omap-aes.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for OMAP AES HW acceleration.
  5. *
  6. * Copyright (c) 2010 Nokia Corporation
  7. * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. */
  14. #define pr_fmt(fmt) "%s: " fmt, __func__
  15. #include <linux/err.h>
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/errno.h>
  19. #include <linux/kernel.h>
  20. #include <linux/clk.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/io.h>
  25. #include <linux/crypto.h>
  26. #include <linux/interrupt.h>
  27. #include <crypto/scatterwalk.h>
  28. #include <crypto/aes.h>
  29. #include <plat/cpu.h>
  30. #include <plat/dma.h>
  31. /* OMAP TRM gives bitfields as start:end, where start is the higher bit
  32. number. For example 7:0 */
  33. #define FLD_MASK(start, end) (((1 << ((start) - (end) + 1)) - 1) << (end))
  34. #define FLD_VAL(val, start, end) (((val) << (end)) & FLD_MASK(start, end))
  35. #define AES_REG_KEY(x) (0x1C - ((x ^ 0x01) * 0x04))
  36. #define AES_REG_IV(x) (0x20 + ((x) * 0x04))
  37. #define AES_REG_CTRL 0x30
  38. #define AES_REG_CTRL_CTR_WIDTH (1 << 7)
  39. #define AES_REG_CTRL_CTR (1 << 6)
  40. #define AES_REG_CTRL_CBC (1 << 5)
  41. #define AES_REG_CTRL_KEY_SIZE (3 << 3)
  42. #define AES_REG_CTRL_DIRECTION (1 << 2)
  43. #define AES_REG_CTRL_INPUT_READY (1 << 1)
  44. #define AES_REG_CTRL_OUTPUT_READY (1 << 0)
  45. #define AES_REG_DATA 0x34
  46. #define AES_REG_DATA_N(x) (0x34 + ((x) * 0x04))
  47. #define AES_REG_REV 0x44
  48. #define AES_REG_REV_MAJOR 0xF0
  49. #define AES_REG_REV_MINOR 0x0F
  50. #define AES_REG_MASK 0x48
  51. #define AES_REG_MASK_SIDLE (1 << 6)
  52. #define AES_REG_MASK_START (1 << 5)
  53. #define AES_REG_MASK_DMA_OUT_EN (1 << 3)
  54. #define AES_REG_MASK_DMA_IN_EN (1 << 2)
  55. #define AES_REG_MASK_SOFTRESET (1 << 1)
  56. #define AES_REG_AUTOIDLE (1 << 0)
  57. #define AES_REG_SYSSTATUS 0x4C
  58. #define AES_REG_SYSSTATUS_RESETDONE (1 << 0)
  59. #define DEFAULT_TIMEOUT (5*HZ)
  60. #define FLAGS_MODE_MASK 0x000f
  61. #define FLAGS_ENCRYPT BIT(0)
  62. #define FLAGS_CBC BIT(1)
  63. #define FLAGS_GIV BIT(2)
  64. #define FLAGS_NEW_KEY BIT(4)
  65. #define FLAGS_NEW_IV BIT(5)
  66. #define FLAGS_INIT BIT(6)
  67. #define FLAGS_FAST BIT(7)
  68. #define FLAGS_BUSY BIT(8)
  69. struct omap_aes_ctx {
  70. struct omap_aes_dev *dd;
  71. int keylen;
  72. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  73. unsigned long flags;
  74. };
  75. struct omap_aes_reqctx {
  76. unsigned long mode;
  77. };
  78. #define OMAP_AES_QUEUE_LENGTH 1
  79. #define OMAP_AES_CACHE_SIZE 0
  80. struct omap_aes_dev {
  81. struct list_head list;
  82. unsigned long phys_base;
  83. void __iomem *io_base;
  84. struct clk *iclk;
  85. struct omap_aes_ctx *ctx;
  86. struct device *dev;
  87. unsigned long flags;
  88. int err;
  89. u32 *iv;
  90. u32 ctrl;
  91. spinlock_t lock;
  92. struct crypto_queue queue;
  93. struct tasklet_struct done_task;
  94. struct tasklet_struct queue_task;
  95. struct ablkcipher_request *req;
  96. size_t total;
  97. struct scatterlist *in_sg;
  98. size_t in_offset;
  99. struct scatterlist *out_sg;
  100. size_t out_offset;
  101. size_t buflen;
  102. void *buf_in;
  103. size_t dma_size;
  104. int dma_in;
  105. int dma_lch_in;
  106. dma_addr_t dma_addr_in;
  107. void *buf_out;
  108. int dma_out;
  109. int dma_lch_out;
  110. dma_addr_t dma_addr_out;
  111. };
