmb.memory, i),
  242. lmb_end_pfn(&lmb.memory, i));
  243. init_bootmem_done = 1;
  244. }
  245. /*
  246. * paging_init() sets up the page tables - in fact we've already done this.
  247. */
  248. void __init paging_init(void)
  249. {
  250. unsigned long zones_size[MAX_NR_ZONES];
  251. unsigned long zholes_size[MAX_NR_ZONES];
  252. unsigned long total_ram = lmb_phys_mem_size();
  253. unsigned long top_of_ram = lmb_end_of_DRAM();
  254. #ifdef CONFIG_HIGHMEM
  255. map_page(PKMAP_BASE, 0, 0); /* XXX gross */
  256. pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
  257. (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
  258. map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
  259. kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
  260. (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
  261. kmap_prot = PAGE_KERNEL;
  262. #endif /* CONFIG_HIGHMEM */
  263. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  264. top_of_ram, total_ram);
  265. printk(KERN_INFO "Memory hole size: %ldMB\n",
  266. (top_of_ram - total_ram) >> 20);
  267. /*
  268. * All pages are DMA-able so we put them all in the DMA zone.
  269. */
  270. memset(zones_size, 0, sizeof(zones_size));
  271. memset(zholes_size, 0, sizeof(zholes_size));
  272. zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
  273. zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
  274. #ifdef CONFIG_HIGHMEM
  275. zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
  276. zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
  277. zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
  278. #else
  279. zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
  280. zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
  281. #endif /* CONFIG_HIGHMEM */
  282. free_area_init_node(0, NODE_DATA(0), zones_size,
  283. __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
  284. }
  285. #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
  286. void __init mem_init(void)
  287. {
  288. #ifdef CONFIG_NEED_MULTIPLE_NODES
  289. int nid;
  290. #endif
  291. pg_data_t *pgdat;
  292. unsigned long i;
  293. struct page *page;
  294. unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
  295. num_physpages = lmb.memory.size >> PAGE_SHIFT;
  296. high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
  297. #ifdef CONFIG_NEED_MULTIPLE_NODES
  298. for_each_online_node(nid) {
  299. if (NODE_DATA(nid)->node_spanned_pages != 0) {
  300. printk("freeing bootmem node %x\n", nid);
  301. totalram_pages +=
  302. free_all_bootmem_node(NODE_DATA(nid));
  303. }
  304. }
  305. #else
  306. max_mapnr = max_pfn;
  307. totalram_pages += free_all_bootmem();
  308. #endif
  309. for_each_pgdat(pgdat) {
  310. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  311. if (!pfn_valid(pgdat->node_start_pfn + i))
  312. continue;
  313. page = pgdat_page_nr(pgdat, i);
  314. if (PageReserved(page))
  315. reservedpages++;
  316. }
  317. }
  318. codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
  319. datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
  320. initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
  321. bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
  322. #ifdef CONFIG_HIGHMEM
  323. {
  324. unsigned long pfn, highmem_mapnr;
  325. highmem_mapnr = total_lowmem >> PAGE_SHIFT;
  326. for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
  327. struct page *page = pfn_to_page(pfn);
  328. ClearPageReserved(page);
  329. set_page_count(page, 1);
  330. __free_page(page);
  331. totalhigh_pages++;
  332. }
  333. totalram_pages += totalhigh_pages;
  334. printk(KERN_INFO "High memory: %luk\n",
  335. totalhigh_pages << (PAGE_SHIFT-10));
  336. }
  337. #endif /* CONFIG_HIGHMEM */
  338. printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
  339. "%luk reserved, %luk data, %luk bss, %luk init)\n",
  340. (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
  341. num_physpages << (PAGE_SHIFT-10),
  342. codesize >> 10,
  343. reservedpages << (PAGE_SHIFT-10),
  344. datasize >> 10,
  345. bsssize >> 10,
  346. initsize >> 10);
  347. mem_init_done = 1;
  348. /* Initialize the vDSO */
  349. vdso_init();
  350. }
  351. /*
  352. * This is called when a page has been modified by the kernel.
  353. * It just marks the page as not i-cache clean. We do the i-cache
  354. * flush later when the page is given to a user process, if necessary.
