time.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/clocksource.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/slab.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/unistd.h>
  40. #include "timeconst.h"
  41. /*
  42. * The timezone where the local system is located. Used as a default by some
  43. * programs who obtain this value by using gettimeofday.
  44. */
  45. struct timezone sys_tz;
  46. EXPORT_SYMBOL(sys_tz);
  47. #ifdef __ARCH_WANT_SYS_TIME
  48. /*
  49. * sys_time() can be implemented in user-level using
  50. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  51. * why not move it into the appropriate arch directory (for those
  52. * architectures that need it).
  53. */
  54. asmlinkage long sys_time(time_t __user * tloc)
  55. {
  56. time_t i = get_seconds();
  57. if (tloc) {
  58. if (put_user(i,tloc))
  59. i = -EFAULT;
  60. }
  61. return i;
  62. }
  63. /*
  64. * sys_stime() can be implemented in user-level using
  65. * sys_settimeofday(). Is this for backwards compatibility? If so,
  66. * why not move it into the appropriate arch directory (for those
  67. * architectures that need it).
  68. */
  69. asmlinkage long sys_stime(time_t __user *tptr)
  70. {
  71. struct timespec tv;
  72. int err;
  73. if (get_user(tv.tv_sec, tptr))
  74. return -EFAULT;
  75. tv.tv_nsec = 0;
  76. err = security_settime(&tv, NULL);
  77. if (err)
  78. return err;
  79. do_settimeofday(&tv);
  80. return 0;
  81. }
  82. #endif /* __ARCH_WANT_SYS_TIME */
  83. asmlinkage long sys_gettimeofday(struct timeval __user *tv,
  84. struct timezone __user *tz)
  85. {
  86. if (likely(tv != NULL)) {
  87. struct timeval ktv;
  88. do_gettimeofday(&ktv);
  89. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  90. return -EFAULT;
  91. }
  92. if (unlikely(tz != NULL)) {
  93. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  94. return -EFAULT;
  95. }
  96. return 0;
  97. }
  98. /*
  99. * Adjust the time obtained from the CMOS to be UTC time instead of
  100. * local time.
  101. *
  102. * This is ugly, but preferable to the alternatives. Otherwise we
  103. * would either need to write a program to do it in /etc/rc (and risk
  104. * confusion if the program gets run more than once; it would also be
  105. * hard to make the program warp the clock precisely n hours) or
  106. * compile in the timezone information into the kernel. Bad, bad....
  107. *
  108. * - TYT, 1992-01-01
  109. *
  110. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  111. * as real UNIX machines always do it. This avoids all headaches about
  112. * daylight saving times and warping kernel clocks.
  113. */
  114. static inline void warp_clock(void)
  115. {
  116. write_seqlock_irq(&xtime_lock);
  117. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  118. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  119. update_xtime_cache(0);
  120. write_sequnlock_irq(&xtime_lock);
  121. clock_was_set();
  122. }
  123. /*
  124. * In case for some reason the CMOS clock has not already been running
  125. * in UTC, but in some local time: The first time we set the timezone,
  126. * we will warp the clock so that it is ticking UTC time instead of
  127. * local time. Presumably, if someone is setting the timezone then we
  128. * are running in an environment where the programs understand about
  129. * timezones. This should be done at boot time in the /etc/rc script,
  130. * as soon as possible, so that the clock can be set right. Otherwise,
  131. * various programs will get confused when the clock gets warped.
  132. */
  133. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  134. {
  135. static int firsttime = 1;
  136. int error = 0;
  137. if (tv && !timespec_valid(tv))
  138. return -EINVAL;
  139. error = security_settime(tv, tz);
  140. if (error)
  141. return error;
  142. if (tz) {
  143. /* SMP safe, global irq locking makes it work. */
  144. sys_tz = *tz;
  145. update_vsyscall_tz();
  146. if (firsttime) {
  147. firsttime = 0;
  148. if (!tv)
  149. warp_clock();
  150. }
  151. }
  152. if (tv)
  153. {
  154. /* SMP safe, again the code in arch/foo/time.c should
  155. * globally block out interrupts when it runs.
  156. */
  157. return do_settimeofday(tv);
  158. }
  159. return 0;
  160. }
  161. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  162. struct timezone __user *tz)
  163. {
  164. struct timeval user_tv;
  165. struct timespec new_ts;
  166. struct timezone new_tz;
  167. if (tv) {
  168. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  169. return -EFAULT;
  170. new_ts.tv_sec = user_tv.tv_sec;
  171. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  172. }
  173. if (tz) {
  174. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  175. return -EFAULT;
  176. }
  177. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  178. }
  179. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  180. {
  181. struct timex txc; /* Local copy of parameter */
  182. int ret;
  183. /* Copy the user data space into the kernel copy
  184. * structure. But bear in mind that the structures
  185. * may change
  186. */
  187. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  188. return -EFAULT;
  189. ret = do_adjtimex(&txc);
  190. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  191. }
  192. /**
  193. * current_fs_time - Return FS time
  194. * @sb: Superblock.