  112. /* keep registered devices data here */
  113. static LIST_HEAD(dev_list);
  114. static DEFINE_SPINLOCK(list_lock);
  115. static inline u32 omap_aes_read(struct omap_aes_dev *dd, u32 offset)
  116. {
  117. return __raw_readl(dd->io_base + offset);
  118. }
  119. static inline void omap_aes_write(struct omap_aes_dev *dd, u32 offset,
  120. u32 value)
  121. {
  122. __raw_writel(value, dd->io_base + offset);
  123. }
  124. static inline void omap_aes_write_mask(struct omap_aes_dev *dd, u32 offset,
  125. u32 value, u32 mask)
  126. {
  127. u32 val;
  128. val = omap_aes_read(dd, offset);
  129. val &= ~mask;
  130. val |= value;
  131. omap_aes_write(dd, offset, val);
  132. }
  133. static void omap_aes_write_n(struct omap_aes_dev *dd, u32 offset,
  134. u32 *value, int count)
  135. {
  136. for (; count--; value++, offset += 4)
  137. omap_aes_write(dd, offset, *value);
  138. }
  139. static int omap_aes_wait(struct omap_aes_dev *dd, u32 offset, u32 bit)
  140. {
  141. unsigned long timeout = jiffies + DEFAULT_TIMEOUT;
  142. while (!(omap_aes_read(dd, offset) & bit)) {
  143. if (time_is_before_jiffies(timeout)) {
  144. dev_err(dd->dev, "omap-aes timeout\n");
  145. return -ETIMEDOUT;
  146. }
  147. }
  148. return 0;
  149. }
  150. static int omap_aes_hw_init(struct omap_aes_dev *dd)
  151. {
  152. clk_enable(dd->iclk);
  153. if (!(dd->flags & FLAGS_INIT)) {
  154. /* is it necessary to reset before every operation? */
  155. omap_aes_write_mask(dd, AES_REG_MASK, AES_REG_MASK_SOFTRESET,
  156. AES_REG_MASK_SOFTRESET);
  157. /*
  158. * prevent OCP bus error (SRESP) in case an access to the module
  159. * is performed while the module is coming out of soft reset
  160. */
  161. __asm__ __volatile__("nop");
  162. __asm__ __volatile__("nop");
  163. if (omap_aes_wait(dd, AES_REG_SYSSTATUS,
  164. AES_REG_SYSSTATUS_RESETDONE)) {
  165. clk_disable(dd->iclk);
  166. return -ETIMEDOUT;
  167. }
  168. dd->flags |= FLAGS_INIT;
  169. dd->err = 0;
  170. }
  171. return 0;
  172. }
  173. static int omap_aes_write_ctrl(struct omap_aes_dev *dd)
  174. {
  175. unsigned int key32;
  176. int i, err, init = dd->flags & FLAGS_INIT;
  177. u32 val, mask;
  178. err = omap_aes_hw_init(dd);
  179. if (err)
  180. return err;
  181. val = FLD_VAL(((dd->ctx->keylen >> 3) - 1), 4, 3);
  182. if (dd->flags & FLAGS_CBC)
  183. val |= AES_REG_CTRL_CBC;
  184. if (dd->flags & FLAGS_ENCRYPT)
  185. val |= AES_REG_CTRL_DIRECTION;
  186. /* check if hw state & mode have not changed */
  187. if (init && dd->ctrl == val && !(dd->flags & FLAGS_NEW_IV) &&
  188. !(dd->ctx->flags & FLAGS_NEW_KEY))
  189. goto out;
  190. /* only need to write control registers for new settings */
  191. dd->ctrl = val;
  192. val = 0;
  193. if (dd->dma_lch_out >= 0)
  194. val |= AES_REG_MASK_DMA_OUT_EN;
  195. if (dd->dma_lch_in >= 0)
  196. val |= AES_REG_MASK_DMA_IN_EN;
  197. mask = AES_REG_MASK_DMA_IN_EN | AES_REG_MASK_DMA_OUT_EN;
  198. omap_aes_write_mask(dd, AES_REG_MASK, val, mask);
  199. pr_debug("Set key\n");
  200. key32 = dd->ctx->keylen / sizeof(u32);
  201. /* set a key */
  202. for (i = 0; i < key32; i++) {
  203. omap_aes_write(dd, AES_REG_KEY(i),
  204. __le32_to_cpu(dd->ctx->key[i]));
  205. }
  206. dd->ctx->flags &= ~FLAGS_NEW_KEY;
  207. if (dd->flags & FLAGS_NEW_IV) {
  208. pr_debug("Set IV\n");
  209. omap_aes_write_n(dd, AES_REG_IV(0), dd->iv, 4);
