sched.c 216 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. /* return group to which a task belongs */
  258. static inline struct task_group *task_group(struct task_struct *p)
  259. {
  260. struct task_group *tg;
  261. #ifdef CONFIG_CGROUP_SCHED
  262. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  263. struct task_group, css);
  264. #else
  265. tg = &init_task_group;
  266. #endif
  267. return tg;
  268. }
  269. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  270. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  271. {
  272. /*
  273. * Strictly speaking this rcu_read_lock() is not needed since the
  274. * task_group is tied to the cgroup, which in turn can never go away
  275. * as long as there are tasks attached to it.
  276. *
  277. * However since task_group() uses task_subsys_state() which is an
  278. * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
  279. */
  280. rcu_read_lock();
  281. #ifdef CONFIG_FAIR_GROUP_SCHED
  282. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  283. p->se.parent = task_group(p)->se[cpu];
  284. #endif
  285. #ifdef CONFIG_RT_GROUP_SCHED
  286. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  287. p->rt.parent = task_group(p)->rt_se[cpu];
  288. #endif
  289. rcu_read_unlock();
  290. }
  291. #else
  292. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  293. static inline struct task_group *task_group(struct task_struct *p)
  294. {
  295. return NULL;
  296. }
  297. #endif /* CONFIG_CGROUP_SCHED */
  298. /* CFS-related fields in a runqueue */
  299. struct cfs_rq {
  300. struct load_weight load;
  301. unsigned long nr_running;
  302. u64 exec_clock;
  303. u64 min_vruntime;
  304. struct rb_root tasks_timeline;
  305. struct rb_node *rb_leftmost;
  306. struct list_head tasks;
  307. struct list_head *balance_iterator;
  308. /*
  309. * 'curr' points to currently running entity on this cfs_rq.
  310. * It is set to NULL otherwise (i.e when none are currently running).
  311. */
  312. struct sched_entity *curr, *next, *last;
  313. unsigned int nr_spread_over;
  314. #ifdef CONFIG_FAIR_GROUP_SCHED
  315. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  316. /*
  317. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  318. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  319. * (like users, containers etc.)
  320. *
  321. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  322. * list is used during load balance.
  323. */
  324. struct list_head leaf_cfs_rq_list;
  325. struct task_group *tg; /* group that "owns" this runqueue */
  326. #ifdef CONFIG_SMP
  327. /*
  328. * the part of load.weight contributed by tasks
  329. */
  330. unsigned long task_weight;
  331. /*
  332. * h_load = weight * f(tg)
  333. *
  334. * Where f(tg) is the recursive weight fraction assigned to
  335. * this group.
  336. */
  337. unsigned long h_load;
  338. /*
  339. * this cpu's part of tg->shares
  340. */
  341. unsigned long shares;
  342. /*
  343. * load.weight at the time we set shares
  344. */
  345. unsigned long rq_weight;
  346. #endif
  347. #endif
  348. };
  349. /* Real-Time classes' related field in a runqueue: */
  350. struct rt_rq {
  351. struct rt_prio_array active;
  352. unsigned long rt_nr_running;
  353. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  354. struct {
  355. int curr; /* highest queued rt task prio */
  356. #ifdef CONFIG_SMP
  357. int next; /* next highest */
  358. #endif
  359. } highest_prio;
  360. #endif
  361. #ifdef CONFIG_SMP
  362. unsigned long rt_nr_migratory;
  363. unsigned long rt_nr_total;
  364. int overloaded;
  365. struct plist_head pushable_tasks;
  366. #endif
  367. int rt_throttled;
  368. u64 rt_time;
  369. u64 rt_runtime;
  370. /* Nests inside the rq lock: */
  371. raw_spinlock_t rt_runtime_lock;
  372. #ifdef CONFIG_RT_GROUP_SCHED
  373. unsigned long rt_nr_boosted;
  374. struct rq *rq;
  375. struct list_head leaf_rt_rq_list;
  376. struct task_group *tg;
  377. #endif
  378. };
  379. #ifdef CONFIG_SMP
  380. /*
  381. * We add the notion of a root-domain which will be used to define per-domain
  382. * variables. Each exclusive cpuset essentially defines an island domain by
  383. * fully partitioning the member cpus from any other cpuset. Whenever a new
  384. * exclusive cpuset is created, we also create and attach a new root-domain
  385. * object.
  386. *
  387. */
  388. struct root_domain {
  389. atomic_t refcount;
  390. cpumask_var_t span;
  391. cpumask_var_t online;
  392. /*
  393. * The "RT overload" flag: it gets set if a CPU has more than
  394. * one runnable RT task.
  395. */
  396. cpumask_var_t rto_mask;
  397. atomic_t rto_count;
  398. #ifdef CONFIG_SMP
  399. struct cpupri cpupri;
  400. #endif
  401. };
  402. /*
  403. * By default the system creates a single root-domain with all cpus as
  404. * members (mimicking the global state we have today).
  405. */
  406. static struct root_domain def_root_domain;
  407. #endif
  408. /*
  409. * This is the main, per-CPU runqueue data structure.
  410. *
  411. * Locking rule: those places that want to lock multiple runqueues
  412. * (such as the load balancing or the thread migration code), lock
  413. * acquire operations must be ordered by ascending &runqueue.
  414. */
  415. struct rq {
  416. /* runqueue lock: */
  417. raw_spinlock_t lock;
  418. /*
  419. * nr_running and cpu_load should be in the same cacheline because
  420. * remote CPUs use both these fields when doing load calculation.
  421. */
  422. unsigned long nr_running;
  423. #define CPU_LOAD_IDX_MAX 5
  424. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  425. #ifdef CONFIG_NO_HZ
  426. u64 nohz_stamp;
  427. unsigned char in_nohz_recently;
  428. #endif
  429. unsigned int skip_clock_update;
  430. /* capture load from *all* tasks on this cpu: */
  431. struct load_weight load;
  432. unsigned long nr_load_updates;
  433. u64 nr_switches;
  434. struct cfs_rq cfs;
  435. struct rt_rq rt;
  436. #ifdef CONFIG_FAIR_GROUP_SCHED
  437. /* list of leaf cfs_rq on this cpu: */
  438. struct list_head leaf_cfs_rq_list;
  439. #endif
  440. #ifdef CONFIG_RT_GROUP_SCHED
  441. struct list_head leaf_rt_rq_list;
  442. #endif
  443. /*
  444. * This is part of a global counter where only the total sum
  445. * over all CPUs matters. A task can increase this counter on
  446. * one CPU and if it got migrated afterwards it may decrease
  447. * it on another CPU. Always updated under the runqueue lock:
  448. */
  449. unsigned long nr_uninterruptible;
  450. struct task_struct *curr, *idle;
  451. unsigned long next_balance;
  452. struct mm_struct *prev_mm;
  453. u64 clock;
  454. atomic_t nr_iowait;
  455. #ifdef CONFIG_SMP
  456. struct root_domain *rd;
  457. struct sched_domain *sd;
  458. unsigned long cpu_power;
  459. unsigned char idle_at_tick;
  460. /* For active balancing */
  461. int post_schedule;
  462. int active_balance;
  463. int push_cpu;
  464. struct cpu_stop_work active_balance_work;
  465. /* cpu of this runqueue: */
  466. int cpu;
  467. int online;
  468. unsigned long avg_load_per_task;
  469. u64 rt_avg;
  470. u64 age_stamp;
  471. u64 idle_stamp;
  472. u64 avg_idle;
  473. #endif
  474. /* calc_load related fields */
  475. unsigned long calc_load_update;
  476. long calc_load_active;
  477. #ifdef CONFIG_SCHED_HRTICK
  478. #ifdef CONFIG_SMP
  479. int hrtick_csd_pending;
  480. struct call_single_data hrtick_csd;
  481. #endif
  482. struct hrtimer hrtick_timer;
  483. #endif
  484. #ifdef CONFIG_SCHEDSTATS
  485. /* latency stats */
  486. struct sched_info rq_sched_info;
  487. unsigned long long rq_cpu_time;
  488. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  489. /* sys_sched_yield() stats */
  490. unsigned int yld_count;
  491. /* schedule() stats */
  492. unsigned int sched_switch;
  493. unsigned int sched_count;
  494. unsigned int sched_goidle;
  495. /* try_to_wake_up() stats */
  496. unsigned int ttwu_count;
  497. unsigned int ttwu_local;
  498. /* BKL stats */
  499. unsigned int bkl_count;
  500. #endif
  501. };
  502. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  503. static inline
  504. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  505. {
  506. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  507. /*
  508. * A queue event has occurred, and we're going to schedule. In
  509. * this case, we can save a useless back to back clock update.
  510. */
  511. if (test_tsk_need_resched(p))
  512. rq->skip_clock_update = 1;
  513. }
  514. static inline int cpu_of(struct rq *rq)
  515. {
  516. #ifdef CONFIG_SMP
  517. return rq->cpu;
  518. #else
  519. return 0;
  520. #endif
  521. }
  522. #define rcu_dereference_check_sched_domain(p) \
  523. rcu_dereference_check((p), \
  524. rcu_read_lock_sched_held() || \
  525. lockdep_is_held(&sched_domains_mutex))
  526. /*
  527. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  528. * See detach_destroy_domains: synchronize_sched for details.
  529. *
  530. * The domain tree of any CPU may only be accessed from within
  531. * preempt-disabled sections.
  532. */
  533. #define for_each_domain(cpu, __sd) \
  534. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  535. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  536. #define this_rq() (&__get_cpu_var(runqueues))
  537. #define task_rq(p) cpu_rq(task_cpu(p))
  538. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  539. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  540. inline void update_rq_clock(struct rq *rq)
  541. {
  542. if (!rq->skip_clock_update)
  543. rq->clock = sched_clock_cpu(cpu_of(rq));
  544. }
  545. /*
  546. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  547. */
  548. #ifdef CONFIG_SCHED_DEBUG
  549. # define const_debug __read_mostly
  550. #else
  551. # define const_debug static const
  552. #endif
  553. /**
  554. * runqueue_is_locked
  555. * @cpu: the processor in question.
  556. *
  557. * Returns true if the current cpu runqueue is locked.
  558. * This interface allows printk to be called with the runqueue lock
  559. * held and know whether or not it is OK to wake up the klogd.
  560. */
  561. int runqueue_is_locked(int cpu)
  562. {
  563. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  564. }
  565. /*
  566. * Debugging: various feature bits
  567. */
  568. #define SCHED_FEAT(name, enabled) \
  569. __SCHED_FEAT_##name ,
  570. enum {
  571. #include "sched_features.h"
  572. };
  573. #undef SCHED_FEAT
  574. #define SCHED_FEAT(name, enabled) \
  575. (1UL << __SCHED_FEAT_##name) * enabled |
  576. const_debug unsigned int sysctl_sched_features =
  577. #include "sched_features.h"
  578. 0;
  579. #undef SCHED_FEAT
  580. #ifdef CONFIG_SCHED_DEBUG
  581. #define SCHED_FEAT(name, enabled) \
  582. #name ,
  583. static __read_mostly char *sched_feat_names[] = {
  584. #include "sched_features.h"
  585. NULL
  586. };
  587. #undef SCHED_FEAT
  588. static int sched_feat_show(struct seq_file *m, void *v)
  589. {
  590. int i;
  591. for (i = 0; sched_feat_names[i]; i++) {
  592. if (!(sysctl_sched_features & (1UL << i)))
  593. seq_puts(m, "NO_");
  594. seq_printf(m, "%s ", sched_feat_names[i]);
  595. }
  596. seq_puts(m, "\n");
  597. return 0;
  598. }
  599. static ssize_t
  600. sched_feat_write(struct file *filp, const char __user *ubuf,
  601. size_t cnt, loff_t *ppos)
  602. {
  603. char buf[64];
  604. char *cmp = buf;
  605. int neg = 0;
  606. int i;
  607. if (cnt > 63)
  608. cnt = 63;
  609. if (copy_from_user(&buf, ubuf, cnt))
  610. return -EFAULT;
  611. buf[cnt] = 0;
  612. if (strncmp(buf, "NO_", 3) == 0) {
  613. neg = 1;
  614. cmp += 3;
  615. }
  616. for (i = 0; sched_feat_names[i]; i++) {
  617. int len = strlen(sched_feat_names[i]);
  618. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  619. if (neg)
  620. sysctl_sched_features &= ~(1UL << i);
  621. else
  622. sysctl_sched_features |= (1UL << i);
  623. break;
  624. }
  625. }
  626. if (!sched_feat_names[i])
  627. return -EINVAL;
  628. *ppos += cnt;
  629. return cnt;
  630. }
  631. static int sched_feat_open(struct inode *inode, struct file *filp)
  632. {
  633. return single_open(filp, sched_feat_show, NULL);
  634. }
  635. static const struct file_operations sched_feat_fops = {
  636. .open = sched_feat_open,
  637. .write = sched_feat_write,
  638. .read = seq_read,
  639. .llseek = seq_lseek,
  640. .release = single_release,
  641. };
  642. static __init int sched_init_debug(void)
  643. {
  644. debugfs_create_file("sched_features", 0644, NULL, NULL,
  645. &sched_feat_fops);
  646. return 0;
  647. }
  648. late_initcall(sched_init_debug);
  649. #endif
  650. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  651. /*
  652. * Number of tasks to iterate in a single balance run.
  653. * Limited because this is done with IRQs disabled.
  654. */
  655. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  656. /*
  657. * ratelimit for updating the group shares.
  658. * default: 0.25ms
  659. */
  660. unsigned int sysctl_sched_shares_ratelimit = 250000;
  661. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  662. /*
  663. * Inject some fuzzyness into changing the per-cpu group shares
  664. * this avoids remote rq-locks at the expense of fairness.
  665. * default: 4
  666. */
  667. unsigned int sysctl_sched_shares_thresh = 4;
  668. /*
  669. * period over which we average the RT time consumption, measured
  670. * in ms.
  671. *
  672. * default: 1s
  673. */
  674. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  675. /*
  676. * period over which we measure -rt task cpu usage in us.
  677. * default: 1s
  678. */
  679. unsigned int sysctl_sched_rt_period = 1000000;
  680. static __read_mostly int scheduler_running;
  681. /*
  682. * part of the period that we allow rt tasks to run in us.
  683. * default: 0.95s
  684. */
  685. int sysctl_sched_rt_runtime = 950000;
  686. static inline u64 global_rt_period(void)
  687. {
  688. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  689. }
  690. static inline u64 global_rt_runtime(void)
  691. {
  692. if (sysctl_sched_rt_runtime < 0)
  693. return RUNTIME_INF;
  694. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  695. }
  696. #ifndef prepare_arch_switch
  697. # define prepare_arch_switch(next) do { } while (0)
  698. #endif
  699. #ifndef finish_arch_switch
  700. # define finish_arch_switch(prev) do { } while (0)
  701. #endif
  702. static inline int task_current(struct rq *rq, struct task_struct *p)
  703. {
  704. return rq->curr == p;
  705. }
  706. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  707. static inline int task_running(struct rq *rq, struct task_struct *p)
  708. {
  709. return task_current(rq, p);
  710. }
  711. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  712. {
  713. }
  714. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  715. {
  716. #ifdef CONFIG_DEBUG_SPINLOCK
  717. /* this is a valid case when another task releases the spinlock */
  718. rq->lock.owner = current;
  719. #endif
  720. /*
  721. * If we are tracking spinlock dependencies then we have to
  722. * fix up the runqueue lock - which gets 'carried over' from
  723. * prev into current:
  724. */
  725. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  726. raw_spin_unlock_irq(&rq->lock);
  727. }
  728. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  729. static inline int task_running(struct rq *rq, struct task_struct *p)
  730. {
  731. #ifdef CONFIG_SMP
  732. return p->oncpu;
  733. #else
  734. return task_current(rq, p);
  735. #endif
  736. }
  737. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  738. {
  739. #ifdef CONFIG_SMP
  740. /*
  741. * We can optimise this out completely for !SMP, because the
  742. * SMP rebalancing from interrupt is the only thing that cares
  743. * here.
  744. */
  745. next->oncpu = 1;
  746. #endif
  747. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  748. raw_spin_unlock_irq(&rq->lock);
  749. #else
  750. raw_spin_unlock(&rq->lock);
  751. #endif
  752. }
  753. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  754. {
  755. #ifdef CONFIG_SMP
  756. /*
  757. * After ->oncpu is cleared, the task can be moved to a different CPU.
  758. * We must ensure this doesn't happen until the switch is completely
  759. * finished.
  760. */
  761. smp_wmb();
  762. prev->oncpu = 0;
  763. #endif
  764. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  765. local_irq_enable();
  766. #endif
  767. }
  768. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  769. /*
  770. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  771. * against ttwu().
  772. */
  773. static inline int task_is_waking(struct task_struct *p)
  774. {
  775. return unlikely(p->state == TASK_WAKING);
  776. }
  777. /*
  778. * __task_rq_lock - lock the runqueue a given task resides on.
  779. * Must be called interrupts disabled.
  780. */
  781. static inline struct rq *__task_rq_lock(struct task_struct *p)
  782. __acquires(rq->lock)
  783. {
  784. struct rq *rq;
  785. for (;;) {
  786. rq = task_rq(p);
  787. raw_spin_lock(&rq->lock);
  788. if (likely(rq == task_rq(p)))
  789. return rq;
  790. raw_spin_unlock(&rq->lock);
  791. }
  792. }
  793. /*
  794. * task_rq_lock - lock the runqueue a given task resides on and disable
  795. * interrupts. Note the ordering: we can safely lookup the task_rq without
  796. * explicitly disabling preemption.
  797. */
  798. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  799. __acquires(rq->lock)
  800. {
  801. struct rq *rq;
  802. for (;;) {
  803. local_irq_save(*flags);
  804. rq = task_rq(p);
  805. raw_spin_lock(&rq->lock);
  806. if (likely(rq == task_rq(p)))
  807. return rq;
  808. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  809. }
  810. }
  811. static void __task_rq_unlock(struct rq *rq)
  812. __releases(rq->lock)
  813. {
  814. raw_spin_unlock(&rq->lock);
  815. }
  816. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  817. __releases(rq->lock)
  818. {
  819. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  820. }
  821. /*
  822. * this_rq_lock - lock this runqueue and disable interrupts.
  823. */
  824. static struct rq *this_rq_lock(void)
  825. __acquires(rq->lock)
  826. {
  827. struct rq *rq;
  828. local_irq_disable();
  829. rq = this_rq();
  830. raw_spin_lock(&rq->lock);
  831. return rq;
  832. }
  833. #ifdef CONFIG_SCHED_HRTICK
  834. /*
  835. * Use HR-timers to deliver accurate preemption points.
  836. *
  837. * Its all a bit involved since we cannot program an hrt while holding the
  838. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  839. * reschedule event.
  840. *
  841. * When we get rescheduled we reprogram the hrtick_timer outside of the
  842. * rq->lock.
  843. */
  844. /*
  845. * Use hrtick when:
  846. * - enabled by features
  847. * - hrtimer is actually high res
  848. */
  849. static inline int hrtick_enabled(struct rq *rq)
  850. {
  851. if (!sched_feat(HRTICK))
  852. return 0;
  853. if (!cpu_active(cpu_of(rq)))
  854. return 0;
  855. return hrtimer_is_hres_active(&rq->hrtick_timer);
  856. }
  857. static void hrtick_clear(struct rq *rq)
  858. {
  859. if (hrtimer_active(&rq->hrtick_timer))
  860. hrtimer_cancel(&rq->hrtick_timer);
  861. }
  862. /*
  863. * High-resolution timer tick.
  864. * Runs from hardirq context with interrupts disabled.
  865. */
  866. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  867. {
  868. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  869. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  870. raw_spin_lock(&rq->lock);
  871. update_rq_clock(rq);
  872. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  873. raw_spin_unlock(&rq->lock);
  874. return HRTIMER_NORESTART;
  875. }
  876. #ifdef CONFIG_SMP
  877. /*
  878. * called from hardirq (IPI) context
  879. */
  880. static void __hrtick_start(void *arg)
  881. {
  882. struct rq *rq = arg;
  883. raw_spin_lock(&rq->lock);
  884. hrtimer_restart(&rq->hrtick_timer);
  885. rq->hrtick_csd_pending = 0;
  886. raw_spin_unlock(&rq->lock);
  887. }
  888. /*
  889. * Called to set the hrtick timer state.
  890. *
  891. * called with rq->lock held and irqs disabled
  892. */
  893. static void hrtick_start(struct rq *rq, u64 delay)
  894. {
  895. struct hrtimer *timer = &rq->hrtick_timer;
  896. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  897. hrtimer_set_expires(timer, time);
  898. if (rq == this_rq()) {
  899. hrtimer_restart(timer);
  900. } else if (!rq->hrtick_csd_pending) {
  901. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  902. rq->hrtick_csd_pending = 1;
  903. }
  904. }
  905. static int
  906. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  907. {
  908. int cpu = (int)(long)hcpu;
  909. switch (action) {
  910. case CPU_UP_CANCELED:
  911. case CPU_UP_CANCELED_FROZEN:
  912. case CPU_DOWN_PREPARE:
  913. case CPU_DOWN_PREPARE_FROZEN:
  914. case CPU_DEAD:
  915. case CPU_DEAD_FROZEN:
  916. hrtick_clear(cpu_rq(cpu));
  917. return NOTIFY_OK;
  918. }
  919. return NOTIFY_DONE;
  920. }
  921. static __init void init_hrtick(void)
  922. {
  923. hotcpu_notifier(hotplug_hrtick, 0);
  924. }
  925. #else
  926. /*
  927. * Called to set the hrtick timer state.
  928. *
  929. * called with rq->lock held and irqs disabled
  930. */
  931. static void hrtick_start(struct rq *rq, u64 delay)
  932. {
  933. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  934. HRTIMER_MODE_REL_PINNED, 0);
  935. }
  936. static inline void init_hrtick(void)
  937. {
  938. }
  939. #endif /* CONFIG_SMP */
  940. static void init_rq_hrtick(struct rq *rq)
  941. {
  942. #ifdef CONFIG_SMP
  943. rq->hrtick_csd_pending = 0;
  944. rq->hrtick_csd.flags = 0;
  945. rq->hrtick_csd.func = __hrtick_start;
  946. rq->hrtick_csd.info = rq;
  947. #endif
  948. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  949. rq->hrtick_timer.function = hrtick;
  950. }
  951. #else /* CONFIG_SCHED_HRTICK */
  952. static inline void hrtick_clear(struct rq *rq)
  953. {
  954. }
  955. static inline void init_rq_hrtick(struct rq *rq)
  956. {
  957. }
  958. static inline void init_hrtick(void)
  959. {
  960. }
  961. #endif /* CONFIG_SCHED_HRTICK */
  962. /*
  963. * resched_task - mark a task 'to be rescheduled now'.
  964. *
  965. * On UP this means the setting of the need_resched flag, on SMP it
  966. * might also involve a cross-CPU call to trigger the scheduler on
  967. * the target CPU.
  968. */
  969. #ifdef CONFIG_SMP
  970. #ifndef tsk_is_polling
  971. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  972. #endif
  973. static void resched_task(struct task_struct *p)
  974. {
  975. int cpu;
  976. assert_raw_spin_locked(&task_rq(p)->lock);
  977. if (test_tsk_need_resched(p))
  978. return;
  979. set_tsk_need_resched(p);
  980. cpu = task_cpu(p);
  981. if (cpu == smp_processor_id())
  982. return;
  983. /* NEED_RESCHED must be visible before we test polling */
  984. smp_mb();
  985. if (!tsk_is_polling(p))
  986. smp_send_reschedule(cpu);
  987. }
  988. static void resched_cpu(int cpu)
  989. {
  990. struct rq *rq = cpu_rq(cpu);
  991. unsigned long flags;
  992. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  993. return;
  994. resched_task(cpu_curr(cpu));
  995. raw_spin_unlock_irqrestore(&rq->lock, flags);
  996. }
  997. #ifdef CONFIG_NO_HZ
  998. /*
  999. * When add_timer_on() enqueues a timer into the timer wheel of an
  1000. * idle CPU then this timer might expire before the next timer event
  1001. * which is scheduled to wake up that CPU. In case of a completely
  1002. * idle system the next event might even be infinite time into the
  1003. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1004. * leaves the inner idle loop so the newly added timer is taken into
  1005. * account when the CPU goes back to idle and evaluates the timer
  1006. * wheel for the next timer event.
  1007. */
  1008. void wake_up_idle_cpu(int cpu)
  1009. {
  1010. struct rq *rq = cpu_rq(cpu);
  1011. if (cpu == smp_processor_id())
  1012. return;
  1013. /*
  1014. * This is safe, as this function is called with the timer
  1015. * wheel base lock of (cpu) held. When the CPU is on the way
  1016. * to idle and has not yet set rq->curr to idle then it will
  1017. * be serialized on the timer wheel base lock and take the new
  1018. * timer into account automatically.
  1019. */
  1020. if (rq->curr != rq->idle)
  1021. return;
  1022. /*
  1023. * We can set TIF_RESCHED on the idle task of the other CPU
  1024. * lockless. The worst case is that the other CPU runs the
  1025. * idle task through an additional NOOP schedule()
  1026. */
  1027. set_tsk_need_resched(rq->idle);
  1028. /* NEED_RESCHED must be visible before we test polling */
  1029. smp_mb();
  1030. if (!tsk_is_polling(rq->idle))
  1031. smp_send_reschedule(cpu);
  1032. }
  1033. int nohz_ratelimit(int cpu)
  1034. {
  1035. struct rq *rq = cpu_rq(cpu);
  1036. u64 diff = rq->clock - rq->nohz_stamp;
  1037. rq->nohz_stamp = rq->clock;
  1038. return diff < (NSEC_PER_SEC / HZ) >> 1;
  1039. }
  1040. #endif /* CONFIG_NO_HZ */
  1041. static u64 sched_avg_period(void)
  1042. {
  1043. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1044. }
  1045. static void sched_avg_update(struct rq *rq)
  1046. {
  1047. s64 period = sched_avg_period();
  1048. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1049. rq->age_stamp += period;
  1050. rq->rt_avg /= 2;
  1051. }
  1052. }
  1053. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1054. {
  1055. rq->rt_avg += rt_delta;
  1056. sched_avg_update(rq);
  1057. }
  1058. #else /* !CONFIG_SMP */
  1059. static void resched_task(struct task_struct *p)
  1060. {
  1061. assert_raw_spin_locked(&task_rq(p)->lock);
  1062. set_tsk_need_resched(p);
  1063. }
  1064. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1065. {
  1066. }
  1067. #endif /* CONFIG_SMP */
  1068. #if BITS_PER_LONG == 32
  1069. # define WMULT_CONST (~0UL)
  1070. #else
  1071. # define WMULT_CONST (1UL << 32)
  1072. #endif
  1073. #define WMULT_SHIFT 32
  1074. /*
  1075. * Shift right and round:
  1076. */
  1077. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1078. /*
  1079. * delta *= weight / lw
  1080. */
  1081. static unsigned long
  1082. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1083. struct load_weight *lw)
  1084. {
  1085. u64 tmp;
  1086. if (!lw->inv_weight) {
  1087. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1088. lw->inv_weight = 1;
  1089. else
  1090. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1091. / (lw->weight+1);
  1092. }
  1093. tmp = (u64)delta_exec * weight;
  1094. /*
  1095. * Check whether we'd overflow the 64-bit multiplication:
  1096. */
  1097. if (unlikely(tmp > WMULT_CONST))
  1098. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1099. WMULT_SHIFT/2);
  1100. else
  1101. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1102. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1103. }
  1104. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1105. {
  1106. lw->weight += inc;
  1107. lw->inv_weight = 0;
  1108. }
  1109. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1110. {
  1111. lw->weight -= dec;
  1112. lw->inv_weight = 0;
  1113. }
  1114. /*
  1115. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1116. * of tasks with abnormal "nice" values across CPUs the contribution that
  1117. * each task makes to its run queue's load is weighted according to its
  1118. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1119. * scaled version of the new time slice allocation that they receive on time
  1120. * slice expiry etc.
  1121. */
  1122. #define WEIGHT_IDLEPRIO 3
  1123. #define WMULT_IDLEPRIO 1431655765
  1124. /*
  1125. * Nice levels are multiplicative, with a gentle 10% change for every
  1126. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1127. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1128. * that remained on nice 0.
  1129. *
  1130. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1131. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1132. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1133. * If a task goes up by ~10% and another task goes down by ~10% then
  1134. * the relative distance between them is ~25%.)
  1135. */
  1136. static const int prio_to_weight[40] = {
  1137. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1138. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1139. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1140. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1141. /* 0 */ 1024, 820, 655, 526, 423,
  1142. /* 5 */ 335, 272, 215, 172, 137,
  1143. /* 10 */ 110, 87, 70, 56, 45,
  1144. /* 15 */ 36, 29, 23, 18, 15,
  1145. };
  1146. /*
  1147. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1148. *
  1149. * In cases where the weight does not change often, we can use the
  1150. * precalculated inverse to speed up arithmetics by turning divisions
  1151. * into multiplications:
  1152. */
  1153. static const u32 prio_to_wmult[40] = {
  1154. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1155. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1156. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1157. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1158. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1159. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1160. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1161. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1162. };
  1163. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1164. enum cpuacct_stat_index {
  1165. CPUACCT_STAT_USER, /* ... user mode */
  1166. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1167. CPUACCT_STAT_NSTATS,
  1168. };
  1169. #ifdef CONFIG_CGROUP_CPUACCT
  1170. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1171. static void cpuacct_update_stats(struct task_struct *tsk,
  1172. enum cpuacct_stat_index idx, cputime_t val);
  1173. #else
  1174. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1175. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1176. enum cpuacct_stat_index idx, cputime_t val) {}
  1177. #endif
  1178. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1179. {
  1180. update_load_add(&rq->load, load);
  1181. }
  1182. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1183. {
  1184. update_load_sub(&rq->load, load);
  1185. }
  1186. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1187. typedef int (*tg_visitor)(struct task_group *, void *);
  1188. /*
  1189. * Iterate the full tree, calling @down when first entering a node and @up when
  1190. * leaving it for the final time.
  1191. */
  1192. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1193. {
  1194. struct task_group *parent, *child;
  1195. int ret;
  1196. rcu_read_lock();
  1197. parent = &root_task_group;
  1198. down:
  1199. ret = (*down)(parent, data);
  1200. if (ret)
  1201. goto out_unlock;
  1202. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1203. parent = child;
  1204. goto down;
  1205. up:
  1206. continue;
  1207. }
  1208. ret = (*up)(parent, data);
  1209. if (ret)
  1210. goto out_unlock;
  1211. child = parent;
  1212. parent = parent->parent;
  1213. if (parent)
  1214. goto up;
  1215. out_unlock:
  1216. rcu_read_unlock();
  1217. return ret;
  1218. }
  1219. static int tg_nop(struct task_group *tg, void *data)
  1220. {
  1221. return 0;
  1222. }
  1223. #endif
  1224. #ifdef CONFIG_SMP
  1225. /* Used instead of source_load when we know the type == 0 */
  1226. static unsigned long weighted_cpuload(const int cpu)
  1227. {
  1228. return cpu_rq(cpu)->load.weight;
  1229. }
  1230. /*
  1231. * Return a low guess at the load of a migration-source cpu weighted
  1232. * according to the scheduling class and "nice" value.
