i915_gem.c 103 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. int nr_to_scan,
  57. gfp_t gfp_mask);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. /**
  160. * Creates a new mm object and returns a handle to it.
  161. */
  162. int
  163. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  164. struct drm_file *file)
  165. {
  166. struct drm_i915_gem_create *args = data;
  167. struct drm_i915_gem_object *obj;
  168. int ret;
  169. u32 handle;
  170. args->size = roundup(args->size, PAGE_SIZE);
  171. /* Allocate the new object */
  172. obj = i915_gem_alloc_object(dev, args->size);
  173. if (obj == NULL)
  174. return -ENOMEM;
  175. ret = drm_gem_handle_create(file, &obj->base, &handle);
  176. if (ret) {
  177. drm_gem_object_release(&obj->base);
  178. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  179. kfree(obj);
  180. return ret;
  181. }
  182. /* drop reference from allocate - handle holds it now */
  183. drm_gem_object_unreference(&obj->base);
  184. trace_i915_gem_object_create(obj);
  185. args->handle = handle;
  186. return 0;
  187. }
  188. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  189. {
  190. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  191. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  192. obj->tiling_mode != I915_TILING_NONE;
  193. }
  194. static inline void
  195. slow_shmem_copy(struct page *dst_page,
  196. int dst_offset,
  197. struct page *src_page,
  198. int src_offset,
  199. int length)
  200. {
  201. char *dst_vaddr, *src_vaddr;
  202. dst_vaddr = kmap(dst_page);
  203. src_vaddr = kmap(src_page);
  204. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  205. kunmap(src_page);
  206. kunmap(dst_page);
  207. }
  208. static inline void
  209. slow_shmem_bit17_copy(struct page *gpu_page,
  210. int gpu_offset,
  211. struct page *cpu_page,
  212. int cpu_offset,
  213. int length,
  214. int is_read)
  215. {
  216. char *gpu_vaddr, *cpu_vaddr;
  217. /* Use the unswizzled path if this page isn't affected. */
  218. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  219. if (is_read)
  220. return slow_shmem_copy(cpu_page, cpu_offset,
  221. gpu_page, gpu_offset, length);
  222. else
  223. return slow_shmem_copy(gpu_page, gpu_offset,
  224. cpu_page, cpu_offset, length);
  225. }
  226. gpu_vaddr = kmap(gpu_page);
  227. cpu_vaddr = kmap(cpu_page);
  228. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  229. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  230. */
  231. while (length > 0) {
  232. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  233. int this_length = min(cacheline_end - gpu_offset, length);
  234. int swizzled_gpu_offset = gpu_offset ^ 64;
  235. if (is_read) {
  236. memcpy(cpu_vaddr + cpu_offset,
  237. gpu_vaddr + swizzled_gpu_offset,
  238. this_length);
  239. } else {
  240. memcpy(gpu_vaddr + swizzled_gpu_offset,
  241. cpu_vaddr + cpu_offset,
  242. this_length);
  243. }
  244. cpu_offset += this_length;
  245. gpu_offset += this_length;
  246. length -= this_length;
  247. }
  248. kunmap(cpu_page);
  249. kunmap(gpu_page);
  250. }
  251. /**
  252. * This is the fast shmem pread path, which attempts to copy_from_user directly
  253. * from the backing pages of the object to the user's address space. On a
  254. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  255. */
  256. static int
  257. i915_gem_shmem_pread_fast(struct drm_device *dev,
  258. struct drm_i915_gem_object *obj,
  259. struct drm_i915_gem_pread *args,
  260. struct drm_file *file)
  261. {
  262. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  263. ssize_t remain;
  264. loff_t offset;
  265. char __user *user_data;
  266. int page_offset, page_length;
  267. user_data = (char __user *) (uintptr_t) args->data_ptr;
  268. remain = args->size;
  269. offset = args->offset;
  270. while (remain > 0) {
  271. struct page *page;
  272. char *vaddr;
  273. int ret;
  274. /* Operation in this page
  275. *
  276. * page_offset = offset within page
  277. * page_length = bytes to copy for this page
  278. */
  279. page_offset = offset & (PAGE_SIZE-1);
  280. page_length = remain;
  281. if ((page_offset + remain) > PAGE_SIZE)
  282. page_length = PAGE_SIZE - page_offset;
  283. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  284. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  285. if (IS_ERR(page))
  286. return PTR_ERR(page);
  287. vaddr = kmap_atomic(page);
  288. ret = __copy_to_user_inatomic(user_data,
  289. vaddr + page_offset,
  290. page_length);
  291. kunmap_atomic(vaddr);
  292. mark_page_accessed(page);
  293. page_cache_release(page);
  294. if (ret)
  295. return -EFAULT;
  296. remain -= page_length;
  297. user_data += page_length;
  298. offset += page_length;
  299. }
  300. return 0;
  301. }
  302. /**
  303. * This is the fallback shmem pread path, which allocates temporary storage
  304. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  305. * can copy out of the object's backing pages while holding the struct mutex
  306. * and not take page faults.
  307. */
  308. static int
  309. i915_gem_shmem_pread_slow(struct drm_device *dev,
  310. struct drm_i915_gem_object *obj,
  311. struct drm_i915_gem_pread *args,
  312. struct drm_file *file)
  313. {
  314. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  315. struct mm_struct *mm = current->mm;
  316. struct page **user_pages;
  317. ssize_t remain;
  318. loff_t offset, pinned_pages, i;
  319. loff_t first_data_page, last_data_page, num_pages;
  320. int shmem_page_offset;
  321. int data_page_index, data_page_offset;
  322. int page_length;
  323. int ret;
  324. uint64_t data_ptr = args->data_ptr;
  325. int do_bit17_swizzling;
  326. remain = args->size;
  327. /* Pin the user pages containing the data. We can't fault while
  328. * holding the struct mutex, yet we want to hold it while
  329. * dereferencing the user data.
  330. */
  331. first_data_page = data_ptr / PAGE_SIZE;
  332. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  333. num_pages = last_data_page - first_data_page + 1;
  334. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  335. if (user_pages == NULL)
  336. return -ENOMEM;
  337. mutex_unlock(&dev->struct_mutex);
  338. down_read(&mm->mmap_sem);
  339. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  340. num_pages, 1, 0, user_pages, NULL);
  341. up_read(&mm->mmap_sem);
  342. mutex_lock(&dev->struct_mutex);
  343. if (pinned_pages < num_pages) {
  344. ret = -EFAULT;
  345. goto out;
  346. }
  347. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  348. args->offset,
  349. args->size);
  350. if (ret)
  351. goto out;
  352. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  353. offset = args->offset;
  354. while (remain > 0) {
  355. struct page *page;
  356. /* Operation in this page
  357. *
  358. * shmem_page_offset = offset within page in shmem file
  359. * data_page_index = page number in get_user_pages return
  360. * data_page_offset = offset with data_page_index page.
  361. * page_length = bytes to copy for this page
  362. */
  363. shmem_page_offset = offset & ~PAGE_MASK;
  364. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  365. data_page_offset = data_ptr & ~PAGE_MASK;
  366. page_length = remain;
  367. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  368. page_length = PAGE_SIZE - shmem_page_offset;
  369. if ((data_page_offset + page_length) > PAGE_SIZE)
  370. page_length = PAGE_SIZE - data_page_offset;
  371. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  372. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  373. if (IS_ERR(page))
  374. return PTR_ERR(page);
  375. if (do_bit17_swizzling) {
  376. slow_shmem_bit17_copy(page,
  377. shmem_page_offset,
  378. user_pages[data_page_index],
  379. data_page_offset,
  380. page_length,
  381. 1);
  382. } else {
  383. slow_shmem_copy(user_pages[data_page_index],
  384. data_page_offset,
  385. page,
  386. shmem_page_offset,
  387. page_length);
  388. }
  389. mark_page_accessed(page);
  390. page_cache_release(page);
  391. remain -= page_length;
  392. data_ptr += page_length;
  393. offset += page_length;
  394. }
  395. out:
  396. for (i = 0; i < pinned_pages; i++) {
  397. SetPageDirty(user_pages[i]);
  398. mark_page_accessed(user_pages[i]);
  399. page_cache_release(user_pages[i]);
  400. }
  401. drm_free_large(user_pages);
  402. return ret;
  403. }
  404. /**
  405. * Reads data from the object referenced by handle.
  406. *
  407. * On error, the contents of *data are undefined.
  408. */
  409. int
  410. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  411. struct drm_file *file)
  412. {
  413. struct drm_i915_gem_pread *args = data;
  414. struct drm_i915_gem_object *obj;
  415. int ret = 0;
  416. if (args->size == 0)
  417. return 0;
  418. if (!access_ok(VERIFY_WRITE,
  419. (char __user *)(uintptr_t)args->data_ptr,
  420. args->size))
  421. return -EFAULT;
  422. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  423. args->size);
  424. if (ret)
  425. return -EFAULT;
  426. ret = i915_mutex_lock_interruptible(dev);
  427. if (ret)
  428. return ret;
  429. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  430. if (obj == NULL) {
  431. ret = -ENOENT;
  432. goto unlock;
  433. }
  434. /* Bounds check source. */
  435. if (args->offset > obj->base.size ||
  436. args->size > obj->base.size - args->offset) {
  437. ret = -EINVAL;
  438. goto out;
  439. }
  440. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  441. args->offset,
  442. args->size);
  443. if (ret)
  444. goto out;
  445. ret = -EFAULT;
  446. if (!i915_gem_object_needs_bit17_swizzle(obj))
  447. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  448. if (ret == -EFAULT)
  449. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  450. out:
  451. drm_gem_object_unreference(&obj->base);
  452. unlock:
  453. mutex_unlock(&dev->struct_mutex);
  454. return ret;
  455. }
  456. /* This is the fast write path which cannot handle
  457. * page faults in the source data
  458. */
  459. static inline int
  460. fast_user_write(struct io_mapping *mapping,
  461. loff_t page_base, int page_offset,
  462. char __user *user_data,
  463. int length)
  464. {
  465. char *vaddr_atomic;
  466. unsigned long unwritten;
  467. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  468. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  469. user_data, length);
  470. io_mapping_unmap_atomic(vaddr_atomic);
  471. return unwritten;
  472. }
  473. /* Here's the write path which can sleep for
  474. * page faults
  475. */
  476. static inline void
  477. slow_kernel_write(struct io_mapping *mapping,
  478. loff_t gtt_base, int gtt_offset,
  479. struct page *user_page, int user_offset,
  480. int length)
  481. {
  482. char __iomem *dst_vaddr;
  483. char *src_vaddr;
  484. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  485. src_vaddr = kmap(user_page);
  486. memcpy_toio(dst_vaddr + gtt_offset,
  487. src_vaddr + user_offset,
  488. length);
  489. kunmap(user_page);
  490. io_mapping_unmap(dst_vaddr);
  491. }
  492. /**
  493. * This is the fast pwrite path, where we copy the data directly from the
  494. * user into the GTT, uncached.
  495. */
  496. static int
  497. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  498. struct drm_i915_gem_object *obj,
  499. struct drm_i915_gem_pwrite *args,
  500. struct drm_file *file)
  501. {
  502. drm_i915_private_t *dev_priv = dev->dev_private;
  503. ssize_t remain;
  504. loff_t offset, page_base;
  505. char __user *user_data;
  506. int page_offset, page_length;
  507. user_data = (char __user *) (uintptr_t) args->data_ptr;
  508. remain = args->size;
  509. offset = obj->gtt_offset + args->offset;
  510. while (remain > 0) {
  511. /* Operation in this page
  512. *
  513. * page_base = page offset within aperture
  514. * page_offset = offset within page
  515. * page_length = bytes to copy for this page
  516. */
  517. page_base = (offset & ~(PAGE_SIZE-1));
  518. page_offset = offset & (PAGE_SIZE-1);
  519. page_length = remain;
  520. if ((page_offset + remain) > PAGE_SIZE)
  521. page_length = PAGE_SIZE - page_offset;
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  527. page_offset, user_data, page_length))
  528. return -EFAULT;
  529. remain -= page_length;
  530. user_data += page_length;
  531. offset += page_length;
  532. }
  533. return 0;
  534. }
  535. /**
  536. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  537. * the memory and maps it using kmap_atomic for copying.
  538. *
  539. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  540. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  541. */
  542. static int
  543. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  544. struct drm_i915_gem_object *obj,
  545. struct drm_i915_gem_pwrite *args,
  546. struct drm_file *file)
  547. {
  548. drm_i915_private_t *dev_priv = dev->dev_private;
  549. ssize_t remain;
  550. loff_t gtt_page_base, offset;
  551. loff_t first_data_page, last_data_page, num_pages;
  552. loff_t pinned_pages, i;
  553. struct page **user_pages;
  554. struct mm_struct *mm = current->mm;
  555. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  556. int ret;
  557. uint64_t data_ptr = args->data_ptr;
  558. remain = args->size;
  559. /* Pin the user pages containing the data. We can't fault while
  560. * holding the struct mutex, and all of the pwrite implementations
  561. * want to hold it while dereferencing the user data.
  562. */
  563. first_data_page = data_ptr / PAGE_SIZE;
  564. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  565. num_pages = last_data_page - first_data_page + 1;
  566. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  567. if (user_pages == NULL)
  568. return -ENOMEM;
  569. mutex_unlock(&dev->struct_mutex);
  570. down_read(&mm->mmap_sem);
  571. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  572. num_pages, 0, 0, user_pages, NULL);
  573. up_read(&mm->mmap_sem);
  574. mutex_lock(&dev->struct_mutex);
  575. if (pinned_pages < num_pages) {
  576. ret = -EFAULT;
  577. goto out_unpin_pages;
  578. }
  579. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  580. if (ret)
  581. goto out_unpin_pages;
  582. ret = i915_gem_object_put_fence(obj);
  583. if (ret)
  584. goto out_unpin_pages;
  585. offset = obj->gtt_offset + args->offset;
  586. while (remain > 0) {
  587. /* Operation in this page
  588. *
  589. * gtt_page_base = page offset within aperture
  590. * gtt_page_offset = offset within page in aperture
  591. * data_page_index = page number in get_user_pages return
  592. * data_page_offset = offset with data_page_index page.