  210. dd->flags &= ~FLAGS_NEW_IV;
  211. }
  212. mask = AES_REG_CTRL_CBC | AES_REG_CTRL_DIRECTION |
  213. AES_REG_CTRL_KEY_SIZE;
  214. omap_aes_write_mask(dd, AES_REG_CTRL, dd->ctrl, mask);
  215. out:
  216. /* start DMA or disable idle mode */
  217. omap_aes_write_mask(dd, AES_REG_MASK, AES_REG_MASK_START,
  218. AES_REG_MASK_START);
  219. return 0;
  220. }
  221. static struct omap_aes_dev *omap_aes_find_dev(struct omap_aes_ctx *ctx)
  222. {
  223. struct omap_aes_dev *dd = NULL, *tmp;
  224. spin_lock_bh(&list_lock);
  225. if (!ctx->dd) {
  226. list_for_each_entry(tmp, &dev_list, list) {
  227. /* FIXME: take fist available aes core */
  228. dd = tmp;
  229. break;
  230. }
  231. ctx->dd = dd;
  232. } else {
  233. /* already found before */
  234. dd = ctx->dd;
  235. }
  236. spin_unlock_bh(&list_lock);
  237. return dd;
  238. }
  239. static void omap_aes_dma_callback(int lch, u16 ch_status, void *data)
  240. {
  241. struct omap_aes_dev *dd = data;
  242. if (ch_status != OMAP_DMA_BLOCK_IRQ) {
  243. pr_err("omap-aes DMA error status: 0x%hx\n", ch_status);
  244. dd->err = -EIO;
  245. dd->flags &= ~FLAGS_INIT; /* request to re-initialize */
  246. } else if (lch == dd->dma_lch_in) {
  247. return;
  248. }
  249. /* dma_lch_out - completed */
  250. tasklet_schedule(&dd->done_task);
  251. }
  252. static int omap_aes_dma_init(struct omap_aes_dev *dd)
  253. {
  254. int err = -ENOMEM;
  255. dd->dma_lch_out = -1;
  256. dd->dma_lch_in = -1;
  257. dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE);
  258. dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, OMAP_AES_CACHE_SIZE);
  259. dd->buflen = PAGE_SIZE << OMAP_AES_CACHE_SIZE;
  260. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  261. if (!dd->buf_in || !dd->buf_out) {
  262. dev_err(dd->dev, "unable to alloc pages.\n");
  263. goto err_alloc;
  264. }
  265. /* MAP here */
  266. dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in, dd->buflen,
  267. DMA_TO_DEVICE);
  268. if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
  269. dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
  270. err = -EINVAL;
  271. goto err_map_in;
  272. }
  273. dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out, dd->buflen,
  274. DMA_FROM_DEVICE);
  275. if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
  276. dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
  277. err = -EINVAL;
  278. goto err_map_out;
  279. }
  280. err = omap_request_dma(dd->dma_in, "omap-aes-rx",
  281. omap_aes_dma_callback, dd, &dd->dma_lch_in);
  282. if (err) {
  283. dev_err(dd->dev, "Unable to request DMA channel\n");
  284. goto err_dma_in;
  285. }
  286. err = omap_request_dma(dd->dma_out, "omap-aes-tx",
  287. omap_aes_dma_callback, dd, &dd->dma_lch_out);
  288. if (err) {
  289. dev_err(dd->dev, "Unable to request DMA channel\n");
  290. goto err_dma_out;
  291. }
  292. return 0;
  293. err_dma_out:
  294. omap_free_dma(dd->dma_lch_in);
  295. err_dma_in:
  296. dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
  297. DMA_FROM_DEVICE);
  298. err_map_out:
  299. dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE);
  300. err_map_in:
  301. free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE);
  302. free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE);
  303. err_alloc:
  304. if (err)
  305. pr_err("error: %d\n", err);
  306. return err;
  307. }
