disk-io.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. static struct extent_io_ops btree_extent_io_ops;
  47. static void end_workqueue_fn(struct btrfs_work *work);
  48. static void free_fs_root(struct btrfs_root *root);
  49. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  50. int read_only);
  51. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  52. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  53. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  54. struct btrfs_root *root);
  55. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  56. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  57. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  58. struct extent_io_tree *dirty_pages,
  59. int mark);
  60. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  61. struct extent_io_tree *pinned_extents);
  62. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  63. /*
  64. * end_io_wq structs are used to do processing in task context when an IO is
  65. * complete. This is used during reads to verify checksums, and it is used
  66. * by writes to insert metadata for new file extents after IO is complete.
  67. */
  68. struct end_io_wq {
  69. struct bio *bio;
  70. bio_end_io_t *end_io;
  71. void *private;
  72. struct btrfs_fs_info *info;
  73. int error;
  74. int metadata;
  75. struct list_head list;
  76. struct btrfs_work work;
  77. };
  78. /*
  79. * async submit bios are used to offload expensive checksumming
  80. * onto the worker threads. They checksum file and metadata bios
  81. * just before they are sent down the IO stack.
  82. */
  83. struct async_submit_bio {
  84. struct inode *inode;
  85. struct bio *bio;
  86. struct list_head list;
  87. extent_submit_bio_hook_t *submit_bio_start;
  88. extent_submit_bio_hook_t *submit_bio_done;
  89. int rw;
  90. int mirror_num;
  91. unsigned long bio_flags;
  92. /*
  93. * bio_offset is optional, can be used if the pages in the bio
  94. * can't tell us where in the file the bio should go
  95. */
  96. u64 bio_offset;
  97. struct btrfs_work work;
  98. };
  99. /*
  100. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  101. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  102. * the level the eb occupies in the tree.
  103. *
  104. * Different roots are used for different purposes and may nest inside each
  105. * other and they require separate keysets. As lockdep keys should be
  106. * static, assign keysets according to the purpose of the root as indicated
  107. * by btrfs_root->objectid. This ensures that all special purpose roots
  108. * have separate keysets.
  109. *
  110. * Lock-nesting across peer nodes is always done with the immediate parent
  111. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  112. * subclass to avoid triggering lockdep warning in such cases.
  113. *
  114. * The key is set by the readpage_end_io_hook after the buffer has passed
  115. * csum validation but before the pages are unlocked. It is also set by
  116. * btrfs_init_new_buffer on freshly allocated blocks.
  117. *
  118. * We also add a check to make sure the highest level of the tree is the
  119. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  120. * needs update as well.
  121. */
  122. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  123. # if BTRFS_MAX_LEVEL != 8
  124. # error
  125. # endif
  126. static struct btrfs_lockdep_keyset {
  127. u64 id; /* root objectid */
  128. const char *name_stem; /* lock name stem */
  129. char names[BTRFS_MAX_LEVEL + 1][20];
  130. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  131. } btrfs_lockdep_keysets[] = {
  132. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  133. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  134. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  135. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  136. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  137. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  138. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  139. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  140. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  141. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  142. { .id = 0, .name_stem = "tree" },
  143. };
  144. void __init btrfs_init_lockdep(void)
  145. {
  146. int i, j;
  147. /* initialize lockdep class names */
  148. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  149. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  150. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  151. snprintf(ks->names[j], sizeof(ks->names[j]),
  152. "btrfs-%s-%02d", ks->name_stem, j);
  153. }
  154. }
  155. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  156. int level)
  157. {
  158. struct btrfs_lockdep_keyset *ks;
  159. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  160. /* find the matching keyset, id 0 is the default entry */
  161. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  162. if (ks->id == objectid)
  163. break;
  164. lockdep_set_class_and_name(&eb->lock,
  165. &ks->keys[level], ks->names[level]);
  166. }
  167. #endif
  168. /*
  169. * extents on the btree inode are pretty simple, there's one extent
  170. * that covers the entire device
  171. */
  172. static struct extent_map *btree_get_extent(struct inode *inode,
  173. struct page *page, size_t pg_offset, u64 start, u64 len,
  174. int create)
  175. {
  176. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  177. struct extent_map *em;
  178. int ret;
  179. read_lock(&em_tree->lock);
  180. em = lookup_extent_mapping(em_tree, start, len);
  181. if (em) {
  182. em->bdev =
  183. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  184. read_unlock(&em_tree->lock);
  185. goto out;
  186. }
  187. read_unlock(&em_tree->lock);
  188. em = alloc_extent_map();
  189. if (!em) {
  190. em = ERR_PTR(-ENOMEM);
  191. goto out;
  192. }
  193. em->start = 0;
  194. em->len = (u64)-1;
  195. em->block_len = (u64)-1;
  196. em->block_start = 0;
  197. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  198. write_lock(&em_tree->lock);
  199. ret = add_extent_mapping(em_tree, em);
  200. if (ret == -EEXIST) {
  201. u64 failed_start = em->start;
  202. u64 failed_len = em->len;
  203. free_extent_map(em);
  204. em = lookup_extent_mapping(em_tree, start, len);
  205. if (em) {
  206. ret = 0;
  207. } else {
  208. em = lookup_extent_mapping(em_tree, failed_start,
  209. failed_len);
  210. ret = -EIO;
  211. }
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = NULL;
  215. }
  216. write_unlock(&em_tree->lock);
  217. if (ret)
  218. em = ERR_PTR(ret);
  219. out:
  220. return em;
  221. }
  222. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  223. {
  224. return crc32c(seed, data, len);
  225. }
  226. void btrfs_csum_final(u32 crc, char *result)
  227. {
  228. put_unaligned_le32(~crc, result);
  229. }
  230. /*
  231. * compute the csum for a btree block, and either verify it or write it
  232. * into the csum field of the block.
  233. */
  234. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  235. int verify)
  236. {
  237. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state, GFP_NOFS);
  306. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start,
  339. WAIT_COMPLETE,
  340. btree_get_extent, mirror_num);
  341. if (!ret &&
  342. !verify_parent_transid(io_tree, eb, parent_transid))
  343. return ret;
  344. /*
  345. * This buffer's crc is fine, but its contents are corrupted, so
  346. * there is no reason to read the other copies, they won't be
  347. * any less wrong.
  348. */
  349. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  350. return ret;
  351. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  352. eb->start, eb->len);
  353. if (num_copies == 1)
  354. return ret;
  355. mirror_num++;
  356. if (mirror_num > num_copies)
  357. return ret;
  358. }
  359. return -EIO;
  360. }
  361. /*
  362. * checksum a dirty tree block before IO. This has extra checks to make sure
  363. * we only fill in the checksum field in the first page of a multi-page block
  364. */
  365. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  366. {
  367. struct extent_io_tree *tree;
  368. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  369. u64 found_start;
  370. unsigned long len;
  371. struct extent_buffer *eb;
  372. int ret;
  373. tree = &BTRFS_I(page->mapping->host)->io_tree;
  374. if (page->private == EXTENT_PAGE_PRIVATE) {
  375. WARN_ON(1);
  376. goto out;
  377. }
  378. if (!page->private) {
  379. WARN_ON(1);
  380. goto out;
  381. }
  382. len = page->private >> 2;
  383. WARN_ON(len == 0);
  384. eb = alloc_extent_buffer(tree, start, len, page);
  385. if (eb == NULL) {
  386. WARN_ON(1);
  387. goto out;
  388. }
  389. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  390. btrfs_header_generation(eb));
  391. BUG_ON(ret);
  392. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  393. found_start = btrfs_header_bytenr(eb);
  394. if (found_start != start) {
  395. WARN_ON(1);
  396. goto err;
  397. }
  398. if (eb->first_page != page) {
  399. WARN_ON(1);
  400. goto err;
  401. }
  402. if (!PageUptodate(page)) {
  403. WARN_ON(1);
  404. goto err;
  405. }
  406. csum_tree_block(root, eb, 0);
  407. err:
  408. free_extent_buffer(eb);
  409. out:
  410. return 0;
  411. }
  412. static int check_tree_block_fsid(struct btrfs_root *root,
  413. struct extent_buffer *eb)
  414. {
  415. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  416. u8 fsid[BTRFS_UUID_SIZE];
  417. int ret = 1;
  418. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  419. BTRFS_FSID_SIZE);
  420. while (fs_devices) {
  421. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  422. ret = 0;
  423. break;
  424. }
  425. fs_devices = fs_devices->seed;
  426. }
  427. return ret;
  428. }
  429. #define CORRUPT(reason, eb, root, slot) \
  430. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  431. "root=%llu, slot=%d\n", reason, \
  432. (unsigned long long)btrfs_header_bytenr(eb), \
  433. (unsigned long long)root->objectid, slot)
  434. static noinline int check_leaf(struct btrfs_root *root,
  435. struct extent_buffer *leaf)
  436. {
  437. struct btrfs_key key;
  438. struct btrfs_key leaf_key;
  439. u32 nritems = btrfs_header_nritems(leaf);
  440. int slot;
  441. if (nritems == 0)
  442. return 0;
  443. /* Check the 0 item */
  444. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  445. BTRFS_LEAF_DATA_SIZE(root)) {
  446. CORRUPT("invalid item offset size pair", leaf, root, 0);
  447. return -EIO;
  448. }
  449. /*
  450. * Check to make sure each items keys are in the correct order and their
  451. * offsets make sense. We only have to loop through nritems-1 because
  452. * we check the current slot against the next slot, which verifies the
  453. * next slot's offset+size makes sense and that the current's slot
  454. * offset is correct.
  455. */
  456. for (slot = 0; slot < nritems - 1; slot++) {
  457. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  458. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  459. /* Make sure the keys are in the right order */
  460. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  461. CORRUPT("bad key order", leaf, root, slot);
  462. return -EIO;
  463. }
  464. /*
  465. * Make sure the offset and ends are right, remember that the
  466. * item data starts at the end of the leaf and grows towards the
  467. * front.
  468. */
  469. if (btrfs_item_offset_nr(leaf, slot) !=
  470. btrfs_item_end_nr(leaf, slot + 1)) {
  471. CORRUPT("slot offset bad", leaf, root, slot);
  472. return -EIO;
  473. }
  474. /*
  475. * Check to make sure that we don't point outside of the leaf,
  476. * just incase all the items are consistent to eachother, but
  477. * all point outside of the leaf.
  478. */
  479. if (btrfs_item_end_nr(leaf, slot) >
  480. BTRFS_LEAF_DATA_SIZE(root)) {
  481. CORRUPT("slot end outside of leaf", leaf, root, slot);
  482. return -EIO;
  483. }
  484. }
  485. return 0;
  486. }
  487. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  488. struct extent_state *state)
  489. {
  490. struct extent_io_tree *tree;
  491. u64 found_start;
  492. int found_level;
  493. unsigned long len;
  494. struct extent_buffer *eb;
  495. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  496. int ret = 0;
  497. tree = &BTRFS_I(page->mapping->host)->io_tree;
  498. if (page->private == EXTENT_PAGE_PRIVATE)
  499. goto out;
  500. if (!page->private)
  501. goto out;
  502. len = page->private >> 2;
  503. WARN_ON(len == 0);
  504. eb = alloc_extent_buffer(tree, start, len, page);
  505. if (eb == NULL) {
  506. ret = -EIO;
  507. goto out;
  508. }
  509. found_start = btrfs_header_bytenr(eb);
  510. if (found_start != start) {
  511. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  512. "%llu %llu\n",
  513. (unsigned long long)found_start,
  514. (unsigned long long)eb->start);
  515. ret = -EIO;
  516. goto err;
  517. }
  518. if (eb->first_page != page) {
  519. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  520. eb->first_page->index, page->index);
  521. WARN_ON(1);
  522. ret = -EIO;
  523. goto err;
  524. }
  525. if (check_tree_block_fsid(root, eb)) {
  526. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  527. (unsigned long long)eb->start);
  528. ret = -EIO;
  529. goto err;
  530. }
  531. found_level = btrfs_header_level(eb);
  532. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  533. eb, found_level);
  534. ret = csum_tree_block(root, eb, 1);
  535. if (ret) {
  536. ret = -EIO;
  537. goto err;
  538. }
  539. /*
  540. * If this is a leaf block and it is corrupt, set the corrupt bit so
  541. * that we don't try and read the other copies of this block, just
  542. * return -EIO.