  593. * page_length = bytes to copy for this page
  594. */
  595. gtt_page_base = offset & PAGE_MASK;
  596. gtt_page_offset = offset & ~PAGE_MASK;
  597. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  598. data_page_offset = data_ptr & ~PAGE_MASK;
  599. page_length = remain;
  600. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  601. page_length = PAGE_SIZE - gtt_page_offset;
  602. if ((data_page_offset + page_length) > PAGE_SIZE)
  603. page_length = PAGE_SIZE - data_page_offset;
  604. slow_kernel_write(dev_priv->mm.gtt_mapping,
  605. gtt_page_base, gtt_page_offset,
  606. user_pages[data_page_index],
  607. data_page_offset,
  608. page_length);
  609. remain -= page_length;
  610. offset += page_length;
  611. data_ptr += page_length;
  612. }
  613. out_unpin_pages:
  614. for (i = 0; i < pinned_pages; i++)
  615. page_cache_release(user_pages[i]);
  616. drm_free_large(user_pages);
  617. return ret;
  618. }
  619. /**
  620. * This is the fast shmem pwrite path, which attempts to directly
  621. * copy_from_user into the kmapped pages backing the object.
  622. */
  623. static int
  624. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  625. struct drm_i915_gem_object *obj,
  626. struct drm_i915_gem_pwrite *args,
  627. struct drm_file *file)
  628. {
  629. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  630. ssize_t remain;
  631. loff_t offset;
  632. char __user *user_data;
  633. int page_offset, page_length;
  634. user_data = (char __user *) (uintptr_t) args->data_ptr;
  635. remain = args->size;
  636. offset = args->offset;
  637. obj->dirty = 1;
  638. while (remain > 0) {
  639. struct page *page;
  640. char *vaddr;
  641. int ret;
  642. /* Operation in this page
  643. *
  644. * page_offset = offset within page
  645. * page_length = bytes to copy for this page
  646. */
  647. page_offset = offset & (PAGE_SIZE-1);
  648. page_length = remain;
  649. if ((page_offset + remain) > PAGE_SIZE)
  650. page_length = PAGE_SIZE - page_offset;
  651. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  652. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  653. if (IS_ERR(page))
  654. return PTR_ERR(page);
  655. vaddr = kmap_atomic(page, KM_USER0);
  656. ret = __copy_from_user_inatomic(vaddr + page_offset,
  657. user_data,
  658. page_length);
  659. kunmap_atomic(vaddr, KM_USER0);
  660. set_page_dirty(page);
  661. mark_page_accessed(page);
  662. page_cache_release(page);
  663. /* If we get a fault while copying data, then (presumably) our
  664. * source page isn't available. Return the error and we'll
  665. * retry in the slow path.
  666. */
  667. if (ret)
  668. return -EFAULT;
  669. remain -= page_length;
  670. user_data += page_length;
  671. offset += page_length;
  672. }
  673. return 0;
  674. }
  675. /**
  676. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  677. * the memory and maps it using kmap_atomic for copying.
  678. *
  679. * This avoids taking mmap_sem for faulting on the user's address while the
  680. * struct_mutex is held.
  681. */
  682. static int
  683. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  684. struct drm_i915_gem_object *obj,
  685. struct drm_i915_gem_pwrite *args,
  686. struct drm_file *file)
  687. {
  688. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  689. struct mm_struct *mm = current->mm;
  690. struct page **user_pages;
  691. ssize_t remain;
  692. loff_t offset, pinned_pages, i;
  693. loff_t first_data_page, last_data_page, num_pages;
  694. int shmem_page_offset;
  695. int data_page_index, data_page_offset;
  696. int page_length;
  697. int ret;
  698. uint64_t data_ptr = args->data_ptr;
  699. int do_bit17_swizzling;
  700. remain = args->size;
  701. /* Pin the user pages containing the data. We can't fault while
  702. * holding the struct mutex, and all of the pwrite implementations
  703. * want to hold it while dereferencing the user data.
  704. */
  705. first_data_page = data_ptr / PAGE_SIZE;
  706. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  707. num_pages = last_data_page - first_data_page + 1;
  708. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  709. if (user_pages == NULL)
  710. return -ENOMEM;
  711. mutex_unlock(&dev->struct_mutex);
  712. down_read(&mm->mmap_sem);
  713. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  714. num_pages, 0, 0, user_pages, NULL);
  715. up_read(&mm->mmap_sem);
  716. mutex_lock(&dev->struct_mutex);
  717. if (pinned_pages < num_pages) {
  718. ret = -EFAULT;
  719. goto out;
  720. }
  721. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  722. if (ret)
  723. goto out;
  724. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  725. offset = args->offset;
  726. obj->dirty = 1;
  727. while (remain > 0) {
  728. struct page *page;
  729. /* Operation in this page
  730. *
  731. * shmem_page_offset = offset within page in shmem file
  732. * data_page_index = page number in get_user_pages return
  733. * data_page_offset = offset with data_page_index page.
  734. * page_length = bytes to copy for this page
  735. */
  736. shmem_page_offset = offset & ~PAGE_MASK;
  737. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  738. data_page_offset = data_ptr & ~PAGE_MASK;
  739. page_length = remain;
  740. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  741. page_length = PAGE_SIZE - shmem_page_offset;
  742. if ((data_page_offset + page_length) > PAGE_SIZE)
  743. page_length = PAGE_SIZE - data_page_offset;
  744. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  745. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  746. if (IS_ERR(page)) {
  747. ret = PTR_ERR(page);
  748. goto out;
  749. }
  750. if (do_bit17_swizzling) {
  751. slow_shmem_bit17_copy(page,
  752. shmem_page_offset,
  753. user_pages[data_page_index],
  754. data_page_offset,
  755. page_length,
  756. 0);
  757. } else {
  758. slow_shmem_copy(page,
  759. shmem_page_offset,
  760. user_pages[data_page_index],
  761. data_page_offset,
  762. page_length);
  763. }
  764. set_page_dirty(page);
  765. mark_page_accessed(page);
  766. page_cache_release(page);
  767. remain -= page_length;
  768. data_ptr += page_length;
  769. offset += page_length;
  770. }
  771. out:
  772. for (i = 0; i < pinned_pages; i++)
  773. page_cache_release(user_pages[i]);
  774. drm_free_large(user_pages);
  775. return ret;
  776. }
  777. /**
  778. * Writes data to the object referenced by handle.
  779. *
  780. * On error, the contents of the buffer that were to be modified are undefined.
  781. */
  782. int
  783. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  784. struct drm_file *file)
  785. {
  786. struct drm_i915_gem_pwrite *args = data;
  787. struct drm_i915_gem_object *obj;
  788. int ret;
  789. if (args->size == 0)
  790. return 0;
  791. if (!access_ok(VERIFY_READ,
  792. (char __user *)(uintptr_t)args->data_ptr,
  793. args->size))
  794. return -EFAULT;
  795. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  796. args->size);
  797. if (ret)
  798. return -EFAULT;
  799. ret = i915_mutex_lock_interruptible(dev);
  800. if (ret)
  801. return ret;
  802. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  803. if (obj == NULL) {
  804. ret = -ENOENT;
  805. goto unlock;
  806. }
  807. /* Bounds check destination. */
  808. if (args->offset > obj->base.size ||
  809. args->size > obj->base.size - args->offset) {
  810. ret = -EINVAL;
  811. goto out;
  812. }
  813. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  814. * it would end up going through the fenced access, and we'll get
  815. * different detiling behavior between reading and writing.
  816. * pread/pwrite currently are reading and writing from the CPU
  817. * perspective, requiring manual detiling by the client.
  818. */
  819. if (obj->phys_obj)
  820. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  821. else if (obj->gtt_space &&
  822. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  823. ret = i915_gem_object_pin(obj, 0, true);
  824. if (ret)
  825. goto out;
  826. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  827. if (ret)
  828. goto out_unpin;
  829. ret = i915_gem_object_put_fence(obj);
  830. if (ret)
  831. goto out_unpin;
  832. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  833. if (ret == -EFAULT)
  834. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  835. out_unpin:
  836. i915_gem_object_unpin(obj);
  837. } else {
  838. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  839. if (ret)
  840. goto out;
  841. ret = -EFAULT;
  842. if (!i915_gem_object_needs_bit17_swizzle(obj))
  843. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  844. if (ret == -EFAULT)
  845. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  846. }
  847. out:
  848. drm_gem_object_unreference(&obj->base);
  849. unlock:
  850. mutex_unlock(&dev->struct_mutex);
  851. return ret;
  852. }
  853. /**
  854. * Called when user space prepares to use an object with the CPU, either
  855. * through the mmap ioctl's mapping or a GTT mapping.
  856. */
  857. int
  858. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_set_domain *args = data;
  862. struct drm_i915_gem_object *obj;
  863. uint32_t read_domains = args->read_domains;
  864. uint32_t write_domain = args->write_domain;
  865. int ret;
  866. if (!(dev->driver->driver_features & DRIVER_GEM))
  867. return -ENODEV;
  868. /* Only handle setting domains to types used by the CPU. */
  869. if (write_domain & I915_GEM_GPU_DOMAINS)
  870. return -EINVAL;
  871. if (read_domains & I915_GEM_GPU_DOMAINS)
  872. return -EINVAL;
  873. /* Having something in the write domain implies it's in the read
  874. * domain, and only that read domain. Enforce that in the request.
  875. */
  876. if (write_domain != 0 && read_domains != write_domain)
  877. return -EINVAL;
  878. ret = i915_mutex_lock_interruptible(dev);
  879. if (ret)
  880. return ret;
  881. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  882. if (obj == NULL) {
  883. ret = -ENOENT;
  884. goto unlock;
  885. }
  886. if (read_domains & I915_GEM_DOMAIN_GTT) {
  887. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  888. /* Silently promote "you're not bound, there was nothing to do"
  889. * to success, since the client was just asking us to
  890. * make sure everything was done.
  891. */
  892. if (ret == -EINVAL)
  893. ret = 0;
  894. } else {
  895. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  896. }
  897. drm_gem_object_unreference(&obj->base);
  898. unlock:
  899. mutex_unlock(&dev->struct_mutex);
  900. return ret;
  901. }
  902. /**
  903. * Called when user space has done writes to this buffer
  904. */
  905. int
  906. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  907. struct drm_file *file)
  908. {
  909. struct drm_i915_gem_sw_finish *args = data;
  910. struct drm_i915_gem_object *obj;
  911. int ret = 0;
  912. if (!(dev->driver->driver_features & DRIVER_GEM))
  913. return -ENODEV;
  914. ret = i915_mutex_lock_interruptible(dev);
  915. if (ret)
  916. return ret;
  917. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  918. if (obj == NULL) {
  919. ret = -ENOENT;
  920. goto unlock;
  921. }
  922. /* Pinned buffers may be scanout, so flush the cache */
  923. if (obj->pin_count)
  924. i915_gem_object_flush_cpu_write_domain(obj);
  925. drm_gem_object_unreference(&obj->base);
  926. unlock:
  927. mutex_unlock(&dev->struct_mutex);
  928. return ret;
  929. }
  930. /**
  931. * Maps the contents of an object, returning the address it is mapped
  932. * into.
  933. *
  934. * While the mapping holds a reference on the contents of the object, it doesn't
  935. * imply a ref on the object itself.
  936. */
  937. int
  938. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  939. struct drm_file *file)
  940. {
  941. struct drm_i915_private *dev_priv = dev->dev_private;
  942. struct drm_i915_gem_mmap *args = data;
  943. struct drm_gem_object *obj;
  944. unsigned long addr;
  945. if (!(dev->driver->driver_features & DRIVER_GEM))
  946. return -ENODEV;
  947. obj = drm_gem_object_lookup(dev, file, args->handle);
  948. if (obj == NULL)
  949. return -ENOENT;
  950. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  951. drm_gem_object_unreference_unlocked(obj);
  952. return -E2BIG;
  953. }
  954. down_write(&current->mm->mmap_sem);
  955. addr = do_mmap(obj->filp, 0, args->size,
  956. PROT_READ | PROT_WRITE, MAP_SHARED,
  957. args->offset);
  958. up_write(&current->mm->mmap_sem);
  959. drm_gem_object_unreference_unlocked(obj);
  960. if (IS_ERR((void *)addr))
  961. return addr;
  962. args->addr_ptr = (uint64_t) addr;
  963. return 0;
  964. }
  965. /**
  966. * i915_gem_fault - fault a page into the GTT
  967. * vma: VMA in question
  968. * vmf: fault info
  969. *
  970. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  971. * from userspace. The fault handler takes care of binding the object to
  972. * the GTT (if needed), allocating and programming a fence register (again,
  973. * only if needed based on whether the old reg is still valid or the object
  974. * is tiled) and inserting a new PTE into the faulting process.
  975. *
  976. * Note that the faulting process may involve evicting existing objects
  977. * from the GTT and/or fence registers to make room. So performance may
  978. * suffer if the GTT working set is large or there are few fence registers
  979. * left.
