hw.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "ar9003_phy.h"
  26. #include "debug.h"
  27. #include "ath9k.h"
  28. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /* Private hardware callbacks */
  44. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  45. {
  46. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  47. }
  48. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  49. struct ath9k_channel *chan)
  50. {
  51. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  52. }
  53. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  54. {
  55. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  56. return;
  57. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  58. }
  59. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  60. {
  61. /* You will not have this callback if using the old ANI */
  62. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  63. return;
  64. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  65. }
  66. /********************/
  67. /* Helper Functions */
  68. /********************/
  69. #ifdef CONFIG_ATH9K_DEBUGFS
  70. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  71. {
  72. struct ath_softc *sc = common->priv;
  73. if (sync_cause)
  74. sc->debug.stats.istats.sync_cause_all++;
  75. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  76. sc->debug.stats.istats.sync_rtc_irq++;
  77. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  78. sc->debug.stats.istats.sync_mac_irq++;
  79. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  80. sc->debug.stats.istats.eeprom_illegal_access++;
  81. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  82. sc->debug.stats.istats.apb_timeout++;
  83. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  84. sc->debug.stats.istats.pci_mode_conflict++;
  85. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  86. sc->debug.stats.istats.host1_fatal++;
  87. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  88. sc->debug.stats.istats.host1_perr++;
  89. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  90. sc->debug.stats.istats.trcv_fifo_perr++;
  91. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  92. sc->debug.stats.istats.radm_cpl_ep++;
  93. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  94. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  95. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  96. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  97. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  98. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  99. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  100. sc->debug.stats.istats.radm_cpl_timeout++;
  101. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  102. sc->debug.stats.istats.local_timeout++;
  103. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  104. sc->debug.stats.istats.pm_access++;
  105. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  106. sc->debug.stats.istats.mac_awake++;
  107. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  108. sc->debug.stats.istats.mac_asleep++;
  109. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  110. sc->debug.stats.istats.mac_sleep_access++;
  111. }
  112. #endif
  113. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  114. {
  115. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  116. struct ath_common *common = ath9k_hw_common(ah);
  117. unsigned int clockrate;
  118. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  119. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  120. clockrate = 117;
  121. else if (!ah->curchan) /* should really check for CCK instead */
  122. clockrate = ATH9K_CLOCK_RATE_CCK;
  123. else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
  124. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  125. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  126. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  127. else
  128. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  129. if (conf_is_ht40(conf))
  130. clockrate *= 2;
  131. if (ah->curchan) {
  132. if (IS_CHAN_HALF_RATE(ah->curchan))
  133. clockrate /= 2;
  134. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  135. clockrate /= 4;
  136. }
  137. common->clockrate = clockrate;
  138. }
  139. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  140. {
  141. struct ath_common *common = ath9k_hw_common(ah);
  142. return usecs * common->clockrate;
  143. }
  144. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  145. {
  146. int i;
  147. BUG_ON(timeout < AH_TIME_QUANTUM);
  148. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  149. if ((REG_READ(ah, reg) & mask) == val)
  150. return true;
  151. udelay(AH_TIME_QUANTUM);
  152. }
  153. ath_dbg(ath9k_hw_common(ah), ANY,
  154. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  155. timeout, reg, REG_READ(ah, reg), mask, val);
  156. return false;
  157. }
  158. EXPORT_SYMBOL(ath9k_hw_wait);
  159. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  160. int hw_delay)
  161. {
  162. if (IS_CHAN_B(chan))
  163. hw_delay = (4 * hw_delay) / 22;
  164. else
  165. hw_delay /= 10;
  166. if (IS_CHAN_HALF_RATE(chan))
  167. hw_delay *= 2;
  168. else if (IS_CHAN_QUARTER_RATE(chan))
  169. hw_delay *= 4;
  170. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  171. }
  172. void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
  173. int column, unsigned int *writecnt)
  174. {
  175. int r;
  176. ENABLE_REGWRITE_BUFFER(ah);
  177. for (r = 0; r < array->ia_rows; r++) {
  178. REG_WRITE(ah, INI_RA(array, r, 0),
  179. INI_RA(array, r, column));
  180. DO_DELAY(*writecnt);
  181. }
  182. REGWRITE_BUFFER_FLUSH(ah);
  183. }
  184. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  185. {
  186. u32 retval;
  187. int i;
  188. for (i = 0, retval = 0; i < n; i++) {
  189. retval = (retval << 1) | (val & 1);
  190. val >>= 1;
  191. }
  192. return retval;
  193. }
  194. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  195. u8 phy, int kbps,
  196. u32 frameLen, u16 rateix,
  197. bool shortPreamble)
  198. {
  199. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  200. if (kbps == 0)
  201. return 0;
  202. switch (phy) {
  203. case WLAN_RC_PHY_CCK:
  204. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  205. if (shortPreamble)
  206. phyTime >>= 1;
  207. numBits = frameLen << 3;
  208. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  209. break;
  210. case WLAN_RC_PHY_OFDM:
  211. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  212. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  213. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  214. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  215. txTime = OFDM_SIFS_TIME_QUARTER
  216. + OFDM_PREAMBLE_TIME_QUARTER
  217. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  218. } else if (ah->curchan &&
  219. IS_CHAN_HALF_RATE(ah->curchan)) {
  220. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  221. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  222. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  223. txTime = OFDM_SIFS_TIME_HALF +
  224. OFDM_PREAMBLE_TIME_HALF
  225. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  226. } else {
  227. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  228. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  229. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  230. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  231. + (numSymbols * OFDM_SYMBOL_TIME);
  232. }
  233. break;
  234. default:
  235. ath_err(ath9k_hw_common(ah),
  236. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  237. txTime = 0;
  238. break;
  239. }
  240. return txTime;
  241. }
  242. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  243. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  244. struct ath9k_channel *chan,
  245. struct chan_centers *centers)
  246. {
  247. int8_t extoff;
  248. if (!IS_CHAN_HT40(chan)) {
  249. centers->ctl_center = centers->ext_center =
  250. centers->synth_center = chan->channel;
  251. return;
  252. }
  253. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  254. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  255. centers->synth_center =
  256. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  257. extoff = 1;
  258. } else {
  259. centers->synth_center =
  260. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  261. extoff = -1;
  262. }
  263. centers->ctl_center =
  264. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  265. /* 25 MHz spacing is supported by hw but not on upper layers */
  266. centers->ext_center =
  267. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. }
  269. /******************/
  270. /* Chip Revisions */
  271. /******************/
  272. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  273. {
  274. u32 val;
  275. switch (ah->hw_version.devid) {
  276. case AR5416_AR9100_DEVID:
  277. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  278. break;
  279. case AR9300_DEVID_AR9330:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  281. if (ah->get_mac_revision) {
  282. ah->hw_version.macRev = ah->get_mac_revision();
  283. } else {
  284. val = REG_READ(ah, AR_SREV);
  285. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  286. }
  287. return;
  288. case AR9300_DEVID_AR9340:
  289. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  290. val = REG_READ(ah, AR_SREV);
  291. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  292. return;
  293. case AR9300_DEVID_QCA955X:
  294. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. /* This should work for all families including legacy */
  335. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  336. {
  337. struct ath_common *common = ath9k_hw_common(ah);
  338. u32 regAddr[2] = { AR_STA_ID0 };
  339. u32 regHold[2];
  340. static const u32 patternData[4] = {
  341. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  342. };
  343. int i, j, loop_max;
  344. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  345. loop_max = 2;
  346. regAddr[1] = AR_PHY_BASE + (8 << 2);
  347. } else
  348. loop_max = 1;
  349. for (i = 0; i < loop_max; i++) {
  350. u32 addr = regAddr[i];
  351. u32 wrData, rdData;
  352. regHold[i] = REG_READ(ah, addr);
  353. for (j = 0; j < 0x100; j++) {
  354. wrData = (j << 16) | j;
  355. REG_WRITE(ah, addr, wrData);
  356. rdData = REG_READ(ah, addr);
  357. if (rdData != wrData) {
  358. ath_err(common,
  359. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  360. addr, wrData, rdData);
  361. return false;
  362. }
  363. }
  364. for (j = 0; j < 4; j++) {
  365. wrData = patternData[j];
  366. REG_WRITE(ah, addr, wrData);
  367. rdData = REG_READ(ah, addr);
  368. if (wrData != rdData) {
  369. ath_err(common,
  370. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  371. addr, wrData, rdData);
  372. return false;
  373. }
  374. }
  375. REG_WRITE(ah, regAddr[i], regHold[i]);
  376. }
  377. udelay(100);
  378. return true;
  379. }
  380. static void ath9k_hw_init_config(struct ath_hw *ah)
  381. {
  382. int i;
  383. ah->config.dma_beacon_response_time = 1;
  384. ah->config.sw_beacon_response_time = 6;
  385. ah->config.additional_swba_backoff = 0;
  386. ah->config.ack_6mb = 0x0;
  387. ah->config.cwm_ignore_extcca = 0;
  388. ah->config.pcie_clock_req = 0;
  389. ah->config.pcie_waen = 0;
  390. ah->config.analog_shiftreg = 1;
  391. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  392. ah->config.spurchans[i][0] = AR_NO_SPUR;
  393. ah->config.spurchans[i][1] = AR_NO_SPUR;
  394. }
  395. ah->config.rx_intr_mitigation = true;
  396. ah->config.pcieSerDesWrite = true;
  397. /*
  398. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  399. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  400. * This means we use it for all AR5416 devices, and the few
  401. * minor PCI AR9280 devices out there.
  402. *
  403. * Serialization is required because these devices do not handle
  404. * well the case of two concurrent reads/writes due to the latency
  405. * involved. During one read/write another read/write can be issued
  406. * on another CPU while the previous read/write may still be working
  407. * on our hardware, if we hit this case the hardware poops in a loop.
  408. * We prevent this by serializing reads and writes.
  409. *
  410. * This issue is not present on PCI-Express devices or pre-AR5416
  411. * devices (legacy, 802.11abg).