  195. *
  196. * Return the current time truncated to the time granularity supported by
  197. * the fs.
  198. */
  199. struct timespec current_fs_time(struct super_block *sb)
  200. {
  201. struct timespec now = current_kernel_time();
  202. return timespec_trunc(now, sb->s_time_gran);
  203. }
  204. EXPORT_SYMBOL(current_fs_time);
  205. /*
  206. * Convert jiffies to milliseconds and back.
  207. *
  208. * Avoid unnecessary multiplications/divisions in the
  209. * two most common HZ cases:
  210. */
  211. unsigned int inline jiffies_to_msecs(const unsigned long j)
  212. {
  213. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  214. return (MSEC_PER_SEC / HZ) * j;
  215. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  216. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  217. #else
  218. # if BITS_PER_LONG == 32
  219. return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  220. # else
  221. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  222. # endif
  223. #endif
  224. }
  225. EXPORT_SYMBOL(jiffies_to_msecs);
  226. unsigned int inline jiffies_to_usecs(const unsigned long j)
  227. {
  228. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  229. return (USEC_PER_SEC / HZ) * j;
  230. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  231. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  232. #else
  233. # if BITS_PER_LONG == 32
  234. return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  235. # else
  236. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  237. # endif
  238. #endif
  239. }
  240. EXPORT_SYMBOL(jiffies_to_usecs);
  241. /**
  242. * timespec_trunc - Truncate timespec to a granularity
  243. * @t: Timespec
  244. * @gran: Granularity in ns.
  245. *
  246. * Truncate a timespec to a granularity. gran must be smaller than a second.
  247. * Always rounds down.
  248. *
  249. * This function should be only used for timestamps returned by
  250. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  251. * it doesn't handle the better resolution of the latter.
  252. */
  253. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  254. {
  255. /*
  256. * Division is pretty slow so avoid it for common cases.
  257. * Currently current_kernel_time() never returns better than
  258. * jiffies resolution. Exploit that.
  259. */
  260. if (gran <= jiffies_to_usecs(1) * 1000) {
  261. /* nothing */
  262. } else if (gran == 1000000000) {
  263. t.tv_nsec = 0;
  264. } else {
  265. t.tv_nsec -= t.tv_nsec % gran;
  266. }
  267. return t;
  268. }
  269. EXPORT_SYMBOL(timespec_trunc);
  270. #ifndef CONFIG_GENERIC_TIME
  271. /*
  272. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  273. * and therefore only yields usec accuracy
  274. */
  275. void getnstimeofday(struct timespec *tv)
  276. {
  277. struct timeval x;
  278. do_gettimeofday(&x);
  279. tv->tv_sec = x.tv_sec;
  280. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  281. }
  282. EXPORT_SYMBOL_GPL(getnstimeofday);
  283. #endif
  284. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  285. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  286. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  287. *
  288. * [For the Julian calendar (which was used in Russia before 1917,
  289. * Britain & colonies before 1752, anywhere else before 1582,
  290. * and is still in use by some communities) leave out the
  291. * -year/100+year/400 terms, and add 10.]
  292. *
  293. * This algorithm was first published by Gauss (I think).
  294. *
  295. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  296. * machines where long is 32-bit! (However, as time_t is signed, we
  297. * will already get problems at other places on 2038-01-19 03:14:08)
  298. */
  299. unsigned long
  300. mktime(const unsigned int year0, const unsigned int mon0,
  301. const unsigned int day, const unsigned int hour,
  302. const unsigned int min, const unsigned int sec)
  303. {
  304. unsigned int mon = mon0, year = year0;
  305. /* 1..12 -> 11,12,1..10 */
  306. if (0 >= (int) (mon -= 2)) {
  307. mon += 12; /* Puts Feb last since it has leap day */
  308. year -= 1;
  309. }
  310. return ((((unsigned long)
  311. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  312. year*365 - 719499
  313. )*24 + hour /* now have hours */
  314. )*60 + min /* now have minutes */
  315. )*60 + sec; /* finally seconds */
  316. }
  317. EXPORT_SYMBOL(mktime);
  318. /**
  319. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  320. *
  321. * @ts: pointer to timespec variable to be set
  322. * @sec: seconds to set
  323. * @nsec: nanoseconds to set
  324. *
  325. * Set seconds and nanoseconds field of a timespec variable and
  326. * normalize to the timespec storage format
  327. *
  328. * Note: The tv_nsec part is always in the range of
  329. * 0 <= tv_nsec < NSEC_PER_SEC
  330. * For negative values only the tv_sec field is negative !