  1233. *
  1234. * We want to under-estimate the load of migration sources, to
  1235. * balance conservatively.
  1236. */
  1237. static unsigned long source_load(int cpu, int type)
  1238. {
  1239. struct rq *rq = cpu_rq(cpu);
  1240. unsigned long total = weighted_cpuload(cpu);
  1241. if (type == 0 || !sched_feat(LB_BIAS))
  1242. return total;
  1243. return min(rq->cpu_load[type-1], total);
  1244. }
  1245. /*
  1246. * Return a high guess at the load of a migration-target cpu weighted
  1247. * according to the scheduling class and "nice" value.
  1248. */
  1249. static unsigned long target_load(int cpu, int type)
  1250. {
  1251. struct rq *rq = cpu_rq(cpu);
  1252. unsigned long total = weighted_cpuload(cpu);
  1253. if (type == 0 || !sched_feat(LB_BIAS))
  1254. return total;
  1255. return max(rq->cpu_load[type-1], total);
  1256. }
  1257. static unsigned long power_of(int cpu)
  1258. {
  1259. return cpu_rq(cpu)->cpu_power;
  1260. }
  1261. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1262. static unsigned long cpu_avg_load_per_task(int cpu)
  1263. {
  1264. struct rq *rq = cpu_rq(cpu);
  1265. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1266. if (nr_running)
  1267. rq->avg_load_per_task = rq->load.weight / nr_running;
  1268. else
  1269. rq->avg_load_per_task = 0;
  1270. return rq->avg_load_per_task;
  1271. }
  1272. #ifdef CONFIG_FAIR_GROUP_SCHED
  1273. static __read_mostly unsigned long __percpu *update_shares_data;
  1274. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1275. /*
  1276. * Calculate and set the cpu's group shares.
  1277. */
  1278. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1279. unsigned long sd_shares,
  1280. unsigned long sd_rq_weight,
  1281. unsigned long *usd_rq_weight)
  1282. {
  1283. unsigned long shares, rq_weight;
  1284. int boost = 0;
  1285. rq_weight = usd_rq_weight[cpu];
  1286. if (!rq_weight) {
  1287. boost = 1;
  1288. rq_weight = NICE_0_LOAD;
  1289. }
  1290. /*
  1291. * \Sum_j shares_j * rq_weight_i
  1292. * shares_i = -----------------------------
  1293. * \Sum_j rq_weight_j
  1294. */
  1295. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1296. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1297. if (abs(shares - tg->se[cpu]->load.weight) >
  1298. sysctl_sched_shares_thresh) {
  1299. struct rq *rq = cpu_rq(cpu);
  1300. unsigned long flags;
  1301. raw_spin_lock_irqsave(&rq->lock, flags);
  1302. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1303. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1304. __set_se_shares(tg->se[cpu], shares);
  1305. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1306. }
  1307. }
  1308. /*
  1309. * Re-compute the task group their per cpu shares over the given domain.
  1310. * This needs to be done in a bottom-up fashion because the rq weight of a
  1311. * parent group depends on the shares of its child groups.
  1312. */
  1313. static int tg_shares_up(struct task_group *tg, void *data)
  1314. {
  1315. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1316. unsigned long *usd_rq_weight;
  1317. struct sched_domain *sd = data;
  1318. unsigned long flags;
  1319. int i;
  1320. if (!tg->se[0])
  1321. return 0;
  1322. local_irq_save(flags);
  1323. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1324. for_each_cpu(i, sched_domain_span(sd)) {
  1325. weight = tg->cfs_rq[i]->load.weight;
  1326. usd_rq_weight[i] = weight;
  1327. rq_weight += weight;
  1328. /*
  1329. * If there are currently no tasks on the cpu pretend there
  1330. * is one of average load so that when a new task gets to
  1331. * run here it will not get delayed by group starvation.
  1332. */
  1333. if (!weight)
  1334. weight = NICE_0_LOAD;
  1335. sum_weight += weight;
  1336. shares += tg->cfs_rq[i]->shares;
  1337. }
  1338. if (!rq_weight)
  1339. rq_weight = sum_weight;
  1340. if ((!shares && rq_weight) || shares > tg->shares)
  1341. shares = tg->shares;
  1342. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1343. shares = tg->shares;
  1344. for_each_cpu(i, sched_domain_span(sd))
  1345. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1346. local_irq_restore(flags);
  1347. return 0;
  1348. }
  1349. /*
  1350. * Compute the cpu's hierarchical load factor for each task group.
  1351. * This needs to be done in a top-down fashion because the load of a child
  1352. * group is a fraction of its parents load.
  1353. */
  1354. static int tg_load_down(struct task_group *tg, void *data)
  1355. {
  1356. unsigned long load;
  1357. long cpu = (long)data;
  1358. if (!tg->parent) {
  1359. load = cpu_rq(cpu)->load.weight;
  1360. } else {
  1361. load = tg->parent->cfs_rq[cpu]->h_load;
  1362. load *= tg->cfs_rq[cpu]->shares;
  1363. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1364. }
  1365. tg->cfs_rq[cpu]->h_load = load;
  1366. return 0;
  1367. }
  1368. static void update_shares(struct sched_domain *sd)
  1369. {
  1370. s64 elapsed;
  1371. u64 now;
  1372. if (root_task_group_empty())
  1373. return;
  1374. now = cpu_clock(raw_smp_processor_id());
  1375. elapsed = now - sd->last_update;
  1376. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1377. sd->last_update = now;
  1378. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1379. }
  1380. }
  1381. static void update_h_load(long cpu)
  1382. {
  1383. if (root_task_group_empty())
  1384. return;
  1385. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1386. }
  1387. #else
  1388. static inline void update_shares(struct sched_domain *sd)
  1389. {
  1390. }
  1391. #endif
  1392. #ifdef CONFIG_PREEMPT
  1393. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1394. /*
  1395. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1396. * way at the expense of forcing extra atomic operations in all
  1397. * invocations. This assures that the double_lock is acquired using the
  1398. * same underlying policy as the spinlock_t on this architecture, which
  1399. * reduces latency compared to the unfair variant below. However, it
  1400. * also adds more overhead and therefore may reduce throughput.
  1401. */
  1402. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1403. __releases(this_rq->lock)
  1404. __acquires(busiest->lock)
  1405. __acquires(this_rq->lock)
  1406. {
  1407. raw_spin_unlock(&this_rq->lock);
  1408. double_rq_lock(this_rq, busiest);
  1409. return 1;
  1410. }
  1411. #else
  1412. /*
  1413. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1414. * latency by eliminating extra atomic operations when the locks are
  1415. * already in proper order on entry. This favors lower cpu-ids and will
  1416. * grant the double lock to lower cpus over higher ids under contention,
  1417. * regardless of entry order into the function.
  1418. */
  1419. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1420. __releases(this_rq->lock)
  1421. __acquires(busiest->lock)
  1422. __acquires(this_rq->lock)
  1423. {
  1424. int ret = 0;
  1425. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1426. if (busiest < this_rq) {
  1427. raw_spin_unlock(&this_rq->lock);
  1428. raw_spin_lock(&busiest->lock);
  1429. raw_spin_lock_nested(&this_rq->lock,
  1430. SINGLE_DEPTH_NESTING);
  1431. ret = 1;
  1432. } else
  1433. raw_spin_lock_nested(&busiest->lock,
  1434. SINGLE_DEPTH_NESTING);
  1435. }
  1436. return ret;
  1437. }
  1438. #endif /* CONFIG_PREEMPT */
  1439. /*
  1440. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1441. */
  1442. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1443. {
  1444. if (unlikely(!irqs_disabled())) {
  1445. /* printk() doesn't work good under rq->lock */
  1446. raw_spin_unlock(&this_rq->lock);
  1447. BUG_ON(1);
  1448. }
  1449. return _double_lock_balance(this_rq, busiest);
  1450. }
  1451. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1452. __releases(busiest->lock)
  1453. {
  1454. raw_spin_unlock(&busiest->lock);
  1455. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1456. }
  1457. /*
  1458. * double_rq_lock - safely lock two runqueues
  1459. *
  1460. * Note this does not disable interrupts like task_rq_lock,
  1461. * you need to do so manually before calling.
  1462. */
  1463. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1464. __acquires(rq1->lock)
  1465. __acquires(rq2->lock)
  1466. {
  1467. BUG_ON(!irqs_disabled());
  1468. if (rq1 == rq2) {
  1469. raw_spin_lock(&rq1->lock);
  1470. __acquire(rq2->lock); /* Fake it out ;) */
  1471. } else {
  1472. if (rq1 < rq2) {
  1473. raw_spin_lock(&rq1->lock);
  1474. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1475. } else {
  1476. raw_spin_lock(&rq2->lock);
  1477. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1478. }
  1479. }
  1480. }
  1481. /*
  1482. * double_rq_unlock - safely unlock two runqueues
  1483. *
  1484. * Note this does not restore interrupts like task_rq_unlock,
  1485. * you need to do so manually after calling.
  1486. */
  1487. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1488. __releases(rq1->lock)
  1489. __releases(rq2->lock)
  1490. {
  1491. raw_spin_unlock(&rq1->lock);
  1492. if (rq1 != rq2)
  1493. raw_spin_unlock(&rq2->lock);
  1494. else
  1495. __release(rq2->lock);
  1496. }
  1497. #endif
  1498. #ifdef CONFIG_FAIR_GROUP_SCHED
  1499. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1500. {
  1501. #ifdef CONFIG_SMP
  1502. cfs_rq->shares = shares;
  1503. #endif
  1504. }
  1505. #endif
  1506. static void calc_load_account_idle(struct rq *this_rq);
  1507. static void update_sysctl(void);
  1508. static int get_update_sysctl_factor(void);
  1509. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1510. {
  1511. set_task_rq(p, cpu);
  1512. #ifdef CONFIG_SMP
  1513. /*
  1514. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1515. * successfuly executed on another CPU. We must ensure that updates of
  1516. * per-task data have been completed by this moment.
  1517. */
  1518. smp_wmb();
  1519. task_thread_info(p)->cpu = cpu;
  1520. #endif
  1521. }
  1522. static const struct sched_class rt_sched_class;
  1523. #define sched_class_highest (&rt_sched_class)
  1524. #define for_each_class(class) \
  1525. for (class = sched_class_highest; class; class = class->next)
  1526. #include "sched_stats.h"
  1527. static void inc_nr_running(struct rq *rq)
  1528. {
  1529. rq->nr_running++;
  1530. }
  1531. static void dec_nr_running(struct rq *rq)
  1532. {
  1533. rq->nr_running--;
  1534. }
  1535. static void set_load_weight(struct task_struct *p)
  1536. {
  1537. if (task_has_rt_policy(p)) {
  1538. p->se.load.weight = 0;
  1539. p->se.load.inv_weight = WMULT_CONST;
  1540. return;
  1541. }
  1542. /*
  1543. * SCHED_IDLE tasks get minimal weight:
  1544. */
  1545. if (p->policy == SCHED_IDLE) {
  1546. p->se.load.weight = WEIGHT_IDLEPRIO;
  1547. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1548. return;
  1549. }
  1550. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1551. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1552. }
  1553. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1554. {
  1555. update_rq_clock(rq);
  1556. sched_info_queued(p);
  1557. p->sched_class->enqueue_task(rq, p, flags);
  1558. p->se.on_rq = 1;
  1559. }
  1560. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1561. {
  1562. update_rq_clock(rq);
  1563. sched_info_dequeued(p);
  1564. p->sched_class->dequeue_task(rq, p, flags);
  1565. p->se.on_rq = 0;
  1566. }
  1567. /*
  1568. * activate_task - move a task to the runqueue.
  1569. */
  1570. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1571. {
  1572. if (task_contributes_to_load(p))
  1573. rq->nr_uninterruptible--;
  1574. enqueue_task(rq, p, flags);
  1575. inc_nr_running(rq);
  1576. }
  1577. /*
  1578. * deactivate_task - remove a task from the runqueue.
  1579. */
  1580. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1581. {
  1582. if (task_contributes_to_load(p))
  1583. rq->nr_uninterruptible++;
  1584. dequeue_task(rq, p, flags);
  1585. dec_nr_running(rq);
  1586. }
  1587. #include "sched_idletask.c"
  1588. #include "sched_fair.c"
  1589. #include "sched_rt.c"
  1590. #ifdef CONFIG_SCHED_DEBUG
  1591. # include "sched_debug.c"
  1592. #endif
  1593. /*
  1594. * __normal_prio - return the priority that is based on the static prio
  1595. */
  1596. static inline int __normal_prio(struct task_struct *p)
  1597. {
  1598. return p->static_prio;
  1599. }
  1600. /*
  1601. * Calculate the expected normal priority: i.e. priority
  1602. * without taking RT-inheritance into account. Might be
  1603. * boosted by interactivity modifiers. Changes upon fork,
  1604. * setprio syscalls, and whenever the interactivity
  1605. * estimator recalculates.
  1606. */
  1607. static inline int normal_prio(struct task_struct *p)
  1608. {
  1609. int prio;
  1610. if (task_has_rt_policy(p))
  1611. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1612. else
  1613. prio = __normal_prio(p);
  1614. return prio;
  1615. }
  1616. /*
  1617. * Calculate the current priority, i.e. the priority
  1618. * taken into account by the scheduler. This value might
  1619. * be boosted by RT tasks, or might be boosted by
  1620. * interactivity modifiers. Will be RT if the task got
  1621. * RT-boosted. If not then it returns p->normal_prio.
  1622. */
  1623. static int effective_prio(struct task_struct *p)
  1624. {
  1625. p->normal_prio = normal_prio(p);
  1626. /*
  1627. * If we are RT tasks or we were boosted to RT priority,
  1628. * keep the priority unchanged. Otherwise, update priority
  1629. * to the normal priority:
  1630. */
  1631. if (!rt_prio(p->prio))
  1632. return p->normal_prio;
  1633. return p->prio;
  1634. }
  1635. /**
  1636. * task_curr - is this task currently executing on a CPU?
  1637. * @p: the task in question.
  1638. */
  1639. inline int task_curr(const struct task_struct *p)
  1640. {
  1641. return cpu_curr(task_cpu(p)) == p;
  1642. }
  1643. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1644. const struct sched_class *prev_class,
  1645. int oldprio, int running)
  1646. {
  1647. if (prev_class != p->sched_class) {
  1648. if (prev_class->switched_from)
  1649. prev_class->switched_from(rq, p, running);
  1650. p->sched_class->switched_to(rq, p, running);
  1651. } else
  1652. p->sched_class->prio_changed(rq, p, oldprio, running);
  1653. }
  1654. #ifdef CONFIG_SMP
  1655. /*
  1656. * Is this task likely cache-hot:
  1657. */
  1658. static int
  1659. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1660. {
  1661. s64 delta;
  1662. if (p->sched_class != &fair_sched_class)
  1663. return 0;
  1664. /*
  1665. * Buddy candidates are cache hot:
  1666. */
  1667. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1668. (&p->se == cfs_rq_of(&p->se)->next ||
  1669. &p->se == cfs_rq_of(&p->se)->last))
  1670. return 1;
  1671. if (sysctl_sched_migration_cost == -1)
  1672. return 1;
  1673. if (sysctl_sched_migration_cost == 0)
  1674. return 0;
  1675. delta = now - p->se.exec_start;
  1676. return delta < (s64)sysctl_sched_migration_cost;
  1677. }
  1678. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1679. {
  1680. #ifdef CONFIG_SCHED_DEBUG
  1681. /*
  1682. * We should never call set_task_cpu() on a blocked task,
  1683. * ttwu() will sort out the placement.
  1684. */
  1685. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1686. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1687. #endif
  1688. trace_sched_migrate_task(p, new_cpu);
  1689. if (task_cpu(p) != new_cpu) {
  1690. p->se.nr_migrations++;
  1691. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1692. }
  1693. __set_task_cpu(p, new_cpu);
  1694. }
  1695. struct migration_arg {
  1696. struct task_struct *task;
  1697. int dest_cpu;
  1698. };
  1699. static int migration_cpu_stop(void *data);
  1700. /*
  1701. * The task's runqueue lock must be held.
  1702. * Returns true if you have to wait for migration thread.
  1703. */
  1704. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1705. {
  1706. struct rq *rq = task_rq(p);
  1707. /*
  1708. * If the task is not on a runqueue (and not running), then
  1709. * the next wake-up will properly place the task.
  1710. */
  1711. return p->se.on_rq || task_running(rq, p);
  1712. }
  1713. /*
  1714. * wait_task_inactive - wait for a thread to unschedule.
  1715. *
  1716. * If @match_state is nonzero, it's the @p->state value just checked and
  1717. * not expected to change. If it changes, i.e. @p might have woken up,
  1718. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1719. * we return a positive number (its total switch count). If a second call
  1720. * a short while later returns the same number, the caller can be sure that
  1721. * @p has remained unscheduled the whole time.
  1722. *
  1723. * The caller must ensure that the task *will* unschedule sometime soon,
  1724. * else this function might spin for a *long* time. This function can't
  1725. * be called with interrupts off, or it may introduce deadlock with
  1726. * smp_call_function() if an IPI is sent by the same process we are
  1727. * waiting to become inactive.
  1728. */
  1729. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1730. {
  1731. unsigned long flags;
  1732. int running, on_rq;
  1733. unsigned long ncsw;
  1734. struct rq *rq;
  1735. for (;;) {
  1736. /*
  1737. * We do the initial early heuristics without holding
  1738. * any task-queue locks at all. We'll only try to get
  1739. * the runqueue lock when things look like they will
  1740. * work out!
  1741. */
  1742. rq = task_rq(p);
  1743. /*
  1744. * If the task is actively running on another CPU
  1745. * still, just relax and busy-wait without holding
  1746. * any locks.
  1747. *
  1748. * NOTE! Since we don't hold any locks, it's not
  1749. * even sure that "rq" stays as the right runqueue!
  1750. * But we don't care, since "task_running()" will
  1751. * return false if the runqueue has changed and p
  1752. * is actually now running somewhere else!
  1753. */
  1754. while (task_running(rq, p)) {
  1755. if (match_state && unlikely(p->state != match_state))
  1756. return 0;
  1757. cpu_relax();
  1758. }
  1759. /*
  1760. * Ok, time to look more closely! We need the rq
  1761. * lock now, to be *sure*. If we're wrong, we'll
  1762. * just go back and repeat.
  1763. */
  1764. rq = task_rq_lock(p, &flags);
  1765. trace_sched_wait_task(p);
  1766. running = task_running(rq, p);
  1767. on_rq = p->se.on_rq;
  1768. ncsw = 0;
  1769. if (!match_state || p->state == match_state)
  1770. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1771. task_rq_unlock(rq, &flags);
  1772. /*
  1773. * If it changed from the expected state, bail out now.
  1774. */
  1775. if (unlikely(!ncsw))
  1776. break;
  1777. /*
  1778. * Was it really running after all now that we
  1779. * checked with the proper locks actually held?
  1780. *
  1781. * Oops. Go back and try again..
  1782. */
  1783. if (unlikely(running)) {
  1784. cpu_relax();
  1785. continue;
  1786. }
  1787. /*
  1788. * It's not enough that it's not actively running,
  1789. * it must be off the runqueue _entirely_, and not
  1790. * preempted!
  1791. *
  1792. * So if it was still runnable (but just not actively
  1793. * running right now), it's preempted, and we should
  1794. * yield - it could be a while.
  1795. */
  1796. if (unlikely(on_rq)) {
  1797. schedule_timeout_uninterruptible(1);
  1798. continue;
  1799. }
  1800. /*
  1801. * Ahh, all good. It wasn't running, and it wasn't
  1802. * runnable, which means that it will never become
  1803. * running in the future either. We're all done!
  1804. */
  1805. break;
  1806. }
  1807. return ncsw;
  1808. }
  1809. /***
  1810. * kick_process - kick a running thread to enter/exit the kernel
  1811. * @p: the to-be-kicked thread
  1812. *
  1813. * Cause a process which is running on another CPU to enter
  1814. * kernel-mode, without any delay. (to get signals handled.)
  1815. *
  1816. * NOTE: this function doesnt have to take the runqueue lock,
  1817. * because all it wants to ensure is that the remote task enters
  1818. * the kernel. If the IPI races and the task has been migrated
  1819. * to another CPU then no harm is done and the purpose has been
  1820. * achieved as well.
  1821. */
  1822. void kick_process(struct task_struct *p)
  1823. {
  1824. int cpu;
  1825. preempt_disable();
  1826. cpu = task_cpu(p);
  1827. if ((cpu != smp_processor_id()) && task_curr(p))
  1828. smp_send_reschedule(cpu);
  1829. preempt_enable();
  1830. }
  1831. EXPORT_SYMBOL_GPL(kick_process);
  1832. #endif /* CONFIG_SMP */
  1833. /**
  1834. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1835. * @p: the task to evaluate
  1836. * @func: the function to be called
  1837. * @info: the function call argument
  1838. *
  1839. * Calls the function @func when the task is currently running. This might
  1840. * be on the current CPU, which just calls the function directly
  1841. */
  1842. void task_oncpu_function_call(struct task_struct *p,
  1843. void (*func) (void *info), void *info)
  1844. {
  1845. int cpu;
  1846. preempt_disable();
  1847. cpu = task_cpu(p);
  1848. if (task_curr(p))
  1849. smp_call_function_single(cpu, func, info, 1);
  1850. preempt_enable();
  1851. }
  1852. #ifdef CONFIG_SMP
  1853. /*
  1854. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1855. */
  1856. static int select_fallback_rq(int cpu, struct task_struct *p)
  1857. {
  1858. int dest_cpu;
  1859. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1860. /* Look for allowed, online CPU in same node. */
  1861. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1862. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1863. return dest_cpu;
  1864. /* Any allowed, online CPU? */
  1865. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1866. if (dest_cpu < nr_cpu_ids)
  1867. return dest_cpu;
  1868. /* No more Mr. Nice Guy. */
  1869. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1870. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1871. /*
  1872. * Don't tell them about moving exiting tasks or
  1873. * kernel threads (both mm NULL), since they never
  1874. * leave kernel.
  1875. */
  1876. if (p->mm && printk_ratelimit()) {
  1877. printk(KERN_INFO "process %d (%s) no "
  1878. "longer affine to cpu%d\n",
  1879. task_pid_nr(p), p->comm, cpu);
  1880. }
  1881. }
  1882. return dest_cpu;
  1883. }
  1884. /*
  1885. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1886. */
  1887. static inline
  1888. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1889. {
  1890. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1891. /*
  1892. * In order not to call set_task_cpu() on a blocking task we need
  1893. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1894. * cpu.
  1895. *
  1896. * Since this is common to all placement strategies, this lives here.
  1897. *
  1898. * [ this allows ->select_task() to simply return task_cpu(p) and
  1899. * not worry about this generic constraint ]
  1900. */
  1901. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1902. !cpu_online(cpu)))
  1903. cpu = select_fallback_rq(task_cpu(p), p);
  1904. return cpu;
  1905. }
  1906. static void update_avg(u64 *avg, u64 sample)
  1907. {
  1908. s64 diff = sample - *avg;
  1909. *avg += diff >> 3;
  1910. }
  1911. #endif
  1912. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1913. bool is_sync, bool is_migrate, bool is_local,
  1914. unsigned long en_flags)
  1915. {
  1916. schedstat_inc(p, se.statistics.nr_wakeups);
  1917. if (is_sync)
  1918. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1919. if (is_migrate)
  1920. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1921. if (is_local)
  1922. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1923. else
  1924. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1925. activate_task(rq, p, en_flags);
  1926. }
  1927. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1928. int wake_flags, bool success)
  1929. {
  1930. trace_sched_wakeup(p, success);
  1931. check_preempt_curr(rq, p, wake_flags);
  1932. p->state = TASK_RUNNING;
  1933. #ifdef CONFIG_SMP
  1934. if (p->sched_class->task_woken)
  1935. p->sched_class->task_woken(rq, p);
  1936. if (unlikely(rq->idle_stamp)) {
  1937. u64 delta = rq->clock - rq->idle_stamp;
  1938. u64 max = 2*sysctl_sched_migration_cost;
  1939. if (delta > max)
  1940. rq->avg_idle = max;
  1941. else
  1942. update_avg(&rq->avg_idle, delta);
  1943. rq->idle_stamp = 0;
  1944. }
  1945. #endif
  1946. /* if a worker is waking up, notify workqueue */
  1947. if ((p->flags & PF_WQ_WORKER) && success)
  1948. wq_worker_waking_up(p, cpu_of(rq));
  1949. }
  1950. /**
  1951. * try_to_wake_up - wake up a thread
  1952. * @p: the thread to be awakened
  1953. * @state: the mask of task states that can be woken
  1954. * @wake_flags: wake modifier flags (WF_*)
  1955. *
  1956. * Put it on the run-queue if it's not already there. The "current"
  1957. * thread is always on the run-queue (except when the actual
  1958. * re-schedule is in progress), and as such you're allowed to do
  1959. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1960. * runnable without the overhead of this.
  1961. *
  1962. * Returns %true if @p was woken up, %false if it was already running
  1963. * or @state didn't match @p's state.
  1964. */
  1965. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1966. int wake_flags)
  1967. {
  1968. int cpu, orig_cpu, this_cpu, success = 0;
  1969. unsigned long flags;
  1970. unsigned long en_flags = ENQUEUE_WAKEUP;
  1971. struct rq *rq;
  1972. this_cpu = get_cpu();
  1973. smp_wmb();
  1974. rq = task_rq_lock(p, &flags);
  1975. if (!(p->state & state))
  1976. goto out;
  1977. if (p->se.on_rq)
  1978. goto out_running;
  1979. cpu = task_cpu(p);
  1980. orig_cpu = cpu;
  1981. #ifdef CONFIG_SMP
  1982. if (unlikely(task_running(rq, p)))
  1983. goto out_activate;
  1984. /*
  1985. * In order to handle concurrent wakeups and release the rq->lock
  1986. * we put the task in TASK_WAKING state.
  1987. *
  1988. * First fix up the nr_uninterruptible count:
  1989. */
  1990. if (task_contributes_to_load(p)) {
  1991. if (likely(cpu_online(orig_cpu)))
  1992. rq->nr_uninterruptible--;
  1993. else
  1994. this_rq()->nr_uninterruptible--;
  1995. }
  1996. p->state = TASK_WAKING;
  1997. if (p->sched_class->task_waking) {
  1998. p->sched_class->task_waking(rq, p);
  1999. en_flags |= ENQUEUE_WAKING;
  2000. }
  2001. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2002. if (cpu != orig_cpu)
  2003. set_task_cpu(p, cpu);
  2004. __task_rq_unlock(rq);
  2005. rq = cpu_rq(cpu);
  2006. raw_spin_lock(&rq->lock);
  2007. /*
  2008. * We migrated the task without holding either rq->lock, however
  2009. * since the task is not on the task list itself, nobody else
  2010. * will try and migrate the task, hence the rq should match the
  2011. * cpu we just moved it to.
  2012. */
  2013. WARN_ON(task_cpu(p) != cpu);
  2014. WARN_ON(p->state != TASK_WAKING);
  2015. #ifdef CONFIG_SCHEDSTATS
  2016. schedstat_inc(rq, ttwu_count);
  2017. if (cpu == this_cpu)
  2018. schedstat_inc(rq, ttwu_local);
  2019. else {
  2020. struct sched_domain *sd;
  2021. for_each_domain(this_cpu, sd) {
  2022. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2023. schedstat_inc(sd, ttwu_wake_remote);
  2024. break;
  2025. }
  2026. }
  2027. }
  2028. #endif /* CONFIG_SCHEDSTATS */
  2029. out_activate:
  2030. #endif /* CONFIG_SMP */
  2031. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2032. cpu == this_cpu, en_flags);
  2033. success = 1;
  2034. out_running:
  2035. ttwu_post_activation(p, rq, wake_flags, success);
  2036. out:
  2037. task_rq_unlock(rq, &flags);
  2038. put_cpu();
  2039. return success;
  2040. }
  2041. /**
  2042. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2043. * @p: the thread to be awakened
  2044. *
  2045. * Put @p on the run-queue if it's not alredy there. The caller must
  2046. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2047. * the current task. this_rq() stays locked over invocation.
  2048. */
  2049. static void try_to_wake_up_local(struct task_struct *p)
  2050. {
  2051. struct rq *rq = task_rq(p);
  2052. bool success = false;
  2053. BUG_ON(rq != this_rq());
  2054. BUG_ON(p == current);
  2055. lockdep_assert_held(&rq->lock);
  2056. if (!(p->state & TASK_NORMAL))
  2057. return;
  2058. if (!p->se.on_rq) {
  2059. if (likely(!task_running(rq, p))) {
  2060. schedstat_inc(rq, ttwu_count);
  2061. schedstat_inc(rq, ttwu_local);
  2062. }
  2063. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2064. success = true;
  2065. }
  2066. ttwu_post_activation(p, rq, 0, success);
  2067. }
  2068. /**
  2069. * wake_up_process - Wake up a specific process
  2070. * @p: The process to be woken up.
  2071. *
  2072. * Attempt to wake up the nominated process and move it to the set of runnable
  2073. * processes. Returns 1 if the process was woken up, 0 if it was already
  2074. * running.
  2075. *
  2076. * It may be assumed that this function implies a write memory barrier before
  2077. * changing the task state if and only if any tasks are woken up.
  2078. */
  2079. int wake_up_process(struct task_struct *p)
  2080. {
  2081. return try_to_wake_up(p, TASK_ALL, 0);
  2082. }
  2083. EXPORT_SYMBOL(wake_up_process);
  2084. int wake_up_state(struct task_struct *p, unsigned int state)
  2085. {
  2086. return try_to_wake_up(p, state, 0);
  2087. }
  2088. /*
  2089. * Perform scheduler related setup for a newly forked process p.
  2090. * p is forked by current.
  2091. *
  2092. * __sched_fork() is basic setup used by init_idle() too:
  2093. */
  2094. static void __sched_fork(struct task_struct *p)
  2095. {
  2096. p->se.exec_start = 0;
  2097. p->se.sum_exec_runtime = 0;
  2098. p->se.prev_sum_exec_runtime = 0;
  2099. p->se.nr_migrations = 0;
  2100. #ifdef CONFIG_SCHEDSTATS
  2101. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2102. #endif
  2103. INIT_LIST_HEAD(&p->rt.run_list);
  2104. p->se.on_rq = 0;
  2105. INIT_LIST_HEAD(&p->se.group_node);
  2106. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2107. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2108. #endif
  2109. }
  2110. /*
  2111. * fork()/clone()-time setup:
  2112. */
  2113. void sched_fork(struct task_struct *p, int clone_flags)
  2114. {
  2115. int cpu = get_cpu();
  2116. __sched_fork(p);
  2117. /*
  2118. * We mark the process as running here. This guarantees that
  2119. * nobody will actually run it, and a signal or other external
  2120. * event cannot wake it up and insert it on the runqueue either.
  2121. */
  2122. p->state = TASK_RUNNING;
  2123. /*
  2124. * Revert to default priority/policy on fork if requested.