  308. static void omap_aes_dma_cleanup(struct omap_aes_dev *dd)
  309. {
  310. omap_free_dma(dd->dma_lch_out);
  311. omap_free_dma(dd->dma_lch_in);
  312. dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
  313. DMA_FROM_DEVICE);
  314. dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen, DMA_TO_DEVICE);
  315. free_pages((unsigned long)dd->buf_out, OMAP_AES_CACHE_SIZE);
  316. free_pages((unsigned long)dd->buf_in, OMAP_AES_CACHE_SIZE);
  317. }
  318. static void sg_copy_buf(void *buf, struct scatterlist *sg,
  319. unsigned int start, unsigned int nbytes, int out)
  320. {
  321. struct scatter_walk walk;
  322. if (!nbytes)
  323. return;
  324. scatterwalk_start(&walk, sg);
  325. scatterwalk_advance(&walk, start);
  326. scatterwalk_copychunks(buf, &walk, nbytes, out);
  327. scatterwalk_done(&walk, out, 0);
  328. }
  329. static int sg_copy(struct scatterlist **sg, size_t *offset, void *buf,
  330. size_t buflen, size_t total, int out)
  331. {
  332. unsigned int count, off = 0;
  333. while (buflen && total) {
  334. count = min((*sg)->length - *offset, total);
  335. count = min(count, buflen);
  336. if (!count)
  337. return off;
  338. /*
  339. * buflen and total are AES_BLOCK_SIZE size aligned,
  340. * so count should be also aligned
  341. */
  342. sg_copy_buf(buf + off, *sg, *offset, count, out);
  343. off += count;
  344. buflen -= count;
  345. *offset += count;
  346. total -= count;
  347. if (*offset == (*sg)->length) {
  348. *sg = sg_next(*sg);
  349. if (*sg)
  350. *offset = 0;
  351. else
  352. total = 0;
  353. }
  354. }
  355. return off;
  356. }
  357. static int omap_aes_crypt_dma(struct crypto_tfm *tfm, dma_addr_t dma_addr_in,
  358. dma_addr_t dma_addr_out, int length)
  359. {
  360. struct omap_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  361. struct omap_aes_dev *dd = ctx->dd;
  362. int len32;
  363. int err;
  364. pr_debug("len: %d\n", length);
  365. dd->dma_size = length;
  366. if (!(dd->flags & FLAGS_FAST))
  367. dma_sync_single_for_device(dd->dev, dma_addr_in, length,
  368. DMA_TO_DEVICE);
  369. len32 = DIV_ROUND_UP(length, sizeof(u32));
  370. /* IN */
  371. omap_set_dma_dest_params(dd->dma_lch_in, 0, OMAP_DMA_AMODE_CONSTANT,
  372. dd->phys_base + AES_REG_DATA, 0, 4);
  373. omap_set_dma_dest_burst_mode(dd->dma_lch_in, OMAP_DMA_DATA_BURST_4);
  374. omap_set_dma_src_burst_mode(dd->dma_lch_in, OMAP_DMA_DATA_BURST_4);
  375. omap_set_dma_transfer_params(dd->dma_lch_in, OMAP_DMA_DATA_TYPE_S32,
  376. len32, 1, OMAP_DMA_SYNC_PACKET, dd->dma_in,
  377. OMAP_DMA_DST_SYNC);
  378. omap_set_dma_src_params(dd->dma_lch_in, 0, OMAP_DMA_AMODE_POST_INC,
  379. dma_addr_in, 0, 0);
  380. /* OUT */
  381. omap_set_dma_src_params(dd->dma_lch_out, 0, OMAP_DMA_AMODE_CONSTANT,
  382. dd->phys_base + AES_REG_DATA, 0, 4);
  383. omap_set_dma_src_burst_mode(dd->dma_lch_out, OMAP_DMA_DATA_BURST_4);
  384. omap_set_dma_dest_burst_mode(dd->dma_lch_out, OMAP_DMA_DATA_BURST_4);
  385. omap_set_dma_transfer_params(dd->dma_lch_out, OMAP_DMA_DATA_TYPE_S32,
  386. len32, 1, OMAP_DMA_SYNC_PACKET,
  387. dd->dma_out, OMAP_DMA_SRC_SYNC);
  388. omap_set_dma_dest_params(dd->dma_lch_out, 0, OMAP_DMA_AMODE_POST_INC,
  389. dma_addr_out, 0, 0);
  390. err = omap_aes_write_ctrl(dd);
  391. if (err)
  392. return err;
  393. omap_start_dma(dd->dma_lch_in);
  394. omap_start_dma(dd->dma_lch_out);
  395. return 0;
  396. }
  397. static int omap_aes_crypt_dma_start(struct omap_aes_dev *dd)