  980. */
  981. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  982. {
  983. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  984. struct drm_device *dev = obj->base.dev;
  985. drm_i915_private_t *dev_priv = dev->dev_private;
  986. pgoff_t page_offset;
  987. unsigned long pfn;
  988. int ret = 0;
  989. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  990. /* We don't use vmf->pgoff since that has the fake offset */
  991. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  992. PAGE_SHIFT;
  993. /* Now bind it into the GTT if needed */
  994. mutex_lock(&dev->struct_mutex);
  995. if (!obj->map_and_fenceable) {
  996. ret = i915_gem_object_unbind(obj);
  997. if (ret)
  998. goto unlock;
  999. }
  1000. if (!obj->gtt_space) {
  1001. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1002. if (ret)
  1003. goto unlock;
  1004. }
  1005. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1006. if (ret)
  1007. goto unlock;
  1008. if (obj->tiling_mode == I915_TILING_NONE)
  1009. ret = i915_gem_object_put_fence(obj);
  1010. else
  1011. ret = i915_gem_object_get_fence(obj, NULL, true);
  1012. if (ret)
  1013. goto unlock;
  1014. if (i915_gem_object_is_inactive(obj))
  1015. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1016. obj->fault_mappable = true;
  1017. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1018. page_offset;
  1019. /* Finally, remap it using the new GTT offset */
  1020. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1021. unlock:
  1022. mutex_unlock(&dev->struct_mutex);
  1023. switch (ret) {
  1024. case -EAGAIN:
  1025. set_need_resched();
  1026. case 0:
  1027. case -ERESTARTSYS:
  1028. return VM_FAULT_NOPAGE;
  1029. case -ENOMEM:
  1030. return VM_FAULT_OOM;
  1031. default:
  1032. return VM_FAULT_SIGBUS;
  1033. }
  1034. }
  1035. /**
  1036. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1037. * @obj: obj in question
  1038. *
  1039. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1040. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1041. * up the object based on the offset and sets up the various memory mapping
  1042. * structures.
  1043. *
  1044. * This routine allocates and attaches a fake offset for @obj.
  1045. */
  1046. static int
  1047. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1048. {
  1049. struct drm_device *dev = obj->base.dev;
  1050. struct drm_gem_mm *mm = dev->mm_private;
  1051. struct drm_map_list *list;
  1052. struct drm_local_map *map;
  1053. int ret = 0;
  1054. /* Set the object up for mmap'ing */
  1055. list = &obj->base.map_list;
  1056. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1057. if (!list->map)
  1058. return -ENOMEM;
  1059. map = list->map;
  1060. map->type = _DRM_GEM;
  1061. map->size = obj->base.size;
  1062. map->handle = obj;
  1063. /* Get a DRM GEM mmap offset allocated... */
  1064. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1065. obj->base.size / PAGE_SIZE,
  1066. 0, 0);
  1067. if (!list->file_offset_node) {
  1068. DRM_ERROR("failed to allocate offset for bo %d\n",
  1069. obj->base.name);
  1070. ret = -ENOSPC;
  1071. goto out_free_list;
  1072. }
  1073. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1074. obj->base.size / PAGE_SIZE,
  1075. 0);
  1076. if (!list->file_offset_node) {
  1077. ret = -ENOMEM;
  1078. goto out_free_list;
  1079. }
  1080. list->hash.key = list->file_offset_node->start;
  1081. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1082. if (ret) {
  1083. DRM_ERROR("failed to add to map hash\n");
  1084. goto out_free_mm;
  1085. }
  1086. return 0;
  1087. out_free_mm:
  1088. drm_mm_put_block(list->file_offset_node);
  1089. out_free_list:
  1090. kfree(list->map);
  1091. list->map = NULL;
  1092. return ret;
  1093. }
  1094. /**
  1095. * i915_gem_release_mmap - remove physical page mappings
  1096. * @obj: obj in question
  1097. *
  1098. * Preserve the reservation of the mmapping with the DRM core code, but
  1099. * relinquish ownership of the pages back to the system.
  1100. *
  1101. * It is vital that we remove the page mapping if we have mapped a tiled
  1102. * object through the GTT and then lose the fence register due to
  1103. * resource pressure. Similarly if the object has been moved out of the
  1104. * aperture, than pages mapped into userspace must be revoked. Removing the
  1105. * mapping will then trigger a page fault on the next user access, allowing
  1106. * fixup by i915_gem_fault().
  1107. */
  1108. void
  1109. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1110. {
  1111. if (!obj->fault_mappable)
  1112. return;
  1113. unmap_mapping_range(obj->base.dev->dev_mapping,
  1114. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1115. obj->base.size, 1);
  1116. obj->fault_mappable = false;
  1117. }
  1118. static void
  1119. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1120. {
  1121. struct drm_device *dev = obj->base.dev;
  1122. struct drm_gem_mm *mm = dev->mm_private;
  1123. struct drm_map_list *list = &obj->base.map_list;
  1124. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1125. drm_mm_put_block(list->file_offset_node);
  1126. kfree(list->map);
  1127. list->map = NULL;
  1128. }
  1129. static uint32_t
  1130. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1131. {
  1132. struct drm_device *dev = obj->base.dev;
  1133. uint32_t size;
  1134. if (INTEL_INFO(dev)->gen >= 4 ||
  1135. obj->tiling_mode == I915_TILING_NONE)
  1136. return obj->base.size;
  1137. /* Previous chips need a power-of-two fence region when tiling */
  1138. if (INTEL_INFO(dev)->gen == 3)
  1139. size = 1024*1024;
  1140. else
  1141. size = 512*1024;
  1142. while (size < obj->base.size)
  1143. size <<= 1;
  1144. return size;
  1145. }
  1146. /**
  1147. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1148. * @obj: object to check
  1149. *
  1150. * Return the required GTT alignment for an object, taking into account
  1151. * potential fence register mapping.
  1152. */
  1153. static uint32_t
  1154. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1155. {
  1156. struct drm_device *dev = obj->base.dev;
  1157. /*
  1158. * Minimum alignment is 4k (GTT page size), but might be greater
  1159. * if a fence register is needed for the object.
  1160. */
  1161. if (INTEL_INFO(dev)->gen >= 4 ||
  1162. obj->tiling_mode == I915_TILING_NONE)
  1163. return 4096;
  1164. /*
  1165. * Previous chips need to be aligned to the size of the smallest
  1166. * fence register that can contain the object.
  1167. */
  1168. return i915_gem_get_gtt_size(obj);
  1169. }
  1170. /**
  1171. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1172. * unfenced object
  1173. * @obj: object to check
  1174. *
  1175. * Return the required GTT alignment for an object, only taking into account
  1176. * unfenced tiled surface requirements.
  1177. */
  1178. static uint32_t
  1179. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1180. {
  1181. struct drm_device *dev = obj->base.dev;
  1182. int tile_height;
  1183. /*
  1184. * Minimum alignment is 4k (GTT page size) for sane hw.
  1185. */
  1186. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1187. obj->tiling_mode == I915_TILING_NONE)
  1188. return 4096;
  1189. /*
  1190. * Older chips need unfenced tiled buffers to be aligned to the left
  1191. * edge of an even tile row (where tile rows are counted as if the bo is
  1192. * placed in a fenced gtt region).
  1193. */
  1194. if (IS_GEN2(dev) ||
  1195. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1196. tile_height = 32;
  1197. else
  1198. tile_height = 8;
  1199. return tile_height * obj->stride * 2;
  1200. }
  1201. /**
  1202. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1203. * @dev: DRM device
  1204. * @data: GTT mapping ioctl data
  1205. * @file: GEM object info
  1206. *
  1207. * Simply returns the fake offset to userspace so it can mmap it.
  1208. * The mmap call will end up in drm_gem_mmap(), which will set things
  1209. * up so we can get faults in the handler above.
  1210. *
  1211. * The fault handler will take care of binding the object into the GTT
  1212. * (since it may have been evicted to make room for something), allocating
  1213. * a fence register, and mapping the appropriate aperture address into
  1214. * userspace.
  1215. */
  1216. int
  1217. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1218. struct drm_file *file)
  1219. {
  1220. struct drm_i915_private *dev_priv = dev->dev_private;
  1221. struct drm_i915_gem_mmap_gtt *args = data;
  1222. struct drm_i915_gem_object *obj;
  1223. int ret;
  1224. if (!(dev->driver->driver_features & DRIVER_GEM))
  1225. return -ENODEV;
  1226. ret = i915_mutex_lock_interruptible(dev);
  1227. if (ret)
  1228. return ret;
  1229. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1230. if (obj == NULL) {
  1231. ret = -ENOENT;
  1232. goto unlock;
  1233. }
  1234. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1235. ret = -E2BIG;
  1236. goto unlock;
  1237. }
  1238. if (obj->madv != I915_MADV_WILLNEED) {
  1239. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1240. ret = -EINVAL;
  1241. goto out;
  1242. }
  1243. if (!obj->base.map_list.map) {
  1244. ret = i915_gem_create_mmap_offset(obj);
  1245. if (ret)
  1246. goto out;
  1247. }
  1248. args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1249. out:
  1250. drm_gem_object_unreference(&obj->base);
  1251. unlock:
  1252. mutex_unlock(&dev->struct_mutex);
  1253. return ret;
  1254. }
  1255. static int
  1256. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1257. gfp_t gfpmask)
  1258. {
  1259. int page_count, i;
  1260. struct address_space *mapping;
  1261. struct inode *inode;
  1262. struct page *page;
  1263. /* Get the list of pages out of our struct file. They'll be pinned
  1264. * at this point until we release them.
  1265. */
  1266. page_count = obj->base.size / PAGE_SIZE;
  1267. BUG_ON(obj->pages != NULL);
  1268. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1269. if (obj->pages == NULL)
  1270. return -ENOMEM;
  1271. inode = obj->base.filp->f_path.dentry->d_inode;
  1272. mapping = inode->i_mapping;
  1273. for (i = 0; i < page_count; i++) {
  1274. page = read_cache_page_gfp(mapping, i,
  1275. GFP_HIGHUSER |
  1276. __GFP_COLD |
  1277. __GFP_RECLAIMABLE |
  1278. gfpmask);
  1279. if (IS_ERR(page))
  1280. goto err_pages;
  1281. obj->pages[i] = page;
  1282. }
  1283. if (obj->tiling_mode != I915_TILING_NONE)
  1284. i915_gem_object_do_bit_17_swizzle(obj);
  1285. return 0;
  1286. err_pages:
  1287. while (i--)
  1288. page_cache_release(obj->pages[i]);
  1289. drm_free_large(obj->pages);
  1290. obj->pages = NULL;
  1291. return PTR_ERR(page);
  1292. }
  1293. static void
  1294. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1295. {
  1296. int page_count = obj->base.size / PAGE_SIZE;
  1297. int i;
  1298. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1299. if (obj->tiling_mode != I915_TILING_NONE)
  1300. i915_gem_object_save_bit_17_swizzle(obj);
  1301. if (obj->madv == I915_MADV_DONTNEED)
  1302. obj->dirty = 0;
  1303. for (i = 0; i < page_count; i++) {
  1304. if (obj->dirty)
  1305. set_page_dirty(obj->pages[i]);
  1306. if (obj->madv == I915_MADV_WILLNEED)
  1307. mark_page_accessed(obj->pages[i]);
  1308. page_cache_release(obj->pages[i]);
  1309. }
  1310. obj->dirty = 0;
  1311. drm_free_large(obj->pages);
  1312. obj->pages = NULL;
  1313. }
  1314. void
  1315. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1316. struct intel_ring_buffer *ring,
  1317. u32 seqno)
  1318. {
  1319. struct drm_device *dev = obj->base.dev;
  1320. struct drm_i915_private *dev_priv = dev->dev_private;
  1321. BUG_ON(ring == NULL);
  1322. obj->ring = ring;
  1323. /* Add a reference if we're newly entering the active list. */
  1324. if (!obj->active) {
  1325. drm_gem_object_reference(&obj->base);
  1326. obj->active = 1;
  1327. }
  1328. /* Move from whatever list we were on to the tail of execution. */
  1329. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1330. list_move_tail(&obj->ring_list, &ring->active_list);
  1331. obj->last_rendering_seqno = seqno;
  1332. if (obj->fenced_gpu_access) {
  1333. struct drm_i915_fence_reg *reg;
  1334. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1335. obj->last_fenced_seqno = seqno;
  1336. obj->last_fenced_ring = ring;
  1337. reg = &dev_priv->fence_regs[obj->fence_reg];
  1338. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1339. }
  1340. }
  1341. static void
  1342. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1343. {
  1344. list_del_init(&obj->ring_list);
  1345. obj->last_rendering_seqno = 0;
  1346. }
  1347. static void
  1348. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1349. {
  1350. struct drm_device *dev = obj->base.dev;
  1351. drm_i915_private_t *dev_priv = dev->dev_private;
  1352. BUG_ON(!obj->active);
  1353. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1354. i915_gem_object_move_off_active(obj);
  1355. }
  1356. static void
  1357. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1358. {
  1359. struct drm_device *dev = obj->base.dev;
  1360. struct drm_i915_private *dev_priv = dev->dev_private;
  1361. if (obj->pin_count != 0)
  1362. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1363. else
  1364. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1365. BUG_ON(!list_empty(&obj->gpu_write_list));
  1366. BUG_ON(!obj->active);
  1367. obj->ring = NULL;
  1368. i915_gem_object_move_off_active(obj);
  1369. obj->fenced_gpu_access = false;
  1370. obj->active = 0;
  1371. obj->pending_gpu_write = false;
  1372. drm_gem_object_unreference(&obj->base);
  1373. WARN_ON(i915_verify_lists(dev));
  1374. }
  1375. /* Immediately discard the backing storage */
  1376. static void
  1377. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1378. {
  1379. struct inode *inode;
  1380. /* Our goal here is to return as much of the memory as
  1381. * is possible back to the system as we are called from OOM.
  1382. * To do this we must instruct the shmfs to drop all of its
  1383. * backing pages, *now*. Here we mirror the actions taken
  1384. * when by shmem_delete_inode() to release the backing store.