  2125. */
  2126. if (unlikely(p->sched_reset_on_fork)) {
  2127. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2128. p->policy = SCHED_NORMAL;
  2129. p->normal_prio = p->static_prio;
  2130. }
  2131. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2132. p->static_prio = NICE_TO_PRIO(0);
  2133. p->normal_prio = p->static_prio;
  2134. set_load_weight(p);
  2135. }
  2136. /*
  2137. * We don't need the reset flag anymore after the fork. It has
  2138. * fulfilled its duty:
  2139. */
  2140. p->sched_reset_on_fork = 0;
  2141. }
  2142. /*
  2143. * Make sure we do not leak PI boosting priority to the child.
  2144. */
  2145. p->prio = current->normal_prio;
  2146. if (!rt_prio(p->prio))
  2147. p->sched_class = &fair_sched_class;
  2148. if (p->sched_class->task_fork)
  2149. p->sched_class->task_fork(p);
  2150. set_task_cpu(p, cpu);
  2151. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2152. if (likely(sched_info_on()))
  2153. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2154. #endif
  2155. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2156. p->oncpu = 0;
  2157. #endif
  2158. #ifdef CONFIG_PREEMPT
  2159. /* Want to start with kernel preemption disabled. */
  2160. task_thread_info(p)->preempt_count = 1;
  2161. #endif
  2162. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2163. put_cpu();
  2164. }
  2165. /*
  2166. * wake_up_new_task - wake up a newly created task for the first time.
  2167. *
  2168. * This function will do some initial scheduler statistics housekeeping
  2169. * that must be done for every newly created context, then puts the task
  2170. * on the runqueue and wakes it.
  2171. */
  2172. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2173. {
  2174. unsigned long flags;
  2175. struct rq *rq;
  2176. int cpu __maybe_unused = get_cpu();
  2177. #ifdef CONFIG_SMP
  2178. rq = task_rq_lock(p, &flags);
  2179. p->state = TASK_WAKING;
  2180. /*
  2181. * Fork balancing, do it here and not earlier because:
  2182. * - cpus_allowed can change in the fork path
  2183. * - any previously selected cpu might disappear through hotplug
  2184. *
  2185. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2186. * without people poking at ->cpus_allowed.
  2187. */
  2188. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2189. set_task_cpu(p, cpu);
  2190. p->state = TASK_RUNNING;
  2191. task_rq_unlock(rq, &flags);
  2192. #endif
  2193. rq = task_rq_lock(p, &flags);
  2194. activate_task(rq, p, 0);
  2195. trace_sched_wakeup_new(p, 1);
  2196. check_preempt_curr(rq, p, WF_FORK);
  2197. #ifdef CONFIG_SMP
  2198. if (p->sched_class->task_woken)
  2199. p->sched_class->task_woken(rq, p);
  2200. #endif
  2201. task_rq_unlock(rq, &flags);
  2202. put_cpu();
  2203. }
  2204. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2205. /**
  2206. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2207. * @notifier: notifier struct to register
  2208. */
  2209. void preempt_notifier_register(struct preempt_notifier *notifier)
  2210. {
  2211. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2212. }
  2213. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2214. /**
  2215. * preempt_notifier_unregister - no longer interested in preemption notifications
  2216. * @notifier: notifier struct to unregister
  2217. *
  2218. * This is safe to call from within a preemption notifier.
  2219. */
  2220. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2221. {
  2222. hlist_del(&notifier->link);
  2223. }
  2224. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2225. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2226. {
  2227. struct preempt_notifier *notifier;
  2228. struct hlist_node *node;
  2229. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2230. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2231. }
  2232. static void
  2233. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2234. struct task_struct *next)
  2235. {
  2236. struct preempt_notifier *notifier;
  2237. struct hlist_node *node;
  2238. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2239. notifier->ops->sched_out(notifier, next);
  2240. }
  2241. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2242. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2243. {
  2244. }
  2245. static void
  2246. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2247. struct task_struct *next)
  2248. {
  2249. }
  2250. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2251. /**
  2252. * prepare_task_switch - prepare to switch tasks
  2253. * @rq: the runqueue preparing to switch
  2254. * @prev: the current task that is being switched out
  2255. * @next: the task we are going to switch to.
  2256. *
  2257. * This is called with the rq lock held and interrupts off. It must
  2258. * be paired with a subsequent finish_task_switch after the context
  2259. * switch.
  2260. *
  2261. * prepare_task_switch sets up locking and calls architecture specific
  2262. * hooks.
  2263. */
  2264. static inline void
  2265. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2266. struct task_struct *next)
  2267. {
  2268. fire_sched_out_preempt_notifiers(prev, next);
  2269. prepare_lock_switch(rq, next);
  2270. prepare_arch_switch(next);
  2271. }
  2272. /**
  2273. * finish_task_switch - clean up after a task-switch
  2274. * @rq: runqueue associated with task-switch
  2275. * @prev: the thread we just switched away from.
  2276. *
  2277. * finish_task_switch must be called after the context switch, paired
  2278. * with a prepare_task_switch call before the context switch.
  2279. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2280. * and do any other architecture-specific cleanup actions.
  2281. *
  2282. * Note that we may have delayed dropping an mm in context_switch(). If
  2283. * so, we finish that here outside of the runqueue lock. (Doing it
  2284. * with the lock held can cause deadlocks; see schedule() for
  2285. * details.)
  2286. */
  2287. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2288. __releases(rq->lock)
  2289. {
  2290. struct mm_struct *mm = rq->prev_mm;
  2291. long prev_state;
  2292. rq->prev_mm = NULL;
  2293. /*
  2294. * A task struct has one reference for the use as "current".
  2295. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2296. * schedule one last time. The schedule call will never return, and
  2297. * the scheduled task must drop that reference.
  2298. * The test for TASK_DEAD must occur while the runqueue locks are
  2299. * still held, otherwise prev could be scheduled on another cpu, die
  2300. * there before we look at prev->state, and then the reference would
  2301. * be dropped twice.
  2302. * Manfred Spraul <manfred@colorfullife.com>
  2303. */
  2304. prev_state = prev->state;
  2305. finish_arch_switch(prev);
  2306. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2307. local_irq_disable();
  2308. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2309. perf_event_task_sched_in(current);
  2310. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2311. local_irq_enable();
  2312. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2313. finish_lock_switch(rq, prev);
  2314. fire_sched_in_preempt_notifiers(current);
  2315. if (mm)
  2316. mmdrop(mm);
  2317. if (unlikely(prev_state == TASK_DEAD)) {
  2318. /*
  2319. * Remove function-return probe instances associated with this
  2320. * task and put them back on the free list.
  2321. */
  2322. kprobe_flush_task(prev);
  2323. put_task_struct(prev);
  2324. }
  2325. }
  2326. #ifdef CONFIG_SMP
  2327. /* assumes rq->lock is held */
  2328. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2329. {
  2330. if (prev->sched_class->pre_schedule)
  2331. prev->sched_class->pre_schedule(rq, prev);
  2332. }
  2333. /* rq->lock is NOT held, but preemption is disabled */
  2334. static inline void post_schedule(struct rq *rq)
  2335. {
  2336. if (rq->post_schedule) {
  2337. unsigned long flags;
  2338. raw_spin_lock_irqsave(&rq->lock, flags);
  2339. if (rq->curr->sched_class->post_schedule)
  2340. rq->curr->sched_class->post_schedule(rq);
  2341. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2342. rq->post_schedule = 0;
  2343. }
  2344. }
  2345. #else
  2346. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2347. {
  2348. }
  2349. static inline void post_schedule(struct rq *rq)
  2350. {
  2351. }
  2352. #endif
  2353. /**
  2354. * schedule_tail - first thing a freshly forked thread must call.
  2355. * @prev: the thread we just switched away from.
  2356. */
  2357. asmlinkage void schedule_tail(struct task_struct *prev)
  2358. __releases(rq->lock)
  2359. {
  2360. struct rq *rq = this_rq();
  2361. finish_task_switch(rq, prev);
  2362. /*
  2363. * FIXME: do we need to worry about rq being invalidated by the
  2364. * task_switch?
  2365. */
  2366. post_schedule(rq);
  2367. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2368. /* In this case, finish_task_switch does not reenable preemption */
  2369. preempt_enable();
  2370. #endif
  2371. if (current->set_child_tid)
  2372. put_user(task_pid_vnr(current), current->set_child_tid);
  2373. }
  2374. /*
  2375. * context_switch - switch to the new MM and the new
  2376. * thread's register state.
  2377. */
  2378. static inline void
  2379. context_switch(struct rq *rq, struct task_struct *prev,
  2380. struct task_struct *next)
  2381. {
  2382. struct mm_struct *mm, *oldmm;
  2383. prepare_task_switch(rq, prev, next);
  2384. trace_sched_switch(prev, next);
  2385. mm = next->mm;
  2386. oldmm = prev->active_mm;
  2387. /*
  2388. * For paravirt, this is coupled with an exit in switch_to to
  2389. * combine the page table reload and the switch backend into
  2390. * one hypercall.
  2391. */
  2392. arch_start_context_switch(prev);
  2393. if (likely(!mm)) {
  2394. next->active_mm = oldmm;
  2395. atomic_inc(&oldmm->mm_count);
  2396. enter_lazy_tlb(oldmm, next);
  2397. } else
  2398. switch_mm(oldmm, mm, next);
  2399. if (likely(!prev->mm)) {
  2400. prev->active_mm = NULL;
  2401. rq->prev_mm = oldmm;
  2402. }
  2403. /*
  2404. * Since the runqueue lock will be released by the next
  2405. * task (which is an invalid locking op but in the case
  2406. * of the scheduler it's an obvious special-case), so we
  2407. * do an early lockdep release here:
  2408. */
  2409. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2410. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2411. #endif
  2412. /* Here we just switch the register state and the stack. */
  2413. switch_to(prev, next, prev);
  2414. barrier();
  2415. /*
  2416. * this_rq must be evaluated again because prev may have moved
  2417. * CPUs since it called schedule(), thus the 'rq' on its stack
  2418. * frame will be invalid.
  2419. */
  2420. finish_task_switch(this_rq(), prev);
  2421. }
  2422. /*
  2423. * nr_running, nr_uninterruptible and nr_context_switches:
  2424. *
  2425. * externally visible scheduler statistics: current number of runnable
  2426. * threads, current number of uninterruptible-sleeping threads, total
  2427. * number of context switches performed since bootup.
  2428. */
  2429. unsigned long nr_running(void)
  2430. {
  2431. unsigned long i, sum = 0;
  2432. for_each_online_cpu(i)
  2433. sum += cpu_rq(i)->nr_running;
  2434. return sum;
  2435. }
  2436. unsigned long nr_uninterruptible(void)
  2437. {
  2438. unsigned long i, sum = 0;
  2439. for_each_possible_cpu(i)
  2440. sum += cpu_rq(i)->nr_uninterruptible;
  2441. /*
  2442. * Since we read the counters lockless, it might be slightly
  2443. * inaccurate. Do not allow it to go below zero though:
  2444. */
  2445. if (unlikely((long)sum < 0))
  2446. sum = 0;
  2447. return sum;
  2448. }
  2449. unsigned long long nr_context_switches(void)
  2450. {
  2451. int i;
  2452. unsigned long long sum = 0;
  2453. for_each_possible_cpu(i)
  2454. sum += cpu_rq(i)->nr_switches;
  2455. return sum;
  2456. }
  2457. unsigned long nr_iowait(void)
  2458. {
  2459. unsigned long i, sum = 0;
  2460. for_each_possible_cpu(i)
  2461. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2462. return sum;
  2463. }
  2464. unsigned long nr_iowait_cpu(void)
  2465. {
  2466. struct rq *this = this_rq();
  2467. return atomic_read(&this->nr_iowait);
  2468. }
  2469. unsigned long this_cpu_load(void)
  2470. {
  2471. struct rq *this = this_rq();
  2472. return this->cpu_load[0];
  2473. }
  2474. /* Variables and functions for calc_load */
  2475. static atomic_long_t calc_load_tasks;
  2476. static unsigned long calc_load_update;
  2477. unsigned long avenrun[3];
  2478. EXPORT_SYMBOL(avenrun);
  2479. static long calc_load_fold_active(struct rq *this_rq)
  2480. {
  2481. long nr_active, delta = 0;
  2482. nr_active = this_rq->nr_running;
  2483. nr_active += (long) this_rq->nr_uninterruptible;
  2484. if (nr_active != this_rq->calc_load_active) {
  2485. delta = nr_active - this_rq->calc_load_active;
  2486. this_rq->calc_load_active = nr_active;
  2487. }
  2488. return delta;
  2489. }
  2490. #ifdef CONFIG_NO_HZ
  2491. /*
  2492. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2493. *
  2494. * When making the ILB scale, we should try to pull this in as well.
  2495. */
  2496. static atomic_long_t calc_load_tasks_idle;
  2497. static void calc_load_account_idle(struct rq *this_rq)
  2498. {
  2499. long delta;
  2500. delta = calc_load_fold_active(this_rq);
  2501. if (delta)
  2502. atomic_long_add(delta, &calc_load_tasks_idle);
  2503. }
  2504. static long calc_load_fold_idle(void)
  2505. {
  2506. long delta = 0;
  2507. /*
  2508. * Its got a race, we don't care...
  2509. */
  2510. if (atomic_long_read(&calc_load_tasks_idle))
  2511. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2512. return delta;
  2513. }
  2514. #else
  2515. static void calc_load_account_idle(struct rq *this_rq)
  2516. {
  2517. }
  2518. static inline long calc_load_fold_idle(void)
  2519. {
  2520. return 0;
  2521. }
  2522. #endif
  2523. /**
  2524. * get_avenrun - get the load average array
  2525. * @loads: pointer to dest load array
  2526. * @offset: offset to add
  2527. * @shift: shift count to shift the result left
  2528. *
  2529. * These values are estimates at best, so no need for locking.
  2530. */
  2531. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2532. {
  2533. loads[0] = (avenrun[0] + offset) << shift;
  2534. loads[1] = (avenrun[1] + offset) << shift;
  2535. loads[2] = (avenrun[2] + offset) << shift;
  2536. }
  2537. static unsigned long
  2538. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2539. {
  2540. load *= exp;
  2541. load += active * (FIXED_1 - exp);
  2542. return load >> FSHIFT;
  2543. }
  2544. /*
  2545. * calc_load - update the avenrun load estimates 10 ticks after the
  2546. * CPUs have updated calc_load_tasks.
  2547. */
  2548. void calc_global_load(void)
  2549. {
  2550. unsigned long upd = calc_load_update + 10;
  2551. long active;
  2552. if (time_before(jiffies, upd))
  2553. return;
  2554. active = atomic_long_read(&calc_load_tasks);
  2555. active = active > 0 ? active * FIXED_1 : 0;
  2556. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2557. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2558. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2559. calc_load_update += LOAD_FREQ;
  2560. }
  2561. /*
  2562. * Called from update_cpu_load() to periodically update this CPU's
  2563. * active count.
  2564. */
  2565. static void calc_load_account_active(struct rq *this_rq)
  2566. {
  2567. long delta;
  2568. if (time_before(jiffies, this_rq->calc_load_update))
  2569. return;
  2570. delta = calc_load_fold_active(this_rq);
  2571. delta += calc_load_fold_idle();
  2572. if (delta)
  2573. atomic_long_add(delta, &calc_load_tasks);
  2574. this_rq->calc_load_update += LOAD_FREQ;
  2575. }
  2576. /*
  2577. * Update rq->cpu_load[] statistics. This function is usually called every
  2578. * scheduler tick (TICK_NSEC).
  2579. */
  2580. static void update_cpu_load(struct rq *this_rq)
  2581. {
  2582. unsigned long this_load = this_rq->load.weight;
  2583. int i, scale;
  2584. this_rq->nr_load_updates++;
  2585. /* Update our load: */
  2586. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2587. unsigned long old_load, new_load;
  2588. /* scale is effectively 1 << i now, and >> i divides by scale */
  2589. old_load = this_rq->cpu_load[i];
  2590. new_load = this_load;
  2591. /*
  2592. * Round up the averaging division if load is increasing. This
  2593. * prevents us from getting stuck on 9 if the load is 10, for
  2594. * example.
  2595. */
  2596. if (new_load > old_load)
  2597. new_load += scale-1;
  2598. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2599. }
  2600. calc_load_account_active(this_rq);
  2601. }
  2602. #ifdef CONFIG_SMP
  2603. /*
  2604. * sched_exec - execve() is a valuable balancing opportunity, because at
  2605. * this point the task has the smallest effective memory and cache footprint.
  2606. */
  2607. void sched_exec(void)
  2608. {
  2609. struct task_struct *p = current;
  2610. unsigned long flags;
  2611. struct rq *rq;
  2612. int dest_cpu;
  2613. rq = task_rq_lock(p, &flags);
  2614. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2615. if (dest_cpu == smp_processor_id())
  2616. goto unlock;
  2617. /*
  2618. * select_task_rq() can race against ->cpus_allowed
  2619. */
  2620. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2621. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2622. struct migration_arg arg = { p, dest_cpu };
  2623. task_rq_unlock(rq, &flags);
  2624. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2625. return;
  2626. }
  2627. unlock:
  2628. task_rq_unlock(rq, &flags);
  2629. }
  2630. #endif
  2631. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2632. EXPORT_PER_CPU_SYMBOL(kstat);
  2633. /*
  2634. * Return any ns on the sched_clock that have not yet been accounted in
  2635. * @p in case that task is currently running.
  2636. *
  2637. * Called with task_rq_lock() held on @rq.
  2638. */
  2639. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2640. {
  2641. u64 ns = 0;
  2642. if (task_current(rq, p)) {
  2643. update_rq_clock(rq);
  2644. ns = rq->clock - p->se.exec_start;
  2645. if ((s64)ns < 0)
  2646. ns = 0;
  2647. }
  2648. return ns;
  2649. }
  2650. unsigned long long task_delta_exec(struct task_struct *p)
  2651. {
  2652. unsigned long flags;
  2653. struct rq *rq;
  2654. u64 ns = 0;
  2655. rq = task_rq_lock(p, &flags);
  2656. ns = do_task_delta_exec(p, rq);
  2657. task_rq_unlock(rq, &flags);
  2658. return ns;
  2659. }
  2660. /*
  2661. * Return accounted runtime for the task.
  2662. * In case the task is currently running, return the runtime plus current's
  2663. * pending runtime that have not been accounted yet.
  2664. */
  2665. unsigned long long task_sched_runtime(struct task_struct *p)
  2666. {
  2667. unsigned long flags;
  2668. struct rq *rq;
  2669. u64 ns = 0;
  2670. rq = task_rq_lock(p, &flags);
  2671. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2672. task_rq_unlock(rq, &flags);
  2673. return ns;
  2674. }
  2675. /*
  2676. * Return sum_exec_runtime for the thread group.
  2677. * In case the task is currently running, return the sum plus current's
  2678. * pending runtime that have not been accounted yet.
  2679. *
  2680. * Note that the thread group might have other running tasks as well,
  2681. * so the return value not includes other pending runtime that other
  2682. * running tasks might have.
  2683. */
  2684. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2685. {
  2686. struct task_cputime totals;
  2687. unsigned long flags;
  2688. struct rq *rq;
  2689. u64 ns;
  2690. rq = task_rq_lock(p, &flags);
  2691. thread_group_cputime(p, &totals);
  2692. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2693. task_rq_unlock(rq, &flags);
  2694. return ns;
  2695. }
  2696. /*
  2697. * Account user cpu time to a process.
  2698. * @p: the process that the cpu time gets accounted to
  2699. * @cputime: the cpu time spent in user space since the last update
  2700. * @cputime_scaled: cputime scaled by cpu frequency
  2701. */
  2702. void account_user_time(struct task_struct *p, cputime_t cputime,
  2703. cputime_t cputime_scaled)
  2704. {
  2705. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2706. cputime64_t tmp;
  2707. /* Add user time to process. */
  2708. p->utime = cputime_add(p->utime, cputime);
  2709. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2710. account_group_user_time(p, cputime);
  2711. /* Add user time to cpustat. */
  2712. tmp = cputime_to_cputime64(cputime);
  2713. if (TASK_NICE(p) > 0)
  2714. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2715. else
  2716. cpustat->user = cputime64_add(cpustat->user, tmp);
  2717. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2718. /* Account for user time used */
  2719. acct_update_integrals(p);
  2720. }
  2721. /*
  2722. * Account guest cpu time to a process.
  2723. * @p: the process that the cpu time gets accounted to
  2724. * @cputime: the cpu time spent in virtual machine since the last update
  2725. * @cputime_scaled: cputime scaled by cpu frequency
  2726. */
  2727. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2728. cputime_t cputime_scaled)
  2729. {
  2730. cputime64_t tmp;
  2731. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2732. tmp = cputime_to_cputime64(cputime);
  2733. /* Add guest time to process. */
  2734. p->utime = cputime_add(p->utime, cputime);
  2735. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2736. account_group_user_time(p, cputime);
  2737. p->gtime = cputime_add(p->gtime, cputime);
  2738. /* Add guest time to cpustat. */
  2739. if (TASK_NICE(p) > 0) {
  2740. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2741. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2742. } else {
  2743. cpustat->user = cputime64_add(cpustat->user, tmp);
  2744. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2745. }
  2746. }
  2747. /*
  2748. * Account system cpu time to a process.
  2749. * @p: the process that the cpu time gets accounted to
  2750. * @hardirq_offset: the offset to subtract from hardirq_count()
  2751. * @cputime: the cpu time spent in kernel space since the last update
  2752. * @cputime_scaled: cputime scaled by cpu frequency
  2753. */
  2754. void account_system_time(struct task_struct *p, int hardirq_offset,
  2755. cputime_t cputime, cputime_t cputime_scaled)
  2756. {
  2757. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2758. cputime64_t tmp;
  2759. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2760. account_guest_time(p, cputime, cputime_scaled);
  2761. return;
  2762. }
  2763. /* Add system time to process. */
  2764. p->stime = cputime_add(p->stime, cputime);
  2765. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2766. account_group_system_time(p, cputime);
  2767. /* Add system time to cpustat. */
  2768. tmp = cputime_to_cputime64(cputime);
  2769. if (hardirq_count() - hardirq_offset)
  2770. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2771. else if (softirq_count())
  2772. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2773. else
  2774. cpustat->system = cputime64_add(cpustat->system, tmp);
  2775. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2776. /* Account for system time used */
  2777. acct_update_integrals(p);
  2778. }
  2779. /*
  2780. * Account for involuntary wait time.
  2781. * @steal: the cpu time spent in involuntary wait
  2782. */
  2783. void account_steal_time(cputime_t cputime)
  2784. {
  2785. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2786. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2787. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2788. }
  2789. /*
  2790. * Account for idle time.
  2791. * @cputime: the cpu time spent in idle wait
  2792. */
  2793. void account_idle_time(cputime_t cputime)
  2794. {
  2795. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2796. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2797. struct rq *rq = this_rq();
  2798. if (atomic_read(&rq->nr_iowait) > 0)
  2799. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2800. else
  2801. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2802. }
  2803. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2804. /*
  2805. * Account a single tick of cpu time.
  2806. * @p: the process that the cpu time gets accounted to
  2807. * @user_tick: indicates if the tick is a user or a system tick
  2808. */
  2809. void account_process_tick(struct task_struct *p, int user_tick)
  2810. {
  2811. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2812. struct rq *rq = this_rq();
  2813. if (user_tick)
  2814. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2815. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2816. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2817. one_jiffy_scaled);
  2818. else
  2819. account_idle_time(cputime_one_jiffy);
  2820. }
  2821. /*
  2822. * Account multiple ticks of steal time.
  2823. * @p: the process from which the cpu time has been stolen
  2824. * @ticks: number of stolen ticks
  2825. */
  2826. void account_steal_ticks(unsigned long ticks)
  2827. {
  2828. account_steal_time(jiffies_to_cputime(ticks));
  2829. }
  2830. /*
  2831. * Account multiple ticks of idle time.
  2832. * @ticks: number of stolen ticks
  2833. */
  2834. void account_idle_ticks(unsigned long ticks)
  2835. {
  2836. account_idle_time(jiffies_to_cputime(ticks));
  2837. }
  2838. #endif
  2839. /*
  2840. * Use precise platform statistics if available:
  2841. */
  2842. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2843. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2844. {
  2845. *ut = p->utime;
  2846. *st = p->stime;
  2847. }
  2848. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2849. {
  2850. struct task_cputime cputime;
  2851. thread_group_cputime(p, &cputime);
  2852. *ut = cputime.utime;
  2853. *st = cputime.stime;
  2854. }
  2855. #else
  2856. #ifndef nsecs_to_cputime
  2857. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2858. #endif
  2859. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2860. {
  2861. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2862. /*
  2863. * Use CFS's precise accounting:
  2864. */
  2865. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2866. if (total) {
  2867. u64 temp;
  2868. temp = (u64)(rtime * utime);
  2869. do_div(temp, total);
  2870. utime = (cputime_t)temp;
  2871. } else
  2872. utime = rtime;
  2873. /*
  2874. * Compare with previous values, to keep monotonicity:
  2875. */
  2876. p->prev_utime = max(p->prev_utime, utime);
  2877. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2878. *ut = p->prev_utime;
  2879. *st = p->prev_stime;
  2880. }
  2881. /*
  2882. * Must be called with siglock held.
  2883. */
  2884. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2885. {
  2886. struct signal_struct *sig = p->signal;
  2887. struct task_cputime cputime;
  2888. cputime_t rtime, utime, total;
  2889. thread_group_cputime(p, &cputime);
  2890. total = cputime_add(cputime.utime, cputime.stime);
  2891. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2892. if (total) {
  2893. u64 temp;
  2894. temp = (u64)(rtime * cputime.utime);
  2895. do_div(temp, total);
  2896. utime = (cputime_t)temp;
  2897. } else
  2898. utime = rtime;
  2899. sig->prev_utime = max(sig->prev_utime, utime);
  2900. sig->prev_stime = max(sig->prev_stime,
  2901. cputime_sub(rtime, sig->prev_utime));
  2902. *ut = sig->prev_utime;
  2903. *st = sig->prev_stime;
  2904. }
  2905. #endif
  2906. /*
  2907. * This function gets called by the timer code, with HZ frequency.
  2908. * We call it with interrupts disabled.
  2909. *
  2910. * It also gets called by the fork code, when changing the parent's
  2911. * timeslices.
  2912. */
  2913. void scheduler_tick(void)
  2914. {
  2915. int cpu = smp_processor_id();
  2916. struct rq *rq = cpu_rq(cpu);
  2917. struct task_struct *curr = rq->curr;
  2918. sched_clock_tick();
  2919. raw_spin_lock(&rq->lock);
  2920. update_rq_clock(rq);
  2921. update_cpu_load(rq);
  2922. curr->sched_class->task_tick(rq, curr, 0);
  2923. raw_spin_unlock(&rq->lock);
  2924. perf_event_task_tick(curr);
  2925. #ifdef CONFIG_SMP
  2926. rq->idle_at_tick = idle_cpu(cpu);
  2927. trigger_load_balance(rq, cpu);
  2928. #endif
  2929. }
  2930. notrace unsigned long get_parent_ip(unsigned long addr)
  2931. {
  2932. if (in_lock_functions(addr)) {
  2933. addr = CALLER_ADDR2;
  2934. if (in_lock_functions(addr))
  2935. addr = CALLER_ADDR3;
  2936. }
  2937. return addr;
  2938. }
  2939. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2940. defined(CONFIG_PREEMPT_TRACER))
  2941. void __kprobes add_preempt_count(int val)
  2942. {
  2943. #ifdef CONFIG_DEBUG_PREEMPT
  2944. /*
  2945. * Underflow?
  2946. */
  2947. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2948. return;
  2949. #endif
  2950. preempt_count() += val;
  2951. #ifdef CONFIG_DEBUG_PREEMPT
  2952. /*
  2953. * Spinlock count overflowing soon?
  2954. */
  2955. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2956. PREEMPT_MASK - 10);
  2957. #endif
  2958. if (preempt_count() == val)
  2959. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2960. }
  2961. EXPORT_SYMBOL(add_preempt_count);
  2962. void __kprobes sub_preempt_count(int val)
  2963. {
  2964. #ifdef CONFIG_DEBUG_PREEMPT
  2965. /*
  2966. * Underflow?
  2967. */
  2968. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2969. return;
  2970. /*
  2971. * Is the spinlock portion underflowing?
  2972. */
  2973. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2974. !(preempt_count() & PREEMPT_MASK)))
  2975. return;
  2976. #endif
  2977. if (preempt_count() == val)
  2978. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2979. preempt_count() -= val;
  2980. }
  2981. EXPORT_SYMBOL(sub_preempt_count);
  2982. #endif
  2983. /*
  2984. * Print scheduling while atomic bug:
  2985. */
  2986. static noinline void __schedule_bug(struct task_struct *prev)
  2987. {
  2988. struct pt_regs *regs = get_irq_regs();
  2989. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2990. prev->comm, prev->pid, preempt_count());
  2991. debug_show_held_locks(prev);
  2992. print_modules();
  2993. if (irqs_disabled())
  2994. print_irqtrace_events(prev);
  2995. if (regs)
  2996. show_regs(regs);
  2997. else
  2998. dump_stack();
  2999. }
  3000. /*
  3001. * Various schedule()-time debugging checks and statistics:
  3002. */
  3003. static inline void schedule_debug(struct task_struct *prev)
  3004. {
  3005. /*
  3006. * Test if we are atomic. Since do_exit() needs to call into
  3007. * schedule() atomically, we ignore that path for now.
  3008. * Otherwise, whine if we are scheduling when we should not be.
  3009. */
  3010. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3011. __schedule_bug(prev);
  3012. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3013. schedstat_inc(this_rq(), sched_count);
  3014. #ifdef CONFIG_SCHEDSTATS
  3015. if (unlikely(prev->lock_depth >= 0)) {
  3016. schedstat_inc(this_rq(), bkl_count);
  3017. schedstat_inc(prev, sched_info.bkl_count);
  3018. }
  3019. #endif
  3020. }
  3021. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3022. {
  3023. if (prev->se.on_rq)
  3024. update_rq_clock(rq);
  3025. rq->skip_clock_update = 0;
  3026. prev->sched_class->put_prev_task(rq, prev);
  3027. }
  3028. /*
  3029. * Pick up the highest-prio task:
  3030. */
  3031. static inline struct task_struct *
  3032. pick_next_task(struct rq *rq)
  3033. {
  3034. const struct sched_class *class;
  3035. struct task_struct *p;
  3036. /*
  3037. * Optimization: we know that if all tasks are in
  3038. * the fair class we can call that function directly:
  3039. */
  3040. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3041. p = fair_sched_class.pick_next_task(rq);
  3042. if (likely(p))
  3043. return p;
  3044. }
  3045. class = sched_class_highest;
  3046. for ( ; ; ) {
  3047. p = class->pick_next_task(rq);
  3048. if (p)
  3049. return p;
  3050. /*
  3051. * Will never be NULL as the idle class always
  3052. * returns a non-NULL p:
  3053. */
  3054. class = class->next;
  3055. }
  3056. }
  3057. /*
  3058. * schedule() is the main scheduler function.