  543. */
  544. if (found_level == 0 && check_leaf(root, eb)) {
  545. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  546. ret = -EIO;
  547. }
  548. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  549. end = eb->start + end - 1;
  550. err:
  551. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  552. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  553. btree_readahead_hook(root, eb, eb->start, ret);
  554. }
  555. free_extent_buffer(eb);
  556. out:
  557. return ret;
  558. }
  559. static int btree_io_failed_hook(struct bio *failed_bio,
  560. struct page *page, u64 start, u64 end,
  561. int mirror_num, struct extent_state *state)
  562. {
  563. struct extent_io_tree *tree;
  564. unsigned long len;
  565. struct extent_buffer *eb;
  566. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  567. tree = &BTRFS_I(page->mapping->host)->io_tree;
  568. if (page->private == EXTENT_PAGE_PRIVATE)
  569. goto out;
  570. if (!page->private)
  571. goto out;
  572. len = page->private >> 2;
  573. WARN_ON(len == 0);
  574. eb = alloc_extent_buffer(tree, start, len, page);
  575. if (eb == NULL)
  576. goto out;
  577. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  578. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  579. btree_readahead_hook(root, eb, eb->start, -EIO);
  580. }
  581. free_extent_buffer(eb);
  582. out:
  583. return -EIO; /* we fixed nothing */
  584. }
  585. static void end_workqueue_bio(struct bio *bio, int err)
  586. {
  587. struct end_io_wq *end_io_wq = bio->bi_private;
  588. struct btrfs_fs_info *fs_info;
  589. fs_info = end_io_wq->info;
  590. end_io_wq->error = err;
  591. end_io_wq->work.func = end_workqueue_fn;
  592. end_io_wq->work.flags = 0;
  593. if (bio->bi_rw & REQ_WRITE) {
  594. if (end_io_wq->metadata == 1)
  595. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  596. &end_io_wq->work);
  597. else if (end_io_wq->metadata == 2)
  598. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  599. &end_io_wq->work);
  600. else
  601. btrfs_queue_worker(&fs_info->endio_write_workers,
  602. &end_io_wq->work);
  603. } else {
  604. if (end_io_wq->metadata)
  605. btrfs_queue_worker(&fs_info->endio_meta_workers,
  606. &end_io_wq->work);
  607. else
  608. btrfs_queue_worker(&fs_info->endio_workers,
  609. &end_io_wq->work);
  610. }
  611. }
  612. /*
  613. * For the metadata arg you want
  614. *
  615. * 0 - if data
  616. * 1 - if normal metadta
  617. * 2 - if writing to the free space cache area
  618. */
  619. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  620. int metadata)
  621. {
  622. struct end_io_wq *end_io_wq;
  623. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  624. if (!end_io_wq)
  625. return -ENOMEM;
  626. end_io_wq->private = bio->bi_private;
  627. end_io_wq->end_io = bio->bi_end_io;
  628. end_io_wq->info = info;
  629. end_io_wq->error = 0;
  630. end_io_wq->bio = bio;
  631. end_io_wq->metadata = metadata;
  632. bio->bi_private = end_io_wq;
  633. bio->bi_end_io = end_workqueue_bio;
  634. return 0;
  635. }
  636. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  637. {
  638. unsigned long limit = min_t(unsigned long,
  639. info->workers.max_workers,
  640. info->fs_devices->open_devices);
  641. return 256 * limit;
  642. }
  643. static void run_one_async_start(struct btrfs_work *work)
  644. {
  645. struct async_submit_bio *async;
  646. async = container_of(work, struct async_submit_bio, work);
  647. async->submit_bio_start(async->inode, async->rw, async->bio,
  648. async->mirror_num, async->bio_flags,
  649. async->bio_offset);
  650. }
  651. static void run_one_async_done(struct btrfs_work *work)
  652. {
  653. struct btrfs_fs_info *fs_info;
  654. struct async_submit_bio *async;
  655. int limit;
  656. async = container_of(work, struct async_submit_bio, work);
  657. fs_info = BTRFS_I(async->inode)->root->fs_info;
  658. limit = btrfs_async_submit_limit(fs_info);
  659. limit = limit * 2 / 3;
  660. atomic_dec(&fs_info->nr_async_submits);
  661. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  662. waitqueue_active(&fs_info->async_submit_wait))
  663. wake_up(&fs_info->async_submit_wait);
  664. async->submit_bio_done(async->inode, async->rw, async->bio,
  665. async->mirror_num, async->bio_flags,
  666. async->bio_offset);
  667. }
  668. static void run_one_async_free(struct btrfs_work *work)
  669. {
  670. struct async_submit_bio *async;
  671. async = container_of(work, struct async_submit_bio, work);
  672. kfree(async);
  673. }
  674. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  675. int rw, struct bio *bio, int mirror_num,
  676. unsigned long bio_flags,
  677. u64 bio_offset,
  678. extent_submit_bio_hook_t *submit_bio_start,
  679. extent_submit_bio_hook_t *submit_bio_done)
  680. {
  681. struct async_submit_bio *async;
  682. async = kmalloc(sizeof(*async), GFP_NOFS);
  683. if (!async)
  684. return -ENOMEM;
  685. async->inode = inode;
  686. async->rw = rw;
  687. async->bio = bio;
  688. async->mirror_num = mirror_num;
  689. async->submit_bio_start = submit_bio_start;
  690. async->submit_bio_done = submit_bio_done;
  691. async->work.func = run_one_async_start;
  692. async->work.ordered_func = run_one_async_done;
  693. async->work.ordered_free = run_one_async_free;
  694. async->work.flags = 0;
  695. async->bio_flags = bio_flags;
  696. async->bio_offset = bio_offset;
  697. atomic_inc(&fs_info->nr_async_submits);
  698. if (rw & REQ_SYNC)
  699. btrfs_set_work_high_prio(&async->work);
  700. btrfs_queue_worker(&fs_info->workers, &async->work);
  701. while (atomic_read(&fs_info->async_submit_draining) &&
  702. atomic_read(&fs_info->nr_async_submits)) {
  703. wait_event(fs_info->async_submit_wait,
  704. (atomic_read(&fs_info->nr_async_submits) == 0));
  705. }
  706. return 0;
  707. }
  708. static int btree_csum_one_bio(struct bio *bio)
  709. {
  710. struct bio_vec *bvec = bio->bi_io_vec;
  711. int bio_index = 0;
  712. struct btrfs_root *root;
  713. WARN_ON(bio->bi_vcnt <= 0);
  714. while (bio_index < bio->bi_vcnt) {
  715. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  716. csum_dirty_buffer(root, bvec->bv_page);
  717. bio_index++;
  718. bvec++;
  719. }
  720. return 0;
  721. }
  722. static int __btree_submit_bio_start(struct inode *inode, int rw,
  723. struct bio *bio, int mirror_num,
  724. unsigned long bio_flags,
  725. u64 bio_offset)
  726. {
  727. /*
  728. * when we're called for a write, we're already in the async
  729. * submission context. Just jump into btrfs_map_bio
  730. */
  731. btree_csum_one_bio(bio);
  732. return 0;
  733. }
  734. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  735. int mirror_num, unsigned long bio_flags,
  736. u64 bio_offset)
  737. {
  738. /*
  739. * when we're called for a write, we're already in the async
  740. * submission context. Just jump into btrfs_map_bio
  741. */
  742. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  743. }
  744. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  745. int mirror_num, unsigned long bio_flags,
  746. u64 bio_offset)
  747. {
  748. int ret;
  749. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  750. bio, 1);
  751. BUG_ON(ret);
  752. if (!(rw & REQ_WRITE)) {
  753. /*
  754. * called for a read, do the setup so that checksum validation
  755. * can happen in the async kernel threads
  756. */
  757. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  758. mirror_num, 0);
  759. }
  760. /*
  761. * kthread helpers are used to submit writes so that checksumming
  762. * can happen in parallel across all CPUs
  763. */
  764. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  765. inode, rw, bio, mirror_num, 0,
  766. bio_offset,
  767. __btree_submit_bio_start,
  768. __btree_submit_bio_done);
  769. }
  770. #ifdef CONFIG_MIGRATION
  771. static int btree_migratepage(struct address_space *mapping,
  772. struct page *newpage, struct page *page)
  773. {
  774. /*
  775. * we can't safely write a btree page from here,
  776. * we haven't done the locking hook
  777. */
  778. if (PageDirty(page))
  779. return -EAGAIN;
  780. /*
  781. * Buffers may be managed in a filesystem specific way.
  782. * We must have no buffers or drop them.
  783. */
  784. if (page_has_private(page) &&
  785. !try_to_release_page(page, GFP_KERNEL))
  786. return -EAGAIN;
  787. return migrate_page(mapping, newpage, page);
  788. }
  789. #endif
  790. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  791. {
  792. struct extent_io_tree *tree;
  793. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  794. struct extent_buffer *eb;
  795. int was_dirty;
  796. tree = &BTRFS_I(page->mapping->host)->io_tree;
  797. if (!(current->flags & PF_MEMALLOC)) {
  798. return extent_write_full_page(tree, page,
  799. btree_get_extent, wbc);
  800. }
  801. redirty_page_for_writepage(wbc, page);
  802. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  803. WARN_ON(!eb);
  804. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  805. if (!was_dirty) {
  806. spin_lock(&root->fs_info->delalloc_lock);
  807. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  808. spin_unlock(&root->fs_info->delalloc_lock);
  809. }
  810. free_extent_buffer(eb);
  811. unlock_page(page);
  812. return 0;
  813. }
  814. static int btree_writepages(struct address_space *mapping,
  815. struct writeback_control *wbc)
  816. {
  817. struct extent_io_tree *tree;
  818. tree = &BTRFS_I(mapping->host)->io_tree;
  819. if (wbc->sync_mode == WB_SYNC_NONE) {
  820. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  821. u64 num_dirty;
  822. unsigned long thresh = 32 * 1024 * 1024;
  823. if (wbc->for_kupdate)
  824. return 0;
  825. /* this is a bit racy, but that's ok */
  826. num_dirty = root->fs_info->dirty_metadata_bytes;
  827. if (num_dirty < thresh)
  828. return 0;
  829. }
  830. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  831. }
  832. static int btree_readpage(struct file *file, struct page *page)
  833. {
  834. struct extent_io_tree *tree;
  835. tree = &BTRFS_I(page->mapping->host)->io_tree;
  836. return extent_read_full_page(tree, page, btree_get_extent, 0);
  837. }
  838. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  839. {
  840. struct extent_io_tree *tree;
  841. struct extent_map_tree *map;
  842. int ret;
  843. if (PageWriteback(page) || PageDirty(page))
  844. return 0;
  845. tree = &BTRFS_I(page->mapping->host)->io_tree;
  846. map = &BTRFS_I(page->mapping->host)->extent_tree;
  847. ret = try_release_extent_state(map, tree, page, gfp_flags);
  848. if (!ret)
  849. return 0;
  850. ret = try_release_extent_buffer(tree, page);
  851. if (ret == 1) {
  852. ClearPagePrivate(page);
  853. set_page_private(page, 0);
  854. page_cache_release(page);
  855. }
  856. return ret;
  857. }
  858. static void btree_invalidatepage(struct page *page, unsigned long offset)
  859. {
  860. struct extent_io_tree *tree;
  861. tree = &BTRFS_I(page->mapping->host)->io_tree;
  862. extent_invalidatepage(tree, page, offset);
  863. btree_releasepage(page, GFP_NOFS);
  864. if (PagePrivate(page)) {
  865. printk(KERN_WARNING "btrfs warning page private not zero "
  866. "on page %llu\n", (unsigned long long)page_offset(page));
  867. ClearPagePrivate(page);
  868. set_page_private(page, 0);
  869. page_cache_release(page);
  870. }
  871. }
  872. static const struct address_space_operations btree_aops = {
  873. .readpage = btree_readpage,
  874. .writepage = btree_writepage,
  875. .writepages = btree_writepages,
  876. .releasepage = btree_releasepage,
  877. .invalidatepage = btree_invalidatepage,
  878. #ifdef CONFIG_MIGRATION
  879. .migratepage = btree_migratepage,
  880. #endif
  881. };
  882. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  883. u64 parent_transid)
  884. {
  885. struct extent_buffer *buf = NULL;
  886. struct inode *btree_inode = root->fs_info->btree_inode;
  887. int ret = 0;
  888. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  889. if (!buf)
  890. return 0;
  891. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  892. buf, 0, WAIT_NONE, btree_get_extent, 0);
  893. free_extent_buffer(buf);
  894. return ret;
  895. }
  896. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  897. int mirror_num, struct extent_buffer **eb)
  898. {
  899. struct extent_buffer *buf = NULL;
  900. struct inode *btree_inode = root->fs_info->btree_inode;
  901. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  902. int ret;
  903. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  904. if (!buf)
  905. return 0;
  906. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  907. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  908. btree_get_extent, mirror_num);
  909. if (ret) {
  910. free_extent_buffer(buf);
  911. return ret;
  912. }
  913. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  914. free_extent_buffer(buf);
  915. return -EIO;
  916. } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
  917. *eb = buf;
  918. } else {
  919. free_extent_buffer(buf);
  920. }
  921. return 0;
  922. }
  923. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  924. u64 bytenr, u32 blocksize)
  925. {
  926. struct inode *btree_inode = root->fs_info->btree_inode;
  927. struct extent_buffer *eb;