  1385. */
  1386. inode = obj->base.filp->f_path.dentry->d_inode;
  1387. truncate_inode_pages(inode->i_mapping, 0);
  1388. if (inode->i_op->truncate_range)
  1389. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1390. obj->madv = __I915_MADV_PURGED;
  1391. }
  1392. static inline int
  1393. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1394. {
  1395. return obj->madv == I915_MADV_DONTNEED;
  1396. }
  1397. static void
  1398. i915_gem_process_flushing_list(struct drm_device *dev,
  1399. uint32_t flush_domains,
  1400. struct intel_ring_buffer *ring)
  1401. {
  1402. struct drm_i915_gem_object *obj, *next;
  1403. list_for_each_entry_safe(obj, next,
  1404. &ring->gpu_write_list,
  1405. gpu_write_list) {
  1406. if (obj->base.write_domain & flush_domains) {
  1407. uint32_t old_write_domain = obj->base.write_domain;
  1408. obj->base.write_domain = 0;
  1409. list_del_init(&obj->gpu_write_list);
  1410. i915_gem_object_move_to_active(obj, ring,
  1411. i915_gem_next_request_seqno(dev, ring));
  1412. trace_i915_gem_object_change_domain(obj,
  1413. obj->base.read_domains,
  1414. old_write_domain);
  1415. }
  1416. }
  1417. }
  1418. int
  1419. i915_add_request(struct drm_device *dev,
  1420. struct drm_file *file,
  1421. struct drm_i915_gem_request *request,
  1422. struct intel_ring_buffer *ring)
  1423. {
  1424. drm_i915_private_t *dev_priv = dev->dev_private;
  1425. struct drm_i915_file_private *file_priv = NULL;
  1426. uint32_t seqno;
  1427. int was_empty;
  1428. int ret;
  1429. BUG_ON(request == NULL);
  1430. if (file != NULL)
  1431. file_priv = file->driver_priv;
  1432. ret = ring->add_request(ring, &seqno);
  1433. if (ret)
  1434. return ret;
  1435. ring->outstanding_lazy_request = false;
  1436. request->seqno = seqno;
  1437. request->ring = ring;
  1438. request->emitted_jiffies = jiffies;
  1439. was_empty = list_empty(&ring->request_list);
  1440. list_add_tail(&request->list, &ring->request_list);
  1441. if (file_priv) {
  1442. spin_lock(&file_priv->mm.lock);
  1443. request->file_priv = file_priv;
  1444. list_add_tail(&request->client_list,
  1445. &file_priv->mm.request_list);
  1446. spin_unlock(&file_priv->mm.lock);
  1447. }
  1448. if (!dev_priv->mm.suspended) {
  1449. mod_timer(&dev_priv->hangcheck_timer,
  1450. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1451. if (was_empty)
  1452. queue_delayed_work(dev_priv->wq,
  1453. &dev_priv->mm.retire_work, HZ);
  1454. }
  1455. return 0;
  1456. }
  1457. static inline void
  1458. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1459. {
  1460. struct drm_i915_file_private *file_priv = request->file_priv;
  1461. if (!file_priv)
  1462. return;
  1463. spin_lock(&file_priv->mm.lock);
  1464. list_del(&request->client_list);
  1465. request->file_priv = NULL;
  1466. spin_unlock(&file_priv->mm.lock);
  1467. }
  1468. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1469. struct intel_ring_buffer *ring)
  1470. {
  1471. while (!list_empty(&ring->request_list)) {
  1472. struct drm_i915_gem_request *request;
  1473. request = list_first_entry(&ring->request_list,
  1474. struct drm_i915_gem_request,
  1475. list);
  1476. list_del(&request->list);
  1477. i915_gem_request_remove_from_client(request);
  1478. kfree(request);
  1479. }
  1480. while (!list_empty(&ring->active_list)) {
  1481. struct drm_i915_gem_object *obj;
  1482. obj = list_first_entry(&ring->active_list,
  1483. struct drm_i915_gem_object,
  1484. ring_list);
  1485. obj->base.write_domain = 0;
  1486. list_del_init(&obj->gpu_write_list);
  1487. i915_gem_object_move_to_inactive(obj);
  1488. }
  1489. }
  1490. static void i915_gem_reset_fences(struct drm_device *dev)
  1491. {
  1492. struct drm_i915_private *dev_priv = dev->dev_private;
  1493. int i;
  1494. for (i = 0; i < 16; i++) {
  1495. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1496. struct drm_i915_gem_object *obj = reg->obj;
  1497. if (!obj)
  1498. continue;
  1499. if (obj->tiling_mode)
  1500. i915_gem_release_mmap(obj);
  1501. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1502. reg->obj->fenced_gpu_access = false;
  1503. reg->obj->last_fenced_seqno = 0;
  1504. reg->obj->last_fenced_ring = NULL;
  1505. i915_gem_clear_fence_reg(dev, reg);
  1506. }
  1507. }
  1508. void i915_gem_reset(struct drm_device *dev)
  1509. {
  1510. struct drm_i915_private *dev_priv = dev->dev_private;
  1511. struct drm_i915_gem_object *obj;
  1512. int i;
  1513. for (i = 0; i < I915_NUM_RINGS; i++)
  1514. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1515. /* Remove anything from the flushing lists. The GPU cache is likely
  1516. * to be lost on reset along with the data, so simply move the
  1517. * lost bo to the inactive list.
  1518. */
  1519. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1520. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1521. struct drm_i915_gem_object,
  1522. mm_list);
  1523. obj->base.write_domain = 0;
  1524. list_del_init(&obj->gpu_write_list);
  1525. i915_gem_object_move_to_inactive(obj);
  1526. }
  1527. /* Move everything out of the GPU domains to ensure we do any
  1528. * necessary invalidation upon reuse.
  1529. */
  1530. list_for_each_entry(obj,
  1531. &dev_priv->mm.inactive_list,
  1532. mm_list)
  1533. {
  1534. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1535. }
  1536. /* The fence registers are invalidated so clear them out */
  1537. i915_gem_reset_fences(dev);
  1538. }
  1539. /**
  1540. * This function clears the request list as sequence numbers are passed.
  1541. */
  1542. static void
  1543. i915_gem_retire_requests_ring(struct drm_device *dev,
  1544. struct intel_ring_buffer *ring)
  1545. {
  1546. drm_i915_private_t *dev_priv = dev->dev_private;
  1547. uint32_t seqno;
  1548. int i;
  1549. if (!ring->status_page.page_addr ||
  1550. list_empty(&ring->request_list))
  1551. return;
  1552. WARN_ON(i915_verify_lists(dev));
  1553. seqno = ring->get_seqno(ring);
  1554. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1555. if (seqno >= ring->sync_seqno[i])
  1556. ring->sync_seqno[i] = 0;
  1557. while (!list_empty(&ring->request_list)) {
  1558. struct drm_i915_gem_request *request;
  1559. request = list_first_entry(&ring->request_list,
  1560. struct drm_i915_gem_request,
  1561. list);
  1562. if (!i915_seqno_passed(seqno, request->seqno))
  1563. break;
  1564. trace_i915_gem_request_retire(dev, request->seqno);
  1565. list_del(&request->list);
  1566. i915_gem_request_remove_from_client(request);
  1567. kfree(request);
  1568. }
  1569. /* Move any buffers on the active list that are no longer referenced
  1570. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1571. */
  1572. while (!list_empty(&ring->active_list)) {
  1573. struct drm_i915_gem_object *obj;
  1574. obj= list_first_entry(&ring->active_list,
  1575. struct drm_i915_gem_object,
  1576. ring_list);
  1577. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1578. break;
  1579. if (obj->base.write_domain != 0)
  1580. i915_gem_object_move_to_flushing(obj);
  1581. else
  1582. i915_gem_object_move_to_inactive(obj);
  1583. }
  1584. if (unlikely (dev_priv->trace_irq_seqno &&
  1585. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1586. ring->irq_put(ring);
  1587. dev_priv->trace_irq_seqno = 0;
  1588. }
  1589. WARN_ON(i915_verify_lists(dev));
  1590. }
  1591. void
  1592. i915_gem_retire_requests(struct drm_device *dev)
  1593. {
  1594. drm_i915_private_t *dev_priv = dev->dev_private;
  1595. int i;
  1596. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1597. struct drm_i915_gem_object *obj, *next;
  1598. /* We must be careful that during unbind() we do not
  1599. * accidentally infinitely recurse into retire requests.
  1600. * Currently:
  1601. * retire -> free -> unbind -> wait -> retire_ring
  1602. */
  1603. list_for_each_entry_safe(obj, next,
  1604. &dev_priv->mm.deferred_free_list,
  1605. mm_list)
  1606. i915_gem_free_object_tail(obj);
  1607. }
  1608. for (i = 0; i < I915_NUM_RINGS; i++)
  1609. i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
  1610. }
  1611. static void
  1612. i915_gem_retire_work_handler(struct work_struct *work)
  1613. {
  1614. drm_i915_private_t *dev_priv;
  1615. struct drm_device *dev;
  1616. bool idle;
  1617. int i;
  1618. dev_priv = container_of(work, drm_i915_private_t,
  1619. mm.retire_work.work);
  1620. dev = dev_priv->dev;
  1621. /* Come back later if the device is busy... */
  1622. if (!mutex_trylock(&dev->struct_mutex)) {
  1623. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1624. return;
  1625. }
  1626. i915_gem_retire_requests(dev);
  1627. /* Send a periodic flush down the ring so we don't hold onto GEM
  1628. * objects indefinitely.
  1629. */
  1630. idle = true;
  1631. for (i = 0; i < I915_NUM_RINGS; i++) {
  1632. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1633. if (!list_empty(&ring->gpu_write_list)) {
  1634. struct drm_i915_gem_request *request;
  1635. int ret;
  1636. ret = i915_gem_flush_ring(dev, ring, 0,
  1637. I915_GEM_GPU_DOMAINS);
  1638. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1639. if (ret || request == NULL ||
  1640. i915_add_request(dev, NULL, request, ring))
  1641. kfree(request);
  1642. }
  1643. idle &= list_empty(&ring->request_list);
  1644. }
  1645. if (!dev_priv->mm.suspended && !idle)
  1646. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1647. mutex_unlock(&dev->struct_mutex);
  1648. }
  1649. int
  1650. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1651. bool interruptible, struct intel_ring_buffer *ring)
  1652. {
  1653. drm_i915_private_t *dev_priv = dev->dev_private;
  1654. u32 ier;
  1655. int ret = 0;
  1656. BUG_ON(seqno == 0);
  1657. if (atomic_read(&dev_priv->mm.wedged))
  1658. return -EAGAIN;
  1659. if (seqno == ring->outstanding_lazy_request) {
  1660. struct drm_i915_gem_request *request;
  1661. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1662. if (request == NULL)
  1663. return -ENOMEM;
  1664. ret = i915_add_request(dev, NULL, request, ring);
  1665. if (ret) {
  1666. kfree(request);
  1667. return ret;
  1668. }
  1669. seqno = request->seqno;
  1670. }
  1671. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1672. if (HAS_PCH_SPLIT(dev))
  1673. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1674. else
  1675. ier = I915_READ(IER);
  1676. if (!ier) {
  1677. DRM_ERROR("something (likely vbetool) disabled "
  1678. "interrupts, re-enabling\n");
  1679. i915_driver_irq_preinstall(dev);
  1680. i915_driver_irq_postinstall(dev);
  1681. }
  1682. trace_i915_gem_request_wait_begin(dev, seqno);
  1683. ring->waiting_seqno = seqno;
  1684. if (ring->irq_get(ring)) {
  1685. if (interruptible)
  1686. ret = wait_event_interruptible(ring->irq_queue,
  1687. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1688. || atomic_read(&dev_priv->mm.wedged));
  1689. else
  1690. wait_event(ring->irq_queue,
  1691. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1692. || atomic_read(&dev_priv->mm.wedged));
  1693. ring->irq_put(ring);
  1694. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1695. seqno) ||
  1696. atomic_read(&dev_priv->mm.wedged), 3000))
  1697. ret = -EBUSY;
  1698. ring->waiting_seqno = 0;
  1699. trace_i915_gem_request_wait_end(dev, seqno);
  1700. }
  1701. if (atomic_read(&dev_priv->mm.wedged))
  1702. ret = -EAGAIN;
  1703. if (ret && ret != -ERESTARTSYS)
  1704. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1705. __func__, ret, seqno, ring->get_seqno(ring),
  1706. dev_priv->next_seqno);
  1707. /* Directly dispatch request retiring. While we have the work queue
  1708. * to handle this, the waiter on a request often wants an associated
  1709. * buffer to have made it to the inactive list, and we would need
  1710. * a separate wait queue to handle that.
  1711. */
  1712. if (ret == 0)
  1713. i915_gem_retire_requests_ring(dev, ring);
  1714. return ret;
  1715. }
  1716. /**
  1717. * Waits for a sequence number to be signaled, and cleans up the
  1718. * request and object lists appropriately for that event.
  1719. */
  1720. static int
  1721. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1722. struct intel_ring_buffer *ring)
  1723. {
  1724. return i915_do_wait_request(dev, seqno, 1, ring);
  1725. }
  1726. /**
  1727. * Ensures that all rendering to the object has completed and the object is
  1728. * safe to unbind from the GTT or access from the CPU.
  1729. */
  1730. int
  1731. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1732. bool interruptible)
  1733. {
  1734. struct drm_device *dev = obj->base.dev;
  1735. int ret;
  1736. /* This function only exists to support waiting for existing rendering,
  1737. * not for emitting required flushes.
  1738. */
  1739. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1740. /* If there is rendering queued on the buffer being evicted, wait for
  1741. * it.
  1742. */
  1743. if (obj->active) {
  1744. ret = i915_do_wait_request(dev,
  1745. obj->last_rendering_seqno,
  1746. interruptible,
  1747. obj->ring);
  1748. if (ret)
  1749. return ret;
  1750. }
  1751. return 0;
  1752. }
  1753. /**
  1754. * Unbinds an object from the GTT aperture.
  1755. */
  1756. int
  1757. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1758. {
  1759. int ret = 0;
  1760. if (obj->gtt_space == NULL)
  1761. return 0;
  1762. if (obj->pin_count != 0) {
  1763. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1764. return -EINVAL;
  1765. }
  1766. /* blow away mappings if mapped through GTT */
  1767. i915_gem_release_mmap(obj);
  1768. /* Move the object to the CPU domain to ensure that
  1769. * any possible CPU writes while it's not in the GTT
  1770. * are flushed when we go to remap it. This will
  1771. * also ensure that all pending GPU writes are finished
  1772. * before we unbind.
  1773. */
  1774. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1775. if (ret == -ERESTARTSYS)
  1776. return ret;
  1777. /* Continue on if we fail due to EIO, the GPU is hung so we
  1778. * should be safe and we need to cleanup or else we might
  1779. * cause memory corruption through use-after-free.