  412. */
  413. if (num_possible_cpus() > 1)
  414. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  415. }
  416. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  417. {
  418. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  419. regulatory->country_code = CTRY_DEFAULT;
  420. regulatory->power_limit = MAX_RATE_POWER;
  421. ah->hw_version.magic = AR5416_MAGIC;
  422. ah->hw_version.subvendorid = 0;
  423. ah->atim_window = 0;
  424. ah->sta_id1_defaults =
  425. AR_STA_ID1_CRPT_MIC_ENABLE |
  426. AR_STA_ID1_MCAST_KSRCH;
  427. if (AR_SREV_9100(ah))
  428. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  429. ah->slottime = ATH9K_SLOT_TIME_9;
  430. ah->globaltxtimeout = (u32) -1;
  431. ah->power_mode = ATH9K_PM_UNDEFINED;
  432. ah->htc_reset_init = true;
  433. }
  434. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  435. {
  436. struct ath_common *common = ath9k_hw_common(ah);
  437. u32 sum;
  438. int i;
  439. u16 eeval;
  440. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  441. sum = 0;
  442. for (i = 0; i < 3; i++) {
  443. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  444. sum += eeval;
  445. common->macaddr[2 * i] = eeval >> 8;
  446. common->macaddr[2 * i + 1] = eeval & 0xff;
  447. }
  448. if (sum == 0 || sum == 0xffff * 3)
  449. return -EADDRNOTAVAIL;
  450. return 0;
  451. }
  452. static int ath9k_hw_post_init(struct ath_hw *ah)
  453. {
  454. struct ath_common *common = ath9k_hw_common(ah);
  455. int ecode;
  456. if (common->bus_ops->ath_bus_type != ATH_USB) {
  457. if (!ath9k_hw_chip_test(ah))
  458. return -ENODEV;
  459. }
  460. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  461. ecode = ar9002_hw_rf_claim(ah);
  462. if (ecode != 0)
  463. return ecode;
  464. }
  465. ecode = ath9k_hw_eeprom_init(ah);
  466. if (ecode != 0)
  467. return ecode;
  468. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  469. ah->eep_ops->get_eeprom_ver(ah),
  470. ah->eep_ops->get_eeprom_rev(ah));
  471. ath9k_hw_ani_init(ah);
  472. return 0;
  473. }
  474. static int ath9k_hw_attach_ops(struct ath_hw *ah)
  475. {
  476. if (!AR_SREV_9300_20_OR_LATER(ah))
  477. return ar9002_hw_attach_ops(ah);
  478. ar9003_hw_attach_ops(ah);
  479. return 0;
  480. }
  481. /* Called for all hardware families */
  482. static int __ath9k_hw_init(struct ath_hw *ah)
  483. {
  484. struct ath_common *common = ath9k_hw_common(ah);
  485. int r = 0;
  486. ath9k_hw_read_revisions(ah);
  487. /*
  488. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  489. * We need to do this to avoid RMW of this register. We cannot
  490. * read the reg when chip is asleep.
  491. */
  492. ah->WARegVal = REG_READ(ah, AR_WA);
  493. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  494. AR_WA_ASPM_TIMER_BASED_DISABLE);
  495. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  496. ath_err(common, "Couldn't reset chip\n");
  497. return -EIO;
  498. }
  499. if (AR_SREV_9462(ah))
  500. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  501. if (AR_SREV_9565(ah)) {
  502. ah->WARegVal |= AR_WA_BIT22;
  503. REG_WRITE(ah, AR_WA, ah->WARegVal);
  504. }
  505. ath9k_hw_init_defaults(ah);
  506. ath9k_hw_init_config(ah);
  507. r = ath9k_hw_attach_ops(ah);
  508. if (r)
  509. return r;
  510. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  511. ath_err(common, "Couldn't wakeup chip\n");
  512. return -EIO;
  513. }
  514. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  515. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  516. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  517. !ah->is_pciexpress)) {
  518. ah->config.serialize_regmode =
  519. SER_REG_MODE_ON;
  520. } else {
  521. ah->config.serialize_regmode =
  522. SER_REG_MODE_OFF;
  523. }
  524. }
  525. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  526. ah->config.serialize_regmode);
  527. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  528. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  529. else
  530. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  531. switch (ah->hw_version.macVersion) {
  532. case AR_SREV_VERSION_5416_PCI:
  533. case AR_SREV_VERSION_5416_PCIE:
  534. case AR_SREV_VERSION_9160:
  535. case AR_SREV_VERSION_9100:
  536. case AR_SREV_VERSION_9280:
  537. case AR_SREV_VERSION_9285:
  538. case AR_SREV_VERSION_9287:
  539. case AR_SREV_VERSION_9271:
  540. case AR_SREV_VERSION_9300:
  541. case AR_SREV_VERSION_9330:
  542. case AR_SREV_VERSION_9485:
  543. case AR_SREV_VERSION_9340:
  544. case AR_SREV_VERSION_9462:
  545. case AR_SREV_VERSION_9550:
  546. case AR_SREV_VERSION_9565:
  547. break;
  548. default:
  549. ath_err(common,
  550. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  551. ah->hw_version.macVersion, ah->hw_version.macRev);
  552. return -EOPNOTSUPP;
  553. }
  554. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  555. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  556. ah->is_pciexpress = false;
  557. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  558. ath9k_hw_init_cal_settings(ah);
  559. ah->ani_function = ATH9K_ANI_ALL;
  560. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  561. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  562. if (!AR_SREV_9300_20_OR_LATER(ah))
  563. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  564. if (!ah->is_pciexpress)
  565. ath9k_hw_disablepcie(ah);
  566. r = ath9k_hw_post_init(ah);
  567. if (r)
  568. return r;
  569. ath9k_hw_init_mode_gain_regs(ah);
  570. r = ath9k_hw_fill_cap_info(ah);
  571. if (r)
  572. return r;
  573. r = ath9k_hw_init_macaddr(ah);
  574. if (r) {
  575. ath_err(common, "Failed to initialize MAC address\n");
  576. return r;
  577. }
  578. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  579. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  580. else
  581. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  582. if (AR_SREV_9330(ah))
  583. ah->bb_watchdog_timeout_ms = 85;
  584. else
  585. ah->bb_watchdog_timeout_ms = 25;
  586. common->state = ATH_HW_INITIALIZED;
  587. return 0;
  588. }
  589. int ath9k_hw_init(struct ath_hw *ah)
  590. {
  591. int ret;
  592. struct ath_common *common = ath9k_hw_common(ah);
  593. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  594. switch (ah->hw_version.devid) {
  595. case AR5416_DEVID_PCI:
  596. case AR5416_DEVID_PCIE:
  597. case AR5416_AR9100_DEVID:
  598. case AR9160_DEVID_PCI:
  599. case AR9280_DEVID_PCI:
  600. case AR9280_DEVID_PCIE:
  601. case AR9285_DEVID_PCIE:
  602. case AR9287_DEVID_PCI:
  603. case AR9287_DEVID_PCIE:
  604. case AR2427_DEVID_PCIE:
  605. case AR9300_DEVID_PCIE:
  606. case AR9300_DEVID_AR9485_PCIE:
  607. case AR9300_DEVID_AR9330:
  608. case AR9300_DEVID_AR9340:
  609. case AR9300_DEVID_QCA955X:
  610. case AR9300_DEVID_AR9580:
  611. case AR9300_DEVID_AR9462:
  612. case AR9485_DEVID_AR1111:
  613. case AR9300_DEVID_AR9565:
  614. break;
  615. default:
  616. if (common->bus_ops->ath_bus_type == ATH_USB)
  617. break;
  618. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  619. ah->hw_version.devid);
  620. return -EOPNOTSUPP;
  621. }
  622. ret = __ath9k_hw_init(ah);
  623. if (ret) {
  624. ath_err(common,
  625. "Unable to initialize hardware; initialization status: %d\n",
  626. ret);
  627. return ret;
  628. }
  629. return 0;
  630. }
  631. EXPORT_SYMBOL(ath9k_hw_init);
  632. static void ath9k_hw_init_qos(struct ath_hw *ah)
  633. {
  634. ENABLE_REGWRITE_BUFFER(ah);
  635. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  636. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  637. REG_WRITE(ah, AR_QOS_NO_ACK,
  638. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  639. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  640. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  641. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  642. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  643. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  644. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  645. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  646. REGWRITE_BUFFER_FLUSH(ah);
  647. }
  648. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  649. {
  650. struct ath_common *common = ath9k_hw_common(ah);
  651. int i = 0;
  652. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  653. udelay(100);
  654. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  655. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  656. udelay(100);
  657. if (WARN_ON_ONCE(i >= 100)) {
  658. ath_err(common, "PLL4 meaurement not done\n");
  659. break;
  660. }
  661. i++;
  662. }
  663. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  664. }
  665. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  666. static void ath9k_hw_init_pll(struct ath_hw *ah,
  667. struct ath9k_channel *chan)
  668. {
  669. u32 pll;
  670. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  671. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  672. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  673. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  674. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  675. AR_CH0_DPLL2_KD, 0x40);
  676. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  677. AR_CH0_DPLL2_KI, 0x4);
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  679. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  681. AR_CH0_BB_DPLL1_NINI, 0x58);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  683. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  685. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  687. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  689. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  690. /* program BB PLL phase_shift to 0x6 */
  691. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  692. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  693. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  694. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  695. udelay(1000);
  696. } else if (AR_SREV_9330(ah)) {
  697. u32 ddr_dpll2, pll_control2, kd;
  698. if (ah->is_clk_25mhz) {
  699. ddr_dpll2 = 0x18e82f01;
  700. pll_control2 = 0xe04a3d;
  701. kd = 0x1d;
  702. } else {
  703. ddr_dpll2 = 0x19e82f01;
  704. pll_control2 = 0x886666;
  705. kd = 0x3d;
  706. }
  707. /* program DDR PLL ki and kd value */
  708. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  709. /* program DDR PLL phase_shift */
  710. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  711. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  712. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  713. udelay(1000);
  714. /* program refdiv, nint, frac to RTC register */
  715. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  716. /* program BB PLL kd and ki value */
  717. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  718. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  719. /* program BB PLL phase_shift */