  928. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  929. bytenr, blocksize);
  930. return eb;
  931. }
  932. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  933. u64 bytenr, u32 blocksize)
  934. {
  935. struct inode *btree_inode = root->fs_info->btree_inode;
  936. struct extent_buffer *eb;
  937. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  938. bytenr, blocksize, NULL);
  939. return eb;
  940. }
  941. int btrfs_write_tree_block(struct extent_buffer *buf)
  942. {
  943. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  944. buf->start + buf->len - 1);
  945. }
  946. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  947. {
  948. return filemap_fdatawait_range(buf->first_page->mapping,
  949. buf->start, buf->start + buf->len - 1);
  950. }
  951. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  952. u32 blocksize, u64 parent_transid)
  953. {
  954. struct extent_buffer *buf = NULL;
  955. int ret;
  956. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  957. if (!buf)
  958. return NULL;
  959. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  960. if (ret == 0)
  961. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  962. return buf;
  963. }
  964. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  965. struct extent_buffer *buf)
  966. {
  967. struct inode *btree_inode = root->fs_info->btree_inode;
  968. if (btrfs_header_generation(buf) ==
  969. root->fs_info->running_transaction->transid) {
  970. btrfs_assert_tree_locked(buf);
  971. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  972. spin_lock(&root->fs_info->delalloc_lock);
  973. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  974. root->fs_info->dirty_metadata_bytes -= buf->len;
  975. else
  976. WARN_ON(1);
  977. spin_unlock(&root->fs_info->delalloc_lock);
  978. }
  979. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  980. btrfs_set_lock_blocking(buf);
  981. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  982. buf);
  983. }
  984. return 0;
  985. }
  986. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  987. u32 stripesize, struct btrfs_root *root,
  988. struct btrfs_fs_info *fs_info,
  989. u64 objectid)
  990. {
  991. root->node = NULL;
  992. root->commit_root = NULL;
  993. root->sectorsize = sectorsize;
  994. root->nodesize = nodesize;
  995. root->leafsize = leafsize;
  996. root->stripesize = stripesize;
  997. root->ref_cows = 0;
  998. root->track_dirty = 0;
  999. root->in_radix = 0;
  1000. root->orphan_item_inserted = 0;
  1001. root->orphan_cleanup_state = 0;
  1002. root->fs_info = fs_info;
  1003. root->objectid = objectid;
  1004. root->last_trans = 0;
  1005. root->highest_objectid = 0;
  1006. root->name = NULL;
  1007. root->inode_tree = RB_ROOT;
  1008. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1009. root->block_rsv = NULL;
  1010. root->orphan_block_rsv = NULL;
  1011. INIT_LIST_HEAD(&root->dirty_list);
  1012. INIT_LIST_HEAD(&root->orphan_list);
  1013. INIT_LIST_HEAD(&root->root_list);
  1014. spin_lock_init(&root->orphan_lock);
  1015. spin_lock_init(&root->inode_lock);
  1016. spin_lock_init(&root->accounting_lock);
  1017. mutex_init(&root->objectid_mutex);
  1018. mutex_init(&root->log_mutex);
  1019. init_waitqueue_head(&root->log_writer_wait);
  1020. init_waitqueue_head(&root->log_commit_wait[0]);
  1021. init_waitqueue_head(&root->log_commit_wait[1]);
  1022. atomic_set(&root->log_commit[0], 0);
  1023. atomic_set(&root->log_commit[1], 0);
  1024. atomic_set(&root->log_writers, 0);
  1025. root->log_batch = 0;
  1026. root->log_transid = 0;
  1027. root->last_log_commit = 0;
  1028. extent_io_tree_init(&root->dirty_log_pages,
  1029. fs_info->btree_inode->i_mapping);
  1030. memset(&root->root_key, 0, sizeof(root->root_key));
  1031. memset(&root->root_item, 0, sizeof(root->root_item));
  1032. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1033. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1034. root->defrag_trans_start = fs_info->generation;
  1035. init_completion(&root->kobj_unregister);
  1036. root->defrag_running = 0;
  1037. root->root_key.objectid = objectid;
  1038. root->anon_dev = 0;
  1039. return 0;
  1040. }
  1041. static int find_and_setup_root(struct btrfs_root *tree_root,
  1042. struct btrfs_fs_info *fs_info,
  1043. u64 objectid,
  1044. struct btrfs_root *root)
  1045. {
  1046. int ret;
  1047. u32 blocksize;
  1048. u64 generation;
  1049. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1050. tree_root->sectorsize, tree_root->stripesize,
  1051. root, fs_info, objectid);
  1052. ret = btrfs_find_last_root(tree_root, objectid,
  1053. &root->root_item, &root->root_key);
  1054. if (ret > 0)
  1055. return -ENOENT;
  1056. BUG_ON(ret);
  1057. generation = btrfs_root_generation(&root->root_item);
  1058. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1059. root->commit_root = NULL;
  1060. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1061. blocksize, generation);
  1062. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1063. free_extent_buffer(root->node);
  1064. root->node = NULL;
  1065. return -EIO;
  1066. }
  1067. root->commit_root = btrfs_root_node(root);
  1068. return 0;
  1069. }
  1070. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1071. struct btrfs_fs_info *fs_info)
  1072. {
  1073. struct btrfs_root *root;
  1074. struct btrfs_root *tree_root = fs_info->tree_root;
  1075. struct extent_buffer *leaf;
  1076. root = kzalloc(sizeof(*root), GFP_NOFS);
  1077. if (!root)
  1078. return ERR_PTR(-ENOMEM);
  1079. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1080. tree_root->sectorsize, tree_root->stripesize,
  1081. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1082. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1083. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1084. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1085. /*
  1086. * log trees do not get reference counted because they go away
  1087. * before a real commit is actually done. They do store pointers
  1088. * to file data extents, and those reference counts still get
  1089. * updated (along with back refs to the log tree).
  1090. */
  1091. root->ref_cows = 0;
  1092. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1093. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1094. if (IS_ERR(leaf)) {
  1095. kfree(root);
  1096. return ERR_CAST(leaf);
  1097. }
  1098. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1099. btrfs_set_header_bytenr(leaf, leaf->start);
  1100. btrfs_set_header_generation(leaf, trans->transid);
  1101. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1102. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1103. root->node = leaf;
  1104. write_extent_buffer(root->node, root->fs_info->fsid,
  1105. (unsigned long)btrfs_header_fsid(root->node),
  1106. BTRFS_FSID_SIZE);
  1107. btrfs_mark_buffer_dirty(root->node);
  1108. btrfs_tree_unlock(root->node);
  1109. return root;
  1110. }
  1111. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1112. struct btrfs_fs_info *fs_info)
  1113. {
  1114. struct btrfs_root *log_root;
  1115. log_root = alloc_log_tree(trans, fs_info);
  1116. if (IS_ERR(log_root))
  1117. return PTR_ERR(log_root);
  1118. WARN_ON(fs_info->log_root_tree);
  1119. fs_info->log_root_tree = log_root;
  1120. return 0;
  1121. }
  1122. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1123. struct btrfs_root *root)
  1124. {
  1125. struct btrfs_root *log_root;
  1126. struct btrfs_inode_item *inode_item;
  1127. log_root = alloc_log_tree(trans, root->fs_info);
  1128. if (IS_ERR(log_root))
  1129. return PTR_ERR(log_root);
  1130. log_root->last_trans = trans->transid;
  1131. log_root->root_key.offset = root->root_key.objectid;
  1132. inode_item = &log_root->root_item.inode;
  1133. inode_item->generation = cpu_to_le64(1);
  1134. inode_item->size = cpu_to_le64(3);
  1135. inode_item->nlink = cpu_to_le32(1);
  1136. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1137. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1138. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1139. WARN_ON(root->log_root);
  1140. root->log_root = log_root;
  1141. root->log_transid = 0;
  1142. root->last_log_commit = 0;
  1143. return 0;
  1144. }
  1145. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1146. struct btrfs_key *location)
  1147. {
  1148. struct btrfs_root *root;
  1149. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1150. struct btrfs_path *path;
  1151. struct extent_buffer *l;
  1152. u64 generation;
  1153. u32 blocksize;
  1154. int ret = 0;
  1155. root = kzalloc(sizeof(*root), GFP_NOFS);
  1156. if (!root)
  1157. return ERR_PTR(-ENOMEM);
  1158. if (location->offset == (u64)-1) {
  1159. ret = find_and_setup_root(tree_root, fs_info,
  1160. location->objectid, root);
  1161. if (ret) {
  1162. kfree(root);
  1163. return ERR_PTR(ret);
  1164. }
  1165. goto out;
  1166. }
  1167. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1168. tree_root->sectorsize, tree_root->stripesize,
  1169. root, fs_info, location->objectid);
  1170. path = btrfs_alloc_path();
  1171. if (!path) {
  1172. kfree(root);
  1173. return ERR_PTR(-ENOMEM);
  1174. }
  1175. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1176. if (ret == 0) {
  1177. l = path->nodes[0];
  1178. read_extent_buffer(l, &root->root_item,
  1179. btrfs_item_ptr_offset(l, path->slots[0]),
  1180. sizeof(root->root_item));
  1181. memcpy(&root->root_key, location, sizeof(*location));
  1182. }
  1183. btrfs_free_path(path);
  1184. if (ret) {
  1185. kfree(root);
  1186. if (ret > 0)
  1187. ret = -ENOENT;
  1188. return ERR_PTR(ret);
  1189. }
  1190. generation = btrfs_root_generation(&root->root_item);
  1191. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1192. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1193. blocksize, generation);
  1194. root->commit_root = btrfs_root_node(root);
  1195. BUG_ON(!root->node);
  1196. out:
  1197. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1198. root->ref_cows = 1;
  1199. btrfs_check_and_init_root_item(&root->root_item);
  1200. }
  1201. return root;
  1202. }
  1203. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1204. struct btrfs_key *location)
  1205. {
  1206. struct btrfs_root *root;
  1207. int ret;
  1208. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1209. return fs_info->tree_root;
  1210. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1211. return fs_info->extent_root;
  1212. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1213. return fs_info->chunk_root;
  1214. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1215. return fs_info->dev_root;
  1216. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1217. return fs_info->csum_root;
  1218. again:
  1219. spin_lock(&fs_info->fs_roots_radix_lock);
  1220. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1221. (unsigned long)location->objectid);
  1222. spin_unlock(&fs_info->fs_roots_radix_lock);
  1223. if (root)
  1224. return root;
  1225. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1226. if (IS_ERR(root))
  1227. return root;
  1228. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1229. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1230. GFP_NOFS);
  1231. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1232. ret = -ENOMEM;
  1233. goto fail;
  1234. }
  1235. btrfs_init_free_ino_ctl(root);
  1236. mutex_init(&root->fs_commit_mutex);
  1237. spin_lock_init(&root->cache_lock);
  1238. init_waitqueue_head(&root->cache_wait);
  1239. ret = get_anon_bdev(&root->anon_dev);
  1240. if (ret)
  1241. goto fail;
  1242. if (btrfs_root_refs(&root->root_item) == 0) {
  1243. ret = -ENOENT;
  1244. goto fail;
  1245. }
  1246. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1247. if (ret < 0)
  1248. goto fail;
  1249. if (ret == 0)
  1250. root->orphan_item_inserted = 1;
  1251. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1252. if (ret)
  1253. goto fail;
  1254. spin_lock(&fs_info->fs_roots_radix_lock);
  1255. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1256. (unsigned long)root->root_key.objectid,
  1257. root);
  1258. if (ret == 0)
  1259. root->in_radix = 1;
  1260. spin_unlock(&fs_info->fs_roots_radix_lock);
  1261. radix_tree_preload_end();
  1262. if (ret) {
  1263. if (ret == -EEXIST) {
  1264. free_fs_root(root);
  1265. goto again;
  1266. }
  1267. goto fail;
  1268. }
  1269. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1270. root->root_key.objectid);
  1271. WARN_ON(ret);
  1272. return root;
  1273. fail:
  1274. free_fs_root(root);
  1275. return ERR_PTR(ret);
  1276. }
  1277. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1278. {
  1279. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1280. int ret = 0;
  1281. struct btrfs_device *device;
  1282. struct backing_dev_info *bdi;
  1283. rcu_read_lock();
  1284. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1285. if (!device->bdev)
  1286. continue;
  1287. bdi = blk_get_backing_dev_info(device->bdev);
  1288. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1289. ret = 1;
  1290. break;
  1291. }
  1292. }
  1293. rcu_read_unlock();
  1294. return ret;
  1295. }
  1296. /*
  1297. * If this fails, caller must call bdi_destroy() to get rid of the
  1298. * bdi again.