  1780. */
  1781. if (ret) {
  1782. i915_gem_clflush_object(obj);
  1783. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1784. }
  1785. /* release the fence reg _after_ flushing */
  1786. ret = i915_gem_object_put_fence(obj);
  1787. if (ret == -ERESTARTSYS)
  1788. return ret;
  1789. i915_gem_gtt_unbind_object(obj);
  1790. i915_gem_object_put_pages_gtt(obj);
  1791. list_del_init(&obj->gtt_list);
  1792. list_del_init(&obj->mm_list);
  1793. /* Avoid an unnecessary call to unbind on rebind. */
  1794. obj->map_and_fenceable = true;
  1795. drm_mm_put_block(obj->gtt_space);
  1796. obj->gtt_space = NULL;
  1797. obj->gtt_offset = 0;
  1798. if (i915_gem_object_is_purgeable(obj))
  1799. i915_gem_object_truncate(obj);
  1800. trace_i915_gem_object_unbind(obj);
  1801. return ret;
  1802. }
  1803. int
  1804. i915_gem_flush_ring(struct drm_device *dev,
  1805. struct intel_ring_buffer *ring,
  1806. uint32_t invalidate_domains,
  1807. uint32_t flush_domains)
  1808. {
  1809. int ret;
  1810. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1811. if (ret)
  1812. return ret;
  1813. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1814. return 0;
  1815. }
  1816. static int i915_ring_idle(struct drm_device *dev,
  1817. struct intel_ring_buffer *ring)
  1818. {
  1819. int ret;
  1820. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1821. return 0;
  1822. if (!list_empty(&ring->gpu_write_list)) {
  1823. ret = i915_gem_flush_ring(dev, ring,
  1824. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1825. if (ret)
  1826. return ret;
  1827. }
  1828. return i915_wait_request(dev,
  1829. i915_gem_next_request_seqno(dev, ring),
  1830. ring);
  1831. }
  1832. int
  1833. i915_gpu_idle(struct drm_device *dev)
  1834. {
  1835. drm_i915_private_t *dev_priv = dev->dev_private;
  1836. bool lists_empty;
  1837. int ret, i;
  1838. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1839. list_empty(&dev_priv->mm.active_list));
  1840. if (lists_empty)
  1841. return 0;
  1842. /* Flush everything onto the inactive list. */
  1843. for (i = 0; i < I915_NUM_RINGS; i++) {
  1844. ret = i915_ring_idle(dev, &dev_priv->ring[i]);
  1845. if (ret)
  1846. return ret;
  1847. }
  1848. return 0;
  1849. }
  1850. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1851. struct intel_ring_buffer *pipelined)
  1852. {
  1853. struct drm_device *dev = obj->base.dev;
  1854. drm_i915_private_t *dev_priv = dev->dev_private;
  1855. u32 size = obj->gtt_space->size;
  1856. int regnum = obj->fence_reg;
  1857. uint64_t val;
  1858. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1859. 0xfffff000) << 32;
  1860. val |= obj->gtt_offset & 0xfffff000;
  1861. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1862. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1863. if (obj->tiling_mode == I915_TILING_Y)
  1864. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1865. val |= I965_FENCE_REG_VALID;
  1866. if (pipelined) {
  1867. int ret = intel_ring_begin(pipelined, 6);
  1868. if (ret)
  1869. return ret;
  1870. intel_ring_emit(pipelined, MI_NOOP);
  1871. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1872. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1873. intel_ring_emit(pipelined, (u32)val);
  1874. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1875. intel_ring_emit(pipelined, (u32)(val >> 32));
  1876. intel_ring_advance(pipelined);
  1877. } else
  1878. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1879. return 0;
  1880. }
  1881. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1882. struct intel_ring_buffer *pipelined)
  1883. {
  1884. struct drm_device *dev = obj->base.dev;
  1885. drm_i915_private_t *dev_priv = dev->dev_private;
  1886. u32 size = obj->gtt_space->size;
  1887. int regnum = obj->fence_reg;
  1888. uint64_t val;
  1889. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1890. 0xfffff000) << 32;
  1891. val |= obj->gtt_offset & 0xfffff000;
  1892. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1893. if (obj->tiling_mode == I915_TILING_Y)
  1894. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1895. val |= I965_FENCE_REG_VALID;
  1896. if (pipelined) {
  1897. int ret = intel_ring_begin(pipelined, 6);
  1898. if (ret)
  1899. return ret;
  1900. intel_ring_emit(pipelined, MI_NOOP);
  1901. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1902. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1903. intel_ring_emit(pipelined, (u32)val);
  1904. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1905. intel_ring_emit(pipelined, (u32)(val >> 32));
  1906. intel_ring_advance(pipelined);
  1907. } else
  1908. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1909. return 0;
  1910. }
  1911. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1912. struct intel_ring_buffer *pipelined)
  1913. {
  1914. struct drm_device *dev = obj->base.dev;
  1915. drm_i915_private_t *dev_priv = dev->dev_private;
  1916. u32 size = obj->gtt_space->size;
  1917. u32 fence_reg, val, pitch_val;
  1918. int tile_width;
  1919. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1920. (size & -size) != size ||
  1921. (obj->gtt_offset & (size - 1)),
  1922. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1923. obj->gtt_offset, obj->map_and_fenceable, size))
  1924. return -EINVAL;
  1925. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1926. tile_width = 128;
  1927. else
  1928. tile_width = 512;
  1929. /* Note: pitch better be a power of two tile widths */
  1930. pitch_val = obj->stride / tile_width;
  1931. pitch_val = ffs(pitch_val) - 1;
  1932. val = obj->gtt_offset;
  1933. if (obj->tiling_mode == I915_TILING_Y)
  1934. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1935. val |= I915_FENCE_SIZE_BITS(size);
  1936. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1937. val |= I830_FENCE_REG_VALID;
  1938. fence_reg = obj->fence_reg;
  1939. if (fence_reg < 8)
  1940. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1941. else
  1942. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1943. if (pipelined) {
  1944. int ret = intel_ring_begin(pipelined, 4);
  1945. if (ret)
  1946. return ret;
  1947. intel_ring_emit(pipelined, MI_NOOP);
  1948. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1949. intel_ring_emit(pipelined, fence_reg);
  1950. intel_ring_emit(pipelined, val);
  1951. intel_ring_advance(pipelined);
  1952. } else
  1953. I915_WRITE(fence_reg, val);
  1954. return 0;
  1955. }
  1956. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1957. struct intel_ring_buffer *pipelined)
  1958. {
  1959. struct drm_device *dev = obj->base.dev;
  1960. drm_i915_private_t *dev_priv = dev->dev_private;
  1961. u32 size = obj->gtt_space->size;
  1962. int regnum = obj->fence_reg;
  1963. uint32_t val;
  1964. uint32_t pitch_val;
  1965. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1966. (size & -size) != size ||
  1967. (obj->gtt_offset & (size - 1)),
  1968. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1969. obj->gtt_offset, size))
  1970. return -EINVAL;
  1971. pitch_val = obj->stride / 128;
  1972. pitch_val = ffs(pitch_val) - 1;
  1973. val = obj->gtt_offset;
  1974. if (obj->tiling_mode == I915_TILING_Y)
  1975. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1976. val |= I830_FENCE_SIZE_BITS(size);
  1977. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1978. val |= I830_FENCE_REG_VALID;
  1979. if (pipelined) {
  1980. int ret = intel_ring_begin(pipelined, 4);
  1981. if (ret)
  1982. return ret;
  1983. intel_ring_emit(pipelined, MI_NOOP);
  1984. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1985. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1986. intel_ring_emit(pipelined, val);
  1987. intel_ring_advance(pipelined);
  1988. } else
  1989. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1990. return 0;
  1991. }
  1992. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1993. {
  1994. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1995. }
  1996. static int
  1997. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1998. struct intel_ring_buffer *pipelined,
  1999. bool interruptible)
  2000. {
  2001. int ret;
  2002. if (obj->fenced_gpu_access) {
  2003. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2004. ret = i915_gem_flush_ring(obj->base.dev,
  2005. obj->last_fenced_ring,
  2006. 0, obj->base.write_domain);
  2007. if (ret)
  2008. return ret;
  2009. }
  2010. obj->fenced_gpu_access = false;
  2011. }
  2012. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2013. if (!ring_passed_seqno(obj->last_fenced_ring,
  2014. obj->last_fenced_seqno)) {
  2015. ret = i915_do_wait_request(obj->base.dev,
  2016. obj->last_fenced_seqno,
  2017. interruptible,
  2018. obj->last_fenced_ring);
  2019. if (ret)
  2020. return ret;
  2021. }
  2022. obj->last_fenced_seqno = 0;
  2023. obj->last_fenced_ring = NULL;
  2024. }
  2025. /* Ensure that all CPU reads are completed before installing a fence
  2026. * and all writes before removing the fence.
  2027. */
  2028. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2029. mb();
  2030. return 0;
  2031. }
  2032. int
  2033. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2034. {
  2035. int ret;
  2036. if (obj->tiling_mode)
  2037. i915_gem_release_mmap(obj);
  2038. ret = i915_gem_object_flush_fence(obj, NULL, true);
  2039. if (ret)
  2040. return ret;
  2041. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2042. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2043. i915_gem_clear_fence_reg(obj->base.dev,
  2044. &dev_priv->fence_regs[obj->fence_reg]);
  2045. obj->fence_reg = I915_FENCE_REG_NONE;
  2046. }
  2047. return 0;
  2048. }
  2049. static struct drm_i915_fence_reg *
  2050. i915_find_fence_reg(struct drm_device *dev,
  2051. struct intel_ring_buffer *pipelined)
  2052. {
  2053. struct drm_i915_private *dev_priv = dev->dev_private;
  2054. struct drm_i915_fence_reg *reg, *first, *avail;
  2055. int i;
  2056. /* First try to find a free reg */
  2057. avail = NULL;
  2058. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2059. reg = &dev_priv->fence_regs[i];
  2060. if (!reg->obj)
  2061. return reg;
  2062. if (!reg->obj->pin_count)
  2063. avail = reg;
  2064. }
  2065. if (avail == NULL)
  2066. return NULL;
  2067. /* None available, try to steal one or wait for a user to finish */
  2068. avail = first = NULL;
  2069. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2070. if (reg->obj->pin_count)
  2071. continue;
  2072. if (first == NULL)
  2073. first = reg;
  2074. if (!pipelined ||
  2075. !reg->obj->last_fenced_ring ||
  2076. reg->obj->last_fenced_ring == pipelined) {
  2077. avail = reg;
  2078. break;
  2079. }
  2080. }
  2081. if (avail == NULL)
  2082. avail = first;
  2083. return avail;
  2084. }
  2085. /**
  2086. * i915_gem_object_get_fence - set up a fence reg for an object
  2087. * @obj: object to map through a fence reg
  2088. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2089. * @interruptible: must we wait uninterruptibly for the register to retire?
  2090. *
  2091. * When mapping objects through the GTT, userspace wants to be able to write
  2092. * to them without having to worry about swizzling if the object is tiled.
  2093. *
  2094. * This function walks the fence regs looking for a free one for @obj,
  2095. * stealing one if it can't find any.
  2096. *
  2097. * It then sets up the reg based on the object's properties: address, pitch
  2098. * and tiling format.
  2099. */
  2100. int
  2101. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2102. struct intel_ring_buffer *pipelined,
  2103. bool interruptible)
  2104. {
  2105. struct drm_device *dev = obj->base.dev;
  2106. struct drm_i915_private *dev_priv = dev->dev_private;
  2107. struct drm_i915_fence_reg *reg;
  2108. int ret;
  2109. /* XXX disable pipelining. There are bugs. Shocking. */
  2110. pipelined = NULL;
  2111. /* Just update our place in the LRU if our fence is getting reused. */
  2112. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2113. reg = &dev_priv->fence_regs[obj->fence_reg];
  2114. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2115. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2116. pipelined = NULL;
  2117. if (!pipelined) {
  2118. if (reg->setup_seqno) {
  2119. if (!ring_passed_seqno(obj->last_fenced_ring,
  2120. reg->setup_seqno)) {
  2121. ret = i915_do_wait_request(obj->base.dev,
  2122. reg->setup_seqno,
  2123. interruptible,
  2124. obj->last_fenced_ring);
  2125. if (ret)
  2126. return ret;
  2127. }
  2128. reg->setup_seqno = 0;
  2129. }
  2130. } else if (obj->last_fenced_ring &&
  2131. obj->last_fenced_ring != pipelined) {
  2132. ret = i915_gem_object_flush_fence(obj,
  2133. pipelined,
  2134. interruptible);
  2135. if (ret)
  2136. return ret;
  2137. } else if (obj->tiling_changed) {
  2138. if (obj->fenced_gpu_access) {
  2139. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2140. ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
  2141. 0, obj->base.write_domain);
  2142. if (ret)
  2143. return ret;
  2144. }
  2145. obj->fenced_gpu_access = false;
  2146. }
  2147. }
  2148. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2149. pipelined = NULL;
  2150. BUG_ON(!pipelined && reg->setup_seqno);
  2151. if (obj->tiling_changed) {
  2152. if (pipelined) {
  2153. reg->setup_seqno =
  2154. i915_gem_next_request_seqno(dev, pipelined);
  2155. obj->last_fenced_seqno = reg->setup_seqno;
  2156. obj->last_fenced_ring = pipelined;
  2157. }
  2158. goto update;
  2159. }
  2160. return 0;
  2161. }
  2162. reg = i915_find_fence_reg(dev, pipelined);
  2163. if (reg == NULL)
  2164. return -ENOSPC;
  2165. ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
  2166. if (ret)
  2167. return ret;
  2168. if (reg->obj) {
  2169. struct drm_i915_gem_object *old = reg->obj;
  2170. drm_gem_object_reference(&old->base);
  2171. if (old->tiling_mode)
  2172. i915_gem_release_mmap(old);
  2173. ret = i915_gem_object_flush_fence(old,
  2174. pipelined,
  2175. interruptible);
  2176. if (ret) {
  2177. drm_gem_object_unreference(&old->base);
  2178. return ret;
  2179. }
  2180. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2181. pipelined = NULL;
  2182. old->fence_reg = I915_FENCE_REG_NONE;
  2183. old->last_fenced_ring = pipelined;
  2184. old->last_fenced_seqno =
  2185. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2186. drm_gem_object_unreference(&old->base);
  2187. } else if (obj->last_fenced_seqno == 0)
  2188. pipelined = NULL;
  2189. reg->obj = obj;
  2190. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2191. obj->fence_reg = reg - dev_priv->fence_regs;
  2192. obj->last_fenced_ring = pipelined;
  2193. reg->setup_seqno =
  2194. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2195. obj->last_fenced_seqno = reg->setup_seqno;
  2196. update:
  2197. obj->tiling_changed = false;
  2198. switch (INTEL_INFO(dev)->gen) {
  2199. case 6:
  2200. ret = sandybridge_write_fence_reg(obj, pipelined);
  2201. break;
  2202. case 5:
  2203. case 4:
  2204. ret = i965_write_fence_reg(obj, pipelined);
  2205. break;
  2206. case 3:
  2207. ret = i915_write_fence_reg(obj, pipelined);
  2208. break;
  2209. case 2:
  2210. ret = i830_write_fence_reg(obj, pipelined);
  2211. break;
  2212. }
  2213. return ret;
  2214. }
  2215. /**
  2216. * i915_gem_clear_fence_reg - clear out fence register info
  2217. * @obj: object to clear
  2218. *
  2219. * Zeroes out the fence register itself and clears out the associated
  2220. * data structures in dev_priv and obj.