  3059. */
  3060. asmlinkage void __sched schedule(void)
  3061. {
  3062. struct task_struct *prev, *next;
  3063. unsigned long *switch_count;
  3064. struct rq *rq;
  3065. int cpu;
  3066. need_resched:
  3067. preempt_disable();
  3068. cpu = smp_processor_id();
  3069. rq = cpu_rq(cpu);
  3070. rcu_note_context_switch(cpu);
  3071. prev = rq->curr;
  3072. switch_count = &prev->nivcsw;
  3073. release_kernel_lock(prev);
  3074. need_resched_nonpreemptible:
  3075. schedule_debug(prev);
  3076. if (sched_feat(HRTICK))
  3077. hrtick_clear(rq);
  3078. raw_spin_lock_irq(&rq->lock);
  3079. clear_tsk_need_resched(prev);
  3080. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3081. if (unlikely(signal_pending_state(prev->state, prev))) {
  3082. prev->state = TASK_RUNNING;
  3083. } else {
  3084. /*
  3085. * If a worker is going to sleep, notify and
  3086. * ask workqueue whether it wants to wake up a
  3087. * task to maintain concurrency. If so, wake
  3088. * up the task.
  3089. */
  3090. if (prev->flags & PF_WQ_WORKER) {
  3091. struct task_struct *to_wakeup;
  3092. to_wakeup = wq_worker_sleeping(prev, cpu);
  3093. if (to_wakeup)
  3094. try_to_wake_up_local(to_wakeup);
  3095. }
  3096. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3097. }
  3098. switch_count = &prev->nvcsw;
  3099. }
  3100. pre_schedule(rq, prev);
  3101. if (unlikely(!rq->nr_running))
  3102. idle_balance(cpu, rq);
  3103. put_prev_task(rq, prev);
  3104. next = pick_next_task(rq);
  3105. if (likely(prev != next)) {
  3106. sched_info_switch(prev, next);
  3107. perf_event_task_sched_out(prev, next);
  3108. rq->nr_switches++;
  3109. rq->curr = next;
  3110. ++*switch_count;
  3111. context_switch(rq, prev, next); /* unlocks the rq */
  3112. /*
  3113. * the context switch might have flipped the stack from under
  3114. * us, hence refresh the local variables.
  3115. */
  3116. cpu = smp_processor_id();
  3117. rq = cpu_rq(cpu);
  3118. } else
  3119. raw_spin_unlock_irq(&rq->lock);
  3120. post_schedule(rq);
  3121. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3122. prev = rq->curr;
  3123. switch_count = &prev->nivcsw;
  3124. goto need_resched_nonpreemptible;
  3125. }
  3126. preempt_enable_no_resched();
  3127. if (need_resched())
  3128. goto need_resched;
  3129. }
  3130. EXPORT_SYMBOL(schedule);
  3131. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3132. /*
  3133. * Look out! "owner" is an entirely speculative pointer
  3134. * access and not reliable.
  3135. */
  3136. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3137. {
  3138. unsigned int cpu;
  3139. struct rq *rq;
  3140. if (!sched_feat(OWNER_SPIN))
  3141. return 0;
  3142. #ifdef CONFIG_DEBUG_PAGEALLOC
  3143. /*
  3144. * Need to access the cpu field knowing that
  3145. * DEBUG_PAGEALLOC could have unmapped it if
  3146. * the mutex owner just released it and exited.
  3147. */
  3148. if (probe_kernel_address(&owner->cpu, cpu))
  3149. return 0;
  3150. #else
  3151. cpu = owner->cpu;
  3152. #endif
  3153. /*
  3154. * Even if the access succeeded (likely case),
  3155. * the cpu field may no longer be valid.
  3156. */
  3157. if (cpu >= nr_cpumask_bits)
  3158. return 0;
  3159. /*
  3160. * We need to validate that we can do a
  3161. * get_cpu() and that we have the percpu area.
  3162. */
  3163. if (!cpu_online(cpu))
  3164. return 0;
  3165. rq = cpu_rq(cpu);
  3166. for (;;) {
  3167. /*
  3168. * Owner changed, break to re-assess state.
  3169. */
  3170. if (lock->owner != owner)
  3171. break;
  3172. /*
  3173. * Is that owner really running on that cpu?
  3174. */
  3175. if (task_thread_info(rq->curr) != owner || need_resched())
  3176. return 0;
  3177. cpu_relax();
  3178. }
  3179. return 1;
  3180. }
  3181. #endif
  3182. #ifdef CONFIG_PREEMPT
  3183. /*
  3184. * this is the entry point to schedule() from in-kernel preemption
  3185. * off of preempt_enable. Kernel preemptions off return from interrupt
  3186. * occur there and call schedule directly.
  3187. */
  3188. asmlinkage void __sched preempt_schedule(void)
  3189. {
  3190. struct thread_info *ti = current_thread_info();
  3191. /*
  3192. * If there is a non-zero preempt_count or interrupts are disabled,
  3193. * we do not want to preempt the current task. Just return..
  3194. */
  3195. if (likely(ti->preempt_count || irqs_disabled()))
  3196. return;
  3197. do {
  3198. add_preempt_count(PREEMPT_ACTIVE);
  3199. schedule();
  3200. sub_preempt_count(PREEMPT_ACTIVE);
  3201. /*
  3202. * Check again in case we missed a preemption opportunity
  3203. * between schedule and now.
  3204. */
  3205. barrier();
  3206. } while (need_resched());
  3207. }
  3208. EXPORT_SYMBOL(preempt_schedule);
  3209. /*
  3210. * this is the entry point to schedule() from kernel preemption
  3211. * off of irq context.
  3212. * Note, that this is called and return with irqs disabled. This will
  3213. * protect us against recursive calling from irq.
  3214. */
  3215. asmlinkage void __sched preempt_schedule_irq(void)
  3216. {
  3217. struct thread_info *ti = current_thread_info();
  3218. /* Catch callers which need to be fixed */
  3219. BUG_ON(ti->preempt_count || !irqs_disabled());
  3220. do {
  3221. add_preempt_count(PREEMPT_ACTIVE);
  3222. local_irq_enable();
  3223. schedule();
  3224. local_irq_disable();
  3225. sub_preempt_count(PREEMPT_ACTIVE);
  3226. /*
  3227. * Check again in case we missed a preemption opportunity
  3228. * between schedule and now.
  3229. */
  3230. barrier();
  3231. } while (need_resched());
  3232. }
  3233. #endif /* CONFIG_PREEMPT */
  3234. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3235. void *key)
  3236. {
  3237. return try_to_wake_up(curr->private, mode, wake_flags);
  3238. }
  3239. EXPORT_SYMBOL(default_wake_function);
  3240. /*
  3241. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3242. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3243. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3244. *
  3245. * There are circumstances in which we can try to wake a task which has already
  3246. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3247. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3248. */
  3249. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3250. int nr_exclusive, int wake_flags, void *key)
  3251. {
  3252. wait_queue_t *curr, *next;
  3253. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3254. unsigned flags = curr->flags;
  3255. if (curr->func(curr, mode, wake_flags, key) &&
  3256. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3257. break;
  3258. }
  3259. }
  3260. /**
  3261. * __wake_up - wake up threads blocked on a waitqueue.
  3262. * @q: the waitqueue
  3263. * @mode: which threads
  3264. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3265. * @key: is directly passed to the wakeup function
  3266. *
  3267. * It may be assumed that this function implies a write memory barrier before
  3268. * changing the task state if and only if any tasks are woken up.
  3269. */
  3270. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3271. int nr_exclusive, void *key)
  3272. {
  3273. unsigned long flags;
  3274. spin_lock_irqsave(&q->lock, flags);
  3275. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3276. spin_unlock_irqrestore(&q->lock, flags);
  3277. }
  3278. EXPORT_SYMBOL(__wake_up);
  3279. /*
  3280. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3281. */
  3282. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3283. {
  3284. __wake_up_common(q, mode, 1, 0, NULL);
  3285. }
  3286. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3287. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3288. {
  3289. __wake_up_common(q, mode, 1, 0, key);
  3290. }
  3291. /**
  3292. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3293. * @q: the waitqueue
  3294. * @mode: which threads
  3295. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3296. * @key: opaque value to be passed to wakeup targets
  3297. *
  3298. * The sync wakeup differs that the waker knows that it will schedule
  3299. * away soon, so while the target thread will be woken up, it will not
  3300. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3301. * with each other. This can prevent needless bouncing between CPUs.
  3302. *
  3303. * On UP it can prevent extra preemption.
  3304. *
  3305. * It may be assumed that this function implies a write memory barrier before
  3306. * changing the task state if and only if any tasks are woken up.
  3307. */
  3308. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3309. int nr_exclusive, void *key)
  3310. {
  3311. unsigned long flags;
  3312. int wake_flags = WF_SYNC;
  3313. if (unlikely(!q))
  3314. return;
  3315. if (unlikely(!nr_exclusive))
  3316. wake_flags = 0;
  3317. spin_lock_irqsave(&q->lock, flags);
  3318. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3319. spin_unlock_irqrestore(&q->lock, flags);
  3320. }
  3321. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3322. /*
  3323. * __wake_up_sync - see __wake_up_sync_key()
  3324. */
  3325. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3326. {
  3327. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3328. }
  3329. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3330. /**
  3331. * complete: - signals a single thread waiting on this completion
  3332. * @x: holds the state of this particular completion
  3333. *
  3334. * This will wake up a single thread waiting on this completion. Threads will be
  3335. * awakened in the same order in which they were queued.
  3336. *
  3337. * See also complete_all(), wait_for_completion() and related routines.
  3338. *
  3339. * It may be assumed that this function implies a write memory barrier before
  3340. * changing the task state if and only if any tasks are woken up.
  3341. */
  3342. void complete(struct completion *x)
  3343. {
  3344. unsigned long flags;
  3345. spin_lock_irqsave(&x->wait.lock, flags);
  3346. x->done++;
  3347. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3348. spin_unlock_irqrestore(&x->wait.lock, flags);
  3349. }
  3350. EXPORT_SYMBOL(complete);
  3351. /**
  3352. * complete_all: - signals all threads waiting on this completion
  3353. * @x: holds the state of this particular completion
  3354. *
  3355. * This will wake up all threads waiting on this particular completion event.
  3356. *
  3357. * It may be assumed that this function implies a write memory barrier before
  3358. * changing the task state if and only if any tasks are woken up.
  3359. */
  3360. void complete_all(struct completion *x)
  3361. {
  3362. unsigned long flags;
  3363. spin_lock_irqsave(&x->wait.lock, flags);
  3364. x->done += UINT_MAX/2;
  3365. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3366. spin_unlock_irqrestore(&x->wait.lock, flags);
  3367. }
  3368. EXPORT_SYMBOL(complete_all);
  3369. static inline long __sched
  3370. do_wait_for_common(struct completion *x, long timeout, int state)
  3371. {
  3372. if (!x->done) {
  3373. DECLARE_WAITQUEUE(wait, current);
  3374. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3375. do {
  3376. if (signal_pending_state(state, current)) {
  3377. timeout = -ERESTARTSYS;
  3378. break;
  3379. }
  3380. __set_current_state(state);
  3381. spin_unlock_irq(&x->wait.lock);
  3382. timeout = schedule_timeout(timeout);
  3383. spin_lock_irq(&x->wait.lock);
  3384. } while (!x->done && timeout);
  3385. __remove_wait_queue(&x->wait, &wait);
  3386. if (!x->done)
  3387. return timeout;
  3388. }
  3389. x->done--;
  3390. return timeout ?: 1;
  3391. }
  3392. static long __sched
  3393. wait_for_common(struct completion *x, long timeout, int state)
  3394. {
  3395. might_sleep();
  3396. spin_lock_irq(&x->wait.lock);
  3397. timeout = do_wait_for_common(x, timeout, state);
  3398. spin_unlock_irq(&x->wait.lock);
  3399. return timeout;
  3400. }
  3401. /**
  3402. * wait_for_completion: - waits for completion of a task
  3403. * @x: holds the state of this particular completion
  3404. *
  3405. * This waits to be signaled for completion of a specific task. It is NOT
  3406. * interruptible and there is no timeout.
  3407. *
  3408. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3409. * and interrupt capability. Also see complete().
  3410. */
  3411. void __sched wait_for_completion(struct completion *x)
  3412. {
  3413. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3414. }
  3415. EXPORT_SYMBOL(wait_for_completion);
  3416. /**
  3417. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3418. * @x: holds the state of this particular completion
  3419. * @timeout: timeout value in jiffies
  3420. *
  3421. * This waits for either a completion of a specific task to be signaled or for a
  3422. * specified timeout to expire. The timeout is in jiffies. It is not
  3423. * interruptible.
  3424. */
  3425. unsigned long __sched
  3426. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3427. {
  3428. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3429. }
  3430. EXPORT_SYMBOL(wait_for_completion_timeout);
  3431. /**
  3432. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3433. * @x: holds the state of this particular completion
  3434. *
  3435. * This waits for completion of a specific task to be signaled. It is
  3436. * interruptible.
  3437. */
  3438. int __sched wait_for_completion_interruptible(struct completion *x)
  3439. {
  3440. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3441. if (t == -ERESTARTSYS)
  3442. return t;
  3443. return 0;
  3444. }
  3445. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3446. /**
  3447. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3448. * @x: holds the state of this particular completion
  3449. * @timeout: timeout value in jiffies
  3450. *
  3451. * This waits for either a completion of a specific task to be signaled or for a
  3452. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3453. */
  3454. unsigned long __sched
  3455. wait_for_completion_interruptible_timeout(struct completion *x,
  3456. unsigned long timeout)
  3457. {
  3458. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3459. }
  3460. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3461. /**
  3462. * wait_for_completion_killable: - waits for completion of a task (killable)
  3463. * @x: holds the state of this particular completion
  3464. *
  3465. * This waits to be signaled for completion of a specific task. It can be
  3466. * interrupted by a kill signal.
  3467. */
  3468. int __sched wait_for_completion_killable(struct completion *x)
  3469. {
  3470. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3471. if (t == -ERESTARTSYS)
  3472. return t;
  3473. return 0;
  3474. }
  3475. EXPORT_SYMBOL(wait_for_completion_killable);
  3476. /**
  3477. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3478. * @x: holds the state of this particular completion
  3479. * @timeout: timeout value in jiffies
  3480. *
  3481. * This waits for either a completion of a specific task to be
  3482. * signaled or for a specified timeout to expire. It can be
  3483. * interrupted by a kill signal. The timeout is in jiffies.
  3484. */
  3485. unsigned long __sched
  3486. wait_for_completion_killable_timeout(struct completion *x,
  3487. unsigned long timeout)
  3488. {
  3489. return wait_for_common(x, timeout, TASK_KILLABLE);
  3490. }
  3491. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3492. /**
  3493. * try_wait_for_completion - try to decrement a completion without blocking
  3494. * @x: completion structure
  3495. *
  3496. * Returns: 0 if a decrement cannot be done without blocking
  3497. * 1 if a decrement succeeded.
  3498. *
  3499. * If a completion is being used as a counting completion,
  3500. * attempt to decrement the counter without blocking. This
  3501. * enables us to avoid waiting if the resource the completion
  3502. * is protecting is not available.
  3503. */
  3504. bool try_wait_for_completion(struct completion *x)
  3505. {
  3506. unsigned long flags;
  3507. int ret = 1;
  3508. spin_lock_irqsave(&x->wait.lock, flags);
  3509. if (!x->done)
  3510. ret = 0;
  3511. else
  3512. x->done--;
  3513. spin_unlock_irqrestore(&x->wait.lock, flags);
  3514. return ret;
  3515. }
  3516. EXPORT_SYMBOL(try_wait_for_completion);
  3517. /**
  3518. * completion_done - Test to see if a completion has any waiters
  3519. * @x: completion structure
  3520. *
  3521. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3522. * 1 if there are no waiters.
  3523. *
  3524. */
  3525. bool completion_done(struct completion *x)
  3526. {
  3527. unsigned long flags;
  3528. int ret = 1;
  3529. spin_lock_irqsave(&x->wait.lock, flags);
  3530. if (!x->done)
  3531. ret = 0;
  3532. spin_unlock_irqrestore(&x->wait.lock, flags);
  3533. return ret;
  3534. }
  3535. EXPORT_SYMBOL(completion_done);
  3536. static long __sched
  3537. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3538. {
  3539. unsigned long flags;
  3540. wait_queue_t wait;
  3541. init_waitqueue_entry(&wait, current);
  3542. __set_current_state(state);
  3543. spin_lock_irqsave(&q->lock, flags);
  3544. __add_wait_queue(q, &wait);
  3545. spin_unlock(&q->lock);
  3546. timeout = schedule_timeout(timeout);
  3547. spin_lock_irq(&q->lock);
  3548. __remove_wait_queue(q, &wait);
  3549. spin_unlock_irqrestore(&q->lock, flags);
  3550. return timeout;
  3551. }
  3552. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3553. {
  3554. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3555. }
  3556. EXPORT_SYMBOL(interruptible_sleep_on);
  3557. long __sched
  3558. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3559. {
  3560. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3561. }
  3562. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3563. void __sched sleep_on(wait_queue_head_t *q)
  3564. {
  3565. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3566. }
  3567. EXPORT_SYMBOL(sleep_on);
  3568. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3569. {
  3570. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3571. }
  3572. EXPORT_SYMBOL(sleep_on_timeout);
  3573. #ifdef CONFIG_RT_MUTEXES
  3574. /*
  3575. * rt_mutex_setprio - set the current priority of a task
  3576. * @p: task
  3577. * @prio: prio value (kernel-internal form)
  3578. *
  3579. * This function changes the 'effective' priority of a task. It does
  3580. * not touch ->normal_prio like __setscheduler().
  3581. *
  3582. * Used by the rt_mutex code to implement priority inheritance logic.
  3583. */
  3584. void rt_mutex_setprio(struct task_struct *p, int prio)
  3585. {
  3586. unsigned long flags;
  3587. int oldprio, on_rq, running;
  3588. struct rq *rq;
  3589. const struct sched_class *prev_class;
  3590. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3591. rq = task_rq_lock(p, &flags);
  3592. oldprio = p->prio;
  3593. prev_class = p->sched_class;
  3594. on_rq = p->se.on_rq;
  3595. running = task_current(rq, p);
  3596. if (on_rq)
  3597. dequeue_task(rq, p, 0);
  3598. if (running)
  3599. p->sched_class->put_prev_task(rq, p);
  3600. if (rt_prio(prio))
  3601. p->sched_class = &rt_sched_class;
  3602. else
  3603. p->sched_class = &fair_sched_class;
  3604. p->prio = prio;
  3605. if (running)
  3606. p->sched_class->set_curr_task(rq);
  3607. if (on_rq) {
  3608. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3609. check_class_changed(rq, p, prev_class, oldprio, running);
  3610. }
  3611. task_rq_unlock(rq, &flags);
  3612. }
  3613. #endif
  3614. void set_user_nice(struct task_struct *p, long nice)
  3615. {
  3616. int old_prio, delta, on_rq;
  3617. unsigned long flags;
  3618. struct rq *rq;
  3619. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3620. return;
  3621. /*
  3622. * We have to be careful, if called from sys_setpriority(),
  3623. * the task might be in the middle of scheduling on another CPU.
  3624. */
  3625. rq = task_rq_lock(p, &flags);
  3626. /*
  3627. * The RT priorities are set via sched_setscheduler(), but we still
  3628. * allow the 'normal' nice value to be set - but as expected
  3629. * it wont have any effect on scheduling until the task is
  3630. * SCHED_FIFO/SCHED_RR:
  3631. */
  3632. if (task_has_rt_policy(p)) {
  3633. p->static_prio = NICE_TO_PRIO(nice);
  3634. goto out_unlock;
  3635. }
  3636. on_rq = p->se.on_rq;
  3637. if (on_rq)
  3638. dequeue_task(rq, p, 0);
  3639. p->static_prio = NICE_TO_PRIO(nice);
  3640. set_load_weight(p);
  3641. old_prio = p->prio;
  3642. p->prio = effective_prio(p);
  3643. delta = p->prio - old_prio;
  3644. if (on_rq) {
  3645. enqueue_task(rq, p, 0);
  3646. /*
  3647. * If the task increased its priority or is running and
  3648. * lowered its priority, then reschedule its CPU:
  3649. */
  3650. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3651. resched_task(rq->curr);
  3652. }
  3653. out_unlock:
  3654. task_rq_unlock(rq, &flags);
  3655. }
  3656. EXPORT_SYMBOL(set_user_nice);
  3657. /*
  3658. * can_nice - check if a task can reduce its nice value
  3659. * @p: task
  3660. * @nice: nice value
  3661. */
  3662. int can_nice(const struct task_struct *p, const int nice)
  3663. {
  3664. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3665. int nice_rlim = 20 - nice;
  3666. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3667. capable(CAP_SYS_NICE));
  3668. }
  3669. #ifdef __ARCH_WANT_SYS_NICE
  3670. /*
  3671. * sys_nice - change the priority of the current process.
  3672. * @increment: priority increment
  3673. *
  3674. * sys_setpriority is a more generic, but much slower function that
  3675. * does similar things.
  3676. */
  3677. SYSCALL_DEFINE1(nice, int, increment)
  3678. {
  3679. long nice, retval;
  3680. /*
  3681. * Setpriority might change our priority at the same moment.
  3682. * We don't have to worry. Conceptually one call occurs first
  3683. * and we have a single winner.
  3684. */
  3685. if (increment < -40)
  3686. increment = -40;
  3687. if (increment > 40)
  3688. increment = 40;
  3689. nice = TASK_NICE(current) + increment;
  3690. if (nice < -20)
  3691. nice = -20;
  3692. if (nice > 19)
  3693. nice = 19;
  3694. if (increment < 0 && !can_nice(current, nice))
  3695. return -EPERM;
  3696. retval = security_task_setnice(current, nice);
  3697. if (retval)
  3698. return retval;
  3699. set_user_nice(current, nice);
  3700. return 0;
  3701. }
  3702. #endif
  3703. /**
  3704. * task_prio - return the priority value of a given task.
  3705. * @p: the task in question.
  3706. *
  3707. * This is the priority value as seen by users in /proc.
  3708. * RT tasks are offset by -200. Normal tasks are centered
  3709. * around 0, value goes from -16 to +15.
  3710. */
  3711. int task_prio(const struct task_struct *p)
  3712. {
  3713. return p->prio - MAX_RT_PRIO;
  3714. }
  3715. /**
  3716. * task_nice - return the nice value of a given task.
  3717. * @p: the task in question.
  3718. */
  3719. int task_nice(const struct task_struct *p)
  3720. {
  3721. return TASK_NICE(p);
  3722. }
  3723. EXPORT_SYMBOL(task_nice);
  3724. /**
  3725. * idle_cpu - is a given cpu idle currently?
  3726. * @cpu: the processor in question.
  3727. */
  3728. int idle_cpu(int cpu)
  3729. {
  3730. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3731. }
  3732. /**
  3733. * idle_task - return the idle task for a given cpu.
  3734. * @cpu: the processor in question.
  3735. */
  3736. struct task_struct *idle_task(int cpu)
  3737. {
  3738. return cpu_rq(cpu)->idle;
  3739. }
  3740. /**
  3741. * find_process_by_pid - find a process with a matching PID value.
  3742. * @pid: the pid in question.
  3743. */
  3744. static struct task_struct *find_process_by_pid(pid_t pid)
  3745. {
  3746. return pid ? find_task_by_vpid(pid) : current;
  3747. }
  3748. /* Actually do priority change: must hold rq lock. */
  3749. static void
  3750. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3751. {
  3752. BUG_ON(p->se.on_rq);
  3753. p->policy = policy;
  3754. p->rt_priority = prio;
  3755. p->normal_prio = normal_prio(p);
  3756. /* we are holding p->pi_lock already */
  3757. p->prio = rt_mutex_getprio(p);
  3758. if (rt_prio(p->prio))
  3759. p->sched_class = &rt_sched_class;
  3760. else
  3761. p->sched_class = &fair_sched_class;
  3762. set_load_weight(p);
  3763. }
  3764. /*
  3765. * check the target process has a UID that matches the current process's
  3766. */
  3767. static bool check_same_owner(struct task_struct *p)
  3768. {
  3769. const struct cred *cred = current_cred(), *pcred;
  3770. bool match;
  3771. rcu_read_lock();
  3772. pcred = __task_cred(p);
  3773. match = (cred->euid == pcred->euid ||
  3774. cred->euid == pcred->uid);
  3775. rcu_read_unlock();
  3776. return match;
  3777. }
  3778. static int __sched_setscheduler(struct task_struct *p, int policy,
  3779. struct sched_param *param, bool user)
  3780. {
  3781. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3782. unsigned long flags;
  3783. const struct sched_class *prev_class;
  3784. struct rq *rq;
  3785. int reset_on_fork;
  3786. /* may grab non-irq protected spin_locks */
  3787. BUG_ON(in_interrupt());
  3788. recheck:
  3789. /* double check policy once rq lock held */
  3790. if (policy < 0) {
  3791. reset_on_fork = p->sched_reset_on_fork;
  3792. policy = oldpolicy = p->policy;
  3793. } else {
  3794. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3795. policy &= ~SCHED_RESET_ON_FORK;
  3796. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3797. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3798. policy != SCHED_IDLE)
  3799. return -EINVAL;
  3800. }
  3801. /*
  3802. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3803. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3804. * SCHED_BATCH and SCHED_IDLE is 0.
  3805. */
  3806. if (param->sched_priority < 0 ||
  3807. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3808. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3809. return -EINVAL;
  3810. if (rt_policy(policy) != (param->sched_priority != 0))
  3811. return -EINVAL;
  3812. /*
  3813. * Allow unprivileged RT tasks to decrease priority:
  3814. */
  3815. if (user && !capable(CAP_SYS_NICE)) {
  3816. if (rt_policy(policy)) {
  3817. unsigned long rlim_rtprio;
  3818. if (!lock_task_sighand(p, &flags))
  3819. return -ESRCH;
  3820. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3821. unlock_task_sighand(p, &flags);
  3822. /* can't set/change the rt policy */
  3823. if (policy != p->policy && !rlim_rtprio)
  3824. return -EPERM;
  3825. /* can't increase priority */
  3826. if (param->sched_priority > p->rt_priority &&
  3827. param->sched_priority > rlim_rtprio)
  3828. return -EPERM;
  3829. }
  3830. /*
  3831. * Like positive nice levels, dont allow tasks to
  3832. * move out of SCHED_IDLE either:
  3833. */
  3834. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3835. return -EPERM;
  3836. /* can't change other user's priorities */
  3837. if (!check_same_owner(p))
  3838. return -EPERM;
  3839. /* Normal users shall not reset the sched_reset_on_fork flag */
  3840. if (p->sched_reset_on_fork && !reset_on_fork)
  3841. return -EPERM;
  3842. }
  3843. if (user) {
  3844. #ifdef CONFIG_RT_GROUP_SCHED
  3845. /*
  3846. * Do not allow realtime tasks into groups that have no runtime
  3847. * assigned.
  3848. */
  3849. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3850. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3851. return -EPERM;
  3852. #endif
  3853. retval = security_task_setscheduler(p, policy, param);
  3854. if (retval)
  3855. return retval;
  3856. }
  3857. /*
  3858. * make sure no PI-waiters arrive (or leave) while we are
  3859. * changing the priority of the task:
  3860. */
  3861. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3862. /*
  3863. * To be able to change p->policy safely, the apropriate
  3864. * runqueue lock must be held.
  3865. */
  3866. rq = __task_rq_lock(p);
  3867. /* recheck policy now with rq lock held */
  3868. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3869. policy = oldpolicy = -1;
  3870. __task_rq_unlock(rq);
  3871. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3872. goto recheck;
  3873. }
  3874. on_rq = p->se.on_rq;
  3875. running = task_current(rq, p);
  3876. if (on_rq)
  3877. deactivate_task(rq, p, 0);
  3878. if (running)
  3879. p->sched_class->put_prev_task(rq, p);
  3880. p->sched_reset_on_fork = reset_on_fork;
  3881. oldprio = p->prio;
  3882. prev_class = p->sched_class;
  3883. __setscheduler(rq, p, policy, param->sched_priority);
  3884. if (running)
  3885. p->sched_class->set_curr_task(rq);
  3886. if (on_rq) {
  3887. activate_task(rq, p, 0);
  3888. check_class_changed(rq, p, prev_class, oldprio, running);
  3889. }
  3890. __task_rq_unlock(rq);
  3891. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3892. rt_mutex_adjust_pi(p);
  3893. return 0;
  3894. }
  3895. /**
  3896. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3897. * @p: the task in question.
  3898. * @policy: new policy.
  3899. * @param: structure containing the new RT priority.
  3900. *
  3901. * NOTE that the task may be already dead.
  3902. */
  3903. int sched_setscheduler(struct task_struct *p, int policy,
  3904. struct sched_param *param)
  3905. {
  3906. return __sched_setscheduler(p, policy, param, true);
  3907. }
  3908. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3909. /**
  3910. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3911. * @p: the task in question.
  3912. * @policy: new policy.
  3913. * @param: structure containing the new RT priority.
  3914. *
  3915. * Just like sched_setscheduler, only don't bother checking if the
  3916. * current context has permission. For example, this is needed in
  3917. * stop_machine(): we create temporary high priority worker threads,
  3918. * but our caller might not have that capability.
  3919. */
  3920. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3921. struct sched_param *param)
  3922. {
  3923. return __sched_setscheduler(p, policy, param, false);
  3924. }
  3925. static int
  3926. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3927. {
  3928. struct sched_param lparam;
  3929. struct task_struct *p;
  3930. int retval;
  3931. if (!param || pid < 0)
  3932. return -EINVAL;
  3933. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3934. return -EFAULT;
  3935. rcu_read_lock();
  3936. retval = -ESRCH;
  3937. p = find_process_by_pid(pid);
  3938. if (p != NULL)
  3939. retval = sched_setscheduler(p, policy, &lparam);
  3940. rcu_read_unlock();
  3941. return retval;
  3942. }
  3943. /**
  3944. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3945. * @pid: the pid in question.
  3946. * @policy: new policy.
  3947. * @param: structure containing the new RT priority.
  3948. */
  3949. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3950. struct sched_param __user *, param)
  3951. {
  3952. /* negative values for policy are not valid */
  3953. if (policy < 0)
  3954. return -EINVAL;
  3955. return do_sched_setscheduler(pid, policy, param);
  3956. }
  3957. /**
  3958. * sys_sched_setparam - set/change the RT priority of a thread
  3959. * @pid: the pid in question.
  3960. * @param: structure containing the new RT priority.
  3961. */
  3962. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3963. {
  3964. return do_sched_setscheduler(pid, -1, param);
  3965. }
  3966. /**
  3967. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3968. * @pid: the pid in question.
  3969. */
  3970. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3971. {
  3972. struct task_struct *p;
  3973. int retval;
  3974. if (pid < 0)
  3975. return -EINVAL;
  3976. retval = -ESRCH;
  3977. rcu_read_lock();
  3978. p = find_process_by_pid(pid);
  3979. if (p) {
  3980. retval = security_task_getscheduler(p);
  3981. if (!retval)
  3982. retval = p->policy
  3983. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3984. }
  3985. rcu_read_unlock();
  3986. return retval;
  3987. }
  3988. /**
  3989. * sys_sched_getparam - get the RT priority of a thread
  3990. * @pid: the pid in question.