  398. {
  399. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(
  400. crypto_ablkcipher_reqtfm(dd->req));
  401. int err, fast = 0, in, out;
  402. size_t count;
  403. dma_addr_t addr_in, addr_out;
  404. pr_debug("total: %d\n", dd->total);
  405. if (sg_is_last(dd->in_sg) && sg_is_last(dd->out_sg)) {
  406. /* check for alignment */
  407. in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32));
  408. out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32));
  409. fast = in && out;
  410. }
  411. if (fast) {
  412. count = min(dd->total, sg_dma_len(dd->in_sg));
  413. count = min(count, sg_dma_len(dd->out_sg));
  414. if (count != dd->total) {
  415. pr_err("request length != buffer length\n");
  416. return -EINVAL;
  417. }
  418. pr_debug("fast\n");
  419. err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  420. if (!err) {
  421. dev_err(dd->dev, "dma_map_sg() error\n");
  422. return -EINVAL;
  423. }
  424. err = dma_map_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
  425. if (!err) {
  426. dev_err(dd->dev, "dma_map_sg() error\n");
  427. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  428. return -EINVAL;
  429. }
  430. addr_in = sg_dma_address(dd->in_sg);
  431. addr_out = sg_dma_address(dd->out_sg);
  432. dd->flags |= FLAGS_FAST;
  433. } else {
  434. /* use cache buffers */
  435. count = sg_copy(&dd->in_sg, &dd->in_offset, dd->buf_in,
  436. dd->buflen, dd->total, 0);
  437. addr_in = dd->dma_addr_in;
  438. addr_out = dd->dma_addr_out;
  439. dd->flags &= ~FLAGS_FAST;
  440. }
  441. dd->total -= count;
  442. err = omap_aes_crypt_dma(tfm, addr_in, addr_out, count);
  443. if (err) {
  444. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  445. dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE);
  446. }
  447. return err;
  448. }
  449. static void omap_aes_finish_req(struct omap_aes_dev *dd, int err)
  450. {
  451. struct ablkcipher_request *req = dd->req;
  452. struct omap_aes_ctx *ctx;
  453. pr_debug("err: %d\n", err);
  454. dd->flags &= ~FLAGS_BUSY;
  455. ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
  456. if (req->base.complete)
  457. req->base.complete(&req->base, err);
  458. }
  459. static int omap_aes_crypt_dma_stop(struct omap_aes_dev *dd)
  460. {
  461. int err = 0;
  462. size_t count;
  463. pr_debug("total: %d\n", dd->total);
  464. omap_aes_write_mask(dd, AES_REG_MASK, 0, AES_REG_MASK_START);
  465. omap_stop_dma(dd->dma_lch_in);
  466. omap_stop_dma(dd->dma_lch_out);
  467. clk_disable(dd->iclk);
  468. if (dd->flags & FLAGS_FAST) {
  469. dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
  470. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  471. } else {
  472. dma_sync_single_for_device(dd->dev, dd->dma_addr_out,
  473. dd->dma_size, DMA_FROM_DEVICE);
  474. /* copy data */
  475. count = sg_copy(&dd->out_sg, &dd->out_offset, dd->buf_out,
  476. dd->buflen, dd->dma_size, 1);
  477. if (count != dd->dma_size) {
  478. err = -EINVAL;
  479. pr_err("not all data converted: %u\n", count);
  480. }
  481. }
  482. return err;
  483. }
  484. static int omap_aes_handle_queue(struct omap_aes_dev *dd,
  485. struct ablkcipher_request *req)
  486. {
  487. struct crypto_async_request *async_req, *backlog;
  488. struct omap_aes_ctx *ctx;
  489. struct omap_aes_reqctx *rctx;
  490. unsigned long flags;
  491. int err, ret = 0;