  2221. */
  2222. static void
  2223. i915_gem_clear_fence_reg(struct drm_device *dev,
  2224. struct drm_i915_fence_reg *reg)
  2225. {
  2226. drm_i915_private_t *dev_priv = dev->dev_private;
  2227. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2228. switch (INTEL_INFO(dev)->gen) {
  2229. case 6:
  2230. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2231. break;
  2232. case 5:
  2233. case 4:
  2234. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2235. break;
  2236. case 3:
  2237. if (fence_reg >= 8)
  2238. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2239. else
  2240. case 2:
  2241. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2242. I915_WRITE(fence_reg, 0);
  2243. break;
  2244. }
  2245. list_del_init(&reg->lru_list);
  2246. reg->obj = NULL;
  2247. reg->setup_seqno = 0;
  2248. }
  2249. /**
  2250. * Finds free space in the GTT aperture and binds the object there.
  2251. */
  2252. static int
  2253. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2254. unsigned alignment,
  2255. bool map_and_fenceable)
  2256. {
  2257. struct drm_device *dev = obj->base.dev;
  2258. drm_i915_private_t *dev_priv = dev->dev_private;
  2259. struct drm_mm_node *free_space;
  2260. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2261. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2262. bool mappable, fenceable;
  2263. int ret;
  2264. if (obj->madv != I915_MADV_WILLNEED) {
  2265. DRM_ERROR("Attempting to bind a purgeable object\n");
  2266. return -EINVAL;
  2267. }
  2268. fence_size = i915_gem_get_gtt_size(obj);
  2269. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2270. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2271. if (alignment == 0)
  2272. alignment = map_and_fenceable ? fence_alignment :
  2273. unfenced_alignment;
  2274. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2275. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2276. return -EINVAL;
  2277. }
  2278. size = map_and_fenceable ? fence_size : obj->base.size;
  2279. /* If the object is bigger than the entire aperture, reject it early
  2280. * before evicting everything in a vain attempt to find space.
  2281. */
  2282. if (obj->base.size >
  2283. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2284. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2285. return -E2BIG;
  2286. }
  2287. search_free:
  2288. if (map_and_fenceable)
  2289. free_space =
  2290. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2291. size, alignment, 0,
  2292. dev_priv->mm.gtt_mappable_end,
  2293. 0);
  2294. else
  2295. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2296. size, alignment, 0);
  2297. if (free_space != NULL) {
  2298. if (map_and_fenceable)
  2299. obj->gtt_space =
  2300. drm_mm_get_block_range_generic(free_space,
  2301. size, alignment, 0,
  2302. dev_priv->mm.gtt_mappable_end,
  2303. 0);
  2304. else
  2305. obj->gtt_space =
  2306. drm_mm_get_block(free_space, size, alignment);
  2307. }
  2308. if (obj->gtt_space == NULL) {
  2309. /* If the gtt is empty and we're still having trouble
  2310. * fitting our object in, we're out of memory.
  2311. */
  2312. ret = i915_gem_evict_something(dev, size, alignment,
  2313. map_and_fenceable);
  2314. if (ret)
  2315. return ret;
  2316. goto search_free;
  2317. }
  2318. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2319. if (ret) {
  2320. drm_mm_put_block(obj->gtt_space);
  2321. obj->gtt_space = NULL;
  2322. if (ret == -ENOMEM) {
  2323. /* first try to reclaim some memory by clearing the GTT */
  2324. ret = i915_gem_evict_everything(dev, false);
  2325. if (ret) {
  2326. /* now try to shrink everyone else */
  2327. if (gfpmask) {
  2328. gfpmask = 0;
  2329. goto search_free;
  2330. }
  2331. return -ENOMEM;
  2332. }
  2333. goto search_free;
  2334. }
  2335. return ret;
  2336. }
  2337. ret = i915_gem_gtt_bind_object(obj);
  2338. if (ret) {
  2339. i915_gem_object_put_pages_gtt(obj);
  2340. drm_mm_put_block(obj->gtt_space);
  2341. obj->gtt_space = NULL;
  2342. if (i915_gem_evict_everything(dev, false))
  2343. return ret;
  2344. goto search_free;
  2345. }
  2346. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2347. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2348. /* Assert that the object is not currently in any GPU domain. As it
  2349. * wasn't in the GTT, there shouldn't be any way it could have been in
  2350. * a GPU cache
  2351. */
  2352. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2353. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2354. obj->gtt_offset = obj->gtt_space->start;
  2355. fenceable =
  2356. obj->gtt_space->size == fence_size &&
  2357. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2358. mappable =
  2359. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2360. obj->map_and_fenceable = mappable && fenceable;
  2361. trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
  2362. return 0;
  2363. }
  2364. void
  2365. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2366. {
  2367. /* If we don't have a page list set up, then we're not pinned
  2368. * to GPU, and we can ignore the cache flush because it'll happen
  2369. * again at bind time.
  2370. */
  2371. if (obj->pages == NULL)
  2372. return;
  2373. trace_i915_gem_object_clflush(obj);
  2374. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2375. }
  2376. /** Flushes any GPU write domain for the object if it's dirty. */
  2377. static int
  2378. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2379. {
  2380. struct drm_device *dev = obj->base.dev;
  2381. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2382. return 0;
  2383. /* Queue the GPU write cache flushing we need. */
  2384. return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
  2385. }
  2386. /** Flushes the GTT write domain for the object if it's dirty. */
  2387. static void
  2388. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2389. {
  2390. uint32_t old_write_domain;
  2391. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2392. return;
  2393. /* No actual flushing is required for the GTT write domain. Writes
  2394. * to it immediately go to main memory as far as we know, so there's
  2395. * no chipset flush. It also doesn't land in render cache.
  2396. *
  2397. * However, we do have to enforce the order so that all writes through
  2398. * the GTT land before any writes to the device, such as updates to
  2399. * the GATT itself.
  2400. */
  2401. wmb();
  2402. i915_gem_release_mmap(obj);
  2403. old_write_domain = obj->base.write_domain;
  2404. obj->base.write_domain = 0;
  2405. trace_i915_gem_object_change_domain(obj,
  2406. obj->base.read_domains,
  2407. old_write_domain);
  2408. }
  2409. /** Flushes the CPU write domain for the object if it's dirty. */
  2410. static void
  2411. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2412. {
  2413. uint32_t old_write_domain;
  2414. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2415. return;
  2416. i915_gem_clflush_object(obj);
  2417. intel_gtt_chipset_flush();
  2418. old_write_domain = obj->base.write_domain;
  2419. obj->base.write_domain = 0;
  2420. trace_i915_gem_object_change_domain(obj,
  2421. obj->base.read_domains,
  2422. old_write_domain);
  2423. }
  2424. /**
  2425. * Moves a single object to the GTT read, and possibly write domain.
  2426. *
  2427. * This function returns when the move is complete, including waiting on
  2428. * flushes to occur.
  2429. */
  2430. int
  2431. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2432. {
  2433. uint32_t old_write_domain, old_read_domains;
  2434. int ret;
  2435. /* Not valid to be called on unbound objects. */
  2436. if (obj->gtt_space == NULL)
  2437. return -EINVAL;
  2438. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2439. if (ret)
  2440. return ret;
  2441. if (obj->pending_gpu_write || write) {
  2442. ret = i915_gem_object_wait_rendering(obj, true);
  2443. if (ret)
  2444. return ret;
  2445. }
  2446. i915_gem_object_flush_cpu_write_domain(obj);
  2447. old_write_domain = obj->base.write_domain;
  2448. old_read_domains = obj->base.read_domains;
  2449. /* It should now be out of any other write domains, and we can update
  2450. * the domain values for our changes.
  2451. */
  2452. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2453. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2454. if (write) {
  2455. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2456. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2457. obj->dirty = 1;
  2458. }
  2459. trace_i915_gem_object_change_domain(obj,
  2460. old_read_domains,
  2461. old_write_domain);
  2462. return 0;
  2463. }
  2464. /*
  2465. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2466. * wait, as in modesetting process we're not supposed to be interrupted.
  2467. */
  2468. int
  2469. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2470. struct intel_ring_buffer *pipelined)
  2471. {
  2472. uint32_t old_read_domains;
  2473. int ret;
  2474. /* Not valid to be called on unbound objects. */
  2475. if (obj->gtt_space == NULL)
  2476. return -EINVAL;
  2477. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2478. if (ret)
  2479. return ret;
  2480. /* Currently, we are always called from an non-interruptible context. */
  2481. if (pipelined != obj->ring) {
  2482. ret = i915_gem_object_wait_rendering(obj, false);
  2483. if (ret)
  2484. return ret;
  2485. }
  2486. i915_gem_object_flush_cpu_write_domain(obj);
  2487. old_read_domains = obj->base.read_domains;
  2488. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2489. trace_i915_gem_object_change_domain(obj,
  2490. old_read_domains,
  2491. obj->base.write_domain);
  2492. return 0;
  2493. }
  2494. int
  2495. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2496. bool interruptible)
  2497. {
  2498. int ret;
  2499. if (!obj->active)
  2500. return 0;
  2501. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2502. ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
  2503. 0, obj->base.write_domain);
  2504. if (ret)
  2505. return ret;
  2506. }
  2507. return i915_gem_object_wait_rendering(obj, interruptible);
  2508. }
  2509. /**
  2510. * Moves a single object to the CPU read, and possibly write domain.
  2511. *
  2512. * This function returns when the move is complete, including waiting on
  2513. * flushes to occur.
  2514. */
  2515. static int
  2516. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2517. {
  2518. uint32_t old_write_domain, old_read_domains;
  2519. int ret;
  2520. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2521. if (ret)
  2522. return ret;
  2523. ret = i915_gem_object_wait_rendering(obj, true);
  2524. if (ret)
  2525. return ret;
  2526. i915_gem_object_flush_gtt_write_domain(obj);
  2527. /* If we have a partially-valid cache of the object in the CPU,
  2528. * finish invalidating it and free the per-page flags.
  2529. */
  2530. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2531. old_write_domain = obj->base.write_domain;
  2532. old_read_domains = obj->base.read_domains;
  2533. /* Flush the CPU cache if it's still invalid. */
  2534. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2535. i915_gem_clflush_object(obj);
  2536. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2537. }
  2538. /* It should now be out of any other write domains, and we can update
  2539. * the domain values for our changes.
  2540. */
  2541. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2542. /* If we're writing through the CPU, then the GPU read domains will
  2543. * need to be invalidated at next use.
  2544. */
  2545. if (write) {
  2546. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2547. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2548. }
  2549. trace_i915_gem_object_change_domain(obj,
  2550. old_read_domains,
  2551. old_write_domain);
  2552. return 0;
  2553. }
  2554. /**
  2555. * Moves the object from a partially CPU read to a full one.
  2556. *
  2557. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2558. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2559. */
  2560. static void
  2561. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2562. {
  2563. if (!obj->page_cpu_valid)
  2564. return;
  2565. /* If we're partially in the CPU read domain, finish moving it in.
  2566. */
  2567. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2568. int i;
  2569. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2570. if (obj->page_cpu_valid[i])
  2571. continue;
  2572. drm_clflush_pages(obj->pages + i, 1);
  2573. }
  2574. }
  2575. /* Free the page_cpu_valid mappings which are now stale, whether
  2576. * or not we've got I915_GEM_DOMAIN_CPU.
  2577. */
  2578. kfree(obj->page_cpu_valid);
  2579. obj->page_cpu_valid = NULL;
  2580. }
  2581. /**
  2582. * Set the CPU read domain on a range of the object.
  2583. *
  2584. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2585. * not entirely valid. The page_cpu_valid member of the object flags which
  2586. * pages have been flushed, and will be respected by
  2587. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2588. * of the whole object.
  2589. *
  2590. * This function returns when the move is complete, including waiting on
  2591. * flushes to occur.
  2592. */
  2593. static int
  2594. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2595. uint64_t offset, uint64_t size)
  2596. {
  2597. uint32_t old_read_domains;
  2598. int i, ret;
  2599. if (offset == 0 && size == obj->base.size)
  2600. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2601. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2602. if (ret)
  2603. return ret;
  2604. ret = i915_gem_object_wait_rendering(obj, true);
  2605. if (ret)
  2606. return ret;
  2607. i915_gem_object_flush_gtt_write_domain(obj);
  2608. /* If we're already fully in the CPU read domain, we're done. */
  2609. if (obj->page_cpu_valid == NULL &&
  2610. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2611. return 0;
  2612. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2613. * newly adding I915_GEM_DOMAIN_CPU
  2614. */
  2615. if (obj->page_cpu_valid == NULL) {
  2616. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2617. GFP_KERNEL);
  2618. if (obj->page_cpu_valid == NULL)
  2619. return -ENOMEM;
  2620. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2621. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2622. /* Flush the cache on any pages that are still invalid from the CPU's
  2623. * perspective.