  3991. * @param: structure containing the RT priority.
  3992. */
  3993. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3994. {
  3995. struct sched_param lp;
  3996. struct task_struct *p;
  3997. int retval;
  3998. if (!param || pid < 0)
  3999. return -EINVAL;
  4000. rcu_read_lock();
  4001. p = find_process_by_pid(pid);
  4002. retval = -ESRCH;
  4003. if (!p)
  4004. goto out_unlock;
  4005. retval = security_task_getscheduler(p);
  4006. if (retval)
  4007. goto out_unlock;
  4008. lp.sched_priority = p->rt_priority;
  4009. rcu_read_unlock();
  4010. /*
  4011. * This one might sleep, we cannot do it with a spinlock held ...
  4012. */
  4013. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4014. return retval;
  4015. out_unlock:
  4016. rcu_read_unlock();
  4017. return retval;
  4018. }
  4019. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4020. {
  4021. cpumask_var_t cpus_allowed, new_mask;
  4022. struct task_struct *p;
  4023. int retval;
  4024. get_online_cpus();
  4025. rcu_read_lock();
  4026. p = find_process_by_pid(pid);
  4027. if (!p) {
  4028. rcu_read_unlock();
  4029. put_online_cpus();
  4030. return -ESRCH;
  4031. }
  4032. /* Prevent p going away */
  4033. get_task_struct(p);
  4034. rcu_read_unlock();
  4035. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4036. retval = -ENOMEM;
  4037. goto out_put_task;
  4038. }
  4039. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4040. retval = -ENOMEM;
  4041. goto out_free_cpus_allowed;
  4042. }
  4043. retval = -EPERM;
  4044. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4045. goto out_unlock;
  4046. retval = security_task_setscheduler(p, 0, NULL);
  4047. if (retval)
  4048. goto out_unlock;
  4049. cpuset_cpus_allowed(p, cpus_allowed);
  4050. cpumask_and(new_mask, in_mask, cpus_allowed);
  4051. again:
  4052. retval = set_cpus_allowed_ptr(p, new_mask);
  4053. if (!retval) {
  4054. cpuset_cpus_allowed(p, cpus_allowed);
  4055. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4056. /*
  4057. * We must have raced with a concurrent cpuset
  4058. * update. Just reset the cpus_allowed to the
  4059. * cpuset's cpus_allowed
  4060. */
  4061. cpumask_copy(new_mask, cpus_allowed);
  4062. goto again;
  4063. }
  4064. }
  4065. out_unlock:
  4066. free_cpumask_var(new_mask);
  4067. out_free_cpus_allowed:
  4068. free_cpumask_var(cpus_allowed);
  4069. out_put_task:
  4070. put_task_struct(p);
  4071. put_online_cpus();
  4072. return retval;
  4073. }
  4074. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4075. struct cpumask *new_mask)
  4076. {
  4077. if (len < cpumask_size())
  4078. cpumask_clear(new_mask);
  4079. else if (len > cpumask_size())
  4080. len = cpumask_size();
  4081. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4082. }
  4083. /**
  4084. * sys_sched_setaffinity - set the cpu affinity of a process
  4085. * @pid: pid of the process
  4086. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4087. * @user_mask_ptr: user-space pointer to the new cpu mask
  4088. */
  4089. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4090. unsigned long __user *, user_mask_ptr)
  4091. {
  4092. cpumask_var_t new_mask;
  4093. int retval;
  4094. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4095. return -ENOMEM;
  4096. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4097. if (retval == 0)
  4098. retval = sched_setaffinity(pid, new_mask);
  4099. free_cpumask_var(new_mask);
  4100. return retval;
  4101. }
  4102. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4103. {
  4104. struct task_struct *p;
  4105. unsigned long flags;
  4106. struct rq *rq;
  4107. int retval;
  4108. get_online_cpus();
  4109. rcu_read_lock();
  4110. retval = -ESRCH;
  4111. p = find_process_by_pid(pid);
  4112. if (!p)
  4113. goto out_unlock;
  4114. retval = security_task_getscheduler(p);
  4115. if (retval)
  4116. goto out_unlock;
  4117. rq = task_rq_lock(p, &flags);
  4118. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4119. task_rq_unlock(rq, &flags);
  4120. out_unlock:
  4121. rcu_read_unlock();
  4122. put_online_cpus();
  4123. return retval;
  4124. }
  4125. /**
  4126. * sys_sched_getaffinity - get the cpu affinity of a process
  4127. * @pid: pid of the process
  4128. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4129. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4130. */
  4131. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4132. unsigned long __user *, user_mask_ptr)
  4133. {
  4134. int ret;
  4135. cpumask_var_t mask;
  4136. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4137. return -EINVAL;
  4138. if (len & (sizeof(unsigned long)-1))
  4139. return -EINVAL;
  4140. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4141. return -ENOMEM;
  4142. ret = sched_getaffinity(pid, mask);
  4143. if (ret == 0) {
  4144. size_t retlen = min_t(size_t, len, cpumask_size());
  4145. if (copy_to_user(user_mask_ptr, mask, retlen))
  4146. ret = -EFAULT;
  4147. else
  4148. ret = retlen;
  4149. }
  4150. free_cpumask_var(mask);
  4151. return ret;
  4152. }
  4153. /**
  4154. * sys_sched_yield - yield the current processor to other threads.
  4155. *
  4156. * This function yields the current CPU to other tasks. If there are no
  4157. * other threads running on this CPU then this function will return.
  4158. */
  4159. SYSCALL_DEFINE0(sched_yield)
  4160. {
  4161. struct rq *rq = this_rq_lock();
  4162. schedstat_inc(rq, yld_count);
  4163. current->sched_class->yield_task(rq);
  4164. /*
  4165. * Since we are going to call schedule() anyway, there's
  4166. * no need to preempt or enable interrupts:
  4167. */
  4168. __release(rq->lock);
  4169. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4170. do_raw_spin_unlock(&rq->lock);
  4171. preempt_enable_no_resched();
  4172. schedule();
  4173. return 0;
  4174. }
  4175. static inline int should_resched(void)
  4176. {
  4177. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4178. }
  4179. static void __cond_resched(void)
  4180. {
  4181. add_preempt_count(PREEMPT_ACTIVE);
  4182. schedule();
  4183. sub_preempt_count(PREEMPT_ACTIVE);
  4184. }
  4185. int __sched _cond_resched(void)
  4186. {
  4187. if (should_resched()) {
  4188. __cond_resched();
  4189. return 1;
  4190. }
  4191. return 0;
  4192. }
  4193. EXPORT_SYMBOL(_cond_resched);
  4194. /*
  4195. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4196. * call schedule, and on return reacquire the lock.
  4197. *
  4198. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4199. * operations here to prevent schedule() from being called twice (once via
  4200. * spin_unlock(), once by hand).
  4201. */
  4202. int __cond_resched_lock(spinlock_t *lock)
  4203. {
  4204. int resched = should_resched();
  4205. int ret = 0;
  4206. lockdep_assert_held(lock);
  4207. if (spin_needbreak(lock) || resched) {
  4208. spin_unlock(lock);
  4209. if (resched)
  4210. __cond_resched();
  4211. else
  4212. cpu_relax();
  4213. ret = 1;
  4214. spin_lock(lock);
  4215. }
  4216. return ret;
  4217. }
  4218. EXPORT_SYMBOL(__cond_resched_lock);
  4219. int __sched __cond_resched_softirq(void)
  4220. {
  4221. BUG_ON(!in_softirq());
  4222. if (should_resched()) {
  4223. local_bh_enable();
  4224. __cond_resched();
  4225. local_bh_disable();
  4226. return 1;
  4227. }
  4228. return 0;
  4229. }
  4230. EXPORT_SYMBOL(__cond_resched_softirq);
  4231. /**
  4232. * yield - yield the current processor to other threads.
  4233. *
  4234. * This is a shortcut for kernel-space yielding - it marks the
  4235. * thread runnable and calls sys_sched_yield().
  4236. */
  4237. void __sched yield(void)
  4238. {
  4239. set_current_state(TASK_RUNNING);
  4240. sys_sched_yield();
  4241. }
  4242. EXPORT_SYMBOL(yield);
  4243. /*
  4244. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4245. * that process accounting knows that this is a task in IO wait state.
  4246. */
  4247. void __sched io_schedule(void)
  4248. {
  4249. struct rq *rq = raw_rq();
  4250. delayacct_blkio_start();
  4251. atomic_inc(&rq->nr_iowait);
  4252. current->in_iowait = 1;
  4253. schedule();
  4254. current->in_iowait = 0;
  4255. atomic_dec(&rq->nr_iowait);
  4256. delayacct_blkio_end();
  4257. }
  4258. EXPORT_SYMBOL(io_schedule);
  4259. long __sched io_schedule_timeout(long timeout)
  4260. {
  4261. struct rq *rq = raw_rq();
  4262. long ret;
  4263. delayacct_blkio_start();
  4264. atomic_inc(&rq->nr_iowait);
  4265. current->in_iowait = 1;
  4266. ret = schedule_timeout(timeout);
  4267. current->in_iowait = 0;
  4268. atomic_dec(&rq->nr_iowait);
  4269. delayacct_blkio_end();
  4270. return ret;
  4271. }
  4272. /**
  4273. * sys_sched_get_priority_max - return maximum RT priority.
  4274. * @policy: scheduling class.
  4275. *
  4276. * this syscall returns the maximum rt_priority that can be used
  4277. * by a given scheduling class.
  4278. */
  4279. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4280. {
  4281. int ret = -EINVAL;
  4282. switch (policy) {
  4283. case SCHED_FIFO:
  4284. case SCHED_RR:
  4285. ret = MAX_USER_RT_PRIO-1;
  4286. break;
  4287. case SCHED_NORMAL:
  4288. case SCHED_BATCH:
  4289. case SCHED_IDLE:
  4290. ret = 0;
  4291. break;
  4292. }
  4293. return ret;
  4294. }
  4295. /**
  4296. * sys_sched_get_priority_min - return minimum RT priority.
  4297. * @policy: scheduling class.
  4298. *
  4299. * this syscall returns the minimum rt_priority that can be used
  4300. * by a given scheduling class.
  4301. */
  4302. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4303. {
  4304. int ret = -EINVAL;
  4305. switch (policy) {
  4306. case SCHED_FIFO:
  4307. case SCHED_RR:
  4308. ret = 1;
  4309. break;
  4310. case SCHED_NORMAL:
  4311. case SCHED_BATCH:
  4312. case SCHED_IDLE:
  4313. ret = 0;
  4314. }
  4315. return ret;
  4316. }
  4317. /**
  4318. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4319. * @pid: pid of the process.
  4320. * @interval: userspace pointer to the timeslice value.
  4321. *
  4322. * this syscall writes the default timeslice value of a given process
  4323. * into the user-space timespec buffer. A value of '0' means infinity.
  4324. */
  4325. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4326. struct timespec __user *, interval)
  4327. {
  4328. struct task_struct *p;
  4329. unsigned int time_slice;
  4330. unsigned long flags;
  4331. struct rq *rq;
  4332. int retval;
  4333. struct timespec t;
  4334. if (pid < 0)
  4335. return -EINVAL;
  4336. retval = -ESRCH;
  4337. rcu_read_lock();
  4338. p = find_process_by_pid(pid);
  4339. if (!p)
  4340. goto out_unlock;
  4341. retval = security_task_getscheduler(p);
  4342. if (retval)
  4343. goto out_unlock;
  4344. rq = task_rq_lock(p, &flags);
  4345. time_slice = p->sched_class->get_rr_interval(rq, p);
  4346. task_rq_unlock(rq, &flags);
  4347. rcu_read_unlock();
  4348. jiffies_to_timespec(time_slice, &t);
  4349. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4350. return retval;
  4351. out_unlock:
  4352. rcu_read_unlock();
  4353. return retval;
  4354. }
  4355. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4356. void sched_show_task(struct task_struct *p)
  4357. {
  4358. unsigned long free = 0;
  4359. unsigned state;
  4360. state = p->state ? __ffs(p->state) + 1 : 0;
  4361. printk(KERN_INFO "%-13.13s %c", p->comm,
  4362. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4363. #if BITS_PER_LONG == 32
  4364. if (state == TASK_RUNNING)
  4365. printk(KERN_CONT " running ");
  4366. else
  4367. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4368. #else
  4369. if (state == TASK_RUNNING)
  4370. printk(KERN_CONT " running task ");
  4371. else
  4372. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4373. #endif
  4374. #ifdef CONFIG_DEBUG_STACK_USAGE
  4375. free = stack_not_used(p);
  4376. #endif
  4377. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4378. task_pid_nr(p), task_pid_nr(p->real_parent),
  4379. (unsigned long)task_thread_info(p)->flags);
  4380. show_stack(p, NULL);
  4381. }
  4382. void show_state_filter(unsigned long state_filter)
  4383. {
  4384. struct task_struct *g, *p;
  4385. #if BITS_PER_LONG == 32
  4386. printk(KERN_INFO
  4387. " task PC stack pid father\n");
  4388. #else
  4389. printk(KERN_INFO
  4390. " task PC stack pid father\n");
  4391. #endif
  4392. read_lock(&tasklist_lock);
  4393. do_each_thread(g, p) {
  4394. /*
  4395. * reset the NMI-timeout, listing all files on a slow
  4396. * console might take alot of time:
  4397. */
  4398. touch_nmi_watchdog();
  4399. if (!state_filter || (p->state & state_filter))
  4400. sched_show_task(p);
  4401. } while_each_thread(g, p);
  4402. touch_all_softlockup_watchdogs();
  4403. #ifdef CONFIG_SCHED_DEBUG
  4404. sysrq_sched_debug_show();
  4405. #endif
  4406. read_unlock(&tasklist_lock);
  4407. /*
  4408. * Only show locks if all tasks are dumped:
  4409. */
  4410. if (!state_filter)
  4411. debug_show_all_locks();
  4412. }
  4413. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4414. {
  4415. idle->sched_class = &idle_sched_class;
  4416. }
  4417. /**
  4418. * init_idle - set up an idle thread for a given CPU
  4419. * @idle: task in question
  4420. * @cpu: cpu the idle task belongs to
  4421. *
  4422. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4423. * flag, to make booting more robust.
  4424. */
  4425. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4426. {
  4427. struct rq *rq = cpu_rq(cpu);
  4428. unsigned long flags;
  4429. raw_spin_lock_irqsave(&rq->lock, flags);
  4430. __sched_fork(idle);
  4431. idle->state = TASK_RUNNING;
  4432. idle->se.exec_start = sched_clock();
  4433. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4434. __set_task_cpu(idle, cpu);
  4435. rq->curr = rq->idle = idle;
  4436. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4437. idle->oncpu = 1;
  4438. #endif
  4439. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4440. /* Set the preempt count _outside_ the spinlocks! */
  4441. #if defined(CONFIG_PREEMPT)
  4442. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4443. #else
  4444. task_thread_info(idle)->preempt_count = 0;
  4445. #endif
  4446. /*
  4447. * The idle tasks have their own, simple scheduling class:
  4448. */
  4449. idle->sched_class = &idle_sched_class;
  4450. ftrace_graph_init_task(idle);
  4451. }
  4452. /*
  4453. * In a system that switches off the HZ timer nohz_cpu_mask
  4454. * indicates which cpus entered this state. This is used
  4455. * in the rcu update to wait only for active cpus. For system
  4456. * which do not switch off the HZ timer nohz_cpu_mask should
  4457. * always be CPU_BITS_NONE.
  4458. */
  4459. cpumask_var_t nohz_cpu_mask;
  4460. /*
  4461. * Increase the granularity value when there are more CPUs,
  4462. * because with more CPUs the 'effective latency' as visible
  4463. * to users decreases. But the relationship is not linear,
  4464. * so pick a second-best guess by going with the log2 of the
  4465. * number of CPUs.
  4466. *
  4467. * This idea comes from the SD scheduler of Con Kolivas:
  4468. */
  4469. static int get_update_sysctl_factor(void)
  4470. {
  4471. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4472. unsigned int factor;
  4473. switch (sysctl_sched_tunable_scaling) {
  4474. case SCHED_TUNABLESCALING_NONE:
  4475. factor = 1;
  4476. break;
  4477. case SCHED_TUNABLESCALING_LINEAR:
  4478. factor = cpus;
  4479. break;
  4480. case SCHED_TUNABLESCALING_LOG:
  4481. default:
  4482. factor = 1 + ilog2(cpus);
  4483. break;
  4484. }
  4485. return factor;
  4486. }
  4487. static void update_sysctl(void)
  4488. {
  4489. unsigned int factor = get_update_sysctl_factor();
  4490. #define SET_SYSCTL(name) \
  4491. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4492. SET_SYSCTL(sched_min_granularity);
  4493. SET_SYSCTL(sched_latency);
  4494. SET_SYSCTL(sched_wakeup_granularity);
  4495. SET_SYSCTL(sched_shares_ratelimit);
  4496. #undef SET_SYSCTL
  4497. }
  4498. static inline void sched_init_granularity(void)
  4499. {
  4500. update_sysctl();
  4501. }
  4502. #ifdef CONFIG_SMP
  4503. /*
  4504. * This is how migration works:
  4505. *
  4506. * 1) we invoke migration_cpu_stop() on the target CPU using
  4507. * stop_one_cpu().
  4508. * 2) stopper starts to run (implicitly forcing the migrated thread
  4509. * off the CPU)
  4510. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4511. * 4) if it's in the wrong runqueue then the migration thread removes
  4512. * it and puts it into the right queue.
  4513. * 5) stopper completes and stop_one_cpu() returns and the migration
  4514. * is done.
  4515. */
  4516. /*
  4517. * Change a given task's CPU affinity. Migrate the thread to a
  4518. * proper CPU and schedule it away if the CPU it's executing on
  4519. * is removed from the allowed bitmask.
  4520. *
  4521. * NOTE: the caller must have a valid reference to the task, the
  4522. * task must not exit() & deallocate itself prematurely. The
  4523. * call is not atomic; no spinlocks may be held.
  4524. */
  4525. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4526. {
  4527. unsigned long flags;
  4528. struct rq *rq;
  4529. unsigned int dest_cpu;
  4530. int ret = 0;
  4531. /*
  4532. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4533. * drop the rq->lock and still rely on ->cpus_allowed.
  4534. */
  4535. again:
  4536. while (task_is_waking(p))
  4537. cpu_relax();
  4538. rq = task_rq_lock(p, &flags);
  4539. if (task_is_waking(p)) {
  4540. task_rq_unlock(rq, &flags);
  4541. goto again;
  4542. }
  4543. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4544. ret = -EINVAL;
  4545. goto out;
  4546. }
  4547. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4548. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4549. ret = -EINVAL;
  4550. goto out;
  4551. }
  4552. if (p->sched_class->set_cpus_allowed)
  4553. p->sched_class->set_cpus_allowed(p, new_mask);
  4554. else {
  4555. cpumask_copy(&p->cpus_allowed, new_mask);
  4556. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4557. }
  4558. /* Can the task run on the task's current CPU? If so, we're done */
  4559. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4560. goto out;
  4561. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4562. if (migrate_task(p, dest_cpu)) {
  4563. struct migration_arg arg = { p, dest_cpu };
  4564. /* Need help from migration thread: drop lock and wait. */
  4565. task_rq_unlock(rq, &flags);
  4566. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4567. tlb_migrate_finish(p->mm);
  4568. return 0;
  4569. }
  4570. out:
  4571. task_rq_unlock(rq, &flags);
  4572. return ret;
  4573. }
  4574. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4575. /*
  4576. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4577. * this because either it can't run here any more (set_cpus_allowed()
  4578. * away from this CPU, or CPU going down), or because we're
  4579. * attempting to rebalance this task on exec (sched_exec).
  4580. *
  4581. * So we race with normal scheduler movements, but that's OK, as long
  4582. * as the task is no longer on this CPU.
  4583. *
  4584. * Returns non-zero if task was successfully migrated.
  4585. */
  4586. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4587. {
  4588. struct rq *rq_dest, *rq_src;
  4589. int ret = 0;
  4590. if (unlikely(!cpu_active(dest_cpu)))
  4591. return ret;
  4592. rq_src = cpu_rq(src_cpu);
  4593. rq_dest = cpu_rq(dest_cpu);
  4594. double_rq_lock(rq_src, rq_dest);
  4595. /* Already moved. */
  4596. if (task_cpu(p) != src_cpu)
  4597. goto done;
  4598. /* Affinity changed (again). */
  4599. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4600. goto fail;
  4601. /*
  4602. * If we're not on a rq, the next wake-up will ensure we're
  4603. * placed properly.
  4604. */
  4605. if (p->se.on_rq) {
  4606. deactivate_task(rq_src, p, 0);
  4607. set_task_cpu(p, dest_cpu);
  4608. activate_task(rq_dest, p, 0);
  4609. check_preempt_curr(rq_dest, p, 0);
  4610. }
  4611. done:
  4612. ret = 1;
  4613. fail:
  4614. double_rq_unlock(rq_src, rq_dest);
  4615. return ret;
  4616. }
  4617. /*
  4618. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4619. * and performs thread migration by bumping thread off CPU then
  4620. * 'pushing' onto another runqueue.
  4621. */
  4622. static int migration_cpu_stop(void *data)
  4623. {
  4624. struct migration_arg *arg = data;
  4625. /*
  4626. * The original target cpu might have gone down and we might
  4627. * be on another cpu but it doesn't matter.
  4628. */
  4629. local_irq_disable();
  4630. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4631. local_irq_enable();
  4632. return 0;
  4633. }
  4634. #ifdef CONFIG_HOTPLUG_CPU
  4635. /*
  4636. * Figure out where task on dead CPU should go, use force if necessary.
  4637. */
  4638. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4639. {
  4640. struct rq *rq = cpu_rq(dead_cpu);
  4641. int needs_cpu, uninitialized_var(dest_cpu);
  4642. unsigned long flags;
  4643. local_irq_save(flags);
  4644. raw_spin_lock(&rq->lock);
  4645. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4646. if (needs_cpu)
  4647. dest_cpu = select_fallback_rq(dead_cpu, p);
  4648. raw_spin_unlock(&rq->lock);
  4649. /*
  4650. * It can only fail if we race with set_cpus_allowed(),
  4651. * in the racer should migrate the task anyway.
  4652. */
  4653. if (needs_cpu)
  4654. __migrate_task(p, dead_cpu, dest_cpu);
  4655. local_irq_restore(flags);
  4656. }
  4657. /*
  4658. * While a dead CPU has no uninterruptible tasks queued at this point,
  4659. * it might still have a nonzero ->nr_uninterruptible counter, because
  4660. * for performance reasons the counter is not stricly tracking tasks to
  4661. * their home CPUs. So we just add the counter to another CPU's counter,
  4662. * to keep the global sum constant after CPU-down:
  4663. */
  4664. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4665. {
  4666. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4667. unsigned long flags;
  4668. local_irq_save(flags);
  4669. double_rq_lock(rq_src, rq_dest);
  4670. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4671. rq_src->nr_uninterruptible = 0;
  4672. double_rq_unlock(rq_src, rq_dest);
  4673. local_irq_restore(flags);
  4674. }
  4675. /* Run through task list and migrate tasks from the dead cpu. */
  4676. static void migrate_live_tasks(int src_cpu)
  4677. {
  4678. struct task_struct *p, *t;
  4679. read_lock(&tasklist_lock);
  4680. do_each_thread(t, p) {
  4681. if (p == current)
  4682. continue;
  4683. if (task_cpu(p) == src_cpu)
  4684. move_task_off_dead_cpu(src_cpu, p);
  4685. } while_each_thread(t, p);
  4686. read_unlock(&tasklist_lock);
  4687. }
  4688. /*
  4689. * Schedules idle task to be the next runnable task on current CPU.
  4690. * It does so by boosting its priority to highest possible.
  4691. * Used by CPU offline code.
  4692. */
  4693. void sched_idle_next(void)
  4694. {
  4695. int this_cpu = smp_processor_id();
  4696. struct rq *rq = cpu_rq(this_cpu);
  4697. struct task_struct *p = rq->idle;
  4698. unsigned long flags;
  4699. /* cpu has to be offline */
  4700. BUG_ON(cpu_online(this_cpu));
  4701. /*
  4702. * Strictly not necessary since rest of the CPUs are stopped by now
  4703. * and interrupts disabled on the current cpu.
  4704. */
  4705. raw_spin_lock_irqsave(&rq->lock, flags);
  4706. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4707. activate_task(rq, p, 0);
  4708. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4709. }
  4710. /*
  4711. * Ensures that the idle task is using init_mm right before its cpu goes
  4712. * offline.
  4713. */
  4714. void idle_task_exit(void)
  4715. {
  4716. struct mm_struct *mm = current->active_mm;
  4717. BUG_ON(cpu_online(smp_processor_id()));
  4718. if (mm != &init_mm)
  4719. switch_mm(mm, &init_mm, current);
  4720. mmdrop(mm);
  4721. }
  4722. /* called under rq->lock with disabled interrupts */
  4723. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4724. {
  4725. struct rq *rq = cpu_rq(dead_cpu);
  4726. /* Must be exiting, otherwise would be on tasklist. */
  4727. BUG_ON(!p->exit_state);
  4728. /* Cannot have done final schedule yet: would have vanished. */
  4729. BUG_ON(p->state == TASK_DEAD);
  4730. get_task_struct(p);
  4731. /*
  4732. * Drop lock around migration; if someone else moves it,
  4733. * that's OK. No task can be added to this CPU, so iteration is
  4734. * fine.
  4735. */
  4736. raw_spin_unlock_irq(&rq->lock);
  4737. move_task_off_dead_cpu(dead_cpu, p);
  4738. raw_spin_lock_irq(&rq->lock);
  4739. put_task_struct(p);
  4740. }
  4741. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4742. static void migrate_dead_tasks(unsigned int dead_cpu)
  4743. {
  4744. struct rq *rq = cpu_rq(dead_cpu);
  4745. struct task_struct *next;
  4746. for ( ; ; ) {
  4747. if (!rq->nr_running)
  4748. break;
  4749. next = pick_next_task(rq);
  4750. if (!next)
  4751. break;
  4752. next->sched_class->put_prev_task(rq, next);
  4753. migrate_dead(dead_cpu, next);
  4754. }
  4755. }
  4756. /*
  4757. * remove the tasks which were accounted by rq from calc_load_tasks.
  4758. */
  4759. static void calc_global_load_remove(struct rq *rq)
  4760. {
  4761. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4762. rq->calc_load_active = 0;
  4763. }
  4764. #endif /* CONFIG_HOTPLUG_CPU */
  4765. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4766. static struct ctl_table sd_ctl_dir[] = {
  4767. {
  4768. .procname = "sched_domain",
  4769. .mode = 0555,
  4770. },
  4771. {}
  4772. };
  4773. static struct ctl_table sd_ctl_root[] = {
  4774. {
  4775. .procname = "kernel",
  4776. .mode = 0555,
  4777. .child = sd_ctl_dir,
  4778. },
  4779. {}
  4780. };
  4781. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4782. {
  4783. struct ctl_table *entry =
  4784. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4785. return entry;
  4786. }
  4787. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4788. {
  4789. struct ctl_table *entry;
  4790. /*
  4791. * In the intermediate directories, both the child directory and
  4792. * procname are dynamically allocated and could fail but the mode
  4793. * will always be set. In the lowest directory the names are
  4794. * static strings and all have proc handlers.
  4795. */
  4796. for (entry = *tablep; entry->mode; entry++) {
  4797. if (entry->child)
  4798. sd_free_ctl_entry(&entry->child);
  4799. if (entry->proc_handler == NULL)
  4800. kfree(entry->procname);
  4801. }
  4802. kfree(*tablep);
  4803. *tablep = NULL;
  4804. }
  4805. static void
  4806. set_table_entry(struct ctl_table *entry,
  4807. const char *procname, void *data, int maxlen,
  4808. mode_t mode, proc_handler *proc_handler)
  4809. {
  4810. entry->procname = procname;
  4811. entry->data = data;
  4812. entry->maxlen = maxlen;
  4813. entry->mode = mode;
  4814. entry->proc_handler = proc_handler;
  4815. }
  4816. static struct ctl_table *
  4817. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4818. {
  4819. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4820. if (table == NULL)
  4821. return NULL;
  4822. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4823. sizeof(long), 0644, proc_doulongvec_minmax);
  4824. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4825. sizeof(long), 0644, proc_doulongvec_minmax);
  4826. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4827. sizeof(int), 0644, proc_dointvec_minmax);
  4828. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4829. sizeof(int), 0644, proc_dointvec_minmax);
  4830. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4831. sizeof(int), 0644, proc_dointvec_minmax);
  4832. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4833. sizeof(int), 0644, proc_dointvec_minmax);
  4834. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4835. sizeof(int), 0644, proc_dointvec_minmax);
  4836. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4837. sizeof(int), 0644, proc_dointvec_minmax);
  4838. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4839. sizeof(int), 0644, proc_dointvec_minmax);
  4840. set_table_entry(&table[9], "cache_nice_tries",
  4841. &sd->cache_nice_tries,
  4842. sizeof(int), 0644, proc_dointvec_minmax);
  4843. set_table_entry(&table[10], "flags", &sd->flags,
  4844. sizeof(int), 0644, proc_dointvec_minmax);
  4845. set_table_entry(&table[11], "name", sd->name,
  4846. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4847. /* &table[12] is terminator */
  4848. return table;
  4849. }
  4850. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4851. {
  4852. struct ctl_table *entry, *table;
  4853. struct sched_domain *sd;
  4854. int domain_num = 0, i;
  4855. char buf[32];
  4856. for_each_domain(cpu, sd)
  4857. domain_num++;
  4858. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4859. if (table == NULL)
  4860. return NULL;
  4861. i = 0;
  4862. for_each_domain(cpu, sd) {
  4863. snprintf(buf, 32, "domain%d", i);
  4864. entry->procname = kstrdup(buf, GFP_KERNEL);
  4865. entry->mode = 0555;
  4866. entry->child = sd_alloc_ctl_domain_table(sd);
  4867. entry++;
  4868. i++;
  4869. }
  4870. return table;
  4871. }
  4872. static struct ctl_table_header *sd_sysctl_header;
  4873. static void register_sched_domain_sysctl(void)
  4874. {
  4875. int i, cpu_num = num_possible_cpus();
  4876. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4877. char buf[32];
  4878. WARN_ON(sd_ctl_dir[0].child);
  4879. sd_ctl_dir[0].child = entry;
  4880. if (entry == NULL)
  4881. return;
  4882. for_each_possible_cpu(i) {
  4883. snprintf(buf, 32, "cpu%d", i);
  4884. entry->procname = kstrdup(buf, GFP_KERNEL);
  4885. entry->mode = 0555;
  4886. entry->child = sd_alloc_ctl_cpu_table(i);
  4887. entry++;
  4888. }
  4889. WARN_ON(sd_sysctl_header);
  4890. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4891. }
  4892. /* may be called multiple times per register */
  4893. static void unregister_sched_domain_sysctl(void)
  4894. {
  4895. if (sd_sysctl_header)
  4896. unregister_sysctl_table(sd_sysctl_header);
  4897. sd_sysctl_header = NULL;
  4898. if (sd_ctl_dir[0].child)
  4899. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4900. }
  4901. #else
  4902. static void register_sched_domain_sysctl(void)
  4903. {
  4904. }
  4905. static void unregister_sched_domain_sysctl(void)
  4906. {
  4907. }
  4908. #endif
  4909. static void set_rq_online(struct rq *rq)
  4910. {
  4911. if (!rq->online) {
  4912. const struct sched_class *class;
  4913. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4914. rq->online = 1;
  4915. for_each_class(class) {
  4916. if (class->rq_online)
  4917. class->rq_online(rq);
  4918. }
  4919. }
  4920. }
  4921. static void set_rq_offline(struct rq *rq)
  4922. {
  4923. if (rq->online) {
  4924. const struct sched_class *class;
  4925. for_each_class(class) {
  4926. if (class->rq_offline)
  4927. class->rq_offline(rq);
  4928. }
  4929. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4930. rq->online = 0;
  4931. }
  4932. }
  4933. /*
  4934. * migration_call - callback that gets triggered when a CPU is added.