  492. spin_lock_irqsave(&dd->lock, flags);
  493. if (req)
  494. ret = ablkcipher_enqueue_request(&dd->queue, req);
  495. if (dd->flags & FLAGS_BUSY) {
  496. spin_unlock_irqrestore(&dd->lock, flags);
  497. return ret;
  498. }
  499. backlog = crypto_get_backlog(&dd->queue);
  500. async_req = crypto_dequeue_request(&dd->queue);
  501. if (async_req)
  502. dd->flags |= FLAGS_BUSY;
  503. spin_unlock_irqrestore(&dd->lock, flags);
  504. if (!async_req)
  505. return ret;
  506. if (backlog)
  507. backlog->complete(backlog, -EINPROGRESS);
  508. req = ablkcipher_request_cast(async_req);
  509. pr_debug("get new req\n");
  510. /* assign new request to device */
  511. dd->req = req;
  512. dd->total = req->nbytes;
  513. dd->in_offset = 0;
  514. dd->in_sg = req->src;
  515. dd->out_offset = 0;
  516. dd->out_sg = req->dst;
  517. rctx = ablkcipher_request_ctx(req);
  518. ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
  519. rctx->mode &= FLAGS_MODE_MASK;
  520. dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
  521. dd->iv = req->info;
  522. if ((dd->flags & FLAGS_CBC) && dd->iv)
  523. dd->flags |= FLAGS_NEW_IV;
  524. else
  525. dd->flags &= ~FLAGS_NEW_IV;
  526. ctx->dd = dd;
  527. if (dd->ctx != ctx) {
  528. /* assign new context to device */
  529. dd->ctx = ctx;
  530. ctx->flags |= FLAGS_NEW_KEY;
  531. }
  532. err = omap_aes_crypt_dma_start(dd);
  533. if (err) {
  534. /* aes_task will not finish it, so do it here */
  535. omap_aes_finish_req(dd, err);
  536. tasklet_schedule(&dd->queue_task);
  537. }
  538. return ret; /* return ret, which is enqueue return value */
  539. }
  540. static void omap_aes_done_task(unsigned long data)
  541. {
  542. struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
  543. int err;
  544. pr_debug("enter\n");
  545. err = omap_aes_crypt_dma_stop(dd);
  546. err = dd->err ? : err;
  547. if (dd->total && !err) {
  548. err = omap_aes_crypt_dma_start(dd);
  549. if (!err)
  550. return; /* DMA started. Not fininishing. */
  551. }
  552. omap_aes_finish_req(dd, err);
  553. omap_aes_handle_queue(dd, NULL);
  554. pr_debug("exit\n");
  555. }
  556. static void omap_aes_queue_task(unsigned long data)
  557. {
  558. struct omap_aes_dev *dd = (struct omap_aes_dev *)data;
  559. omap_aes_handle_queue(dd, NULL);
  560. }
  561. static int omap_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  562. {
  563. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(
  564. crypto_ablkcipher_reqtfm(req));
  565. struct omap_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  566. struct omap_aes_dev *dd;
  567. pr_debug("nbytes: %d, enc: %d, cbc: %d\n", req->nbytes,
  568. !!(mode & FLAGS_ENCRYPT),
  569. !!(mode & FLAGS_CBC));
  570. if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
  571. pr_err("request size is not exact amount of AES blocks\n");
  572. return -EINVAL;
  573. }
  574. dd = omap_aes_find_dev(ctx);
  575. if (!dd)
  576. return -ENODEV;
  577. rctx->mode = mode;
  578. return omap_aes_handle_queue(dd, req);
  579. }
  580. /* ********************** ALG API ************************************ */
  581. static int omap_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  582. unsigned int keylen)
  583. {
  584. struct omap_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  585. if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
  586. keylen != AES_KEYSIZE_256)
  587. return -EINVAL;