  331. */
  332. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  333. {
  334. while (nsec >= NSEC_PER_SEC) {
  335. nsec -= NSEC_PER_SEC;
  336. ++sec;
  337. }
  338. while (nsec < 0) {
  339. nsec += NSEC_PER_SEC;
  340. --sec;
  341. }
  342. ts->tv_sec = sec;
  343. ts->tv_nsec = nsec;
  344. }
  345. EXPORT_SYMBOL(set_normalized_timespec);
  346. /**
  347. * ns_to_timespec - Convert nanoseconds to timespec
  348. * @nsec: the nanoseconds value to be converted
  349. *
  350. * Returns the timespec representation of the nsec parameter.
  351. */
  352. struct timespec ns_to_timespec(const s64 nsec)
  353. {
  354. struct timespec ts;
  355. if (!nsec)
  356. return (struct timespec) {0, 0};
  357. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  358. if (unlikely(nsec < 0))
  359. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  360. return ts;
  361. }
  362. EXPORT_SYMBOL(ns_to_timespec);
  363. /**
  364. * ns_to_timeval - Convert nanoseconds to timeval
  365. * @nsec: the nanoseconds value to be converted
  366. *
  367. * Returns the timeval representation of the nsec parameter.
  368. */
  369. struct timeval ns_to_timeval(const s64 nsec)
  370. {
  371. struct timespec ts = ns_to_timespec(nsec);
  372. struct timeval tv;
  373. tv.tv_sec = ts.tv_sec;
  374. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  375. return tv;
  376. }
  377. EXPORT_SYMBOL(ns_to_timeval);
  378. /*
  379. * When we convert to jiffies then we interpret incoming values
  380. * the following way:
  381. *
  382. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  383. *
  384. * - 'too large' values [that would result in larger than
  385. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  386. *
  387. * - all other values are converted to jiffies by either multiplying
  388. * the input value by a factor or dividing it with a factor
  389. *
  390. * We must also be careful about 32-bit overflows.
  391. */
  392. unsigned long msecs_to_jiffies(const unsigned int m)
  393. {
  394. /*
  395. * Negative value, means infinite timeout:
  396. */
  397. if ((int)m < 0)
  398. return MAX_JIFFY_OFFSET;
  399. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  400. /*
  401. * HZ is equal to or smaller than 1000, and 1000 is a nice
  402. * round multiple of HZ, divide with the factor between them,
  403. * but round upwards:
  404. */
  405. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  406. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  407. /*
  408. * HZ is larger than 1000, and HZ is a nice round multiple of
  409. * 1000 - simply multiply with the factor between them.
  410. *
  411. * But first make sure the multiplication result cannot
  412. * overflow:
  413. */
  414. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  415. return MAX_JIFFY_OFFSET;
  416. return m * (HZ / MSEC_PER_SEC);
  417. #else
  418. /*
  419. * Generic case - multiply, round and divide. But first
  420. * check that if we are doing a net multiplication, that
  421. * we wouldn't overflow:
  422. */
  423. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  424. return MAX_JIFFY_OFFSET;
  425. return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
  426. >> MSEC_TO_HZ_SHR32;
  427. #endif
  428. }
  429. EXPORT_SYMBOL(msecs_to_jiffies);
  430. unsigned long usecs_to_jiffies(const unsigned int u)
  431. {
  432. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  433. return MAX_JIFFY_OFFSET;
  434. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  435. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  436. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  437. return u * (HZ / USEC_PER_SEC);
  438. #else
  439. return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  440. >> USEC_TO_HZ_SHR32;
  441. #endif
  442. }
  443. EXPORT_SYMBOL(usecs_to_jiffies);
  444. /*
  445. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  446. * that a remainder subtract here would not do the right thing as the
  447. * resolution values don't fall on second boundries. I.e. the line:
  448. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  449. *
  450. * Rather, we just shift the bits off the right.
  451. *
  452. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  453. * value to a scaled second value.
  454. */
  455. unsigned long
  456. timespec_to_jiffies(const struct timespec *value)
  457. {
  458. unsigned long sec = value->tv_sec;
  459. long nsec = value->tv_nsec + TICK_NSEC - 1;
  460. if (sec >= MAX_SEC_IN_JIFFIES){
  461. sec = MAX_SEC_IN_JIFFIES;
  462. nsec = 0;
  463. }
  464. return (((u64)sec * SEC_CONVERSION) +
  465. (((u64)nsec * NSEC_CONVERSION) >>
  466. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  467. }
  468. EXPORT_SYMBOL(timespec_to_jiffies);
  469. void
  470. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  471. {
  472. /*
  473. * Convert jiffies to nanoseconds and separate with
  474. * one divide.