  4935. * Here we can start up the necessary migration thread for the new CPU.
  4936. */
  4937. static int __cpuinit
  4938. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4939. {
  4940. int cpu = (long)hcpu;
  4941. unsigned long flags;
  4942. struct rq *rq = cpu_rq(cpu);
  4943. switch (action) {
  4944. case CPU_UP_PREPARE:
  4945. case CPU_UP_PREPARE_FROZEN:
  4946. rq->calc_load_update = calc_load_update;
  4947. break;
  4948. case CPU_ONLINE:
  4949. case CPU_ONLINE_FROZEN:
  4950. /* Update our root-domain */
  4951. raw_spin_lock_irqsave(&rq->lock, flags);
  4952. if (rq->rd) {
  4953. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4954. set_rq_online(rq);
  4955. }
  4956. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4957. break;
  4958. #ifdef CONFIG_HOTPLUG_CPU
  4959. case CPU_DEAD:
  4960. case CPU_DEAD_FROZEN:
  4961. migrate_live_tasks(cpu);
  4962. /* Idle task back to normal (off runqueue, low prio) */
  4963. raw_spin_lock_irq(&rq->lock);
  4964. deactivate_task(rq, rq->idle, 0);
  4965. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4966. rq->idle->sched_class = &idle_sched_class;
  4967. migrate_dead_tasks(cpu);
  4968. raw_spin_unlock_irq(&rq->lock);
  4969. migrate_nr_uninterruptible(rq);
  4970. BUG_ON(rq->nr_running != 0);
  4971. calc_global_load_remove(rq);
  4972. break;
  4973. case CPU_DYING:
  4974. case CPU_DYING_FROZEN:
  4975. /* Update our root-domain */
  4976. raw_spin_lock_irqsave(&rq->lock, flags);
  4977. if (rq->rd) {
  4978. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4979. set_rq_offline(rq);
  4980. }
  4981. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4982. break;
  4983. #endif
  4984. }
  4985. return NOTIFY_OK;
  4986. }
  4987. /*
  4988. * Register at high priority so that task migration (migrate_all_tasks)
  4989. * happens before everything else. This has to be lower priority than
  4990. * the notifier in the perf_event subsystem, though.
  4991. */
  4992. static struct notifier_block __cpuinitdata migration_notifier = {
  4993. .notifier_call = migration_call,
  4994. .priority = CPU_PRI_MIGRATION,
  4995. };
  4996. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4997. unsigned long action, void *hcpu)
  4998. {
  4999. switch (action & ~CPU_TASKS_FROZEN) {
  5000. case CPU_ONLINE:
  5001. case CPU_DOWN_FAILED:
  5002. set_cpu_active((long)hcpu, true);
  5003. return NOTIFY_OK;
  5004. default:
  5005. return NOTIFY_DONE;
  5006. }
  5007. }
  5008. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5009. unsigned long action, void *hcpu)
  5010. {
  5011. switch (action & ~CPU_TASKS_FROZEN) {
  5012. case CPU_DOWN_PREPARE:
  5013. set_cpu_active((long)hcpu, false);
  5014. return NOTIFY_OK;
  5015. default:
  5016. return NOTIFY_DONE;
  5017. }
  5018. }
  5019. static int __init migration_init(void)
  5020. {
  5021. void *cpu = (void *)(long)smp_processor_id();
  5022. int err;
  5023. /* Initialize migration for the boot CPU */
  5024. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5025. BUG_ON(err == NOTIFY_BAD);
  5026. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5027. register_cpu_notifier(&migration_notifier);
  5028. /* Register cpu active notifiers */
  5029. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5030. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5031. return 0;
  5032. }
  5033. early_initcall(migration_init);
  5034. #endif
  5035. #ifdef CONFIG_SMP
  5036. #ifdef CONFIG_SCHED_DEBUG
  5037. static __read_mostly int sched_domain_debug_enabled;
  5038. static int __init sched_domain_debug_setup(char *str)
  5039. {
  5040. sched_domain_debug_enabled = 1;
  5041. return 0;
  5042. }
  5043. early_param("sched_debug", sched_domain_debug_setup);
  5044. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5045. struct cpumask *groupmask)
  5046. {
  5047. struct sched_group *group = sd->groups;
  5048. char str[256];
  5049. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5050. cpumask_clear(groupmask);
  5051. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5052. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5053. printk("does not load-balance\n");
  5054. if (sd->parent)
  5055. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5056. " has parent");
  5057. return -1;
  5058. }
  5059. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5060. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5061. printk(KERN_ERR "ERROR: domain->span does not contain "
  5062. "CPU%d\n", cpu);
  5063. }
  5064. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5065. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5066. " CPU%d\n", cpu);
  5067. }
  5068. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5069. do {
  5070. if (!group) {
  5071. printk("\n");
  5072. printk(KERN_ERR "ERROR: group is NULL\n");
  5073. break;
  5074. }
  5075. if (!group->cpu_power) {
  5076. printk(KERN_CONT "\n");
  5077. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5078. "set\n");
  5079. break;
  5080. }
  5081. if (!cpumask_weight(sched_group_cpus(group))) {
  5082. printk(KERN_CONT "\n");
  5083. printk(KERN_ERR "ERROR: empty group\n");
  5084. break;
  5085. }
  5086. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5087. printk(KERN_CONT "\n");
  5088. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5089. break;
  5090. }
  5091. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5092. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5093. printk(KERN_CONT " %s", str);
  5094. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5095. printk(KERN_CONT " (cpu_power = %d)",
  5096. group->cpu_power);
  5097. }
  5098. group = group->next;
  5099. } while (group != sd->groups);
  5100. printk(KERN_CONT "\n");
  5101. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5102. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5103. if (sd->parent &&
  5104. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5105. printk(KERN_ERR "ERROR: parent span is not a superset "
  5106. "of domain->span\n");
  5107. return 0;
  5108. }
  5109. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5110. {
  5111. cpumask_var_t groupmask;
  5112. int level = 0;
  5113. if (!sched_domain_debug_enabled)
  5114. return;
  5115. if (!sd) {
  5116. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5117. return;
  5118. }
  5119. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5120. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5121. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5122. return;
  5123. }
  5124. for (;;) {
  5125. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5126. break;
  5127. level++;
  5128. sd = sd->parent;
  5129. if (!sd)
  5130. break;
  5131. }
  5132. free_cpumask_var(groupmask);
  5133. }
  5134. #else /* !CONFIG_SCHED_DEBUG */
  5135. # define sched_domain_debug(sd, cpu) do { } while (0)
  5136. #endif /* CONFIG_SCHED_DEBUG */
  5137. static int sd_degenerate(struct sched_domain *sd)
  5138. {
  5139. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5140. return 1;
  5141. /* Following flags need at least 2 groups */
  5142. if (sd->flags & (SD_LOAD_BALANCE |
  5143. SD_BALANCE_NEWIDLE |
  5144. SD_BALANCE_FORK |
  5145. SD_BALANCE_EXEC |
  5146. SD_SHARE_CPUPOWER |
  5147. SD_SHARE_PKG_RESOURCES)) {
  5148. if (sd->groups != sd->groups->next)
  5149. return 0;
  5150. }
  5151. /* Following flags don't use groups */
  5152. if (sd->flags & (SD_WAKE_AFFINE))
  5153. return 0;
  5154. return 1;
  5155. }
  5156. static int
  5157. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5158. {
  5159. unsigned long cflags = sd->flags, pflags = parent->flags;
  5160. if (sd_degenerate(parent))
  5161. return 1;
  5162. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5163. return 0;
  5164. /* Flags needing groups don't count if only 1 group in parent */
  5165. if (parent->groups == parent->groups->next) {
  5166. pflags &= ~(SD_LOAD_BALANCE |
  5167. SD_BALANCE_NEWIDLE |
  5168. SD_BALANCE_FORK |
  5169. SD_BALANCE_EXEC |
  5170. SD_SHARE_CPUPOWER |
  5171. SD_SHARE_PKG_RESOURCES);
  5172. if (nr_node_ids == 1)
  5173. pflags &= ~SD_SERIALIZE;
  5174. }
  5175. if (~cflags & pflags)
  5176. return 0;
  5177. return 1;
  5178. }
  5179. static void free_rootdomain(struct root_domain *rd)
  5180. {
  5181. synchronize_sched();
  5182. cpupri_cleanup(&rd->cpupri);
  5183. free_cpumask_var(rd->rto_mask);
  5184. free_cpumask_var(rd->online);
  5185. free_cpumask_var(rd->span);
  5186. kfree(rd);
  5187. }
  5188. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5189. {
  5190. struct root_domain *old_rd = NULL;
  5191. unsigned long flags;
  5192. raw_spin_lock_irqsave(&rq->lock, flags);
  5193. if (rq->rd) {
  5194. old_rd = rq->rd;
  5195. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5196. set_rq_offline(rq);
  5197. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5198. /*
  5199. * If we dont want to free the old_rt yet then
  5200. * set old_rd to NULL to skip the freeing later
  5201. * in this function:
  5202. */
  5203. if (!atomic_dec_and_test(&old_rd->refcount))
  5204. old_rd = NULL;
  5205. }
  5206. atomic_inc(&rd->refcount);
  5207. rq->rd = rd;
  5208. cpumask_set_cpu(rq->cpu, rd->span);
  5209. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5210. set_rq_online(rq);
  5211. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5212. if (old_rd)
  5213. free_rootdomain(old_rd);
  5214. }
  5215. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5216. {
  5217. gfp_t gfp = GFP_KERNEL;
  5218. memset(rd, 0, sizeof(*rd));
  5219. if (bootmem)
  5220. gfp = GFP_NOWAIT;
  5221. if (!alloc_cpumask_var(&rd->span, gfp))
  5222. goto out;
  5223. if (!alloc_cpumask_var(&rd->online, gfp))
  5224. goto free_span;
  5225. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5226. goto free_online;
  5227. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5228. goto free_rto_mask;
  5229. return 0;
  5230. free_rto_mask:
  5231. free_cpumask_var(rd->rto_mask);
  5232. free_online:
  5233. free_cpumask_var(rd->online);
  5234. free_span:
  5235. free_cpumask_var(rd->span);
  5236. out:
  5237. return -ENOMEM;
  5238. }
  5239. static void init_defrootdomain(void)
  5240. {
  5241. init_rootdomain(&def_root_domain, true);
  5242. atomic_set(&def_root_domain.refcount, 1);
  5243. }
  5244. static struct root_domain *alloc_rootdomain(void)
  5245. {
  5246. struct root_domain *rd;
  5247. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5248. if (!rd)
  5249. return NULL;
  5250. if (init_rootdomain(rd, false) != 0) {
  5251. kfree(rd);
  5252. return NULL;
  5253. }
  5254. return rd;
  5255. }
  5256. /*
  5257. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5258. * hold the hotplug lock.
  5259. */
  5260. static void
  5261. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5262. {
  5263. struct rq *rq = cpu_rq(cpu);
  5264. struct sched_domain *tmp;
  5265. for (tmp = sd; tmp; tmp = tmp->parent)
  5266. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5267. /* Remove the sched domains which do not contribute to scheduling. */
  5268. for (tmp = sd; tmp; ) {
  5269. struct sched_domain *parent = tmp->parent;
  5270. if (!parent)
  5271. break;
  5272. if (sd_parent_degenerate(tmp, parent)) {
  5273. tmp->parent = parent->parent;
  5274. if (parent->parent)
  5275. parent->parent->child = tmp;
  5276. } else
  5277. tmp = tmp->parent;
  5278. }
  5279. if (sd && sd_degenerate(sd)) {
  5280. sd = sd->parent;
  5281. if (sd)
  5282. sd->child = NULL;
  5283. }
  5284. sched_domain_debug(sd, cpu);
  5285. rq_attach_root(rq, rd);
  5286. rcu_assign_pointer(rq->sd, sd);
  5287. }
  5288. /* cpus with isolated domains */
  5289. static cpumask_var_t cpu_isolated_map;
  5290. /* Setup the mask of cpus configured for isolated domains */
  5291. static int __init isolated_cpu_setup(char *str)
  5292. {
  5293. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5294. cpulist_parse(str, cpu_isolated_map);
  5295. return 1;
  5296. }
  5297. __setup("isolcpus=", isolated_cpu_setup);
  5298. /*
  5299. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5300. * to a function which identifies what group(along with sched group) a CPU
  5301. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5302. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5303. *
  5304. * init_sched_build_groups will build a circular linked list of the groups
  5305. * covered by the given span, and will set each group's ->cpumask correctly,
  5306. * and ->cpu_power to 0.
  5307. */
  5308. static void
  5309. init_sched_build_groups(const struct cpumask *span,
  5310. const struct cpumask *cpu_map,
  5311. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5312. struct sched_group **sg,
  5313. struct cpumask *tmpmask),
  5314. struct cpumask *covered, struct cpumask *tmpmask)
  5315. {
  5316. struct sched_group *first = NULL, *last = NULL;
  5317. int i;
  5318. cpumask_clear(covered);
  5319. for_each_cpu(i, span) {
  5320. struct sched_group *sg;
  5321. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5322. int j;
  5323. if (cpumask_test_cpu(i, covered))
  5324. continue;
  5325. cpumask_clear(sched_group_cpus(sg));
  5326. sg->cpu_power = 0;
  5327. for_each_cpu(j, span) {
  5328. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5329. continue;
  5330. cpumask_set_cpu(j, covered);
  5331. cpumask_set_cpu(j, sched_group_cpus(sg));
  5332. }
  5333. if (!first)
  5334. first = sg;
  5335. if (last)
  5336. last->next = sg;
  5337. last = sg;
  5338. }
  5339. last->next = first;
  5340. }
  5341. #define SD_NODES_PER_DOMAIN 16
  5342. #ifdef CONFIG_NUMA
  5343. /**
  5344. * find_next_best_node - find the next node to include in a sched_domain
  5345. * @node: node whose sched_domain we're building
  5346. * @used_nodes: nodes already in the sched_domain
  5347. *
  5348. * Find the next node to include in a given scheduling domain. Simply
  5349. * finds the closest node not already in the @used_nodes map.
  5350. *
  5351. * Should use nodemask_t.
  5352. */
  5353. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5354. {
  5355. int i, n, val, min_val, best_node = 0;
  5356. min_val = INT_MAX;
  5357. for (i = 0; i < nr_node_ids; i++) {
  5358. /* Start at @node */
  5359. n = (node + i) % nr_node_ids;
  5360. if (!nr_cpus_node(n))
  5361. continue;
  5362. /* Skip already used nodes */
  5363. if (node_isset(n, *used_nodes))
  5364. continue;
  5365. /* Simple min distance search */
  5366. val = node_distance(node, n);
  5367. if (val < min_val) {
  5368. min_val = val;
  5369. best_node = n;
  5370. }
  5371. }
  5372. node_set(best_node, *used_nodes);
  5373. return best_node;
  5374. }
  5375. /**
  5376. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5377. * @node: node whose cpumask we're constructing
  5378. * @span: resulting cpumask
  5379. *
  5380. * Given a node, construct a good cpumask for its sched_domain to span. It
  5381. * should be one that prevents unnecessary balancing, but also spreads tasks
  5382. * out optimally.
  5383. */
  5384. static void sched_domain_node_span(int node, struct cpumask *span)
  5385. {
  5386. nodemask_t used_nodes;
  5387. int i;
  5388. cpumask_clear(span);
  5389. nodes_clear(used_nodes);
  5390. cpumask_or(span, span, cpumask_of_node(node));
  5391. node_set(node, used_nodes);
  5392. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5393. int next_node = find_next_best_node(node, &used_nodes);
  5394. cpumask_or(span, span, cpumask_of_node(next_node));
  5395. }
  5396. }
  5397. #endif /* CONFIG_NUMA */
  5398. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5399. /*
  5400. * The cpus mask in sched_group and sched_domain hangs off the end.
  5401. *
  5402. * ( See the the comments in include/linux/sched.h:struct sched_group
  5403. * and struct sched_domain. )
  5404. */
  5405. struct static_sched_group {
  5406. struct sched_group sg;
  5407. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5408. };
  5409. struct static_sched_domain {
  5410. struct sched_domain sd;
  5411. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5412. };
  5413. struct s_data {
  5414. #ifdef CONFIG_NUMA
  5415. int sd_allnodes;
  5416. cpumask_var_t domainspan;
  5417. cpumask_var_t covered;
  5418. cpumask_var_t notcovered;
  5419. #endif
  5420. cpumask_var_t nodemask;
  5421. cpumask_var_t this_sibling_map;
  5422. cpumask_var_t this_core_map;
  5423. cpumask_var_t send_covered;
  5424. cpumask_var_t tmpmask;
  5425. struct sched_group **sched_group_nodes;
  5426. struct root_domain *rd;
  5427. };
  5428. enum s_alloc {
  5429. sa_sched_groups = 0,
  5430. sa_rootdomain,
  5431. sa_tmpmask,
  5432. sa_send_covered,
  5433. sa_this_core_map,
  5434. sa_this_sibling_map,
  5435. sa_nodemask,
  5436. sa_sched_group_nodes,
  5437. #ifdef CONFIG_NUMA
  5438. sa_notcovered,
  5439. sa_covered,
  5440. sa_domainspan,
  5441. #endif
  5442. sa_none,
  5443. };
  5444. /*
  5445. * SMT sched-domains:
  5446. */
  5447. #ifdef CONFIG_SCHED_SMT
  5448. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5449. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5450. static int
  5451. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5452. struct sched_group **sg, struct cpumask *unused)
  5453. {
  5454. if (sg)
  5455. *sg = &per_cpu(sched_groups, cpu).sg;
  5456. return cpu;
  5457. }
  5458. #endif /* CONFIG_SCHED_SMT */
  5459. /*
  5460. * multi-core sched-domains:
  5461. */
  5462. #ifdef CONFIG_SCHED_MC
  5463. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5464. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5465. #endif /* CONFIG_SCHED_MC */
  5466. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5467. static int
  5468. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5469. struct sched_group **sg, struct cpumask *mask)
  5470. {
  5471. int group;
  5472. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5473. group = cpumask_first(mask);
  5474. if (sg)
  5475. *sg = &per_cpu(sched_group_core, group).sg;
  5476. return group;
  5477. }
  5478. #elif defined(CONFIG_SCHED_MC)
  5479. static int
  5480. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5481. struct sched_group **sg, struct cpumask *unused)
  5482. {
  5483. if (sg)
  5484. *sg = &per_cpu(sched_group_core, cpu).sg;
  5485. return cpu;
  5486. }
  5487. #endif
  5488. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5489. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5490. static int
  5491. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5492. struct sched_group **sg, struct cpumask *mask)
  5493. {
  5494. int group;
  5495. #ifdef CONFIG_SCHED_MC
  5496. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5497. group = cpumask_first(mask);
  5498. #elif defined(CONFIG_SCHED_SMT)
  5499. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5500. group = cpumask_first(mask);
  5501. #else
  5502. group = cpu;
  5503. #endif
  5504. if (sg)
  5505. *sg = &per_cpu(sched_group_phys, group).sg;
  5506. return group;
  5507. }
  5508. #ifdef CONFIG_NUMA
  5509. /*
  5510. * The init_sched_build_groups can't handle what we want to do with node
  5511. * groups, so roll our own. Now each node has its own list of groups which
  5512. * gets dynamically allocated.
  5513. */
  5514. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5515. static struct sched_group ***sched_group_nodes_bycpu;
  5516. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5517. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5518. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5519. struct sched_group **sg,
  5520. struct cpumask *nodemask)
  5521. {
  5522. int group;
  5523. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5524. group = cpumask_first(nodemask);
  5525. if (sg)
  5526. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5527. return group;
  5528. }
  5529. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5530. {
  5531. struct sched_group *sg = group_head;
  5532. int j;
  5533. if (!sg)
  5534. return;
  5535. do {
  5536. for_each_cpu(j, sched_group_cpus(sg)) {
  5537. struct sched_domain *sd;
  5538. sd = &per_cpu(phys_domains, j).sd;
  5539. if (j != group_first_cpu(sd->groups)) {
  5540. /*
  5541. * Only add "power" once for each
  5542. * physical package.
  5543. */
  5544. continue;
  5545. }
  5546. sg->cpu_power += sd->groups->cpu_power;
  5547. }
  5548. sg = sg->next;
  5549. } while (sg != group_head);
  5550. }
  5551. static int build_numa_sched_groups(struct s_data *d,
  5552. const struct cpumask *cpu_map, int num)
  5553. {
  5554. struct sched_domain *sd;
  5555. struct sched_group *sg, *prev;
  5556. int n, j;
  5557. cpumask_clear(d->covered);
  5558. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5559. if (cpumask_empty(d->nodemask)) {
  5560. d->sched_group_nodes[num] = NULL;
  5561. goto out;
  5562. }
  5563. sched_domain_node_span(num, d->domainspan);
  5564. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5565. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5566. GFP_KERNEL, num);
  5567. if (!sg) {
  5568. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5569. num);
  5570. return -ENOMEM;
  5571. }
  5572. d->sched_group_nodes[num] = sg;
  5573. for_each_cpu(j, d->nodemask) {
  5574. sd = &per_cpu(node_domains, j).sd;
  5575. sd->groups = sg;
  5576. }
  5577. sg->cpu_power = 0;
  5578. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5579. sg->next = sg;
  5580. cpumask_or(d->covered, d->covered, d->nodemask);
  5581. prev = sg;
  5582. for (j = 0; j < nr_node_ids; j++) {
  5583. n = (num + j) % nr_node_ids;
  5584. cpumask_complement(d->notcovered, d->covered);
  5585. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5586. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5587. if (cpumask_empty(d->tmpmask))
  5588. break;
  5589. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5590. if (cpumask_empty(d->tmpmask))
  5591. continue;
  5592. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5593. GFP_KERNEL, num);
  5594. if (!sg) {
  5595. printk(KERN_WARNING
  5596. "Can not alloc domain group for node %d\n", j);
  5597. return -ENOMEM;
  5598. }
  5599. sg->cpu_power = 0;
  5600. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5601. sg->next = prev->next;
  5602. cpumask_or(d->covered, d->covered, d->tmpmask);
  5603. prev->next = sg;
  5604. prev = sg;
  5605. }
  5606. out:
  5607. return 0;
  5608. }
  5609. #endif /* CONFIG_NUMA */
  5610. #ifdef CONFIG_NUMA
  5611. /* Free memory allocated for various sched_group structures */
  5612. static void free_sched_groups(const struct cpumask *cpu_map,
  5613. struct cpumask *nodemask)
  5614. {
  5615. int cpu, i;
  5616. for_each_cpu(cpu, cpu_map) {
  5617. struct sched_group **sched_group_nodes
  5618. = sched_group_nodes_bycpu[cpu];
  5619. if (!sched_group_nodes)
  5620. continue;
  5621. for (i = 0; i < nr_node_ids; i++) {
  5622. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5623. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5624. if (cpumask_empty(nodemask))
  5625. continue;
  5626. if (sg == NULL)
  5627. continue;
  5628. sg = sg->next;
  5629. next_sg:
  5630. oldsg = sg;
  5631. sg = sg->next;
  5632. kfree(oldsg);
  5633. if (oldsg != sched_group_nodes[i])
  5634. goto next_sg;
  5635. }
  5636. kfree(sched_group_nodes);
  5637. sched_group_nodes_bycpu[cpu] = NULL;
  5638. }
  5639. }
  5640. #else /* !CONFIG_NUMA */
  5641. static void free_sched_groups(const struct cpumask *cpu_map,
  5642. struct cpumask *nodemask)
  5643. {
  5644. }
  5645. #endif /* CONFIG_NUMA */
  5646. /*
  5647. * Initialize sched groups cpu_power.
  5648. *
  5649. * cpu_power indicates the capacity of sched group, which is used while
  5650. * distributing the load between different sched groups in a sched domain.
  5651. * Typically cpu_power for all the groups in a sched domain will be same unless
  5652. * there are asymmetries in the topology. If there are asymmetries, group
  5653. * having more cpu_power will pickup more load compared to the group having
  5654. * less cpu_power.
  5655. */
  5656. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5657. {
  5658. struct sched_domain *child;
  5659. struct sched_group *group;
  5660. long power;
  5661. int weight;
  5662. WARN_ON(!sd || !sd->groups);
  5663. if (cpu != group_first_cpu(sd->groups))
  5664. return;
  5665. child = sd->child;
  5666. sd->groups->cpu_power = 0;
  5667. if (!child) {
  5668. power = SCHED_LOAD_SCALE;
  5669. weight = cpumask_weight(sched_domain_span(sd));
  5670. /*
  5671. * SMT siblings share the power of a single core.
  5672. * Usually multiple threads get a better yield out of
  5673. * that one core than a single thread would have,
  5674. * reflect that in sd->smt_gain.
  5675. */
  5676. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5677. power *= sd->smt_gain;
  5678. power /= weight;
  5679. power >>= SCHED_LOAD_SHIFT;
  5680. }
  5681. sd->groups->cpu_power += power;
  5682. return;
  5683. }
  5684. /*
  5685. * Add cpu_power of each child group to this groups cpu_power.
  5686. */
  5687. group = child->groups;
  5688. do {
  5689. sd->groups->cpu_power += group->cpu_power;
  5690. group = group->next;
  5691. } while (group != child->groups);
  5692. }
  5693. /*
  5694. * Initializers for schedule domains
  5695. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5696. */
  5697. #ifdef CONFIG_SCHED_DEBUG
  5698. # define SD_INIT_NAME(sd, type) sd->name = #type
  5699. #else
  5700. # define SD_INIT_NAME(sd, type) do { } while (0)
  5701. #endif
  5702. #define SD_INIT(sd, type) sd_init_##type(sd)
  5703. #define SD_INIT_FUNC(type) \
  5704. static noinline void sd_init_##type(struct sched_domain *sd) \
  5705. { \
  5706. memset(sd, 0, sizeof(*sd)); \
  5707. *sd = SD_##type##_INIT; \
  5708. sd->level = SD_LV_##type; \
  5709. SD_INIT_NAME(sd, type); \
  5710. }
  5711. SD_INIT_FUNC(CPU)
  5712. #ifdef CONFIG_NUMA
  5713. SD_INIT_FUNC(ALLNODES)
  5714. SD_INIT_FUNC(NODE)
  5715. #endif
  5716. #ifdef CONFIG_SCHED_SMT
  5717. SD_INIT_FUNC(SIBLING)
  5718. #endif
  5719. #ifdef CONFIG_SCHED_MC
  5720. SD_INIT_FUNC(MC)
  5721. #endif
  5722. static int default_relax_domain_level = -1;
  5723. static int __init setup_relax_domain_level(char *str)
  5724. {
  5725. unsigned long val;
  5726. val = simple_strtoul(str, NULL, 0);
  5727. if (val < SD_LV_MAX)
  5728. default_relax_domain_level = val;
  5729. return 1;
  5730. }
  5731. __setup("relax_domain_level=", setup_relax_domain_level);
  5732. static void set_domain_attribute(struct sched_domain *sd,
  5733. struct sched_domain_attr *attr)
  5734. {
  5735. int request;
  5736. if (!attr || attr->relax_domain_level < 0) {
  5737. if (default_relax_domain_level < 0)
  5738. return;
  5739. else
  5740. request = default_relax_domain_level;
  5741. } else
  5742. request = attr->relax_domain_level;
  5743. if (request < sd->level) {
  5744. /* turn off idle balance on this domain */
  5745. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5746. } else {
  5747. /* turn on idle balance on this domain */
  5748. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5749. }
  5750. }
  5751. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5752. const struct cpumask *cpu_map)
  5753. {
  5754. switch (what) {
  5755. case sa_sched_groups:
  5756. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5757. d->sched_group_nodes = NULL;
  5758. case sa_rootdomain:
  5759. free_rootdomain(d->rd); /* fall through */
  5760. case sa_tmpmask:
  5761. free_cpumask_var(d->tmpmask); /* fall through */
  5762. case sa_send_covered:
  5763. free_cpumask_var(d->send_covered); /* fall through */
  5764. case sa_this_core_map:
  5765. free_cpumask_var(d->this_core_map); /* fall through */
  5766. case sa_this_sibling_map:
  5767. free_cpumask_var(d->this_sibling_map); /* fall through */
  5768. case sa_nodemask:
  5769. free_cpumask_var(d->nodemask); /* fall through */
  5770. case sa_sched_group_nodes:
  5771. #ifdef CONFIG_NUMA
  5772. kfree(d->sched_group_nodes); /* fall through */
  5773. case sa_notcovered:
  5774. free_cpumask_var(d->notcovered); /* fall through */
  5775. case sa_covered:
  5776. free_cpumask_var(d->covered); /* fall through */
  5777. case sa_domainspan:
  5778. free_cpumask_var(d->domainspan); /* fall through */
  5779. #endif
  5780. case sa_none:
  5781. break;
  5782. }
  5783. }
  5784. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5785. const struct cpumask *cpu_map)
  5786. {
  5787. #ifdef CONFIG_NUMA
  5788. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5789. return sa_none;
  5790. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5791. return sa_domainspan;
  5792. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5793. return sa_covered;
  5794. /* Allocate the per-node list of sched groups */
  5795. d->sched_group_nodes = kcalloc(nr_node_ids,
  5796. sizeof(struct sched_group *), GFP_KERNEL);
  5797. if (!d->sched_group_nodes) {
  5798. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5799. return sa_notcovered;
  5800. }
  5801. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5802. #endif
  5803. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5804. return sa_sched_group_nodes;
  5805. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5806. return sa_nodemask;
  5807. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5808. return sa_this_sibling_map;
  5809. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5810. return sa_this_core_map;
  5811. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5812. return sa_send_covered;
  5813. d->rd = alloc_rootdomain();
  5814. if (!d->rd) {
  5815. printk(KERN_WARNING "Cannot alloc root domain\n");
  5816. return sa_tmpmask;
  5817. }
  5818. return sa_rootdomain;
  5819. }
  5820. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5821. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5822. {
  5823. struct sched_domain *sd = NULL;
  5824. #ifdef CONFIG_NUMA
  5825. struct sched_domain *parent;
  5826. d->sd_allnodes = 0;
  5827. if (cpumask_weight(cpu_map) >
  5828. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5829. sd = &per_cpu(allnodes_domains, i).sd;
  5830. SD_INIT(sd, ALLNODES);
  5831. set_domain_attribute(sd, attr);
  5832. cpumask_copy(sched_domain_span(sd), cpu_map);
  5833. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5834. d->sd_allnodes = 1;
  5835. }
  5836. parent = sd;
  5837. sd = &per_cpu(node_domains, i).sd;
  5838. SD_INIT(sd, NODE);
  5839. set_domain_attribute(sd, attr);
  5840. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5841. sd->parent = parent;
  5842. if (parent)
  5843. parent->child = sd;
  5844. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5845. #endif
  5846. return sd;
  5847. }
  5848. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5849. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5850. struct sched_domain *parent, int i)
  5851. {
  5852. struct sched_domain *sd;
  5853. sd = &per_cpu(phys_domains, i).sd;
  5854. SD_INIT(sd, CPU);
  5855. set_domain_attribute(sd, attr);
  5856. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5857. sd->parent = parent;
  5858. if (parent)
  5859. parent->child = sd;
  5860. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5861. return sd;
  5862. }
  5863. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5864. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5865. struct sched_domain *parent, int i)
  5866. {
  5867. struct sched_domain *sd = parent;
  5868. #ifdef CONFIG_SCHED_MC
  5869. sd = &per_cpu(core_domains, i).sd;
  5870. SD_INIT(sd, MC);
  5871. set_domain_attribute(sd, attr);
  5872. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5873. sd->parent = parent;
  5874. parent->child = sd;
  5875. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5876. #endif
  5877. return sd;
  5878. }
  5879. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5880. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5881. struct sched_domain *parent, int i)
  5882. {
  5883. struct sched_domain *sd = parent;
  5884. #ifdef CONFIG_SCHED_SMT
  5885. sd = &per_cpu(cpu_domains, i).sd;
  5886. SD_INIT(sd, SIBLING);
  5887. set_domain_attribute(sd, attr);
  5888. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5889. sd->parent = parent;
  5890. parent->child = sd;
  5891. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5892. #endif
  5893. return sd;
  5894. }
  5895. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5896. const struct cpumask *cpu_map, int cpu)
  5897. {
  5898. switch (l) {
  5899. #ifdef CONFIG_SCHED_SMT
  5900. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5901. cpumask_and(d->this_sibling_map, cpu_map,
  5902. topology_thread_cpumask(cpu));
  5903. if (cpu == cpumask_first(d->this_sibling_map))
  5904. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5905. &cpu_to_cpu_group,
  5906. d->send_covered, d->tmpmask);
  5907. break;
  5908. #endif
  5909. #ifdef CONFIG_SCHED_MC
  5910. case SD_LV_MC: /* set up multi-core groups */
  5911. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5912. if (cpu == cpumask_first(d->this_core_map))
  5913. init_sched_build_groups(d->this_core_map, cpu_map,
  5914. &cpu_to_core_group,
  5915. d->send_covered, d->tmpmask);
  5916. break;
  5917. #endif
  5918. case SD_LV_CPU: /* set up physical groups */
  5919. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5920. if (!cpumask_empty(d->nodemask))
  5921. init_sched_build_groups(d->nodemask, cpu_map,
  5922. &cpu_to_phys_group,
  5923. d->send_covered, d->tmpmask);
  5924. break;
  5925. #ifdef CONFIG_NUMA
  5926. case SD_LV_ALLNODES:
  5927. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  5928. d->send_covered, d->tmpmask);
  5929. break;
  5930. #endif
  5931. default:
  5932. break;
  5933. }
  5934. }
  5935. /*
  5936. * Build sched domains for a given set of cpus and attach the sched domains
  5937. * to the individual cpus
  5938. */
  5939. static int __build_sched_domains(const struct cpumask *cpu_map,
  5940. struct sched_domain_attr *attr)
  5941. {
  5942. enum s_alloc alloc_state = sa_none;
  5943. struct s_data d;
  5944. struct sched_domain *sd;
  5945. int i;
  5946. #ifdef CONFIG_NUMA
  5947. d.sd_allnodes = 0;
  5948. #endif
  5949. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5950. if (alloc_state != sa_rootdomain)
  5951. goto error;
  5952. alloc_state = sa_sched_groups;
  5953. /*
  5954. * Set up domains for cpus specified by the cpu_map.