  1299. */
  1300. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1301. {
  1302. int err;
  1303. bdi->capabilities = BDI_CAP_MAP_COPY;
  1304. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1305. if (err)
  1306. return err;
  1307. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1308. bdi->congested_fn = btrfs_congested_fn;
  1309. bdi->congested_data = info;
  1310. return 0;
  1311. }
  1312. static int bio_ready_for_csum(struct bio *bio)
  1313. {
  1314. u64 length = 0;
  1315. u64 buf_len = 0;
  1316. u64 start = 0;
  1317. struct page *page;
  1318. struct extent_io_tree *io_tree = NULL;
  1319. struct bio_vec *bvec;
  1320. int i;
  1321. int ret;
  1322. bio_for_each_segment(bvec, bio, i) {
  1323. page = bvec->bv_page;
  1324. if (page->private == EXTENT_PAGE_PRIVATE) {
  1325. length += bvec->bv_len;
  1326. continue;
  1327. }
  1328. if (!page->private) {
  1329. length += bvec->bv_len;
  1330. continue;
  1331. }
  1332. length = bvec->bv_len;
  1333. buf_len = page->private >> 2;
  1334. start = page_offset(page) + bvec->bv_offset;
  1335. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1336. }
  1337. /* are we fully contained in this bio? */
  1338. if (buf_len <= length)
  1339. return 1;
  1340. ret = extent_range_uptodate(io_tree, start + length,
  1341. start + buf_len - 1);
  1342. return ret;
  1343. }
  1344. /*
  1345. * called by the kthread helper functions to finally call the bio end_io
  1346. * functions. This is where read checksum verification actually happens
  1347. */
  1348. static void end_workqueue_fn(struct btrfs_work *work)
  1349. {
  1350. struct bio *bio;
  1351. struct end_io_wq *end_io_wq;
  1352. struct btrfs_fs_info *fs_info;
  1353. int error;
  1354. end_io_wq = container_of(work, struct end_io_wq, work);
  1355. bio = end_io_wq->bio;
  1356. fs_info = end_io_wq->info;
  1357. /* metadata bio reads are special because the whole tree block must
  1358. * be checksummed at once. This makes sure the entire block is in
  1359. * ram and up to date before trying to verify things. For
  1360. * blocksize <= pagesize, it is basically a noop
  1361. */
  1362. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1363. !bio_ready_for_csum(bio)) {
  1364. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1365. &end_io_wq->work);
  1366. return;
  1367. }
  1368. error = end_io_wq->error;
  1369. bio->bi_private = end_io_wq->private;
  1370. bio->bi_end_io = end_io_wq->end_io;
  1371. kfree(end_io_wq);
  1372. bio_endio(bio, error);
  1373. }
  1374. static int cleaner_kthread(void *arg)
  1375. {
  1376. struct btrfs_root *root = arg;
  1377. do {
  1378. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1379. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1380. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1381. btrfs_run_delayed_iputs(root);
  1382. btrfs_clean_old_snapshots(root);
  1383. mutex_unlock(&root->fs_info->cleaner_mutex);
  1384. btrfs_run_defrag_inodes(root->fs_info);
  1385. }
  1386. if (freezing(current)) {
  1387. refrigerator();
  1388. } else {
  1389. set_current_state(TASK_INTERRUPTIBLE);
  1390. if (!kthread_should_stop())
  1391. schedule();
  1392. __set_current_state(TASK_RUNNING);
  1393. }
  1394. } while (!kthread_should_stop());
  1395. return 0;
  1396. }
  1397. static int transaction_kthread(void *arg)
  1398. {
  1399. struct btrfs_root *root = arg;
  1400. struct btrfs_trans_handle *trans;
  1401. struct btrfs_transaction *cur;
  1402. u64 transid;
  1403. unsigned long now;
  1404. unsigned long delay;
  1405. int ret;
  1406. do {
  1407. delay = HZ * 30;
  1408. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1409. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1410. spin_lock(&root->fs_info->trans_lock);
  1411. cur = root->fs_info->running_transaction;
  1412. if (!cur) {
  1413. spin_unlock(&root->fs_info->trans_lock);
  1414. goto sleep;
  1415. }
  1416. now = get_seconds();
  1417. if (!cur->blocked &&
  1418. (now < cur->start_time || now - cur->start_time < 30)) {
  1419. spin_unlock(&root->fs_info->trans_lock);
  1420. delay = HZ * 5;
  1421. goto sleep;
  1422. }
  1423. transid = cur->transid;
  1424. spin_unlock(&root->fs_info->trans_lock);
  1425. trans = btrfs_join_transaction(root);
  1426. BUG_ON(IS_ERR(trans));
  1427. if (transid == trans->transid) {
  1428. ret = btrfs_commit_transaction(trans, root);
  1429. BUG_ON(ret);
  1430. } else {
  1431. btrfs_end_transaction(trans, root);
  1432. }
  1433. sleep:
  1434. wake_up_process(root->fs_info->cleaner_kthread);
  1435. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1436. if (freezing(current)) {
  1437. refrigerator();
  1438. } else {
  1439. set_current_state(TASK_INTERRUPTIBLE);
  1440. if (!kthread_should_stop() &&
  1441. !btrfs_transaction_blocked(root->fs_info))
  1442. schedule_timeout(delay);
  1443. __set_current_state(TASK_RUNNING);
  1444. }
  1445. } while (!kthread_should_stop());
  1446. return 0;
  1447. }
  1448. /*
  1449. * this will find the highest generation in the array of
  1450. * root backups. The index of the highest array is returned,
  1451. * or -1 if we can't find anything.
  1452. *
  1453. * We check to make sure the array is valid by comparing the
  1454. * generation of the latest root in the array with the generation
  1455. * in the super block. If they don't match we pitch it.
  1456. */
  1457. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1458. {
  1459. u64 cur;
  1460. int newest_index = -1;
  1461. struct btrfs_root_backup *root_backup;
  1462. int i;
  1463. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1464. root_backup = info->super_copy->super_roots + i;
  1465. cur = btrfs_backup_tree_root_gen(root_backup);
  1466. if (cur == newest_gen)
  1467. newest_index = i;
  1468. }
  1469. /* check to see if we actually wrapped around */
  1470. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1471. root_backup = info->super_copy->super_roots;
  1472. cur = btrfs_backup_tree_root_gen(root_backup);
  1473. if (cur == newest_gen)
  1474. newest_index = 0;
  1475. }
  1476. return newest_index;
  1477. }
  1478. /*
  1479. * find the oldest backup so we know where to store new entries
  1480. * in the backup array. This will set the backup_root_index
  1481. * field in the fs_info struct
  1482. */
  1483. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1484. u64 newest_gen)
  1485. {
  1486. int newest_index = -1;
  1487. newest_index = find_newest_super_backup(info, newest_gen);
  1488. /* if there was garbage in there, just move along */
  1489. if (newest_index == -1) {
  1490. info->backup_root_index = 0;
  1491. } else {
  1492. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1493. }
  1494. }
  1495. /*
  1496. * copy all the root pointers into the super backup array.
  1497. * this will bump the backup pointer by one when it is
  1498. * done
  1499. */
  1500. static void backup_super_roots(struct btrfs_fs_info *info)
  1501. {
  1502. int next_backup;
  1503. struct btrfs_root_backup *root_backup;
  1504. int last_backup;
  1505. next_backup = info->backup_root_index;
  1506. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1507. BTRFS_NUM_BACKUP_ROOTS;
  1508. /*
  1509. * just overwrite the last backup if we're at the same generation
  1510. * this happens only at umount
  1511. */
  1512. root_backup = info->super_for_commit->super_roots + last_backup;
  1513. if (btrfs_backup_tree_root_gen(root_backup) ==
  1514. btrfs_header_generation(info->tree_root->node))
  1515. next_backup = last_backup;
  1516. root_backup = info->super_for_commit->super_roots + next_backup;
  1517. /*
  1518. * make sure all of our padding and empty slots get zero filled
  1519. * regardless of which ones we use today
  1520. */
  1521. memset(root_backup, 0, sizeof(*root_backup));
  1522. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1523. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1524. btrfs_set_backup_tree_root_gen(root_backup,
  1525. btrfs_header_generation(info->tree_root->node));
  1526. btrfs_set_backup_tree_root_level(root_backup,
  1527. btrfs_header_level(info->tree_root->node));
  1528. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1529. btrfs_set_backup_chunk_root_gen(root_backup,
  1530. btrfs_header_generation(info->chunk_root->node));
  1531. btrfs_set_backup_chunk_root_level(root_backup,
  1532. btrfs_header_level(info->chunk_root->node));
  1533. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1534. btrfs_set_backup_extent_root_gen(root_backup,
  1535. btrfs_header_generation(info->extent_root->node));
  1536. btrfs_set_backup_extent_root_level(root_backup,
  1537. btrfs_header_level(info->extent_root->node));
  1538. /*
  1539. * we might commit during log recovery, which happens before we set
  1540. * the fs_root. Make sure it is valid before we fill it in.
  1541. */
  1542. if (info->fs_root && info->fs_root->node) {
  1543. btrfs_set_backup_fs_root(root_backup,
  1544. info->fs_root->node->start);
  1545. btrfs_set_backup_fs_root_gen(root_backup,
  1546. btrfs_header_generation(info->fs_root->node));
  1547. btrfs_set_backup_fs_root_level(root_backup,
  1548. btrfs_header_level(info->fs_root->node));
  1549. }
  1550. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1551. btrfs_set_backup_dev_root_gen(root_backup,
  1552. btrfs_header_generation(info->dev_root->node));
  1553. btrfs_set_backup_dev_root_level(root_backup,
  1554. btrfs_header_level(info->dev_root->node));
  1555. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1556. btrfs_set_backup_csum_root_gen(root_backup,
  1557. btrfs_header_generation(info->csum_root->node));
  1558. btrfs_set_backup_csum_root_level(root_backup,
  1559. btrfs_header_level(info->csum_root->node));
  1560. btrfs_set_backup_total_bytes(root_backup,
  1561. btrfs_super_total_bytes(info->super_copy));
  1562. btrfs_set_backup_bytes_used(root_backup,
  1563. btrfs_super_bytes_used(info->super_copy));
  1564. btrfs_set_backup_num_devices(root_backup,
  1565. btrfs_super_num_devices(info->super_copy));
  1566. /*
  1567. * if we don't copy this out to the super_copy, it won't get remembered
  1568. * for the next commit
  1569. */
  1570. memcpy(&info->super_copy->super_roots,
  1571. &info->super_for_commit->super_roots,
  1572. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1573. }
  1574. /*
  1575. * this copies info out of the root backup array and back into
  1576. * the in-memory super block. It is meant to help iterate through
  1577. * the array, so you send it the number of backups you've already
  1578. * tried and the last backup index you used.