  720. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  721. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  722. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  723. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  724. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  725. udelay(1000);
  726. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  727. udelay(100);
  728. if (ah->is_clk_25mhz) {
  729. pll2_divint = 0x54;
  730. pll2_divfrac = 0x1eb85;
  731. refdiv = 3;
  732. } else {
  733. if (AR_SREV_9340(ah)) {
  734. pll2_divint = 88;
  735. pll2_divfrac = 0;
  736. refdiv = 5;
  737. } else {
  738. pll2_divint = 0x11;
  739. pll2_divfrac = 0x26666;
  740. refdiv = 1;
  741. }
  742. }
  743. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  744. regval |= (0x1 << 16);
  745. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  746. udelay(100);
  747. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  748. (pll2_divint << 18) | pll2_divfrac);
  749. udelay(100);
  750. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  751. if (AR_SREV_9340(ah))
  752. regval = (regval & 0x80071fff) | (0x1 << 30) |
  753. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  754. else
  755. regval = (regval & 0x80071fff) | (0x3 << 30) |
  756. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  757. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  758. REG_WRITE(ah, AR_PHY_PLL_MODE,
  759. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  760. udelay(1000);
  761. }
  762. pll = ath9k_hw_compute_pll_control(ah, chan);
  763. if (AR_SREV_9565(ah))
  764. pll |= 0x40000;
  765. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  766. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  767. AR_SREV_9550(ah))
  768. udelay(1000);
  769. /* Switch the core clock for ar9271 to 117Mhz */
  770. if (AR_SREV_9271(ah)) {
  771. udelay(500);
  772. REG_WRITE(ah, 0x50040, 0x304);
  773. }
  774. udelay(RTC_PLL_SETTLE_DELAY);
  775. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  776. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  777. if (ah->is_clk_25mhz) {
  778. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  779. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  780. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  781. } else {
  782. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  783. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  784. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  785. }
  786. udelay(100);
  787. }
  788. }
  789. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  790. enum nl80211_iftype opmode)
  791. {
  792. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  793. u32 imr_reg = AR_IMR_TXERR |
  794. AR_IMR_TXURN |
  795. AR_IMR_RXERR |
  796. AR_IMR_RXORN |
  797. AR_IMR_BCNMISC;
  798. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  799. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  800. if (AR_SREV_9300_20_OR_LATER(ah)) {
  801. imr_reg |= AR_IMR_RXOK_HP;
  802. if (ah->config.rx_intr_mitigation)
  803. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  804. else
  805. imr_reg |= AR_IMR_RXOK_LP;
  806. } else {
  807. if (ah->config.rx_intr_mitigation)
  808. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  809. else
  810. imr_reg |= AR_IMR_RXOK;
  811. }
  812. if (ah->config.tx_intr_mitigation)
  813. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  814. else
  815. imr_reg |= AR_IMR_TXOK;
  816. ENABLE_REGWRITE_BUFFER(ah);
  817. REG_WRITE(ah, AR_IMR, imr_reg);
  818. ah->imrs2_reg |= AR_IMR_S2_GTT;
  819. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  820. if (!AR_SREV_9100(ah)) {
  821. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  822. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  823. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  824. }
  825. REGWRITE_BUFFER_FLUSH(ah);
  826. if (AR_SREV_9300_20_OR_LATER(ah)) {
  827. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  828. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  829. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  830. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  831. }
  832. }
  833. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  834. {
  835. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  836. val = min(val, (u32) 0xFFFF);
  837. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  838. }
  839. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  840. {
  841. u32 val = ath9k_hw_mac_to_clks(ah, us);
  842. val = min(val, (u32) 0xFFFF);
  843. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  844. }
  845. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  846. {
  847. u32 val = ath9k_hw_mac_to_clks(ah, us);
  848. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  849. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  850. }
  851. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  852. {
  853. u32 val = ath9k_hw_mac_to_clks(ah, us);
  854. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  855. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  856. }
  857. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  858. {
  859. if (tu > 0xFFFF) {
  860. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  861. tu);
  862. ah->globaltxtimeout = (u32) -1;
  863. return false;
  864. } else {
  865. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  866. ah->globaltxtimeout = tu;
  867. return true;
  868. }
  869. }
  870. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  871. {
  872. struct ath_common *common = ath9k_hw_common(ah);
  873. struct ieee80211_conf *conf = &common->hw->conf;
  874. const struct ath9k_channel *chan = ah->curchan;
  875. int acktimeout, ctstimeout, ack_offset = 0;
  876. int slottime;
  877. int sifstime;
  878. int rx_lat = 0, tx_lat = 0, eifs = 0;
  879. u32 reg;
  880. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  881. ah->misc_mode);
  882. if (!chan)
  883. return;
  884. if (ah->misc_mode != 0)
  885. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  886. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  887. rx_lat = 41;
  888. else
  889. rx_lat = 37;
  890. tx_lat = 54;
  891. if (IS_CHAN_5GHZ(chan))
  892. sifstime = 16;
  893. else
  894. sifstime = 10;
  895. if (IS_CHAN_HALF_RATE(chan)) {
  896. eifs = 175;
  897. rx_lat *= 2;
  898. tx_lat *= 2;
  899. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  900. tx_lat += 11;
  901. sifstime = 32;
  902. ack_offset = 16;
  903. slottime = 13;
  904. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  905. eifs = 340;
  906. rx_lat = (rx_lat * 4) - 1;
  907. tx_lat *= 4;
  908. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  909. tx_lat += 22;
  910. sifstime = 64;
  911. ack_offset = 32;
  912. slottime = 21;
  913. } else {
  914. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  915. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  916. reg = AR_USEC_ASYNC_FIFO;
  917. } else {
  918. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  919. common->clockrate;
  920. reg = REG_READ(ah, AR_USEC);
  921. }
  922. rx_lat = MS(reg, AR_USEC_RX_LAT);
  923. tx_lat = MS(reg, AR_USEC_TX_LAT);
  924. slottime = ah->slottime;
  925. }
  926. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  927. slottime += 3 * ah->coverage_class;
  928. acktimeout = slottime + sifstime + ack_offset;
  929. ctstimeout = acktimeout;
  930. /*
  931. * Workaround for early ACK timeouts, add an offset to match the
  932. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  933. * This was initially only meant to work around an issue with delayed
  934. * BA frames in some implementations, but it has been found to fix ACK
  935. * timeout issues in other cases as well.
  936. */
  937. if (conf->chandef.chan &&
  938. conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
  939. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  940. acktimeout += 64 - sifstime - ah->slottime;
  941. ctstimeout += 48 - sifstime - ah->slottime;
  942. }
  943. ath9k_hw_set_sifs_time(ah, sifstime);
  944. ath9k_hw_setslottime(ah, slottime);
  945. ath9k_hw_set_ack_timeout(ah, acktimeout);
  946. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  947. if (ah->globaltxtimeout != (u32) -1)
  948. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  949. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  950. REG_RMW(ah, AR_USEC,
  951. (common->clockrate - 1) |
  952. SM(rx_lat, AR_USEC_RX_LAT) |
  953. SM(tx_lat, AR_USEC_TX_LAT),
  954. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  955. }
  956. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  957. void ath9k_hw_deinit(struct ath_hw *ah)
  958. {
  959. struct ath_common *common = ath9k_hw_common(ah);
  960. if (common->state < ATH_HW_INITIALIZED)
  961. return;
  962. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  963. }
  964. EXPORT_SYMBOL(ath9k_hw_deinit);
  965. /*******/
  966. /* INI */
  967. /*******/
  968. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  969. {
  970. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  971. if (IS_CHAN_B(chan))
  972. ctl |= CTL_11B;
  973. else if (IS_CHAN_G(chan))
  974. ctl |= CTL_11G;
  975. else
  976. ctl |= CTL_11A;
  977. return ctl;
  978. }
  979. /****************************************/
  980. /* Reset and Channel Switching Routines */
  981. /****************************************/
  982. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  983. {
  984. struct ath_common *common = ath9k_hw_common(ah);
  985. int txbuf_size;
  986. ENABLE_REGWRITE_BUFFER(ah);
  987. /*
  988. * set AHB_MODE not to do cacheline prefetches
  989. */
  990. if (!AR_SREV_9300_20_OR_LATER(ah))
  991. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  992. /*
  993. * let mac dma reads be in 128 byte chunks
  994. */
  995. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  996. REGWRITE_BUFFER_FLUSH(ah);
  997. /*
  998. * Restore TX Trigger Level to its pre-reset value.
  999. * The initial value depends on whether aggregation is enabled, and is
  1000. * adjusted whenever underruns are detected.
  1001. */
  1002. if (!AR_SREV_9300_20_OR_LATER(ah))
  1003. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1004. ENABLE_REGWRITE_BUFFER(ah);
  1005. /*
  1006. * let mac dma writes be in 128 byte chunks
  1007. */
  1008. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1009. /*
  1010. * Setup receive FIFO threshold to hold off TX activities
  1011. */
  1012. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1013. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1014. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1015. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1016. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1017. ah->caps.rx_status_len);
  1018. }
  1019. /*
  1020. * reduce the number of usable entries in PCU TXBUF to avoid
  1021. * wrap around issues.
  1022. */
  1023. if (AR_SREV_9285(ah)) {
  1024. /* For AR9285 the number of Fifos are reduced to half.