  5955. */
  5956. for_each_cpu(i, cpu_map) {
  5957. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  5958. cpu_map);
  5959. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  5960. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  5961. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  5962. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  5963. }
  5964. for_each_cpu(i, cpu_map) {
  5965. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  5966. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  5967. }
  5968. /* Set up physical groups */
  5969. for (i = 0; i < nr_node_ids; i++)
  5970. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  5971. #ifdef CONFIG_NUMA
  5972. /* Set up node groups */
  5973. if (d.sd_allnodes)
  5974. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  5975. for (i = 0; i < nr_node_ids; i++)
  5976. if (build_numa_sched_groups(&d, cpu_map, i))
  5977. goto error;
  5978. #endif
  5979. /* Calculate CPU power for physical packages and nodes */
  5980. #ifdef CONFIG_SCHED_SMT
  5981. for_each_cpu(i, cpu_map) {
  5982. sd = &per_cpu(cpu_domains, i).sd;
  5983. init_sched_groups_power(i, sd);
  5984. }
  5985. #endif
  5986. #ifdef CONFIG_SCHED_MC
  5987. for_each_cpu(i, cpu_map) {
  5988. sd = &per_cpu(core_domains, i).sd;
  5989. init_sched_groups_power(i, sd);
  5990. }
  5991. #endif
  5992. for_each_cpu(i, cpu_map) {
  5993. sd = &per_cpu(phys_domains, i).sd;
  5994. init_sched_groups_power(i, sd);
  5995. }
  5996. #ifdef CONFIG_NUMA
  5997. for (i = 0; i < nr_node_ids; i++)
  5998. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  5999. if (d.sd_allnodes) {
  6000. struct sched_group *sg;
  6001. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6002. d.tmpmask);
  6003. init_numa_sched_groups_power(sg);
  6004. }
  6005. #endif
  6006. /* Attach the domains */
  6007. for_each_cpu(i, cpu_map) {
  6008. #ifdef CONFIG_SCHED_SMT
  6009. sd = &per_cpu(cpu_domains, i).sd;
  6010. #elif defined(CONFIG_SCHED_MC)
  6011. sd = &per_cpu(core_domains, i).sd;
  6012. #else
  6013. sd = &per_cpu(phys_domains, i).sd;
  6014. #endif
  6015. cpu_attach_domain(sd, d.rd, i);
  6016. }
  6017. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6018. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6019. return 0;
  6020. error:
  6021. __free_domain_allocs(&d, alloc_state, cpu_map);
  6022. return -ENOMEM;
  6023. }
  6024. static int build_sched_domains(const struct cpumask *cpu_map)
  6025. {
  6026. return __build_sched_domains(cpu_map, NULL);
  6027. }
  6028. static cpumask_var_t *doms_cur; /* current sched domains */
  6029. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6030. static struct sched_domain_attr *dattr_cur;
  6031. /* attribues of custom domains in 'doms_cur' */
  6032. /*
  6033. * Special case: If a kmalloc of a doms_cur partition (array of
  6034. * cpumask) fails, then fallback to a single sched domain,
  6035. * as determined by the single cpumask fallback_doms.
  6036. */
  6037. static cpumask_var_t fallback_doms;
  6038. /*
  6039. * arch_update_cpu_topology lets virtualized architectures update the
  6040. * cpu core maps. It is supposed to return 1 if the topology changed
  6041. * or 0 if it stayed the same.
  6042. */
  6043. int __attribute__((weak)) arch_update_cpu_topology(void)
  6044. {
  6045. return 0;
  6046. }
  6047. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6048. {
  6049. int i;
  6050. cpumask_var_t *doms;
  6051. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6052. if (!doms)
  6053. return NULL;
  6054. for (i = 0; i < ndoms; i++) {
  6055. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6056. free_sched_domains(doms, i);
  6057. return NULL;
  6058. }
  6059. }
  6060. return doms;
  6061. }
  6062. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6063. {
  6064. unsigned int i;
  6065. for (i = 0; i < ndoms; i++)
  6066. free_cpumask_var(doms[i]);
  6067. kfree(doms);
  6068. }
  6069. /*
  6070. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6071. * For now this just excludes isolated cpus, but could be used to
  6072. * exclude other special cases in the future.
  6073. */
  6074. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6075. {
  6076. int err;
  6077. arch_update_cpu_topology();
  6078. ndoms_cur = 1;
  6079. doms_cur = alloc_sched_domains(ndoms_cur);
  6080. if (!doms_cur)
  6081. doms_cur = &fallback_doms;
  6082. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6083. dattr_cur = NULL;
  6084. err = build_sched_domains(doms_cur[0]);
  6085. register_sched_domain_sysctl();
  6086. return err;
  6087. }
  6088. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6089. struct cpumask *tmpmask)
  6090. {
  6091. free_sched_groups(cpu_map, tmpmask);
  6092. }
  6093. /*
  6094. * Detach sched domains from a group of cpus specified in cpu_map
  6095. * These cpus will now be attached to the NULL domain
  6096. */
  6097. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6098. {
  6099. /* Save because hotplug lock held. */
  6100. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6101. int i;
  6102. for_each_cpu(i, cpu_map)
  6103. cpu_attach_domain(NULL, &def_root_domain, i);
  6104. synchronize_sched();
  6105. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6106. }
  6107. /* handle null as "default" */
  6108. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6109. struct sched_domain_attr *new, int idx_new)
  6110. {
  6111. struct sched_domain_attr tmp;
  6112. /* fast path */
  6113. if (!new && !cur)
  6114. return 1;
  6115. tmp = SD_ATTR_INIT;
  6116. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6117. new ? (new + idx_new) : &tmp,
  6118. sizeof(struct sched_domain_attr));
  6119. }
  6120. /*
  6121. * Partition sched domains as specified by the 'ndoms_new'
  6122. * cpumasks in the array doms_new[] of cpumasks. This compares
  6123. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6124. * It destroys each deleted domain and builds each new domain.
  6125. *
  6126. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6127. * The masks don't intersect (don't overlap.) We should setup one
  6128. * sched domain for each mask. CPUs not in any of the cpumasks will
  6129. * not be load balanced. If the same cpumask appears both in the
  6130. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6131. * it as it is.
  6132. *
  6133. * The passed in 'doms_new' should be allocated using
  6134. * alloc_sched_domains. This routine takes ownership of it and will
  6135. * free_sched_domains it when done with it. If the caller failed the
  6136. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6137. * and partition_sched_domains() will fallback to the single partition
  6138. * 'fallback_doms', it also forces the domains to be rebuilt.
  6139. *
  6140. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6141. * ndoms_new == 0 is a special case for destroying existing domains,
  6142. * and it will not create the default domain.
  6143. *
  6144. * Call with hotplug lock held
  6145. */
  6146. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6147. struct sched_domain_attr *dattr_new)
  6148. {
  6149. int i, j, n;
  6150. int new_topology;
  6151. mutex_lock(&sched_domains_mutex);
  6152. /* always unregister in case we don't destroy any domains */
  6153. unregister_sched_domain_sysctl();
  6154. /* Let architecture update cpu core mappings. */
  6155. new_topology = arch_update_cpu_topology();
  6156. n = doms_new ? ndoms_new : 0;
  6157. /* Destroy deleted domains */
  6158. for (i = 0; i < ndoms_cur; i++) {
  6159. for (j = 0; j < n && !new_topology; j++) {
  6160. if (cpumask_equal(doms_cur[i], doms_new[j])
  6161. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6162. goto match1;
  6163. }
  6164. /* no match - a current sched domain not in new doms_new[] */
  6165. detach_destroy_domains(doms_cur[i]);
  6166. match1:
  6167. ;
  6168. }
  6169. if (doms_new == NULL) {
  6170. ndoms_cur = 0;
  6171. doms_new = &fallback_doms;
  6172. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6173. WARN_ON_ONCE(dattr_new);
  6174. }
  6175. /* Build new domains */
  6176. for (i = 0; i < ndoms_new; i++) {
  6177. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6178. if (cpumask_equal(doms_new[i], doms_cur[j])
  6179. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6180. goto match2;
  6181. }
  6182. /* no match - add a new doms_new */
  6183. __build_sched_domains(doms_new[i],
  6184. dattr_new ? dattr_new + i : NULL);
  6185. match2:
  6186. ;
  6187. }
  6188. /* Remember the new sched domains */
  6189. if (doms_cur != &fallback_doms)
  6190. free_sched_domains(doms_cur, ndoms_cur);
  6191. kfree(dattr_cur); /* kfree(NULL) is safe */
  6192. doms_cur = doms_new;
  6193. dattr_cur = dattr_new;
  6194. ndoms_cur = ndoms_new;
  6195. register_sched_domain_sysctl();
  6196. mutex_unlock(&sched_domains_mutex);
  6197. }
  6198. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6199. static void arch_reinit_sched_domains(void)
  6200. {
  6201. get_online_cpus();
  6202. /* Destroy domains first to force the rebuild */
  6203. partition_sched_domains(0, NULL, NULL);
  6204. rebuild_sched_domains();
  6205. put_online_cpus();
  6206. }
  6207. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6208. {
  6209. unsigned int level = 0;
  6210. if (sscanf(buf, "%u", &level) != 1)
  6211. return -EINVAL;
  6212. /*
  6213. * level is always be positive so don't check for
  6214. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6215. * What happens on 0 or 1 byte write,
  6216. * need to check for count as well?
  6217. */
  6218. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6219. return -EINVAL;
  6220. if (smt)
  6221. sched_smt_power_savings = level;
  6222. else
  6223. sched_mc_power_savings = level;
  6224. arch_reinit_sched_domains();
  6225. return count;
  6226. }
  6227. #ifdef CONFIG_SCHED_MC
  6228. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6229. struct sysdev_class_attribute *attr,
  6230. char *page)
  6231. {
  6232. return sprintf(page, "%u\n", sched_mc_power_savings);
  6233. }
  6234. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6235. struct sysdev_class_attribute *attr,
  6236. const char *buf, size_t count)
  6237. {
  6238. return sched_power_savings_store(buf, count, 0);
  6239. }
  6240. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6241. sched_mc_power_savings_show,
  6242. sched_mc_power_savings_store);
  6243. #endif
  6244. #ifdef CONFIG_SCHED_SMT
  6245. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6246. struct sysdev_class_attribute *attr,
  6247. char *page)
  6248. {
  6249. return sprintf(page, "%u\n", sched_smt_power_savings);
  6250. }
  6251. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6252. struct sysdev_class_attribute *attr,
  6253. const char *buf, size_t count)
  6254. {
  6255. return sched_power_savings_store(buf, count, 1);
  6256. }
  6257. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6258. sched_smt_power_savings_show,
  6259. sched_smt_power_savings_store);
  6260. #endif
  6261. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6262. {
  6263. int err = 0;
  6264. #ifdef CONFIG_SCHED_SMT
  6265. if (smt_capable())
  6266. err = sysfs_create_file(&cls->kset.kobj,
  6267. &attr_sched_smt_power_savings.attr);
  6268. #endif
  6269. #ifdef CONFIG_SCHED_MC
  6270. if (!err && mc_capable())
  6271. err = sysfs_create_file(&cls->kset.kobj,
  6272. &attr_sched_mc_power_savings.attr);
  6273. #endif
  6274. return err;
  6275. }
  6276. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6277. /*
  6278. * Update cpusets according to cpu_active mask. If cpusets are
  6279. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6280. * around partition_sched_domains().
  6281. */
  6282. static int __cpuexit cpuset_cpu_active(struct notifier_block *nfb,
  6283. unsigned long action, void *hcpu)
  6284. {
  6285. switch (action & ~CPU_TASKS_FROZEN) {
  6286. case CPU_ONLINE:
  6287. case CPU_DOWN_FAILED:
  6288. cpuset_update_active_cpus();
  6289. return NOTIFY_OK;
  6290. default:
  6291. return NOTIFY_DONE;
  6292. }
  6293. }
  6294. static int __cpuexit cpuset_cpu_inactive(struct notifier_block *nfb,
  6295. unsigned long action, void *hcpu)
  6296. {
  6297. switch (action & ~CPU_TASKS_FROZEN) {
  6298. case CPU_DOWN_PREPARE:
  6299. cpuset_update_active_cpus();
  6300. return NOTIFY_OK;
  6301. default:
  6302. return NOTIFY_DONE;
  6303. }
  6304. }
  6305. static int update_runtime(struct notifier_block *nfb,
  6306. unsigned long action, void *hcpu)
  6307. {
  6308. int cpu = (int)(long)hcpu;
  6309. switch (action) {
  6310. case CPU_DOWN_PREPARE:
  6311. case CPU_DOWN_PREPARE_FROZEN:
  6312. disable_runtime(cpu_rq(cpu));
  6313. return NOTIFY_OK;
  6314. case CPU_DOWN_FAILED:
  6315. case CPU_DOWN_FAILED_FROZEN:
  6316. case CPU_ONLINE:
  6317. case CPU_ONLINE_FROZEN:
  6318. enable_runtime(cpu_rq(cpu));
  6319. return NOTIFY_OK;
  6320. default:
  6321. return NOTIFY_DONE;
  6322. }
  6323. }
  6324. void __init sched_init_smp(void)
  6325. {
  6326. cpumask_var_t non_isolated_cpus;
  6327. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6328. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6329. #if defined(CONFIG_NUMA)
  6330. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6331. GFP_KERNEL);
  6332. BUG_ON(sched_group_nodes_bycpu == NULL);
  6333. #endif
  6334. get_online_cpus();
  6335. mutex_lock(&sched_domains_mutex);
  6336. arch_init_sched_domains(cpu_active_mask);
  6337. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6338. if (cpumask_empty(non_isolated_cpus))
  6339. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6340. mutex_unlock(&sched_domains_mutex);
  6341. put_online_cpus();
  6342. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6343. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6344. /* RT runtime code needs to handle some hotplug events */
  6345. hotcpu_notifier(update_runtime, 0);
  6346. init_hrtick();
  6347. /* Move init over to a non-isolated CPU */
  6348. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6349. BUG();
  6350. sched_init_granularity();
  6351. free_cpumask_var(non_isolated_cpus);
  6352. init_sched_rt_class();
  6353. }
  6354. #else
  6355. void __init sched_init_smp(void)
  6356. {
  6357. sched_init_granularity();
  6358. }
  6359. #endif /* CONFIG_SMP */
  6360. const_debug unsigned int sysctl_timer_migration = 1;
  6361. int in_sched_functions(unsigned long addr)
  6362. {
  6363. return in_lock_functions(addr) ||
  6364. (addr >= (unsigned long)__sched_text_start
  6365. && addr < (unsigned long)__sched_text_end);
  6366. }
  6367. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6368. {
  6369. cfs_rq->tasks_timeline = RB_ROOT;
  6370. INIT_LIST_HEAD(&cfs_rq->tasks);
  6371. #ifdef CONFIG_FAIR_GROUP_SCHED
  6372. cfs_rq->rq = rq;
  6373. #endif
  6374. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6375. }
  6376. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6377. {
  6378. struct rt_prio_array *array;
  6379. int i;
  6380. array = &rt_rq->active;
  6381. for (i = 0; i < MAX_RT_PRIO; i++) {
  6382. INIT_LIST_HEAD(array->queue + i);
  6383. __clear_bit(i, array->bitmap);
  6384. }
  6385. /* delimiter for bitsearch: */
  6386. __set_bit(MAX_RT_PRIO, array->bitmap);
  6387. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6388. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6389. #ifdef CONFIG_SMP
  6390. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6391. #endif
  6392. #endif
  6393. #ifdef CONFIG_SMP
  6394. rt_rq->rt_nr_migratory = 0;
  6395. rt_rq->overloaded = 0;
  6396. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6397. #endif
  6398. rt_rq->rt_time = 0;
  6399. rt_rq->rt_throttled = 0;
  6400. rt_rq->rt_runtime = 0;
  6401. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6402. #ifdef CONFIG_RT_GROUP_SCHED
  6403. rt_rq->rt_nr_boosted = 0;
  6404. rt_rq->rq = rq;
  6405. #endif
  6406. }
  6407. #ifdef CONFIG_FAIR_GROUP_SCHED
  6408. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6409. struct sched_entity *se, int cpu, int add,
  6410. struct sched_entity *parent)
  6411. {
  6412. struct rq *rq = cpu_rq(cpu);
  6413. tg->cfs_rq[cpu] = cfs_rq;
  6414. init_cfs_rq(cfs_rq, rq);
  6415. cfs_rq->tg = tg;
  6416. if (add)
  6417. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6418. tg->se[cpu] = se;
  6419. /* se could be NULL for init_task_group */
  6420. if (!se)
  6421. return;
  6422. if (!parent)
  6423. se->cfs_rq = &rq->cfs;
  6424. else
  6425. se->cfs_rq = parent->my_q;
  6426. se->my_q = cfs_rq;
  6427. se->load.weight = tg->shares;
  6428. se->load.inv_weight = 0;
  6429. se->parent = parent;
  6430. }
  6431. #endif
  6432. #ifdef CONFIG_RT_GROUP_SCHED
  6433. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6434. struct sched_rt_entity *rt_se, int cpu, int add,
  6435. struct sched_rt_entity *parent)
  6436. {
  6437. struct rq *rq = cpu_rq(cpu);
  6438. tg->rt_rq[cpu] = rt_rq;
  6439. init_rt_rq(rt_rq, rq);
  6440. rt_rq->tg = tg;
  6441. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6442. if (add)
  6443. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6444. tg->rt_se[cpu] = rt_se;
  6445. if (!rt_se)
  6446. return;
  6447. if (!parent)
  6448. rt_se->rt_rq = &rq->rt;
  6449. else
  6450. rt_se->rt_rq = parent->my_q;
  6451. rt_se->my_q = rt_rq;
  6452. rt_se->parent = parent;
  6453. INIT_LIST_HEAD(&rt_se->run_list);
  6454. }
  6455. #endif
  6456. void __init sched_init(void)
  6457. {
  6458. int i, j;
  6459. unsigned long alloc_size = 0, ptr;
  6460. #ifdef CONFIG_FAIR_GROUP_SCHED
  6461. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6462. #endif
  6463. #ifdef CONFIG_RT_GROUP_SCHED
  6464. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6465. #endif
  6466. #ifdef CONFIG_CPUMASK_OFFSTACK
  6467. alloc_size += num_possible_cpus() * cpumask_size();
  6468. #endif
  6469. if (alloc_size) {
  6470. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6471. #ifdef CONFIG_FAIR_GROUP_SCHED
  6472. init_task_group.se = (struct sched_entity **)ptr;
  6473. ptr += nr_cpu_ids * sizeof(void **);
  6474. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6475. ptr += nr_cpu_ids * sizeof(void **);
  6476. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6477. #ifdef CONFIG_RT_GROUP_SCHED
  6478. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6479. ptr += nr_cpu_ids * sizeof(void **);
  6480. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6481. ptr += nr_cpu_ids * sizeof(void **);
  6482. #endif /* CONFIG_RT_GROUP_SCHED */
  6483. #ifdef CONFIG_CPUMASK_OFFSTACK
  6484. for_each_possible_cpu(i) {
  6485. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6486. ptr += cpumask_size();
  6487. }
  6488. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6489. }
  6490. #ifdef CONFIG_SMP
  6491. init_defrootdomain();
  6492. #endif
  6493. init_rt_bandwidth(&def_rt_bandwidth,
  6494. global_rt_period(), global_rt_runtime());
  6495. #ifdef CONFIG_RT_GROUP_SCHED
  6496. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6497. global_rt_period(), global_rt_runtime());
  6498. #endif /* CONFIG_RT_GROUP_SCHED */
  6499. #ifdef CONFIG_CGROUP_SCHED
  6500. list_add(&init_task_group.list, &task_groups);
  6501. INIT_LIST_HEAD(&init_task_group.children);
  6502. #endif /* CONFIG_CGROUP_SCHED */
  6503. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6504. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6505. __alignof__(unsigned long));
  6506. #endif
  6507. for_each_possible_cpu(i) {
  6508. struct rq *rq;
  6509. rq = cpu_rq(i);
  6510. raw_spin_lock_init(&rq->lock);
  6511. rq->nr_running = 0;
  6512. rq->calc_load_active = 0;
  6513. rq->calc_load_update = jiffies + LOAD_FREQ;
  6514. init_cfs_rq(&rq->cfs, rq);
  6515. init_rt_rq(&rq->rt, rq);
  6516. #ifdef CONFIG_FAIR_GROUP_SCHED
  6517. init_task_group.shares = init_task_group_load;
  6518. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6519. #ifdef CONFIG_CGROUP_SCHED
  6520. /*
  6521. * How much cpu bandwidth does init_task_group get?
  6522. *
  6523. * In case of task-groups formed thr' the cgroup filesystem, it
  6524. * gets 100% of the cpu resources in the system. This overall
  6525. * system cpu resource is divided among the tasks of
  6526. * init_task_group and its child task-groups in a fair manner,
  6527. * based on each entity's (task or task-group's) weight
  6528. * (se->load.weight).
  6529. *
  6530. * In other words, if init_task_group has 10 tasks of weight
  6531. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6532. * then A0's share of the cpu resource is:
  6533. *
  6534. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6535. *
  6536. * We achieve this by letting init_task_group's tasks sit
  6537. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6538. */
  6539. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6540. #endif
  6541. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6542. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6543. #ifdef CONFIG_RT_GROUP_SCHED
  6544. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6545. #ifdef CONFIG_CGROUP_SCHED
  6546. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6547. #endif
  6548. #endif
  6549. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6550. rq->cpu_load[j] = 0;
  6551. #ifdef CONFIG_SMP
  6552. rq->sd = NULL;
  6553. rq->rd = NULL;
  6554. rq->cpu_power = SCHED_LOAD_SCALE;
  6555. rq->post_schedule = 0;
  6556. rq->active_balance = 0;
  6557. rq->next_balance = jiffies;
  6558. rq->push_cpu = 0;
  6559. rq->cpu = i;
  6560. rq->online = 0;
  6561. rq->idle_stamp = 0;
  6562. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6563. rq_attach_root(rq, &def_root_domain);
  6564. #endif
  6565. init_rq_hrtick(rq);
  6566. atomic_set(&rq->nr_iowait, 0);
  6567. }
  6568. set_load_weight(&init_task);
  6569. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6570. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6571. #endif
  6572. #ifdef CONFIG_SMP
  6573. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6574. #endif
  6575. #ifdef CONFIG_RT_MUTEXES
  6576. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6577. #endif
  6578. /*
  6579. * The boot idle thread does lazy MMU switching as well:
  6580. */
  6581. atomic_inc(&init_mm.mm_count);
  6582. enter_lazy_tlb(&init_mm, current);
  6583. /*
  6584. * Make us the idle thread. Technically, schedule() should not be
  6585. * called from this thread, however somewhere below it might be,
  6586. * but because we are the idle thread, we just pick up running again
  6587. * when this runqueue becomes "idle".
  6588. */
  6589. init_idle(current, smp_processor_id());
  6590. calc_load_update = jiffies + LOAD_FREQ;
  6591. /*
  6592. * During early bootup we pretend to be a normal task:
  6593. */
  6594. current->sched_class = &fair_sched_class;
  6595. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6596. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6597. #ifdef CONFIG_SMP
  6598. #ifdef CONFIG_NO_HZ
  6599. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6600. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6601. #endif
  6602. /* May be allocated at isolcpus cmdline parse time */
  6603. if (cpu_isolated_map == NULL)
  6604. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6605. #endif /* SMP */
  6606. perf_event_init();
  6607. scheduler_running = 1;
  6608. }
  6609. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6610. static inline int preempt_count_equals(int preempt_offset)
  6611. {
  6612. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6613. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6614. }
  6615. void __might_sleep(const char *file, int line, int preempt_offset)
  6616. {
  6617. #ifdef in_atomic
  6618. static unsigned long prev_jiffy; /* ratelimiting */
  6619. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6620. system_state != SYSTEM_RUNNING || oops_in_progress)
  6621. return;
  6622. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6623. return;
  6624. prev_jiffy = jiffies;
  6625. printk(KERN_ERR
  6626. "BUG: sleeping function called from invalid context at %s:%d\n",
  6627. file, line);
  6628. printk(KERN_ERR
  6629. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6630. in_atomic(), irqs_disabled(),
  6631. current->pid, current->comm);
  6632. debug_show_held_locks(current);
  6633. if (irqs_disabled())
  6634. print_irqtrace_events(current);
  6635. dump_stack();
  6636. #endif
  6637. }
  6638. EXPORT_SYMBOL(__might_sleep);
  6639. #endif
  6640. #ifdef CONFIG_MAGIC_SYSRQ
  6641. static void normalize_task(struct rq *rq, struct task_struct *p)
  6642. {
  6643. int on_rq;
  6644. on_rq = p->se.on_rq;
  6645. if (on_rq)
  6646. deactivate_task(rq, p, 0);
  6647. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6648. if (on_rq) {
  6649. activate_task(rq, p, 0);
  6650. resched_task(rq->curr);
  6651. }
  6652. }
  6653. void normalize_rt_tasks(void)
  6654. {
  6655. struct task_struct *g, *p;
  6656. unsigned long flags;
  6657. struct rq *rq;
  6658. read_lock_irqsave(&tasklist_lock, flags);
  6659. do_each_thread(g, p) {
  6660. /*
  6661. * Only normalize user tasks:
  6662. */
  6663. if (!p->mm)
  6664. continue;
  6665. p->se.exec_start = 0;
  6666. #ifdef CONFIG_SCHEDSTATS
  6667. p->se.statistics.wait_start = 0;
  6668. p->se.statistics.sleep_start = 0;
  6669. p->se.statistics.block_start = 0;
  6670. #endif
  6671. if (!rt_task(p)) {
  6672. /*
  6673. * Renice negative nice level userspace
  6674. * tasks back to 0:
  6675. */
  6676. if (TASK_NICE(p) < 0 && p->mm)
  6677. set_user_nice(p, 0);
  6678. continue;
  6679. }
  6680. raw_spin_lock(&p->pi_lock);
  6681. rq = __task_rq_lock(p);
  6682. normalize_task(rq, p);
  6683. __task_rq_unlock(rq);
  6684. raw_spin_unlock(&p->pi_lock);
  6685. } while_each_thread(g, p);
  6686. read_unlock_irqrestore(&tasklist_lock, flags);
  6687. }
  6688. #endif /* CONFIG_MAGIC_SYSRQ */
  6689. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6690. /*
  6691. * These functions are only useful for the IA64 MCA handling, or kdb.
  6692. *
  6693. * They can only be called when the whole system has been
  6694. * stopped - every CPU needs to be quiescent, and no scheduling
  6695. * activity can take place. Using them for anything else would
  6696. * be a serious bug, and as a result, they aren't even visible
  6697. * under any other configuration.
  6698. */
  6699. /**
  6700. * curr_task - return the current task for a given cpu.
  6701. * @cpu: the processor in question.
  6702. *
  6703. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6704. */
  6705. struct task_struct *curr_task(int cpu)
  6706. {
  6707. return cpu_curr(cpu);
  6708. }
  6709. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6710. #ifdef CONFIG_IA64
  6711. /**
  6712. * set_curr_task - set the current task for a given cpu.
  6713. * @cpu: the processor in question.