  1579. *
  1580. * this returns -1 when it has tried all the backups
  1581. */
  1582. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1583. struct btrfs_super_block *super,
  1584. int *num_backups_tried, int *backup_index)
  1585. {
  1586. struct btrfs_root_backup *root_backup;
  1587. int newest = *backup_index;
  1588. if (*num_backups_tried == 0) {
  1589. u64 gen = btrfs_super_generation(super);
  1590. newest = find_newest_super_backup(info, gen);
  1591. if (newest == -1)
  1592. return -1;
  1593. *backup_index = newest;
  1594. *num_backups_tried = 1;
  1595. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1596. /* we've tried all the backups, all done */
  1597. return -1;
  1598. } else {
  1599. /* jump to the next oldest backup */
  1600. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1601. BTRFS_NUM_BACKUP_ROOTS;
  1602. *backup_index = newest;
  1603. *num_backups_tried += 1;
  1604. }
  1605. root_backup = super->super_roots + newest;
  1606. btrfs_set_super_generation(super,
  1607. btrfs_backup_tree_root_gen(root_backup));
  1608. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1609. btrfs_set_super_root_level(super,
  1610. btrfs_backup_tree_root_level(root_backup));
  1611. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1612. /*
  1613. * fixme: the total bytes and num_devices need to match or we should
  1614. * need a fsck
  1615. */
  1616. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1617. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1618. return 0;
  1619. }
  1620. /* helper to cleanup tree roots */
  1621. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1622. {
  1623. free_extent_buffer(info->tree_root->node);
  1624. free_extent_buffer(info->tree_root->commit_root);
  1625. free_extent_buffer(info->dev_root->node);
  1626. free_extent_buffer(info->dev_root->commit_root);
  1627. free_extent_buffer(info->extent_root->node);
  1628. free_extent_buffer(info->extent_root->commit_root);
  1629. free_extent_buffer(info->csum_root->node);
  1630. free_extent_buffer(info->csum_root->commit_root);
  1631. info->tree_root->node = NULL;
  1632. info->tree_root->commit_root = NULL;
  1633. info->dev_root->node = NULL;
  1634. info->dev_root->commit_root = NULL;
  1635. info->extent_root->node = NULL;
  1636. info->extent_root->commit_root = NULL;
  1637. info->csum_root->node = NULL;
  1638. info->csum_root->commit_root = NULL;
  1639. if (chunk_root) {
  1640. free_extent_buffer(info->chunk_root->node);
  1641. free_extent_buffer(info->chunk_root->commit_root);
  1642. info->chunk_root->node = NULL;
  1643. info->chunk_root->commit_root = NULL;
  1644. }
  1645. }
  1646. struct btrfs_root *open_ctree(struct super_block *sb,
  1647. struct btrfs_fs_devices *fs_devices,
  1648. char *options)
  1649. {
  1650. u32 sectorsize;
  1651. u32 nodesize;
  1652. u32 leafsize;
  1653. u32 blocksize;
  1654. u32 stripesize;
  1655. u64 generation;
  1656. u64 features;
  1657. struct btrfs_key location;
  1658. struct buffer_head *bh;
  1659. struct btrfs_super_block *disk_super;
  1660. struct btrfs_root *tree_root = btrfs_sb(sb);
  1661. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1662. struct btrfs_root *extent_root;
  1663. struct btrfs_root *csum_root;
  1664. struct btrfs_root *chunk_root;
  1665. struct btrfs_root *dev_root;
  1666. struct btrfs_root *log_tree_root;
  1667. int ret;
  1668. int err = -EINVAL;
  1669. int num_backups_tried = 0;
  1670. int backup_index = 0;
  1671. extent_root = fs_info->extent_root =
  1672. kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1673. csum_root = fs_info->csum_root =
  1674. kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1675. chunk_root = fs_info->chunk_root =
  1676. kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1677. dev_root = fs_info->dev_root =
  1678. kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1679. if (!extent_root || !csum_root || !chunk_root || !dev_root) {
  1680. err = -ENOMEM;
  1681. goto fail;
  1682. }
  1683. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1684. if (ret) {
  1685. err = ret;
  1686. goto fail;
  1687. }
  1688. ret = setup_bdi(fs_info, &fs_info->bdi);
  1689. if (ret) {
  1690. err = ret;
  1691. goto fail_srcu;
  1692. }
  1693. fs_info->btree_inode = new_inode(sb);
  1694. if (!fs_info->btree_inode) {
  1695. err = -ENOMEM;
  1696. goto fail_bdi;
  1697. }
  1698. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1699. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1700. INIT_LIST_HEAD(&fs_info->trans_list);
  1701. INIT_LIST_HEAD(&fs_info->dead_roots);
  1702. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1703. INIT_LIST_HEAD(&fs_info->hashers);
  1704. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1705. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1706. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1707. spin_lock_init(&fs_info->delalloc_lock);
  1708. spin_lock_init(&fs_info->trans_lock);
  1709. spin_lock_init(&fs_info->ref_cache_lock);
  1710. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1711. spin_lock_init(&fs_info->delayed_iput_lock);
  1712. spin_lock_init(&fs_info->defrag_inodes_lock);
  1713. spin_lock_init(&fs_info->free_chunk_lock);
  1714. mutex_init(&fs_info->reloc_mutex);
  1715. init_completion(&fs_info->kobj_unregister);
  1716. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1717. INIT_LIST_HEAD(&fs_info->space_info);
  1718. btrfs_mapping_init(&fs_info->mapping_tree);
  1719. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1720. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1721. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1722. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1723. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1724. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1725. atomic_set(&fs_info->nr_async_submits, 0);
  1726. atomic_set(&fs_info->async_delalloc_pages, 0);
  1727. atomic_set(&fs_info->async_submit_draining, 0);
  1728. atomic_set(&fs_info->nr_async_bios, 0);
  1729. atomic_set(&fs_info->defrag_running, 0);
  1730. fs_info->sb = sb;
  1731. fs_info->max_inline = 8192 * 1024;
  1732. fs_info->metadata_ratio = 0;
  1733. fs_info->defrag_inodes = RB_ROOT;
  1734. fs_info->trans_no_join = 0;
  1735. fs_info->free_chunk_space = 0;
  1736. /* readahead state */
  1737. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1738. spin_lock_init(&fs_info->reada_lock);
  1739. fs_info->thread_pool_size = min_t(unsigned long,
  1740. num_online_cpus() + 2, 8);
  1741. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1742. spin_lock_init(&fs_info->ordered_extent_lock);
  1743. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1744. GFP_NOFS);
  1745. if (!fs_info->delayed_root) {
  1746. err = -ENOMEM;
  1747. goto fail_iput;
  1748. }
  1749. btrfs_init_delayed_root(fs_info->delayed_root);
  1750. mutex_init(&fs_info->scrub_lock);
  1751. atomic_set(&fs_info->scrubs_running, 0);
  1752. atomic_set(&fs_info->scrub_pause_req, 0);
  1753. atomic_set(&fs_info->scrubs_paused, 0);
  1754. atomic_set(&fs_info->scrub_cancel_req, 0);
  1755. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1756. init_rwsem(&fs_info->scrub_super_lock);
  1757. fs_info->scrub_workers_refcnt = 0;
  1758. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1759. fs_info->check_integrity_print_mask = 0;
  1760. #endif
  1761. sb->s_blocksize = 4096;
  1762. sb->s_blocksize_bits = blksize_bits(4096);
  1763. sb->s_bdi = &fs_info->bdi;
  1764. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1765. fs_info->btree_inode->i_nlink = 1;
  1766. /*
  1767. * we set the i_size on the btree inode to the max possible int.
  1768. * the real end of the address space is determined by all of
  1769. * the devices in the system
  1770. */
  1771. fs_info->btree_inode->i_size = OFFSET_MAX;
  1772. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1773. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1774. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1775. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1776. fs_info->btree_inode->i_mapping);
  1777. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1778. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1779. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1780. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1781. sizeof(struct btrfs_key));
  1782. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1783. insert_inode_hash(fs_info->btree_inode);
  1784. spin_lock_init(&fs_info->block_group_cache_lock);
  1785. fs_info->block_group_cache_tree = RB_ROOT;
  1786. extent_io_tree_init(&fs_info->freed_extents[0],
  1787. fs_info->btree_inode->i_mapping);
  1788. extent_io_tree_init(&fs_info->freed_extents[1],
  1789. fs_info->btree_inode->i_mapping);
  1790. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1791. fs_info->do_barriers = 1;
  1792. mutex_init(&fs_info->ordered_operations_mutex);
  1793. mutex_init(&fs_info->tree_log_mutex);
  1794. mutex_init(&fs_info->chunk_mutex);
  1795. mutex_init(&fs_info->transaction_kthread_mutex);
  1796. mutex_init(&fs_info->cleaner_mutex);
  1797. mutex_init(&fs_info->volume_mutex);
  1798. init_rwsem(&fs_info->extent_commit_sem);
  1799. init_rwsem(&fs_info->cleanup_work_sem);
  1800. init_rwsem(&fs_info->subvol_sem);
  1801. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1802. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1803. init_waitqueue_head(&fs_info->transaction_throttle);
  1804. init_waitqueue_head(&fs_info->transaction_wait);
  1805. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1806. init_waitqueue_head(&fs_info->async_submit_wait);
  1807. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1808. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1809. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1810. if (!bh) {
  1811. err = -EINVAL;
  1812. goto fail_alloc;
  1813. }
  1814. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1815. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1816. sizeof(*fs_info->super_for_commit));
  1817. brelse(bh);
  1818. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1819. disk_super = fs_info->super_copy;
  1820. if (!btrfs_super_root(disk_super))
  1821. goto fail_alloc;
  1822. /* check FS state, whether FS is broken. */
  1823. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1824. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1825. /*
  1826. * run through our array of backup supers and setup
  1827. * our ring pointer to the oldest one
  1828. */
  1829. generation = btrfs_super_generation(disk_super);
  1830. find_oldest_super_backup(fs_info, generation);
  1831. /*
  1832. * In the long term, we'll store the compression type in the super
  1833. * block, and it'll be used for per file compression control.
  1834. */
  1835. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1836. ret = btrfs_parse_options(tree_root, options);
  1837. if (ret) {
  1838. err = ret;
  1839. goto fail_alloc;
  1840. }
  1841. features = btrfs_super_incompat_flags(disk_super) &
  1842. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1843. if (features) {
  1844. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1845. "unsupported optional features (%Lx).\n",
  1846. (unsigned long long)features);
  1847. err = -EINVAL;
  1848. goto fail_alloc;
  1849. }
  1850. features = btrfs_super_incompat_flags(disk_super);
  1851. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1852. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1853. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1854. btrfs_set_super_incompat_flags(disk_super, features);
  1855. features = btrfs_super_compat_ro_flags(disk_super) &
  1856. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1857. if (!(sb->s_flags & MS_RDONLY) && features) {
  1858. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1859. "unsupported option features (%Lx).\n",
  1860. (unsigned long long)features);
  1861. err = -EINVAL;
  1862. goto fail_alloc;
  1863. }
  1864. btrfs_init_workers(&fs_info->generic_worker,
  1865. "genwork", 1, NULL);
  1866. btrfs_init_workers(&fs_info->workers, "worker",
  1867. fs_info->thread_pool_size,
  1868. &fs_info->generic_worker);
  1869. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1870. fs_info->thread_pool_size,
  1871. &fs_info->generic_worker);
  1872. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1873. min_t(u64, fs_devices->num_devices,
  1874. fs_info->thread_pool_size),
  1875. &fs_info->generic_worker);
  1876. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1877. 2, &fs_info->generic_worker);
  1878. /* a higher idle thresh on the submit workers makes it much more
  1879. * likely that bios will be send down in a sane order to the
  1880. * devices
  1881. */
  1882. fs_info->submit_workers.idle_thresh = 64;
  1883. fs_info->workers.idle_thresh = 16;
  1884. fs_info->workers.ordered = 1;
  1885. fs_info->delalloc_workers.idle_thresh = 2;
  1886. fs_info->delalloc_workers.ordered = 1;
  1887. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1888. &fs_info->generic_worker);
  1889. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1890. fs_info->thread_pool_size,
  1891. &fs_info->generic_worker);
  1892. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1893. fs_info->thread_pool_size,
  1894. &fs_info->generic_worker);
  1895. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1896. "endio-meta-write", fs_info->thread_pool_size,
  1897. &fs_info->generic_worker);
  1898. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1899. fs_info->thread_pool_size,
  1900. &fs_info->generic_worker);
  1901. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1902. 1, &fs_info->generic_worker);
  1903. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1904. fs_info->thread_pool_size,
  1905. &fs_info->generic_worker);
  1906. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1907. fs_info->thread_pool_size,
  1908. &fs_info->generic_worker);
  1909. /*
  1910. * endios are largely parallel and should have a very
  1911. * low idle thresh
  1912. */
  1913. fs_info->endio_workers.idle_thresh = 4;
  1914. fs_info->endio_meta_workers.idle_thresh = 4;
  1915. fs_info->endio_write_workers.idle_thresh = 2;
  1916. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1917. fs_info->readahead_workers.idle_thresh = 2;
  1918. /*
  1919. * btrfs_start_workers can really only fail because of ENOMEM so just
  1920. * return -ENOMEM if any of these fail.