  355. */
  356. void flush_dcache_page(struct page *page)
  357. {
  358. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  359. return;
  360. /* avoid an atomic op if possible */
  361. if (test_bit(PG_arch_1, &page->flags))
  362. clear_bit(PG_arch_1, &page->flags);
  363. }
  364. EXPORT_SYMBOL(flush_dcache_page);
  365. void flush_dcache_icache_page(struct page *page)
  366. {
  367. #ifdef CONFIG_BOOKE
  368. void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
  369. __flush_dcache_icache(start);
  370. kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
  371. #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
  372. /* On 8xx there is no need to kmap since highmem is not supported */
  373. __flush_dcache_icache(page_address(page));
  374. #else
  375. __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
  376. #endif
  377. }
  378. void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
  379. {
  380. clear_page(page);
  381. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  382. return;
  383. /*
  384. * We shouldnt have to do this, but some versions of glibc
  385. * require it (ld.so assumes zero filled pages are icache clean)
  386. * - Anton
  387. */
  388. /* avoid an atomic op if possible */
  389. if (test_bit(PG_arch_1, &pg->flags))
  390. clear_bit(PG_arch_1, &pg->flags);
  391. }
  392. EXPORT_SYMBOL(clear_user_page);
  393. void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
  394. struct page *pg)
  395. {
  396. copy_page(vto, vfrom);
  397. /*
  398. * We should be able to use the following optimisation, however
  399. * there are two problems.
  400. * Firstly a bug in some versions of binutils meant PLT sections
  401. * were not marked executable.
  402. * Secondly the first word in the GOT section is blrl, used
  403. * to establish the GOT address. Until recently the GOT was
  404. * not marked executable.
  405. * - Anton
  406. */
  407. #if 0
  408. if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
  409. return;
  410. #endif
  411. if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
  412. return;
  413. /* avoid an atomic op if possible */
  414. if (test_bit(PG_arch_1, &pg->flags))
  415. clear_bit(PG_arch_1, &pg->flags);
  416. }
  417. void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
  418. unsigned long addr, int len)
  419. {
  420. unsigned long maddr;
  421. maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
  422. flush_icache_range(maddr, maddr + len);
  423. kunmap(page);
  424. }
  425. EXPORT_SYMBOL(flush_icache_user_range);
  426. /*
  427. * This is called at the end of handling a user page fault, when the
  428. * fault has been handled by updating a PTE in the linux page tables.
  429. * We use it to preload an HPTE into the hash table corresponding to
  430. * the updated linux PTE.
  431. *
  432. * This must always be called with the pte lock held.
  433. */
  434. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
  435. pte_t pte)
  436. {
  437. #ifdef CONFIG_PPC_STD_MMU
  438. unsigned long access = 0, trap;
  439. #endif
  440. unsigned long pfn = pte_pfn(pte);
  441. /* handle i-cache coherency */
  442. if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
  443. !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
  444. pfn_valid(pfn)) {
  445. struct page *page = pfn_to_page(pfn);
  446. if (!PageReserved(page)
  447. && !test_bit(PG_arch_1, &page->flags)) {
  448. if (vma->vm_mm == current->active_mm) {
  449. #ifdef CONFIG_8xx
  450. /* On 8xx, cache control instructions (particularly
  451. * "dcbst" from flush_dcache_icache) fault as write
  452. * operation if there is an unpopulated TLB entry
  453. * for the address in question. To workaround that,
  454. * we invalidate the TLB here, thus avoiding dcbst
  455. * misbehaviour.
  456. */
  457. _tlbie(address);
  458. #endif
  459. __flush_dcache_icache((void *) address);
  460. } else
  461. flush_dcache_icache_page(page);
  462. set_bit(PG_arch_1, &page->flags);
  463. }
  464. }
  465. #ifdef CONFIG_PPC_STD_MMU
  466. /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
  467. if (!pte_young(pte) || address >= TASK_SIZE)
  468. return;
  469. /* We try to figure out if we are coming from an instruction
  470. * access fault and pass that down to __hash_page so we avoid
  471. * double-faulting on execution of fresh text. We have to test
  472. * for regs NULL since init will get here first thing at boot
  473. *
  474. * We also avoid filling the hash if not coming from a fault
  475. */
  476. if (current->thread.regs == NULL)
  477. return;
  478. trap = TRAP(current->thread.regs);
  479. if (trap == 0x400)
  480. access |= _PAGE_EXEC;
  481. else if (trap != 0x300)
  482. return;
  483. hash_preload(vma->vm_mm, address, access, trap);
  484. #endif /* CONFIG_PPC_STD_MMU */
  485. }