  6714. * @p: the task pointer to set.
  6715. *
  6716. * Description: This function must only be used when non-maskable interrupts
  6717. * are serviced on a separate stack. It allows the architecture to switch the
  6718. * notion of the current task on a cpu in a non-blocking manner. This function
  6719. * must be called with all CPU's synchronized, and interrupts disabled, the
  6720. * and caller must save the original value of the current task (see
  6721. * curr_task() above) and restore that value before reenabling interrupts and
  6722. * re-starting the system.
  6723. *
  6724. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6725. */
  6726. void set_curr_task(int cpu, struct task_struct *p)
  6727. {
  6728. cpu_curr(cpu) = p;
  6729. }
  6730. #endif
  6731. #ifdef CONFIG_FAIR_GROUP_SCHED
  6732. static void free_fair_sched_group(struct task_group *tg)
  6733. {
  6734. int i;
  6735. for_each_possible_cpu(i) {
  6736. if (tg->cfs_rq)
  6737. kfree(tg->cfs_rq[i]);
  6738. if (tg->se)
  6739. kfree(tg->se[i]);
  6740. }
  6741. kfree(tg->cfs_rq);
  6742. kfree(tg->se);
  6743. }
  6744. static
  6745. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6746. {
  6747. struct cfs_rq *cfs_rq;
  6748. struct sched_entity *se;
  6749. struct rq *rq;
  6750. int i;
  6751. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6752. if (!tg->cfs_rq)
  6753. goto err;
  6754. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6755. if (!tg->se)
  6756. goto err;
  6757. tg->shares = NICE_0_LOAD;
  6758. for_each_possible_cpu(i) {
  6759. rq = cpu_rq(i);
  6760. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6761. GFP_KERNEL, cpu_to_node(i));
  6762. if (!cfs_rq)
  6763. goto err;
  6764. se = kzalloc_node(sizeof(struct sched_entity),
  6765. GFP_KERNEL, cpu_to_node(i));
  6766. if (!se)
  6767. goto err_free_rq;
  6768. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6769. }
  6770. return 1;
  6771. err_free_rq:
  6772. kfree(cfs_rq);
  6773. err:
  6774. return 0;
  6775. }
  6776. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6777. {
  6778. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6779. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6780. }
  6781. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6782. {
  6783. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6784. }
  6785. #else /* !CONFG_FAIR_GROUP_SCHED */
  6786. static inline void free_fair_sched_group(struct task_group *tg)
  6787. {
  6788. }
  6789. static inline
  6790. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6791. {
  6792. return 1;
  6793. }
  6794. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6795. {
  6796. }
  6797. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6798. {
  6799. }
  6800. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6801. #ifdef CONFIG_RT_GROUP_SCHED
  6802. static void free_rt_sched_group(struct task_group *tg)
  6803. {
  6804. int i;
  6805. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6806. for_each_possible_cpu(i) {
  6807. if (tg->rt_rq)
  6808. kfree(tg->rt_rq[i]);
  6809. if (tg->rt_se)
  6810. kfree(tg->rt_se[i]);
  6811. }
  6812. kfree(tg->rt_rq);
  6813. kfree(tg->rt_se);
  6814. }
  6815. static
  6816. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6817. {
  6818. struct rt_rq *rt_rq;
  6819. struct sched_rt_entity *rt_se;
  6820. struct rq *rq;
  6821. int i;
  6822. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6823. if (!tg->rt_rq)
  6824. goto err;
  6825. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6826. if (!tg->rt_se)
  6827. goto err;
  6828. init_rt_bandwidth(&tg->rt_bandwidth,
  6829. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6830. for_each_possible_cpu(i) {
  6831. rq = cpu_rq(i);
  6832. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6833. GFP_KERNEL, cpu_to_node(i));
  6834. if (!rt_rq)
  6835. goto err;
  6836. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6837. GFP_KERNEL, cpu_to_node(i));
  6838. if (!rt_se)
  6839. goto err_free_rq;
  6840. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6841. }
  6842. return 1;
  6843. err_free_rq:
  6844. kfree(rt_rq);
  6845. err:
  6846. return 0;
  6847. }
  6848. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6849. {
  6850. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6851. &cpu_rq(cpu)->leaf_rt_rq_list);
  6852. }
  6853. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6854. {
  6855. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6856. }
  6857. #else /* !CONFIG_RT_GROUP_SCHED */
  6858. static inline void free_rt_sched_group(struct task_group *tg)
  6859. {
  6860. }
  6861. static inline
  6862. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6863. {
  6864. return 1;
  6865. }
  6866. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6867. {
  6868. }
  6869. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6870. {
  6871. }
  6872. #endif /* CONFIG_RT_GROUP_SCHED */
  6873. #ifdef CONFIG_CGROUP_SCHED
  6874. static void free_sched_group(struct task_group *tg)
  6875. {
  6876. free_fair_sched_group(tg);
  6877. free_rt_sched_group(tg);
  6878. kfree(tg);
  6879. }
  6880. /* allocate runqueue etc for a new task group */
  6881. struct task_group *sched_create_group(struct task_group *parent)
  6882. {
  6883. struct task_group *tg;
  6884. unsigned long flags;
  6885. int i;
  6886. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6887. if (!tg)
  6888. return ERR_PTR(-ENOMEM);
  6889. if (!alloc_fair_sched_group(tg, parent))
  6890. goto err;
  6891. if (!alloc_rt_sched_group(tg, parent))
  6892. goto err;
  6893. spin_lock_irqsave(&task_group_lock, flags);
  6894. for_each_possible_cpu(i) {
  6895. register_fair_sched_group(tg, i);
  6896. register_rt_sched_group(tg, i);
  6897. }
  6898. list_add_rcu(&tg->list, &task_groups);
  6899. WARN_ON(!parent); /* root should already exist */
  6900. tg->parent = parent;
  6901. INIT_LIST_HEAD(&tg->children);
  6902. list_add_rcu(&tg->siblings, &parent->children);
  6903. spin_unlock_irqrestore(&task_group_lock, flags);
  6904. return tg;
  6905. err:
  6906. free_sched_group(tg);
  6907. return ERR_PTR(-ENOMEM);
  6908. }
  6909. /* rcu callback to free various structures associated with a task group */
  6910. static void free_sched_group_rcu(struct rcu_head *rhp)
  6911. {
  6912. /* now it should be safe to free those cfs_rqs */
  6913. free_sched_group(container_of(rhp, struct task_group, rcu));
  6914. }
  6915. /* Destroy runqueue etc associated with a task group */
  6916. void sched_destroy_group(struct task_group *tg)
  6917. {
  6918. unsigned long flags;
  6919. int i;
  6920. spin_lock_irqsave(&task_group_lock, flags);
  6921. for_each_possible_cpu(i) {
  6922. unregister_fair_sched_group(tg, i);
  6923. unregister_rt_sched_group(tg, i);
  6924. }
  6925. list_del_rcu(&tg->list);
  6926. list_del_rcu(&tg->siblings);
  6927. spin_unlock_irqrestore(&task_group_lock, flags);
  6928. /* wait for possible concurrent references to cfs_rqs complete */
  6929. call_rcu(&tg->rcu, free_sched_group_rcu);
  6930. }
  6931. /* change task's runqueue when it moves between groups.
  6932. * The caller of this function should have put the task in its new group
  6933. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6934. * reflect its new group.
  6935. */
  6936. void sched_move_task(struct task_struct *tsk)
  6937. {
  6938. int on_rq, running;
  6939. unsigned long flags;
  6940. struct rq *rq;
  6941. rq = task_rq_lock(tsk, &flags);
  6942. running = task_current(rq, tsk);
  6943. on_rq = tsk->se.on_rq;
  6944. if (on_rq)
  6945. dequeue_task(rq, tsk, 0);
  6946. if (unlikely(running))
  6947. tsk->sched_class->put_prev_task(rq, tsk);
  6948. set_task_rq(tsk, task_cpu(tsk));
  6949. #ifdef CONFIG_FAIR_GROUP_SCHED
  6950. if (tsk->sched_class->moved_group)
  6951. tsk->sched_class->moved_group(tsk, on_rq);
  6952. #endif
  6953. if (unlikely(running))
  6954. tsk->sched_class->set_curr_task(rq);
  6955. if (on_rq)
  6956. enqueue_task(rq, tsk, 0);
  6957. task_rq_unlock(rq, &flags);
  6958. }
  6959. #endif /* CONFIG_CGROUP_SCHED */
  6960. #ifdef CONFIG_FAIR_GROUP_SCHED
  6961. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  6962. {
  6963. struct cfs_rq *cfs_rq = se->cfs_rq;
  6964. int on_rq;
  6965. on_rq = se->on_rq;
  6966. if (on_rq)
  6967. dequeue_entity(cfs_rq, se, 0);
  6968. se->load.weight = shares;
  6969. se->load.inv_weight = 0;
  6970. if (on_rq)
  6971. enqueue_entity(cfs_rq, se, 0);
  6972. }
  6973. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6974. {
  6975. struct cfs_rq *cfs_rq = se->cfs_rq;
  6976. struct rq *rq = cfs_rq->rq;
  6977. unsigned long flags;
  6978. raw_spin_lock_irqsave(&rq->lock, flags);
  6979. __set_se_shares(se, shares);
  6980. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6981. }
  6982. static DEFINE_MUTEX(shares_mutex);
  6983. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6984. {
  6985. int i;
  6986. unsigned long flags;
  6987. /*
  6988. * We can't change the weight of the root cgroup.
  6989. */
  6990. if (!tg->se[0])
  6991. return -EINVAL;
  6992. if (shares < MIN_SHARES)
  6993. shares = MIN_SHARES;
  6994. else if (shares > MAX_SHARES)
  6995. shares = MAX_SHARES;
  6996. mutex_lock(&shares_mutex);
  6997. if (tg->shares == shares)
  6998. goto done;
  6999. spin_lock_irqsave(&task_group_lock, flags);
  7000. for_each_possible_cpu(i)
  7001. unregister_fair_sched_group(tg, i);
  7002. list_del_rcu(&tg->siblings);
  7003. spin_unlock_irqrestore(&task_group_lock, flags);
  7004. /* wait for any ongoing reference to this group to finish */
  7005. synchronize_sched();
  7006. /*
  7007. * Now we are free to modify the group's share on each cpu
  7008. * w/o tripping rebalance_share or load_balance_fair.
  7009. */
  7010. tg->shares = shares;
  7011. for_each_possible_cpu(i) {
  7012. /*
  7013. * force a rebalance
  7014. */
  7015. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7016. set_se_shares(tg->se[i], shares);
  7017. }
  7018. /*
  7019. * Enable load balance activity on this group, by inserting it back on
  7020. * each cpu's rq->leaf_cfs_rq_list.
  7021. */
  7022. spin_lock_irqsave(&task_group_lock, flags);
  7023. for_each_possible_cpu(i)
  7024. register_fair_sched_group(tg, i);
  7025. list_add_rcu(&tg->siblings, &tg->parent->children);
  7026. spin_unlock_irqrestore(&task_group_lock, flags);
  7027. done:
  7028. mutex_unlock(&shares_mutex);
  7029. return 0;
  7030. }
  7031. unsigned long sched_group_shares(struct task_group *tg)
  7032. {
  7033. return tg->shares;
  7034. }
  7035. #endif
  7036. #ifdef CONFIG_RT_GROUP_SCHED
  7037. /*
  7038. * Ensure that the real time constraints are schedulable.
  7039. */
  7040. static DEFINE_MUTEX(rt_constraints_mutex);
  7041. static unsigned long to_ratio(u64 period, u64 runtime)
  7042. {
  7043. if (runtime == RUNTIME_INF)
  7044. return 1ULL << 20;
  7045. return div64_u64(runtime << 20, period);
  7046. }
  7047. /* Must be called with tasklist_lock held */
  7048. static inline int tg_has_rt_tasks(struct task_group *tg)
  7049. {
  7050. struct task_struct *g, *p;
  7051. do_each_thread(g, p) {
  7052. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7053. return 1;
  7054. } while_each_thread(g, p);
  7055. return 0;
  7056. }
  7057. struct rt_schedulable_data {
  7058. struct task_group *tg;
  7059. u64 rt_period;
  7060. u64 rt_runtime;
  7061. };
  7062. static int tg_schedulable(struct task_group *tg, void *data)
  7063. {
  7064. struct rt_schedulable_data *d = data;
  7065. struct task_group *child;
  7066. unsigned long total, sum = 0;
  7067. u64 period, runtime;
  7068. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7069. runtime = tg->rt_bandwidth.rt_runtime;
  7070. if (tg == d->tg) {
  7071. period = d->rt_period;
  7072. runtime = d->rt_runtime;
  7073. }
  7074. /*
  7075. * Cannot have more runtime than the period.
  7076. */
  7077. if (runtime > period && runtime != RUNTIME_INF)
  7078. return -EINVAL;
  7079. /*
  7080. * Ensure we don't starve existing RT tasks.
  7081. */
  7082. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7083. return -EBUSY;
  7084. total = to_ratio(period, runtime);
  7085. /*
  7086. * Nobody can have more than the global setting allows.
  7087. */
  7088. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7089. return -EINVAL;
  7090. /*
  7091. * The sum of our children's runtime should not exceed our own.
  7092. */
  7093. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7094. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7095. runtime = child->rt_bandwidth.rt_runtime;
  7096. if (child == d->tg) {
  7097. period = d->rt_period;
  7098. runtime = d->rt_runtime;
  7099. }
  7100. sum += to_ratio(period, runtime);
  7101. }
  7102. if (sum > total)
  7103. return -EINVAL;
  7104. return 0;
  7105. }
  7106. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7107. {
  7108. struct rt_schedulable_data data = {
  7109. .tg = tg,
  7110. .rt_period = period,
  7111. .rt_runtime = runtime,
  7112. };
  7113. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7114. }
  7115. static int tg_set_bandwidth(struct task_group *tg,
  7116. u64 rt_period, u64 rt_runtime)
  7117. {
  7118. int i, err = 0;
  7119. mutex_lock(&rt_constraints_mutex);
  7120. read_lock(&tasklist_lock);
  7121. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7122. if (err)
  7123. goto unlock;
  7124. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7125. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7126. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7127. for_each_possible_cpu(i) {
  7128. struct rt_rq *rt_rq = tg->rt_rq[i];
  7129. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7130. rt_rq->rt_runtime = rt_runtime;
  7131. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7132. }
  7133. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7134. unlock:
  7135. read_unlock(&tasklist_lock);
  7136. mutex_unlock(&rt_constraints_mutex);
  7137. return err;
  7138. }
  7139. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7140. {
  7141. u64 rt_runtime, rt_period;
  7142. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7143. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7144. if (rt_runtime_us < 0)
  7145. rt_runtime = RUNTIME_INF;
  7146. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7147. }
  7148. long sched_group_rt_runtime(struct task_group *tg)
  7149. {
  7150. u64 rt_runtime_us;
  7151. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7152. return -1;
  7153. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7154. do_div(rt_runtime_us, NSEC_PER_USEC);
  7155. return rt_runtime_us;
  7156. }
  7157. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7158. {
  7159. u64 rt_runtime, rt_period;
  7160. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7161. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7162. if (rt_period == 0)
  7163. return -EINVAL;
  7164. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7165. }
  7166. long sched_group_rt_period(struct task_group *tg)
  7167. {
  7168. u64 rt_period_us;
  7169. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7170. do_div(rt_period_us, NSEC_PER_USEC);
  7171. return rt_period_us;
  7172. }
  7173. static int sched_rt_global_constraints(void)
  7174. {
  7175. u64 runtime, period;
  7176. int ret = 0;
  7177. if (sysctl_sched_rt_period <= 0)
  7178. return -EINVAL;
  7179. runtime = global_rt_runtime();
  7180. period = global_rt_period();
  7181. /*
  7182. * Sanity check on the sysctl variables.
  7183. */
  7184. if (runtime > period && runtime != RUNTIME_INF)
  7185. return -EINVAL;
  7186. mutex_lock(&rt_constraints_mutex);
  7187. read_lock(&tasklist_lock);
  7188. ret = __rt_schedulable(NULL, 0, 0);
  7189. read_unlock(&tasklist_lock);
  7190. mutex_unlock(&rt_constraints_mutex);
  7191. return ret;
  7192. }
  7193. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7194. {
  7195. /* Don't accept realtime tasks when there is no way for them to run */
  7196. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7197. return 0;
  7198. return 1;
  7199. }
  7200. #else /* !CONFIG_RT_GROUP_SCHED */
  7201. static int sched_rt_global_constraints(void)
  7202. {
  7203. unsigned long flags;
  7204. int i;
  7205. if (sysctl_sched_rt_period <= 0)
  7206. return -EINVAL;
  7207. /*
  7208. * There's always some RT tasks in the root group
  7209. * -- migration, kstopmachine etc..
  7210. */
  7211. if (sysctl_sched_rt_runtime == 0)
  7212. return -EBUSY;
  7213. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7214. for_each_possible_cpu(i) {
  7215. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7216. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7217. rt_rq->rt_runtime = global_rt_runtime();
  7218. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7219. }
  7220. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7221. return 0;
  7222. }
  7223. #endif /* CONFIG_RT_GROUP_SCHED */
  7224. int sched_rt_handler(struct ctl_table *table, int write,
  7225. void __user *buffer, size_t *lenp,
  7226. loff_t *ppos)
  7227. {
  7228. int ret;
  7229. int old_period, old_runtime;
  7230. static DEFINE_MUTEX(mutex);
  7231. mutex_lock(&mutex);
  7232. old_period = sysctl_sched_rt_period;
  7233. old_runtime = sysctl_sched_rt_runtime;
  7234. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7235. if (!ret && write) {
  7236. ret = sched_rt_global_constraints();
  7237. if (ret) {
  7238. sysctl_sched_rt_period = old_period;
  7239. sysctl_sched_rt_runtime = old_runtime;
  7240. } else {
  7241. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7242. def_rt_bandwidth.rt_period =
  7243. ns_to_ktime(global_rt_period());
  7244. }
  7245. }
  7246. mutex_unlock(&mutex);
  7247. return ret;
  7248. }
  7249. #ifdef CONFIG_CGROUP_SCHED
  7250. /* return corresponding task_group object of a cgroup */
  7251. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7252. {
  7253. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7254. struct task_group, css);
  7255. }
  7256. static struct cgroup_subsys_state *
  7257. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7258. {
  7259. struct task_group *tg, *parent;
  7260. if (!cgrp->parent) {
  7261. /* This is early initialization for the top cgroup */
  7262. return &init_task_group.css;
  7263. }
  7264. parent = cgroup_tg(cgrp->parent);
  7265. tg = sched_create_group(parent);
  7266. if (IS_ERR(tg))
  7267. return ERR_PTR(-ENOMEM);
  7268. return &tg->css;
  7269. }
  7270. static void
  7271. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7272. {
  7273. struct task_group *tg = cgroup_tg(cgrp);
  7274. sched_destroy_group(tg);
  7275. }
  7276. static int
  7277. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7278. {
  7279. #ifdef CONFIG_RT_GROUP_SCHED
  7280. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7281. return -EINVAL;
  7282. #else
  7283. /* We don't support RT-tasks being in separate groups */
  7284. if (tsk->sched_class != &fair_sched_class)
  7285. return -EINVAL;
  7286. #endif
  7287. return 0;
  7288. }
  7289. static int
  7290. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7291. struct task_struct *tsk, bool threadgroup)
  7292. {
  7293. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7294. if (retval)
  7295. return retval;
  7296. if (threadgroup) {
  7297. struct task_struct *c;
  7298. rcu_read_lock();
  7299. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7300. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7301. if (retval) {
  7302. rcu_read_unlock();
  7303. return retval;
  7304. }
  7305. }
  7306. rcu_read_unlock();
  7307. }
  7308. return 0;
  7309. }
  7310. static void
  7311. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7312. struct cgroup *old_cont, struct task_struct *tsk,
  7313. bool threadgroup)
  7314. {
  7315. sched_move_task(tsk);
  7316. if (threadgroup) {
  7317. struct task_struct *c;
  7318. rcu_read_lock();
  7319. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7320. sched_move_task(c);
  7321. }
  7322. rcu_read_unlock();
  7323. }
  7324. }
  7325. #ifdef CONFIG_FAIR_GROUP_SCHED
  7326. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7327. u64 shareval)
  7328. {
  7329. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7330. }
  7331. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7332. {
  7333. struct task_group *tg = cgroup_tg(cgrp);
  7334. return (u64) tg->shares;
  7335. }
  7336. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7337. #ifdef CONFIG_RT_GROUP_SCHED
  7338. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7339. s64 val)
  7340. {
  7341. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7342. }
  7343. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7344. {
  7345. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7346. }
  7347. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7348. u64 rt_period_us)
  7349. {
  7350. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7351. }
  7352. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7353. {
  7354. return sched_group_rt_period(cgroup_tg(cgrp));
  7355. }
  7356. #endif /* CONFIG_RT_GROUP_SCHED */
  7357. static struct cftype cpu_files[] = {
  7358. #ifdef CONFIG_FAIR_GROUP_SCHED
  7359. {
  7360. .name = "shares",
  7361. .read_u64 = cpu_shares_read_u64,
  7362. .write_u64 = cpu_shares_write_u64,
  7363. },
  7364. #endif
  7365. #ifdef CONFIG_RT_GROUP_SCHED
  7366. {
  7367. .name = "rt_runtime_us",
  7368. .read_s64 = cpu_rt_runtime_read,
  7369. .write_s64 = cpu_rt_runtime_write,
  7370. },
  7371. {
  7372. .name = "rt_period_us",
  7373. .read_u64 = cpu_rt_period_read_uint,
  7374. .write_u64 = cpu_rt_period_write_uint,
  7375. },
  7376. #endif
  7377. };
  7378. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7379. {
  7380. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7381. }
  7382. struct cgroup_subsys cpu_cgroup_subsys = {
  7383. .name = "cpu",
  7384. .create = cpu_cgroup_create,
  7385. .destroy = cpu_cgroup_destroy,
  7386. .can_attach = cpu_cgroup_can_attach,
  7387. .attach = cpu_cgroup_attach,
  7388. .populate = cpu_cgroup_populate,
  7389. .subsys_id = cpu_cgroup_subsys_id,
  7390. .early_init = 1,
  7391. };
  7392. #endif /* CONFIG_CGROUP_SCHED */
  7393. #ifdef CONFIG_CGROUP_CPUACCT
  7394. /*
  7395. * CPU accounting code for task groups.
  7396. *
  7397. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7398. * (balbir@in.ibm.com).
  7399. */
  7400. /* track cpu usage of a group of tasks and its child groups */
  7401. struct cpuacct {
  7402. struct cgroup_subsys_state css;
  7403. /* cpuusage holds pointer to a u64-type object on every cpu */
  7404. u64 __percpu *cpuusage;
  7405. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7406. struct cpuacct *parent;
  7407. };
  7408. struct cgroup_subsys cpuacct_subsys;
  7409. /* return cpu accounting group corresponding to this container */
  7410. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7411. {
  7412. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7413. struct cpuacct, css);
  7414. }
  7415. /* return cpu accounting group to which this task belongs */
  7416. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7417. {
  7418. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7419. struct cpuacct, css);
  7420. }
  7421. /* create a new cpu accounting group */
  7422. static struct cgroup_subsys_state *cpuacct_create(
  7423. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7424. {
  7425. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7426. int i;
  7427. if (!ca)
  7428. goto out;
  7429. ca->cpuusage = alloc_percpu(u64);
  7430. if (!ca->cpuusage)
  7431. goto out_free_ca;
  7432. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7433. if (percpu_counter_init(&ca->cpustat[i], 0))
  7434. goto out_free_counters;
  7435. if (cgrp->parent)
  7436. ca->parent = cgroup_ca(cgrp->parent);
  7437. return &ca->css;
  7438. out_free_counters:
  7439. while (--i >= 0)
  7440. percpu_counter_destroy(&ca->cpustat[i]);
  7441. free_percpu(ca->cpuusage);
  7442. out_free_ca:
  7443. kfree(ca);
  7444. out:
  7445. return ERR_PTR(-ENOMEM);
  7446. }
  7447. /* destroy an existing cpu accounting group */
  7448. static void
  7449. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7450. {
  7451. struct cpuacct *ca = cgroup_ca(cgrp);
  7452. int i;
  7453. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7454. percpu_counter_destroy(&ca->cpustat[i]);
  7455. free_percpu(ca->cpuusage);
  7456. kfree(ca);
  7457. }
  7458. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7459. {
  7460. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7461. u64 data;
  7462. #ifndef CONFIG_64BIT
  7463. /*
  7464. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7465. */
  7466. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7467. data = *cpuusage;
  7468. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7469. #else
  7470. data = *cpuusage;
  7471. #endif
  7472. return data;
  7473. }
  7474. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7475. {
  7476. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7477. #ifndef CONFIG_64BIT
  7478. /*
  7479. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7480. */
  7481. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7482. *cpuusage = val;
  7483. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7484. #else
  7485. *cpuusage = val;
  7486. #endif
  7487. }
  7488. /* return total cpu usage (in nanoseconds) of a group */
  7489. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7490. {
  7491. struct cpuacct *ca = cgroup_ca(cgrp);
  7492. u64 totalcpuusage = 0;
  7493. int i;
  7494. for_each_present_cpu(i)
  7495. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7496. return totalcpuusage;
  7497. }
  7498. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7499. u64 reset)
  7500. {
  7501. struct cpuacct *ca = cgroup_ca(cgrp);
  7502. int err = 0;
  7503. int i;
  7504. if (reset) {
  7505. err = -EINVAL;
  7506. goto out;
  7507. }
  7508. for_each_present_cpu(i)
  7509. cpuacct_cpuusage_write(ca, i, 0);
  7510. out:
  7511. return err;
  7512. }
  7513. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7514. struct seq_file *m)
  7515. {
  7516. struct cpuacct *ca = cgroup_ca(cgroup);
  7517. u64 percpu;
  7518. int i;
  7519. for_each_present_cpu(i) {
  7520. percpu = cpuacct_cpuusage_read(ca, i);
  7521. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7522. }
  7523. seq_printf(m, "\n");
  7524. return 0;
  7525. }
  7526. static const char *cpuacct_stat_desc[] = {
  7527. [CPUACCT_STAT_USER] = "user",
  7528. [CPUACCT_STAT_SYSTEM] = "system",
  7529. };
  7530. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7531. struct cgroup_map_cb *cb)
  7532. {
  7533. struct cpuacct *ca = cgroup_ca(cgrp);
  7534. int i;
  7535. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7536. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7537. val = cputime64_to_clock_t(val);
  7538. cb->fill(cb, cpuacct_stat_desc[i], val);
  7539. }
  7540. return 0;
  7541. }
  7542. static struct cftype files[] = {
  7543. {
  7544. .name = "usage",
  7545. .read_u64 = cpuusage_read,
  7546. .write_u64 = cpuusage_write,
  7547. },
  7548. {
  7549. .name = "usage_percpu",
  7550. .read_seq_string = cpuacct_percpu_seq_read,
  7551. },
  7552. {
  7553. .name = "stat",
  7554. .read_map = cpuacct_stats_show,
  7555. },
  7556. };
  7557. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7558. {
  7559. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7560. }
  7561. /*
  7562. * charge this task's execution time to its accounting group.
  7563. *
  7564. * called with rq->lock held.
  7565. */
  7566. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7567. {
  7568. struct cpuacct *ca;
  7569. int cpu;
  7570. if (unlikely(!cpuacct_subsys.active))
  7571. return;
  7572. cpu = task_cpu(tsk);
  7573. rcu_read_lock();
  7574. ca = task_ca(tsk);
  7575. for (; ca; ca = ca->parent) {
  7576. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7577. *cpuusage += cputime;
  7578. }
  7579. rcu_read_unlock();
  7580. }
  7581. /*
  7582. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7583. * in cputime_t units. As a result, cpuacct_update_stats calls
  7584. * percpu_counter_add with values large enough to always overflow the
  7585. * per cpu batch limit causing bad SMP scalability.
  7586. *
  7587. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7588. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7589. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7590. */
  7591. #ifdef CONFIG_SMP
  7592. #define CPUACCT_BATCH \
  7593. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7594. #else
  7595. #define CPUACCT_BATCH 0
  7596. #endif
  7597. /*
  7598. * Charge the system/user time to the task's accounting group.
  7599. */
  7600. static void cpuacct_update_stats(struct task_struct *tsk,
  7601. enum cpuacct_stat_index idx, cputime_t val)
  7602. {
  7603. struct cpuacct *ca;
  7604. int batch = CPUACCT_BATCH;
  7605. if (unlikely(!cpuacct_subsys.active))
  7606. return;
  7607. rcu_read_lock();
  7608. ca = task_ca(tsk);
  7609. do {
  7610. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7611. ca = ca->parent;
  7612. } while (ca);
  7613. rcu_read_unlock();
  7614. }
  7615. struct cgroup_subsys cpuacct_subsys = {
  7616. .name = "cpuacct",
  7617. .create = cpuacct_create,
  7618. .destroy = cpuacct_destroy,
  7619. .populate = cpuacct_populate,
  7620. .subsys_id = cpuacct_subsys_id,
  7621. };
  7622. #endif /* CONFIG_CGROUP_CPUACCT */
  7623. #ifndef CONFIG_SMP
  7624. void synchronize_sched_expedited(void)
  7625. {
  7626. barrier();
  7627. }
  7628. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7629. #else /* #ifndef CONFIG_SMP */
  7630. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7631. static int synchronize_sched_expedited_cpu_stop(void *data)
  7632. {
  7633. /*
  7634. * There must be a full memory barrier on each affected CPU
  7635. * between the time that try_stop_cpus() is called and the
  7636. * time that it returns.
  7637. *
  7638. * In the current initial implementation of cpu_stop, the
  7639. * above condition is already met when the control reaches
  7640. * this point and the following smp_mb() is not strictly
  7641. * necessary. Do smp_mb() anyway for documentation and
  7642. * robustness against future implementation changes.
  7643. */
  7644. smp_mb(); /* See above comment block. */
  7645. return 0;
  7646. }
  7647. /*
  7648. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7649. * approach to force grace period to end quickly. This consumes
  7650. * significant time on all CPUs, and is thus not recommended for
  7651. * any sort of common-case code.
  7652. *
  7653. * Note that it is illegal to call this function while holding any
  7654. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7655. * observe this restriction will result in deadlock.
  7656. */
  7657. void synchronize_sched_expedited(void)
  7658. {
  7659. int snap, trycount = 0;
  7660. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7661. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7662. get_online_cpus();
  7663. while (try_stop_cpus(cpu_online_mask,
  7664. synchronize_sched_expedited_cpu_stop,
  7665. NULL) == -EAGAIN) {
  7666. put_online_cpus();
  7667. if (trycount++ < 10)
  7668. udelay(trycount * num_online_cpus());
  7669. else {
  7670. synchronize_sched();
  7671. return;
  7672. }
  7673. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7674. smp_mb(); /* ensure test happens before caller kfree */
  7675. return;
  7676. }
  7677. get_online_cpus();
  7678. }
  7679. atomic_inc(&synchronize_sched_expedited_count);
  7680. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7681. put_online_cpus();
  7682. }
  7683. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7684. #endif /* #else #ifndef CONFIG_SMP */