  1921. */
  1922. ret = btrfs_start_workers(&fs_info->workers);
  1923. ret |= btrfs_start_workers(&fs_info->generic_worker);
  1924. ret |= btrfs_start_workers(&fs_info->submit_workers);
  1925. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  1926. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  1927. ret |= btrfs_start_workers(&fs_info->endio_workers);
  1928. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  1929. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  1930. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  1931. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  1932. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  1933. ret |= btrfs_start_workers(&fs_info->caching_workers);
  1934. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  1935. if (ret) {
  1936. ret = -ENOMEM;
  1937. goto fail_sb_buffer;
  1938. }
  1939. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1940. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1941. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1942. nodesize = btrfs_super_nodesize(disk_super);
  1943. leafsize = btrfs_super_leafsize(disk_super);
  1944. sectorsize = btrfs_super_sectorsize(disk_super);
  1945. stripesize = btrfs_super_stripesize(disk_super);
  1946. tree_root->nodesize = nodesize;
  1947. tree_root->leafsize = leafsize;
  1948. tree_root->sectorsize = sectorsize;
  1949. tree_root->stripesize = stripesize;
  1950. sb->s_blocksize = sectorsize;
  1951. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1952. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1953. sizeof(disk_super->magic))) {
  1954. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1955. goto fail_sb_buffer;
  1956. }
  1957. mutex_lock(&fs_info->chunk_mutex);
  1958. ret = btrfs_read_sys_array(tree_root);
  1959. mutex_unlock(&fs_info->chunk_mutex);
  1960. if (ret) {
  1961. printk(KERN_WARNING "btrfs: failed to read the system "
  1962. "array on %s\n", sb->s_id);
  1963. goto fail_sb_buffer;
  1964. }
  1965. blocksize = btrfs_level_size(tree_root,
  1966. btrfs_super_chunk_root_level(disk_super));
  1967. generation = btrfs_super_chunk_root_generation(disk_super);
  1968. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1969. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1970. chunk_root->node = read_tree_block(chunk_root,
  1971. btrfs_super_chunk_root(disk_super),
  1972. blocksize, generation);
  1973. BUG_ON(!chunk_root->node);
  1974. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1975. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1976. sb->s_id);
  1977. goto fail_tree_roots;
  1978. }
  1979. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1980. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1981. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1982. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1983. BTRFS_UUID_SIZE);
  1984. mutex_lock(&fs_info->chunk_mutex);
  1985. ret = btrfs_read_chunk_tree(chunk_root);
  1986. mutex_unlock(&fs_info->chunk_mutex);
  1987. if (ret) {
  1988. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1989. sb->s_id);
  1990. goto fail_tree_roots;
  1991. }
  1992. btrfs_close_extra_devices(fs_devices);
  1993. retry_root_backup:
  1994. blocksize = btrfs_level_size(tree_root,
  1995. btrfs_super_root_level(disk_super));
  1996. generation = btrfs_super_generation(disk_super);
  1997. tree_root->node = read_tree_block(tree_root,
  1998. btrfs_super_root(disk_super),
  1999. blocksize, generation);
  2000. if (!tree_root->node ||
  2001. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2002. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2003. sb->s_id);
  2004. goto recovery_tree_root;
  2005. }
  2006. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2007. tree_root->commit_root = btrfs_root_node(tree_root);
  2008. ret = find_and_setup_root(tree_root, fs_info,
  2009. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2010. if (ret)
  2011. goto recovery_tree_root;
  2012. extent_root->track_dirty = 1;
  2013. ret = find_and_setup_root(tree_root, fs_info,
  2014. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2015. if (ret)
  2016. goto recovery_tree_root;
  2017. dev_root->track_dirty = 1;
  2018. ret = find_and_setup_root(tree_root, fs_info,
  2019. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2020. if (ret)
  2021. goto recovery_tree_root;
  2022. csum_root->track_dirty = 1;
  2023. fs_info->generation = generation;
  2024. fs_info->last_trans_committed = generation;
  2025. fs_info->data_alloc_profile = (u64)-1;
  2026. fs_info->metadata_alloc_profile = (u64)-1;
  2027. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  2028. ret = btrfs_init_space_info(fs_info);
  2029. if (ret) {
  2030. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2031. goto fail_block_groups;
  2032. }
  2033. ret = btrfs_read_block_groups(extent_root);
  2034. if (ret) {
  2035. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2036. goto fail_block_groups;
  2037. }
  2038. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2039. "btrfs-cleaner");
  2040. if (IS_ERR(fs_info->cleaner_kthread))
  2041. goto fail_block_groups;
  2042. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2043. tree_root,
  2044. "btrfs-transaction");
  2045. if (IS_ERR(fs_info->transaction_kthread))
  2046. goto fail_cleaner;
  2047. if (!btrfs_test_opt(tree_root, SSD) &&
  2048. !btrfs_test_opt(tree_root, NOSSD) &&
  2049. !fs_info->fs_devices->rotating) {
  2050. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2051. "mode\n");
  2052. btrfs_set_opt(fs_info->mount_opt, SSD);
  2053. }
  2054. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2055. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2056. ret = btrfsic_mount(tree_root, fs_devices,
  2057. btrfs_test_opt(tree_root,
  2058. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2059. 1 : 0,
  2060. fs_info->check_integrity_print_mask);
  2061. if (ret)
  2062. printk(KERN_WARNING "btrfs: failed to initialize"
  2063. " integrity check module %s\n", sb->s_id);
  2064. }
  2065. #endif
  2066. /* do not make disk changes in broken FS */
  2067. if (btrfs_super_log_root(disk_super) != 0 &&
  2068. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2069. u64 bytenr = btrfs_super_log_root(disk_super);
  2070. if (fs_devices->rw_devices == 0) {
  2071. printk(KERN_WARNING "Btrfs log replay required "
  2072. "on RO media\n");
  2073. err = -EIO;
  2074. goto fail_trans_kthread;
  2075. }
  2076. blocksize =
  2077. btrfs_level_size(tree_root,
  2078. btrfs_super_log_root_level(disk_super));
  2079. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  2080. if (!log_tree_root) {
  2081. err = -ENOMEM;
  2082. goto fail_trans_kthread;
  2083. }
  2084. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2085. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2086. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2087. blocksize,
  2088. generation + 1);
  2089. ret = btrfs_recover_log_trees(log_tree_root);
  2090. BUG_ON(ret);
  2091. if (sb->s_flags & MS_RDONLY) {
  2092. ret = btrfs_commit_super(tree_root);
  2093. BUG_ON(ret);
  2094. }
  2095. }
  2096. ret = btrfs_find_orphan_roots(tree_root);
  2097. BUG_ON(ret);
  2098. if (!(sb->s_flags & MS_RDONLY)) {
  2099. ret = btrfs_cleanup_fs_roots(fs_info);
  2100. BUG_ON(ret);
  2101. ret = btrfs_recover_relocation(tree_root);
  2102. if (ret < 0) {
  2103. printk(KERN_WARNING
  2104. "btrfs: failed to recover relocation\n");
  2105. err = -EINVAL;
  2106. goto fail_trans_kthread;
  2107. }
  2108. }
  2109. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2110. location.type = BTRFS_ROOT_ITEM_KEY;
  2111. location.offset = (u64)-1;
  2112. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2113. if (!fs_info->fs_root)
  2114. goto fail_trans_kthread;
  2115. if (IS_ERR(fs_info->fs_root)) {
  2116. err = PTR_ERR(fs_info->fs_root);
  2117. goto fail_trans_kthread;
  2118. }
  2119. if (!(sb->s_flags & MS_RDONLY)) {
  2120. down_read(&fs_info->cleanup_work_sem);
  2121. err = btrfs_orphan_cleanup(fs_info->fs_root);
  2122. if (!err)
  2123. err = btrfs_orphan_cleanup(fs_info->tree_root);
  2124. up_read(&fs_info->cleanup_work_sem);
  2125. if (err) {
  2126. close_ctree(tree_root);
  2127. return ERR_PTR(err);
  2128. }
  2129. }
  2130. return tree_root;
  2131. fail_trans_kthread:
  2132. kthread_stop(fs_info->transaction_kthread);
  2133. fail_cleaner:
  2134. kthread_stop(fs_info->cleaner_kthread);
  2135. /*
  2136. * make sure we're done with the btree inode before we stop our
  2137. * kthreads
  2138. */
  2139. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2140. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2141. fail_block_groups:
  2142. btrfs_free_block_groups(fs_info);
  2143. fail_tree_roots:
  2144. free_root_pointers(fs_info, 1);
  2145. fail_sb_buffer:
  2146. btrfs_stop_workers(&fs_info->generic_worker);
  2147. btrfs_stop_workers(&fs_info->readahead_workers);
  2148. btrfs_stop_workers(&fs_info->fixup_workers);
  2149. btrfs_stop_workers(&fs_info->delalloc_workers);
  2150. btrfs_stop_workers(&fs_info->workers);
  2151. btrfs_stop_workers(&fs_info->endio_workers);
  2152. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2153. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2154. btrfs_stop_workers(&fs_info->endio_write_workers);
  2155. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2156. btrfs_stop_workers(&fs_info->submit_workers);
  2157. btrfs_stop_workers(&fs_info->delayed_workers);
  2158. btrfs_stop_workers(&fs_info->caching_workers);
  2159. fail_alloc:
  2160. fail_iput:
  2161. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2162. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2163. iput(fs_info->btree_inode);
  2164. fail_bdi:
  2165. bdi_destroy(&fs_info->bdi);
  2166. fail_srcu:
  2167. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2168. fail:
  2169. btrfs_close_devices(fs_info->fs_devices);
  2170. free_fs_info(fs_info);
  2171. return ERR_PTR(err);
  2172. recovery_tree_root:
  2173. if (!btrfs_test_opt(tree_root, RECOVERY))
  2174. goto fail_tree_roots;
  2175. free_root_pointers(fs_info, 0);
  2176. /* don't use the log in recovery mode, it won't be valid */
  2177. btrfs_set_super_log_root(disk_super, 0);
  2178. /* we can't trust the free space cache either */
  2179. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2180. ret = next_root_backup(fs_info, fs_info->super_copy,
  2181. &num_backups_tried, &backup_index);
  2182. if (ret == -1)
  2183. goto fail_block_groups;
  2184. goto retry_root_backup;
  2185. }
  2186. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2187. {
  2188. char b[BDEVNAME_SIZE];
  2189. if (uptodate) {
  2190. set_buffer_uptodate(bh);
  2191. } else {
  2192. printk_ratelimited(KERN_WARNING "lost page write due to "
  2193. "I/O error on %s\n",
  2194. bdevname(bh->b_bdev, b));
  2195. /* note, we dont' set_buffer_write_io_error because we have
  2196. * our own ways of dealing with the IO errors
  2197. */
  2198. clear_buffer_uptodate(bh);
  2199. }
  2200. unlock_buffer(bh);
  2201. put_bh(bh);
  2202. }
  2203. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2204. {
  2205. struct buffer_head *bh;
  2206. struct buffer_head *latest = NULL;
  2207. struct btrfs_super_block *super;
  2208. int i;
  2209. u64 transid = 0;
  2210. u64 bytenr;
  2211. /* we would like to check all the supers, but that would make
  2212. * a btrfs mount succeed after a mkfs from a different FS.
  2213. * So, we need to add a special mount option to scan for
  2214. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2215. */
  2216. for (i = 0; i < 1; i++) {
  2217. bytenr = btrfs_sb_offset(i);
  2218. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2219. break;
  2220. bh = __bread(bdev, bytenr / 4096, 4096);
  2221. if (!bh)
  2222. continue;
  2223. super = (struct btrfs_super_block *)bh->b_data;
  2224. if (btrfs_super_bytenr(super) != bytenr ||
  2225. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2226. sizeof(super->magic))) {
  2227. brelse(bh);
  2228. continue;
  2229. }
  2230. if (!latest || btrfs_super_generation(super) > transid) {
  2231. brelse(latest);
  2232. latest = bh;
  2233. transid = btrfs_super_generation(super);
  2234. } else {
  2235. brelse(bh);
  2236. }
  2237. }
  2238. return latest;
  2239. }
  2240. /*
  2241. * this should be called twice, once with wait == 0 and
  2242. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2243. * we write are pinned.
  2244. *
  2245. * They are released when wait == 1 is done.
  2246. * max_mirrors must be the same for both runs, and it indicates how
  2247. * many supers on this one device should be written.
  2248. *
  2249. * max_mirrors == 0 means to write them all.
  2250. */
  2251. static int write_dev_supers(struct btrfs_device *device,
  2252. struct btrfs_super_block *sb,
  2253. int do_barriers, int wait, int max_mirrors)
  2254. {
  2255. struct buffer_head *bh;
  2256. int i;
  2257. int ret;
  2258. int errors = 0;
  2259. u32 crc;
  2260. u64 bytenr;
  2261. if (max_mirrors == 0)
  2262. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2263. for (i = 0; i < max_mirrors; i++) {
  2264. bytenr = btrfs_sb_offset(i);
  2265. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2266. break;
  2267. if (wait) {
  2268. bh = __find_get_block(device->bdev, bytenr / 4096,
  2269. BTRFS_SUPER_INFO_SIZE);
  2270. BUG_ON(!bh);
  2271. wait_on_buffer(bh);
  2272. if (!buffer_uptodate(bh))
  2273. errors++;
  2274. /* drop our reference */
  2275. brelse(bh);
  2276. /* drop the reference from the wait == 0 run */
  2277. brelse(bh);
  2278. continue;
  2279. } else {
  2280. btrfs_set_super_bytenr(sb, bytenr);
  2281. crc = ~(u32)0;
  2282. crc = btrfs_csum_data(NULL, (char *)sb +
  2283. BTRFS_CSUM_SIZE, crc,
  2284. BTRFS_SUPER_INFO_SIZE -
  2285. BTRFS_CSUM_SIZE);
  2286. btrfs_csum_final(crc, sb->csum);
  2287. /*
  2288. * one reference for us, and we leave it for the
  2289. * caller
  2290. */
  2291. bh = __getblk(device->bdev, bytenr / 4096,
  2292. BTRFS_SUPER_INFO_SIZE);
  2293. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2294. /* one reference for submit_bh */
  2295. get_bh(bh);
  2296. set_buffer_uptodate(bh);
  2297. lock_buffer(bh);
  2298. bh->b_end_io = btrfs_end_buffer_write_sync;
  2299. }
  2300. /*
  2301. * we fua the first super. The others we allow
  2302. * to go down lazy.
  2303. */
  2304. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2305. if (ret)
  2306. errors++;
  2307. }
  2308. return errors < i ? 0 : -1;
  2309. }
  2310. /*
  2311. * endio for the write_dev_flush, this will wake anyone waiting
  2312. * for the barrier when it is done
  2313. */
  2314. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2315. {
  2316. if (err) {
  2317. if (err == -EOPNOTSUPP)
  2318. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2319. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2320. }
  2321. if (bio->bi_private)
  2322. complete(bio->bi_private);
  2323. bio_put(bio);
  2324. }
  2325. /*
  2326. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2327. * sent down. With wait == 1, it waits for the previous flush.