  475. */
  476. u64 nsec = (u64)jiffies * TICK_NSEC;
  477. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  478. }
  479. EXPORT_SYMBOL(jiffies_to_timespec);
  480. /* Same for "timeval"
  481. *
  482. * Well, almost. The problem here is that the real system resolution is
  483. * in nanoseconds and the value being converted is in micro seconds.
  484. * Also for some machines (those that use HZ = 1024, in-particular),
  485. * there is a LARGE error in the tick size in microseconds.
  486. * The solution we use is to do the rounding AFTER we convert the
  487. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  488. * Instruction wise, this should cost only an additional add with carry
  489. * instruction above the way it was done above.
  490. */
  491. unsigned long
  492. timeval_to_jiffies(const struct timeval *value)
  493. {
  494. unsigned long sec = value->tv_sec;
  495. long usec = value->tv_usec;
  496. if (sec >= MAX_SEC_IN_JIFFIES){
  497. sec = MAX_SEC_IN_JIFFIES;
  498. usec = 0;
  499. }
  500. return (((u64)sec * SEC_CONVERSION) +
  501. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  502. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  503. }
  504. EXPORT_SYMBOL(timeval_to_jiffies);
  505. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  506. {
  507. /*
  508. * Convert jiffies to nanoseconds and separate with
  509. * one divide.
  510. */
  511. u64 nsec = (u64)jiffies * TICK_NSEC;
  512. long tv_usec;
  513. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
  514. tv_usec /= NSEC_PER_USEC;
  515. value->tv_usec = tv_usec;
  516. }
  517. EXPORT_SYMBOL(jiffies_to_timeval);
  518. /*
  519. * Convert jiffies/jiffies_64 to clock_t and back.
  520. */
  521. clock_t jiffies_to_clock_t(long x)
  522. {
  523. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  524. # if HZ < USER_HZ
  525. return x * (USER_HZ / HZ);
  526. # else
  527. return x / (HZ / USER_HZ);
  528. # endif
  529. #else
  530. u64 tmp = (u64)x * TICK_NSEC;
  531. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  532. return (long)tmp;
  533. #endif
  534. }
  535. EXPORT_SYMBOL(jiffies_to_clock_t);
  536. unsigned long clock_t_to_jiffies(unsigned long x)
  537. {
  538. #if (HZ % USER_HZ)==0
  539. if (x >= ~0UL / (HZ / USER_HZ))
  540. return ~0UL;
  541. return x * (HZ / USER_HZ);
  542. #else
  543. u64 jif;
  544. /* Don't worry about loss of precision here .. */
  545. if (x >= ~0UL / HZ * USER_HZ)
  546. return ~0UL;
  547. /* .. but do try to contain it here */
  548. jif = x * (u64) HZ;
  549. do_div(jif, USER_HZ);
  550. return jif;
  551. #endif
  552. }
  553. EXPORT_SYMBOL(clock_t_to_jiffies);
  554. u64 jiffies_64_to_clock_t(u64 x)
  555. {
  556. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  557. # if HZ < USER_HZ
  558. x *= USER_HZ;
  559. do_div(x, HZ);
  560. # elif HZ > USER_HZ
  561. do_div(x, HZ / USER_HZ);
  562. # else
  563. /* Nothing to do */
  564. # endif
  565. #else
  566. /*
  567. * There are better ways that don't overflow early,
  568. * but even this doesn't overflow in hundreds of years
  569. * in 64 bits, so..
  570. */
  571. x *= TICK_NSEC;
  572. do_div(x, (NSEC_PER_SEC / USER_HZ));
  573. #endif
  574. return x;
  575. }
  576. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  577. u64 nsec_to_clock_t(u64 x)
  578. {
  579. #if (NSEC_PER_SEC % USER_HZ) == 0
  580. do_div(x, (NSEC_PER_SEC / USER_HZ));
  581. #elif (USER_HZ % 512) == 0
  582. x *= USER_HZ/512;
  583. do_div(x, (NSEC_PER_SEC / 512));
  584. #else
  585. /*
  586. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  587. * overflow after 64.99 years.
  588. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  589. */
  590. x *= 9;
  591. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
  592. USER_HZ));
  593. #endif
  594. return x;
  595. }
  596. #if (BITS_PER_LONG < 64)
  597. u64 get_jiffies_64(void)
  598. {
  599. unsigned long seq;
  600. u64 ret;
  601. do {
  602. seq = read_seqbegin(&xtime_lock);
  603. ret = jiffies_64;
  604. } while (read_seqretry(&xtime_lock, seq));
  605. return ret;
  606. }
  607. EXPORT_SYMBOL(get_jiffies_64);
  608. #endif
  609. EXPORT_SYMBOL(jiffies);