  2624. */
  2625. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2626. i++) {
  2627. if (obj->page_cpu_valid[i])
  2628. continue;
  2629. drm_clflush_pages(obj->pages + i, 1);
  2630. obj->page_cpu_valid[i] = 1;
  2631. }
  2632. /* It should now be out of any other write domains, and we can update
  2633. * the domain values for our changes.
  2634. */
  2635. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2636. old_read_domains = obj->base.read_domains;
  2637. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2638. trace_i915_gem_object_change_domain(obj,
  2639. old_read_domains,
  2640. obj->base.write_domain);
  2641. return 0;
  2642. }
  2643. /* Throttle our rendering by waiting until the ring has completed our requests
  2644. * emitted over 20 msec ago.
  2645. *
  2646. * Note that if we were to use the current jiffies each time around the loop,
  2647. * we wouldn't escape the function with any frames outstanding if the time to
  2648. * render a frame was over 20ms.
  2649. *
  2650. * This should get us reasonable parallelism between CPU and GPU but also
  2651. * relatively low latency when blocking on a particular request to finish.
  2652. */
  2653. static int
  2654. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2655. {
  2656. struct drm_i915_private *dev_priv = dev->dev_private;
  2657. struct drm_i915_file_private *file_priv = file->driver_priv;
  2658. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2659. struct drm_i915_gem_request *request;
  2660. struct intel_ring_buffer *ring = NULL;
  2661. u32 seqno = 0;
  2662. int ret;
  2663. if (atomic_read(&dev_priv->mm.wedged))
  2664. return -EIO;
  2665. spin_lock(&file_priv->mm.lock);
  2666. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2667. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2668. break;
  2669. ring = request->ring;
  2670. seqno = request->seqno;
  2671. }
  2672. spin_unlock(&file_priv->mm.lock);
  2673. if (seqno == 0)
  2674. return 0;
  2675. ret = 0;
  2676. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2677. /* And wait for the seqno passing without holding any locks and
  2678. * causing extra latency for others. This is safe as the irq
  2679. * generation is designed to be run atomically and so is
  2680. * lockless.
  2681. */
  2682. if (ring->irq_get(ring)) {
  2683. ret = wait_event_interruptible(ring->irq_queue,
  2684. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2685. || atomic_read(&dev_priv->mm.wedged));
  2686. ring->irq_put(ring);
  2687. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2688. ret = -EIO;
  2689. }
  2690. }
  2691. if (ret == 0)
  2692. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2693. return ret;
  2694. }
  2695. int
  2696. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2697. uint32_t alignment,
  2698. bool map_and_fenceable)
  2699. {
  2700. struct drm_device *dev = obj->base.dev;
  2701. struct drm_i915_private *dev_priv = dev->dev_private;
  2702. int ret;
  2703. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2704. WARN_ON(i915_verify_lists(dev));
  2705. if (obj->gtt_space != NULL) {
  2706. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2707. (map_and_fenceable && !obj->map_and_fenceable)) {
  2708. WARN(obj->pin_count,
  2709. "bo is already pinned with incorrect alignment:"
  2710. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2711. " obj->map_and_fenceable=%d\n",
  2712. obj->gtt_offset, alignment,
  2713. map_and_fenceable,
  2714. obj->map_and_fenceable);
  2715. ret = i915_gem_object_unbind(obj);
  2716. if (ret)
  2717. return ret;
  2718. }
  2719. }
  2720. if (obj->gtt_space == NULL) {
  2721. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2722. map_and_fenceable);
  2723. if (ret)
  2724. return ret;
  2725. }
  2726. if (obj->pin_count++ == 0) {
  2727. if (!obj->active)
  2728. list_move_tail(&obj->mm_list,
  2729. &dev_priv->mm.pinned_list);
  2730. }
  2731. obj->pin_mappable |= map_and_fenceable;
  2732. WARN_ON(i915_verify_lists(dev));
  2733. return 0;
  2734. }
  2735. void
  2736. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2737. {
  2738. struct drm_device *dev = obj->base.dev;
  2739. drm_i915_private_t *dev_priv = dev->dev_private;
  2740. WARN_ON(i915_verify_lists(dev));
  2741. BUG_ON(obj->pin_count == 0);
  2742. BUG_ON(obj->gtt_space == NULL);
  2743. if (--obj->pin_count == 0) {
  2744. if (!obj->active)
  2745. list_move_tail(&obj->mm_list,
  2746. &dev_priv->mm.inactive_list);
  2747. obj->pin_mappable = false;
  2748. }
  2749. WARN_ON(i915_verify_lists(dev));
  2750. }
  2751. int
  2752. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2753. struct drm_file *file)
  2754. {
  2755. struct drm_i915_gem_pin *args = data;
  2756. struct drm_i915_gem_object *obj;
  2757. int ret;
  2758. ret = i915_mutex_lock_interruptible(dev);
  2759. if (ret)
  2760. return ret;
  2761. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2762. if (obj == NULL) {
  2763. ret = -ENOENT;
  2764. goto unlock;
  2765. }
  2766. if (obj->madv != I915_MADV_WILLNEED) {
  2767. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2768. ret = -EINVAL;
  2769. goto out;
  2770. }
  2771. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2772. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2773. args->handle);
  2774. ret = -EINVAL;
  2775. goto out;
  2776. }
  2777. obj->user_pin_count++;
  2778. obj->pin_filp = file;
  2779. if (obj->user_pin_count == 1) {
  2780. ret = i915_gem_object_pin(obj, args->alignment, true);
  2781. if (ret)
  2782. goto out;
  2783. }
  2784. /* XXX - flush the CPU caches for pinned objects
  2785. * as the X server doesn't manage domains yet
  2786. */
  2787. i915_gem_object_flush_cpu_write_domain(obj);
  2788. args->offset = obj->gtt_offset;
  2789. out:
  2790. drm_gem_object_unreference(&obj->base);
  2791. unlock:
  2792. mutex_unlock(&dev->struct_mutex);
  2793. return ret;
  2794. }
  2795. int
  2796. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2797. struct drm_file *file)
  2798. {
  2799. struct drm_i915_gem_pin *args = data;
  2800. struct drm_i915_gem_object *obj;
  2801. int ret;
  2802. ret = i915_mutex_lock_interruptible(dev);
  2803. if (ret)
  2804. return ret;
  2805. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2806. if (obj == NULL) {
  2807. ret = -ENOENT;
  2808. goto unlock;
  2809. }
  2810. if (obj->pin_filp != file) {
  2811. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2812. args->handle);
  2813. ret = -EINVAL;
  2814. goto out;
  2815. }
  2816. obj->user_pin_count--;
  2817. if (obj->user_pin_count == 0) {
  2818. obj->pin_filp = NULL;
  2819. i915_gem_object_unpin(obj);
  2820. }
  2821. out:
  2822. drm_gem_object_unreference(&obj->base);
  2823. unlock:
  2824. mutex_unlock(&dev->struct_mutex);
  2825. return ret;
  2826. }
  2827. int
  2828. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2829. struct drm_file *file)
  2830. {
  2831. struct drm_i915_gem_busy *args = data;
  2832. struct drm_i915_gem_object *obj;
  2833. int ret;
  2834. ret = i915_mutex_lock_interruptible(dev);
  2835. if (ret)
  2836. return ret;
  2837. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2838. if (obj == NULL) {
  2839. ret = -ENOENT;
  2840. goto unlock;
  2841. }
  2842. /* Count all active objects as busy, even if they are currently not used
  2843. * by the gpu. Users of this interface expect objects to eventually
  2844. * become non-busy without any further actions, therefore emit any
  2845. * necessary flushes here.
  2846. */
  2847. args->busy = obj->active;
  2848. if (args->busy) {
  2849. /* Unconditionally flush objects, even when the gpu still uses this
  2850. * object. Userspace calling this function indicates that it wants to
  2851. * use this buffer rather sooner than later, so issuing the required
  2852. * flush earlier is beneficial.
  2853. */
  2854. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2855. ret = i915_gem_flush_ring(dev, obj->ring,
  2856. 0, obj->base.write_domain);
  2857. } else if (obj->ring->outstanding_lazy_request ==
  2858. obj->last_rendering_seqno) {
  2859. struct drm_i915_gem_request *request;
  2860. /* This ring is not being cleared by active usage,
  2861. * so emit a request to do so.
  2862. */
  2863. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2864. if (request)
  2865. ret = i915_add_request(dev,
  2866. NULL, request,
  2867. obj->ring);
  2868. else
  2869. ret = -ENOMEM;
  2870. }
  2871. /* Update the active list for the hardware's current position.
  2872. * Otherwise this only updates on a delayed timer or when irqs
  2873. * are actually unmasked, and our working set ends up being
  2874. * larger than required.
  2875. */
  2876. i915_gem_retire_requests_ring(dev, obj->ring);
  2877. args->busy = obj->active;
  2878. }
  2879. drm_gem_object_unreference(&obj->base);
  2880. unlock:
  2881. mutex_unlock(&dev->struct_mutex);
  2882. return ret;
  2883. }
  2884. int
  2885. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2886. struct drm_file *file_priv)
  2887. {
  2888. return i915_gem_ring_throttle(dev, file_priv);
  2889. }
  2890. int
  2891. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2892. struct drm_file *file_priv)
  2893. {
  2894. struct drm_i915_gem_madvise *args = data;
  2895. struct drm_i915_gem_object *obj;
  2896. int ret;
  2897. switch (args->madv) {
  2898. case I915_MADV_DONTNEED:
  2899. case I915_MADV_WILLNEED:
  2900. break;
  2901. default:
  2902. return -EINVAL;
  2903. }
  2904. ret = i915_mutex_lock_interruptible(dev);
  2905. if (ret)
  2906. return ret;
  2907. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2908. if (obj == NULL) {
  2909. ret = -ENOENT;
  2910. goto unlock;
  2911. }
  2912. if (obj->pin_count) {
  2913. ret = -EINVAL;
  2914. goto out;
  2915. }
  2916. if (obj->madv != __I915_MADV_PURGED)
  2917. obj->madv = args->madv;
  2918. /* if the object is no longer bound, discard its backing storage */
  2919. if (i915_gem_object_is_purgeable(obj) &&
  2920. obj->gtt_space == NULL)
  2921. i915_gem_object_truncate(obj);
  2922. args->retained = obj->madv != __I915_MADV_PURGED;
  2923. out:
  2924. drm_gem_object_unreference(&obj->base);
  2925. unlock:
  2926. mutex_unlock(&dev->struct_mutex);
  2927. return ret;
  2928. }
  2929. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2930. size_t size)
  2931. {
  2932. struct drm_i915_private *dev_priv = dev->dev_private;
  2933. struct drm_i915_gem_object *obj;
  2934. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2935. if (obj == NULL)
  2936. return NULL;
  2937. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2938. kfree(obj);
  2939. return NULL;
  2940. }
  2941. i915_gem_info_add_obj(dev_priv, size);
  2942. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2943. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2944. obj->agp_type = AGP_USER_MEMORY;
  2945. obj->base.driver_private = NULL;
  2946. obj->fence_reg = I915_FENCE_REG_NONE;
  2947. INIT_LIST_HEAD(&obj->mm_list);
  2948. INIT_LIST_HEAD(&obj->gtt_list);
  2949. INIT_LIST_HEAD(&obj->ring_list);
  2950. INIT_LIST_HEAD(&obj->exec_list);
  2951. INIT_LIST_HEAD(&obj->gpu_write_list);
  2952. obj->madv = I915_MADV_WILLNEED;
  2953. /* Avoid an unnecessary call to unbind on the first bind. */
  2954. obj->map_and_fenceable = true;
  2955. return obj;
  2956. }
  2957. int i915_gem_init_object(struct drm_gem_object *obj)
  2958. {
  2959. BUG();
  2960. return 0;
  2961. }
  2962. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2963. {
  2964. struct drm_device *dev = obj->base.dev;
  2965. drm_i915_private_t *dev_priv = dev->dev_private;
  2966. int ret;
  2967. ret = i915_gem_object_unbind(obj);
  2968. if (ret == -ERESTARTSYS) {
  2969. list_move(&obj->mm_list,
  2970. &dev_priv->mm.deferred_free_list);
  2971. return;
  2972. }
  2973. if (obj->base.map_list.map)
  2974. i915_gem_free_mmap_offset(obj);
  2975. drm_gem_object_release(&obj->base);
  2976. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2977. kfree(obj->page_cpu_valid);
  2978. kfree(obj->bit_17);
  2979. kfree(obj);
  2980. }
  2981. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2982. {
  2983. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2984. struct drm_device *dev = obj->base.dev;
  2985. trace_i915_gem_object_destroy(obj);
  2986. while (obj->pin_count > 0)
  2987. i915_gem_object_unpin(obj);
  2988. if (obj->phys_obj)
  2989. i915_gem_detach_phys_object(dev, obj);
  2990. i915_gem_free_object_tail(obj);
  2991. }
  2992. int
  2993. i915_gem_idle(struct drm_device *dev)
  2994. {
  2995. drm_i915_private_t *dev_priv = dev->dev_private;
  2996. int ret;
  2997. mutex_lock(&dev->struct_mutex);
  2998. if (dev_priv->mm.suspended) {
  2999. mutex_unlock(&dev->struct_mutex);
  3000. return 0;
  3001. }
  3002. ret = i915_gpu_idle(dev);
  3003. if (ret) {
  3004. mutex_unlock(&dev->struct_mutex);
  3005. return ret;
  3006. }
  3007. /* Under UMS, be paranoid and evict. */
  3008. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3009. ret = i915_gem_evict_inactive(dev, false);
  3010. if (ret) {
  3011. mutex_unlock(&dev->struct_mutex);
  3012. return ret;
  3013. }
  3014. }
  3015. i915_gem_reset_fences(dev);
  3016. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3017. * We need to replace this with a semaphore, or something.