  1025. * So set the usable tx buf size also to half to
  1026. * avoid data/delimiter underruns
  1027. */
  1028. txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
  1029. } else if (AR_SREV_9340_13_OR_LATER(ah)) {
  1030. /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
  1031. txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
  1032. } else {
  1033. txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
  1034. }
  1035. if (!AR_SREV_9271(ah))
  1036. REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
  1037. REGWRITE_BUFFER_FLUSH(ah);
  1038. if (AR_SREV_9300_20_OR_LATER(ah))
  1039. ath9k_hw_reset_txstatus_ring(ah);
  1040. }
  1041. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1042. {
  1043. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1044. u32 set = AR_STA_ID1_KSRCH_MODE;
  1045. switch (opmode) {
  1046. case NL80211_IFTYPE_ADHOC:
  1047. set |= AR_STA_ID1_ADHOC;
  1048. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1049. break;
  1050. case NL80211_IFTYPE_MESH_POINT:
  1051. case NL80211_IFTYPE_AP:
  1052. set |= AR_STA_ID1_STA_AP;
  1053. /* fall through */
  1054. case NL80211_IFTYPE_STATION:
  1055. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1056. break;
  1057. default:
  1058. if (!ah->is_monitoring)
  1059. set = 0;
  1060. break;
  1061. }
  1062. REG_RMW(ah, AR_STA_ID1, set, mask);
  1063. }
  1064. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1065. u32 *coef_mantissa, u32 *coef_exponent)
  1066. {
  1067. u32 coef_exp, coef_man;
  1068. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1069. if ((coef_scaled >> coef_exp) & 0x1)
  1070. break;
  1071. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1072. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1073. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1074. *coef_exponent = coef_exp - 16;
  1075. }
  1076. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1077. {
  1078. u32 rst_flags;
  1079. u32 tmpReg;
  1080. if (AR_SREV_9100(ah)) {
  1081. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1082. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1083. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1084. }
  1085. ENABLE_REGWRITE_BUFFER(ah);
  1086. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1087. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1088. udelay(10);
  1089. }
  1090. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1091. AR_RTC_FORCE_WAKE_ON_INT);
  1092. if (AR_SREV_9100(ah)) {
  1093. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1094. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1095. } else {
  1096. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1097. if (AR_SREV_9340(ah))
  1098. tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
  1099. else
  1100. tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
  1101. AR_INTR_SYNC_RADM_CPL_TIMEOUT;
  1102. if (tmpReg) {
  1103. u32 val;
  1104. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1105. val = AR_RC_HOSTIF;
  1106. if (!AR_SREV_9300_20_OR_LATER(ah))
  1107. val |= AR_RC_AHB;
  1108. REG_WRITE(ah, AR_RC, val);
  1109. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1110. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1111. rst_flags = AR_RTC_RC_MAC_WARM;
  1112. if (type == ATH9K_RESET_COLD)
  1113. rst_flags |= AR_RTC_RC_MAC_COLD;
  1114. }
  1115. if (AR_SREV_9330(ah)) {
  1116. int npend = 0;
  1117. int i;
  1118. /* AR9330 WAR:
  1119. * call external reset function to reset WMAC if:
  1120. * - doing a cold reset
  1121. * - we have pending frames in the TX queues
  1122. */
  1123. for (i = 0; i < AR_NUM_QCU; i++) {
  1124. npend = ath9k_hw_numtxpending(ah, i);
  1125. if (npend)
  1126. break;
  1127. }
  1128. if (ah->external_reset &&
  1129. (npend || type == ATH9K_RESET_COLD)) {
  1130. int reset_err = 0;
  1131. ath_dbg(ath9k_hw_common(ah), RESET,
  1132. "reset MAC via external reset\n");
  1133. reset_err = ah->external_reset();
  1134. if (reset_err) {
  1135. ath_err(ath9k_hw_common(ah),
  1136. "External reset failed, err=%d\n",
  1137. reset_err);
  1138. return false;
  1139. }
  1140. REG_WRITE(ah, AR_RTC_RESET, 1);
  1141. }
  1142. }
  1143. if (ath9k_hw_mci_is_enabled(ah))
  1144. ar9003_mci_check_gpm_offset(ah);
  1145. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1146. REGWRITE_BUFFER_FLUSH(ah);
  1147. udelay(50);
  1148. REG_WRITE(ah, AR_RTC_RC, 0);
  1149. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1150. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1151. return false;
  1152. }
  1153. if (!AR_SREV_9100(ah))
  1154. REG_WRITE(ah, AR_RC, 0);
  1155. if (AR_SREV_9100(ah))
  1156. udelay(50);
  1157. return true;
  1158. }
  1159. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1160. {
  1161. ENABLE_REGWRITE_BUFFER(ah);
  1162. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1163. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1164. udelay(10);
  1165. }
  1166. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1167. AR_RTC_FORCE_WAKE_ON_INT);
  1168. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1169. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1170. REG_WRITE(ah, AR_RTC_RESET, 0);
  1171. REGWRITE_BUFFER_FLUSH(ah);
  1172. if (!AR_SREV_9300_20_OR_LATER(ah))
  1173. udelay(2);
  1174. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1175. REG_WRITE(ah, AR_RC, 0);
  1176. REG_WRITE(ah, AR_RTC_RESET, 1);
  1177. if (!ath9k_hw_wait(ah,
  1178. AR_RTC_STATUS,
  1179. AR_RTC_STATUS_M,
  1180. AR_RTC_STATUS_ON,
  1181. AH_WAIT_TIMEOUT)) {
  1182. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1183. return false;
  1184. }
  1185. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1186. }
  1187. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1188. {
  1189. bool ret = false;
  1190. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1191. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1192. udelay(10);
  1193. }
  1194. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1195. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1196. if (!ah->reset_power_on)
  1197. type = ATH9K_RESET_POWER_ON;
  1198. switch (type) {
  1199. case ATH9K_RESET_POWER_ON:
  1200. ret = ath9k_hw_set_reset_power_on(ah);
  1201. if (ret)
  1202. ah->reset_power_on = true;
  1203. break;
  1204. case ATH9K_RESET_WARM:
  1205. case ATH9K_RESET_COLD:
  1206. ret = ath9k_hw_set_reset(ah, type);
  1207. break;
  1208. default:
  1209. break;
  1210. }
  1211. return ret;
  1212. }
  1213. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1214. struct ath9k_channel *chan)
  1215. {
  1216. int reset_type = ATH9K_RESET_WARM;
  1217. if (AR_SREV_9280(ah)) {
  1218. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1219. reset_type = ATH9K_RESET_POWER_ON;
  1220. else
  1221. reset_type = ATH9K_RESET_COLD;
  1222. } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
  1223. (REG_READ(ah, AR_CR) & AR_CR_RXE))
  1224. reset_type = ATH9K_RESET_COLD;
  1225. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1226. return false;
  1227. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1228. return false;
  1229. ah->chip_fullsleep = false;
  1230. if (AR_SREV_9330(ah))
  1231. ar9003_hw_internal_regulator_apply(ah);
  1232. ath9k_hw_init_pll(ah, chan);
  1233. ath9k_hw_set_rfmode(ah, chan);
  1234. return true;
  1235. }
  1236. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1237. struct ath9k_channel *chan)
  1238. {
  1239. struct ath_common *common = ath9k_hw_common(ah);
  1240. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1241. bool band_switch = false, mode_diff = false;
  1242. u8 ini_reloaded = 0;
  1243. u32 qnum;
  1244. int r;
  1245. if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
  1246. u32 cur = ah->curchan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ);
  1247. u32 new = chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ);
  1248. band_switch = (cur != new);
  1249. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1250. }
  1251. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1252. if (ath9k_hw_numtxpending(ah, qnum)) {
  1253. ath_dbg(common, QUEUE,
  1254. "Transmit frames pending on queue %d\n", qnum);
  1255. return false;
  1256. }
  1257. }
  1258. if (!ath9k_hw_rfbus_req(ah)) {
  1259. ath_err(common, "Could not kill baseband RX\n");
  1260. return false;
  1261. }
  1262. if (band_switch || mode_diff) {
  1263. ath9k_hw_mark_phy_inactive(ah);
  1264. udelay(5);
  1265. if (band_switch)
  1266. ath9k_hw_init_pll(ah, chan);
  1267. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1268. ath_err(common, "Failed to do fast channel change\n");
  1269. return false;
  1270. }
  1271. }
  1272. ath9k_hw_set_channel_regs(ah, chan);
  1273. r = ath9k_hw_rf_set_freq(ah, chan);
  1274. if (r) {
  1275. ath_err(common, "Failed to set channel\n");
  1276. return false;
  1277. }
  1278. ath9k_hw_set_clockrate(ah);
  1279. ath9k_hw_apply_txpower(ah, chan, false);
  1280. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1281. ath9k_hw_set_delta_slope(ah, chan);
  1282. ath9k_hw_spur_mitigate_freq(ah, chan);
  1283. if (band_switch || ini_reloaded)
  1284. ah->eep_ops->set_board_values(ah, chan);
  1285. ath9k_hw_init_bb(ah, chan);
  1286. ath9k_hw_rfbus_done(ah);
  1287. if (band_switch || ini_reloaded) {
  1288. ah->ah_flags |= AH_FASTCC;
  1289. ath9k_hw_init_cal(ah, chan);
  1290. ah->ah_flags &= ~AH_FASTCC;
  1291. }
  1292. return true;
  1293. }
  1294. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1295. {
  1296. u32 gpio_mask = ah->gpio_mask;
  1297. int i;
  1298. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1299. if (!(gpio_mask & 1))
  1300. continue;
  1301. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1302. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1303. }
  1304. }
  1305. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1306. int *hang_state, int *hang_pos)
  1307. {
  1308. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1309. u32 chain_state, dcs_pos, i;
  1310. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1311. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1312. for (i = 0; i < 3; i++) {
  1313. if (chain_state == dcu_chain_state[i]) {
  1314. *hang_state = chain_state;
  1315. *hang_pos = dcs_pos;
  1316. return true;
  1317. }
  1318. }
  1319. }
  1320. return false;
  1321. }
  1322. #define DCU_COMPLETE_STATE 1
  1323. #define DCU_COMPLETE_STATE_MASK 0x3
  1324. #define NUM_STATUS_READS 50
  1325. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1326. {
  1327. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1328. u32 i, hang_pos, hang_state, num_state = 6;
  1329. comp_state = REG_READ(ah, AR_DMADBG_6);
  1330. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1331. ath_dbg(ath9k_hw_common(ah), RESET,
  1332. "MAC Hang signature not found at DCU complete\n");
  1333. return false;
  1334. }
  1335. chain_state = REG_READ(ah, dcs_reg);
  1336. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1337. goto hang_check_iter;
  1338. dcs_reg = AR_DMADBG_5;
  1339. num_state = 4;
  1340. chain_state = REG_READ(ah, dcs_reg);
  1341. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1342. goto hang_check_iter;
  1343. ath_dbg(ath9k_hw_common(ah), RESET,
  1344. "MAC Hang signature 1 not found\n");
  1345. return false;
  1346. hang_check_iter:
  1347. ath_dbg(ath9k_hw_common(ah), RESET,
  1348. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1349. chain_state, comp_state, hang_state, hang_pos);
  1350. for (i = 0; i < NUM_STATUS_READS; i++) {
  1351. chain_state = REG_READ(ah, dcs_reg);
  1352. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1353. comp_state = REG_READ(ah, AR_DMADBG_6);
  1354. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1355. DCU_COMPLETE_STATE) ||
  1356. (chain_state != hang_state))
  1357. return false;
  1358. }
  1359. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1360. return true;
  1361. }
  1362. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1363. {
  1364. int count = 50;
  1365. u32 reg;
  1366. if (AR_SREV_9300(ah))