  2328. *
  2329. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2330. * capable
  2331. */
  2332. static int write_dev_flush(struct btrfs_device *device, int wait)
  2333. {
  2334. struct bio *bio;
  2335. int ret = 0;
  2336. if (device->nobarriers)
  2337. return 0;
  2338. if (wait) {
  2339. bio = device->flush_bio;
  2340. if (!bio)
  2341. return 0;
  2342. wait_for_completion(&device->flush_wait);
  2343. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2344. printk("btrfs: disabling barriers on dev %s\n",
  2345. device->name);
  2346. device->nobarriers = 1;
  2347. }
  2348. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2349. ret = -EIO;
  2350. }
  2351. /* drop the reference from the wait == 0 run */
  2352. bio_put(bio);
  2353. device->flush_bio = NULL;
  2354. return ret;
  2355. }
  2356. /*
  2357. * one reference for us, and we leave it for the
  2358. * caller
  2359. */
  2360. device->flush_bio = NULL;;
  2361. bio = bio_alloc(GFP_NOFS, 0);
  2362. if (!bio)
  2363. return -ENOMEM;
  2364. bio->bi_end_io = btrfs_end_empty_barrier;
  2365. bio->bi_bdev = device->bdev;
  2366. init_completion(&device->flush_wait);
  2367. bio->bi_private = &device->flush_wait;
  2368. device->flush_bio = bio;
  2369. bio_get(bio);
  2370. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2371. return 0;
  2372. }
  2373. /*
  2374. * send an empty flush down to each device in parallel,
  2375. * then wait for them
  2376. */
  2377. static int barrier_all_devices(struct btrfs_fs_info *info)
  2378. {
  2379. struct list_head *head;
  2380. struct btrfs_device *dev;
  2381. int errors = 0;
  2382. int ret;
  2383. /* send down all the barriers */
  2384. head = &info->fs_devices->devices;
  2385. list_for_each_entry_rcu(dev, head, dev_list) {
  2386. if (!dev->bdev) {
  2387. errors++;
  2388. continue;
  2389. }
  2390. if (!dev->in_fs_metadata || !dev->writeable)
  2391. continue;
  2392. ret = write_dev_flush(dev, 0);
  2393. if (ret)
  2394. errors++;
  2395. }
  2396. /* wait for all the barriers */
  2397. list_for_each_entry_rcu(dev, head, dev_list) {
  2398. if (!dev->bdev) {
  2399. errors++;
  2400. continue;
  2401. }
  2402. if (!dev->in_fs_metadata || !dev->writeable)
  2403. continue;
  2404. ret = write_dev_flush(dev, 1);
  2405. if (ret)
  2406. errors++;
  2407. }
  2408. if (errors)
  2409. return -EIO;
  2410. return 0;
  2411. }
  2412. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2413. {
  2414. struct list_head *head;
  2415. struct btrfs_device *dev;
  2416. struct btrfs_super_block *sb;
  2417. struct btrfs_dev_item *dev_item;
  2418. int ret;
  2419. int do_barriers;
  2420. int max_errors;
  2421. int total_errors = 0;
  2422. u64 flags;
  2423. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2424. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2425. backup_super_roots(root->fs_info);
  2426. sb = root->fs_info->super_for_commit;
  2427. dev_item = &sb->dev_item;
  2428. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2429. head = &root->fs_info->fs_devices->devices;
  2430. if (do_barriers)
  2431. barrier_all_devices(root->fs_info);
  2432. list_for_each_entry_rcu(dev, head, dev_list) {
  2433. if (!dev->bdev) {
  2434. total_errors++;
  2435. continue;
  2436. }
  2437. if (!dev->in_fs_metadata || !dev->writeable)
  2438. continue;
  2439. btrfs_set_stack_device_generation(dev_item, 0);
  2440. btrfs_set_stack_device_type(dev_item, dev->type);
  2441. btrfs_set_stack_device_id(dev_item, dev->devid);
  2442. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2443. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2444. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2445. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2446. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2447. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2448. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2449. flags = btrfs_super_flags(sb);
  2450. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2451. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2452. if (ret)
  2453. total_errors++;
  2454. }
  2455. if (total_errors > max_errors) {
  2456. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2457. total_errors);
  2458. BUG();
  2459. }
  2460. total_errors = 0;
  2461. list_for_each_entry_rcu(dev, head, dev_list) {
  2462. if (!dev->bdev)
  2463. continue;
  2464. if (!dev->in_fs_metadata || !dev->writeable)
  2465. continue;
  2466. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2467. if (ret)
  2468. total_errors++;
  2469. }
  2470. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2471. if (total_errors > max_errors) {
  2472. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2473. total_errors);
  2474. BUG();
  2475. }
  2476. return 0;
  2477. }
  2478. int write_ctree_super(struct btrfs_trans_handle *trans,
  2479. struct btrfs_root *root, int max_mirrors)
  2480. {
  2481. int ret;
  2482. ret = write_all_supers(root, max_mirrors);
  2483. return ret;
  2484. }
  2485. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2486. {
  2487. spin_lock(&fs_info->fs_roots_radix_lock);
  2488. radix_tree_delete(&fs_info->fs_roots_radix,
  2489. (unsigned long)root->root_key.objectid);
  2490. spin_unlock(&fs_info->fs_roots_radix_lock);
  2491. if (btrfs_root_refs(&root->root_item) == 0)
  2492. synchronize_srcu(&fs_info->subvol_srcu);
  2493. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2494. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2495. free_fs_root(root);
  2496. return 0;
  2497. }
  2498. static void free_fs_root(struct btrfs_root *root)
  2499. {
  2500. iput(root->cache_inode);
  2501. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2502. if (root->anon_dev)
  2503. free_anon_bdev(root->anon_dev);
  2504. free_extent_buffer(root->node);
  2505. free_extent_buffer(root->commit_root);
  2506. kfree(root->free_ino_ctl);
  2507. kfree(root->free_ino_pinned);
  2508. kfree(root->name);
  2509. kfree(root);
  2510. }
  2511. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2512. {
  2513. int ret;
  2514. struct btrfs_root *gang[8];
  2515. int i;
  2516. while (!list_empty(&fs_info->dead_roots)) {
  2517. gang[0] = list_entry(fs_info->dead_roots.next,
  2518. struct btrfs_root, root_list);
  2519. list_del(&gang[0]->root_list);
  2520. if (gang[0]->in_radix) {
  2521. btrfs_free_fs_root(fs_info, gang[0]);
  2522. } else {
  2523. free_extent_buffer(gang[0]->node);
  2524. free_extent_buffer(gang[0]->commit_root);
  2525. kfree(gang[0]);
  2526. }
  2527. }
  2528. while (1) {
  2529. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2530. (void **)gang, 0,
  2531. ARRAY_SIZE(gang));
  2532. if (!ret)
  2533. break;
  2534. for (i = 0; i < ret; i++)
  2535. btrfs_free_fs_root(fs_info, gang[i]);
  2536. }
  2537. return 0;
  2538. }
  2539. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2540. {
  2541. u64 root_objectid = 0;
  2542. struct btrfs_root *gang[8];
  2543. int i;
  2544. int ret;
  2545. while (1) {
  2546. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2547. (void **)gang, root_objectid,
  2548. ARRAY_SIZE(gang));
  2549. if (!ret)
  2550. break;
  2551. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2552. for (i = 0; i < ret; i++) {
  2553. int err;
  2554. root_objectid = gang[i]->root_key.objectid;
  2555. err = btrfs_orphan_cleanup(gang[i]);
  2556. if (err)
  2557. return err;
  2558. }
  2559. root_objectid++;
  2560. }
  2561. return 0;
  2562. }
  2563. int btrfs_commit_super(struct btrfs_root *root)
  2564. {
  2565. struct btrfs_trans_handle *trans;
  2566. int ret;
  2567. mutex_lock(&root->fs_info->cleaner_mutex);
  2568. btrfs_run_delayed_iputs(root);
  2569. btrfs_clean_old_snapshots(root);
  2570. mutex_unlock(&root->fs_info->cleaner_mutex);
  2571. /* wait until ongoing cleanup work done */
  2572. down_write(&root->fs_info->cleanup_work_sem);
  2573. up_write(&root->fs_info->cleanup_work_sem);
  2574. trans = btrfs_join_transaction(root);
  2575. if (IS_ERR(trans))
  2576. return PTR_ERR(trans);
  2577. ret = btrfs_commit_transaction(trans, root);
  2578. BUG_ON(ret);
  2579. /* run commit again to drop the original snapshot */
  2580. trans = btrfs_join_transaction(root);
  2581. if (IS_ERR(trans))
  2582. return PTR_ERR(trans);
  2583. btrfs_commit_transaction(trans, root);
  2584. ret = btrfs_write_and_wait_transaction(NULL, root);
  2585. BUG_ON(ret);
  2586. ret = write_ctree_super(NULL, root, 0);
  2587. return ret;
  2588. }
  2589. int close_ctree(struct btrfs_root *root)
  2590. {
  2591. struct btrfs_fs_info *fs_info = root->fs_info;
  2592. int ret;
  2593. fs_info->closing = 1;
  2594. smp_mb();
  2595. btrfs_scrub_cancel(root);
  2596. /* wait for any defraggers to finish */
  2597. wait_event(fs_info->transaction_wait,
  2598. (atomic_read(&fs_info->defrag_running) == 0));
  2599. /* clear out the rbtree of defraggable inodes */
  2600. btrfs_run_defrag_inodes(root->fs_info);
  2601. /*
  2602. * Here come 2 situations when btrfs is broken to flip readonly:
  2603. *
  2604. * 1. when btrfs flips readonly somewhere else before
  2605. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2606. * and btrfs will skip to write sb directly to keep
  2607. * ERROR state on disk.
  2608. *
  2609. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2610. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2611. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2612. * btrfs will cleanup all FS resources first and write sb then.
  2613. */
  2614. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2615. ret = btrfs_commit_super(root);
  2616. if (ret)
  2617. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2618. }
  2619. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2620. ret = btrfs_error_commit_super(root);
  2621. if (ret)
  2622. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2623. }
  2624. btrfs_put_block_group_cache(fs_info);
  2625. kthread_stop(root->fs_info->transaction_kthread);
  2626. kthread_stop(root->fs_info->cleaner_kthread);
  2627. fs_info->closing = 2;
  2628. smp_mb();
  2629. if (fs_info->delalloc_bytes) {
  2630. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2631. (unsigned long long)fs_info->delalloc_bytes);
  2632. }
  2633. if (fs_info->total_ref_cache_size) {
  2634. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2635. (unsigned long long)fs_info->total_ref_cache_size);
  2636. }
  2637. free_extent_buffer(fs_info->extent_root->node);
  2638. free_extent_buffer(fs_info->extent_root->commit_root);
  2639. free_extent_buffer(fs_info->tree_root->node);
  2640. free_extent_buffer(fs_info->tree_root->commit_root);
  2641. free_extent_buffer(root->fs_info->chunk_root->node);
  2642. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2643. free_extent_buffer(root->fs_info->dev_root->node);
  2644. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2645. free_extent_buffer(root->fs_info->csum_root->node);
  2646. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2647. btrfs_free_block_groups(root->fs_info);
  2648. del_fs_roots(fs_info);
  2649. iput(fs_info->btree_inode);
  2650. btrfs_stop_workers(&fs_info->generic_worker);
  2651. btrfs_stop_workers(&fs_info->fixup_workers);
  2652. btrfs_stop_workers(&fs_info->delalloc_workers);
  2653. btrfs_stop_workers(&fs_info->workers);
  2654. btrfs_stop_workers(&fs_info->endio_workers);
  2655. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2656. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2657. btrfs_stop_workers(&fs_info->endio_write_workers);
  2658. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2659. btrfs_stop_workers(&fs_info->submit_workers);
  2660. btrfs_stop_workers(&fs_info->delayed_workers);
  2661. btrfs_stop_workers(&fs_info->caching_workers);
  2662. btrfs_stop_workers(&fs_info->readahead_workers);
  2663. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2664. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2665. btrfsic_unmount(root, fs_info->fs_devices);
  2666. #endif
  2667. btrfs_close_devices(fs_info->fs_devices);
  2668. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2669. bdi_destroy(&fs_info->bdi);
  2670. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2671. free_fs_info(fs_info);
  2672. return 0;
  2673. }
  2674. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2675. {
  2676. int ret;
  2677. struct inode *btree_inode = buf->first_page->mapping->host;
  2678. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2679. NULL);
  2680. if (!ret)
  2681. return ret;
  2682. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2683. parent_transid);
  2684. return !ret;
  2685. }
  2686. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2687. {
  2688. struct inode *btree_inode = buf->first_page->mapping->host;
  2689. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2690. buf);
  2691. }
  2692. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2693. {
  2694. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2695. u64 transid = btrfs_header_generation(buf);
  2696. struct inode *btree_inode = root->fs_info->btree_inode;
  2697. int was_dirty;
  2698. btrfs_assert_tree_locked(buf);