  588. pr_debug("enter, keylen: %d\n", keylen);
  589. memcpy(ctx->key, key, keylen);
  590. ctx->keylen = keylen;
  591. ctx->flags |= FLAGS_NEW_KEY;
  592. return 0;
  593. }
  594. static int omap_aes_ecb_encrypt(struct ablkcipher_request *req)
  595. {
  596. return omap_aes_crypt(req, FLAGS_ENCRYPT);
  597. }
  598. static int omap_aes_ecb_decrypt(struct ablkcipher_request *req)
  599. {
  600. return omap_aes_crypt(req, 0);
  601. }
  602. static int omap_aes_cbc_encrypt(struct ablkcipher_request *req)
  603. {
  604. return omap_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
  605. }
  606. static int omap_aes_cbc_decrypt(struct ablkcipher_request *req)
  607. {
  608. return omap_aes_crypt(req, FLAGS_CBC);
  609. }
  610. static int omap_aes_cra_init(struct crypto_tfm *tfm)
  611. {
  612. pr_debug("enter\n");
  613. tfm->crt_ablkcipher.reqsize = sizeof(struct omap_aes_reqctx);
  614. return 0;
  615. }
  616. static void omap_aes_cra_exit(struct crypto_tfm *tfm)
  617. {
  618. pr_debug("enter\n");
  619. }
  620. /* ********************** ALGS ************************************ */
  621. static struct crypto_alg algs[] = {
  622. {
  623. .cra_name = "ecb(aes)",
  624. .cra_driver_name = "ecb-aes-omap",
  625. .cra_priority = 100,
  626. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  627. .cra_blocksize = AES_BLOCK_SIZE,
  628. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  629. .cra_alignmask = 0,
  630. .cra_type = &crypto_ablkcipher_type,
  631. .cra_module = THIS_MODULE,
  632. .cra_init = omap_aes_cra_init,
  633. .cra_exit = omap_aes_cra_exit,
  634. .cra_u.ablkcipher = {
  635. .min_keysize = AES_MIN_KEY_SIZE,
  636. .max_keysize = AES_MAX_KEY_SIZE,
  637. .setkey = omap_aes_setkey,
  638. .encrypt = omap_aes_ecb_encrypt,
  639. .decrypt = omap_aes_ecb_decrypt,
  640. }
  641. },
  642. {
  643. .cra_name = "cbc(aes)",
  644. .cra_driver_name = "cbc-aes-omap",
  645. .cra_priority = 100,
  646. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  647. .cra_blocksize = AES_BLOCK_SIZE,
  648. .cra_ctxsize = sizeof(struct omap_aes_ctx),
  649. .cra_alignmask = 0,
  650. .cra_type = &crypto_ablkcipher_type,
  651. .cra_module = THIS_MODULE,
  652. .cra_init = omap_aes_cra_init,
  653. .cra_exit = omap_aes_cra_exit,
  654. .cra_u.ablkcipher = {
  655. .min_keysize = AES_MIN_KEY_SIZE,
  656. .max_keysize = AES_MAX_KEY_SIZE,
  657. .ivsize = AES_BLOCK_SIZE,
  658. .setkey = omap_aes_setkey,
  659. .encrypt = omap_aes_cbc_encrypt,
  660. .decrypt = omap_aes_cbc_decrypt,
  661. }
  662. }
  663. };
  664. static int omap_aes_probe(struct platform_device *pdev)
  665. {
  666. struct device *dev = &pdev->dev;
  667. struct omap_aes_dev *dd;
  668. struct resource *res;
  669. int err = -ENOMEM, i, j;
  670. u32 reg;
  671. dd = kzalloc(sizeof(struct omap_aes_dev), GFP_KERNEL);
  672. if (dd == NULL) {
  673. dev_err(dev, "unable to alloc data struct.\n");
  674. goto err_data;
  675. }
  676. dd->dev = dev;
  677. platform_set_drvdata(pdev, dd);
  678. spin_lock_init(&dd->lock);
  679. crypto_init_queue(&dd->queue, OMAP_AES_QUEUE_LENGTH);
  680. /* Get the base address */
  681. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  682. if (!res) {
  683. dev_err(dev, "invalid resource type\n");
  684. err = -ENODEV;
  685. goto err_res;
  686. }
  687. dd->phys_base = res->start;
  688. /* Get the DMA */