  1367. return !ath9k_hw_detect_mac_hang(ah);
  1368. if (AR_SREV_9285_12_OR_LATER(ah))
  1369. return true;
  1370. do {
  1371. reg = REG_READ(ah, AR_OBS_BUS_1);
  1372. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1373. continue;
  1374. switch (reg & 0x7E000B00) {
  1375. case 0x1E000000:
  1376. case 0x52000B00:
  1377. case 0x18000B00:
  1378. continue;
  1379. default:
  1380. return true;
  1381. }
  1382. } while (count-- > 0);
  1383. return false;
  1384. }
  1385. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1386. static void ath9k_hw_init_mfp(struct ath_hw *ah)
  1387. {
  1388. /* Setup MFP options for CCMP */
  1389. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1390. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1391. * frames when constructing CCMP AAD. */
  1392. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1393. 0xc7ff);
  1394. ah->sw_mgmt_crypto = false;
  1395. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1396. /* Disable hardware crypto for management frames */
  1397. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1398. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1399. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1400. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1401. ah->sw_mgmt_crypto = true;
  1402. } else {
  1403. ah->sw_mgmt_crypto = true;
  1404. }
  1405. }
  1406. static void ath9k_hw_reset_opmode(struct ath_hw *ah,
  1407. u32 macStaId1, u32 saveDefAntenna)
  1408. {
  1409. struct ath_common *common = ath9k_hw_common(ah);
  1410. ENABLE_REGWRITE_BUFFER(ah);
  1411. REG_RMW(ah, AR_STA_ID1, macStaId1
  1412. | AR_STA_ID1_RTS_USE_DEF
  1413. | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1414. | ah->sta_id1_defaults,
  1415. ~AR_STA_ID1_SADH_MASK);
  1416. ath_hw_setbssidmask(common);
  1417. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1418. ath9k_hw_write_associd(ah);
  1419. REG_WRITE(ah, AR_ISR, ~0);
  1420. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1421. REGWRITE_BUFFER_FLUSH(ah);
  1422. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1423. }
  1424. static void ath9k_hw_init_queues(struct ath_hw *ah)
  1425. {
  1426. int i;
  1427. ENABLE_REGWRITE_BUFFER(ah);
  1428. for (i = 0; i < AR_NUM_DCU; i++)
  1429. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1430. REGWRITE_BUFFER_FLUSH(ah);
  1431. ah->intr_txqs = 0;
  1432. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1433. ath9k_hw_resettxqueue(ah, i);
  1434. }
  1435. /*
  1436. * For big endian systems turn on swapping for descriptors
  1437. */
  1438. static void ath9k_hw_init_desc(struct ath_hw *ah)
  1439. {
  1440. struct ath_common *common = ath9k_hw_common(ah);
  1441. if (AR_SREV_9100(ah)) {
  1442. u32 mask;
  1443. mask = REG_READ(ah, AR_CFG);
  1444. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1445. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1446. mask);
  1447. } else {
  1448. mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1449. REG_WRITE(ah, AR_CFG, mask);
  1450. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1451. REG_READ(ah, AR_CFG));
  1452. }
  1453. } else {
  1454. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1455. /* Configure AR9271 target WLAN */
  1456. if (AR_SREV_9271(ah))
  1457. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1458. else
  1459. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1460. }
  1461. #ifdef __BIG_ENDIAN
  1462. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1463. AR_SREV_9550(ah))
  1464. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1465. else
  1466. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1467. #endif
  1468. }
  1469. }
  1470. /*
  1471. * Fast channel change:
  1472. * (Change synthesizer based on channel freq without resetting chip)
  1473. */
  1474. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1475. {
  1476. struct ath_common *common = ath9k_hw_common(ah);
  1477. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1478. int ret;
  1479. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1480. goto fail;
  1481. if (ah->chip_fullsleep)
  1482. goto fail;
  1483. if (!ah->curchan)
  1484. goto fail;
  1485. if (chan->channel == ah->curchan->channel)
  1486. goto fail;
  1487. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1488. (CHANNEL_HALF | CHANNEL_QUARTER))
  1489. goto fail;
  1490. /*
  1491. * If cross-band fcc is not supoprted, bail out if
  1492. * either channelFlags or chanmode differ.
  1493. *
  1494. * chanmode will be different if the HT operating mode
  1495. * changes because of CSA.
  1496. */
  1497. if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH)) {
  1498. if ((chan->channelFlags & CHANNEL_ALL) !=
  1499. (ah->curchan->channelFlags & CHANNEL_ALL))
  1500. goto fail;
  1501. if (chan->chanmode != ah->curchan->chanmode)
  1502. goto fail;
  1503. }
  1504. if (!ath9k_hw_check_alive(ah))
  1505. goto fail;
  1506. /*
  1507. * For AR9462, make sure that calibration data for
  1508. * re-using are present.
  1509. */
  1510. if (AR_SREV_9462(ah) && (ah->caldata &&
  1511. (!ah->caldata->done_txiqcal_once ||
  1512. !ah->caldata->done_txclcal_once ||
  1513. !ah->caldata->rtt_done)))
  1514. goto fail;
  1515. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1516. ah->curchan->channel, chan->channel);
  1517. ret = ath9k_hw_channel_change(ah, chan);
  1518. if (!ret)
  1519. goto fail;
  1520. if (ath9k_hw_mci_is_enabled(ah))
  1521. ar9003_mci_2g5g_switch(ah, false);
  1522. ath9k_hw_loadnf(ah, ah->curchan);
  1523. ath9k_hw_start_nfcal(ah, true);
  1524. if (AR_SREV_9271(ah))
  1525. ar9002_hw_load_ani_reg(ah, chan);
  1526. return 0;
  1527. fail:
  1528. return -EINVAL;
  1529. }
  1530. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1531. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1532. {
  1533. struct ath_common *common = ath9k_hw_common(ah);
  1534. u32 saveLedState;
  1535. u32 saveDefAntenna;
  1536. u32 macStaId1;
  1537. u64 tsf = 0;
  1538. int r;
  1539. bool start_mci_reset = false;
  1540. bool save_fullsleep = ah->chip_fullsleep;
  1541. if (ath9k_hw_mci_is_enabled(ah)) {
  1542. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1543. if (start_mci_reset)
  1544. return 0;
  1545. }
  1546. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1547. return -EIO;
  1548. if (ah->curchan && !ah->chip_fullsleep)
  1549. ath9k_hw_getnf(ah, ah->curchan);
  1550. ah->caldata = caldata;
  1551. if (caldata && (chan->channel != caldata->channel ||
  1552. chan->channelFlags != caldata->channelFlags ||
  1553. chan->chanmode != caldata->chanmode)) {
  1554. /* Operating channel changed, reset channel calibration data */
  1555. memset(caldata, 0, sizeof(*caldata));
  1556. ath9k_init_nfcal_hist_buffer(ah, chan);
  1557. } else if (caldata) {
  1558. caldata->paprd_packet_sent = false;
  1559. }
  1560. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1561. if (fastcc) {
  1562. r = ath9k_hw_do_fastcc(ah, chan);
  1563. if (!r)
  1564. return r;
  1565. }
  1566. if (ath9k_hw_mci_is_enabled(ah))
  1567. ar9003_mci_stop_bt(ah, save_fullsleep);
  1568. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1569. if (saveDefAntenna == 0)
  1570. saveDefAntenna = 1;
  1571. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1572. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1573. if (AR_SREV_9100(ah) ||
  1574. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1575. tsf = ath9k_hw_gettsf64(ah);
  1576. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1577. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1578. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1579. ath9k_hw_mark_phy_inactive(ah);
  1580. ah->paprd_table_write_done = false;
  1581. /* Only required on the first reset */
  1582. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1583. REG_WRITE(ah,
  1584. AR9271_RESET_POWER_DOWN_CONTROL,
  1585. AR9271_RADIO_RF_RST);
  1586. udelay(50);
  1587. }
  1588. if (!ath9k_hw_chip_reset(ah, chan)) {
  1589. ath_err(common, "Chip reset failed\n");
  1590. return -EINVAL;
  1591. }
  1592. /* Only required on the first reset */
  1593. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1594. ah->htc_reset_init = false;
  1595. REG_WRITE(ah,
  1596. AR9271_RESET_POWER_DOWN_CONTROL,
  1597. AR9271_GATE_MAC_CTL);
  1598. udelay(50);
  1599. }
  1600. /* Restore TSF */
  1601. if (tsf)
  1602. ath9k_hw_settsf64(ah, tsf);
  1603. if (AR_SREV_9280_20_OR_LATER(ah))
  1604. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1605. if (!AR_SREV_9300_20_OR_LATER(ah))
  1606. ar9002_hw_enable_async_fifo(ah);
  1607. r = ath9k_hw_process_ini(ah, chan);
  1608. if (r)
  1609. return r;
  1610. if (ath9k_hw_mci_is_enabled(ah))
  1611. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1612. /*
  1613. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1614. * right after the chip reset. When that happens, write a new
  1615. * value after the initvals have been applied, with an offset
  1616. * based on measured time difference
  1617. */
  1618. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1619. tsf += 1500;
  1620. ath9k_hw_settsf64(ah, tsf);
  1621. }
  1622. ath9k_hw_init_mfp(ah);
  1623. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1624. ath9k_hw_set_delta_slope(ah, chan);
  1625. ath9k_hw_spur_mitigate_freq(ah, chan);
  1626. ah->eep_ops->set_board_values(ah, chan);
  1627. ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
  1628. r = ath9k_hw_rf_set_freq(ah, chan);
  1629. if (r)
  1630. return r;
  1631. ath9k_hw_set_clockrate(ah);
  1632. ath9k_hw_init_queues(ah);
  1633. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1634. ath9k_hw_ani_cache_ini_regs(ah);
  1635. ath9k_hw_init_qos(ah);
  1636. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1637. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1638. ath9k_hw_init_global_settings(ah);
  1639. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1640. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1641. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1642. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1643. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1644. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1645. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1646. }
  1647. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1648. ath9k_hw_set_dma(ah);
  1649. if (!ath9k_hw_mci_is_enabled(ah))
  1650. REG_WRITE(ah, AR_OBS, 8);
  1651. if (ah->config.rx_intr_mitigation) {
  1652. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1653. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1654. }
  1655. if (ah->config.tx_intr_mitigation) {
  1656. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1657. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1658. }
  1659. ath9k_hw_init_bb(ah, chan);
  1660. if (caldata) {
  1661. caldata->done_txiqcal_once = false;
  1662. caldata->done_txclcal_once = false;
  1663. }
  1664. if (!ath9k_hw_init_cal(ah, chan))
  1665. return -EIO;
  1666. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1667. return -EIO;
  1668. ENABLE_REGWRITE_BUFFER(ah);
  1669. ath9k_hw_restore_chainmask(ah);
  1670. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1671. REGWRITE_BUFFER_FLUSH(ah);
  1672. ath9k_hw_init_desc(ah);
  1673. if (ath9k_hw_btcoex_is_enabled(ah))
  1674. ath9k_hw_btcoex_enable(ah);
  1675. if (ath9k_hw_mci_is_enabled(ah))
  1676. ar9003_mci_check_bt(ah);
  1677. ath9k_hw_loadnf(ah, chan);
  1678. ath9k_hw_start_nfcal(ah, true);
  1679. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1680. ar9003_hw_bb_watchdog_config(ah);
  1681. ar9003_hw_disable_phy_restart(ah);
  1682. }
  1683. ath9k_hw_apply_gpio_override(ah);
  1684. if (AR_SREV_9565(ah) && common->bt_ant_diversity)
  1685. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1686. return 0;
  1687. }
  1688. EXPORT_SYMBOL(ath9k_hw_reset);
  1689. /******************************/
  1690. /* Power Management (Chipset) */
  1691. /******************************/
  1692. /*
  1693. * Notify Power Mgt is disabled in self-generated frames.