  2699. if (transid != root->fs_info->generation) {
  2700. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2701. "found %llu running %llu\n",
  2702. (unsigned long long)buf->start,
  2703. (unsigned long long)transid,
  2704. (unsigned long long)root->fs_info->generation);
  2705. WARN_ON(1);
  2706. }
  2707. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2708. buf);
  2709. if (!was_dirty) {
  2710. spin_lock(&root->fs_info->delalloc_lock);
  2711. root->fs_info->dirty_metadata_bytes += buf->len;
  2712. spin_unlock(&root->fs_info->delalloc_lock);
  2713. }
  2714. }
  2715. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2716. {
  2717. /*
  2718. * looks as though older kernels can get into trouble with
  2719. * this code, they end up stuck in balance_dirty_pages forever
  2720. */
  2721. u64 num_dirty;
  2722. unsigned long thresh = 32 * 1024 * 1024;
  2723. if (current->flags & PF_MEMALLOC)
  2724. return;
  2725. btrfs_balance_delayed_items(root);
  2726. num_dirty = root->fs_info->dirty_metadata_bytes;
  2727. if (num_dirty > thresh) {
  2728. balance_dirty_pages_ratelimited_nr(
  2729. root->fs_info->btree_inode->i_mapping, 1);
  2730. }
  2731. return;
  2732. }
  2733. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2734. {
  2735. /*
  2736. * looks as though older kernels can get into trouble with
  2737. * this code, they end up stuck in balance_dirty_pages forever
  2738. */
  2739. u64 num_dirty;
  2740. unsigned long thresh = 32 * 1024 * 1024;
  2741. if (current->flags & PF_MEMALLOC)
  2742. return;
  2743. num_dirty = root->fs_info->dirty_metadata_bytes;
  2744. if (num_dirty > thresh) {
  2745. balance_dirty_pages_ratelimited_nr(
  2746. root->fs_info->btree_inode->i_mapping, 1);
  2747. }
  2748. return;
  2749. }
  2750. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2751. {
  2752. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2753. int ret;
  2754. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2755. if (ret == 0)
  2756. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2757. return ret;
  2758. }
  2759. static int btree_lock_page_hook(struct page *page, void *data,
  2760. void (*flush_fn)(void *))
  2761. {
  2762. struct inode *inode = page->mapping->host;
  2763. struct btrfs_root *root = BTRFS_I(inode)->root;
  2764. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2765. struct extent_buffer *eb;
  2766. unsigned long len;
  2767. u64 bytenr = page_offset(page);
  2768. if (page->private == EXTENT_PAGE_PRIVATE)
  2769. goto out;
  2770. len = page->private >> 2;
  2771. eb = find_extent_buffer(io_tree, bytenr, len);
  2772. if (!eb)
  2773. goto out;
  2774. if (!btrfs_try_tree_write_lock(eb)) {
  2775. flush_fn(data);
  2776. btrfs_tree_lock(eb);
  2777. }
  2778. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2779. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2780. spin_lock(&root->fs_info->delalloc_lock);
  2781. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2782. root->fs_info->dirty_metadata_bytes -= eb->len;
  2783. else
  2784. WARN_ON(1);
  2785. spin_unlock(&root->fs_info->delalloc_lock);
  2786. }
  2787. btrfs_tree_unlock(eb);
  2788. free_extent_buffer(eb);
  2789. out:
  2790. if (!trylock_page(page)) {
  2791. flush_fn(data);
  2792. lock_page(page);
  2793. }
  2794. return 0;
  2795. }
  2796. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2797. int read_only)
  2798. {
  2799. if (read_only)
  2800. return;
  2801. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2802. printk(KERN_WARNING "warning: mount fs with errors, "
  2803. "running btrfsck is recommended\n");
  2804. }
  2805. int btrfs_error_commit_super(struct btrfs_root *root)
  2806. {
  2807. int ret;
  2808. mutex_lock(&root->fs_info->cleaner_mutex);
  2809. btrfs_run_delayed_iputs(root);
  2810. mutex_unlock(&root->fs_info->cleaner_mutex);
  2811. down_write(&root->fs_info->cleanup_work_sem);
  2812. up_write(&root->fs_info->cleanup_work_sem);
  2813. /* cleanup FS via transaction */
  2814. btrfs_cleanup_transaction(root);
  2815. ret = write_ctree_super(NULL, root, 0);
  2816. return ret;
  2817. }
  2818. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2819. {
  2820. struct btrfs_inode *btrfs_inode;
  2821. struct list_head splice;
  2822. INIT_LIST_HEAD(&splice);
  2823. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2824. spin_lock(&root->fs_info->ordered_extent_lock);
  2825. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2826. while (!list_empty(&splice)) {
  2827. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2828. ordered_operations);
  2829. list_del_init(&btrfs_inode->ordered_operations);
  2830. btrfs_invalidate_inodes(btrfs_inode->root);
  2831. }
  2832. spin_unlock(&root->fs_info->ordered_extent_lock);
  2833. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2834. return 0;
  2835. }
  2836. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2837. {
  2838. struct list_head splice;
  2839. struct btrfs_ordered_extent *ordered;
  2840. struct inode *inode;
  2841. INIT_LIST_HEAD(&splice);
  2842. spin_lock(&root->fs_info->ordered_extent_lock);
  2843. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2844. while (!list_empty(&splice)) {
  2845. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2846. root_extent_list);
  2847. list_del_init(&ordered->root_extent_list);
  2848. atomic_inc(&ordered->refs);
  2849. /* the inode may be getting freed (in sys_unlink path). */
  2850. inode = igrab(ordered->inode);
  2851. spin_unlock(&root->fs_info->ordered_extent_lock);
  2852. if (inode)
  2853. iput(inode);
  2854. atomic_set(&ordered->refs, 1);
  2855. btrfs_put_ordered_extent(ordered);
  2856. spin_lock(&root->fs_info->ordered_extent_lock);
  2857. }
  2858. spin_unlock(&root->fs_info->ordered_extent_lock);
  2859. return 0;
  2860. }
  2861. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2862. struct btrfs_root *root)
  2863. {
  2864. struct rb_node *node;
  2865. struct btrfs_delayed_ref_root *delayed_refs;
  2866. struct btrfs_delayed_ref_node *ref;
  2867. int ret = 0;
  2868. delayed_refs = &trans->delayed_refs;
  2869. spin_lock(&delayed_refs->lock);
  2870. if (delayed_refs->num_entries == 0) {
  2871. spin_unlock(&delayed_refs->lock);
  2872. printk(KERN_INFO "delayed_refs has NO entry\n");
  2873. return ret;
  2874. }
  2875. node = rb_first(&delayed_refs->root);
  2876. while (node) {
  2877. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2878. node = rb_next(node);
  2879. ref->in_tree = 0;
  2880. rb_erase(&ref->rb_node, &delayed_refs->root);
  2881. delayed_refs->num_entries--;
  2882. atomic_set(&ref->refs, 1);
  2883. if (btrfs_delayed_ref_is_head(ref)) {
  2884. struct btrfs_delayed_ref_head *head;
  2885. head = btrfs_delayed_node_to_head(ref);
  2886. mutex_lock(&head->mutex);
  2887. kfree(head->extent_op);
  2888. delayed_refs->num_heads--;
  2889. if (list_empty(&head->cluster))
  2890. delayed_refs->num_heads_ready--;
  2891. list_del_init(&head->cluster);
  2892. mutex_unlock(&head->mutex);
  2893. }
  2894. spin_unlock(&delayed_refs->lock);
  2895. btrfs_put_delayed_ref(ref);
  2896. cond_resched();
  2897. spin_lock(&delayed_refs->lock);
  2898. }
  2899. spin_unlock(&delayed_refs->lock);
  2900. return ret;
  2901. }
  2902. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2903. {
  2904. struct btrfs_pending_snapshot *snapshot;
  2905. struct list_head splice;
  2906. INIT_LIST_HEAD(&splice);
  2907. list_splice_init(&t->pending_snapshots, &splice);
  2908. while (!list_empty(&splice)) {
  2909. snapshot = list_entry(splice.next,
  2910. struct btrfs_pending_snapshot,
  2911. list);
  2912. list_del_init(&snapshot->list);
  2913. kfree(snapshot);
  2914. }
  2915. return 0;
  2916. }
  2917. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2918. {
  2919. struct btrfs_inode *btrfs_inode;
  2920. struct list_head splice;
  2921. INIT_LIST_HEAD(&splice);
  2922. spin_lock(&root->fs_info->delalloc_lock);
  2923. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2924. while (!list_empty(&splice)) {
  2925. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2926. delalloc_inodes);
  2927. list_del_init(&btrfs_inode->delalloc_inodes);
  2928. btrfs_invalidate_inodes(btrfs_inode->root);
  2929. }
  2930. spin_unlock(&root->fs_info->delalloc_lock);
  2931. return 0;
  2932. }
  2933. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2934. struct extent_io_tree *dirty_pages,
  2935. int mark)
  2936. {
  2937. int ret;
  2938. struct page *page;
  2939. struct inode *btree_inode = root->fs_info->btree_inode;
  2940. struct extent_buffer *eb;
  2941. u64 start = 0;
  2942. u64 end;
  2943. u64 offset;
  2944. unsigned long index;
  2945. while (1) {
  2946. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2947. mark);
  2948. if (ret)
  2949. break;
  2950. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2951. while (start <= end) {
  2952. index = start >> PAGE_CACHE_SHIFT;
  2953. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2954. page = find_get_page(btree_inode->i_mapping, index);
  2955. if (!page)
  2956. continue;
  2957. offset = page_offset(page);
  2958. spin_lock(&dirty_pages->buffer_lock);
  2959. eb = radix_tree_lookup(
  2960. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2961. offset >> PAGE_CACHE_SHIFT);
  2962. spin_unlock(&dirty_pages->buffer_lock);
  2963. if (eb) {
  2964. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2965. &eb->bflags);
  2966. atomic_set(&eb->refs, 1);
  2967. }
  2968. if (PageWriteback(page))
  2969. end_page_writeback(page);
  2970. lock_page(page);
  2971. if (PageDirty(page)) {
  2972. clear_page_dirty_for_io(page);
  2973. spin_lock_irq(&page->mapping->tree_lock);
  2974. radix_tree_tag_clear(&page->mapping->page_tree,
  2975. page_index(page),
  2976. PAGECACHE_TAG_DIRTY);
  2977. spin_unlock_irq(&page->mapping->tree_lock);
  2978. }
  2979. page->mapping->a_ops->invalidatepage(page, 0);
  2980. unlock_page(page);
  2981. }
  2982. }
  2983. return ret;
  2984. }
  2985. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2986. struct extent_io_tree *pinned_extents)
  2987. {
  2988. struct extent_io_tree *unpin;
  2989. u64 start;
  2990. u64 end;
  2991. int ret;
  2992. unpin = pinned_extents;
  2993. while (1) {
  2994. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2995. EXTENT_DIRTY);
  2996. if (ret)
  2997. break;
  2998. /* opt_discard */
  2999. if (btrfs_test_opt(root, DISCARD))
  3000. ret = btrfs_error_discard_extent(root, start,
  3001. end + 1 - start,
  3002. NULL);
  3003. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3004. btrfs_error_unpin_extent_range(root, start, end);
  3005. cond_resched();
  3006. }
  3007. return 0;
  3008. }
  3009. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3010. {
  3011. struct btrfs_transaction *t;
  3012. LIST_HEAD(list);
  3013. WARN_ON(1);
  3014. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3015. spin_lock(&root->fs_info->trans_lock);
  3016. list_splice_init(&root->fs_info->trans_list, &list);
  3017. root->fs_info->trans_no_join = 1;
  3018. spin_unlock(&root->fs_info->trans_lock);
  3019. while (!list_empty(&list)) {
  3020. t = list_entry(list.next, struct btrfs_transaction, list);
  3021. if (!t)
  3022. break;
  3023. btrfs_destroy_ordered_operations(root);
  3024. btrfs_destroy_ordered_extents(root);
  3025. btrfs_destroy_delayed_refs(t, root);
  3026. btrfs_block_rsv_release(root,
  3027. &root->fs_info->trans_block_rsv,
  3028. t->dirty_pages.dirty_bytes);
  3029. /* FIXME: cleanup wait for commit */
  3030. t->in_commit = 1;
  3031. t->blocked = 1;
  3032. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3033. wake_up(&root->fs_info->transaction_blocked_wait);
  3034. t->blocked = 0;
  3035. if (waitqueue_active(&root->fs_info->transaction_wait))
  3036. wake_up(&root->fs_info->transaction_wait);
  3037. t->commit_done = 1;
  3038. if (waitqueue_active(&t->commit_wait))
  3039. wake_up(&t->commit_wait);
  3040. btrfs_destroy_pending_snapshots(t);
  3041. btrfs_destroy_delalloc_inodes(root);
  3042. spin_lock(&root->fs_info->trans_lock);
  3043. root->fs_info->running_transaction = NULL;
  3044. spin_unlock(&root->fs_info->trans_lock);
  3045. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3046. EXTENT_DIRTY);
  3047. btrfs_destroy_pinned_extent(root,
  3048. root->fs_info->pinned_extents);
  3049. atomic_set(&t->use_count, 0);
  3050. list_del_init(&t->list);
  3051. memset(t, 0, sizeof(*t));
  3052. kmem_cache_free(btrfs_transaction_cachep, t);
  3053. }
  3054. spin_lock(&root->fs_info->trans_lock);
  3055. root->fs_info->trans_no_join = 0;
  3056. spin_unlock(&root->fs_info->trans_lock);
  3057. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3058. return 0;
  3059. }
  3060. static struct extent_io_ops btree_extent_io_ops = {
  3061. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3062. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3063. .readpage_io_failed_hook = btree_io_failed_hook,
  3064. .submit_bio_hook = btree_submit_bio_hook,
  3065. /* note we're sharing with inode.c for the merge bio hook */
  3066. .merge_bio_hook = btrfs_merge_bio_hook,
  3067. };