  3018. * And not confound mm.suspended!
  3019. */
  3020. dev_priv->mm.suspended = 1;
  3021. del_timer_sync(&dev_priv->hangcheck_timer);
  3022. i915_kernel_lost_context(dev);
  3023. i915_gem_cleanup_ringbuffer(dev);
  3024. mutex_unlock(&dev->struct_mutex);
  3025. /* Cancel the retire work handler, which should be idle now. */
  3026. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3027. return 0;
  3028. }
  3029. int
  3030. i915_gem_init_ringbuffer(struct drm_device *dev)
  3031. {
  3032. drm_i915_private_t *dev_priv = dev->dev_private;
  3033. int ret;
  3034. ret = intel_init_render_ring_buffer(dev);
  3035. if (ret)
  3036. return ret;
  3037. if (HAS_BSD(dev)) {
  3038. ret = intel_init_bsd_ring_buffer(dev);
  3039. if (ret)
  3040. goto cleanup_render_ring;
  3041. }
  3042. if (HAS_BLT(dev)) {
  3043. ret = intel_init_blt_ring_buffer(dev);
  3044. if (ret)
  3045. goto cleanup_bsd_ring;
  3046. }
  3047. dev_priv->next_seqno = 1;
  3048. return 0;
  3049. cleanup_bsd_ring:
  3050. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3051. cleanup_render_ring:
  3052. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3053. return ret;
  3054. }
  3055. void
  3056. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3057. {
  3058. drm_i915_private_t *dev_priv = dev->dev_private;
  3059. int i;
  3060. for (i = 0; i < I915_NUM_RINGS; i++)
  3061. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3062. }
  3063. int
  3064. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3065. struct drm_file *file_priv)
  3066. {
  3067. drm_i915_private_t *dev_priv = dev->dev_private;
  3068. int ret, i;
  3069. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3070. return 0;
  3071. if (atomic_read(&dev_priv->mm.wedged)) {
  3072. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3073. atomic_set(&dev_priv->mm.wedged, 0);
  3074. }
  3075. mutex_lock(&dev->struct_mutex);
  3076. dev_priv->mm.suspended = 0;
  3077. ret = i915_gem_init_ringbuffer(dev);
  3078. if (ret != 0) {
  3079. mutex_unlock(&dev->struct_mutex);
  3080. return ret;
  3081. }
  3082. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3083. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3084. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3085. for (i = 0; i < I915_NUM_RINGS; i++) {
  3086. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3087. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3088. }
  3089. mutex_unlock(&dev->struct_mutex);
  3090. ret = drm_irq_install(dev);
  3091. if (ret)
  3092. goto cleanup_ringbuffer;
  3093. return 0;
  3094. cleanup_ringbuffer:
  3095. mutex_lock(&dev->struct_mutex);
  3096. i915_gem_cleanup_ringbuffer(dev);
  3097. dev_priv->mm.suspended = 1;
  3098. mutex_unlock(&dev->struct_mutex);
  3099. return ret;
  3100. }
  3101. int
  3102. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3103. struct drm_file *file_priv)
  3104. {
  3105. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3106. return 0;
  3107. drm_irq_uninstall(dev);
  3108. return i915_gem_idle(dev);
  3109. }
  3110. void
  3111. i915_gem_lastclose(struct drm_device *dev)
  3112. {
  3113. int ret;
  3114. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3115. return;
  3116. ret = i915_gem_idle(dev);
  3117. if (ret)
  3118. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3119. }
  3120. static void
  3121. init_ring_lists(struct intel_ring_buffer *ring)
  3122. {
  3123. INIT_LIST_HEAD(&ring->active_list);
  3124. INIT_LIST_HEAD(&ring->request_list);
  3125. INIT_LIST_HEAD(&ring->gpu_write_list);
  3126. }
  3127. void
  3128. i915_gem_load(struct drm_device *dev)
  3129. {
  3130. int i;
  3131. drm_i915_private_t *dev_priv = dev->dev_private;
  3132. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3133. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3134. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3135. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3136. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3137. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3138. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3139. for (i = 0; i < I915_NUM_RINGS; i++)
  3140. init_ring_lists(&dev_priv->ring[i]);
  3141. for (i = 0; i < 16; i++)
  3142. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3143. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3144. i915_gem_retire_work_handler);
  3145. init_completion(&dev_priv->error_completion);
  3146. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3147. if (IS_GEN3(dev)) {
  3148. u32 tmp = I915_READ(MI_ARB_STATE);
  3149. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3150. /* arb state is a masked write, so set bit + bit in mask */
  3151. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3152. I915_WRITE(MI_ARB_STATE, tmp);
  3153. }
  3154. }
  3155. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3156. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3157. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3158. dev_priv->fence_reg_start = 3;
  3159. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3160. dev_priv->num_fence_regs = 16;
  3161. else
  3162. dev_priv->num_fence_regs = 8;
  3163. /* Initialize fence registers to zero */
  3164. switch (INTEL_INFO(dev)->gen) {
  3165. case 6:
  3166. for (i = 0; i < 16; i++)
  3167. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3168. break;
  3169. case 5:
  3170. case 4:
  3171. for (i = 0; i < 16; i++)
  3172. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3173. break;
  3174. case 3:
  3175. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3176. for (i = 0; i < 8; i++)
  3177. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3178. case 2:
  3179. for (i = 0; i < 8; i++)
  3180. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3181. break;
  3182. }
  3183. i915_gem_detect_bit_6_swizzle(dev);
  3184. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3185. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3186. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3187. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3188. }
  3189. /*
  3190. * Create a physically contiguous memory object for this object
  3191. * e.g. for cursor + overlay regs
  3192. */
  3193. static int i915_gem_init_phys_object(struct drm_device *dev,
  3194. int id, int size, int align)
  3195. {
  3196. drm_i915_private_t *dev_priv = dev->dev_private;
  3197. struct drm_i915_gem_phys_object *phys_obj;
  3198. int ret;
  3199. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3200. return 0;
  3201. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3202. if (!phys_obj)
  3203. return -ENOMEM;
  3204. phys_obj->id = id;
  3205. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3206. if (!phys_obj->handle) {
  3207. ret = -ENOMEM;
  3208. goto kfree_obj;
  3209. }
  3210. #ifdef CONFIG_X86
  3211. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3212. #endif
  3213. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3214. return 0;
  3215. kfree_obj:
  3216. kfree(phys_obj);
  3217. return ret;
  3218. }
  3219. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3220. {
  3221. drm_i915_private_t *dev_priv = dev->dev_private;
  3222. struct drm_i915_gem_phys_object *phys_obj;
  3223. if (!dev_priv->mm.phys_objs[id - 1])
  3224. return;
  3225. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3226. if (phys_obj->cur_obj) {
  3227. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3228. }
  3229. #ifdef CONFIG_X86
  3230. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3231. #endif
  3232. drm_pci_free(dev, phys_obj->handle);
  3233. kfree(phys_obj);
  3234. dev_priv->mm.phys_objs[id - 1] = NULL;
  3235. }
  3236. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3237. {
  3238. int i;
  3239. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3240. i915_gem_free_phys_object(dev, i);
  3241. }
  3242. void i915_gem_detach_phys_object(struct drm_device *dev,
  3243. struct drm_i915_gem_object *obj)
  3244. {
  3245. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3246. char *vaddr;
  3247. int i;
  3248. int page_count;
  3249. if (!obj->phys_obj)
  3250. return;
  3251. vaddr = obj->phys_obj->handle->vaddr;
  3252. page_count = obj->base.size / PAGE_SIZE;
  3253. for (i = 0; i < page_count; i++) {
  3254. struct page *page = read_cache_page_gfp(mapping, i,
  3255. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3256. if (!IS_ERR(page)) {
  3257. char *dst = kmap_atomic(page);
  3258. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3259. kunmap_atomic(dst);
  3260. drm_clflush_pages(&page, 1);
  3261. set_page_dirty(page);
  3262. mark_page_accessed(page);
  3263. page_cache_release(page);
  3264. }
  3265. }
  3266. intel_gtt_chipset_flush();
  3267. obj->phys_obj->cur_obj = NULL;
  3268. obj->phys_obj = NULL;
  3269. }
  3270. int
  3271. i915_gem_attach_phys_object(struct drm_device *dev,
  3272. struct drm_i915_gem_object *obj,
  3273. int id,
  3274. int align)
  3275. {
  3276. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3277. drm_i915_private_t *dev_priv = dev->dev_private;
  3278. int ret = 0;
  3279. int page_count;
  3280. int i;
  3281. if (id > I915_MAX_PHYS_OBJECT)
  3282. return -EINVAL;
  3283. if (obj->phys_obj) {
  3284. if (obj->phys_obj->id == id)
  3285. return 0;
  3286. i915_gem_detach_phys_object(dev, obj);
  3287. }
  3288. /* create a new object */
  3289. if (!dev_priv->mm.phys_objs[id - 1]) {
  3290. ret = i915_gem_init_phys_object(dev, id,
  3291. obj->base.size, align);
  3292. if (ret) {
  3293. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3294. id, obj->base.size);
  3295. return ret;
  3296. }
  3297. }
  3298. /* bind to the object */
  3299. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3300. obj->phys_obj->cur_obj = obj;
  3301. page_count = obj->base.size / PAGE_SIZE;
  3302. for (i = 0; i < page_count; i++) {
  3303. struct page *page;
  3304. char *dst, *src;
  3305. page = read_cache_page_gfp(mapping, i,
  3306. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3307. if (IS_ERR(page))
  3308. return PTR_ERR(page);
  3309. src = kmap_atomic(page);
  3310. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3311. memcpy(dst, src, PAGE_SIZE);
  3312. kunmap_atomic(src);
  3313. mark_page_accessed(page);
  3314. page_cache_release(page);
  3315. }
  3316. return 0;
  3317. }
  3318. static int
  3319. i915_gem_phys_pwrite(struct drm_device *dev,
  3320. struct drm_i915_gem_object *obj,
  3321. struct drm_i915_gem_pwrite *args,
  3322. struct drm_file *file_priv)
  3323. {
  3324. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3325. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3326. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3327. unsigned long unwritten;
  3328. /* The physical object once assigned is fixed for the lifetime
  3329. * of the obj, so we can safely drop the lock and continue
  3330. * to access vaddr.
  3331. */
  3332. mutex_unlock(&dev->struct_mutex);
  3333. unwritten = copy_from_user(vaddr, user_data, args->size);
  3334. mutex_lock(&dev->struct_mutex);
  3335. if (unwritten)
  3336. return -EFAULT;
  3337. }
  3338. intel_gtt_chipset_flush();
  3339. return 0;
  3340. }
  3341. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3342. {
  3343. struct drm_i915_file_private *file_priv = file->driver_priv;
  3344. /* Clean up our request list when the client is going away, so that
  3345. * later retire_requests won't dereference our soon-to-be-gone
  3346. * file_priv.
  3347. */
  3348. spin_lock(&file_priv->mm.lock);
  3349. while (!list_empty(&file_priv->mm.request_list)) {
  3350. struct drm_i915_gem_request *request;
  3351. request = list_first_entry(&file_priv->mm.request_list,
  3352. struct drm_i915_gem_request,
  3353. client_list);
  3354. list_del(&request->client_list);
  3355. request->file_priv = NULL;
  3356. }
  3357. spin_unlock(&file_priv->mm.lock);
  3358. }
  3359. static int
  3360. i915_gpu_is_active(struct drm_device *dev)
  3361. {
  3362. drm_i915_private_t *dev_priv = dev->dev_private;
  3363. int lists_empty;
  3364. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3365. list_empty(&dev_priv->mm.active_list);
  3366. return !lists_empty;
  3367. }
  3368. static int
  3369. i915_gem_inactive_shrink(struct shrinker *shrinker,
  3370. int nr_to_scan,
  3371. gfp_t gfp_mask)
  3372. {
  3373. struct drm_i915_private *dev_priv =
  3374. container_of(shrinker,
  3375. struct drm_i915_private,
  3376. mm.inactive_shrinker);
  3377. struct drm_device *dev = dev_priv->dev;
  3378. struct drm_i915_gem_object *obj, *next;
  3379. int cnt;
  3380. if (!mutex_trylock(&dev->struct_mutex))
  3381. return 0;
  3382. /* "fast-path" to count number of available objects */
  3383. if (nr_to_scan == 0) {
  3384. cnt = 0;
  3385. list_for_each_entry(obj,
  3386. &dev_priv->mm.inactive_list,
  3387. mm_list)
  3388. cnt++;
  3389. mutex_unlock(&dev->struct_mutex);
  3390. return cnt / 100 * sysctl_vfs_cache_pressure;
  3391. }
  3392. rescan:
  3393. /* first scan for clean buffers */
  3394. i915_gem_retire_requests(dev);
  3395. list_for_each_entry_safe(obj, next,
  3396. &dev_priv->mm.inactive_list,
  3397. mm_list) {
  3398. if (i915_gem_object_is_purgeable(obj)) {
  3399. if (i915_gem_object_unbind(obj) == 0 &&
  3400. --nr_to_scan == 0)
  3401. break;
  3402. }
  3403. }
  3404. /* second pass, evict/count anything still on the inactive list */
  3405. cnt = 0;
  3406. list_for_each_entry_safe(obj, next,
  3407. &dev_priv->mm.inactive_list,
  3408. mm_list) {
  3409. if (nr_to_scan &&
  3410. i915_gem_object_unbind(obj) == 0)
  3411. nr_to_scan--;
  3412. else
  3413. cnt++;
  3414. }
  3415. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3416. /*
  3417. * We are desperate for pages, so as a last resort, wait
  3418. * for the GPU to finish and discard whatever we can.
  3419. * This has a dramatic impact to reduce the number of
  3420. * OOM-killer events whilst running the GPU aggressively.
  3421. */
  3422. if (i915_gpu_idle(dev) == 0)
  3423. goto rescan;
  3424. }
  3425. mutex_unlock(&dev->struct_mutex);
  3426. return cnt / 100 * sysctl_vfs_cache_pressure;
  3427. }