  1694. * If requested, force chip to sleep.
  1695. */
  1696. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1697. {
  1698. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1699. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1700. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1701. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1702. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1703. /* xxx Required for WLAN only case ? */
  1704. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1705. udelay(100);
  1706. }
  1707. /*
  1708. * Clear the RTC force wake bit to allow the
  1709. * mac to go to sleep.
  1710. */
  1711. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1712. if (ath9k_hw_mci_is_enabled(ah))
  1713. udelay(100);
  1714. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1715. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1716. /* Shutdown chip. Active low */
  1717. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1718. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1719. udelay(2);
  1720. }
  1721. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1722. if (AR_SREV_9300_20_OR_LATER(ah))
  1723. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1724. }
  1725. /*
  1726. * Notify Power Management is enabled in self-generating
  1727. * frames. If request, set power mode of chip to
  1728. * auto/normal. Duration in units of 128us (1/8 TU).
  1729. */
  1730. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1731. {
  1732. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1733. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1734. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1735. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1736. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1737. AR_RTC_FORCE_WAKE_ON_INT);
  1738. } else {
  1739. /* When chip goes into network sleep, it could be waken
  1740. * up by MCI_INT interrupt caused by BT's HW messages
  1741. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1742. * rate (~100us). This will cause chip to leave and
  1743. * re-enter network sleep mode frequently, which in
  1744. * consequence will have WLAN MCI HW to generate lots of
  1745. * SYS_WAKING and SYS_SLEEPING messages which will make
  1746. * BT CPU to busy to process.
  1747. */
  1748. if (ath9k_hw_mci_is_enabled(ah))
  1749. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1750. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1751. /*
  1752. * Clear the RTC force wake bit to allow the
  1753. * mac to go to sleep.
  1754. */
  1755. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1756. if (ath9k_hw_mci_is_enabled(ah))
  1757. udelay(30);
  1758. }
  1759. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1760. if (AR_SREV_9300_20_OR_LATER(ah))
  1761. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1762. }
  1763. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1764. {
  1765. u32 val;
  1766. int i;
  1767. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1768. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1769. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1770. udelay(10);
  1771. }
  1772. if ((REG_READ(ah, AR_RTC_STATUS) &
  1773. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1774. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1775. return false;
  1776. }
  1777. if (!AR_SREV_9300_20_OR_LATER(ah))
  1778. ath9k_hw_init_pll(ah, NULL);
  1779. }
  1780. if (AR_SREV_9100(ah))
  1781. REG_SET_BIT(ah, AR_RTC_RESET,
  1782. AR_RTC_RESET_EN);
  1783. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1784. AR_RTC_FORCE_WAKE_EN);
  1785. udelay(50);
  1786. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1787. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1788. if (val == AR_RTC_STATUS_ON)
  1789. break;
  1790. udelay(50);
  1791. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1792. AR_RTC_FORCE_WAKE_EN);
  1793. }
  1794. if (i == 0) {
  1795. ath_err(ath9k_hw_common(ah),
  1796. "Failed to wakeup in %uus\n",
  1797. POWER_UP_TIME / 20);
  1798. return false;
  1799. }
  1800. if (ath9k_hw_mci_is_enabled(ah))
  1801. ar9003_mci_set_power_awake(ah);
  1802. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1803. return true;
  1804. }
  1805. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1806. {
  1807. struct ath_common *common = ath9k_hw_common(ah);
  1808. int status = true;
  1809. static const char *modes[] = {
  1810. "AWAKE",
  1811. "FULL-SLEEP",
  1812. "NETWORK SLEEP",
  1813. "UNDEFINED"
  1814. };
  1815. if (ah->power_mode == mode)
  1816. return status;
  1817. ath_dbg(common, RESET, "%s -> %s\n",
  1818. modes[ah->power_mode], modes[mode]);
  1819. switch (mode) {
  1820. case ATH9K_PM_AWAKE:
  1821. status = ath9k_hw_set_power_awake(ah);
  1822. break;
  1823. case ATH9K_PM_FULL_SLEEP:
  1824. if (ath9k_hw_mci_is_enabled(ah))
  1825. ar9003_mci_set_full_sleep(ah);
  1826. ath9k_set_power_sleep(ah);
  1827. ah->chip_fullsleep = true;
  1828. break;
  1829. case ATH9K_PM_NETWORK_SLEEP:
  1830. ath9k_set_power_network_sleep(ah);
  1831. break;
  1832. default:
  1833. ath_err(common, "Unknown power mode %u\n", mode);
  1834. return false;
  1835. }
  1836. ah->power_mode = mode;
  1837. /*
  1838. * XXX: If this warning never comes up after a while then
  1839. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1840. * ath9k_hw_setpower() return type void.
  1841. */
  1842. if (!(ah->ah_flags & AH_UNPLUGGED))
  1843. ATH_DBG_WARN_ON_ONCE(!status);
  1844. return status;
  1845. }
  1846. EXPORT_SYMBOL(ath9k_hw_setpower);
  1847. /*******************/
  1848. /* Beacon Handling */
  1849. /*******************/
  1850. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1851. {
  1852. int flags = 0;
  1853. ENABLE_REGWRITE_BUFFER(ah);
  1854. switch (ah->opmode) {
  1855. case NL80211_IFTYPE_ADHOC:
  1856. REG_SET_BIT(ah, AR_TXCFG,
  1857. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1858. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1859. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1860. flags |= AR_NDP_TIMER_EN;
  1861. case NL80211_IFTYPE_MESH_POINT:
  1862. case NL80211_IFTYPE_AP:
  1863. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1864. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1865. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1866. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1867. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1868. flags |=
  1869. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1870. break;
  1871. default:
  1872. ath_dbg(ath9k_hw_common(ah), BEACON,
  1873. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1874. return;
  1875. break;
  1876. }
  1877. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1878. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1879. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1880. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1881. REGWRITE_BUFFER_FLUSH(ah);
  1882. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1883. }
  1884. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1885. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1886. const struct ath9k_beacon_state *bs)
  1887. {
  1888. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1889. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1890. struct ath_common *common = ath9k_hw_common(ah);
  1891. ENABLE_REGWRITE_BUFFER(ah);
  1892. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1893. REG_WRITE(ah, AR_BEACON_PERIOD,
  1894. TU_TO_USEC(bs->bs_intval));
  1895. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1896. TU_TO_USEC(bs->bs_intval));
  1897. REGWRITE_BUFFER_FLUSH(ah);
  1898. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1899. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1900. beaconintval = bs->bs_intval;
  1901. if (bs->bs_sleepduration > beaconintval)
  1902. beaconintval = bs->bs_sleepduration;
  1903. dtimperiod = bs->bs_dtimperiod;
  1904. if (bs->bs_sleepduration > dtimperiod)
  1905. dtimperiod = bs->bs_sleepduration;
  1906. if (beaconintval == dtimperiod)
  1907. nextTbtt = bs->bs_nextdtim;
  1908. else
  1909. nextTbtt = bs->bs_nexttbtt;
  1910. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1911. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1912. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1913. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1914. ENABLE_REGWRITE_BUFFER(ah);
  1915. REG_WRITE(ah, AR_NEXT_DTIM,
  1916. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1917. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1918. REG_WRITE(ah, AR_SLEEP1,
  1919. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1920. | AR_SLEEP1_ASSUME_DTIM);
  1921. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1922. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1923. else
  1924. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1925. REG_WRITE(ah, AR_SLEEP2,
  1926. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1927. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1928. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1929. REGWRITE_BUFFER_FLUSH(ah);
  1930. REG_SET_BIT(ah, AR_TIMER_MODE,
  1931. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1932. AR_DTIM_TIMER_EN);
  1933. /* TSF Out of Range Threshold */
  1934. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1935. }
  1936. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1937. /*******************/
  1938. /* HW Capabilities */
  1939. /*******************/
  1940. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1941. {
  1942. eeprom_chainmask &= chip_chainmask;
  1943. if (eeprom_chainmask)
  1944. return eeprom_chainmask;
  1945. else
  1946. return chip_chainmask;
  1947. }
  1948. /**
  1949. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1950. * @ah: the atheros hardware data structure
  1951. *
  1952. * We enable DFS support upstream on chipsets which have passed a series
  1953. * of tests. The testing requirements are going to be documented. Desired
  1954. * test requirements are documented at:
  1955. *
  1956. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1957. *
  1958. * Once a new chipset gets properly tested an individual commit can be used
  1959. * to document the testing for DFS for that chipset.
  1960. */
  1961. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1962. {
  1963. switch (ah->hw_version.macVersion) {
  1964. /* for temporary testing DFS with 9280 */
  1965. case AR_SREV_VERSION_9280:
  1966. /* AR9580 will likely be our first target to get testing on */
  1967. case AR_SREV_VERSION_9580:
  1968. return true;
  1969. default:
  1970. return false;
  1971. }
  1972. }
  1973. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1974. {
  1975. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1976. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1977. struct ath_common *common = ath9k_hw_common(ah);
  1978. unsigned int chip_chainmask;
  1979. u16 eeval;
  1980. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1981. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1982. regulatory->current_rd = eeval;
  1983. if (ah->opmode != NL80211_IFTYPE_AP &&
  1984. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1985. if (regulatory->current_rd == 0x64 ||
  1986. regulatory->current_rd == 0x65)
  1987. regulatory->current_rd += 5;
  1988. else if (regulatory->current_rd == 0x41)
  1989. regulatory->current_rd = 0x43;
  1990. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1991. regulatory->current_rd);
  1992. }
  1993. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1994. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1995. ath_err(common,
  1996. "no band has been marked as supported in EEPROM\n");
  1997. return -EINVAL;
  1998. }
  1999. if (eeval & AR5416_OPFLAGS_11A)
  2000. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  2001. if (eeval & AR5416_OPFLAGS_11G)
  2002. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  2003. if (AR_SREV_9485(ah) ||
  2004. AR_SREV_9285(ah) ||
  2005. AR_SREV_9330(ah) ||
  2006. AR_SREV_9565(ah))
  2007. chip_chainmask = 1;
  2008. else if (AR_SREV_9462(ah))
  2009. chip_chainmask = 3;
  2010. else if (!AR_SREV_9280_20_OR_LATER(ah))
  2011. chip_chainmask = 7;
  2012. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  2013. chip_chainmask = 3;
  2014. else
  2015. chip_chainmask = 7;
  2016. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2017. /*
  2018. * For AR9271 we will temporarilly uses the rx chainmax as read from
  2019. * the EEPROM.