  689. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  690. if (!res)
  691. dev_info(dev, "no DMA info\n");
  692. else
  693. dd->dma_out = res->start;
  694. /* Get the DMA */
  695. res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
  696. if (!res)
  697. dev_info(dev, "no DMA info\n");
  698. else
  699. dd->dma_in = res->start;
  700. /* Initializing the clock */
  701. dd->iclk = clk_get(dev, "ick");
  702. if (!dd->iclk) {
  703. dev_err(dev, "clock intialization failed.\n");
  704. err = -ENODEV;
  705. goto err_res;
  706. }
  707. dd->io_base = ioremap(dd->phys_base, SZ_4K);
  708. if (!dd->io_base) {
  709. dev_err(dev, "can't ioremap\n");
  710. err = -ENOMEM;
  711. goto err_io;
  712. }
  713. clk_enable(dd->iclk);
  714. reg = omap_aes_read(dd, AES_REG_REV);
  715. dev_info(dev, "OMAP AES hw accel rev: %u.%u\n",
  716. (reg & AES_REG_REV_MAJOR) >> 4, reg & AES_REG_REV_MINOR);
  717. clk_disable(dd->iclk);
  718. tasklet_init(&dd->done_task, omap_aes_done_task, (unsigned long)dd);
  719. tasklet_init(&dd->queue_task, omap_aes_queue_task, (unsigned long)dd);
  720. err = omap_aes_dma_init(dd);
  721. if (err)
  722. goto err_dma;
  723. INIT_LIST_HEAD(&dd->list);
  724. spin_lock(&list_lock);
  725. list_add_tail(&dd->list, &dev_list);
  726. spin_unlock(&list_lock);
  727. for (i = 0; i < ARRAY_SIZE(algs); i++) {
  728. pr_debug("i: %d\n", i);
  729. INIT_LIST_HEAD(&algs[i].cra_list);
  730. err = crypto_register_alg(&algs[i]);
  731. if (err)
  732. goto err_algs;
  733. }
  734. pr_info("probe() done\n");
  735. return 0;
  736. err_algs:
  737. for (j = 0; j < i; j++)
  738. crypto_unregister_alg(&algs[j]);
  739. omap_aes_dma_cleanup(dd);
  740. err_dma:
  741. tasklet_kill(&dd->done_task);
  742. tasklet_kill(&dd->queue_task);
  743. iounmap(dd->io_base);
  744. err_io:
  745. clk_put(dd->iclk);
  746. err_res:
  747. kfree(dd);
  748. dd = NULL;
  749. err_data:
  750. dev_err(dev, "initialization failed.\n");
  751. return err;
  752. }
  753. static int omap_aes_remove(struct platform_device *pdev)
  754. {
  755. struct omap_aes_dev *dd = platform_get_drvdata(pdev);
  756. int i;
  757. if (!dd)
  758. return -ENODEV;
  759. spin_lock(&list_lock);
  760. list_del(&dd->list);
  761. spin_unlock(&list_lock);
  762. for (i = 0; i < ARRAY_SIZE(algs); i++)
  763. crypto_unregister_alg(&algs[i]);
  764. tasklet_kill(&dd->done_task);
  765. tasklet_kill(&dd->queue_task);
  766. omap_aes_dma_cleanup(dd);
  767. iounmap(dd->io_base);
  768. clk_put(dd->iclk);
  769. kfree(dd);
  770. dd = NULL;
  771. return 0;
  772. }
  773. static struct platform_driver omap_aes_driver = {
  774. .probe = omap_aes_probe,
  775. .remove = omap_aes_remove,
  776. .driver = {
  777. .name = "omap-aes",
  778. .owner = THIS_MODULE,
  779. },
  780. };
  781. static int __init omap_aes_mod_init(void)
  782. {
  783. pr_info("loading %s driver\n", "omap-aes");
  784. if (!cpu_class_is_omap2() || omap_type() != OMAP2_DEVICE_TYPE_SEC) {
  785. pr_err("Unsupported cpu\n");
  786. return -ENODEV;
  787. }
  788. return platform_driver_register(&omap_aes_driver);
  789. }
  790. static void __exit omap_aes_mod_exit(void)
  791. {
  792. platform_driver_unregister(&omap_aes_driver);
  793. }
  794. module_init(omap_aes_mod_init);
  795. module_exit(omap_aes_mod_exit);
  796. MODULE_DESCRIPTION("OMAP AES hw acceleration support.");
  797. MODULE_LICENSE("GPL v2");
  798. MODULE_AUTHOR("Dmitry Kasatkin");