  2020. */
  2021. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2022. !(eeval & AR5416_OPFLAGS_11A) &&
  2023. !(AR_SREV_9271(ah)))
  2024. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  2025. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2026. else if (AR_SREV_9100(ah))
  2027. pCap->rx_chainmask = 0x7;
  2028. else
  2029. /* Use rx_chainmask from EEPROM. */
  2030. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2031. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  2032. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  2033. ah->txchainmask = pCap->tx_chainmask;
  2034. ah->rxchainmask = pCap->rx_chainmask;
  2035. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2036. /* enable key search for every frame in an aggregate */
  2037. if (AR_SREV_9300_20_OR_LATER(ah))
  2038. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2039. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2040. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2041. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2042. else
  2043. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2044. if (AR_SREV_9271(ah))
  2045. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2046. else if (AR_DEVID_7010(ah))
  2047. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2048. else if (AR_SREV_9300_20_OR_LATER(ah))
  2049. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2050. else if (AR_SREV_9287_11_OR_LATER(ah))
  2051. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2052. else if (AR_SREV_9285_12_OR_LATER(ah))
  2053. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2054. else if (AR_SREV_9280_20_OR_LATER(ah))
  2055. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2056. else
  2057. pCap->num_gpio_pins = AR_NUM_GPIO;
  2058. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2059. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2060. else
  2061. pCap->rts_aggr_limit = (8 * 1024);
  2062. #ifdef CONFIG_ATH9K_RFKILL
  2063. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2064. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2065. ah->rfkill_gpio =
  2066. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2067. ah->rfkill_polarity =
  2068. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2069. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2070. }
  2071. #endif
  2072. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2073. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2074. else
  2075. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2076. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2077. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2078. else
  2079. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2080. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2081. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2082. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  2083. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2084. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2085. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2086. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2087. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2088. pCap->txs_len = sizeof(struct ar9003_txs);
  2089. } else {
  2090. pCap->tx_desc_len = sizeof(struct ath_desc);
  2091. if (AR_SREV_9280_20(ah))
  2092. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2093. }
  2094. if (AR_SREV_9300_20_OR_LATER(ah))
  2095. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2096. if (AR_SREV_9300_20_OR_LATER(ah))
  2097. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2098. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2099. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2100. if (AR_SREV_9285(ah)) {
  2101. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2102. ant_div_ctl1 =
  2103. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2104. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
  2105. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2106. ath_info(common, "Enable LNA combining\n");
  2107. }
  2108. }
  2109. }
  2110. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2111. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2112. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2113. }
  2114. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  2115. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2116. if ((ant_div_ctl1 >> 0x6) == 0x3) {
  2117. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2118. ath_info(common, "Enable LNA combining\n");
  2119. }
  2120. }
  2121. if (ath9k_hw_dfs_tested(ah))
  2122. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2123. tx_chainmask = pCap->tx_chainmask;
  2124. rx_chainmask = pCap->rx_chainmask;
  2125. while (tx_chainmask || rx_chainmask) {
  2126. if (tx_chainmask & BIT(0))
  2127. pCap->max_txchains++;
  2128. if (rx_chainmask & BIT(0))
  2129. pCap->max_rxchains++;
  2130. tx_chainmask >>= 1;
  2131. rx_chainmask >>= 1;
  2132. }
  2133. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2134. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2135. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2136. if (AR_SREV_9462_20_OR_LATER(ah))
  2137. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2138. }
  2139. if (AR_SREV_9462(ah))
  2140. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
  2141. if (AR_SREV_9300_20_OR_LATER(ah) &&
  2142. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2143. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2144. /*
  2145. * Fast channel change across bands is available
  2146. * only for AR9462 and AR9565.
  2147. */
  2148. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2149. pCap->hw_caps |= ATH9K_HW_CAP_FCC_BAND_SWITCH;
  2150. return 0;
  2151. }
  2152. /****************************/
  2153. /* GPIO / RFKILL / Antennae */
  2154. /****************************/
  2155. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2156. u32 gpio, u32 type)
  2157. {
  2158. int addr;
  2159. u32 gpio_shift, tmp;
  2160. if (gpio > 11)
  2161. addr = AR_GPIO_OUTPUT_MUX3;
  2162. else if (gpio > 5)
  2163. addr = AR_GPIO_OUTPUT_MUX2;
  2164. else
  2165. addr = AR_GPIO_OUTPUT_MUX1;
  2166. gpio_shift = (gpio % 6) * 5;
  2167. if (AR_SREV_9280_20_OR_LATER(ah)
  2168. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2169. REG_RMW(ah, addr, (type << gpio_shift),
  2170. (0x1f << gpio_shift));
  2171. } else {
  2172. tmp = REG_READ(ah, addr);
  2173. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2174. tmp &= ~(0x1f << gpio_shift);
  2175. tmp |= (type << gpio_shift);
  2176. REG_WRITE(ah, addr, tmp);
  2177. }
  2178. }
  2179. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2180. {
  2181. u32 gpio_shift;
  2182. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2183. if (AR_DEVID_7010(ah)) {
  2184. gpio_shift = gpio;
  2185. REG_RMW(ah, AR7010_GPIO_OE,
  2186. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2187. (AR7010_GPIO_OE_MASK << gpio_shift));
  2188. return;
  2189. }
  2190. gpio_shift = gpio << 1;
  2191. REG_RMW(ah,
  2192. AR_GPIO_OE_OUT,
  2193. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2194. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2195. }
  2196. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2197. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2198. {
  2199. #define MS_REG_READ(x, y) \
  2200. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2201. if (gpio >= ah->caps.num_gpio_pins)
  2202. return 0xffffffff;
  2203. if (AR_DEVID_7010(ah)) {
  2204. u32 val;
  2205. val = REG_READ(ah, AR7010_GPIO_IN);
  2206. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2207. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2208. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2209. AR_GPIO_BIT(gpio)) != 0;
  2210. else if (AR_SREV_9271(ah))
  2211. return MS_REG_READ(AR9271, gpio) != 0;
  2212. else if (AR_SREV_9287_11_OR_LATER(ah))
  2213. return MS_REG_READ(AR9287, gpio) != 0;
  2214. else if (AR_SREV_9285_12_OR_LATER(ah))
  2215. return MS_REG_READ(AR9285, gpio) != 0;
  2216. else if (AR_SREV_9280_20_OR_LATER(ah))
  2217. return MS_REG_READ(AR928X, gpio) != 0;
  2218. else
  2219. return MS_REG_READ(AR, gpio) != 0;
  2220. }
  2221. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2222. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2223. u32 ah_signal_type)
  2224. {
  2225. u32 gpio_shift;
  2226. if (AR_DEVID_7010(ah)) {
  2227. gpio_shift = gpio;
  2228. REG_RMW(ah, AR7010_GPIO_OE,
  2229. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2230. (AR7010_GPIO_OE_MASK << gpio_shift));
  2231. return;
  2232. }
  2233. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2234. gpio_shift = 2 * gpio;
  2235. REG_RMW(ah,
  2236. AR_GPIO_OE_OUT,
  2237. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2238. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2239. }
  2240. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2241. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2242. {
  2243. if (AR_DEVID_7010(ah)) {
  2244. val = val ? 0 : 1;
  2245. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2246. AR_GPIO_BIT(gpio));
  2247. return;
  2248. }
  2249. if (AR_SREV_9271(ah))
  2250. val = ~val;
  2251. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2252. AR_GPIO_BIT(gpio));
  2253. }
  2254. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2255. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2256. {
  2257. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2258. }
  2259. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2260. /*********************/
  2261. /* General Operation */
  2262. /*********************/
  2263. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2264. {
  2265. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2266. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2267. if (phybits & AR_PHY_ERR_RADAR)
  2268. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2269. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2270. bits |= ATH9K_RX_FILTER_PHYERR;
  2271. return bits;
  2272. }
  2273. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2274. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2275. {
  2276. u32 phybits;
  2277. ENABLE_REGWRITE_BUFFER(ah);
  2278. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2279. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2280. REG_WRITE(ah, AR_RX_FILTER, bits);
  2281. phybits = 0;
  2282. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2283. phybits |= AR_PHY_ERR_RADAR;
  2284. if (bits & ATH9K_RX_FILTER_PHYERR)
  2285. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2286. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2287. if (phybits)
  2288. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2289. else
  2290. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2291. REGWRITE_BUFFER_FLUSH(ah);
  2292. }
  2293. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2294. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2295. {
  2296. if (ath9k_hw_mci_is_enabled(ah))
  2297. ar9003_mci_bt_gain_ctrl(ah);
  2298. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2299. return false;
  2300. ath9k_hw_init_pll(ah, NULL);
  2301. ah->htc_reset_init = true;
  2302. return true;
  2303. }
  2304. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2305. bool ath9k_hw_disable(struct ath_hw *ah)
  2306. {
  2307. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2308. return false;
  2309. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2310. return false;
  2311. ath9k_hw_init_pll(ah, NULL);
  2312. return true;
  2313. }
  2314. EXPORT_SYMBOL(ath9k_hw_disable);
  2315. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2316. {
  2317. enum eeprom_param gain_param;
  2318. if (IS_CHAN_2GHZ(chan))
  2319. gain_param = EEP_ANTENNA_GAIN_2G;
  2320. else
  2321. gain_param = EEP_ANTENNA_GAIN_5G;
  2322. return ah->eep_ops->get_eeprom(ah, gain_param);
  2323. }
  2324. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2325. bool test)
  2326. {
  2327. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2328. struct ieee80211_channel *channel;
  2329. int chan_pwr, new_pwr, max_gain;
  2330. int ant_gain, ant_reduction = 0;
  2331. if (!chan)
  2332. return;
  2333. channel = chan->chan;
  2334. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2335. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2336. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2337. ant_gain = get_antenna_gain(ah, chan);
  2338. if (ant_gain > max_gain)
  2339. ant_reduction = ant_gain - max_gain;
  2340. ah->eep_ops->set_txpower(ah, chan,
  2341. ath9k_regd_get_ctl(reg, chan),
  2342. ant_reduction, new_pwr, test);
  2343. }
  2344. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2345. {
  2346. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2347. struct ath9k_channel *chan = ah->curchan;
  2348. struct ieee80211_channel *channel = chan->chan;
  2349. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2350. if (test)
  2351. channel->max_power = MAX_RATE_POWER / 2;
  2352. ath9k_hw_apply_txpower(ah, chan, test);
  2353. if (test)
  2354. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2355. }
  2356. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2357. void ath9k_hw_setopmode(struct ath_hw *ah)
  2358. {
  2359. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2360. }
  2361. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2362. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2363. {
  2364. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2365. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2366. }
  2367. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2368. void ath9k_hw_write_associd(struct ath_hw *ah)
  2369. {
  2370. struct ath_common *common = ath9k_hw_common(ah);
  2371. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2372. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2373. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2374. }
  2375. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2376. #define ATH9K_MAX_TSF_READ 10
  2377. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2378. {
  2379. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2380. int i;
  2381. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2382. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2383. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2384. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2385. if (tsf_upper2 == tsf_upper1)
  2386. break;
  2387. tsf_upper1 = tsf_upper2;
  2388. }
  2389. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2390. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2391. }
  2392. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2393. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2394. {
  2395. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2396. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2397. }
  2398. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2399. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2400. {
  2401. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2402. AH_TSF_WRITE_TIMEOUT))
  2403. ath_dbg(ath9k_hw_common(ah), RESET,
  2404. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2405. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2406. }
  2407. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2408. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2409. {
  2410. if (set)
  2411. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2412. else
  2413. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2414. }
  2415. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2416. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2417. {
  2418. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2419. u32 macmode;
  2420. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2421. macmode = AR_2040_JOINED_RX_CLEAR;
  2422. else
  2423. macmode = 0;
  2424. REG_WRITE(ah, AR_2040_MODE, macmode);
  2425. }
  2426. /* HW Generic timers configuration */
  2427. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2428. {
  2429. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2430. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2431. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2432. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2433. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2434. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2435. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2436. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2437. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2438. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2439. AR_NDP2_TIMER_MODE, 0x0002},
  2440. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2441. AR_NDP2_TIMER_MODE, 0x0004},
  2442. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2443. AR_NDP2_TIMER_MODE, 0x0008},
  2444. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2445. AR_NDP2_TIMER_MODE, 0x0010},
  2446. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2447. AR_NDP2_TIMER_MODE, 0x0020},
  2448. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2449. AR_NDP2_TIMER_MODE, 0x0040},
  2450. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2451. AR_NDP2_TIMER_MODE, 0x0080}
  2452. };
  2453. /* HW generic timer primitives */
  2454. /* compute and clear index of rightmost 1 */
  2455. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2456. {
  2457. u32 b;
  2458. b = *mask;
  2459. b &= (0-b);
  2460. *mask &= ~b;
  2461. b *= debruijn32;
  2462. b >>= 27;
  2463. return timer_table->gen_timer_index[b];
  2464. }
  2465. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2466. {
  2467. return REG_READ(ah, AR_TSF_L32);
  2468. }
  2469. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2470. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2471. void (*trigger)(void *),
  2472. void (*overflow)(void *),
  2473. void *arg,
  2474. u8 timer_index)
  2475. {
  2476. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2477. struct ath_gen_timer *timer;
  2478. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2479. if (timer == NULL)
  2480. return NULL;
  2481. /* allocate a hardware generic timer slot */
  2482. timer_table->timers[timer_index] = timer;
  2483. timer->index = timer_index;
  2484. timer->trigger = trigger;
  2485. timer->overflow = overflow;
  2486. timer->arg = arg;
  2487. return timer;
  2488. }
  2489. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2490. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2491. struct ath_gen_timer *timer,
  2492. u32 trig_timeout,
  2493. u32 timer_period)
  2494. {
  2495. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2496. u32 tsf, timer_next;
  2497. BUG_ON(!timer_period);
  2498. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2499. tsf = ath9k_hw_gettsf32(ah);
  2500. timer_next = tsf + trig_timeout;
  2501. ath_dbg(ath9k_hw_common(ah), BTCOEX,
  2502. "current tsf %x period %x timer_next %x\n",
  2503. tsf, timer_period, timer_next);
  2504. /*
  2505. * Program generic timer registers
  2506. */
  2507. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2508. timer_next);
  2509. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2510. timer_period);
  2511. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2512. gen_tmr_configuration[timer->index].mode_mask);
  2513. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2514. /*
  2515. * Starting from AR9462, each generic timer can select which tsf
  2516. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2517. * 8 - 15 use tsf2.
  2518. */
  2519. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2520. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2521. (1 << timer->index));
  2522. else
  2523. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2524. (1 << timer->index));
  2525. }
  2526. /* Enable both trigger and thresh interrupt masks */
  2527. REG_SET_BIT(ah, AR_IMR_S5,
  2528. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2529. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2530. }
  2531. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2532. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2533. {
  2534. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2535. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2536. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2537. return;
  2538. }
  2539. /* Clear generic timer enable bits. */
  2540. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2541. gen_tmr_configuration[timer->index].mode_mask);
  2542. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2543. /*
  2544. * Need to switch back to TSF if it was using TSF2.
  2545. */
  2546. if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
  2547. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2548. (1 << timer->index));
  2549. }
  2550. }
  2551. /* Disable both trigger and thresh interrupt masks */
  2552. REG_CLR_BIT(ah, AR_IMR_S5,
  2553. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2554. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2555. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2556. }
  2557. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2558. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2559. {
  2560. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2561. /* free the hardware generic timer slot */
  2562. timer_table->timers[timer->index] = NULL;
  2563. kfree(timer);
  2564. }
  2565. EXPORT_SYMBOL(ath_gen_timer_free);
  2566. /*
  2567. * Generic Timer Interrupts handling
  2568. */
  2569. void ath_gen_timer_isr(struct ath_hw *ah)
  2570. {
  2571. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2572. struct ath_gen_timer *timer;
  2573. struct ath_common *common = ath9k_hw_common(ah);
  2574. u32 trigger_mask, thresh_mask, index;
  2575. /* get hardware generic timer interrupt status */
  2576. trigger_mask = ah->intr_gen_timer_trigger;
  2577. thresh_mask = ah->intr_gen_timer_thresh;
  2578. trigger_mask &= timer_table->timer_mask.val;
  2579. thresh_mask &= timer_table->timer_mask.val;
  2580. trigger_mask &= ~thresh_mask;
  2581. while (thresh_mask) {
  2582. index = rightmost_index(timer_table, &thresh_mask);
  2583. timer = timer_table->timers[index];
  2584. BUG_ON(!timer);
  2585. ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n",
  2586. index);
  2587. timer->overflow(timer->arg);
  2588. }
  2589. while (trigger_mask) {
  2590. index = rightmost_index(timer_table, &trigger_mask);
  2591. timer = timer_table->timers[index];
  2592. BUG_ON(!timer);
  2593. ath_dbg(common, BTCOEX,
  2594. "Gen timer[%d] trigger\n", index);
  2595. timer->trigger(timer->arg);
  2596. }
  2597. }
  2598. EXPORT_SYMBOL(ath_gen_timer_isr);
  2599. /********/
  2600. /* HTC */
  2601. /********/
  2602. static struct {
  2603. u32 version;
  2604. const char * name;
  2605. } ath_mac_bb_names[] = {
  2606. /* Devices with external radios */
  2607. { AR_SREV_VERSION_5416_PCI, "5416" },
  2608. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2609. { AR_SREV_VERSION_9100, "9100" },
  2610. { AR_SREV_VERSION_9160, "9160" },
  2611. /* Single-chip solutions */
  2612. { AR_SREV_VERSION_9280, "9280" },
  2613. { AR_SREV_VERSION_9285, "9285" },
  2614. { AR_SREV_VERSION_9287, "9287" },
  2615. { AR_SREV_VERSION_9271, "9271" },
  2616. { AR_SREV_VERSION_9300, "9300" },
  2617. { AR_SREV_VERSION_9330, "9330" },
  2618. { AR_SREV_VERSION_9340, "9340" },
  2619. { AR_SREV_VERSION_9485, "9485" },
  2620. { AR_SREV_VERSION_9462, "9462" },
  2621. { AR_SREV_VERSION_9550, "9550" },
  2622. { AR_SREV_VERSION_9565, "9565" },
  2623. };
  2624. /* For devices with external radios */
  2625. static struct {
  2626. u16 version;
  2627. const char * name;
  2628. } ath_rf_names[] = {
  2629. { 0, "5133" },
  2630. { AR_RAD5133_SREV_MAJOR, "5133" },
  2631. { AR_RAD5122_SREV_MAJOR, "5122" },
  2632. { AR_RAD2133_SREV_MAJOR, "2133" },
  2633. { AR_RAD2122_SREV_MAJOR, "2122" }
  2634. };
  2635. /*
  2636. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2637. */
  2638. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2639. {
  2640. int i;
  2641. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2642. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2643. return ath_mac_bb_names[i].name;
  2644. }
  2645. }
  2646. return "????";
  2647. }
  2648. /*
  2649. * Return the RF name. "????" is returned if the RF is unknown.
  2650. * Used for devices with external radios.
  2651. */
  2652. static const char *ath9k_hw_rf_name(u16 rf_version)
  2653. {
  2654. int i;
  2655. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2656. if (ath_rf_names[i].version == rf_version) {
  2657. return ath_rf_names[i].name;
  2658. }
  2659. }
  2660. return "????";
  2661. }
  2662. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2663. {
  2664. int used;
  2665. /* chipsets >= AR9280 are single-chip */
  2666. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2667. used = snprintf(hw_name, len,
  2668. "Atheros AR%s Rev:%x",
  2669. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2670. ah->hw_version.macRev);
  2671. }
  2672. else {
  2673. used = snprintf(hw_name, len,
  2674. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2675. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2676. ah->hw_version.macRev,
  2677. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2678. AR_RADIO_SREV_MAJOR)),
  2679. ah->hw_version.phyRev);
  2680. }
  2681. hw_name[used] = '\0';
  2682. }
  2683. EXPORT_SYMBOL(ath9k_hw_name);